Home | History | Annotate | Download | only in Scalar
      1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into forms suitable for efficient execution
     12 // on the target.
     13 //
     14 // This pass performs a strength reduction on array references inside loops that
     15 // have as one or more of their components the loop induction variable, it
     16 // rewrites expressions to take advantage of scaled-index addressing modes
     17 // available on the target, and it performs a variety of other optimizations
     18 // related to loop induction variables.
     19 //
     20 // Terminology note: this code has a lot of handling for "post-increment" or
     21 // "post-inc" users. This is not talking about post-increment addressing modes;
     22 // it is instead talking about code like this:
     23 //
     24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
     25 //   ...
     26 //   %i.next = add %i, 1
     27 //   %c = icmp eq %i.next, %n
     28 //
     29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
     30 // it's useful to think about these as the same register, with some uses using
     31 // the value of the register before the add and some using it after. In this
     32 // example, the icmp is a post-increment user, since it uses %i.next, which is
     33 // the value of the induction variable after the increment. The other common
     34 // case of post-increment users is users outside the loop.
     35 //
     36 // TODO: More sophistication in the way Formulae are generated and filtered.
     37 //
     38 // TODO: Handle multiple loops at a time.
     39 //
     40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
     41 //       of a GlobalValue?
     42 //
     43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
     44 //       smaller encoding (on x86 at least).
     45 //
     46 // TODO: When a negated register is used by an add (such as in a list of
     47 //       multiple base registers, or as the increment expression in an addrec),
     48 //       we may not actually need both reg and (-1 * reg) in registers; the
     49 //       negation can be implemented by using a sub instead of an add. The
     50 //       lack of support for taking this into consideration when making
     51 //       register pressure decisions is partly worked around by the "Special"
     52 //       use kind.
     53 //
     54 //===----------------------------------------------------------------------===//
     55 
     56 #include "llvm/Transforms/Scalar.h"
     57 #include "llvm/ADT/DenseSet.h"
     58 #include "llvm/ADT/Hashing.h"
     59 #include "llvm/ADT/STLExtras.h"
     60 #include "llvm/ADT/SetVector.h"
     61 #include "llvm/ADT/SmallBitVector.h"
     62 #include "llvm/Analysis/IVUsers.h"
     63 #include "llvm/Analysis/LoopPass.h"
     64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     65 #include "llvm/Analysis/TargetTransformInfo.h"
     66 #include "llvm/IR/Constants.h"
     67 #include "llvm/IR/DerivedTypes.h"
     68 #include "llvm/IR/Dominators.h"
     69 #include "llvm/IR/Instructions.h"
     70 #include "llvm/IR/IntrinsicInst.h"
     71 #include "llvm/IR/Module.h"
     72 #include "llvm/IR/ValueHandle.h"
     73 #include "llvm/Support/CommandLine.h"
     74 #include "llvm/Support/Debug.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     77 #include "llvm/Transforms/Utils/Local.h"
     78 #include <algorithm>
     79 using namespace llvm;
     80 
     81 #define DEBUG_TYPE "loop-reduce"
     82 
     83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
     84 /// bail out. This threshold is far beyond the number of users that LSR can
     85 /// conceivably solve, so it should not affect generated code, but catches the
     86 /// worst cases before LSR burns too much compile time and stack space.
     87 static const unsigned MaxIVUsers = 200;
     88 
     89 // Temporary flag to cleanup congruent phis after LSR phi expansion.
     90 // It's currently disabled until we can determine whether it's truly useful or
     91 // not. The flag should be removed after the v3.0 release.
     92 // This is now needed for ivchains.
     93 static cl::opt<bool> EnablePhiElim(
     94   "enable-lsr-phielim", cl::Hidden, cl::init(true),
     95   cl::desc("Enable LSR phi elimination"));
     96 
     97 #ifndef NDEBUG
     98 // Stress test IV chain generation.
     99 static cl::opt<bool> StressIVChain(
    100   "stress-ivchain", cl::Hidden, cl::init(false),
    101   cl::desc("Stress test LSR IV chains"));
    102 #else
    103 static bool StressIVChain = false;
    104 #endif
    105 
    106 namespace {
    107 
    108 struct MemAccessTy {
    109   /// Used in situations where the accessed memory type is unknown.
    110   static const unsigned UnknownAddressSpace = ~0u;
    111 
    112   Type *MemTy;
    113   unsigned AddrSpace;
    114 
    115   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
    116 
    117   MemAccessTy(Type *Ty, unsigned AS) :
    118     MemTy(Ty), AddrSpace(AS) {}
    119 
    120   bool operator==(MemAccessTy Other) const {
    121     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
    122   }
    123 
    124   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
    125 
    126   static MemAccessTy getUnknown(LLVMContext &Ctx) {
    127     return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace);
    128   }
    129 };
    130 
    131 /// This class holds data which is used to order reuse candidates.
    132 class RegSortData {
    133 public:
    134   /// This represents the set of LSRUse indices which reference
    135   /// a particular register.
    136   SmallBitVector UsedByIndices;
    137 
    138   void print(raw_ostream &OS) const;
    139   void dump() const;
    140 };
    141 
    142 }
    143 
    144 void RegSortData::print(raw_ostream &OS) const {
    145   OS << "[NumUses=" << UsedByIndices.count() << ']';
    146 }
    147 
    148 LLVM_DUMP_METHOD
    149 void RegSortData::dump() const {
    150   print(errs()); errs() << '\n';
    151 }
    152 
    153 namespace {
    154 
    155 /// Map register candidates to information about how they are used.
    156 class RegUseTracker {
    157   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
    158 
    159   RegUsesTy RegUsesMap;
    160   SmallVector<const SCEV *, 16> RegSequence;
    161 
    162 public:
    163   void countRegister(const SCEV *Reg, size_t LUIdx);
    164   void dropRegister(const SCEV *Reg, size_t LUIdx);
    165   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
    166 
    167   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
    168 
    169   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
    170 
    171   void clear();
    172 
    173   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
    174   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
    175   iterator begin() { return RegSequence.begin(); }
    176   iterator end()   { return RegSequence.end(); }
    177   const_iterator begin() const { return RegSequence.begin(); }
    178   const_iterator end() const   { return RegSequence.end(); }
    179 };
    180 
    181 }
    182 
    183 void
    184 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
    185   std::pair<RegUsesTy::iterator, bool> Pair =
    186     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
    187   RegSortData &RSD = Pair.first->second;
    188   if (Pair.second)
    189     RegSequence.push_back(Reg);
    190   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
    191   RSD.UsedByIndices.set(LUIdx);
    192 }
    193 
    194 void
    195 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
    196   RegUsesTy::iterator It = RegUsesMap.find(Reg);
    197   assert(It != RegUsesMap.end());
    198   RegSortData &RSD = It->second;
    199   assert(RSD.UsedByIndices.size() > LUIdx);
    200   RSD.UsedByIndices.reset(LUIdx);
    201 }
    202 
    203 void
    204 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
    205   assert(LUIdx <= LastLUIdx);
    206 
    207   // Update RegUses. The data structure is not optimized for this purpose;
    208   // we must iterate through it and update each of the bit vectors.
    209   for (auto &Pair : RegUsesMap) {
    210     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
    211     if (LUIdx < UsedByIndices.size())
    212       UsedByIndices[LUIdx] =
    213         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
    214     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
    215   }
    216 }
    217 
    218 bool
    219 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
    220   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    221   if (I == RegUsesMap.end())
    222     return false;
    223   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    224   int i = UsedByIndices.find_first();
    225   if (i == -1) return false;
    226   if ((size_t)i != LUIdx) return true;
    227   return UsedByIndices.find_next(i) != -1;
    228 }
    229 
    230 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
    231   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    232   assert(I != RegUsesMap.end() && "Unknown register!");
    233   return I->second.UsedByIndices;
    234 }
    235 
    236 void RegUseTracker::clear() {
    237   RegUsesMap.clear();
    238   RegSequence.clear();
    239 }
    240 
    241 namespace {
    242 
    243 /// This class holds information that describes a formula for computing
    244 /// satisfying a use. It may include broken-out immediates and scaled registers.
    245 struct Formula {
    246   /// Global base address used for complex addressing.
    247   GlobalValue *BaseGV;
    248 
    249   /// Base offset for complex addressing.
    250   int64_t BaseOffset;
    251 
    252   /// Whether any complex addressing has a base register.
    253   bool HasBaseReg;
    254 
    255   /// The scale of any complex addressing.
    256   int64_t Scale;
    257 
    258   /// The list of "base" registers for this use. When this is non-empty. The
    259   /// canonical representation of a formula is
    260   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
    261   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
    262   /// #1 enforces that the scaled register is always used when at least two
    263   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
    264   /// #2 enforces that 1 * reg is reg.
    265   /// This invariant can be temporarly broken while building a formula.
    266   /// However, every formula inserted into the LSRInstance must be in canonical
    267   /// form.
    268   SmallVector<const SCEV *, 4> BaseRegs;
    269 
    270   /// The 'scaled' register for this use. This should be non-null when Scale is
    271   /// not zero.
    272   const SCEV *ScaledReg;
    273 
    274   /// An additional constant offset which added near the use. This requires a
    275   /// temporary register, but the offset itself can live in an add immediate
    276   /// field rather than a register.
    277   int64_t UnfoldedOffset;
    278 
    279   Formula()
    280       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
    281         ScaledReg(nullptr), UnfoldedOffset(0) {}
    282 
    283   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
    284 
    285   bool isCanonical() const;
    286 
    287   void canonicalize();
    288 
    289   bool unscale();
    290 
    291   size_t getNumRegs() const;
    292   Type *getType() const;
    293 
    294   void deleteBaseReg(const SCEV *&S);
    295 
    296   bool referencesReg(const SCEV *S) const;
    297   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
    298                                   const RegUseTracker &RegUses) const;
    299 
    300   void print(raw_ostream &OS) const;
    301   void dump() const;
    302 };
    303 
    304 }
    305 
    306 /// Recursion helper for initialMatch.
    307 static void DoInitialMatch(const SCEV *S, Loop *L,
    308                            SmallVectorImpl<const SCEV *> &Good,
    309                            SmallVectorImpl<const SCEV *> &Bad,
    310                            ScalarEvolution &SE) {
    311   // Collect expressions which properly dominate the loop header.
    312   if (SE.properlyDominates(S, L->getHeader())) {
    313     Good.push_back(S);
    314     return;
    315   }
    316 
    317   // Look at add operands.
    318   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    319     for (const SCEV *S : Add->operands())
    320       DoInitialMatch(S, L, Good, Bad, SE);
    321     return;
    322   }
    323 
    324   // Look at addrec operands.
    325   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    326     if (!AR->getStart()->isZero()) {
    327       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
    328       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
    329                                       AR->getStepRecurrence(SE),
    330                                       // FIXME: AR->getNoWrapFlags()
    331                                       AR->getLoop(), SCEV::FlagAnyWrap),
    332                      L, Good, Bad, SE);
    333       return;
    334     }
    335 
    336   // Handle a multiplication by -1 (negation) if it didn't fold.
    337   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
    338     if (Mul->getOperand(0)->isAllOnesValue()) {
    339       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
    340       const SCEV *NewMul = SE.getMulExpr(Ops);
    341 
    342       SmallVector<const SCEV *, 4> MyGood;
    343       SmallVector<const SCEV *, 4> MyBad;
    344       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
    345       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
    346         SE.getEffectiveSCEVType(NewMul->getType())));
    347       for (const SCEV *S : MyGood)
    348         Good.push_back(SE.getMulExpr(NegOne, S));
    349       for (const SCEV *S : MyBad)
    350         Bad.push_back(SE.getMulExpr(NegOne, S));
    351       return;
    352     }
    353 
    354   // Ok, we can't do anything interesting. Just stuff the whole thing into a
    355   // register and hope for the best.
    356   Bad.push_back(S);
    357 }
    358 
    359 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
    360 /// all loop-invariant and loop-computable values in a single base register.
    361 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
    362   SmallVector<const SCEV *, 4> Good;
    363   SmallVector<const SCEV *, 4> Bad;
    364   DoInitialMatch(S, L, Good, Bad, SE);
    365   if (!Good.empty()) {
    366     const SCEV *Sum = SE.getAddExpr(Good);
    367     if (!Sum->isZero())
    368       BaseRegs.push_back(Sum);
    369     HasBaseReg = true;
    370   }
    371   if (!Bad.empty()) {
    372     const SCEV *Sum = SE.getAddExpr(Bad);
    373     if (!Sum->isZero())
    374       BaseRegs.push_back(Sum);
    375     HasBaseReg = true;
    376   }
    377   canonicalize();
    378 }
    379 
    380 /// \brief Check whether or not this formula statisfies the canonical
    381 /// representation.
    382 /// \see Formula::BaseRegs.
    383 bool Formula::isCanonical() const {
    384   if (ScaledReg)
    385     return Scale != 1 || !BaseRegs.empty();
    386   return BaseRegs.size() <= 1;
    387 }
    388 
    389 /// \brief Helper method to morph a formula into its canonical representation.
    390 /// \see Formula::BaseRegs.
    391 /// Every formula having more than one base register, must use the ScaledReg
    392 /// field. Otherwise, we would have to do special cases everywhere in LSR
    393 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
    394 /// On the other hand, 1*reg should be canonicalized into reg.
    395 void Formula::canonicalize() {
    396   if (isCanonical())
    397     return;
    398   // So far we did not need this case. This is easy to implement but it is
    399   // useless to maintain dead code. Beside it could hurt compile time.
    400   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
    401   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
    402   ScaledReg = BaseRegs.back();
    403   BaseRegs.pop_back();
    404   Scale = 1;
    405   size_t BaseRegsSize = BaseRegs.size();
    406   size_t Try = 0;
    407   // If ScaledReg is an invariant, try to find a variant expression.
    408   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
    409     std::swap(ScaledReg, BaseRegs[Try++]);
    410 }
    411 
    412 /// \brief Get rid of the scale in the formula.
    413 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
    414 /// \return true if it was possible to get rid of the scale, false otherwise.
    415 /// \note After this operation the formula may not be in the canonical form.
    416 bool Formula::unscale() {
    417   if (Scale != 1)
    418     return false;
    419   Scale = 0;
    420   BaseRegs.push_back(ScaledReg);
    421   ScaledReg = nullptr;
    422   return true;
    423 }
    424 
    425 /// Return the total number of register operands used by this formula. This does
    426 /// not include register uses implied by non-constant addrec strides.
    427 size_t Formula::getNumRegs() const {
    428   return !!ScaledReg + BaseRegs.size();
    429 }
    430 
    431 /// Return the type of this formula, if it has one, or null otherwise. This type
    432 /// is meaningless except for the bit size.
    433 Type *Formula::getType() const {
    434   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
    435          ScaledReg ? ScaledReg->getType() :
    436          BaseGV ? BaseGV->getType() :
    437          nullptr;
    438 }
    439 
    440 /// Delete the given base reg from the BaseRegs list.
    441 void Formula::deleteBaseReg(const SCEV *&S) {
    442   if (&S != &BaseRegs.back())
    443     std::swap(S, BaseRegs.back());
    444   BaseRegs.pop_back();
    445 }
    446 
    447 /// Test if this formula references the given register.
    448 bool Formula::referencesReg(const SCEV *S) const {
    449   return S == ScaledReg ||
    450          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
    451 }
    452 
    453 /// Test whether this formula uses registers which are used by uses other than
    454 /// the use with the given index.
    455 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
    456                                          const RegUseTracker &RegUses) const {
    457   if (ScaledReg)
    458     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
    459       return true;
    460   for (const SCEV *BaseReg : BaseRegs)
    461     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
    462       return true;
    463   return false;
    464 }
    465 
    466 void Formula::print(raw_ostream &OS) const {
    467   bool First = true;
    468   if (BaseGV) {
    469     if (!First) OS << " + "; else First = false;
    470     BaseGV->printAsOperand(OS, /*PrintType=*/false);
    471   }
    472   if (BaseOffset != 0) {
    473     if (!First) OS << " + "; else First = false;
    474     OS << BaseOffset;
    475   }
    476   for (const SCEV *BaseReg : BaseRegs) {
    477     if (!First) OS << " + "; else First = false;
    478     OS << "reg(" << *BaseReg << ')';
    479   }
    480   if (HasBaseReg && BaseRegs.empty()) {
    481     if (!First) OS << " + "; else First = false;
    482     OS << "**error: HasBaseReg**";
    483   } else if (!HasBaseReg && !BaseRegs.empty()) {
    484     if (!First) OS << " + "; else First = false;
    485     OS << "**error: !HasBaseReg**";
    486   }
    487   if (Scale != 0) {
    488     if (!First) OS << " + "; else First = false;
    489     OS << Scale << "*reg(";
    490     if (ScaledReg)
    491       OS << *ScaledReg;
    492     else
    493       OS << "<unknown>";
    494     OS << ')';
    495   }
    496   if (UnfoldedOffset != 0) {
    497     if (!First) OS << " + ";
    498     OS << "imm(" << UnfoldedOffset << ')';
    499   }
    500 }
    501 
    502 LLVM_DUMP_METHOD
    503 void Formula::dump() const {
    504   print(errs()); errs() << '\n';
    505 }
    506 
    507 /// Return true if the given addrec can be sign-extended without changing its
    508 /// value.
    509 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    510   Type *WideTy =
    511     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
    512   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
    513 }
    514 
    515 /// Return true if the given add can be sign-extended without changing its
    516 /// value.
    517 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
    518   Type *WideTy =
    519     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
    520   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
    521 }
    522 
    523 /// Return true if the given mul can be sign-extended without changing its
    524 /// value.
    525 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
    526   Type *WideTy =
    527     IntegerType::get(SE.getContext(),
    528                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
    529   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
    530 }
    531 
    532 /// Return an expression for LHS /s RHS, if it can be determined and if the
    533 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
    534 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
    535 /// the multiplication may overflow, which is useful when the result will be
    536 /// used in a context where the most significant bits are ignored.
    537 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
    538                                 ScalarEvolution &SE,
    539                                 bool IgnoreSignificantBits = false) {
    540   // Handle the trivial case, which works for any SCEV type.
    541   if (LHS == RHS)
    542     return SE.getConstant(LHS->getType(), 1);
    543 
    544   // Handle a few RHS special cases.
    545   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
    546   if (RC) {
    547     const APInt &RA = RC->getAPInt();
    548     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
    549     // some folding.
    550     if (RA.isAllOnesValue())
    551       return SE.getMulExpr(LHS, RC);
    552     // Handle x /s 1 as x.
    553     if (RA == 1)
    554       return LHS;
    555   }
    556 
    557   // Check for a division of a constant by a constant.
    558   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
    559     if (!RC)
    560       return nullptr;
    561     const APInt &LA = C->getAPInt();
    562     const APInt &RA = RC->getAPInt();
    563     if (LA.srem(RA) != 0)
    564       return nullptr;
    565     return SE.getConstant(LA.sdiv(RA));
    566   }
    567 
    568   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
    569   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
    570     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
    571       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
    572                                       IgnoreSignificantBits);
    573       if (!Step) return nullptr;
    574       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
    575                                        IgnoreSignificantBits);
    576       if (!Start) return nullptr;
    577       // FlagNW is independent of the start value, step direction, and is
    578       // preserved with smaller magnitude steps.
    579       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    580       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
    581     }
    582     return nullptr;
    583   }
    584 
    585   // Distribute the sdiv over add operands, if the add doesn't overflow.
    586   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
    587     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
    588       SmallVector<const SCEV *, 8> Ops;
    589       for (const SCEV *S : Add->operands()) {
    590         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
    591         if (!Op) return nullptr;
    592         Ops.push_back(Op);
    593       }
    594       return SE.getAddExpr(Ops);
    595     }
    596     return nullptr;
    597   }
    598 
    599   // Check for a multiply operand that we can pull RHS out of.
    600   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
    601     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
    602       SmallVector<const SCEV *, 4> Ops;
    603       bool Found = false;
    604       for (const SCEV *S : Mul->operands()) {
    605         if (!Found)
    606           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
    607                                            IgnoreSignificantBits)) {
    608             S = Q;
    609             Found = true;
    610           }
    611         Ops.push_back(S);
    612       }
    613       return Found ? SE.getMulExpr(Ops) : nullptr;
    614     }
    615     return nullptr;
    616   }
    617 
    618   // Otherwise we don't know.
    619   return nullptr;
    620 }
    621 
    622 /// If S involves the addition of a constant integer value, return that integer
    623 /// value, and mutate S to point to a new SCEV with that value excluded.
    624 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
    625   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    626     if (C->getAPInt().getMinSignedBits() <= 64) {
    627       S = SE.getConstant(C->getType(), 0);
    628       return C->getValue()->getSExtValue();
    629     }
    630   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    631     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    632     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    633     if (Result != 0)
    634       S = SE.getAddExpr(NewOps);
    635     return Result;
    636   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    637     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    638     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    639     if (Result != 0)
    640       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    641                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    642                            SCEV::FlagAnyWrap);
    643     return Result;
    644   }
    645   return 0;
    646 }
    647 
    648 /// If S involves the addition of a GlobalValue address, return that symbol, and
    649 /// mutate S to point to a new SCEV with that value excluded.
    650 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
    651   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    652     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
    653       S = SE.getConstant(GV->getType(), 0);
    654       return GV;
    655     }
    656   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    657     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    658     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
    659     if (Result)
    660       S = SE.getAddExpr(NewOps);
    661     return Result;
    662   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    663     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    664     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
    665     if (Result)
    666       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    667                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    668                            SCEV::FlagAnyWrap);
    669     return Result;
    670   }
    671   return nullptr;
    672 }
    673 
    674 /// Returns true if the specified instruction is using the specified value as an
    675 /// address.
    676 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
    677   bool isAddress = isa<LoadInst>(Inst);
    678   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    679     if (SI->getOperand(1) == OperandVal)
    680       isAddress = true;
    681   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    682     // Addressing modes can also be folded into prefetches and a variety
    683     // of intrinsics.
    684     switch (II->getIntrinsicID()) {
    685       default: break;
    686       case Intrinsic::prefetch:
    687         if (II->getArgOperand(0) == OperandVal)
    688           isAddress = true;
    689         break;
    690     }
    691   }
    692   return isAddress;
    693 }
    694 
    695 /// Return the type of the memory being accessed.
    696 static MemAccessTy getAccessType(const Instruction *Inst) {
    697   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
    698   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    699     AccessTy.MemTy = SI->getOperand(0)->getType();
    700     AccessTy.AddrSpace = SI->getPointerAddressSpace();
    701   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    702     AccessTy.AddrSpace = LI->getPointerAddressSpace();
    703   }
    704 
    705   // All pointers have the same requirements, so canonicalize them to an
    706   // arbitrary pointer type to minimize variation.
    707   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
    708     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
    709                                       PTy->getAddressSpace());
    710 
    711   return AccessTy;
    712 }
    713 
    714 /// Return true if this AddRec is already a phi in its loop.
    715 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    716   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
    717        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    718     if (SE.isSCEVable(PN->getType()) &&
    719         (SE.getEffectiveSCEVType(PN->getType()) ==
    720          SE.getEffectiveSCEVType(AR->getType())) &&
    721         SE.getSCEV(PN) == AR)
    722       return true;
    723   }
    724   return false;
    725 }
    726 
    727 /// Check if expanding this expression is likely to incur significant cost. This
    728 /// is tricky because SCEV doesn't track which expressions are actually computed
    729 /// by the current IR.
    730 ///
    731 /// We currently allow expansion of IV increments that involve adds,
    732 /// multiplication by constants, and AddRecs from existing phis.
    733 ///
    734 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
    735 /// obvious multiple of the UDivExpr.
    736 static bool isHighCostExpansion(const SCEV *S,
    737                                 SmallPtrSetImpl<const SCEV*> &Processed,
    738                                 ScalarEvolution &SE) {
    739   // Zero/One operand expressions
    740   switch (S->getSCEVType()) {
    741   case scUnknown:
    742   case scConstant:
    743     return false;
    744   case scTruncate:
    745     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
    746                                Processed, SE);
    747   case scZeroExtend:
    748     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
    749                                Processed, SE);
    750   case scSignExtend:
    751     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
    752                                Processed, SE);
    753   }
    754 
    755   if (!Processed.insert(S).second)
    756     return false;
    757 
    758   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    759     for (const SCEV *S : Add->operands()) {
    760       if (isHighCostExpansion(S, Processed, SE))
    761         return true;
    762     }
    763     return false;
    764   }
    765 
    766   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    767     if (Mul->getNumOperands() == 2) {
    768       // Multiplication by a constant is ok
    769       if (isa<SCEVConstant>(Mul->getOperand(0)))
    770         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
    771 
    772       // If we have the value of one operand, check if an existing
    773       // multiplication already generates this expression.
    774       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
    775         Value *UVal = U->getValue();
    776         for (User *UR : UVal->users()) {
    777           // If U is a constant, it may be used by a ConstantExpr.
    778           Instruction *UI = dyn_cast<Instruction>(UR);
    779           if (UI && UI->getOpcode() == Instruction::Mul &&
    780               SE.isSCEVable(UI->getType())) {
    781             return SE.getSCEV(UI) == Mul;
    782           }
    783         }
    784       }
    785     }
    786   }
    787 
    788   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    789     if (isExistingPhi(AR, SE))
    790       return false;
    791   }
    792 
    793   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
    794   return true;
    795 }
    796 
    797 /// If any of the instructions is the specified set are trivially dead, delete
    798 /// them and see if this makes any of their operands subsequently dead.
    799 static bool
    800 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
    801   bool Changed = false;
    802 
    803   while (!DeadInsts.empty()) {
    804     Value *V = DeadInsts.pop_back_val();
    805     Instruction *I = dyn_cast_or_null<Instruction>(V);
    806 
    807     if (!I || !isInstructionTriviallyDead(I))
    808       continue;
    809 
    810     for (Use &O : I->operands())
    811       if (Instruction *U = dyn_cast<Instruction>(O)) {
    812         O = nullptr;
    813         if (U->use_empty())
    814           DeadInsts.emplace_back(U);
    815       }
    816 
    817     I->eraseFromParent();
    818     Changed = true;
    819   }
    820 
    821   return Changed;
    822 }
    823 
    824 namespace {
    825 class LSRUse;
    826 }
    827 
    828 /// \brief Check if the addressing mode defined by \p F is completely
    829 /// folded in \p LU at isel time.
    830 /// This includes address-mode folding and special icmp tricks.
    831 /// This function returns true if \p LU can accommodate what \p F
    832 /// defines and up to 1 base + 1 scaled + offset.
    833 /// In other words, if \p F has several base registers, this function may
    834 /// still return true. Therefore, users still need to account for
    835 /// additional base registers and/or unfolded offsets to derive an
    836 /// accurate cost model.
    837 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
    838                                  const LSRUse &LU, const Formula &F);
    839 // Get the cost of the scaling factor used in F for LU.
    840 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
    841                                      const LSRUse &LU, const Formula &F);
    842 
    843 namespace {
    844 
    845 /// This class is used to measure and compare candidate formulae.
    846 class Cost {
    847   /// TODO: Some of these could be merged. Also, a lexical ordering
    848   /// isn't always optimal.
    849   unsigned NumRegs;
    850   unsigned AddRecCost;
    851   unsigned NumIVMuls;
    852   unsigned NumBaseAdds;
    853   unsigned ImmCost;
    854   unsigned SetupCost;
    855   unsigned ScaleCost;
    856 
    857 public:
    858   Cost()
    859     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
    860       SetupCost(0), ScaleCost(0) {}
    861 
    862   bool operator<(const Cost &Other) const;
    863 
    864   void Lose();
    865 
    866 #ifndef NDEBUG
    867   // Once any of the metrics loses, they must all remain losers.
    868   bool isValid() {
    869     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
    870              | ImmCost | SetupCost | ScaleCost) != ~0u)
    871       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
    872            & ImmCost & SetupCost & ScaleCost) == ~0u);
    873   }
    874 #endif
    875 
    876   bool isLoser() {
    877     assert(isValid() && "invalid cost");
    878     return NumRegs == ~0u;
    879   }
    880 
    881   void RateFormula(const TargetTransformInfo &TTI,
    882                    const Formula &F,
    883                    SmallPtrSetImpl<const SCEV *> &Regs,
    884                    const DenseSet<const SCEV *> &VisitedRegs,
    885                    const Loop *L,
    886                    const SmallVectorImpl<int64_t> &Offsets,
    887                    ScalarEvolution &SE, DominatorTree &DT,
    888                    const LSRUse &LU,
    889                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
    890 
    891   void print(raw_ostream &OS) const;
    892   void dump() const;
    893 
    894 private:
    895   void RateRegister(const SCEV *Reg,
    896                     SmallPtrSetImpl<const SCEV *> &Regs,
    897                     const Loop *L,
    898                     ScalarEvolution &SE, DominatorTree &DT);
    899   void RatePrimaryRegister(const SCEV *Reg,
    900                            SmallPtrSetImpl<const SCEV *> &Regs,
    901                            const Loop *L,
    902                            ScalarEvolution &SE, DominatorTree &DT,
    903                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
    904 };
    905 
    906 }
    907 
    908 /// Tally up interesting quantities from the given register.
    909 void Cost::RateRegister(const SCEV *Reg,
    910                         SmallPtrSetImpl<const SCEV *> &Regs,
    911                         const Loop *L,
    912                         ScalarEvolution &SE, DominatorTree &DT) {
    913   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
    914     // If this is an addrec for another loop, don't second-guess its addrec phi
    915     // nodes. LSR isn't currently smart enough to reason about more than one
    916     // loop at a time. LSR has already run on inner loops, will not run on outer
    917     // loops, and cannot be expected to change sibling loops.
    918     if (AR->getLoop() != L) {
    919       // If the AddRec exists, consider it's register free and leave it alone.
    920       if (isExistingPhi(AR, SE))
    921         return;
    922 
    923       // Otherwise, do not consider this formula at all.
    924       Lose();
    925       return;
    926     }
    927     AddRecCost += 1; /// TODO: This should be a function of the stride.
    928 
    929     // Add the step value register, if it needs one.
    930     // TODO: The non-affine case isn't precisely modeled here.
    931     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
    932       if (!Regs.count(AR->getOperand(1))) {
    933         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
    934         if (isLoser())
    935           return;
    936       }
    937     }
    938   }
    939   ++NumRegs;
    940 
    941   // Rough heuristic; favor registers which don't require extra setup
    942   // instructions in the preheader.
    943   if (!isa<SCEVUnknown>(Reg) &&
    944       !isa<SCEVConstant>(Reg) &&
    945       !(isa<SCEVAddRecExpr>(Reg) &&
    946         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
    947          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
    948     ++SetupCost;
    949 
    950   NumIVMuls += isa<SCEVMulExpr>(Reg) &&
    951                SE.hasComputableLoopEvolution(Reg, L);
    952 }
    953 
    954 /// Record this register in the set. If we haven't seen it before, rate
    955 /// it. Optional LoserRegs provides a way to declare any formula that refers to
    956 /// one of those regs an instant loser.
    957 void Cost::RatePrimaryRegister(const SCEV *Reg,
    958                                SmallPtrSetImpl<const SCEV *> &Regs,
    959                                const Loop *L,
    960                                ScalarEvolution &SE, DominatorTree &DT,
    961                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
    962   if (LoserRegs && LoserRegs->count(Reg)) {
    963     Lose();
    964     return;
    965   }
    966   if (Regs.insert(Reg).second) {
    967     RateRegister(Reg, Regs, L, SE, DT);
    968     if (LoserRegs && isLoser())
    969       LoserRegs->insert(Reg);
    970   }
    971 }
    972 
    973 void Cost::RateFormula(const TargetTransformInfo &TTI,
    974                        const Formula &F,
    975                        SmallPtrSetImpl<const SCEV *> &Regs,
    976                        const DenseSet<const SCEV *> &VisitedRegs,
    977                        const Loop *L,
    978                        const SmallVectorImpl<int64_t> &Offsets,
    979                        ScalarEvolution &SE, DominatorTree &DT,
    980                        const LSRUse &LU,
    981                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
    982   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
    983   // Tally up the registers.
    984   if (const SCEV *ScaledReg = F.ScaledReg) {
    985     if (VisitedRegs.count(ScaledReg)) {
    986       Lose();
    987       return;
    988     }
    989     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
    990     if (isLoser())
    991       return;
    992   }
    993   for (const SCEV *BaseReg : F.BaseRegs) {
    994     if (VisitedRegs.count(BaseReg)) {
    995       Lose();
    996       return;
    997     }
    998     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
    999     if (isLoser())
   1000       return;
   1001   }
   1002 
   1003   // Determine how many (unfolded) adds we'll need inside the loop.
   1004   size_t NumBaseParts = F.getNumRegs();
   1005   if (NumBaseParts > 1)
   1006     // Do not count the base and a possible second register if the target
   1007     // allows to fold 2 registers.
   1008     NumBaseAdds +=
   1009         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
   1010   NumBaseAdds += (F.UnfoldedOffset != 0);
   1011 
   1012   // Accumulate non-free scaling amounts.
   1013   ScaleCost += getScalingFactorCost(TTI, LU, F);
   1014 
   1015   // Tally up the non-zero immediates.
   1016   for (int64_t O : Offsets) {
   1017     int64_t Offset = (uint64_t)O + F.BaseOffset;
   1018     if (F.BaseGV)
   1019       ImmCost += 64; // Handle symbolic values conservatively.
   1020                      // TODO: This should probably be the pointer size.
   1021     else if (Offset != 0)
   1022       ImmCost += APInt(64, Offset, true).getMinSignedBits();
   1023   }
   1024   assert(isValid() && "invalid cost");
   1025 }
   1026 
   1027 /// Set this cost to a losing value.
   1028 void Cost::Lose() {
   1029   NumRegs = ~0u;
   1030   AddRecCost = ~0u;
   1031   NumIVMuls = ~0u;
   1032   NumBaseAdds = ~0u;
   1033   ImmCost = ~0u;
   1034   SetupCost = ~0u;
   1035   ScaleCost = ~0u;
   1036 }
   1037 
   1038 /// Choose the lower cost.
   1039 bool Cost::operator<(const Cost &Other) const {
   1040   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
   1041                   ImmCost, SetupCost) <
   1042          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
   1043                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
   1044                   Other.SetupCost);
   1045 }
   1046 
   1047 void Cost::print(raw_ostream &OS) const {
   1048   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
   1049   if (AddRecCost != 0)
   1050     OS << ", with addrec cost " << AddRecCost;
   1051   if (NumIVMuls != 0)
   1052     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
   1053   if (NumBaseAdds != 0)
   1054     OS << ", plus " << NumBaseAdds << " base add"
   1055        << (NumBaseAdds == 1 ? "" : "s");
   1056   if (ScaleCost != 0)
   1057     OS << ", plus " << ScaleCost << " scale cost";
   1058   if (ImmCost != 0)
   1059     OS << ", plus " << ImmCost << " imm cost";
   1060   if (SetupCost != 0)
   1061     OS << ", plus " << SetupCost << " setup cost";
   1062 }
   1063 
   1064 LLVM_DUMP_METHOD
   1065 void Cost::dump() const {
   1066   print(errs()); errs() << '\n';
   1067 }
   1068 
   1069 namespace {
   1070 
   1071 /// An operand value in an instruction which is to be replaced with some
   1072 /// equivalent, possibly strength-reduced, replacement.
   1073 struct LSRFixup {
   1074   /// The instruction which will be updated.
   1075   Instruction *UserInst;
   1076 
   1077   /// The operand of the instruction which will be replaced. The operand may be
   1078   /// used more than once; every instance will be replaced.
   1079   Value *OperandValToReplace;
   1080 
   1081   /// If this user is to use the post-incremented value of an induction
   1082   /// variable, this variable is non-null and holds the loop associated with the
   1083   /// induction variable.
   1084   PostIncLoopSet PostIncLoops;
   1085 
   1086   /// The index of the LSRUse describing the expression which this fixup needs,
   1087   /// minus an offset (below).
   1088   size_t LUIdx;
   1089 
   1090   /// A constant offset to be added to the LSRUse expression.  This allows
   1091   /// multiple fixups to share the same LSRUse with different offsets, for
   1092   /// example in an unrolled loop.
   1093   int64_t Offset;
   1094 
   1095   bool isUseFullyOutsideLoop(const Loop *L) const;
   1096 
   1097   LSRFixup();
   1098 
   1099   void print(raw_ostream &OS) const;
   1100   void dump() const;
   1101 };
   1102 
   1103 }
   1104 
   1105 LSRFixup::LSRFixup()
   1106   : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
   1107     Offset(0) {}
   1108 
   1109 /// Test whether this fixup always uses its value outside of the given loop.
   1110 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
   1111   // PHI nodes use their value in their incoming blocks.
   1112   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
   1113     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1114       if (PN->getIncomingValue(i) == OperandValToReplace &&
   1115           L->contains(PN->getIncomingBlock(i)))
   1116         return false;
   1117     return true;
   1118   }
   1119 
   1120   return !L->contains(UserInst);
   1121 }
   1122 
   1123 void LSRFixup::print(raw_ostream &OS) const {
   1124   OS << "UserInst=";
   1125   // Store is common and interesting enough to be worth special-casing.
   1126   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
   1127     OS << "store ";
   1128     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
   1129   } else if (UserInst->getType()->isVoidTy())
   1130     OS << UserInst->getOpcodeName();
   1131   else
   1132     UserInst->printAsOperand(OS, /*PrintType=*/false);
   1133 
   1134   OS << ", OperandValToReplace=";
   1135   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
   1136 
   1137   for (const Loop *PIL : PostIncLoops) {
   1138     OS << ", PostIncLoop=";
   1139     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   1140   }
   1141 
   1142   if (LUIdx != ~size_t(0))
   1143     OS << ", LUIdx=" << LUIdx;
   1144 
   1145   if (Offset != 0)
   1146     OS << ", Offset=" << Offset;
   1147 }
   1148 
   1149 LLVM_DUMP_METHOD
   1150 void LSRFixup::dump() const {
   1151   print(errs()); errs() << '\n';
   1152 }
   1153 
   1154 namespace {
   1155 
   1156 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
   1157 /// SmallVectors of const SCEV*.
   1158 struct UniquifierDenseMapInfo {
   1159   static SmallVector<const SCEV *, 4> getEmptyKey() {
   1160     SmallVector<const SCEV *, 4>  V;
   1161     V.push_back(reinterpret_cast<const SCEV *>(-1));
   1162     return V;
   1163   }
   1164 
   1165   static SmallVector<const SCEV *, 4> getTombstoneKey() {
   1166     SmallVector<const SCEV *, 4> V;
   1167     V.push_back(reinterpret_cast<const SCEV *>(-2));
   1168     return V;
   1169   }
   1170 
   1171   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
   1172     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
   1173   }
   1174 
   1175   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
   1176                       const SmallVector<const SCEV *, 4> &RHS) {
   1177     return LHS == RHS;
   1178   }
   1179 };
   1180 
   1181 /// This class holds the state that LSR keeps for each use in IVUsers, as well
   1182 /// as uses invented by LSR itself. It includes information about what kinds of
   1183 /// things can be folded into the user, information about the user itself, and
   1184 /// information about how the use may be satisfied.  TODO: Represent multiple
   1185 /// users of the same expression in common?
   1186 class LSRUse {
   1187   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
   1188 
   1189 public:
   1190   /// An enum for a kind of use, indicating what types of scaled and immediate
   1191   /// operands it might support.
   1192   enum KindType {
   1193     Basic,   ///< A normal use, with no folding.
   1194     Special, ///< A special case of basic, allowing -1 scales.
   1195     Address, ///< An address use; folding according to TargetLowering
   1196     ICmpZero ///< An equality icmp with both operands folded into one.
   1197     // TODO: Add a generic icmp too?
   1198   };
   1199 
   1200   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
   1201 
   1202   KindType Kind;
   1203   MemAccessTy AccessTy;
   1204 
   1205   SmallVector<int64_t, 8> Offsets;
   1206   int64_t MinOffset;
   1207   int64_t MaxOffset;
   1208 
   1209   /// This records whether all of the fixups using this LSRUse are outside of
   1210   /// the loop, in which case some special-case heuristics may be used.
   1211   bool AllFixupsOutsideLoop;
   1212 
   1213   /// RigidFormula is set to true to guarantee that this use will be associated
   1214   /// with a single formula--the one that initially matched. Some SCEV
   1215   /// expressions cannot be expanded. This allows LSR to consider the registers
   1216   /// used by those expressions without the need to expand them later after
   1217   /// changing the formula.
   1218   bool RigidFormula;
   1219 
   1220   /// This records the widest use type for any fixup using this
   1221   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
   1222   /// fixup widths to be equivalent, because the narrower one may be relying on
   1223   /// the implicit truncation to truncate away bogus bits.
   1224   Type *WidestFixupType;
   1225 
   1226   /// A list of ways to build a value that can satisfy this user.  After the
   1227   /// list is populated, one of these is selected heuristically and used to
   1228   /// formulate a replacement for OperandValToReplace in UserInst.
   1229   SmallVector<Formula, 12> Formulae;
   1230 
   1231   /// The set of register candidates used by all formulae in this LSRUse.
   1232   SmallPtrSet<const SCEV *, 4> Regs;
   1233 
   1234   LSRUse(KindType K, MemAccessTy AT)
   1235       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
   1236         AllFixupsOutsideLoop(true), RigidFormula(false),
   1237         WidestFixupType(nullptr) {}
   1238 
   1239   bool HasFormulaWithSameRegs(const Formula &F) const;
   1240   bool InsertFormula(const Formula &F);
   1241   void DeleteFormula(Formula &F);
   1242   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
   1243 
   1244   void print(raw_ostream &OS) const;
   1245   void dump() const;
   1246 };
   1247 
   1248 }
   1249 
   1250 /// Test whether this use as a formula which has the same registers as the given
   1251 /// formula.
   1252 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
   1253   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1254   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1255   // Unstable sort by host order ok, because this is only used for uniquifying.
   1256   std::sort(Key.begin(), Key.end());
   1257   return Uniquifier.count(Key);
   1258 }
   1259 
   1260 /// If the given formula has not yet been inserted, add it to the list, and
   1261 /// return true. Return false otherwise.  The formula must be in canonical form.
   1262 bool LSRUse::InsertFormula(const Formula &F) {
   1263   assert(F.isCanonical() && "Invalid canonical representation");
   1264 
   1265   if (!Formulae.empty() && RigidFormula)
   1266     return false;
   1267 
   1268   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1269   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1270   // Unstable sort by host order ok, because this is only used for uniquifying.
   1271   std::sort(Key.begin(), Key.end());
   1272 
   1273   if (!Uniquifier.insert(Key).second)
   1274     return false;
   1275 
   1276   // Using a register to hold the value of 0 is not profitable.
   1277   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
   1278          "Zero allocated in a scaled register!");
   1279 #ifndef NDEBUG
   1280   for (const SCEV *BaseReg : F.BaseRegs)
   1281     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
   1282 #endif
   1283 
   1284   // Add the formula to the list.
   1285   Formulae.push_back(F);
   1286 
   1287   // Record registers now being used by this use.
   1288   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1289   if (F.ScaledReg)
   1290     Regs.insert(F.ScaledReg);
   1291 
   1292   return true;
   1293 }
   1294 
   1295 /// Remove the given formula from this use's list.
   1296 void LSRUse::DeleteFormula(Formula &F) {
   1297   if (&F != &Formulae.back())
   1298     std::swap(F, Formulae.back());
   1299   Formulae.pop_back();
   1300 }
   1301 
   1302 /// Recompute the Regs field, and update RegUses.
   1303 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
   1304   // Now that we've filtered out some formulae, recompute the Regs set.
   1305   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
   1306   Regs.clear();
   1307   for (const Formula &F : Formulae) {
   1308     if (F.ScaledReg) Regs.insert(F.ScaledReg);
   1309     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1310   }
   1311 
   1312   // Update the RegTracker.
   1313   for (const SCEV *S : OldRegs)
   1314     if (!Regs.count(S))
   1315       RegUses.dropRegister(S, LUIdx);
   1316 }
   1317 
   1318 void LSRUse::print(raw_ostream &OS) const {
   1319   OS << "LSR Use: Kind=";
   1320   switch (Kind) {
   1321   case Basic:    OS << "Basic"; break;
   1322   case Special:  OS << "Special"; break;
   1323   case ICmpZero: OS << "ICmpZero"; break;
   1324   case Address:
   1325     OS << "Address of ";
   1326     if (AccessTy.MemTy->isPointerTy())
   1327       OS << "pointer"; // the full pointer type could be really verbose
   1328     else {
   1329       OS << *AccessTy.MemTy;
   1330     }
   1331 
   1332     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
   1333   }
   1334 
   1335   OS << ", Offsets={";
   1336   bool NeedComma = false;
   1337   for (int64_t O : Offsets) {
   1338     if (NeedComma) OS << ',';
   1339     OS << O;
   1340     NeedComma = true;
   1341   }
   1342   OS << '}';
   1343 
   1344   if (AllFixupsOutsideLoop)
   1345     OS << ", all-fixups-outside-loop";
   1346 
   1347   if (WidestFixupType)
   1348     OS << ", widest fixup type: " << *WidestFixupType;
   1349 }
   1350 
   1351 LLVM_DUMP_METHOD
   1352 void LSRUse::dump() const {
   1353   print(errs()); errs() << '\n';
   1354 }
   1355 
   1356 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1357                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
   1358                                  GlobalValue *BaseGV, int64_t BaseOffset,
   1359                                  bool HasBaseReg, int64_t Scale) {
   1360   switch (Kind) {
   1361   case LSRUse::Address:
   1362     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
   1363                                      HasBaseReg, Scale, AccessTy.AddrSpace);
   1364 
   1365   case LSRUse::ICmpZero:
   1366     // There's not even a target hook for querying whether it would be legal to
   1367     // fold a GV into an ICmp.
   1368     if (BaseGV)
   1369       return false;
   1370 
   1371     // ICmp only has two operands; don't allow more than two non-trivial parts.
   1372     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
   1373       return false;
   1374 
   1375     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
   1376     // putting the scaled register in the other operand of the icmp.
   1377     if (Scale != 0 && Scale != -1)
   1378       return false;
   1379 
   1380     // If we have low-level target information, ask the target if it can fold an
   1381     // integer immediate on an icmp.
   1382     if (BaseOffset != 0) {
   1383       // We have one of:
   1384       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
   1385       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
   1386       // Offs is the ICmp immediate.
   1387       if (Scale == 0)
   1388         // The cast does the right thing with INT64_MIN.
   1389         BaseOffset = -(uint64_t)BaseOffset;
   1390       return TTI.isLegalICmpImmediate(BaseOffset);
   1391     }
   1392 
   1393     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
   1394     return true;
   1395 
   1396   case LSRUse::Basic:
   1397     // Only handle single-register values.
   1398     return !BaseGV && Scale == 0 && BaseOffset == 0;
   1399 
   1400   case LSRUse::Special:
   1401     // Special case Basic to handle -1 scales.
   1402     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
   1403   }
   1404 
   1405   llvm_unreachable("Invalid LSRUse Kind!");
   1406 }
   1407 
   1408 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1409                                  int64_t MinOffset, int64_t MaxOffset,
   1410                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
   1411                                  GlobalValue *BaseGV, int64_t BaseOffset,
   1412                                  bool HasBaseReg, int64_t Scale) {
   1413   // Check for overflow.
   1414   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
   1415       (MinOffset > 0))
   1416     return false;
   1417   MinOffset = (uint64_t)BaseOffset + MinOffset;
   1418   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
   1419       (MaxOffset > 0))
   1420     return false;
   1421   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
   1422 
   1423   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
   1424                               HasBaseReg, Scale) &&
   1425          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
   1426                               HasBaseReg, Scale);
   1427 }
   1428 
   1429 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1430                                  int64_t MinOffset, int64_t MaxOffset,
   1431                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
   1432                                  const Formula &F) {
   1433   // For the purpose of isAMCompletelyFolded either having a canonical formula
   1434   // or a scale not equal to zero is correct.
   1435   // Problems may arise from non canonical formulae having a scale == 0.
   1436   // Strictly speaking it would best to just rely on canonical formulae.
   1437   // However, when we generate the scaled formulae, we first check that the
   1438   // scaling factor is profitable before computing the actual ScaledReg for
   1439   // compile time sake.
   1440   assert((F.isCanonical() || F.Scale != 0));
   1441   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
   1442                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
   1443 }
   1444 
   1445 /// Test whether we know how to expand the current formula.
   1446 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1447                        int64_t MaxOffset, LSRUse::KindType Kind,
   1448                        MemAccessTy AccessTy, GlobalValue *BaseGV,
   1449                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
   1450   // We know how to expand completely foldable formulae.
   1451   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
   1452                               BaseOffset, HasBaseReg, Scale) ||
   1453          // Or formulae that use a base register produced by a sum of base
   1454          // registers.
   1455          (Scale == 1 &&
   1456           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
   1457                                BaseGV, BaseOffset, true, 0));
   1458 }
   1459 
   1460 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1461                        int64_t MaxOffset, LSRUse::KindType Kind,
   1462                        MemAccessTy AccessTy, const Formula &F) {
   1463   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
   1464                     F.BaseOffset, F.HasBaseReg, F.Scale);
   1465 }
   1466 
   1467 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1468                                  const LSRUse &LU, const Formula &F) {
   1469   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
   1470                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
   1471                               F.Scale);
   1472 }
   1473 
   1474 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
   1475                                      const LSRUse &LU, const Formula &F) {
   1476   if (!F.Scale)
   1477     return 0;
   1478 
   1479   // If the use is not completely folded in that instruction, we will have to
   1480   // pay an extra cost only for scale != 1.
   1481   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
   1482                             LU.AccessTy, F))
   1483     return F.Scale != 1;
   1484 
   1485   switch (LU.Kind) {
   1486   case LSRUse::Address: {
   1487     // Check the scaling factor cost with both the min and max offsets.
   1488     int ScaleCostMinOffset = TTI.getScalingFactorCost(
   1489         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
   1490         F.Scale, LU.AccessTy.AddrSpace);
   1491     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
   1492         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
   1493         F.Scale, LU.AccessTy.AddrSpace);
   1494 
   1495     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
   1496            "Legal addressing mode has an illegal cost!");
   1497     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
   1498   }
   1499   case LSRUse::ICmpZero:
   1500   case LSRUse::Basic:
   1501   case LSRUse::Special:
   1502     // The use is completely folded, i.e., everything is folded into the
   1503     // instruction.
   1504     return 0;
   1505   }
   1506 
   1507   llvm_unreachable("Invalid LSRUse Kind!");
   1508 }
   1509 
   1510 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1511                              LSRUse::KindType Kind, MemAccessTy AccessTy,
   1512                              GlobalValue *BaseGV, int64_t BaseOffset,
   1513                              bool HasBaseReg) {
   1514   // Fast-path: zero is always foldable.
   1515   if (BaseOffset == 0 && !BaseGV) return true;
   1516 
   1517   // Conservatively, create an address with an immediate and a
   1518   // base and a scale.
   1519   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1520 
   1521   // Canonicalize a scale of 1 to a base register if the formula doesn't
   1522   // already have a base register.
   1523   if (!HasBaseReg && Scale == 1) {
   1524     Scale = 0;
   1525     HasBaseReg = true;
   1526   }
   1527 
   1528   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
   1529                               HasBaseReg, Scale);
   1530 }
   1531 
   1532 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1533                              ScalarEvolution &SE, int64_t MinOffset,
   1534                              int64_t MaxOffset, LSRUse::KindType Kind,
   1535                              MemAccessTy AccessTy, const SCEV *S,
   1536                              bool HasBaseReg) {
   1537   // Fast-path: zero is always foldable.
   1538   if (S->isZero()) return true;
   1539 
   1540   // Conservatively, create an address with an immediate and a
   1541   // base and a scale.
   1542   int64_t BaseOffset = ExtractImmediate(S, SE);
   1543   GlobalValue *BaseGV = ExtractSymbol(S, SE);
   1544 
   1545   // If there's anything else involved, it's not foldable.
   1546   if (!S->isZero()) return false;
   1547 
   1548   // Fast-path: zero is always foldable.
   1549   if (BaseOffset == 0 && !BaseGV) return true;
   1550 
   1551   // Conservatively, create an address with an immediate and a
   1552   // base and a scale.
   1553   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1554 
   1555   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
   1556                               BaseOffset, HasBaseReg, Scale);
   1557 }
   1558 
   1559 namespace {
   1560 
   1561 /// An individual increment in a Chain of IV increments.  Relate an IV user to
   1562 /// an expression that computes the IV it uses from the IV used by the previous
   1563 /// link in the Chain.
   1564 ///
   1565 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
   1566 /// original IVOperand. The head of the chain's IVOperand is only valid during
   1567 /// chain collection, before LSR replaces IV users. During chain generation,
   1568 /// IncExpr can be used to find the new IVOperand that computes the same
   1569 /// expression.
   1570 struct IVInc {
   1571   Instruction *UserInst;
   1572   Value* IVOperand;
   1573   const SCEV *IncExpr;
   1574 
   1575   IVInc(Instruction *U, Value *O, const SCEV *E):
   1576     UserInst(U), IVOperand(O), IncExpr(E) {}
   1577 };
   1578 
   1579 // The list of IV increments in program order.  We typically add the head of a
   1580 // chain without finding subsequent links.
   1581 struct IVChain {
   1582   SmallVector<IVInc,1> Incs;
   1583   const SCEV *ExprBase;
   1584 
   1585   IVChain() : ExprBase(nullptr) {}
   1586 
   1587   IVChain(const IVInc &Head, const SCEV *Base)
   1588     : Incs(1, Head), ExprBase(Base) {}
   1589 
   1590   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
   1591 
   1592   // Return the first increment in the chain.
   1593   const_iterator begin() const {
   1594     assert(!Incs.empty());
   1595     return std::next(Incs.begin());
   1596   }
   1597   const_iterator end() const {
   1598     return Incs.end();
   1599   }
   1600 
   1601   // Returns true if this chain contains any increments.
   1602   bool hasIncs() const { return Incs.size() >= 2; }
   1603 
   1604   // Add an IVInc to the end of this chain.
   1605   void add(const IVInc &X) { Incs.push_back(X); }
   1606 
   1607   // Returns the last UserInst in the chain.
   1608   Instruction *tailUserInst() const { return Incs.back().UserInst; }
   1609 
   1610   // Returns true if IncExpr can be profitably added to this chain.
   1611   bool isProfitableIncrement(const SCEV *OperExpr,
   1612                              const SCEV *IncExpr,
   1613                              ScalarEvolution&);
   1614 };
   1615 
   1616 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
   1617 /// between FarUsers that definitely cross IV increments and NearUsers that may
   1618 /// be used between IV increments.
   1619 struct ChainUsers {
   1620   SmallPtrSet<Instruction*, 4> FarUsers;
   1621   SmallPtrSet<Instruction*, 4> NearUsers;
   1622 };
   1623 
   1624 /// This class holds state for the main loop strength reduction logic.
   1625 class LSRInstance {
   1626   IVUsers &IU;
   1627   ScalarEvolution &SE;
   1628   DominatorTree &DT;
   1629   LoopInfo &LI;
   1630   const TargetTransformInfo &TTI;
   1631   Loop *const L;
   1632   bool Changed;
   1633 
   1634   /// This is the insert position that the current loop's induction variable
   1635   /// increment should be placed. In simple loops, this is the latch block's
   1636   /// terminator. But in more complicated cases, this is a position which will
   1637   /// dominate all the in-loop post-increment users.
   1638   Instruction *IVIncInsertPos;
   1639 
   1640   /// Interesting factors between use strides.
   1641   SmallSetVector<int64_t, 8> Factors;
   1642 
   1643   /// Interesting use types, to facilitate truncation reuse.
   1644   SmallSetVector<Type *, 4> Types;
   1645 
   1646   /// The list of operands which are to be replaced.
   1647   SmallVector<LSRFixup, 16> Fixups;
   1648 
   1649   /// The list of interesting uses.
   1650   SmallVector<LSRUse, 16> Uses;
   1651 
   1652   /// Track which uses use which register candidates.
   1653   RegUseTracker RegUses;
   1654 
   1655   // Limit the number of chains to avoid quadratic behavior. We don't expect to
   1656   // have more than a few IV increment chains in a loop. Missing a Chain falls
   1657   // back to normal LSR behavior for those uses.
   1658   static const unsigned MaxChains = 8;
   1659 
   1660   /// IV users can form a chain of IV increments.
   1661   SmallVector<IVChain, MaxChains> IVChainVec;
   1662 
   1663   /// IV users that belong to profitable IVChains.
   1664   SmallPtrSet<Use*, MaxChains> IVIncSet;
   1665 
   1666   void OptimizeShadowIV();
   1667   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
   1668   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
   1669   void OptimizeLoopTermCond();
   1670 
   1671   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   1672                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
   1673   void FinalizeChain(IVChain &Chain);
   1674   void CollectChains();
   1675   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   1676                        SmallVectorImpl<WeakVH> &DeadInsts);
   1677 
   1678   void CollectInterestingTypesAndFactors();
   1679   void CollectFixupsAndInitialFormulae();
   1680 
   1681   LSRFixup &getNewFixup() {
   1682     Fixups.push_back(LSRFixup());
   1683     return Fixups.back();
   1684   }
   1685 
   1686   // Support for sharing of LSRUses between LSRFixups.
   1687   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
   1688   UseMapTy UseMap;
   1689 
   1690   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   1691                           LSRUse::KindType Kind, MemAccessTy AccessTy);
   1692 
   1693   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
   1694                                     MemAccessTy AccessTy);
   1695 
   1696   void DeleteUse(LSRUse &LU, size_t LUIdx);
   1697 
   1698   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
   1699 
   1700   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1701   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1702   void CountRegisters(const Formula &F, size_t LUIdx);
   1703   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
   1704 
   1705   void CollectLoopInvariantFixupsAndFormulae();
   1706 
   1707   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
   1708                               unsigned Depth = 0);
   1709 
   1710   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
   1711                                   const Formula &Base, unsigned Depth,
   1712                                   size_t Idx, bool IsScaledReg = false);
   1713   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
   1714   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   1715                                    const Formula &Base, size_t Idx,
   1716                                    bool IsScaledReg = false);
   1717   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1718   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   1719                                    const Formula &Base,
   1720                                    const SmallVectorImpl<int64_t> &Worklist,
   1721                                    size_t Idx, bool IsScaledReg = false);
   1722   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1723   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1724   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1725   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
   1726   void GenerateCrossUseConstantOffsets();
   1727   void GenerateAllReuseFormulae();
   1728 
   1729   void FilterOutUndesirableDedicatedRegisters();
   1730 
   1731   size_t EstimateSearchSpaceComplexity() const;
   1732   void NarrowSearchSpaceByDetectingSupersets();
   1733   void NarrowSearchSpaceByCollapsingUnrolledCode();
   1734   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   1735   void NarrowSearchSpaceByPickingWinnerRegs();
   1736   void NarrowSearchSpaceUsingHeuristics();
   1737 
   1738   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   1739                     Cost &SolutionCost,
   1740                     SmallVectorImpl<const Formula *> &Workspace,
   1741                     const Cost &CurCost,
   1742                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
   1743                     DenseSet<const SCEV *> &VisitedRegs) const;
   1744   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
   1745 
   1746   BasicBlock::iterator
   1747     HoistInsertPosition(BasicBlock::iterator IP,
   1748                         const SmallVectorImpl<Instruction *> &Inputs) const;
   1749   BasicBlock::iterator
   1750     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
   1751                                   const LSRFixup &LF,
   1752                                   const LSRUse &LU,
   1753                                   SCEVExpander &Rewriter) const;
   1754 
   1755   Value *Expand(const LSRFixup &LF,
   1756                 const Formula &F,
   1757                 BasicBlock::iterator IP,
   1758                 SCEVExpander &Rewriter,
   1759                 SmallVectorImpl<WeakVH> &DeadInsts) const;
   1760   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
   1761                      const Formula &F,
   1762                      SCEVExpander &Rewriter,
   1763                      SmallVectorImpl<WeakVH> &DeadInsts) const;
   1764   void Rewrite(const LSRFixup &LF,
   1765                const Formula &F,
   1766                SCEVExpander &Rewriter,
   1767                SmallVectorImpl<WeakVH> &DeadInsts) const;
   1768   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
   1769 
   1770 public:
   1771   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
   1772               LoopInfo &LI, const TargetTransformInfo &TTI);
   1773 
   1774   bool getChanged() const { return Changed; }
   1775 
   1776   void print_factors_and_types(raw_ostream &OS) const;
   1777   void print_fixups(raw_ostream &OS) const;
   1778   void print_uses(raw_ostream &OS) const;
   1779   void print(raw_ostream &OS) const;
   1780   void dump() const;
   1781 };
   1782 
   1783 }
   1784 
   1785 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
   1786 /// the cast operation.
   1787 void LSRInstance::OptimizeShadowIV() {
   1788   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1789   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1790     return;
   1791 
   1792   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
   1793        UI != E; /* empty */) {
   1794     IVUsers::const_iterator CandidateUI = UI;
   1795     ++UI;
   1796     Instruction *ShadowUse = CandidateUI->getUser();
   1797     Type *DestTy = nullptr;
   1798     bool IsSigned = false;
   1799 
   1800     /* If shadow use is a int->float cast then insert a second IV
   1801        to eliminate this cast.
   1802 
   1803          for (unsigned i = 0; i < n; ++i)
   1804            foo((double)i);
   1805 
   1806        is transformed into
   1807 
   1808          double d = 0.0;
   1809          for (unsigned i = 0; i < n; ++i, ++d)
   1810            foo(d);
   1811     */
   1812     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
   1813       IsSigned = false;
   1814       DestTy = UCast->getDestTy();
   1815     }
   1816     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
   1817       IsSigned = true;
   1818       DestTy = SCast->getDestTy();
   1819     }
   1820     if (!DestTy) continue;
   1821 
   1822     // If target does not support DestTy natively then do not apply
   1823     // this transformation.
   1824     if (!TTI.isTypeLegal(DestTy)) continue;
   1825 
   1826     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
   1827     if (!PH) continue;
   1828     if (PH->getNumIncomingValues() != 2) continue;
   1829 
   1830     Type *SrcTy = PH->getType();
   1831     int Mantissa = DestTy->getFPMantissaWidth();
   1832     if (Mantissa == -1) continue;
   1833     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
   1834       continue;
   1835 
   1836     unsigned Entry, Latch;
   1837     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
   1838       Entry = 0;
   1839       Latch = 1;
   1840     } else {
   1841       Entry = 1;
   1842       Latch = 0;
   1843     }
   1844 
   1845     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
   1846     if (!Init) continue;
   1847     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
   1848                                         (double)Init->getSExtValue() :
   1849                                         (double)Init->getZExtValue());
   1850 
   1851     BinaryOperator *Incr =
   1852       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
   1853     if (!Incr) continue;
   1854     if (Incr->getOpcode() != Instruction::Add
   1855         && Incr->getOpcode() != Instruction::Sub)
   1856       continue;
   1857 
   1858     /* Initialize new IV, double d = 0.0 in above example. */
   1859     ConstantInt *C = nullptr;
   1860     if (Incr->getOperand(0) == PH)
   1861       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
   1862     else if (Incr->getOperand(1) == PH)
   1863       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
   1864     else
   1865       continue;
   1866 
   1867     if (!C) continue;
   1868 
   1869     // Ignore negative constants, as the code below doesn't handle them
   1870     // correctly. TODO: Remove this restriction.
   1871     if (!C->getValue().isStrictlyPositive()) continue;
   1872 
   1873     /* Add new PHINode. */
   1874     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
   1875 
   1876     /* create new increment. '++d' in above example. */
   1877     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
   1878     BinaryOperator *NewIncr =
   1879       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
   1880                                Instruction::FAdd : Instruction::FSub,
   1881                              NewPH, CFP, "IV.S.next.", Incr);
   1882 
   1883     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
   1884     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
   1885 
   1886     /* Remove cast operation */
   1887     ShadowUse->replaceAllUsesWith(NewPH);
   1888     ShadowUse->eraseFromParent();
   1889     Changed = true;
   1890     break;
   1891   }
   1892 }
   1893 
   1894 /// If Cond has an operand that is an expression of an IV, set the IV user and
   1895 /// stride information and return true, otherwise return false.
   1896 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
   1897   for (IVStrideUse &U : IU)
   1898     if (U.getUser() == Cond) {
   1899       // NOTE: we could handle setcc instructions with multiple uses here, but
   1900       // InstCombine does it as well for simple uses, it's not clear that it
   1901       // occurs enough in real life to handle.
   1902       CondUse = &U;
   1903       return true;
   1904     }
   1905   return false;
   1906 }
   1907 
   1908 /// Rewrite the loop's terminating condition if it uses a max computation.
   1909 ///
   1910 /// This is a narrow solution to a specific, but acute, problem. For loops
   1911 /// like this:
   1912 ///
   1913 ///   i = 0;
   1914 ///   do {
   1915 ///     p[i] = 0.0;
   1916 ///   } while (++i < n);
   1917 ///
   1918 /// the trip count isn't just 'n', because 'n' might not be positive. And
   1919 /// unfortunately this can come up even for loops where the user didn't use
   1920 /// a C do-while loop. For example, seemingly well-behaved top-test loops
   1921 /// will commonly be lowered like this:
   1922 //
   1923 ///   if (n > 0) {
   1924 ///     i = 0;
   1925 ///     do {
   1926 ///       p[i] = 0.0;
   1927 ///     } while (++i < n);
   1928 ///   }
   1929 ///
   1930 /// and then it's possible for subsequent optimization to obscure the if
   1931 /// test in such a way that indvars can't find it.
   1932 ///
   1933 /// When indvars can't find the if test in loops like this, it creates a
   1934 /// max expression, which allows it to give the loop a canonical
   1935 /// induction variable:
   1936 ///
   1937 ///   i = 0;
   1938 ///   max = n < 1 ? 1 : n;
   1939 ///   do {
   1940 ///     p[i] = 0.0;
   1941 ///   } while (++i != max);
   1942 ///
   1943 /// Canonical induction variables are necessary because the loop passes
   1944 /// are designed around them. The most obvious example of this is the
   1945 /// LoopInfo analysis, which doesn't remember trip count values. It
   1946 /// expects to be able to rediscover the trip count each time it is
   1947 /// needed, and it does this using a simple analysis that only succeeds if
   1948 /// the loop has a canonical induction variable.
   1949 ///
   1950 /// However, when it comes time to generate code, the maximum operation
   1951 /// can be quite costly, especially if it's inside of an outer loop.
   1952 ///
   1953 /// This function solves this problem by detecting this type of loop and
   1954 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
   1955 /// the instructions for the maximum computation.
   1956 ///
   1957 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
   1958   // Check that the loop matches the pattern we're looking for.
   1959   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
   1960       Cond->getPredicate() != CmpInst::ICMP_NE)
   1961     return Cond;
   1962 
   1963   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
   1964   if (!Sel || !Sel->hasOneUse()) return Cond;
   1965 
   1966   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1967   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1968     return Cond;
   1969   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
   1970 
   1971   // Add one to the backedge-taken count to get the trip count.
   1972   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
   1973   if (IterationCount != SE.getSCEV(Sel)) return Cond;
   1974 
   1975   // Check for a max calculation that matches the pattern. There's no check
   1976   // for ICMP_ULE here because the comparison would be with zero, which
   1977   // isn't interesting.
   1978   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   1979   const SCEVNAryExpr *Max = nullptr;
   1980   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
   1981     Pred = ICmpInst::ICMP_SLE;
   1982     Max = S;
   1983   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
   1984     Pred = ICmpInst::ICMP_SLT;
   1985     Max = S;
   1986   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
   1987     Pred = ICmpInst::ICMP_ULT;
   1988     Max = U;
   1989   } else {
   1990     // No match; bail.
   1991     return Cond;
   1992   }
   1993 
   1994   // To handle a max with more than two operands, this optimization would
   1995   // require additional checking and setup.
   1996   if (Max->getNumOperands() != 2)
   1997     return Cond;
   1998 
   1999   const SCEV *MaxLHS = Max->getOperand(0);
   2000   const SCEV *MaxRHS = Max->getOperand(1);
   2001 
   2002   // ScalarEvolution canonicalizes constants to the left. For < and >, look
   2003   // for a comparison with 1. For <= and >=, a comparison with zero.
   2004   if (!MaxLHS ||
   2005       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
   2006     return Cond;
   2007 
   2008   // Check the relevant induction variable for conformance to
   2009   // the pattern.
   2010   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
   2011   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
   2012   if (!AR || !AR->isAffine() ||
   2013       AR->getStart() != One ||
   2014       AR->getStepRecurrence(SE) != One)
   2015     return Cond;
   2016 
   2017   assert(AR->getLoop() == L &&
   2018          "Loop condition operand is an addrec in a different loop!");
   2019 
   2020   // Check the right operand of the select, and remember it, as it will
   2021   // be used in the new comparison instruction.
   2022   Value *NewRHS = nullptr;
   2023   if (ICmpInst::isTrueWhenEqual(Pred)) {
   2024     // Look for n+1, and grab n.
   2025     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
   2026       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
   2027          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   2028            NewRHS = BO->getOperand(0);
   2029     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
   2030       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
   2031         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   2032           NewRHS = BO->getOperand(0);
   2033     if (!NewRHS)
   2034       return Cond;
   2035   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
   2036     NewRHS = Sel->getOperand(1);
   2037   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
   2038     NewRHS = Sel->getOperand(2);
   2039   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
   2040     NewRHS = SU->getValue();
   2041   else
   2042     // Max doesn't match expected pattern.
   2043     return Cond;
   2044 
   2045   // Determine the new comparison opcode. It may be signed or unsigned,
   2046   // and the original comparison may be either equality or inequality.
   2047   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
   2048     Pred = CmpInst::getInversePredicate(Pred);
   2049 
   2050   // Ok, everything looks ok to change the condition into an SLT or SGE and
   2051   // delete the max calculation.
   2052   ICmpInst *NewCond =
   2053     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
   2054 
   2055   // Delete the max calculation instructions.
   2056   Cond->replaceAllUsesWith(NewCond);
   2057   CondUse->setUser(NewCond);
   2058   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
   2059   Cond->eraseFromParent();
   2060   Sel->eraseFromParent();
   2061   if (Cmp->use_empty())
   2062     Cmp->eraseFromParent();
   2063   return NewCond;
   2064 }
   2065 
   2066 /// Change loop terminating condition to use the postinc iv when possible.
   2067 void
   2068 LSRInstance::OptimizeLoopTermCond() {
   2069   SmallPtrSet<Instruction *, 4> PostIncs;
   2070 
   2071   BasicBlock *LatchBlock = L->getLoopLatch();
   2072   SmallVector<BasicBlock*, 8> ExitingBlocks;
   2073   L->getExitingBlocks(ExitingBlocks);
   2074 
   2075   for (BasicBlock *ExitingBlock : ExitingBlocks) {
   2076 
   2077     // Get the terminating condition for the loop if possible.  If we
   2078     // can, we want to change it to use a post-incremented version of its
   2079     // induction variable, to allow coalescing the live ranges for the IV into
   2080     // one register value.
   2081 
   2082     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   2083     if (!TermBr)
   2084       continue;
   2085     // FIXME: Overly conservative, termination condition could be an 'or' etc..
   2086     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
   2087       continue;
   2088 
   2089     // Search IVUsesByStride to find Cond's IVUse if there is one.
   2090     IVStrideUse *CondUse = nullptr;
   2091     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
   2092     if (!FindIVUserForCond(Cond, CondUse))
   2093       continue;
   2094 
   2095     // If the trip count is computed in terms of a max (due to ScalarEvolution
   2096     // being unable to find a sufficient guard, for example), change the loop
   2097     // comparison to use SLT or ULT instead of NE.
   2098     // One consequence of doing this now is that it disrupts the count-down
   2099     // optimization. That's not always a bad thing though, because in such
   2100     // cases it may still be worthwhile to avoid a max.
   2101     Cond = OptimizeMax(Cond, CondUse);
   2102 
   2103     // If this exiting block dominates the latch block, it may also use
   2104     // the post-inc value if it won't be shared with other uses.
   2105     // Check for dominance.
   2106     if (!DT.dominates(ExitingBlock, LatchBlock))
   2107       continue;
   2108 
   2109     // Conservatively avoid trying to use the post-inc value in non-latch
   2110     // exits if there may be pre-inc users in intervening blocks.
   2111     if (LatchBlock != ExitingBlock)
   2112       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   2113         // Test if the use is reachable from the exiting block. This dominator
   2114         // query is a conservative approximation of reachability.
   2115         if (&*UI != CondUse &&
   2116             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
   2117           // Conservatively assume there may be reuse if the quotient of their
   2118           // strides could be a legal scale.
   2119           const SCEV *A = IU.getStride(*CondUse, L);
   2120           const SCEV *B = IU.getStride(*UI, L);
   2121           if (!A || !B) continue;
   2122           if (SE.getTypeSizeInBits(A->getType()) !=
   2123               SE.getTypeSizeInBits(B->getType())) {
   2124             if (SE.getTypeSizeInBits(A->getType()) >
   2125                 SE.getTypeSizeInBits(B->getType()))
   2126               B = SE.getSignExtendExpr(B, A->getType());
   2127             else
   2128               A = SE.getSignExtendExpr(A, B->getType());
   2129           }
   2130           if (const SCEVConstant *D =
   2131                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
   2132             const ConstantInt *C = D->getValue();
   2133             // Stride of one or negative one can have reuse with non-addresses.
   2134             if (C->isOne() || C->isAllOnesValue())
   2135               goto decline_post_inc;
   2136             // Avoid weird situations.
   2137             if (C->getValue().getMinSignedBits() >= 64 ||
   2138                 C->getValue().isMinSignedValue())
   2139               goto decline_post_inc;
   2140             // Check for possible scaled-address reuse.
   2141             MemAccessTy AccessTy = getAccessType(UI->getUser());
   2142             int64_t Scale = C->getSExtValue();
   2143             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
   2144                                           /*BaseOffset=*/0,
   2145                                           /*HasBaseReg=*/false, Scale,
   2146                                           AccessTy.AddrSpace))
   2147               goto decline_post_inc;
   2148             Scale = -Scale;
   2149             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
   2150                                           /*BaseOffset=*/0,
   2151                                           /*HasBaseReg=*/false, Scale,
   2152                                           AccessTy.AddrSpace))
   2153               goto decline_post_inc;
   2154           }
   2155         }
   2156 
   2157     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
   2158                  << *Cond << '\n');
   2159 
   2160     // It's possible for the setcc instruction to be anywhere in the loop, and
   2161     // possible for it to have multiple users.  If it is not immediately before
   2162     // the exiting block branch, move it.
   2163     if (&*++BasicBlock::iterator(Cond) != TermBr) {
   2164       if (Cond->hasOneUse()) {
   2165         Cond->moveBefore(TermBr);
   2166       } else {
   2167         // Clone the terminating condition and insert into the loopend.
   2168         ICmpInst *OldCond = Cond;
   2169         Cond = cast<ICmpInst>(Cond->clone());
   2170         Cond->setName(L->getHeader()->getName() + ".termcond");
   2171         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
   2172 
   2173         // Clone the IVUse, as the old use still exists!
   2174         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
   2175         TermBr->replaceUsesOfWith(OldCond, Cond);
   2176       }
   2177     }
   2178 
   2179     // If we get to here, we know that we can transform the setcc instruction to
   2180     // use the post-incremented version of the IV, allowing us to coalesce the
   2181     // live ranges for the IV correctly.
   2182     CondUse->transformToPostInc(L);
   2183     Changed = true;
   2184 
   2185     PostIncs.insert(Cond);
   2186   decline_post_inc:;
   2187   }
   2188 
   2189   // Determine an insertion point for the loop induction variable increment. It
   2190   // must dominate all the post-inc comparisons we just set up, and it must
   2191   // dominate the loop latch edge.
   2192   IVIncInsertPos = L->getLoopLatch()->getTerminator();
   2193   for (Instruction *Inst : PostIncs) {
   2194     BasicBlock *BB =
   2195       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
   2196                                     Inst->getParent());
   2197     if (BB == Inst->getParent())
   2198       IVIncInsertPos = Inst;
   2199     else if (BB != IVIncInsertPos->getParent())
   2200       IVIncInsertPos = BB->getTerminator();
   2201   }
   2202 }
   2203 
   2204 /// Determine if the given use can accommodate a fixup at the given offset and
   2205 /// other details. If so, update the use and return true.
   2206 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
   2207                                      bool HasBaseReg, LSRUse::KindType Kind,
   2208                                      MemAccessTy AccessTy) {
   2209   int64_t NewMinOffset = LU.MinOffset;
   2210   int64_t NewMaxOffset = LU.MaxOffset;
   2211   MemAccessTy NewAccessTy = AccessTy;
   2212 
   2213   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
   2214   // something conservative, however this can pessimize in the case that one of
   2215   // the uses will have all its uses outside the loop, for example.
   2216   if (LU.Kind != Kind)
   2217     return false;
   2218 
   2219   // Check for a mismatched access type, and fall back conservatively as needed.
   2220   // TODO: Be less conservative when the type is similar and can use the same
   2221   // addressing modes.
   2222   if (Kind == LSRUse::Address) {
   2223     if (AccessTy != LU.AccessTy)
   2224       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext());
   2225   }
   2226 
   2227   // Conservatively assume HasBaseReg is true for now.
   2228   if (NewOffset < LU.MinOffset) {
   2229     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
   2230                           LU.MaxOffset - NewOffset, HasBaseReg))
   2231       return false;
   2232     NewMinOffset = NewOffset;
   2233   } else if (NewOffset > LU.MaxOffset) {
   2234     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
   2235                           NewOffset - LU.MinOffset, HasBaseReg))
   2236       return false;
   2237     NewMaxOffset = NewOffset;
   2238   }
   2239 
   2240   // Update the use.
   2241   LU.MinOffset = NewMinOffset;
   2242   LU.MaxOffset = NewMaxOffset;
   2243   LU.AccessTy = NewAccessTy;
   2244   if (NewOffset != LU.Offsets.back())
   2245     LU.Offsets.push_back(NewOffset);
   2246   return true;
   2247 }
   2248 
   2249 /// Return an LSRUse index and an offset value for a fixup which needs the given
   2250 /// expression, with the given kind and optional access type.  Either reuse an
   2251 /// existing use or create a new one, as needed.
   2252 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
   2253                                                LSRUse::KindType Kind,
   2254                                                MemAccessTy AccessTy) {
   2255   const SCEV *Copy = Expr;
   2256   int64_t Offset = ExtractImmediate(Expr, SE);
   2257 
   2258   // Basic uses can't accept any offset, for example.
   2259   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
   2260                         Offset, /*HasBaseReg=*/ true)) {
   2261     Expr = Copy;
   2262     Offset = 0;
   2263   }
   2264 
   2265   std::pair<UseMapTy::iterator, bool> P =
   2266     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
   2267   if (!P.second) {
   2268     // A use already existed with this base.
   2269     size_t LUIdx = P.first->second;
   2270     LSRUse &LU = Uses[LUIdx];
   2271     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
   2272       // Reuse this use.
   2273       return std::make_pair(LUIdx, Offset);
   2274   }
   2275 
   2276   // Create a new use.
   2277   size_t LUIdx = Uses.size();
   2278   P.first->second = LUIdx;
   2279   Uses.push_back(LSRUse(Kind, AccessTy));
   2280   LSRUse &LU = Uses[LUIdx];
   2281 
   2282   // We don't need to track redundant offsets, but we don't need to go out
   2283   // of our way here to avoid them.
   2284   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
   2285     LU.Offsets.push_back(Offset);
   2286 
   2287   LU.MinOffset = Offset;
   2288   LU.MaxOffset = Offset;
   2289   return std::make_pair(LUIdx, Offset);
   2290 }
   2291 
   2292 /// Delete the given use from the Uses list.
   2293 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
   2294   if (&LU != &Uses.back())
   2295     std::swap(LU, Uses.back());
   2296   Uses.pop_back();
   2297 
   2298   // Update RegUses.
   2299   RegUses.swapAndDropUse(LUIdx, Uses.size());
   2300 }
   2301 
   2302 /// Look for a use distinct from OrigLU which is has a formula that has the same
   2303 /// registers as the given formula.
   2304 LSRUse *
   2305 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
   2306                                        const LSRUse &OrigLU) {
   2307   // Search all uses for the formula. This could be more clever.
   2308   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   2309     LSRUse &LU = Uses[LUIdx];
   2310     // Check whether this use is close enough to OrigLU, to see whether it's
   2311     // worthwhile looking through its formulae.
   2312     // Ignore ICmpZero uses because they may contain formulae generated by
   2313     // GenerateICmpZeroScales, in which case adding fixup offsets may
   2314     // be invalid.
   2315     if (&LU != &OrigLU &&
   2316         LU.Kind != LSRUse::ICmpZero &&
   2317         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
   2318         LU.WidestFixupType == OrigLU.WidestFixupType &&
   2319         LU.HasFormulaWithSameRegs(OrigF)) {
   2320       // Scan through this use's formulae.
   2321       for (const Formula &F : LU.Formulae) {
   2322         // Check to see if this formula has the same registers and symbols
   2323         // as OrigF.
   2324         if (F.BaseRegs == OrigF.BaseRegs &&
   2325             F.ScaledReg == OrigF.ScaledReg &&
   2326             F.BaseGV == OrigF.BaseGV &&
   2327             F.Scale == OrigF.Scale &&
   2328             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
   2329           if (F.BaseOffset == 0)
   2330             return &LU;
   2331           // This is the formula where all the registers and symbols matched;
   2332           // there aren't going to be any others. Since we declined it, we
   2333           // can skip the rest of the formulae and proceed to the next LSRUse.
   2334           break;
   2335         }
   2336       }
   2337     }
   2338   }
   2339 
   2340   // Nothing looked good.
   2341   return nullptr;
   2342 }
   2343 
   2344 void LSRInstance::CollectInterestingTypesAndFactors() {
   2345   SmallSetVector<const SCEV *, 4> Strides;
   2346 
   2347   // Collect interesting types and strides.
   2348   SmallVector<const SCEV *, 4> Worklist;
   2349   for (const IVStrideUse &U : IU) {
   2350     const SCEV *Expr = IU.getExpr(U);
   2351 
   2352     // Collect interesting types.
   2353     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
   2354 
   2355     // Add strides for mentioned loops.
   2356     Worklist.push_back(Expr);
   2357     do {
   2358       const SCEV *S = Worklist.pop_back_val();
   2359       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   2360         if (AR->getLoop() == L)
   2361           Strides.insert(AR->getStepRecurrence(SE));
   2362         Worklist.push_back(AR->getStart());
   2363       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   2364         Worklist.append(Add->op_begin(), Add->op_end());
   2365       }
   2366     } while (!Worklist.empty());
   2367   }
   2368 
   2369   // Compute interesting factors from the set of interesting strides.
   2370   for (SmallSetVector<const SCEV *, 4>::const_iterator
   2371        I = Strides.begin(), E = Strides.end(); I != E; ++I)
   2372     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
   2373          std::next(I); NewStrideIter != E; ++NewStrideIter) {
   2374       const SCEV *OldStride = *I;
   2375       const SCEV *NewStride = *NewStrideIter;
   2376 
   2377       if (SE.getTypeSizeInBits(OldStride->getType()) !=
   2378           SE.getTypeSizeInBits(NewStride->getType())) {
   2379         if (SE.getTypeSizeInBits(OldStride->getType()) >
   2380             SE.getTypeSizeInBits(NewStride->getType()))
   2381           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
   2382         else
   2383           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
   2384       }
   2385       if (const SCEVConstant *Factor =
   2386             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
   2387                                                         SE, true))) {
   2388         if (Factor->getAPInt().getMinSignedBits() <= 64)
   2389           Factors.insert(Factor->getAPInt().getSExtValue());
   2390       } else if (const SCEVConstant *Factor =
   2391                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
   2392                                                                NewStride,
   2393                                                                SE, true))) {
   2394         if (Factor->getAPInt().getMinSignedBits() <= 64)
   2395           Factors.insert(Factor->getAPInt().getSExtValue());
   2396       }
   2397     }
   2398 
   2399   // If all uses use the same type, don't bother looking for truncation-based
   2400   // reuse.
   2401   if (Types.size() == 1)
   2402     Types.clear();
   2403 
   2404   DEBUG(print_factors_and_types(dbgs()));
   2405 }
   2406 
   2407 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
   2408 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
   2409 /// IVStrideUses, we could partially skip this.
   2410 static User::op_iterator
   2411 findIVOperand(User::op_iterator OI, User::op_iterator OE,
   2412               Loop *L, ScalarEvolution &SE) {
   2413   for(; OI != OE; ++OI) {
   2414     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
   2415       if (!SE.isSCEVable(Oper->getType()))
   2416         continue;
   2417 
   2418       if (const SCEVAddRecExpr *AR =
   2419           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
   2420         if (AR->getLoop() == L)
   2421           break;
   2422       }
   2423     }
   2424   }
   2425   return OI;
   2426 }
   2427 
   2428 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
   2429 /// a convenient helper.
   2430 static Value *getWideOperand(Value *Oper) {
   2431   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
   2432     return Trunc->getOperand(0);
   2433   return Oper;
   2434 }
   2435 
   2436 /// Return true if we allow an IV chain to include both types.
   2437 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
   2438   Type *LType = LVal->getType();
   2439   Type *RType = RVal->getType();
   2440   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
   2441 }
   2442 
   2443 /// Return an approximation of this SCEV expression's "base", or NULL for any
   2444 /// constant. Returning the expression itself is conservative. Returning a
   2445 /// deeper subexpression is more precise and valid as long as it isn't less
   2446 /// complex than another subexpression. For expressions involving multiple
   2447 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
   2448 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
   2449 /// IVInc==b-a.
   2450 ///
   2451 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
   2452 /// SCEVUnknown, we simply return the rightmost SCEV operand.
   2453 static const SCEV *getExprBase(const SCEV *S) {
   2454   switch (S->getSCEVType()) {
   2455   default: // uncluding scUnknown.
   2456     return S;
   2457   case scConstant:
   2458     return nullptr;
   2459   case scTruncate:
   2460     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
   2461   case scZeroExtend:
   2462     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
   2463   case scSignExtend:
   2464     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
   2465   case scAddExpr: {
   2466     // Skip over scaled operands (scMulExpr) to follow add operands as long as
   2467     // there's nothing more complex.
   2468     // FIXME: not sure if we want to recognize negation.
   2469     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
   2470     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
   2471            E(Add->op_begin()); I != E; ++I) {
   2472       const SCEV *SubExpr = *I;
   2473       if (SubExpr->getSCEVType() == scAddExpr)
   2474         return getExprBase(SubExpr);
   2475 
   2476       if (SubExpr->getSCEVType() != scMulExpr)
   2477         return SubExpr;
   2478     }
   2479     return S; // all operands are scaled, be conservative.
   2480   }
   2481   case scAddRecExpr:
   2482     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
   2483   }
   2484 }
   2485 
   2486 /// Return true if the chain increment is profitable to expand into a loop
   2487 /// invariant value, which may require its own register. A profitable chain
   2488 /// increment will be an offset relative to the same base. We allow such offsets
   2489 /// to potentially be used as chain increment as long as it's not obviously
   2490 /// expensive to expand using real instructions.
   2491 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
   2492                                     const SCEV *IncExpr,
   2493                                     ScalarEvolution &SE) {
   2494   // Aggressively form chains when -stress-ivchain.
   2495   if (StressIVChain)
   2496     return true;
   2497 
   2498   // Do not replace a constant offset from IV head with a nonconstant IV
   2499   // increment.
   2500   if (!isa<SCEVConstant>(IncExpr)) {
   2501     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
   2502     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
   2503       return 0;
   2504   }
   2505 
   2506   SmallPtrSet<const SCEV*, 8> Processed;
   2507   return !isHighCostExpansion(IncExpr, Processed, SE);
   2508 }
   2509 
   2510 /// Return true if the number of registers needed for the chain is estimated to
   2511 /// be less than the number required for the individual IV users. First prohibit
   2512 /// any IV users that keep the IV live across increments (the Users set should
   2513 /// be empty). Next count the number and type of increments in the chain.
   2514 ///
   2515 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
   2516 /// effectively use postinc addressing modes. Only consider it profitable it the
   2517 /// increments can be computed in fewer registers when chained.
   2518 ///
   2519 /// TODO: Consider IVInc free if it's already used in another chains.
   2520 static bool
   2521 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
   2522                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
   2523   if (StressIVChain)
   2524     return true;
   2525 
   2526   if (!Chain.hasIncs())
   2527     return false;
   2528 
   2529   if (!Users.empty()) {
   2530     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
   2531           for (Instruction *Inst : Users) {
   2532             dbgs() << "  " << *Inst << "\n";
   2533           });
   2534     return false;
   2535   }
   2536   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2537 
   2538   // The chain itself may require a register, so intialize cost to 1.
   2539   int cost = 1;
   2540 
   2541   // A complete chain likely eliminates the need for keeping the original IV in
   2542   // a register. LSR does not currently know how to form a complete chain unless
   2543   // the header phi already exists.
   2544   if (isa<PHINode>(Chain.tailUserInst())
   2545       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
   2546     --cost;
   2547   }
   2548   const SCEV *LastIncExpr = nullptr;
   2549   unsigned NumConstIncrements = 0;
   2550   unsigned NumVarIncrements = 0;
   2551   unsigned NumReusedIncrements = 0;
   2552   for (const IVInc &Inc : Chain) {
   2553     if (Inc.IncExpr->isZero())
   2554       continue;
   2555 
   2556     // Incrementing by zero or some constant is neutral. We assume constants can
   2557     // be folded into an addressing mode or an add's immediate operand.
   2558     if (isa<SCEVConstant>(Inc.IncExpr)) {
   2559       ++NumConstIncrements;
   2560       continue;
   2561     }
   2562 
   2563     if (Inc.IncExpr == LastIncExpr)
   2564       ++NumReusedIncrements;
   2565     else
   2566       ++NumVarIncrements;
   2567 
   2568     LastIncExpr = Inc.IncExpr;
   2569   }
   2570   // An IV chain with a single increment is handled by LSR's postinc
   2571   // uses. However, a chain with multiple increments requires keeping the IV's
   2572   // value live longer than it needs to be if chained.
   2573   if (NumConstIncrements > 1)
   2574     --cost;
   2575 
   2576   // Materializing increment expressions in the preheader that didn't exist in
   2577   // the original code may cost a register. For example, sign-extended array
   2578   // indices can produce ridiculous increments like this:
   2579   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
   2580   cost += NumVarIncrements;
   2581 
   2582   // Reusing variable increments likely saves a register to hold the multiple of
   2583   // the stride.
   2584   cost -= NumReusedIncrements;
   2585 
   2586   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
   2587                << "\n");
   2588 
   2589   return cost < 0;
   2590 }
   2591 
   2592 /// Add this IV user to an existing chain or make it the head of a new chain.
   2593 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   2594                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
   2595   // When IVs are used as types of varying widths, they are generally converted
   2596   // to a wider type with some uses remaining narrow under a (free) trunc.
   2597   Value *const NextIV = getWideOperand(IVOper);
   2598   const SCEV *const OperExpr = SE.getSCEV(NextIV);
   2599   const SCEV *const OperExprBase = getExprBase(OperExpr);
   2600 
   2601   // Visit all existing chains. Check if its IVOper can be computed as a
   2602   // profitable loop invariant increment from the last link in the Chain.
   2603   unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2604   const SCEV *LastIncExpr = nullptr;
   2605   for (; ChainIdx < NChains; ++ChainIdx) {
   2606     IVChain &Chain = IVChainVec[ChainIdx];
   2607 
   2608     // Prune the solution space aggressively by checking that both IV operands
   2609     // are expressions that operate on the same unscaled SCEVUnknown. This
   2610     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
   2611     // first avoids creating extra SCEV expressions.
   2612     if (!StressIVChain && Chain.ExprBase != OperExprBase)
   2613       continue;
   2614 
   2615     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
   2616     if (!isCompatibleIVType(PrevIV, NextIV))
   2617       continue;
   2618 
   2619     // A phi node terminates a chain.
   2620     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
   2621       continue;
   2622 
   2623     // The increment must be loop-invariant so it can be kept in a register.
   2624     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
   2625     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
   2626     if (!SE.isLoopInvariant(IncExpr, L))
   2627       continue;
   2628 
   2629     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
   2630       LastIncExpr = IncExpr;
   2631       break;
   2632     }
   2633   }
   2634   // If we haven't found a chain, create a new one, unless we hit the max. Don't
   2635   // bother for phi nodes, because they must be last in the chain.
   2636   if (ChainIdx == NChains) {
   2637     if (isa<PHINode>(UserInst))
   2638       return;
   2639     if (NChains >= MaxChains && !StressIVChain) {
   2640       DEBUG(dbgs() << "IV Chain Limit\n");
   2641       return;
   2642     }
   2643     LastIncExpr = OperExpr;
   2644     // IVUsers may have skipped over sign/zero extensions. We don't currently
   2645     // attempt to form chains involving extensions unless they can be hoisted
   2646     // into this loop's AddRec.
   2647     if (!isa<SCEVAddRecExpr>(LastIncExpr))
   2648       return;
   2649     ++NChains;
   2650     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
   2651                                  OperExprBase));
   2652     ChainUsersVec.resize(NChains);
   2653     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
   2654                  << ") IV=" << *LastIncExpr << "\n");
   2655   } else {
   2656     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
   2657                  << ") IV+" << *LastIncExpr << "\n");
   2658     // Add this IV user to the end of the chain.
   2659     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
   2660   }
   2661   IVChain &Chain = IVChainVec[ChainIdx];
   2662 
   2663   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
   2664   // This chain's NearUsers become FarUsers.
   2665   if (!LastIncExpr->isZero()) {
   2666     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
   2667                                             NearUsers.end());
   2668     NearUsers.clear();
   2669   }
   2670 
   2671   // All other uses of IVOperand become near uses of the chain.
   2672   // We currently ignore intermediate values within SCEV expressions, assuming
   2673   // they will eventually be used be the current chain, or can be computed
   2674   // from one of the chain increments. To be more precise we could
   2675   // transitively follow its user and only add leaf IV users to the set.
   2676   for (User *U : IVOper->users()) {
   2677     Instruction *OtherUse = dyn_cast<Instruction>(U);
   2678     if (!OtherUse)
   2679       continue;
   2680     // Uses in the chain will no longer be uses if the chain is formed.
   2681     // Include the head of the chain in this iteration (not Chain.begin()).
   2682     IVChain::const_iterator IncIter = Chain.Incs.begin();
   2683     IVChain::const_iterator IncEnd = Chain.Incs.end();
   2684     for( ; IncIter != IncEnd; ++IncIter) {
   2685       if (IncIter->UserInst == OtherUse)
   2686         break;
   2687     }
   2688     if (IncIter != IncEnd)
   2689       continue;
   2690 
   2691     if (SE.isSCEVable(OtherUse->getType())
   2692         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
   2693         && IU.isIVUserOrOperand(OtherUse)) {
   2694       continue;
   2695     }
   2696     NearUsers.insert(OtherUse);
   2697   }
   2698 
   2699   // Since this user is part of the chain, it's no longer considered a use
   2700   // of the chain.
   2701   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
   2702 }
   2703 
   2704 /// Populate the vector of Chains.
   2705 ///
   2706 /// This decreases ILP at the architecture level. Targets with ample registers,
   2707 /// multiple memory ports, and no register renaming probably don't want
   2708 /// this. However, such targets should probably disable LSR altogether.
   2709 ///
   2710 /// The job of LSR is to make a reasonable choice of induction variables across
   2711 /// the loop. Subsequent passes can easily "unchain" computation exposing more
   2712 /// ILP *within the loop* if the target wants it.
   2713 ///
   2714 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
   2715 /// will not reorder memory operations, it will recognize this as a chain, but
   2716 /// will generate redundant IV increments. Ideally this would be corrected later
   2717 /// by a smart scheduler:
   2718 ///        = A[i]
   2719 ///        = A[i+x]
   2720 /// A[i]   =
   2721 /// A[i+x] =
   2722 ///
   2723 /// TODO: Walk the entire domtree within this loop, not just the path to the
   2724 /// loop latch. This will discover chains on side paths, but requires
   2725 /// maintaining multiple copies of the Chains state.
   2726 void LSRInstance::CollectChains() {
   2727   DEBUG(dbgs() << "Collecting IV Chains.\n");
   2728   SmallVector<ChainUsers, 8> ChainUsersVec;
   2729 
   2730   SmallVector<BasicBlock *,8> LatchPath;
   2731   BasicBlock *LoopHeader = L->getHeader();
   2732   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
   2733        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
   2734     LatchPath.push_back(Rung->getBlock());
   2735   }
   2736   LatchPath.push_back(LoopHeader);
   2737 
   2738   // Walk the instruction stream from the loop header to the loop latch.
   2739   for (BasicBlock *BB : reverse(LatchPath)) {
   2740     for (Instruction &I : *BB) {
   2741       // Skip instructions that weren't seen by IVUsers analysis.
   2742       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
   2743         continue;
   2744 
   2745       // Ignore users that are part of a SCEV expression. This way we only
   2746       // consider leaf IV Users. This effectively rediscovers a portion of
   2747       // IVUsers analysis but in program order this time.
   2748       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
   2749         continue;
   2750 
   2751       // Remove this instruction from any NearUsers set it may be in.
   2752       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2753            ChainIdx < NChains; ++ChainIdx) {
   2754         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
   2755       }
   2756       // Search for operands that can be chained.
   2757       SmallPtrSet<Instruction*, 4> UniqueOperands;
   2758       User::op_iterator IVOpEnd = I.op_end();
   2759       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
   2760       while (IVOpIter != IVOpEnd) {
   2761         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
   2762         if (UniqueOperands.insert(IVOpInst).second)
   2763           ChainInstruction(&I, IVOpInst, ChainUsersVec);
   2764         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
   2765       }
   2766     } // Continue walking down the instructions.
   2767   } // Continue walking down the domtree.
   2768   // Visit phi backedges to determine if the chain can generate the IV postinc.
   2769   for (BasicBlock::iterator I = L->getHeader()->begin();
   2770        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   2771     if (!SE.isSCEVable(PN->getType()))
   2772       continue;
   2773 
   2774     Instruction *IncV =
   2775       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
   2776     if (IncV)
   2777       ChainInstruction(PN, IncV, ChainUsersVec);
   2778   }
   2779   // Remove any unprofitable chains.
   2780   unsigned ChainIdx = 0;
   2781   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
   2782        UsersIdx < NChains; ++UsersIdx) {
   2783     if (!isProfitableChain(IVChainVec[UsersIdx],
   2784                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
   2785       continue;
   2786     // Preserve the chain at UsesIdx.
   2787     if (ChainIdx != UsersIdx)
   2788       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
   2789     FinalizeChain(IVChainVec[ChainIdx]);
   2790     ++ChainIdx;
   2791   }
   2792   IVChainVec.resize(ChainIdx);
   2793 }
   2794 
   2795 void LSRInstance::FinalizeChain(IVChain &Chain) {
   2796   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2797   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
   2798 
   2799   for (const IVInc &Inc : Chain) {
   2800     DEBUG(dbgs() << "        Inc: " << Inc.UserInst << "\n");
   2801     auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(),
   2802                           Inc.IVOperand);
   2803     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
   2804     IVIncSet.insert(UseI);
   2805   }
   2806 }
   2807 
   2808 /// Return true if the IVInc can be folded into an addressing mode.
   2809 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
   2810                              Value *Operand, const TargetTransformInfo &TTI) {
   2811   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
   2812   if (!IncConst || !isAddressUse(UserInst, Operand))
   2813     return false;
   2814 
   2815   if (IncConst->getAPInt().getMinSignedBits() > 64)
   2816     return false;
   2817 
   2818   MemAccessTy AccessTy = getAccessType(UserInst);
   2819   int64_t IncOffset = IncConst->getValue()->getSExtValue();
   2820   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
   2821                         IncOffset, /*HaseBaseReg=*/false))
   2822     return false;
   2823 
   2824   return true;
   2825 }
   2826 
   2827 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
   2828 /// user's operand from the previous IV user's operand.
   2829 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   2830                                   SmallVectorImpl<WeakVH> &DeadInsts) {
   2831   // Find the new IVOperand for the head of the chain. It may have been replaced
   2832   // by LSR.
   2833   const IVInc &Head = Chain.Incs[0];
   2834   User::op_iterator IVOpEnd = Head.UserInst->op_end();
   2835   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
   2836   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
   2837                                              IVOpEnd, L, SE);
   2838   Value *IVSrc = nullptr;
   2839   while (IVOpIter != IVOpEnd) {
   2840     IVSrc = getWideOperand(*IVOpIter);
   2841 
   2842     // If this operand computes the expression that the chain needs, we may use
   2843     // it. (Check this after setting IVSrc which is used below.)
   2844     //
   2845     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
   2846     // narrow for the chain, so we can no longer use it. We do allow using a
   2847     // wider phi, assuming the LSR checked for free truncation. In that case we
   2848     // should already have a truncate on this operand such that
   2849     // getSCEV(IVSrc) == IncExpr.
   2850     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
   2851         || SE.getSCEV(IVSrc) == Head.IncExpr) {
   2852       break;
   2853     }
   2854     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
   2855   }
   2856   if (IVOpIter == IVOpEnd) {
   2857     // Gracefully give up on this chain.
   2858     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
   2859     return;
   2860   }
   2861 
   2862   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
   2863   Type *IVTy = IVSrc->getType();
   2864   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
   2865   const SCEV *LeftOverExpr = nullptr;
   2866   for (const IVInc &Inc : Chain) {
   2867     Instruction *InsertPt = Inc.UserInst;
   2868     if (isa<PHINode>(InsertPt))
   2869       InsertPt = L->getLoopLatch()->getTerminator();
   2870 
   2871     // IVOper will replace the current IV User's operand. IVSrc is the IV
   2872     // value currently held in a register.
   2873     Value *IVOper = IVSrc;
   2874     if (!Inc.IncExpr->isZero()) {
   2875       // IncExpr was the result of subtraction of two narrow values, so must
   2876       // be signed.
   2877       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
   2878       LeftOverExpr = LeftOverExpr ?
   2879         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
   2880     }
   2881     if (LeftOverExpr && !LeftOverExpr->isZero()) {
   2882       // Expand the IV increment.
   2883       Rewriter.clearPostInc();
   2884       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
   2885       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
   2886                                              SE.getUnknown(IncV));
   2887       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
   2888 
   2889       // If an IV increment can't be folded, use it as the next IV value.
   2890       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
   2891         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
   2892         IVSrc = IVOper;
   2893         LeftOverExpr = nullptr;
   2894       }
   2895     }
   2896     Type *OperTy = Inc.IVOperand->getType();
   2897     if (IVTy != OperTy) {
   2898       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
   2899              "cannot extend a chained IV");
   2900       IRBuilder<> Builder(InsertPt);
   2901       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
   2902     }
   2903     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
   2904     DeadInsts.emplace_back(Inc.IVOperand);
   2905   }
   2906   // If LSR created a new, wider phi, we may also replace its postinc. We only
   2907   // do this if we also found a wide value for the head of the chain.
   2908   if (isa<PHINode>(Chain.tailUserInst())) {
   2909     for (BasicBlock::iterator I = L->getHeader()->begin();
   2910          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   2911       if (!isCompatibleIVType(Phi, IVSrc))
   2912         continue;
   2913       Instruction *PostIncV = dyn_cast<Instruction>(
   2914         Phi->getIncomingValueForBlock(L->getLoopLatch()));
   2915       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
   2916         continue;
   2917       Value *IVOper = IVSrc;
   2918       Type *PostIncTy = PostIncV->getType();
   2919       if (IVTy != PostIncTy) {
   2920         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
   2921         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
   2922         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
   2923         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
   2924       }
   2925       Phi->replaceUsesOfWith(PostIncV, IVOper);
   2926       DeadInsts.emplace_back(PostIncV);
   2927     }
   2928   }
   2929 }
   2930 
   2931 void LSRInstance::CollectFixupsAndInitialFormulae() {
   2932   for (const IVStrideUse &U : IU) {
   2933     Instruction *UserInst = U.getUser();
   2934     // Skip IV users that are part of profitable IV Chains.
   2935     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
   2936                                        U.getOperandValToReplace());
   2937     assert(UseI != UserInst->op_end() && "cannot find IV operand");
   2938     if (IVIncSet.count(UseI))
   2939       continue;
   2940 
   2941     // Record the uses.
   2942     LSRFixup &LF = getNewFixup();
   2943     LF.UserInst = UserInst;
   2944     LF.OperandValToReplace = U.getOperandValToReplace();
   2945     LF.PostIncLoops = U.getPostIncLoops();
   2946 
   2947     LSRUse::KindType Kind = LSRUse::Basic;
   2948     MemAccessTy AccessTy;
   2949     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
   2950       Kind = LSRUse::Address;
   2951       AccessTy = getAccessType(LF.UserInst);
   2952     }
   2953 
   2954     const SCEV *S = IU.getExpr(U);
   2955 
   2956     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
   2957     // (N - i == 0), and this allows (N - i) to be the expression that we work
   2958     // with rather than just N or i, so we can consider the register
   2959     // requirements for both N and i at the same time. Limiting this code to
   2960     // equality icmps is not a problem because all interesting loops use
   2961     // equality icmps, thanks to IndVarSimplify.
   2962     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
   2963       if (CI->isEquality()) {
   2964         // Swap the operands if needed to put the OperandValToReplace on the
   2965         // left, for consistency.
   2966         Value *NV = CI->getOperand(1);
   2967         if (NV == LF.OperandValToReplace) {
   2968           CI->setOperand(1, CI->getOperand(0));
   2969           CI->setOperand(0, NV);
   2970           NV = CI->getOperand(1);
   2971           Changed = true;
   2972         }
   2973 
   2974         // x == y  -->  x - y == 0
   2975         const SCEV *N = SE.getSCEV(NV);
   2976         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
   2977           // S is normalized, so normalize N before folding it into S
   2978           // to keep the result normalized.
   2979           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
   2980                                      LF.PostIncLoops, SE, DT);
   2981           Kind = LSRUse::ICmpZero;
   2982           S = SE.getMinusSCEV(N, S);
   2983         }
   2984 
   2985         // -1 and the negations of all interesting strides (except the negation
   2986         // of -1) are now also interesting.
   2987         for (size_t i = 0, e = Factors.size(); i != e; ++i)
   2988           if (Factors[i] != -1)
   2989             Factors.insert(-(uint64_t)Factors[i]);
   2990         Factors.insert(-1);
   2991       }
   2992 
   2993     // Set up the initial formula for this use.
   2994     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
   2995     LF.LUIdx = P.first;
   2996     LF.Offset = P.second;
   2997     LSRUse &LU = Uses[LF.LUIdx];
   2998     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   2999     if (!LU.WidestFixupType ||
   3000         SE.getTypeSizeInBits(LU.WidestFixupType) <
   3001         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   3002       LU.WidestFixupType = LF.OperandValToReplace->getType();
   3003 
   3004     // If this is the first use of this LSRUse, give it a formula.
   3005     if (LU.Formulae.empty()) {
   3006       InsertInitialFormula(S, LU, LF.LUIdx);
   3007       CountRegisters(LU.Formulae.back(), LF.LUIdx);
   3008     }
   3009   }
   3010 
   3011   DEBUG(print_fixups(dbgs()));
   3012 }
   3013 
   3014 /// Insert a formula for the given expression into the given use, separating out
   3015 /// loop-variant portions from loop-invariant and loop-computable portions.
   3016 void
   3017 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
   3018   // Mark uses whose expressions cannot be expanded.
   3019   if (!isSafeToExpand(S, SE))
   3020     LU.RigidFormula = true;
   3021 
   3022   Formula F;
   3023   F.initialMatch(S, L, SE);
   3024   bool Inserted = InsertFormula(LU, LUIdx, F);
   3025   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
   3026 }
   3027 
   3028 /// Insert a simple single-register formula for the given expression into the
   3029 /// given use.
   3030 void
   3031 LSRInstance::InsertSupplementalFormula(const SCEV *S,
   3032                                        LSRUse &LU, size_t LUIdx) {
   3033   Formula F;
   3034   F.BaseRegs.push_back(S);
   3035   F.HasBaseReg = true;
   3036   bool Inserted = InsertFormula(LU, LUIdx, F);
   3037   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
   3038 }
   3039 
   3040 /// Note which registers are used by the given formula, updating RegUses.
   3041 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
   3042   if (F.ScaledReg)
   3043     RegUses.countRegister(F.ScaledReg, LUIdx);
   3044   for (const SCEV *BaseReg : F.BaseRegs)
   3045     RegUses.countRegister(BaseReg, LUIdx);
   3046 }
   3047 
   3048 /// If the given formula has not yet been inserted, add it to the list, and
   3049 /// return true. Return false otherwise.
   3050 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
   3051   // Do not insert formula that we will not be able to expand.
   3052   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
   3053          "Formula is illegal");
   3054   if (!LU.InsertFormula(F))
   3055     return false;
   3056 
   3057   CountRegisters(F, LUIdx);
   3058   return true;
   3059 }
   3060 
   3061 /// Check for other uses of loop-invariant values which we're tracking. These
   3062 /// other uses will pin these values in registers, making them less profitable
   3063 /// for elimination.
   3064 /// TODO: This currently misses non-constant addrec step registers.
   3065 /// TODO: Should this give more weight to users inside the loop?
   3066 void
   3067 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
   3068   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
   3069   SmallPtrSet<const SCEV *, 32> Visited;
   3070 
   3071   while (!Worklist.empty()) {
   3072     const SCEV *S = Worklist.pop_back_val();
   3073 
   3074     // Don't process the same SCEV twice
   3075     if (!Visited.insert(S).second)
   3076       continue;
   3077 
   3078     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
   3079       Worklist.append(N->op_begin(), N->op_end());
   3080     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
   3081       Worklist.push_back(C->getOperand());
   3082     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
   3083       Worklist.push_back(D->getLHS());
   3084       Worklist.push_back(D->getRHS());
   3085     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
   3086       const Value *V = US->getValue();
   3087       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   3088         // Look for instructions defined outside the loop.
   3089         if (L->contains(Inst)) continue;
   3090       } else if (isa<UndefValue>(V))
   3091         // Undef doesn't have a live range, so it doesn't matter.
   3092         continue;
   3093       for (const Use &U : V->uses()) {
   3094         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
   3095         // Ignore non-instructions.
   3096         if (!UserInst)
   3097           continue;
   3098         // Ignore instructions in other functions (as can happen with
   3099         // Constants).
   3100         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
   3101           continue;
   3102         // Ignore instructions not dominated by the loop.
   3103         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
   3104           UserInst->getParent() :
   3105           cast<PHINode>(UserInst)->getIncomingBlock(
   3106             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
   3107         if (!DT.dominates(L->getHeader(), UseBB))
   3108           continue;
   3109         // Don't bother if the instruction is in a BB which ends in an EHPad.
   3110         if (UseBB->getTerminator()->isEHPad())
   3111           continue;
   3112         // Ignore uses which are part of other SCEV expressions, to avoid
   3113         // analyzing them multiple times.
   3114         if (SE.isSCEVable(UserInst->getType())) {
   3115           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
   3116           // If the user is a no-op, look through to its uses.
   3117           if (!isa<SCEVUnknown>(UserS))
   3118             continue;
   3119           if (UserS == US) {
   3120             Worklist.push_back(
   3121               SE.getUnknown(const_cast<Instruction *>(UserInst)));
   3122             continue;
   3123           }
   3124         }
   3125         // Ignore icmp instructions which are already being analyzed.
   3126         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
   3127           unsigned OtherIdx = !U.getOperandNo();
   3128           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
   3129           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
   3130             continue;
   3131         }
   3132 
   3133         LSRFixup &LF = getNewFixup();
   3134         LF.UserInst = const_cast<Instruction *>(UserInst);
   3135         LF.OperandValToReplace = U;
   3136         std::pair<size_t, int64_t> P = getUse(
   3137             S, LSRUse::Basic, MemAccessTy());
   3138         LF.LUIdx = P.first;
   3139         LF.Offset = P.second;
   3140         LSRUse &LU = Uses[LF.LUIdx];
   3141         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   3142         if (!LU.WidestFixupType ||
   3143             SE.getTypeSizeInBits(LU.WidestFixupType) <
   3144             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   3145           LU.WidestFixupType = LF.OperandValToReplace->getType();
   3146         InsertSupplementalFormula(US, LU, LF.LUIdx);
   3147         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
   3148         break;
   3149       }
   3150     }
   3151   }
   3152 }
   3153 
   3154 /// Split S into subexpressions which can be pulled out into separate
   3155 /// registers. If C is non-null, multiply each subexpression by C.
   3156 ///
   3157 /// Return remainder expression after factoring the subexpressions captured by
   3158 /// Ops. If Ops is complete, return NULL.
   3159 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
   3160                                    SmallVectorImpl<const SCEV *> &Ops,
   3161                                    const Loop *L,
   3162                                    ScalarEvolution &SE,
   3163                                    unsigned Depth = 0) {
   3164   // Arbitrarily cap recursion to protect compile time.
   3165   if (Depth >= 3)
   3166     return S;
   3167 
   3168   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3169     // Break out add operands.
   3170     for (const SCEV *S : Add->operands()) {
   3171       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
   3172       if (Remainder)
   3173         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3174     }
   3175     return nullptr;
   3176   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   3177     // Split a non-zero base out of an addrec.
   3178     if (AR->getStart()->isZero())
   3179       return S;
   3180 
   3181     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
   3182                                             C, Ops, L, SE, Depth+1);
   3183     // Split the non-zero AddRec unless it is part of a nested recurrence that
   3184     // does not pertain to this loop.
   3185     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
   3186       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3187       Remainder = nullptr;
   3188     }
   3189     if (Remainder != AR->getStart()) {
   3190       if (!Remainder)
   3191         Remainder = SE.getConstant(AR->getType(), 0);
   3192       return SE.getAddRecExpr(Remainder,
   3193                               AR->getStepRecurrence(SE),
   3194                               AR->getLoop(),
   3195                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
   3196                               SCEV::FlagAnyWrap);
   3197     }
   3198   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3199     // Break (C * (a + b + c)) into C*a + C*b + C*c.
   3200     if (Mul->getNumOperands() != 2)
   3201       return S;
   3202     if (const SCEVConstant *Op0 =
   3203         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
   3204       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
   3205       const SCEV *Remainder =
   3206         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
   3207       if (Remainder)
   3208         Ops.push_back(SE.getMulExpr(C, Remainder));
   3209       return nullptr;
   3210     }
   3211   }
   3212   return S;
   3213 }
   3214 
   3215 /// \brief Helper function for LSRInstance::GenerateReassociations.
   3216 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
   3217                                              const Formula &Base,
   3218                                              unsigned Depth, size_t Idx,
   3219                                              bool IsScaledReg) {
   3220   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3221   SmallVector<const SCEV *, 8> AddOps;
   3222   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
   3223   if (Remainder)
   3224     AddOps.push_back(Remainder);
   3225 
   3226   if (AddOps.size() == 1)
   3227     return;
   3228 
   3229   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
   3230                                                      JE = AddOps.end();
   3231        J != JE; ++J) {
   3232 
   3233     // Loop-variant "unknown" values are uninteresting; we won't be able to
   3234     // do anything meaningful with them.
   3235     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
   3236       continue;
   3237 
   3238     // Don't pull a constant into a register if the constant could be folded
   3239     // into an immediate field.
   3240     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3241                          LU.AccessTy, *J, Base.getNumRegs() > 1))
   3242       continue;
   3243 
   3244     // Collect all operands except *J.
   3245     SmallVector<const SCEV *, 8> InnerAddOps(
   3246         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
   3247     InnerAddOps.append(std::next(J),
   3248                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
   3249 
   3250     // Don't leave just a constant behind in a register if the constant could
   3251     // be folded into an immediate field.
   3252     if (InnerAddOps.size() == 1 &&
   3253         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3254                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
   3255       continue;
   3256 
   3257     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
   3258     if (InnerSum->isZero())
   3259       continue;
   3260     Formula F = Base;
   3261 
   3262     // Add the remaining pieces of the add back into the new formula.
   3263     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
   3264     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
   3265         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3266                                 InnerSumSC->getValue()->getZExtValue())) {
   3267       F.UnfoldedOffset =
   3268           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
   3269       if (IsScaledReg)
   3270         F.ScaledReg = nullptr;
   3271       else
   3272         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
   3273     } else if (IsScaledReg)
   3274       F.ScaledReg = InnerSum;
   3275     else
   3276       F.BaseRegs[Idx] = InnerSum;
   3277 
   3278     // Add J as its own register, or an unfolded immediate.
   3279     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
   3280     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
   3281         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3282                                 SC->getValue()->getZExtValue()))
   3283       F.UnfoldedOffset =
   3284           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
   3285     else
   3286       F.BaseRegs.push_back(*J);
   3287     // We may have changed the number of register in base regs, adjust the
   3288     // formula accordingly.
   3289     F.canonicalize();
   3290 
   3291     if (InsertFormula(LU, LUIdx, F))
   3292       // If that formula hadn't been seen before, recurse to find more like
   3293       // it.
   3294       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
   3295   }
   3296 }
   3297 
   3298 /// Split out subexpressions from adds and the bases of addrecs.
   3299 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
   3300                                          Formula Base, unsigned Depth) {
   3301   assert(Base.isCanonical() && "Input must be in the canonical form");
   3302   // Arbitrarily cap recursion to protect compile time.
   3303   if (Depth >= 3)
   3304     return;
   3305 
   3306   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3307     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
   3308 
   3309   if (Base.Scale == 1)
   3310     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
   3311                                /* Idx */ -1, /* IsScaledReg */ true);
   3312 }
   3313 
   3314 ///  Generate a formula consisting of all of the loop-dominating registers added
   3315 /// into a single register.
   3316 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
   3317                                        Formula Base) {
   3318   // This method is only interesting on a plurality of registers.
   3319   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
   3320     return;
   3321 
   3322   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
   3323   // processing the formula.
   3324   Base.unscale();
   3325   Formula F = Base;
   3326   F.BaseRegs.clear();
   3327   SmallVector<const SCEV *, 4> Ops;
   3328   for (const SCEV *BaseReg : Base.BaseRegs) {
   3329     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
   3330         !SE.hasComputableLoopEvolution(BaseReg, L))
   3331       Ops.push_back(BaseReg);
   3332     else
   3333       F.BaseRegs.push_back(BaseReg);
   3334   }
   3335   if (Ops.size() > 1) {
   3336     const SCEV *Sum = SE.getAddExpr(Ops);
   3337     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
   3338     // opportunity to fold something. For now, just ignore such cases
   3339     // rather than proceed with zero in a register.
   3340     if (!Sum->isZero()) {
   3341       F.BaseRegs.push_back(Sum);
   3342       F.canonicalize();
   3343       (void)InsertFormula(LU, LUIdx, F);
   3344     }
   3345   }
   3346 }
   3347 
   3348 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
   3349 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   3350                                               const Formula &Base, size_t Idx,
   3351                                               bool IsScaledReg) {
   3352   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3353   GlobalValue *GV = ExtractSymbol(G, SE);
   3354   if (G->isZero() || !GV)
   3355     return;
   3356   Formula F = Base;
   3357   F.BaseGV = GV;
   3358   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3359     return;
   3360   if (IsScaledReg)
   3361     F.ScaledReg = G;
   3362   else
   3363     F.BaseRegs[Idx] = G;
   3364   (void)InsertFormula(LU, LUIdx, F);
   3365 }
   3366 
   3367 /// Generate reuse formulae using symbolic offsets.
   3368 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
   3369                                           Formula Base) {
   3370   // We can't add a symbolic offset if the address already contains one.
   3371   if (Base.BaseGV) return;
   3372 
   3373   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3374     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
   3375   if (Base.Scale == 1)
   3376     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
   3377                                 /* IsScaledReg */ true);
   3378 }
   3379 
   3380 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
   3381 void LSRInstance::GenerateConstantOffsetsImpl(
   3382     LSRUse &LU, unsigned LUIdx, const Formula &Base,
   3383     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
   3384   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3385   for (int64_t Offset : Worklist) {
   3386     Formula F = Base;
   3387     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
   3388     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
   3389                    LU.AccessTy, F)) {
   3390       // Add the offset to the base register.
   3391       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
   3392       // If it cancelled out, drop the base register, otherwise update it.
   3393       if (NewG->isZero()) {
   3394         if (IsScaledReg) {
   3395           F.Scale = 0;
   3396           F.ScaledReg = nullptr;
   3397         } else
   3398           F.deleteBaseReg(F.BaseRegs[Idx]);
   3399         F.canonicalize();
   3400       } else if (IsScaledReg)
   3401         F.ScaledReg = NewG;
   3402       else
   3403         F.BaseRegs[Idx] = NewG;
   3404 
   3405       (void)InsertFormula(LU, LUIdx, F);
   3406     }
   3407   }
   3408 
   3409   int64_t Imm = ExtractImmediate(G, SE);
   3410   if (G->isZero() || Imm == 0)
   3411     return;
   3412   Formula F = Base;
   3413   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
   3414   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3415     return;
   3416   if (IsScaledReg)
   3417     F.ScaledReg = G;
   3418   else
   3419     F.BaseRegs[Idx] = G;
   3420   (void)InsertFormula(LU, LUIdx, F);
   3421 }
   3422 
   3423 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
   3424 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
   3425                                           Formula Base) {
   3426   // TODO: For now, just add the min and max offset, because it usually isn't
   3427   // worthwhile looking at everything inbetween.
   3428   SmallVector<int64_t, 2> Worklist;
   3429   Worklist.push_back(LU.MinOffset);
   3430   if (LU.MaxOffset != LU.MinOffset)
   3431     Worklist.push_back(LU.MaxOffset);
   3432 
   3433   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3434     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
   3435   if (Base.Scale == 1)
   3436     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
   3437                                 /* IsScaledReg */ true);
   3438 }
   3439 
   3440 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
   3441 /// == y -> x*c == y*c.
   3442 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
   3443                                          Formula Base) {
   3444   if (LU.Kind != LSRUse::ICmpZero) return;
   3445 
   3446   // Determine the integer type for the base formula.
   3447   Type *IntTy = Base.getType();
   3448   if (!IntTy) return;
   3449   if (SE.getTypeSizeInBits(IntTy) > 64) return;
   3450 
   3451   // Don't do this if there is more than one offset.
   3452   if (LU.MinOffset != LU.MaxOffset) return;
   3453 
   3454   assert(!Base.BaseGV && "ICmpZero use is not legal!");
   3455 
   3456   // Check each interesting stride.
   3457   for (int64_t Factor : Factors) {
   3458     // Check that the multiplication doesn't overflow.
   3459     if (Base.BaseOffset == INT64_MIN && Factor == -1)
   3460       continue;
   3461     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
   3462     if (NewBaseOffset / Factor != Base.BaseOffset)
   3463       continue;
   3464     // If the offset will be truncated at this use, check that it is in bounds.
   3465     if (!IntTy->isPointerTy() &&
   3466         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
   3467       continue;
   3468 
   3469     // Check that multiplying with the use offset doesn't overflow.
   3470     int64_t Offset = LU.MinOffset;
   3471     if (Offset == INT64_MIN && Factor == -1)
   3472       continue;
   3473     Offset = (uint64_t)Offset * Factor;
   3474     if (Offset / Factor != LU.MinOffset)
   3475       continue;
   3476     // If the offset will be truncated at this use, check that it is in bounds.
   3477     if (!IntTy->isPointerTy() &&
   3478         !ConstantInt::isValueValidForType(IntTy, Offset))
   3479       continue;
   3480 
   3481     Formula F = Base;
   3482     F.BaseOffset = NewBaseOffset;
   3483 
   3484     // Check that this scale is legal.
   3485     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
   3486       continue;
   3487 
   3488     // Compensate for the use having MinOffset built into it.
   3489     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
   3490 
   3491     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3492 
   3493     // Check that multiplying with each base register doesn't overflow.
   3494     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
   3495       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
   3496       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
   3497         goto next;
   3498     }
   3499 
   3500     // Check that multiplying with the scaled register doesn't overflow.
   3501     if (F.ScaledReg) {
   3502       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
   3503       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
   3504         continue;
   3505     }
   3506 
   3507     // Check that multiplying with the unfolded offset doesn't overflow.
   3508     if (F.UnfoldedOffset != 0) {
   3509       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
   3510         continue;
   3511       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
   3512       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
   3513         continue;
   3514       // If the offset will be truncated, check that it is in bounds.
   3515       if (!IntTy->isPointerTy() &&
   3516           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
   3517         continue;
   3518     }
   3519 
   3520     // If we make it here and it's legal, add it.
   3521     (void)InsertFormula(LU, LUIdx, F);
   3522   next:;
   3523   }
   3524 }
   3525 
   3526 /// Generate stride factor reuse formulae by making use of scaled-offset address
   3527 /// modes, for example.
   3528 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3529   // Determine the integer type for the base formula.
   3530   Type *IntTy = Base.getType();
   3531   if (!IntTy) return;
   3532 
   3533   // If this Formula already has a scaled register, we can't add another one.
   3534   // Try to unscale the formula to generate a better scale.
   3535   if (Base.Scale != 0 && !Base.unscale())
   3536     return;
   3537 
   3538   assert(Base.Scale == 0 && "unscale did not did its job!");
   3539 
   3540   // Check each interesting stride.
   3541   for (int64_t Factor : Factors) {
   3542     Base.Scale = Factor;
   3543     Base.HasBaseReg = Base.BaseRegs.size() > 1;
   3544     // Check whether this scale is going to be legal.
   3545     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3546                     Base)) {
   3547       // As a special-case, handle special out-of-loop Basic users specially.
   3548       // TODO: Reconsider this special case.
   3549       if (LU.Kind == LSRUse::Basic &&
   3550           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
   3551                      LU.AccessTy, Base) &&
   3552           LU.AllFixupsOutsideLoop)
   3553         LU.Kind = LSRUse::Special;
   3554       else
   3555         continue;
   3556     }
   3557     // For an ICmpZero, negating a solitary base register won't lead to
   3558     // new solutions.
   3559     if (LU.Kind == LSRUse::ICmpZero &&
   3560         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
   3561       continue;
   3562     // For each addrec base reg, apply the scale, if possible.
   3563     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3564       if (const SCEVAddRecExpr *AR =
   3565             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
   3566         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3567         if (FactorS->isZero())
   3568           continue;
   3569         // Divide out the factor, ignoring high bits, since we'll be
   3570         // scaling the value back up in the end.
   3571         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
   3572           // TODO: This could be optimized to avoid all the copying.
   3573           Formula F = Base;
   3574           F.ScaledReg = Quotient;
   3575           F.deleteBaseReg(F.BaseRegs[i]);
   3576           // The canonical representation of 1*reg is reg, which is already in
   3577           // Base. In that case, do not try to insert the formula, it will be
   3578           // rejected anyway.
   3579           if (F.Scale == 1 && F.BaseRegs.empty())
   3580             continue;
   3581           (void)InsertFormula(LU, LUIdx, F);
   3582         }
   3583       }
   3584   }
   3585 }
   3586 
   3587 /// Generate reuse formulae from different IV types.
   3588 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3589   // Don't bother truncating symbolic values.
   3590   if (Base.BaseGV) return;
   3591 
   3592   // Determine the integer type for the base formula.
   3593   Type *DstTy = Base.getType();
   3594   if (!DstTy) return;
   3595   DstTy = SE.getEffectiveSCEVType(DstTy);
   3596 
   3597   for (Type *SrcTy : Types) {
   3598     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
   3599       Formula F = Base;
   3600 
   3601       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
   3602       for (const SCEV *&BaseReg : F.BaseRegs)
   3603         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
   3604 
   3605       // TODO: This assumes we've done basic processing on all uses and
   3606       // have an idea what the register usage is.
   3607       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
   3608         continue;
   3609 
   3610       (void)InsertFormula(LU, LUIdx, F);
   3611     }
   3612   }
   3613 }
   3614 
   3615 namespace {
   3616 
   3617 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
   3618 /// modifications so that the search phase doesn't have to worry about the data
   3619 /// structures moving underneath it.
   3620 struct WorkItem {
   3621   size_t LUIdx;
   3622   int64_t Imm;
   3623   const SCEV *OrigReg;
   3624 
   3625   WorkItem(size_t LI, int64_t I, const SCEV *R)
   3626     : LUIdx(LI), Imm(I), OrigReg(R) {}
   3627 
   3628   void print(raw_ostream &OS) const;
   3629   void dump() const;
   3630 };
   3631 
   3632 }
   3633 
   3634 void WorkItem::print(raw_ostream &OS) const {
   3635   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
   3636      << " , add offset " << Imm;
   3637 }
   3638 
   3639 LLVM_DUMP_METHOD
   3640 void WorkItem::dump() const {
   3641   print(errs()); errs() << '\n';
   3642 }
   3643 
   3644 /// Look for registers which are a constant distance apart and try to form reuse
   3645 /// opportunities between them.
   3646 void LSRInstance::GenerateCrossUseConstantOffsets() {
   3647   // Group the registers by their value without any added constant offset.
   3648   typedef std::map<int64_t, const SCEV *> ImmMapTy;
   3649   DenseMap<const SCEV *, ImmMapTy> Map;
   3650   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
   3651   SmallVector<const SCEV *, 8> Sequence;
   3652   for (const SCEV *Use : RegUses) {
   3653     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
   3654     int64_t Imm = ExtractImmediate(Reg, SE);
   3655     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
   3656     if (Pair.second)
   3657       Sequence.push_back(Reg);
   3658     Pair.first->second.insert(std::make_pair(Imm, Use));
   3659     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
   3660   }
   3661 
   3662   // Now examine each set of registers with the same base value. Build up
   3663   // a list of work to do and do the work in a separate step so that we're
   3664   // not adding formulae and register counts while we're searching.
   3665   SmallVector<WorkItem, 32> WorkItems;
   3666   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
   3667   for (const SCEV *Reg : Sequence) {
   3668     const ImmMapTy &Imms = Map.find(Reg)->second;
   3669 
   3670     // It's not worthwhile looking for reuse if there's only one offset.
   3671     if (Imms.size() == 1)
   3672       continue;
   3673 
   3674     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
   3675           for (const auto &Entry : Imms)
   3676             dbgs() << ' ' << Entry.first;
   3677           dbgs() << '\n');
   3678 
   3679     // Examine each offset.
   3680     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3681          J != JE; ++J) {
   3682       const SCEV *OrigReg = J->second;
   3683 
   3684       int64_t JImm = J->first;
   3685       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
   3686 
   3687       if (!isa<SCEVConstant>(OrigReg) &&
   3688           UsedByIndicesMap[Reg].count() == 1) {
   3689         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
   3690         continue;
   3691       }
   3692 
   3693       // Conservatively examine offsets between this orig reg a few selected
   3694       // other orig regs.
   3695       ImmMapTy::const_iterator OtherImms[] = {
   3696         Imms.begin(), std::prev(Imms.end()),
   3697         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
   3698                          2)
   3699       };
   3700       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
   3701         ImmMapTy::const_iterator M = OtherImms[i];
   3702         if (M == J || M == JE) continue;
   3703 
   3704         // Compute the difference between the two.
   3705         int64_t Imm = (uint64_t)JImm - M->first;
   3706         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
   3707              LUIdx = UsedByIndices.find_next(LUIdx))
   3708           // Make a memo of this use, offset, and register tuple.
   3709           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
   3710             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
   3711       }
   3712     }
   3713   }
   3714 
   3715   Map.clear();
   3716   Sequence.clear();
   3717   UsedByIndicesMap.clear();
   3718   UniqueItems.clear();
   3719 
   3720   // Now iterate through the worklist and add new formulae.
   3721   for (const WorkItem &WI : WorkItems) {
   3722     size_t LUIdx = WI.LUIdx;
   3723     LSRUse &LU = Uses[LUIdx];
   3724     int64_t Imm = WI.Imm;
   3725     const SCEV *OrigReg = WI.OrigReg;
   3726 
   3727     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
   3728     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
   3729     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
   3730 
   3731     // TODO: Use a more targeted data structure.
   3732     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
   3733       Formula F = LU.Formulae[L];
   3734       // FIXME: The code for the scaled and unscaled registers looks
   3735       // very similar but slightly different. Investigate if they
   3736       // could be merged. That way, we would not have to unscale the
   3737       // Formula.
   3738       F.unscale();
   3739       // Use the immediate in the scaled register.
   3740       if (F.ScaledReg == OrigReg) {
   3741         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
   3742         // Don't create 50 + reg(-50).
   3743         if (F.referencesReg(SE.getSCEV(
   3744                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
   3745           continue;
   3746         Formula NewF = F;
   3747         NewF.BaseOffset = Offset;
   3748         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3749                         NewF))
   3750           continue;
   3751         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
   3752 
   3753         // If the new scale is a constant in a register, and adding the constant
   3754         // value to the immediate would produce a value closer to zero than the
   3755         // immediate itself, then the formula isn't worthwhile.
   3756         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
   3757           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
   3758               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
   3759                   .ule(std::abs(NewF.BaseOffset)))
   3760             continue;
   3761 
   3762         // OK, looks good.
   3763         NewF.canonicalize();
   3764         (void)InsertFormula(LU, LUIdx, NewF);
   3765       } else {
   3766         // Use the immediate in a base register.
   3767         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
   3768           const SCEV *BaseReg = F.BaseRegs[N];
   3769           if (BaseReg != OrigReg)
   3770             continue;
   3771           Formula NewF = F;
   3772           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
   3773           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
   3774                           LU.Kind, LU.AccessTy, NewF)) {
   3775             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
   3776               continue;
   3777             NewF = F;
   3778             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
   3779           }
   3780           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
   3781 
   3782           // If the new formula has a constant in a register, and adding the
   3783           // constant value to the immediate would produce a value closer to
   3784           // zero than the immediate itself, then the formula isn't worthwhile.
   3785           for (const SCEV *NewReg : NewF.BaseRegs)
   3786             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
   3787               if ((C->getAPInt() + NewF.BaseOffset)
   3788                       .abs()
   3789                       .slt(std::abs(NewF.BaseOffset)) &&
   3790                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
   3791                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
   3792                 goto skip_formula;
   3793 
   3794           // Ok, looks good.
   3795           NewF.canonicalize();
   3796           (void)InsertFormula(LU, LUIdx, NewF);
   3797           break;
   3798         skip_formula:;
   3799         }
   3800       }
   3801     }
   3802   }
   3803 }
   3804 
   3805 /// Generate formulae for each use.
   3806 void
   3807 LSRInstance::GenerateAllReuseFormulae() {
   3808   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
   3809   // queries are more precise.
   3810   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3811     LSRUse &LU = Uses[LUIdx];
   3812     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3813       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
   3814     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3815       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
   3816   }
   3817   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3818     LSRUse &LU = Uses[LUIdx];
   3819     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3820       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
   3821     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3822       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
   3823     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3824       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
   3825     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3826       GenerateScales(LU, LUIdx, LU.Formulae[i]);
   3827   }
   3828   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3829     LSRUse &LU = Uses[LUIdx];
   3830     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3831       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
   3832   }
   3833 
   3834   GenerateCrossUseConstantOffsets();
   3835 
   3836   DEBUG(dbgs() << "\n"
   3837                   "After generating reuse formulae:\n";
   3838         print_uses(dbgs()));
   3839 }
   3840 
   3841 /// If there are multiple formulae with the same set of registers used
   3842 /// by other uses, pick the best one and delete the others.
   3843 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
   3844   DenseSet<const SCEV *> VisitedRegs;
   3845   SmallPtrSet<const SCEV *, 16> Regs;
   3846   SmallPtrSet<const SCEV *, 16> LoserRegs;
   3847 #ifndef NDEBUG
   3848   bool ChangedFormulae = false;
   3849 #endif
   3850 
   3851   // Collect the best formula for each unique set of shared registers. This
   3852   // is reset for each use.
   3853   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
   3854     BestFormulaeTy;
   3855   BestFormulaeTy BestFormulae;
   3856 
   3857   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3858     LSRUse &LU = Uses[LUIdx];
   3859     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
   3860 
   3861     bool Any = false;
   3862     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
   3863          FIdx != NumForms; ++FIdx) {
   3864       Formula &F = LU.Formulae[FIdx];
   3865 
   3866       // Some formulas are instant losers. For example, they may depend on
   3867       // nonexistent AddRecs from other loops. These need to be filtered
   3868       // immediately, otherwise heuristics could choose them over others leading
   3869       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
   3870       // avoids the need to recompute this information across formulae using the
   3871       // same bad AddRec. Passing LoserRegs is also essential unless we remove
   3872       // the corresponding bad register from the Regs set.
   3873       Cost CostF;
   3874       Regs.clear();
   3875       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
   3876                         &LoserRegs);
   3877       if (CostF.isLoser()) {
   3878         // During initial formula generation, undesirable formulae are generated
   3879         // by uses within other loops that have some non-trivial address mode or
   3880         // use the postinc form of the IV. LSR needs to provide these formulae
   3881         // as the basis of rediscovering the desired formula that uses an AddRec
   3882         // corresponding to the existing phi. Once all formulae have been
   3883         // generated, these initial losers may be pruned.
   3884         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
   3885               dbgs() << "\n");
   3886       }
   3887       else {
   3888         SmallVector<const SCEV *, 4> Key;
   3889         for (const SCEV *Reg : F.BaseRegs) {
   3890           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
   3891             Key.push_back(Reg);
   3892         }
   3893         if (F.ScaledReg &&
   3894             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
   3895           Key.push_back(F.ScaledReg);
   3896         // Unstable sort by host order ok, because this is only used for
   3897         // uniquifying.
   3898         std::sort(Key.begin(), Key.end());
   3899 
   3900         std::pair<BestFormulaeTy::const_iterator, bool> P =
   3901           BestFormulae.insert(std::make_pair(Key, FIdx));
   3902         if (P.second)
   3903           continue;
   3904 
   3905         Formula &Best = LU.Formulae[P.first->second];
   3906 
   3907         Cost CostBest;
   3908         Regs.clear();
   3909         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
   3910                              DT, LU);
   3911         if (CostF < CostBest)
   3912           std::swap(F, Best);
   3913         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
   3914               dbgs() << "\n"
   3915                         "    in favor of formula "; Best.print(dbgs());
   3916               dbgs() << '\n');
   3917       }
   3918 #ifndef NDEBUG
   3919       ChangedFormulae = true;
   3920 #endif
   3921       LU.DeleteFormula(F);
   3922       --FIdx;
   3923       --NumForms;
   3924       Any = true;
   3925     }
   3926 
   3927     // Now that we've filtered out some formulae, recompute the Regs set.
   3928     if (Any)
   3929       LU.RecomputeRegs(LUIdx, RegUses);
   3930 
   3931     // Reset this to prepare for the next use.
   3932     BestFormulae.clear();
   3933   }
   3934 
   3935   DEBUG(if (ChangedFormulae) {
   3936           dbgs() << "\n"
   3937                     "After filtering out undesirable candidates:\n";
   3938           print_uses(dbgs());
   3939         });
   3940 }
   3941 
   3942 // This is a rough guess that seems to work fairly well.
   3943 static const size_t ComplexityLimit = UINT16_MAX;
   3944 
   3945 /// Estimate the worst-case number of solutions the solver might have to
   3946 /// consider. It almost never considers this many solutions because it prune the
   3947 /// search space, but the pruning isn't always sufficient.
   3948 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
   3949   size_t Power = 1;
   3950   for (const LSRUse &LU : Uses) {
   3951     size_t FSize = LU.Formulae.size();
   3952     if (FSize >= ComplexityLimit) {
   3953       Power = ComplexityLimit;
   3954       break;
   3955     }
   3956     Power *= FSize;
   3957     if (Power >= ComplexityLimit)
   3958       break;
   3959   }
   3960   return Power;
   3961 }
   3962 
   3963 /// When one formula uses a superset of the registers of another formula, it
   3964 /// won't help reduce register pressure (though it may not necessarily hurt
   3965 /// register pressure); remove it to simplify the system.
   3966 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
   3967   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3968     DEBUG(dbgs() << "The search space is too complex.\n");
   3969 
   3970     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
   3971                     "which use a superset of registers used by other "
   3972                     "formulae.\n");
   3973 
   3974     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3975       LSRUse &LU = Uses[LUIdx];
   3976       bool Any = false;
   3977       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   3978         Formula &F = LU.Formulae[i];
   3979         // Look for a formula with a constant or GV in a register. If the use
   3980         // also has a formula with that same value in an immediate field,
   3981         // delete the one that uses a register.
   3982         for (SmallVectorImpl<const SCEV *>::const_iterator
   3983              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
   3984           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
   3985             Formula NewF = F;
   3986             NewF.BaseOffset += C->getValue()->getSExtValue();
   3987             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   3988                                 (I - F.BaseRegs.begin()));
   3989             if (LU.HasFormulaWithSameRegs(NewF)) {
   3990               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   3991               LU.DeleteFormula(F);
   3992               --i;
   3993               --e;
   3994               Any = true;
   3995               break;
   3996             }
   3997           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
   3998             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
   3999               if (!F.BaseGV) {
   4000                 Formula NewF = F;
   4001                 NewF.BaseGV = GV;
   4002                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   4003                                     (I - F.BaseRegs.begin()));
   4004                 if (LU.HasFormulaWithSameRegs(NewF)) {
   4005                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   4006                         dbgs() << '\n');
   4007                   LU.DeleteFormula(F);
   4008                   --i;
   4009                   --e;
   4010                   Any = true;
   4011                   break;
   4012                 }
   4013               }
   4014           }
   4015         }
   4016       }
   4017       if (Any)
   4018         LU.RecomputeRegs(LUIdx, RegUses);
   4019     }
   4020 
   4021     DEBUG(dbgs() << "After pre-selection:\n";
   4022           print_uses(dbgs()));
   4023   }
   4024 }
   4025 
   4026 /// When there are many registers for expressions like A, A+1, A+2, etc.,
   4027 /// allocate a single register for them.
   4028 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
   4029   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
   4030     return;
   4031 
   4032   DEBUG(dbgs() << "The search space is too complex.\n"
   4033                   "Narrowing the search space by assuming that uses separated "
   4034                   "by a constant offset will use the same registers.\n");
   4035 
   4036   // This is especially useful for unrolled loops.
   4037 
   4038   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   4039     LSRUse &LU = Uses[LUIdx];
   4040     for (const Formula &F : LU.Formulae) {
   4041       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
   4042         continue;
   4043 
   4044       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
   4045       if (!LUThatHas)
   4046         continue;
   4047 
   4048       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
   4049                               LU.Kind, LU.AccessTy))
   4050         continue;
   4051 
   4052       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
   4053 
   4054       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
   4055 
   4056       // Update the relocs to reference the new use.
   4057       for (LSRFixup &Fixup : Fixups) {
   4058         if (Fixup.LUIdx == LUIdx) {
   4059           Fixup.LUIdx = LUThatHas - &Uses.front();
   4060           Fixup.Offset += F.BaseOffset;
   4061           // Add the new offset to LUThatHas' offset list.
   4062           if (LUThatHas->Offsets.back() != Fixup.Offset) {
   4063             LUThatHas->Offsets.push_back(Fixup.Offset);
   4064             if (Fixup.Offset > LUThatHas->MaxOffset)
   4065               LUThatHas->MaxOffset = Fixup.Offset;
   4066             if (Fixup.Offset < LUThatHas->MinOffset)
   4067               LUThatHas->MinOffset = Fixup.Offset;
   4068           }
   4069           DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
   4070         }
   4071         if (Fixup.LUIdx == NumUses-1)
   4072           Fixup.LUIdx = LUIdx;
   4073       }
   4074 
   4075       // Delete formulae from the new use which are no longer legal.
   4076       bool Any = false;
   4077       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
   4078         Formula &F = LUThatHas->Formulae[i];
   4079         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
   4080                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
   4081           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   4082                 dbgs() << '\n');
   4083           LUThatHas->DeleteFormula(F);
   4084           --i;
   4085           --e;
   4086           Any = true;
   4087         }
   4088       }
   4089 
   4090       if (Any)
   4091         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
   4092 
   4093       // Delete the old use.
   4094       DeleteUse(LU, LUIdx);
   4095       --LUIdx;
   4096       --NumUses;
   4097       break;
   4098     }
   4099   }
   4100 
   4101   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
   4102 }
   4103 
   4104 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
   4105 /// we've done more filtering, as it may be able to find more formulae to
   4106 /// eliminate.
   4107 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
   4108   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4109     DEBUG(dbgs() << "The search space is too complex.\n");
   4110 
   4111     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
   4112                     "undesirable dedicated registers.\n");
   4113 
   4114     FilterOutUndesirableDedicatedRegisters();
   4115 
   4116     DEBUG(dbgs() << "After pre-selection:\n";
   4117           print_uses(dbgs()));
   4118   }
   4119 }
   4120 
   4121 /// Pick a register which seems likely to be profitable, and then in any use
   4122 /// which has any reference to that register, delete all formulae which do not
   4123 /// reference that register.
   4124 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
   4125   // With all other options exhausted, loop until the system is simple
   4126   // enough to handle.
   4127   SmallPtrSet<const SCEV *, 4> Taken;
   4128   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4129     // Ok, we have too many of formulae on our hands to conveniently handle.
   4130     // Use a rough heuristic to thin out the list.
   4131     DEBUG(dbgs() << "The search space is too complex.\n");
   4132 
   4133     // Pick the register which is used by the most LSRUses, which is likely
   4134     // to be a good reuse register candidate.
   4135     const SCEV *Best = nullptr;
   4136     unsigned BestNum = 0;
   4137     for (const SCEV *Reg : RegUses) {
   4138       if (Taken.count(Reg))
   4139         continue;
   4140       if (!Best)
   4141         Best = Reg;
   4142       else {
   4143         unsigned Count = RegUses.getUsedByIndices(Reg).count();
   4144         if (Count > BestNum) {
   4145           Best = Reg;
   4146           BestNum = Count;
   4147         }
   4148       }
   4149     }
   4150 
   4151     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
   4152                  << " will yield profitable reuse.\n");
   4153     Taken.insert(Best);
   4154 
   4155     // In any use with formulae which references this register, delete formulae
   4156     // which don't reference it.
   4157     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   4158       LSRUse &LU = Uses[LUIdx];
   4159       if (!LU.Regs.count(Best)) continue;
   4160 
   4161       bool Any = false;
   4162       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   4163         Formula &F = LU.Formulae[i];
   4164         if (!F.referencesReg(Best)) {
   4165           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   4166           LU.DeleteFormula(F);
   4167           --e;
   4168           --i;
   4169           Any = true;
   4170           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
   4171           continue;
   4172         }
   4173       }
   4174 
   4175       if (Any)
   4176         LU.RecomputeRegs(LUIdx, RegUses);
   4177     }
   4178 
   4179     DEBUG(dbgs() << "After pre-selection:\n";
   4180           print_uses(dbgs()));
   4181   }
   4182 }
   4183 
   4184 /// If there are an extraordinary number of formulae to choose from, use some
   4185 /// rough heuristics to prune down the number of formulae. This keeps the main
   4186 /// solver from taking an extraordinary amount of time in some worst-case
   4187 /// scenarios.
   4188 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
   4189   NarrowSearchSpaceByDetectingSupersets();
   4190   NarrowSearchSpaceByCollapsingUnrolledCode();
   4191   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   4192   NarrowSearchSpaceByPickingWinnerRegs();
   4193 }
   4194 
   4195 /// This is the recursive solver.
   4196 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   4197                                Cost &SolutionCost,
   4198                                SmallVectorImpl<const Formula *> &Workspace,
   4199                                const Cost &CurCost,
   4200                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
   4201                                DenseSet<const SCEV *> &VisitedRegs) const {
   4202   // Some ideas:
   4203   //  - prune more:
   4204   //    - use more aggressive filtering
   4205   //    - sort the formula so that the most profitable solutions are found first
   4206   //    - sort the uses too
   4207   //  - search faster:
   4208   //    - don't compute a cost, and then compare. compare while computing a cost
   4209   //      and bail early.
   4210   //    - track register sets with SmallBitVector
   4211 
   4212   const LSRUse &LU = Uses[Workspace.size()];
   4213 
   4214   // If this use references any register that's already a part of the
   4215   // in-progress solution, consider it a requirement that a formula must
   4216   // reference that register in order to be considered. This prunes out
   4217   // unprofitable searching.
   4218   SmallSetVector<const SCEV *, 4> ReqRegs;
   4219   for (const SCEV *S : CurRegs)
   4220     if (LU.Regs.count(S))
   4221       ReqRegs.insert(S);
   4222 
   4223   SmallPtrSet<const SCEV *, 16> NewRegs;
   4224   Cost NewCost;
   4225   for (const Formula &F : LU.Formulae) {
   4226     // Ignore formulae which may not be ideal in terms of register reuse of
   4227     // ReqRegs.  The formula should use all required registers before
   4228     // introducing new ones.
   4229     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
   4230     for (const SCEV *Reg : ReqRegs) {
   4231       if ((F.ScaledReg && F.ScaledReg == Reg) ||
   4232           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
   4233           F.BaseRegs.end()) {
   4234         --NumReqRegsToFind;
   4235         if (NumReqRegsToFind == 0)
   4236           break;
   4237       }
   4238     }
   4239     if (NumReqRegsToFind != 0) {
   4240       // If none of the formulae satisfied the required registers, then we could
   4241       // clear ReqRegs and try again. Currently, we simply give up in this case.
   4242       continue;
   4243     }
   4244 
   4245     // Evaluate the cost of the current formula. If it's already worse than
   4246     // the current best, prune the search at that point.
   4247     NewCost = CurCost;
   4248     NewRegs = CurRegs;
   4249     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
   4250                         LU);
   4251     if (NewCost < SolutionCost) {
   4252       Workspace.push_back(&F);
   4253       if (Workspace.size() != Uses.size()) {
   4254         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
   4255                      NewRegs, VisitedRegs);
   4256         if (F.getNumRegs() == 1 && Workspace.size() == 1)
   4257           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
   4258       } else {
   4259         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
   4260               dbgs() << ".\n Regs:";
   4261               for (const SCEV *S : NewRegs)
   4262                 dbgs() << ' ' << *S;
   4263               dbgs() << '\n');
   4264 
   4265         SolutionCost = NewCost;
   4266         Solution = Workspace;
   4267       }
   4268       Workspace.pop_back();
   4269     }
   4270   }
   4271 }
   4272 
   4273 /// Choose one formula from each use. Return the results in the given Solution
   4274 /// vector.
   4275 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
   4276   SmallVector<const Formula *, 8> Workspace;
   4277   Cost SolutionCost;
   4278   SolutionCost.Lose();
   4279   Cost CurCost;
   4280   SmallPtrSet<const SCEV *, 16> CurRegs;
   4281   DenseSet<const SCEV *> VisitedRegs;
   4282   Workspace.reserve(Uses.size());
   4283 
   4284   // SolveRecurse does all the work.
   4285   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
   4286                CurRegs, VisitedRegs);
   4287   if (Solution.empty()) {
   4288     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
   4289     return;
   4290   }
   4291 
   4292   // Ok, we've now made all our decisions.
   4293   DEBUG(dbgs() << "\n"
   4294                   "The chosen solution requires "; SolutionCost.print(dbgs());
   4295         dbgs() << ":\n";
   4296         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
   4297           dbgs() << "  ";
   4298           Uses[i].print(dbgs());
   4299           dbgs() << "\n"
   4300                     "    ";
   4301           Solution[i]->print(dbgs());
   4302           dbgs() << '\n';
   4303         });
   4304 
   4305   assert(Solution.size() == Uses.size() && "Malformed solution!");
   4306 }
   4307 
   4308 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
   4309 /// we can go while still being dominated by the input positions. This helps
   4310 /// canonicalize the insert position, which encourages sharing.
   4311 BasicBlock::iterator
   4312 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
   4313                                  const SmallVectorImpl<Instruction *> &Inputs)
   4314                                                                          const {
   4315   Instruction *Tentative = &*IP;
   4316   for (;;) {
   4317     bool AllDominate = true;
   4318     Instruction *BetterPos = nullptr;
   4319     // Don't bother attempting to insert before a catchswitch, their basic block
   4320     // cannot have other non-PHI instructions.
   4321     if (isa<CatchSwitchInst>(Tentative))
   4322       return IP;
   4323 
   4324     for (Instruction *Inst : Inputs) {
   4325       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
   4326         AllDominate = false;
   4327         break;
   4328       }
   4329       // Attempt to find an insert position in the middle of the block,
   4330       // instead of at the end, so that it can be used for other expansions.
   4331       if (Tentative->getParent() == Inst->getParent() &&
   4332           (!BetterPos || !DT.dominates(Inst, BetterPos)))
   4333         BetterPos = &*std::next(BasicBlock::iterator(Inst));
   4334     }
   4335     if (!AllDominate)
   4336       break;
   4337     if (BetterPos)
   4338       IP = BetterPos->getIterator();
   4339     else
   4340       IP = Tentative->getIterator();
   4341 
   4342     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
   4343     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
   4344 
   4345     BasicBlock *IDom;
   4346     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
   4347       if (!Rung) return IP;
   4348       Rung = Rung->getIDom();
   4349       if (!Rung) return IP;
   4350       IDom = Rung->getBlock();
   4351 
   4352       // Don't climb into a loop though.
   4353       const Loop *IDomLoop = LI.getLoopFor(IDom);
   4354       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
   4355       if (IDomDepth <= IPLoopDepth &&
   4356           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
   4357         break;
   4358     }
   4359 
   4360     Tentative = IDom->getTerminator();
   4361   }
   4362 
   4363   return IP;
   4364 }
   4365 
   4366 /// Determine an input position which will be dominated by the operands and
   4367 /// which will dominate the result.
   4368 BasicBlock::iterator
   4369 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
   4370                                            const LSRFixup &LF,
   4371                                            const LSRUse &LU,
   4372                                            SCEVExpander &Rewriter) const {
   4373   // Collect some instructions which must be dominated by the
   4374   // expanding replacement. These must be dominated by any operands that
   4375   // will be required in the expansion.
   4376   SmallVector<Instruction *, 4> Inputs;
   4377   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
   4378     Inputs.push_back(I);
   4379   if (LU.Kind == LSRUse::ICmpZero)
   4380     if (Instruction *I =
   4381           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
   4382       Inputs.push_back(I);
   4383   if (LF.PostIncLoops.count(L)) {
   4384     if (LF.isUseFullyOutsideLoop(L))
   4385       Inputs.push_back(L->getLoopLatch()->getTerminator());
   4386     else
   4387       Inputs.push_back(IVIncInsertPos);
   4388   }
   4389   // The expansion must also be dominated by the increment positions of any
   4390   // loops it for which it is using post-inc mode.
   4391   for (const Loop *PIL : LF.PostIncLoops) {
   4392     if (PIL == L) continue;
   4393 
   4394     // Be dominated by the loop exit.
   4395     SmallVector<BasicBlock *, 4> ExitingBlocks;
   4396     PIL->getExitingBlocks(ExitingBlocks);
   4397     if (!ExitingBlocks.empty()) {
   4398       BasicBlock *BB = ExitingBlocks[0];
   4399       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
   4400         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
   4401       Inputs.push_back(BB->getTerminator());
   4402     }
   4403   }
   4404 
   4405   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
   4406          && !isa<DbgInfoIntrinsic>(LowestIP) &&
   4407          "Insertion point must be a normal instruction");
   4408 
   4409   // Then, climb up the immediate dominator tree as far as we can go while
   4410   // still being dominated by the input positions.
   4411   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
   4412 
   4413   // Don't insert instructions before PHI nodes.
   4414   while (isa<PHINode>(IP)) ++IP;
   4415 
   4416   // Ignore landingpad instructions.
   4417   while (IP->isEHPad()) ++IP;
   4418 
   4419   // Ignore debug intrinsics.
   4420   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
   4421 
   4422   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
   4423   // IP consistent across expansions and allows the previously inserted
   4424   // instructions to be reused by subsequent expansion.
   4425   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
   4426     ++IP;
   4427 
   4428   return IP;
   4429 }
   4430 
   4431 /// Emit instructions for the leading candidate expression for this LSRUse (this
   4432 /// is called "expanding").
   4433 Value *LSRInstance::Expand(const LSRFixup &LF,
   4434                            const Formula &F,
   4435                            BasicBlock::iterator IP,
   4436                            SCEVExpander &Rewriter,
   4437                            SmallVectorImpl<WeakVH> &DeadInsts) const {
   4438   const LSRUse &LU = Uses[LF.LUIdx];
   4439   if (LU.RigidFormula)
   4440     return LF.OperandValToReplace;
   4441 
   4442   // Determine an input position which will be dominated by the operands and
   4443   // which will dominate the result.
   4444   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
   4445 
   4446   // Inform the Rewriter if we have a post-increment use, so that it can
   4447   // perform an advantageous expansion.
   4448   Rewriter.setPostInc(LF.PostIncLoops);
   4449 
   4450   // This is the type that the user actually needs.
   4451   Type *OpTy = LF.OperandValToReplace->getType();
   4452   // This will be the type that we'll initially expand to.
   4453   Type *Ty = F.getType();
   4454   if (!Ty)
   4455     // No type known; just expand directly to the ultimate type.
   4456     Ty = OpTy;
   4457   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
   4458     // Expand directly to the ultimate type if it's the right size.
   4459     Ty = OpTy;
   4460   // This is the type to do integer arithmetic in.
   4461   Type *IntTy = SE.getEffectiveSCEVType(Ty);
   4462 
   4463   // Build up a list of operands to add together to form the full base.
   4464   SmallVector<const SCEV *, 8> Ops;
   4465 
   4466   // Expand the BaseRegs portion.
   4467   for (const SCEV *Reg : F.BaseRegs) {
   4468     assert(!Reg->isZero() && "Zero allocated in a base register!");
   4469 
   4470     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4471     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4472     Reg = TransformForPostIncUse(Denormalize, Reg,
   4473                                  LF.UserInst, LF.OperandValToReplace,
   4474                                  Loops, SE, DT);
   4475 
   4476     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP)));
   4477   }
   4478 
   4479   // Expand the ScaledReg portion.
   4480   Value *ICmpScaledV = nullptr;
   4481   if (F.Scale != 0) {
   4482     const SCEV *ScaledS = F.ScaledReg;
   4483 
   4484     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4485     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4486     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
   4487                                      LF.UserInst, LF.OperandValToReplace,
   4488                                      Loops, SE, DT);
   4489 
   4490     if (LU.Kind == LSRUse::ICmpZero) {
   4491       // Expand ScaleReg as if it was part of the base regs.
   4492       if (F.Scale == 1)
   4493         Ops.push_back(
   4494             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)));
   4495       else {
   4496         // An interesting way of "folding" with an icmp is to use a negated
   4497         // scale, which we'll implement by inserting it into the other operand
   4498         // of the icmp.
   4499         assert(F.Scale == -1 &&
   4500                "The only scale supported by ICmpZero uses is -1!");
   4501         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP);
   4502       }
   4503     } else {
   4504       // Otherwise just expand the scaled register and an explicit scale,
   4505       // which is expected to be matched as part of the address.
   4506 
   4507       // Flush the operand list to suppress SCEVExpander hoisting address modes.
   4508       // Unless the addressing mode will not be folded.
   4509       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
   4510           isAMCompletelyFolded(TTI, LU, F)) {
   4511         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
   4512         Ops.clear();
   4513         Ops.push_back(SE.getUnknown(FullV));
   4514       }
   4515       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP));
   4516       if (F.Scale != 1)
   4517         ScaledS =
   4518             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
   4519       Ops.push_back(ScaledS);
   4520     }
   4521   }
   4522 
   4523   // Expand the GV portion.
   4524   if (F.BaseGV) {
   4525     // Flush the operand list to suppress SCEVExpander hoisting.
   4526     if (!Ops.empty()) {
   4527       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
   4528       Ops.clear();
   4529       Ops.push_back(SE.getUnknown(FullV));
   4530     }
   4531     Ops.push_back(SE.getUnknown(F.BaseGV));
   4532   }
   4533 
   4534   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
   4535   // unfolded offsets. LSR assumes they both live next to their uses.
   4536   if (!Ops.empty()) {
   4537     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
   4538     Ops.clear();
   4539     Ops.push_back(SE.getUnknown(FullV));
   4540   }
   4541 
   4542   // Expand the immediate portion.
   4543   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
   4544   if (Offset != 0) {
   4545     if (LU.Kind == LSRUse::ICmpZero) {
   4546       // The other interesting way of "folding" with an ICmpZero is to use a
   4547       // negated immediate.
   4548       if (!ICmpScaledV)
   4549         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
   4550       else {
   4551         Ops.push_back(SE.getUnknown(ICmpScaledV));
   4552         ICmpScaledV = ConstantInt::get(IntTy, Offset);
   4553       }
   4554     } else {
   4555       // Just add the immediate values. These again are expected to be matched
   4556       // as part of the address.
   4557       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
   4558     }
   4559   }
   4560 
   4561   // Expand the unfolded offset portion.
   4562   int64_t UnfoldedOffset = F.UnfoldedOffset;
   4563   if (UnfoldedOffset != 0) {
   4564     // Just add the immediate values.
   4565     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
   4566                                                        UnfoldedOffset)));
   4567   }
   4568 
   4569   // Emit instructions summing all the operands.
   4570   const SCEV *FullS = Ops.empty() ?
   4571                       SE.getConstant(IntTy, 0) :
   4572                       SE.getAddExpr(Ops);
   4573   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP);
   4574 
   4575   // We're done expanding now, so reset the rewriter.
   4576   Rewriter.clearPostInc();
   4577 
   4578   // An ICmpZero Formula represents an ICmp which we're handling as a
   4579   // comparison against zero. Now that we've expanded an expression for that
   4580   // form, update the ICmp's other operand.
   4581   if (LU.Kind == LSRUse::ICmpZero) {
   4582     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
   4583     DeadInsts.emplace_back(CI->getOperand(1));
   4584     assert(!F.BaseGV && "ICmp does not support folding a global value and "
   4585                            "a scale at the same time!");
   4586     if (F.Scale == -1) {
   4587       if (ICmpScaledV->getType() != OpTy) {
   4588         Instruction *Cast =
   4589           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
   4590                                                    OpTy, false),
   4591                            ICmpScaledV, OpTy, "tmp", CI);
   4592         ICmpScaledV = Cast;
   4593       }
   4594       CI->setOperand(1, ICmpScaledV);
   4595     } else {
   4596       // A scale of 1 means that the scale has been expanded as part of the
   4597       // base regs.
   4598       assert((F.Scale == 0 || F.Scale == 1) &&
   4599              "ICmp does not support folding a global value and "
   4600              "a scale at the same time!");
   4601       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
   4602                                            -(uint64_t)Offset);
   4603       if (C->getType() != OpTy)
   4604         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   4605                                                           OpTy, false),
   4606                                   C, OpTy);
   4607 
   4608       CI->setOperand(1, C);
   4609     }
   4610   }
   4611 
   4612   return FullV;
   4613 }
   4614 
   4615 /// Helper for Rewrite. PHI nodes are special because the use of their operands
   4616 /// effectively happens in their predecessor blocks, so the expression may need
   4617 /// to be expanded in multiple places.
   4618 void LSRInstance::RewriteForPHI(PHINode *PN,
   4619                                 const LSRFixup &LF,
   4620                                 const Formula &F,
   4621                                 SCEVExpander &Rewriter,
   4622                                 SmallVectorImpl<WeakVH> &DeadInsts) const {
   4623   DenseMap<BasicBlock *, Value *> Inserted;
   4624   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   4625     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
   4626       BasicBlock *BB = PN->getIncomingBlock(i);
   4627 
   4628       // If this is a critical edge, split the edge so that we do not insert
   4629       // the code on all predecessor/successor paths.  We do this unless this
   4630       // is the canonical backedge for this loop, which complicates post-inc
   4631       // users.
   4632       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
   4633           !isa<IndirectBrInst>(BB->getTerminator())) {
   4634         BasicBlock *Parent = PN->getParent();
   4635         Loop *PNLoop = LI.getLoopFor(Parent);
   4636         if (!PNLoop || Parent != PNLoop->getHeader()) {
   4637           // Split the critical edge.
   4638           BasicBlock *NewBB = nullptr;
   4639           if (!Parent->isLandingPad()) {
   4640             NewBB = SplitCriticalEdge(BB, Parent,
   4641                                       CriticalEdgeSplittingOptions(&DT, &LI)
   4642                                           .setMergeIdenticalEdges()
   4643                                           .setDontDeleteUselessPHIs());
   4644           } else {
   4645             SmallVector<BasicBlock*, 2> NewBBs;
   4646             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
   4647             NewBB = NewBBs[0];
   4648           }
   4649           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
   4650           // phi predecessors are identical. The simple thing to do is skip
   4651           // splitting in this case rather than complicate the API.
   4652           if (NewBB) {
   4653             // If PN is outside of the loop and BB is in the loop, we want to
   4654             // move the block to be immediately before the PHI block, not
   4655             // immediately after BB.
   4656             if (L->contains(BB) && !L->contains(PN))
   4657               NewBB->moveBefore(PN->getParent());
   4658 
   4659             // Splitting the edge can reduce the number of PHI entries we have.
   4660             e = PN->getNumIncomingValues();
   4661             BB = NewBB;
   4662             i = PN->getBasicBlockIndex(BB);
   4663           }
   4664         }
   4665       }
   4666 
   4667       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
   4668         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
   4669       if (!Pair.second)
   4670         PN->setIncomingValue(i, Pair.first->second);
   4671       else {
   4672         Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(),
   4673                               Rewriter, DeadInsts);
   4674 
   4675         // If this is reuse-by-noop-cast, insert the noop cast.
   4676         Type *OpTy = LF.OperandValToReplace->getType();
   4677         if (FullV->getType() != OpTy)
   4678           FullV =
   4679             CastInst::Create(CastInst::getCastOpcode(FullV, false,
   4680                                                      OpTy, false),
   4681                              FullV, LF.OperandValToReplace->getType(),
   4682                              "tmp", BB->getTerminator());
   4683 
   4684         PN->setIncomingValue(i, FullV);
   4685         Pair.first->second = FullV;
   4686       }
   4687     }
   4688 }
   4689 
   4690 /// Emit instructions for the leading candidate expression for this LSRUse (this
   4691 /// is called "expanding"), and update the UserInst to reference the newly
   4692 /// expanded value.
   4693 void LSRInstance::Rewrite(const LSRFixup &LF,
   4694                           const Formula &F,
   4695                           SCEVExpander &Rewriter,
   4696                           SmallVectorImpl<WeakVH> &DeadInsts) const {
   4697   // First, find an insertion point that dominates UserInst. For PHI nodes,
   4698   // find the nearest block which dominates all the relevant uses.
   4699   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
   4700     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts);
   4701   } else {
   4702     Value *FullV =
   4703         Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
   4704 
   4705     // If this is reuse-by-noop-cast, insert the noop cast.
   4706     Type *OpTy = LF.OperandValToReplace->getType();
   4707     if (FullV->getType() != OpTy) {
   4708       Instruction *Cast =
   4709         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
   4710                          FullV, OpTy, "tmp", LF.UserInst);
   4711       FullV = Cast;
   4712     }
   4713 
   4714     // Update the user. ICmpZero is handled specially here (for now) because
   4715     // Expand may have updated one of the operands of the icmp already, and
   4716     // its new value may happen to be equal to LF.OperandValToReplace, in
   4717     // which case doing replaceUsesOfWith leads to replacing both operands
   4718     // with the same value. TODO: Reorganize this.
   4719     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
   4720       LF.UserInst->setOperand(0, FullV);
   4721     else
   4722       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
   4723   }
   4724 
   4725   DeadInsts.emplace_back(LF.OperandValToReplace);
   4726 }
   4727 
   4728 /// Rewrite all the fixup locations with new values, following the chosen
   4729 /// solution.
   4730 void LSRInstance::ImplementSolution(
   4731     const SmallVectorImpl<const Formula *> &Solution) {
   4732   // Keep track of instructions we may have made dead, so that
   4733   // we can remove them after we are done working.
   4734   SmallVector<WeakVH, 16> DeadInsts;
   4735 
   4736   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
   4737                         "lsr");
   4738 #ifndef NDEBUG
   4739   Rewriter.setDebugType(DEBUG_TYPE);
   4740 #endif
   4741   Rewriter.disableCanonicalMode();
   4742   Rewriter.enableLSRMode();
   4743   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
   4744 
   4745   // Mark phi nodes that terminate chains so the expander tries to reuse them.
   4746   for (const IVChain &Chain : IVChainVec) {
   4747     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
   4748       Rewriter.setChainedPhi(PN);
   4749   }
   4750 
   4751   // Expand the new value definitions and update the users.
   4752   for (const LSRFixup &Fixup : Fixups) {
   4753     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts);
   4754 
   4755     Changed = true;
   4756   }
   4757 
   4758   for (const IVChain &Chain : IVChainVec) {
   4759     GenerateIVChain(Chain, Rewriter, DeadInsts);
   4760     Changed = true;
   4761   }
   4762   // Clean up after ourselves. This must be done before deleting any
   4763   // instructions.
   4764   Rewriter.clear();
   4765 
   4766   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
   4767 }
   4768 
   4769 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
   4770                          DominatorTree &DT, LoopInfo &LI,
   4771                          const TargetTransformInfo &TTI)
   4772     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
   4773       IVIncInsertPos(nullptr) {
   4774   // If LoopSimplify form is not available, stay out of trouble.
   4775   if (!L->isLoopSimplifyForm())
   4776     return;
   4777 
   4778   // If there's no interesting work to be done, bail early.
   4779   if (IU.empty()) return;
   4780 
   4781   // If there's too much analysis to be done, bail early. We won't be able to
   4782   // model the problem anyway.
   4783   unsigned NumUsers = 0;
   4784   for (const IVStrideUse &U : IU) {
   4785     if (++NumUsers > MaxIVUsers) {
   4786       (void)U;
   4787       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
   4788       return;
   4789     }
   4790     // Bail out if we have a PHI on an EHPad that gets a value from a
   4791     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
   4792     // no good place to stick any instructions.
   4793     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
   4794        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
   4795        if (isa<FuncletPadInst>(FirstNonPHI) ||
   4796            isa<CatchSwitchInst>(FirstNonPHI))
   4797          for (BasicBlock *PredBB : PN->blocks())
   4798            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
   4799              return;
   4800     }
   4801   }
   4802 
   4803 #ifndef NDEBUG
   4804   // All dominating loops must have preheaders, or SCEVExpander may not be able
   4805   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
   4806   //
   4807   // IVUsers analysis should only create users that are dominated by simple loop
   4808   // headers. Since this loop should dominate all of its users, its user list
   4809   // should be empty if this loop itself is not within a simple loop nest.
   4810   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
   4811        Rung; Rung = Rung->getIDom()) {
   4812     BasicBlock *BB = Rung->getBlock();
   4813     const Loop *DomLoop = LI.getLoopFor(BB);
   4814     if (DomLoop && DomLoop->getHeader() == BB) {
   4815       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
   4816     }
   4817   }
   4818 #endif // DEBUG
   4819 
   4820   DEBUG(dbgs() << "\nLSR on loop ";
   4821         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
   4822         dbgs() << ":\n");
   4823 
   4824   // First, perform some low-level loop optimizations.
   4825   OptimizeShadowIV();
   4826   OptimizeLoopTermCond();
   4827 
   4828   // If loop preparation eliminates all interesting IV users, bail.
   4829   if (IU.empty()) return;
   4830 
   4831   // Skip nested loops until we can model them better with formulae.
   4832   if (!L->empty()) {
   4833     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
   4834     return;
   4835   }
   4836 
   4837   // Start collecting data and preparing for the solver.
   4838   CollectChains();
   4839   CollectInterestingTypesAndFactors();
   4840   CollectFixupsAndInitialFormulae();
   4841   CollectLoopInvariantFixupsAndFormulae();
   4842 
   4843   assert(!Uses.empty() && "IVUsers reported at least one use");
   4844   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
   4845         print_uses(dbgs()));
   4846 
   4847   // Now use the reuse data to generate a bunch of interesting ways
   4848   // to formulate the values needed for the uses.
   4849   GenerateAllReuseFormulae();
   4850 
   4851   FilterOutUndesirableDedicatedRegisters();
   4852   NarrowSearchSpaceUsingHeuristics();
   4853 
   4854   SmallVector<const Formula *, 8> Solution;
   4855   Solve(Solution);
   4856 
   4857   // Release memory that is no longer needed.
   4858   Factors.clear();
   4859   Types.clear();
   4860   RegUses.clear();
   4861 
   4862   if (Solution.empty())
   4863     return;
   4864 
   4865 #ifndef NDEBUG
   4866   // Formulae should be legal.
   4867   for (const LSRUse &LU : Uses) {
   4868     for (const Formula &F : LU.Formulae)
   4869       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   4870                         F) && "Illegal formula generated!");
   4871   };
   4872 #endif
   4873 
   4874   // Now that we've decided what we want, make it so.
   4875   ImplementSolution(Solution);
   4876 }
   4877 
   4878 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
   4879   if (Factors.empty() && Types.empty()) return;
   4880 
   4881   OS << "LSR has identified the following interesting factors and types: ";
   4882   bool First = true;
   4883 
   4884   for (int64_t Factor : Factors) {
   4885     if (!First) OS << ", ";
   4886     First = false;
   4887     OS << '*' << Factor;
   4888   }
   4889 
   4890   for (Type *Ty : Types) {
   4891     if (!First) OS << ", ";
   4892     First = false;
   4893     OS << '(' << *Ty << ')';
   4894   }
   4895   OS << '\n';
   4896 }
   4897 
   4898 void LSRInstance::print_fixups(raw_ostream &OS) const {
   4899   OS << "LSR is examining the following fixup sites:\n";
   4900   for (const LSRFixup &LF : Fixups) {
   4901     dbgs() << "  ";
   4902     LF.print(OS);
   4903     OS << '\n';
   4904   }
   4905 }
   4906 
   4907 void LSRInstance::print_uses(raw_ostream &OS) const {
   4908   OS << "LSR is examining the following uses:\n";
   4909   for (const LSRUse &LU : Uses) {
   4910     dbgs() << "  ";
   4911     LU.print(OS);
   4912     OS << '\n';
   4913     for (const Formula &F : LU.Formulae) {
   4914       OS << "    ";
   4915       F.print(OS);
   4916       OS << '\n';
   4917     }
   4918   }
   4919 }
   4920 
   4921 void LSRInstance::print(raw_ostream &OS) const {
   4922   print_factors_and_types(OS);
   4923   print_fixups(OS);
   4924   print_uses(OS);
   4925 }
   4926 
   4927 LLVM_DUMP_METHOD
   4928 void LSRInstance::dump() const {
   4929   print(errs()); errs() << '\n';
   4930 }
   4931 
   4932 namespace {
   4933 
   4934 class LoopStrengthReduce : public LoopPass {
   4935 public:
   4936   static char ID; // Pass ID, replacement for typeid
   4937   LoopStrengthReduce();
   4938 
   4939 private:
   4940   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
   4941   void getAnalysisUsage(AnalysisUsage &AU) const override;
   4942 };
   4943 
   4944 }
   4945 
   4946 char LoopStrengthReduce::ID = 0;
   4947 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
   4948                 "Loop Strength Reduction", false, false)
   4949 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
   4950 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   4951 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
   4952 INITIALIZE_PASS_DEPENDENCY(IVUsers)
   4953 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
   4954 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   4955 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
   4956                 "Loop Strength Reduction", false, false)
   4957 
   4958 
   4959 Pass *llvm::createLoopStrengthReducePass() {
   4960   return new LoopStrengthReduce();
   4961 }
   4962 
   4963 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
   4964   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
   4965 }
   4966 
   4967 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
   4968   // We split critical edges, so we change the CFG.  However, we do update
   4969   // many analyses if they are around.
   4970   AU.addPreservedID(LoopSimplifyID);
   4971 
   4972   AU.addRequired<LoopInfoWrapperPass>();
   4973   AU.addPreserved<LoopInfoWrapperPass>();
   4974   AU.addRequiredID(LoopSimplifyID);
   4975   AU.addRequired<DominatorTreeWrapperPass>();
   4976   AU.addPreserved<DominatorTreeWrapperPass>();
   4977   AU.addRequired<ScalarEvolutionWrapperPass>();
   4978   AU.addPreserved<ScalarEvolutionWrapperPass>();
   4979   // Requiring LoopSimplify a second time here prevents IVUsers from running
   4980   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
   4981   AU.addRequiredID(LoopSimplifyID);
   4982   AU.addRequired<IVUsers>();
   4983   AU.addPreserved<IVUsers>();
   4984   AU.addRequired<TargetTransformInfoWrapperPass>();
   4985 }
   4986 
   4987 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
   4988   if (skipLoop(L))
   4989     return false;
   4990 
   4991   auto &IU = getAnalysis<IVUsers>();
   4992   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
   4993   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   4994   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   4995   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
   4996       *L->getHeader()->getParent());
   4997   bool Changed = false;
   4998 
   4999   // Run the main LSR transformation.
   5000   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
   5001 
   5002   // Remove any extra phis created by processing inner loops.
   5003   Changed |= DeleteDeadPHIs(L->getHeader());
   5004   if (EnablePhiElim && L->isLoopSimplifyForm()) {
   5005     SmallVector<WeakVH, 16> DeadInsts;
   5006     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
   5007     SCEVExpander Rewriter(getAnalysis<ScalarEvolutionWrapperPass>().getSE(), DL,
   5008                           "lsr");
   5009 #ifndef NDEBUG
   5010     Rewriter.setDebugType(DEBUG_TYPE);
   5011 #endif
   5012     unsigned numFolded = Rewriter.replaceCongruentIVs(
   5013         L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
   5014         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
   5015             *L->getHeader()->getParent()));
   5016     if (numFolded) {
   5017       Changed = true;
   5018       DeleteTriviallyDeadInstructions(DeadInsts);
   5019       DeleteDeadPHIs(L->getHeader());
   5020     }
   5021   }
   5022   return Changed;
   5023 }
   5024