Home | History | Annotate | Download | only in radeonsi
      1 /*
      2  * Copyright 2012 Advanced Micro Devices, Inc.
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * on the rights to use, copy, modify, merge, publish, distribute, sub
      8  * license, and/or sell copies of the Software, and to permit persons to whom
      9  * the Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
     19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *	Tom Stellard <thomas.stellard (at) amd.com>
     25  *	Michel Dnzer <michel.daenzer (at) amd.com>
     26  *      Christian Knig <christian.koenig (at) amd.com>
     27  */
     28 
     29 #include "gallivm/lp_bld_const.h"
     30 #include "gallivm/lp_bld_gather.h"
     31 #include "gallivm/lp_bld_intr.h"
     32 #include "gallivm/lp_bld_logic.h"
     33 #include "gallivm/lp_bld_arit.h"
     34 #include "gallivm/lp_bld_flow.h"
     35 #include "gallivm/lp_bld_misc.h"
     36 #include "radeon/radeon_elf_util.h"
     37 #include "util/u_memory.h"
     38 #include "util/u_string.h"
     39 #include "tgsi/tgsi_build.h"
     40 #include "tgsi/tgsi_util.h"
     41 #include "tgsi/tgsi_dump.h"
     42 
     43 #include "ac_llvm_util.h"
     44 #include "si_shader_internal.h"
     45 #include "si_pipe.h"
     46 #include "sid.h"
     47 
     48 
     49 static const char *scratch_rsrc_dword0_symbol =
     50 	"SCRATCH_RSRC_DWORD0";
     51 
     52 static const char *scratch_rsrc_dword1_symbol =
     53 	"SCRATCH_RSRC_DWORD1";
     54 
     55 struct si_shader_output_values
     56 {
     57 	LLVMValueRef values[4];
     58 	unsigned semantic_name;
     59 	unsigned semantic_index;
     60 	ubyte vertex_stream[4];
     61 };
     62 
     63 static void si_init_shader_ctx(struct si_shader_context *ctx,
     64 			       struct si_screen *sscreen,
     65 			       struct si_shader *shader,
     66 			       LLVMTargetMachineRef tm);
     67 
     68 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
     69 				 struct lp_build_tgsi_context *bld_base,
     70 				 struct lp_build_emit_data *emit_data);
     71 
     72 static void si_dump_shader_key(unsigned shader, struct si_shader_key *key,
     73 			       FILE *f);
     74 
     75 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
     76 					union si_shader_part_key *key);
     77 static void si_build_vs_epilog_function(struct si_shader_context *ctx,
     78 					union si_shader_part_key *key);
     79 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
     80 					 union si_shader_part_key *key);
     81 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
     82 					union si_shader_part_key *key);
     83 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
     84 					union si_shader_part_key *key);
     85 
     86 /* Ideally pass the sample mask input to the PS epilog as v13, which
     87  * is its usual location, so that the shader doesn't have to add v_mov.
     88  */
     89 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 13
     90 
     91 /* The VS location of the PrimitiveID input is the same in the epilog,
     92  * so that the main shader part doesn't have to move it.
     93  */
     94 #define VS_EPILOG_PRIMID_LOC 2
     95 
     96 enum {
     97 	CONST_ADDR_SPACE = 2,
     98 	LOCAL_ADDR_SPACE = 3,
     99 };
    100 
    101 #define SENDMSG_GS 2
    102 #define SENDMSG_GS_DONE 3
    103 
    104 #define SENDMSG_GS_OP_NOP      (0 << 4)
    105 #define SENDMSG_GS_OP_CUT      (1 << 4)
    106 #define SENDMSG_GS_OP_EMIT     (2 << 4)
    107 #define SENDMSG_GS_OP_EMIT_CUT (3 << 4)
    108 
    109 /**
    110  * Returns a unique index for a semantic name and index. The index must be
    111  * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
    112  * calculated.
    113  */
    114 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index)
    115 {
    116 	switch (semantic_name) {
    117 	case TGSI_SEMANTIC_POSITION:
    118 		return 0;
    119 	case TGSI_SEMANTIC_PSIZE:
    120 		return 1;
    121 	case TGSI_SEMANTIC_CLIPDIST:
    122 		assert(index <= 1);
    123 		return 2 + index;
    124 	case TGSI_SEMANTIC_GENERIC:
    125 		if (index <= 63-4)
    126 			return 4 + index;
    127 
    128 		assert(!"invalid generic index");
    129 		return 0;
    130 
    131 	/* patch indices are completely separate and thus start from 0 */
    132 	case TGSI_SEMANTIC_TESSOUTER:
    133 		return 0;
    134 	case TGSI_SEMANTIC_TESSINNER:
    135 		return 1;
    136 	case TGSI_SEMANTIC_PATCH:
    137 		return 2 + index;
    138 
    139 	default:
    140 		assert(!"invalid semantic name");
    141 		return 0;
    142 	}
    143 }
    144 
    145 unsigned si_shader_io_get_unique_index2(unsigned name, unsigned index)
    146 {
    147 	switch (name) {
    148 	case TGSI_SEMANTIC_FOG:
    149 		return 0;
    150 	case TGSI_SEMANTIC_LAYER:
    151 		return 1;
    152 	case TGSI_SEMANTIC_VIEWPORT_INDEX:
    153 		return 2;
    154 	case TGSI_SEMANTIC_PRIMID:
    155 		return 3;
    156 	case TGSI_SEMANTIC_COLOR: /* these alias */
    157 	case TGSI_SEMANTIC_BCOLOR:
    158 		return 4 + index;
    159 	case TGSI_SEMANTIC_TEXCOORD:
    160 		return 6 + index;
    161 	default:
    162 		assert(!"invalid semantic name");
    163 		return 0;
    164 	}
    165 }
    166 
    167 /**
    168  * Get the value of a shader input parameter and extract a bitfield.
    169  */
    170 static LLVMValueRef unpack_param(struct si_shader_context *ctx,
    171 				 unsigned param, unsigned rshift,
    172 				 unsigned bitwidth)
    173 {
    174 	struct gallivm_state *gallivm = &ctx->gallivm;
    175 	LLVMValueRef value = LLVMGetParam(ctx->main_fn,
    176 					  param);
    177 
    178 	if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
    179 		value = bitcast(&ctx->bld_base,
    180 				TGSI_TYPE_UNSIGNED, value);
    181 
    182 	if (rshift)
    183 		value = LLVMBuildLShr(gallivm->builder, value,
    184 				      lp_build_const_int32(gallivm, rshift), "");
    185 
    186 	if (rshift + bitwidth < 32) {
    187 		unsigned mask = (1 << bitwidth) - 1;
    188 		value = LLVMBuildAnd(gallivm->builder, value,
    189 				     lp_build_const_int32(gallivm, mask), "");
    190 	}
    191 
    192 	return value;
    193 }
    194 
    195 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
    196 {
    197 	switch (ctx->type) {
    198 	case PIPE_SHADER_TESS_CTRL:
    199 		return unpack_param(ctx, SI_PARAM_REL_IDS, 0, 8);
    200 
    201 	case PIPE_SHADER_TESS_EVAL:
    202 		return LLVMGetParam(ctx->main_fn,
    203 				    ctx->param_tes_rel_patch_id);
    204 
    205 	default:
    206 		assert(0);
    207 		return NULL;
    208 	}
    209 }
    210 
    211 /* Tessellation shaders pass outputs to the next shader using LDS.
    212  *
    213  * LS outputs = TCS inputs
    214  * TCS outputs = TES inputs
    215  *
    216  * The LDS layout is:
    217  * - TCS inputs for patch 0
    218  * - TCS inputs for patch 1
    219  * - TCS inputs for patch 2		= get_tcs_in_current_patch_offset (if RelPatchID==2)
    220  * - ...
    221  * - TCS outputs for patch 0            = get_tcs_out_patch0_offset
    222  * - Per-patch TCS outputs for patch 0  = get_tcs_out_patch0_patch_data_offset
    223  * - TCS outputs for patch 1
    224  * - Per-patch TCS outputs for patch 1
    225  * - TCS outputs for patch 2            = get_tcs_out_current_patch_offset (if RelPatchID==2)
    226  * - Per-patch TCS outputs for patch 2  = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
    227  * - ...
    228  *
    229  * All three shaders VS(LS), TCS, TES share the same LDS space.
    230  */
    231 
    232 static LLVMValueRef
    233 get_tcs_in_patch_stride(struct si_shader_context *ctx)
    234 {
    235 	if (ctx->type == PIPE_SHADER_VERTEX)
    236 		return unpack_param(ctx, SI_PARAM_LS_OUT_LAYOUT, 0, 13);
    237 	else if (ctx->type == PIPE_SHADER_TESS_CTRL)
    238 		return unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 0, 13);
    239 	else {
    240 		assert(0);
    241 		return NULL;
    242 	}
    243 }
    244 
    245 static LLVMValueRef
    246 get_tcs_out_patch_stride(struct si_shader_context *ctx)
    247 {
    248 	return unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 0, 13);
    249 }
    250 
    251 static LLVMValueRef
    252 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
    253 {
    254 	return lp_build_mul_imm(&ctx->bld_base.uint_bld,
    255 				unpack_param(ctx,
    256 					     SI_PARAM_TCS_OUT_OFFSETS,
    257 					     0, 16),
    258 				4);
    259 }
    260 
    261 static LLVMValueRef
    262 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
    263 {
    264 	return lp_build_mul_imm(&ctx->bld_base.uint_bld,
    265 				unpack_param(ctx,
    266 					     SI_PARAM_TCS_OUT_OFFSETS,
    267 					     16, 16),
    268 				4);
    269 }
    270 
    271 static LLVMValueRef
    272 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
    273 {
    274 	struct gallivm_state *gallivm = &ctx->gallivm;
    275 	LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
    276 	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
    277 
    278 	return LLVMBuildMul(gallivm->builder, patch_stride, rel_patch_id, "");
    279 }
    280 
    281 static LLVMValueRef
    282 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
    283 {
    284 	struct gallivm_state *gallivm = &ctx->gallivm;
    285 	LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
    286 	LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
    287 	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
    288 
    289 	return LLVMBuildAdd(gallivm->builder, patch0_offset,
    290 			    LLVMBuildMul(gallivm->builder, patch_stride,
    291 					 rel_patch_id, ""),
    292 			    "");
    293 }
    294 
    295 static LLVMValueRef
    296 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
    297 {
    298 	struct gallivm_state *gallivm = &ctx->gallivm;
    299 	LLVMValueRef patch0_patch_data_offset =
    300 		get_tcs_out_patch0_patch_data_offset(ctx);
    301 	LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
    302 	LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
    303 
    304 	return LLVMBuildAdd(gallivm->builder, patch0_patch_data_offset,
    305 			    LLVMBuildMul(gallivm->builder, patch_stride,
    306 					 rel_patch_id, ""),
    307 			    "");
    308 }
    309 
    310 static LLVMValueRef build_gep0(struct si_shader_context *ctx,
    311 			       LLVMValueRef base_ptr, LLVMValueRef index)
    312 {
    313 	LLVMValueRef indices[2] = {
    314 		LLVMConstInt(ctx->i32, 0, 0),
    315 		index,
    316 	};
    317 	return LLVMBuildGEP(ctx->gallivm.builder, base_ptr,
    318 			    indices, 2, "");
    319 }
    320 
    321 static void build_indexed_store(struct si_shader_context *ctx,
    322 				LLVMValueRef base_ptr, LLVMValueRef index,
    323 				LLVMValueRef value)
    324 {
    325 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
    326 	struct gallivm_state *gallivm = bld_base->base.gallivm;
    327 
    328 	LLVMBuildStore(gallivm->builder, value,
    329 		       build_gep0(ctx, base_ptr, index));
    330 }
    331 
    332 /**
    333  * Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
    334  * It's equivalent to doing a load from &base_ptr[index].
    335  *
    336  * \param base_ptr  Where the array starts.
    337  * \param index     The element index into the array.
    338  * \param uniform   Whether the base_ptr and index can be assumed to be
    339  *                  dynamically uniform
    340  */
    341 static LLVMValueRef build_indexed_load(struct si_shader_context *ctx,
    342 				       LLVMValueRef base_ptr, LLVMValueRef index,
    343 				       bool uniform)
    344 {
    345 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
    346 	struct gallivm_state *gallivm = bld_base->base.gallivm;
    347 	LLVMValueRef pointer;
    348 
    349 	pointer = build_gep0(ctx, base_ptr, index);
    350 	if (uniform)
    351 		LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
    352 	return LLVMBuildLoad(gallivm->builder, pointer, "");
    353 }
    354 
    355 /**
    356  * Do a load from &base_ptr[index], but also add a flag that it's loading
    357  * a constant from a dynamically uniform index.
    358  */
    359 static LLVMValueRef build_indexed_load_const(
    360 	struct si_shader_context *ctx,
    361 	LLVMValueRef base_ptr, LLVMValueRef index)
    362 {
    363 	LLVMValueRef result = build_indexed_load(ctx, base_ptr, index, true);
    364 	LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
    365 	return result;
    366 }
    367 
    368 static LLVMValueRef get_instance_index_for_fetch(
    369 	struct si_shader_context *radeon_bld,
    370 	unsigned param_start_instance, unsigned divisor)
    371 {
    372 	struct si_shader_context *ctx =
    373 		si_shader_context(&radeon_bld->bld_base);
    374 	struct gallivm_state *gallivm = radeon_bld->bld_base.base.gallivm;
    375 
    376 	LLVMValueRef result = LLVMGetParam(radeon_bld->main_fn,
    377 					   ctx->param_instance_id);
    378 
    379 	/* The division must be done before START_INSTANCE is added. */
    380 	if (divisor > 1)
    381 		result = LLVMBuildUDiv(gallivm->builder, result,
    382 				lp_build_const_int32(gallivm, divisor), "");
    383 
    384 	return LLVMBuildAdd(gallivm->builder, result,
    385 			    LLVMGetParam(radeon_bld->main_fn, param_start_instance), "");
    386 }
    387 
    388 static void declare_input_vs(
    389 	struct si_shader_context *ctx,
    390 	unsigned input_index,
    391 	const struct tgsi_full_declaration *decl,
    392 	LLVMValueRef out[4])
    393 {
    394 	struct lp_build_context *base = &ctx->bld_base.base;
    395 	struct gallivm_state *gallivm = base->gallivm;
    396 
    397 	unsigned chan;
    398 	unsigned fix_fetch;
    399 
    400 	LLVMValueRef t_list_ptr;
    401 	LLVMValueRef t_offset;
    402 	LLVMValueRef t_list;
    403 	LLVMValueRef attribute_offset;
    404 	LLVMValueRef buffer_index;
    405 	LLVMValueRef args[3];
    406 	LLVMValueRef input;
    407 
    408 	/* Load the T list */
    409 	t_list_ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_VERTEX_BUFFERS);
    410 
    411 	t_offset = lp_build_const_int32(gallivm, input_index);
    412 
    413 	t_list = build_indexed_load_const(ctx, t_list_ptr, t_offset);
    414 
    415 	/* Build the attribute offset */
    416 	attribute_offset = lp_build_const_int32(gallivm, 0);
    417 
    418 	buffer_index = LLVMGetParam(ctx->main_fn,
    419 				    ctx->param_vertex_index0 +
    420 				    input_index);
    421 
    422 	args[0] = t_list;
    423 	args[1] = attribute_offset;
    424 	args[2] = buffer_index;
    425 	input = lp_build_intrinsic(gallivm->builder,
    426 		"llvm.SI.vs.load.input", ctx->v4f32, args, 3,
    427 		LP_FUNC_ATTR_READNONE);
    428 
    429 	/* Break up the vec4 into individual components */
    430 	for (chan = 0; chan < 4; chan++) {
    431 		LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
    432 		out[chan] = LLVMBuildExtractElement(gallivm->builder,
    433 						    input, llvm_chan, "");
    434 	}
    435 
    436 	fix_fetch = (ctx->shader->key.mono.vs.fix_fetch >> (4 * input_index)) & 0xf;
    437 
    438 	switch (fix_fetch) {
    439 	case SI_FIX_FETCH_A2_SNORM:
    440 	case SI_FIX_FETCH_A2_SSCALED:
    441 	case SI_FIX_FETCH_A2_SINT: {
    442 		/* The hardware returns an unsigned value; convert it to a
    443 		 * signed one.
    444 		 */
    445 		LLVMValueRef tmp = out[3];
    446 		LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
    447 
    448 		/* First, recover the sign-extended signed integer value. */
    449 		if (fix_fetch == SI_FIX_FETCH_A2_SSCALED)
    450 			tmp = LLVMBuildFPToUI(gallivm->builder, tmp, ctx->i32, "");
    451 		else
    452 			tmp = LLVMBuildBitCast(gallivm->builder, tmp, ctx->i32, "");
    453 
    454 		/* For the integer-like cases, do a natural sign extension.
    455 		 *
    456 		 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
    457 		 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
    458 		 * exponent.
    459 		 */
    460 		tmp = LLVMBuildShl(gallivm->builder, tmp,
    461 				   fix_fetch == SI_FIX_FETCH_A2_SNORM ?
    462 				   LLVMConstInt(ctx->i32, 7, 0) : c30, "");
    463 		tmp = LLVMBuildAShr(gallivm->builder, tmp, c30, "");
    464 
    465 		/* Convert back to the right type. */
    466 		if (fix_fetch == SI_FIX_FETCH_A2_SNORM) {
    467 			LLVMValueRef clamp;
    468 			LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
    469 			tmp = LLVMBuildSIToFP(gallivm->builder, tmp, ctx->f32, "");
    470 			clamp = LLVMBuildFCmp(gallivm->builder, LLVMRealULT, tmp, neg_one, "");
    471 			tmp = LLVMBuildSelect(gallivm->builder, clamp, neg_one, tmp, "");
    472 		} else if (fix_fetch == SI_FIX_FETCH_A2_SSCALED) {
    473 			tmp = LLVMBuildSIToFP(gallivm->builder, tmp, ctx->f32, "");
    474 		}
    475 
    476 		out[3] = tmp;
    477 		break;
    478 	}
    479 	case SI_FIX_FETCH_RGBA_32_UNORM:
    480 	case SI_FIX_FETCH_RGBX_32_UNORM:
    481 		for (chan = 0; chan < 4; chan++) {
    482 			out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
    483 						     ctx->i32, "");
    484 			out[chan] = LLVMBuildUIToFP(gallivm->builder,
    485 						    out[chan], ctx->f32, "");
    486 			out[chan] = LLVMBuildFMul(gallivm->builder, out[chan],
    487 						  LLVMConstReal(ctx->f32, 1.0 / UINT_MAX), "");
    488 		}
    489 		/* RGBX UINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
    490 		if (fix_fetch == SI_FIX_FETCH_RGBX_32_UNORM)
    491 			out[3] = LLVMConstReal(ctx->f32, 1);
    492 		break;
    493 	case SI_FIX_FETCH_RGBA_32_SNORM:
    494 	case SI_FIX_FETCH_RGBX_32_SNORM:
    495 	case SI_FIX_FETCH_RGBA_32_FIXED:
    496 	case SI_FIX_FETCH_RGBX_32_FIXED: {
    497 		double scale;
    498 		if (fix_fetch >= SI_FIX_FETCH_RGBA_32_FIXED)
    499 			scale = 1.0 / 0x10000;
    500 		else
    501 			scale = 1.0 / INT_MAX;
    502 
    503 		for (chan = 0; chan < 4; chan++) {
    504 			out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
    505 						     ctx->i32, "");
    506 			out[chan] = LLVMBuildSIToFP(gallivm->builder,
    507 						    out[chan], ctx->f32, "");
    508 			out[chan] = LLVMBuildFMul(gallivm->builder, out[chan],
    509 						  LLVMConstReal(ctx->f32, scale), "");
    510 		}
    511 		/* RGBX SINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
    512 		if (fix_fetch == SI_FIX_FETCH_RGBX_32_SNORM ||
    513 		    fix_fetch == SI_FIX_FETCH_RGBX_32_FIXED)
    514 			out[3] = LLVMConstReal(ctx->f32, 1);
    515 		break;
    516 	}
    517 	case SI_FIX_FETCH_RGBA_32_USCALED:
    518 		for (chan = 0; chan < 4; chan++) {
    519 			out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
    520 						     ctx->i32, "");
    521 			out[chan] = LLVMBuildUIToFP(gallivm->builder,
    522 						    out[chan], ctx->f32, "");
    523 		}
    524 		break;
    525 	case SI_FIX_FETCH_RGBA_32_SSCALED:
    526 		for (chan = 0; chan < 4; chan++) {
    527 			out[chan] = LLVMBuildBitCast(gallivm->builder, out[chan],
    528 						     ctx->i32, "");
    529 			out[chan] = LLVMBuildSIToFP(gallivm->builder,
    530 						    out[chan], ctx->f32, "");
    531 		}
    532 		break;
    533 	}
    534 }
    535 
    536 static LLVMValueRef get_primitive_id(struct lp_build_tgsi_context *bld_base,
    537 				     unsigned swizzle)
    538 {
    539 	struct si_shader_context *ctx = si_shader_context(bld_base);
    540 
    541 	if (swizzle > 0)
    542 		return bld_base->uint_bld.zero;
    543 
    544 	switch (ctx->type) {
    545 	case PIPE_SHADER_VERTEX:
    546 		return LLVMGetParam(ctx->main_fn,
    547 				    ctx->param_vs_prim_id);
    548 	case PIPE_SHADER_TESS_CTRL:
    549 		return LLVMGetParam(ctx->main_fn,
    550 				    SI_PARAM_PATCH_ID);
    551 	case PIPE_SHADER_TESS_EVAL:
    552 		return LLVMGetParam(ctx->main_fn,
    553 				    ctx->param_tes_patch_id);
    554 	case PIPE_SHADER_GEOMETRY:
    555 		return LLVMGetParam(ctx->main_fn,
    556 				    SI_PARAM_PRIMITIVE_ID);
    557 	default:
    558 		assert(0);
    559 		return bld_base->uint_bld.zero;
    560 	}
    561 }
    562 
    563 /**
    564  * Return the value of tgsi_ind_register for indexing.
    565  * This is the indirect index with the constant offset added to it.
    566  */
    567 static LLVMValueRef get_indirect_index(struct si_shader_context *ctx,
    568 				       const struct tgsi_ind_register *ind,
    569 				       int rel_index)
    570 {
    571 	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
    572 	LLVMValueRef result;
    573 
    574 	result = ctx->addrs[ind->Index][ind->Swizzle];
    575 	result = LLVMBuildLoad(gallivm->builder, result, "");
    576 	result = LLVMBuildAdd(gallivm->builder, result,
    577 			      lp_build_const_int32(gallivm, rel_index), "");
    578 	return result;
    579 }
    580 
    581 /**
    582  * Like get_indirect_index, but restricts the return value to a (possibly
    583  * undefined) value inside [0..num).
    584  */
    585 static LLVMValueRef get_bounded_indirect_index(struct si_shader_context *ctx,
    586 					       const struct tgsi_ind_register *ind,
    587 					       int rel_index, unsigned num)
    588 {
    589 	LLVMValueRef result = get_indirect_index(ctx, ind, rel_index);
    590 
    591 	/* LLVM 3.8: If indirect resource indexing is used:
    592 	 * - SI & CIK hang
    593 	 * - VI crashes
    594 	 */
    595 	if (HAVE_LLVM <= 0x0308)
    596 		return LLVMGetUndef(ctx->i32);
    597 
    598 	return si_llvm_bound_index(ctx, result, num);
    599 }
    600 
    601 
    602 /**
    603  * Calculate a dword address given an input or output register and a stride.
    604  */
    605 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
    606 				   const struct tgsi_full_dst_register *dst,
    607 				   const struct tgsi_full_src_register *src,
    608 				   LLVMValueRef vertex_dw_stride,
    609 				   LLVMValueRef base_addr)
    610 {
    611 	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
    612 	struct tgsi_shader_info *info = &ctx->shader->selector->info;
    613 	ubyte *name, *index, *array_first;
    614 	int first, param;
    615 	struct tgsi_full_dst_register reg;
    616 
    617 	/* Set the register description. The address computation is the same
    618 	 * for sources and destinations. */
    619 	if (src) {
    620 		reg.Register.File = src->Register.File;
    621 		reg.Register.Index = src->Register.Index;
    622 		reg.Register.Indirect = src->Register.Indirect;
    623 		reg.Register.Dimension = src->Register.Dimension;
    624 		reg.Indirect = src->Indirect;
    625 		reg.Dimension = src->Dimension;
    626 		reg.DimIndirect = src->DimIndirect;
    627 	} else
    628 		reg = *dst;
    629 
    630 	/* If the register is 2-dimensional (e.g. an array of vertices
    631 	 * in a primitive), calculate the base address of the vertex. */
    632 	if (reg.Register.Dimension) {
    633 		LLVMValueRef index;
    634 
    635 		if (reg.Dimension.Indirect)
    636 			index = get_indirect_index(ctx, &reg.DimIndirect,
    637 						   reg.Dimension.Index);
    638 		else
    639 			index = lp_build_const_int32(gallivm, reg.Dimension.Index);
    640 
    641 		base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
    642 					 LLVMBuildMul(gallivm->builder, index,
    643 						      vertex_dw_stride, ""), "");
    644 	}
    645 
    646 	/* Get information about the register. */
    647 	if (reg.Register.File == TGSI_FILE_INPUT) {
    648 		name = info->input_semantic_name;
    649 		index = info->input_semantic_index;
    650 		array_first = info->input_array_first;
    651 	} else if (reg.Register.File == TGSI_FILE_OUTPUT) {
    652 		name = info->output_semantic_name;
    653 		index = info->output_semantic_index;
    654 		array_first = info->output_array_first;
    655 	} else {
    656 		assert(0);
    657 		return NULL;
    658 	}
    659 
    660 	if (reg.Register.Indirect) {
    661 		/* Add the relative address of the element. */
    662 		LLVMValueRef ind_index;
    663 
    664 		if (reg.Indirect.ArrayID)
    665 			first = array_first[reg.Indirect.ArrayID];
    666 		else
    667 			first = reg.Register.Index;
    668 
    669 		ind_index = get_indirect_index(ctx, &reg.Indirect,
    670 					   reg.Register.Index - first);
    671 
    672 		base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
    673 				    LLVMBuildMul(gallivm->builder, ind_index,
    674 						 lp_build_const_int32(gallivm, 4), ""), "");
    675 
    676 		param = si_shader_io_get_unique_index(name[first], index[first]);
    677 	} else {
    678 		param = si_shader_io_get_unique_index(name[reg.Register.Index],
    679 						      index[reg.Register.Index]);
    680 	}
    681 
    682 	/* Add the base address of the element. */
    683 	return LLVMBuildAdd(gallivm->builder, base_addr,
    684 			    lp_build_const_int32(gallivm, param * 4), "");
    685 }
    686 
    687 /* The offchip buffer layout for TCS->TES is
    688  *
    689  * - attribute 0 of patch 0 vertex 0
    690  * - attribute 0 of patch 0 vertex 1
    691  * - attribute 0 of patch 0 vertex 2
    692  *   ...
    693  * - attribute 0 of patch 1 vertex 0
    694  * - attribute 0 of patch 1 vertex 1
    695  *   ...
    696  * - attribute 1 of patch 0 vertex 0
    697  * - attribute 1 of patch 0 vertex 1
    698  *   ...
    699  * - per patch attribute 0 of patch 0
    700  * - per patch attribute 0 of patch 1
    701  *   ...
    702  *
    703  * Note that every attribute has 4 components.
    704  */
    705 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
    706                                                LLVMValueRef vertex_index,
    707                                                LLVMValueRef param_index)
    708 {
    709 	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
    710 	LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
    711 	LLVMValueRef param_stride, constant16;
    712 
    713 	vertices_per_patch = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 9, 6);
    714 	num_patches = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 0, 9);
    715 	total_vertices = LLVMBuildMul(gallivm->builder, vertices_per_patch,
    716 	                              num_patches, "");
    717 
    718 	constant16 = lp_build_const_int32(gallivm, 16);
    719 	if (vertex_index) {
    720 		base_addr = LLVMBuildMul(gallivm->builder, get_rel_patch_id(ctx),
    721 		                         vertices_per_patch, "");
    722 
    723 		base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
    724 		                         vertex_index, "");
    725 
    726 		param_stride = total_vertices;
    727 	} else {
    728 		base_addr = get_rel_patch_id(ctx);
    729 		param_stride = num_patches;
    730 	}
    731 
    732 	base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
    733 	                         LLVMBuildMul(gallivm->builder, param_index,
    734 	                                      param_stride, ""), "");
    735 
    736 	base_addr = LLVMBuildMul(gallivm->builder, base_addr, constant16, "");
    737 
    738 	if (!vertex_index) {
    739 		LLVMValueRef patch_data_offset =
    740 		           unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 16, 16);
    741 
    742 		base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
    743 		                         patch_data_offset, "");
    744 	}
    745 	return base_addr;
    746 }
    747 
    748 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
    749                                        struct si_shader_context *ctx,
    750                                        const struct tgsi_full_dst_register *dst,
    751                                        const struct tgsi_full_src_register *src)
    752 {
    753 	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
    754 	struct tgsi_shader_info *info = &ctx->shader->selector->info;
    755 	ubyte *name, *index, *array_first;
    756 	struct tgsi_full_src_register reg;
    757 	LLVMValueRef vertex_index = NULL;
    758 	LLVMValueRef param_index = NULL;
    759 	unsigned param_index_base, param_base;
    760 
    761 	reg = src ? *src : tgsi_full_src_register_from_dst(dst);
    762 
    763 	if (reg.Register.Dimension) {
    764 
    765 		if (reg.Dimension.Indirect)
    766 			vertex_index = get_indirect_index(ctx, &reg.DimIndirect,
    767 			                                  reg.Dimension.Index);
    768 		else
    769 			vertex_index = lp_build_const_int32(gallivm,
    770 			                                    reg.Dimension.Index);
    771 	}
    772 
    773 	/* Get information about the register. */
    774 	if (reg.Register.File == TGSI_FILE_INPUT) {
    775 		name = info->input_semantic_name;
    776 		index = info->input_semantic_index;
    777 		array_first = info->input_array_first;
    778 	} else if (reg.Register.File == TGSI_FILE_OUTPUT) {
    779 		name = info->output_semantic_name;
    780 		index = info->output_semantic_index;
    781 		array_first = info->output_array_first;
    782 	} else {
    783 		assert(0);
    784 		return NULL;
    785 	}
    786 
    787 	if (reg.Register.Indirect) {
    788 		if (reg.Indirect.ArrayID)
    789 			param_base = array_first[reg.Indirect.ArrayID];
    790 		else
    791 			param_base = reg.Register.Index;
    792 
    793 		param_index = get_indirect_index(ctx, &reg.Indirect,
    794 		                                 reg.Register.Index - param_base);
    795 
    796 	} else {
    797 		param_base = reg.Register.Index;
    798 		param_index = lp_build_const_int32(gallivm, 0);
    799 	}
    800 
    801 	param_index_base = si_shader_io_get_unique_index(name[param_base],
    802 	                                                 index[param_base]);
    803 
    804 	param_index = LLVMBuildAdd(gallivm->builder, param_index,
    805 	                           lp_build_const_int32(gallivm, param_index_base),
    806 	                           "");
    807 
    808 	return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
    809 }
    810 
    811 /* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
    812  * The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
    813  * or v4i32 (num_channels=3,4). */
    814 static void build_tbuffer_store(struct si_shader_context *ctx,
    815 				LLVMValueRef rsrc,
    816 				LLVMValueRef vdata,
    817 				unsigned num_channels,
    818 				LLVMValueRef vaddr,
    819 				LLVMValueRef soffset,
    820 				unsigned inst_offset,
    821 				unsigned dfmt,
    822 				unsigned nfmt,
    823 				unsigned offen,
    824 				unsigned idxen,
    825 				unsigned glc,
    826 				unsigned slc,
    827 				unsigned tfe)
    828 {
    829 	struct gallivm_state *gallivm = &ctx->gallivm;
    830 	LLVMValueRef args[] = {
    831 		rsrc,
    832 		vdata,
    833 		LLVMConstInt(ctx->i32, num_channels, 0),
    834 		vaddr,
    835 		soffset,
    836 		LLVMConstInt(ctx->i32, inst_offset, 0),
    837 		LLVMConstInt(ctx->i32, dfmt, 0),
    838 		LLVMConstInt(ctx->i32, nfmt, 0),
    839 		LLVMConstInt(ctx->i32, offen, 0),
    840 		LLVMConstInt(ctx->i32, idxen, 0),
    841 		LLVMConstInt(ctx->i32, glc, 0),
    842 		LLVMConstInt(ctx->i32, slc, 0),
    843 		LLVMConstInt(ctx->i32, tfe, 0)
    844 	};
    845 
    846 	/* The instruction offset field has 12 bits */
    847 	assert(offen || inst_offset < (1 << 12));
    848 
    849 	/* The intrinsic is overloaded, we need to add a type suffix for overloading to work. */
    850 	unsigned func = CLAMP(num_channels, 1, 3) - 1;
    851 	const char *types[] = {"i32", "v2i32", "v4i32"};
    852 	char name[256];
    853 	snprintf(name, sizeof(name), "llvm.SI.tbuffer.store.%s", types[func]);
    854 
    855 	lp_build_intrinsic(gallivm->builder, name, ctx->voidt,
    856 			   args, ARRAY_SIZE(args), 0);
    857 }
    858 
    859 static void build_tbuffer_store_dwords(struct si_shader_context *ctx,
    860 				     LLVMValueRef rsrc,
    861 				     LLVMValueRef vdata,
    862 				     unsigned num_channels,
    863 				     LLVMValueRef vaddr,
    864 				     LLVMValueRef soffset,
    865 				     unsigned inst_offset)
    866 {
    867 	static unsigned dfmt[] = {
    868 		V_008F0C_BUF_DATA_FORMAT_32,
    869 		V_008F0C_BUF_DATA_FORMAT_32_32,
    870 		V_008F0C_BUF_DATA_FORMAT_32_32_32,
    871 		V_008F0C_BUF_DATA_FORMAT_32_32_32_32
    872 	};
    873 	assert(num_channels >= 1 && num_channels <= 4);
    874 
    875 	build_tbuffer_store(ctx, rsrc, vdata, num_channels, vaddr, soffset,
    876 			    inst_offset, dfmt[num_channels-1],
    877 			    V_008F0C_BUF_NUM_FORMAT_UINT, 1, 0, 1, 1, 0);
    878 }
    879 
    880 static LLVMValueRef build_buffer_load(struct si_shader_context *ctx,
    881                                       LLVMValueRef rsrc,
    882                                       int num_channels,
    883                                       LLVMValueRef vindex,
    884                                       LLVMValueRef voffset,
    885                                       LLVMValueRef soffset,
    886                                       unsigned inst_offset,
    887                                       unsigned glc,
    888                                       unsigned slc)
    889 {
    890 	struct gallivm_state *gallivm = &ctx->gallivm;
    891 	unsigned func = CLAMP(num_channels, 1, 3) - 1;
    892 
    893 	if (HAVE_LLVM >= 0x309) {
    894 		LLVMValueRef args[] = {
    895 			LLVMBuildBitCast(gallivm->builder, rsrc, ctx->v4i32, ""),
    896 			vindex ? vindex : LLVMConstInt(ctx->i32, 0, 0),
    897 			LLVMConstInt(ctx->i32, inst_offset, 0),
    898 			LLVMConstInt(ctx->i1, glc, 0),
    899 			LLVMConstInt(ctx->i1, slc, 0)
    900 		};
    901 
    902 		LLVMTypeRef types[] = {ctx->f32, LLVMVectorType(ctx->f32, 2),
    903 		                       ctx->v4f32};
    904 		const char *type_names[] = {"f32", "v2f32", "v4f32"};
    905 		char name[256];
    906 
    907 		if (voffset) {
    908 			args[2] = LLVMBuildAdd(gallivm->builder, args[2], voffset,
    909 			                       "");
    910 		}
    911 
    912 		if (soffset) {
    913 			args[2] = LLVMBuildAdd(gallivm->builder, args[2], soffset,
    914 			                       "");
    915 		}
    916 
    917 		snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.%s",
    918 		         type_names[func]);
    919 
    920 		return lp_build_intrinsic(gallivm->builder, name, types[func], args,
    921 		                          ARRAY_SIZE(args), LP_FUNC_ATTR_READONLY);
    922 	} else {
    923 		LLVMValueRef args[] = {
    924 			LLVMBuildBitCast(gallivm->builder, rsrc, ctx->v16i8, ""),
    925 			voffset ? voffset : vindex,
    926 			soffset,
    927 			LLVMConstInt(ctx->i32, inst_offset, 0),
    928 			LLVMConstInt(ctx->i32, voffset ? 1 : 0, 0), // offen
    929 			LLVMConstInt(ctx->i32, vindex ? 1 : 0, 0), //idxen
    930 			LLVMConstInt(ctx->i32, glc, 0),
    931 			LLVMConstInt(ctx->i32, slc, 0),
    932 			LLVMConstInt(ctx->i32, 0, 0), // TFE
    933 		};
    934 
    935 		LLVMTypeRef types[] = {ctx->i32, LLVMVectorType(ctx->i32, 2),
    936 		                       ctx->v4i32};
    937 		const char *type_names[] = {"i32", "v2i32", "v4i32"};
    938 		const char *arg_type = "i32";
    939 		char name[256];
    940 
    941 		if (voffset && vindex) {
    942 			LLVMValueRef vaddr[] = {vindex, voffset};
    943 
    944 			arg_type = "v2i32";
    945 			args[1] = lp_build_gather_values(gallivm, vaddr, 2);
    946 		}
    947 
    948 		snprintf(name, sizeof(name), "llvm.SI.buffer.load.dword.%s.%s",
    949 		         type_names[func], arg_type);
    950 
    951 		return lp_build_intrinsic(gallivm->builder, name, types[func], args,
    952 		                          ARRAY_SIZE(args), LP_FUNC_ATTR_READONLY);
    953 	}
    954 }
    955 
    956 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
    957                                 enum tgsi_opcode_type type, unsigned swizzle,
    958                                 LLVMValueRef buffer, LLVMValueRef offset,
    959                                 LLVMValueRef base)
    960 {
    961 	struct si_shader_context *ctx = si_shader_context(bld_base);
    962 	struct gallivm_state *gallivm = bld_base->base.gallivm;
    963 	LLVMValueRef value, value2;
    964 	LLVMTypeRef llvm_type = tgsi2llvmtype(bld_base, type);
    965 	LLVMTypeRef vec_type = LLVMVectorType(llvm_type, 4);
    966 
    967 	if (swizzle == ~0) {
    968 		value = build_buffer_load(ctx, buffer, 4, NULL, base, offset,
    969 		                          0, 1, 0);
    970 
    971 		return LLVMBuildBitCast(gallivm->builder, value, vec_type, "");
    972 	}
    973 
    974 	if (!tgsi_type_is_64bit(type)) {
    975 		value = build_buffer_load(ctx, buffer, 4, NULL, base, offset,
    976 		                          0, 1, 0);
    977 
    978 		value = LLVMBuildBitCast(gallivm->builder, value, vec_type, "");
    979 		return LLVMBuildExtractElement(gallivm->builder, value,
    980 		                    lp_build_const_int32(gallivm, swizzle), "");
    981 	}
    982 
    983 	value = build_buffer_load(ctx, buffer, 1, NULL, base, offset,
    984 	                          swizzle * 4, 1, 0);
    985 
    986 	value2 = build_buffer_load(ctx, buffer, 1, NULL, base, offset,
    987 	                           swizzle * 4 + 4, 1, 0);
    988 
    989 	return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
    990 }
    991 
    992 /**
    993  * Load from LDS.
    994  *
    995  * \param type		output value type
    996  * \param swizzle	offset (typically 0..3); it can be ~0, which loads a vec4
    997  * \param dw_addr	address in dwords
    998  */
    999 static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
   1000 			     enum tgsi_opcode_type type, unsigned swizzle,
   1001 			     LLVMValueRef dw_addr)
   1002 {
   1003 	struct si_shader_context *ctx = si_shader_context(bld_base);
   1004 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   1005 	LLVMValueRef value;
   1006 
   1007 	if (swizzle == ~0) {
   1008 		LLVMValueRef values[TGSI_NUM_CHANNELS];
   1009 
   1010 		for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
   1011 			values[chan] = lds_load(bld_base, type, chan, dw_addr);
   1012 
   1013 		return lp_build_gather_values(bld_base->base.gallivm, values,
   1014 					      TGSI_NUM_CHANNELS);
   1015 	}
   1016 
   1017 	dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
   1018 			    lp_build_const_int32(gallivm, swizzle));
   1019 
   1020 	value = build_indexed_load(ctx, ctx->lds, dw_addr, false);
   1021 	if (tgsi_type_is_64bit(type)) {
   1022 		LLVMValueRef value2;
   1023 		dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
   1024 				       lp_build_const_int32(gallivm, 1));
   1025 		value2 = build_indexed_load(ctx, ctx->lds, dw_addr, false);
   1026 		return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
   1027 	}
   1028 
   1029 	return LLVMBuildBitCast(gallivm->builder, value,
   1030 				tgsi2llvmtype(bld_base, type), "");
   1031 }
   1032 
   1033 /**
   1034  * Store to LDS.
   1035  *
   1036  * \param swizzle	offset (typically 0..3)
   1037  * \param dw_addr	address in dwords
   1038  * \param value		value to store
   1039  */
   1040 static void lds_store(struct lp_build_tgsi_context *bld_base,
   1041 		      unsigned swizzle, LLVMValueRef dw_addr,
   1042 		      LLVMValueRef value)
   1043 {
   1044 	struct si_shader_context *ctx = si_shader_context(bld_base);
   1045 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   1046 
   1047 	dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
   1048 			    lp_build_const_int32(gallivm, swizzle));
   1049 
   1050 	value = LLVMBuildBitCast(gallivm->builder, value, ctx->i32, "");
   1051 	build_indexed_store(ctx, ctx->lds,
   1052 			    dw_addr, value);
   1053 }
   1054 
   1055 static LLVMValueRef fetch_input_tcs(
   1056 	struct lp_build_tgsi_context *bld_base,
   1057 	const struct tgsi_full_src_register *reg,
   1058 	enum tgsi_opcode_type type, unsigned swizzle)
   1059 {
   1060 	struct si_shader_context *ctx = si_shader_context(bld_base);
   1061 	LLVMValueRef dw_addr, stride;
   1062 
   1063 	stride = unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 13, 8);
   1064 	dw_addr = get_tcs_in_current_patch_offset(ctx);
   1065 	dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
   1066 
   1067 	return lds_load(bld_base, type, swizzle, dw_addr);
   1068 }
   1069 
   1070 static LLVMValueRef fetch_output_tcs(
   1071 		struct lp_build_tgsi_context *bld_base,
   1072 		const struct tgsi_full_src_register *reg,
   1073 		enum tgsi_opcode_type type, unsigned swizzle)
   1074 {
   1075 	struct si_shader_context *ctx = si_shader_context(bld_base);
   1076 	LLVMValueRef dw_addr, stride;
   1077 
   1078 	if (reg->Register.Dimension) {
   1079 		stride = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8);
   1080 		dw_addr = get_tcs_out_current_patch_offset(ctx);
   1081 		dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
   1082 	} else {
   1083 		dw_addr = get_tcs_out_current_patch_data_offset(ctx);
   1084 		dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
   1085 	}
   1086 
   1087 	return lds_load(bld_base, type, swizzle, dw_addr);
   1088 }
   1089 
   1090 static LLVMValueRef fetch_input_tes(
   1091 	struct lp_build_tgsi_context *bld_base,
   1092 	const struct tgsi_full_src_register *reg,
   1093 	enum tgsi_opcode_type type, unsigned swizzle)
   1094 {
   1095 	struct si_shader_context *ctx = si_shader_context(bld_base);
   1096 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   1097 	LLVMValueRef rw_buffers, buffer, base, addr;
   1098 
   1099 	rw_buffers = LLVMGetParam(ctx->main_fn,
   1100 				  SI_PARAM_RW_BUFFERS);
   1101 	buffer = build_indexed_load_const(ctx, rw_buffers,
   1102 			lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
   1103 
   1104 	base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
   1105 	addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
   1106 
   1107 	return buffer_load(bld_base, type, swizzle, buffer, base, addr);
   1108 }
   1109 
   1110 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
   1111 			     const struct tgsi_full_instruction *inst,
   1112 			     const struct tgsi_opcode_info *info,
   1113 			     LLVMValueRef dst[4])
   1114 {
   1115 	struct si_shader_context *ctx = si_shader_context(bld_base);
   1116 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   1117 	const struct tgsi_full_dst_register *reg = &inst->Dst[0];
   1118 	unsigned chan_index;
   1119 	LLVMValueRef dw_addr, stride;
   1120 	LLVMValueRef rw_buffers, buffer, base, buf_addr;
   1121 	LLVMValueRef values[4];
   1122 
   1123 	/* Only handle per-patch and per-vertex outputs here.
   1124 	 * Vectors will be lowered to scalars and this function will be called again.
   1125 	 */
   1126 	if (reg->Register.File != TGSI_FILE_OUTPUT ||
   1127 	    (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
   1128 		si_llvm_emit_store(bld_base, inst, info, dst);
   1129 		return;
   1130 	}
   1131 
   1132 	if (reg->Register.Dimension) {
   1133 		stride = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8);
   1134 		dw_addr = get_tcs_out_current_patch_offset(ctx);
   1135 		dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
   1136 	} else {
   1137 		dw_addr = get_tcs_out_current_patch_data_offset(ctx);
   1138 		dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
   1139 	}
   1140 
   1141 	rw_buffers = LLVMGetParam(ctx->main_fn,
   1142 				  SI_PARAM_RW_BUFFERS);
   1143 	buffer = build_indexed_load_const(ctx, rw_buffers,
   1144 			lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
   1145 
   1146 	base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
   1147 	buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
   1148 
   1149 
   1150 	TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
   1151 		LLVMValueRef value = dst[chan_index];
   1152 
   1153 		if (inst->Instruction.Saturate)
   1154 			value = si_llvm_saturate(bld_base, value);
   1155 
   1156 		lds_store(bld_base, chan_index, dw_addr, value);
   1157 
   1158 		value = LLVMBuildBitCast(gallivm->builder, value, ctx->i32, "");
   1159 		values[chan_index] = value;
   1160 
   1161 		if (inst->Dst[0].Register.WriteMask != 0xF) {
   1162 			build_tbuffer_store_dwords(ctx, buffer, value, 1,
   1163 			                           buf_addr, base,
   1164 			                           4 * chan_index);
   1165 		}
   1166 	}
   1167 
   1168 	if (inst->Dst[0].Register.WriteMask == 0xF) {
   1169 		LLVMValueRef value = lp_build_gather_values(bld_base->base.gallivm,
   1170 		                                            values, 4);
   1171 		build_tbuffer_store_dwords(ctx, buffer, value, 4, buf_addr,
   1172 		                           base, 0);
   1173 	}
   1174 }
   1175 
   1176 static LLVMValueRef fetch_input_gs(
   1177 	struct lp_build_tgsi_context *bld_base,
   1178 	const struct tgsi_full_src_register *reg,
   1179 	enum tgsi_opcode_type type,
   1180 	unsigned swizzle)
   1181 {
   1182 	struct lp_build_context *base = &bld_base->base;
   1183 	struct si_shader_context *ctx = si_shader_context(bld_base);
   1184 	struct si_shader *shader = ctx->shader;
   1185 	struct lp_build_context *uint =	&ctx->bld_base.uint_bld;
   1186 	struct gallivm_state *gallivm = base->gallivm;
   1187 	LLVMValueRef vtx_offset;
   1188 	LLVMValueRef args[9];
   1189 	unsigned vtx_offset_param;
   1190 	struct tgsi_shader_info *info = &shader->selector->info;
   1191 	unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
   1192 	unsigned semantic_index = info->input_semantic_index[reg->Register.Index];
   1193 	unsigned param;
   1194 	LLVMValueRef value;
   1195 
   1196 	if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
   1197 		return get_primitive_id(bld_base, swizzle);
   1198 
   1199 	if (!reg->Register.Dimension)
   1200 		return NULL;
   1201 
   1202 	if (swizzle == ~0) {
   1203 		LLVMValueRef values[TGSI_NUM_CHANNELS];
   1204 		unsigned chan;
   1205 		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
   1206 			values[chan] = fetch_input_gs(bld_base, reg, type, chan);
   1207 		}
   1208 		return lp_build_gather_values(bld_base->base.gallivm, values,
   1209 					      TGSI_NUM_CHANNELS);
   1210 	}
   1211 
   1212 	/* Get the vertex offset parameter */
   1213 	vtx_offset_param = reg->Dimension.Index;
   1214 	if (vtx_offset_param < 2) {
   1215 		vtx_offset_param += SI_PARAM_VTX0_OFFSET;
   1216 	} else {
   1217 		assert(vtx_offset_param < 6);
   1218 		vtx_offset_param += SI_PARAM_VTX2_OFFSET - 2;
   1219 	}
   1220 	vtx_offset = lp_build_mul_imm(uint,
   1221 				      LLVMGetParam(ctx->main_fn,
   1222 						   vtx_offset_param),
   1223 				      4);
   1224 
   1225 	param = si_shader_io_get_unique_index(semantic_name, semantic_index);
   1226 	args[0] = ctx->esgs_ring;
   1227 	args[1] = vtx_offset;
   1228 	args[2] = lp_build_const_int32(gallivm, (param * 4 + swizzle) * 256);
   1229 	args[3] = uint->zero;
   1230 	args[4] = uint->one;  /* OFFEN */
   1231 	args[5] = uint->zero; /* IDXEN */
   1232 	args[6] = uint->one;  /* GLC */
   1233 	args[7] = uint->zero; /* SLC */
   1234 	args[8] = uint->zero; /* TFE */
   1235 
   1236 	value = lp_build_intrinsic(gallivm->builder,
   1237 				   "llvm.SI.buffer.load.dword.i32.i32",
   1238 				   ctx->i32, args, 9,
   1239 				   LP_FUNC_ATTR_READONLY);
   1240 	if (tgsi_type_is_64bit(type)) {
   1241 		LLVMValueRef value2;
   1242 		args[2] = lp_build_const_int32(gallivm, (param * 4 + swizzle + 1) * 256);
   1243 		value2 = lp_build_intrinsic(gallivm->builder,
   1244 					    "llvm.SI.buffer.load.dword.i32.i32",
   1245 					    ctx->i32, args, 9,
   1246 					    LP_FUNC_ATTR_READONLY);
   1247 		return si_llvm_emit_fetch_64bit(bld_base, type,
   1248 						value, value2);
   1249 	}
   1250 	return LLVMBuildBitCast(gallivm->builder,
   1251 				value,
   1252 				tgsi2llvmtype(bld_base, type), "");
   1253 }
   1254 
   1255 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
   1256 {
   1257 	switch (interpolate) {
   1258 	case TGSI_INTERPOLATE_CONSTANT:
   1259 		return 0;
   1260 
   1261 	case TGSI_INTERPOLATE_LINEAR:
   1262 		if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
   1263 			return SI_PARAM_LINEAR_SAMPLE;
   1264 		else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
   1265 			return SI_PARAM_LINEAR_CENTROID;
   1266 		else
   1267 			return SI_PARAM_LINEAR_CENTER;
   1268 		break;
   1269 	case TGSI_INTERPOLATE_COLOR:
   1270 	case TGSI_INTERPOLATE_PERSPECTIVE:
   1271 		if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
   1272 			return SI_PARAM_PERSP_SAMPLE;
   1273 		else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
   1274 			return SI_PARAM_PERSP_CENTROID;
   1275 		else
   1276 			return SI_PARAM_PERSP_CENTER;
   1277 		break;
   1278 	default:
   1279 		fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
   1280 		return -1;
   1281 	}
   1282 }
   1283 
   1284 static LLVMValueRef build_fs_interp(
   1285 	struct lp_build_tgsi_context *bld_base,
   1286 	LLVMValueRef llvm_chan,
   1287 	LLVMValueRef attr_number,
   1288 	LLVMValueRef params,
   1289 	LLVMValueRef i,
   1290 	LLVMValueRef j) {
   1291 
   1292 	struct si_shader_context *ctx = si_shader_context(bld_base);
   1293 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   1294 	LLVMValueRef args[5];
   1295 	LLVMValueRef p1;
   1296 	if (HAVE_LLVM < 0x0400) {
   1297 		LLVMValueRef ij[2];
   1298 		ij[0] = LLVMBuildBitCast(gallivm->builder, i, ctx->i32, "");
   1299 		ij[1] = LLVMBuildBitCast(gallivm->builder, j, ctx->i32, "");
   1300 
   1301 		args[0] = llvm_chan;
   1302 		args[1] = attr_number;
   1303 		args[2] = params;
   1304 		args[3] = lp_build_gather_values(gallivm, ij, 2);
   1305 		return lp_build_intrinsic(gallivm->builder, "llvm.SI.fs.interp",
   1306 					  ctx->f32, args, 4,
   1307 					  LP_FUNC_ATTR_READNONE);
   1308 	}
   1309 
   1310 	args[0] = i;
   1311 	args[1] = llvm_chan;
   1312 	args[2] = attr_number;
   1313 	args[3] = params;
   1314 
   1315 	p1 = lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.interp.p1",
   1316 				ctx->f32, args, 4, LP_FUNC_ATTR_READNONE);
   1317 
   1318 	args[0] = p1;
   1319 	args[1] = j;
   1320 	args[2] = llvm_chan;
   1321 	args[3] = attr_number;
   1322 	args[4] = params;
   1323 
   1324 	return lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.interp.p2",
   1325 				  ctx->f32, args, 5, LP_FUNC_ATTR_READNONE);
   1326 }
   1327 
   1328 static LLVMValueRef build_fs_interp_mov(
   1329 	struct lp_build_tgsi_context *bld_base,
   1330 	LLVMValueRef parameter,
   1331 	LLVMValueRef llvm_chan,
   1332 	LLVMValueRef attr_number,
   1333 	LLVMValueRef params) {
   1334 
   1335 	struct si_shader_context *ctx = si_shader_context(bld_base);
   1336 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   1337 	LLVMValueRef args[4];
   1338 	if (HAVE_LLVM < 0x0400) {
   1339 		args[0] = llvm_chan;
   1340 		args[1] = attr_number;
   1341 		args[2] = params;
   1342 
   1343 		return lp_build_intrinsic(gallivm->builder,
   1344 					  "llvm.SI.fs.constant",
   1345 					  ctx->f32, args, 3,
   1346 					  LP_FUNC_ATTR_READNONE);
   1347 	}
   1348 
   1349 	args[0] = parameter;
   1350 	args[1] = llvm_chan;
   1351 	args[2] = attr_number;
   1352 	args[3] = params;
   1353 
   1354 	return lp_build_intrinsic(gallivm->builder, "llvm.amdgcn.interp.mov",
   1355 				  ctx->f32, args, 4, LP_FUNC_ATTR_READNONE);
   1356 }
   1357 
   1358 /**
   1359  * Interpolate a fragment shader input.
   1360  *
   1361  * @param ctx		context
   1362  * @param input_index		index of the input in hardware
   1363  * @param semantic_name		TGSI_SEMANTIC_*
   1364  * @param semantic_index	semantic index
   1365  * @param num_interp_inputs	number of all interpolated inputs (= BCOLOR offset)
   1366  * @param colors_read_mask	color components read (4 bits for each color, 8 bits in total)
   1367  * @param interp_param		interpolation weights (i,j)
   1368  * @param prim_mask		SI_PARAM_PRIM_MASK
   1369  * @param face			SI_PARAM_FRONT_FACE
   1370  * @param result		the return value (4 components)
   1371  */
   1372 static void interp_fs_input(struct si_shader_context *ctx,
   1373 			    unsigned input_index,
   1374 			    unsigned semantic_name,
   1375 			    unsigned semantic_index,
   1376 			    unsigned num_interp_inputs,
   1377 			    unsigned colors_read_mask,
   1378 			    LLVMValueRef interp_param,
   1379 			    LLVMValueRef prim_mask,
   1380 			    LLVMValueRef face,
   1381 			    LLVMValueRef result[4])
   1382 {
   1383 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
   1384 	struct lp_build_context *base = &bld_base->base;
   1385 	struct lp_build_context *uint =	&bld_base->uint_bld;
   1386 	struct gallivm_state *gallivm = base->gallivm;
   1387 	LLVMValueRef attr_number;
   1388 	LLVMValueRef i, j;
   1389 
   1390 	unsigned chan;
   1391 
   1392 	/* fs.constant returns the param from the middle vertex, so it's not
   1393 	 * really useful for flat shading. It's meant to be used for custom
   1394 	 * interpolation (but the intrinsic can't fetch from the other two
   1395 	 * vertices).
   1396 	 *
   1397 	 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
   1398 	 * to do the right thing. The only reason we use fs.constant is that
   1399 	 * fs.interp cannot be used on integers, because they can be equal
   1400 	 * to NaN.
   1401 	 *
   1402 	 * When interp is false we will use fs.constant or for newer llvm,
   1403          * amdgcn.interp.mov.
   1404 	 */
   1405 	bool interp = interp_param != NULL;
   1406 
   1407 	attr_number = lp_build_const_int32(gallivm, input_index);
   1408 
   1409 	if (interp) {
   1410 		interp_param = LLVMBuildBitCast(gallivm->builder, interp_param,
   1411 						LLVMVectorType(ctx->f32, 2), "");
   1412 
   1413 		i = LLVMBuildExtractElement(gallivm->builder, interp_param,
   1414 						uint->zero, "");
   1415 		j = LLVMBuildExtractElement(gallivm->builder, interp_param,
   1416 						uint->one, "");
   1417 	}
   1418 
   1419 	if (semantic_name == TGSI_SEMANTIC_COLOR &&
   1420 	    ctx->shader->key.part.ps.prolog.color_two_side) {
   1421 		LLVMValueRef is_face_positive;
   1422 		LLVMValueRef back_attr_number;
   1423 
   1424 		/* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
   1425 		 * otherwise it's at offset "num_inputs".
   1426 		 */
   1427 		unsigned back_attr_offset = num_interp_inputs;
   1428 		if (semantic_index == 1 && colors_read_mask & 0xf)
   1429 			back_attr_offset += 1;
   1430 
   1431 		back_attr_number = lp_build_const_int32(gallivm, back_attr_offset);
   1432 
   1433 		is_face_positive = LLVMBuildICmp(gallivm->builder, LLVMIntNE,
   1434 						 face, uint->zero, "");
   1435 
   1436 		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
   1437 			LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
   1438 			LLVMValueRef front, back;
   1439 
   1440 			if (interp) {
   1441 				front = build_fs_interp(bld_base, llvm_chan,
   1442 							attr_number, prim_mask,
   1443 							i, j);
   1444 				back = build_fs_interp(bld_base, llvm_chan,
   1445 							back_attr_number, prim_mask,
   1446 							i, j);
   1447 			} else {
   1448 				front = build_fs_interp_mov(bld_base,
   1449 					lp_build_const_int32(gallivm, 2), /* P0 */
   1450 					llvm_chan, attr_number, prim_mask);
   1451 				back = build_fs_interp_mov(bld_base,
   1452 					lp_build_const_int32(gallivm, 2), /* P0 */
   1453 					llvm_chan, back_attr_number, prim_mask);
   1454 			}
   1455 
   1456 			result[chan] = LLVMBuildSelect(gallivm->builder,
   1457 						is_face_positive,
   1458 						front,
   1459 						back,
   1460 						"");
   1461 		}
   1462 	} else if (semantic_name == TGSI_SEMANTIC_FOG) {
   1463 		if (interp) {
   1464 			result[0] = build_fs_interp(bld_base, uint->zero,
   1465 						attr_number, prim_mask, i, j);
   1466 		} else {
   1467 			result[0] = build_fs_interp_mov(bld_base, uint->zero,
   1468 				lp_build_const_int32(gallivm, 2), /* P0 */
   1469 				attr_number, prim_mask);
   1470 		}
   1471 		result[1] =
   1472 		result[2] = lp_build_const_float(gallivm, 0.0f);
   1473 		result[3] = lp_build_const_float(gallivm, 1.0f);
   1474 	} else {
   1475 		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
   1476 			LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
   1477 
   1478 			if (interp) {
   1479 				result[chan] = build_fs_interp(bld_base,
   1480 					llvm_chan, attr_number, prim_mask, i, j);
   1481 			} else {
   1482 				result[chan] = build_fs_interp_mov(bld_base,
   1483 					lp_build_const_int32(gallivm, 2), /* P0 */
   1484 					llvm_chan, attr_number, prim_mask);
   1485 			}
   1486 		}
   1487 	}
   1488 }
   1489 
   1490 static void declare_input_fs(
   1491 	struct si_shader_context *radeon_bld,
   1492 	unsigned input_index,
   1493 	const struct tgsi_full_declaration *decl,
   1494 	LLVMValueRef out[4])
   1495 {
   1496 	struct lp_build_context *base = &radeon_bld->bld_base.base;
   1497 	struct si_shader_context *ctx =
   1498 		si_shader_context(&radeon_bld->bld_base);
   1499 	struct si_shader *shader = ctx->shader;
   1500 	LLVMValueRef main_fn = radeon_bld->main_fn;
   1501 	LLVMValueRef interp_param = NULL;
   1502 	int interp_param_idx;
   1503 
   1504 	/* Get colors from input VGPRs (set by the prolog). */
   1505 	if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR) {
   1506 		unsigned i = decl->Semantic.Index;
   1507 		unsigned colors_read = shader->selector->info.colors_read;
   1508 		unsigned mask = colors_read >> (i * 4);
   1509 		unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
   1510 				  (i ? util_bitcount(colors_read & 0xf) : 0);
   1511 
   1512 		out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : base->undef;
   1513 		out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : base->undef;
   1514 		out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : base->undef;
   1515 		out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : base->undef;
   1516 		return;
   1517 	}
   1518 
   1519 	interp_param_idx = lookup_interp_param_index(decl->Interp.Interpolate,
   1520 						     decl->Interp.Location);
   1521 	if (interp_param_idx == -1)
   1522 		return;
   1523 	else if (interp_param_idx) {
   1524 		interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
   1525 	}
   1526 
   1527 	if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR &&
   1528 	    decl->Interp.Interpolate == TGSI_INTERPOLATE_COLOR &&
   1529 	    ctx->shader->key.part.ps.prolog.flatshade_colors)
   1530 		interp_param = NULL; /* load the constant color */
   1531 
   1532 	interp_fs_input(ctx, input_index, decl->Semantic.Name,
   1533 			decl->Semantic.Index, shader->selector->info.num_inputs,
   1534 			shader->selector->info.colors_read, interp_param,
   1535 			LLVMGetParam(main_fn, SI_PARAM_PRIM_MASK),
   1536 			LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
   1537 			&out[0]);
   1538 }
   1539 
   1540 static LLVMValueRef get_sample_id(struct si_shader_context *radeon_bld)
   1541 {
   1542 	return unpack_param(si_shader_context(&radeon_bld->bld_base),
   1543 			    SI_PARAM_ANCILLARY, 8, 4);
   1544 }
   1545 
   1546 /**
   1547  * Set range metadata on an instruction.  This can only be used on load and
   1548  * call instructions.  If you know an instruction can only produce the values
   1549  * 0, 1, 2, you would do set_range_metadata(value, 0, 3);
   1550  * \p lo is the minimum value inclusive.
   1551  * \p hi is the maximum value exclusive.
   1552  */
   1553 static void set_range_metadata(struct si_shader_context *ctx,
   1554 			       LLVMValueRef value, unsigned lo, unsigned hi)
   1555 {
   1556 	LLVMValueRef range_md, md_args[2];
   1557 	LLVMTypeRef type = LLVMTypeOf(value);
   1558 	LLVMContextRef context = LLVMGetTypeContext(type);
   1559 
   1560 	md_args[0] = LLVMConstInt(type, lo, false);
   1561 	md_args[1] = LLVMConstInt(type, hi, false);
   1562 	range_md = LLVMMDNodeInContext(context, md_args, 2);
   1563 	LLVMSetMetadata(value, ctx->range_md_kind, range_md);
   1564 }
   1565 
   1566 static LLVMValueRef get_thread_id(struct si_shader_context *ctx)
   1567 {
   1568 	struct gallivm_state *gallivm = &ctx->gallivm;
   1569 	LLVMValueRef tid;
   1570 
   1571 	if (HAVE_LLVM < 0x0308) {
   1572 		tid = lp_build_intrinsic(gallivm->builder, "llvm.SI.tid",
   1573 				ctx->i32,   NULL, 0, LP_FUNC_ATTR_READNONE);
   1574 	} else {
   1575 		LLVMValueRef tid_args[2];
   1576 		tid_args[0] = lp_build_const_int32(gallivm, 0xffffffff);
   1577 		tid_args[1] = lp_build_const_int32(gallivm, 0);
   1578 		tid_args[1] = lp_build_intrinsic(gallivm->builder,
   1579 					"llvm.amdgcn.mbcnt.lo", ctx->i32,
   1580 					tid_args, 2, LP_FUNC_ATTR_READNONE);
   1581 
   1582 		tid = lp_build_intrinsic(gallivm->builder,
   1583 					"llvm.amdgcn.mbcnt.hi", ctx->i32,
   1584 					tid_args, 2, LP_FUNC_ATTR_READNONE);
   1585 	}
   1586 	set_range_metadata(ctx, tid, 0, 64);
   1587 	return tid;
   1588 }
   1589 
   1590 /**
   1591  * Load a dword from a constant buffer.
   1592  */
   1593 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
   1594 				      LLVMValueRef resource,
   1595 				      LLVMValueRef offset)
   1596 {
   1597 	LLVMBuilderRef builder = ctx->gallivm.builder;
   1598 	LLVMValueRef args[2] = {resource, offset};
   1599 
   1600 	return lp_build_intrinsic(builder, "llvm.SI.load.const", ctx->f32, args, 2,
   1601 			       LP_FUNC_ATTR_READNONE);
   1602 }
   1603 
   1604 static LLVMValueRef load_sample_position(struct si_shader_context *radeon_bld, LLVMValueRef sample_id)
   1605 {
   1606 	struct si_shader_context *ctx =
   1607 		si_shader_context(&radeon_bld->bld_base);
   1608 	struct lp_build_context *uint_bld = &radeon_bld->bld_base.uint_bld;
   1609 	struct gallivm_state *gallivm = &radeon_bld->gallivm;
   1610 	LLVMBuilderRef builder = gallivm->builder;
   1611 	LLVMValueRef desc = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
   1612 	LLVMValueRef buf_index = lp_build_const_int32(gallivm, SI_PS_CONST_SAMPLE_POSITIONS);
   1613 	LLVMValueRef resource = build_indexed_load_const(ctx, desc, buf_index);
   1614 
   1615 	/* offset = sample_id * 8  (8 = 2 floats containing samplepos.xy) */
   1616 	LLVMValueRef offset0 = lp_build_mul_imm(uint_bld, sample_id, 8);
   1617 	LLVMValueRef offset1 = LLVMBuildAdd(builder, offset0, lp_build_const_int32(gallivm, 4), "");
   1618 
   1619 	LLVMValueRef pos[4] = {
   1620 		buffer_load_const(ctx, resource, offset0),
   1621 		buffer_load_const(ctx, resource, offset1),
   1622 		lp_build_const_float(gallivm, 0),
   1623 		lp_build_const_float(gallivm, 0)
   1624 	};
   1625 
   1626 	return lp_build_gather_values(gallivm, pos, 4);
   1627 }
   1628 
   1629 static void declare_system_value(
   1630 	struct si_shader_context *radeon_bld,
   1631 	unsigned index,
   1632 	const struct tgsi_full_declaration *decl)
   1633 {
   1634 	struct si_shader_context *ctx =
   1635 		si_shader_context(&radeon_bld->bld_base);
   1636 	struct lp_build_context *bld = &radeon_bld->bld_base.base;
   1637 	struct gallivm_state *gallivm = &radeon_bld->gallivm;
   1638 	LLVMValueRef value = 0;
   1639 
   1640 	switch (decl->Semantic.Name) {
   1641 	case TGSI_SEMANTIC_INSTANCEID:
   1642 		value = LLVMGetParam(radeon_bld->main_fn,
   1643 				     ctx->param_instance_id);
   1644 		break;
   1645 
   1646 	case TGSI_SEMANTIC_VERTEXID:
   1647 		value = LLVMBuildAdd(gallivm->builder,
   1648 				     LLVMGetParam(radeon_bld->main_fn,
   1649 						  ctx->param_vertex_id),
   1650 				     LLVMGetParam(radeon_bld->main_fn,
   1651 						  SI_PARAM_BASE_VERTEX), "");
   1652 		break;
   1653 
   1654 	case TGSI_SEMANTIC_VERTEXID_NOBASE:
   1655 		value = LLVMGetParam(radeon_bld->main_fn,
   1656 				     ctx->param_vertex_id);
   1657 		break;
   1658 
   1659 	case TGSI_SEMANTIC_BASEVERTEX:
   1660 		value = LLVMGetParam(radeon_bld->main_fn,
   1661 				     SI_PARAM_BASE_VERTEX);
   1662 		break;
   1663 
   1664 	case TGSI_SEMANTIC_BASEINSTANCE:
   1665 		value = LLVMGetParam(radeon_bld->main_fn,
   1666 				     SI_PARAM_START_INSTANCE);
   1667 		break;
   1668 
   1669 	case TGSI_SEMANTIC_DRAWID:
   1670 		value = LLVMGetParam(radeon_bld->main_fn,
   1671 				     SI_PARAM_DRAWID);
   1672 		break;
   1673 
   1674 	case TGSI_SEMANTIC_INVOCATIONID:
   1675 		if (ctx->type == PIPE_SHADER_TESS_CTRL)
   1676 			value = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
   1677 		else if (ctx->type == PIPE_SHADER_GEOMETRY)
   1678 			value = LLVMGetParam(radeon_bld->main_fn,
   1679 					     SI_PARAM_GS_INSTANCE_ID);
   1680 		else
   1681 			assert(!"INVOCATIONID not implemented");
   1682 		break;
   1683 
   1684 	case TGSI_SEMANTIC_POSITION:
   1685 	{
   1686 		LLVMValueRef pos[4] = {
   1687 			LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_X_FLOAT),
   1688 			LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Y_FLOAT),
   1689 			LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Z_FLOAT),
   1690 			lp_build_emit_llvm_unary(&radeon_bld->bld_base, TGSI_OPCODE_RCP,
   1691 						 LLVMGetParam(radeon_bld->main_fn,
   1692 							      SI_PARAM_POS_W_FLOAT)),
   1693 		};
   1694 		value = lp_build_gather_values(gallivm, pos, 4);
   1695 		break;
   1696 	}
   1697 
   1698 	case TGSI_SEMANTIC_FACE:
   1699 		value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_FRONT_FACE);
   1700 		break;
   1701 
   1702 	case TGSI_SEMANTIC_SAMPLEID:
   1703 		value = get_sample_id(radeon_bld);
   1704 		break;
   1705 
   1706 	case TGSI_SEMANTIC_SAMPLEPOS: {
   1707 		LLVMValueRef pos[4] = {
   1708 			LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_X_FLOAT),
   1709 			LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Y_FLOAT),
   1710 			lp_build_const_float(gallivm, 0),
   1711 			lp_build_const_float(gallivm, 0)
   1712 		};
   1713 		pos[0] = lp_build_emit_llvm_unary(&radeon_bld->bld_base,
   1714 						  TGSI_OPCODE_FRC, pos[0]);
   1715 		pos[1] = lp_build_emit_llvm_unary(&radeon_bld->bld_base,
   1716 						  TGSI_OPCODE_FRC, pos[1]);
   1717 		value = lp_build_gather_values(gallivm, pos, 4);
   1718 		break;
   1719 	}
   1720 
   1721 	case TGSI_SEMANTIC_SAMPLEMASK:
   1722 		/* This can only occur with the OpenGL Core profile, which
   1723 		 * doesn't support smoothing.
   1724 		 */
   1725 		value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_SAMPLE_COVERAGE);
   1726 		break;
   1727 
   1728 	case TGSI_SEMANTIC_TESSCOORD:
   1729 	{
   1730 		LLVMValueRef coord[4] = {
   1731 			LLVMGetParam(radeon_bld->main_fn, ctx->param_tes_u),
   1732 			LLVMGetParam(radeon_bld->main_fn, ctx->param_tes_v),
   1733 			bld->zero,
   1734 			bld->zero
   1735 		};
   1736 
   1737 		/* For triangles, the vector should be (u, v, 1-u-v). */
   1738 		if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
   1739 		    PIPE_PRIM_TRIANGLES)
   1740 			coord[2] = lp_build_sub(bld, bld->one,
   1741 						lp_build_add(bld, coord[0], coord[1]));
   1742 
   1743 		value = lp_build_gather_values(gallivm, coord, 4);
   1744 		break;
   1745 	}
   1746 
   1747 	case TGSI_SEMANTIC_VERTICESIN:
   1748 		if (ctx->type == PIPE_SHADER_TESS_CTRL)
   1749 			value = unpack_param(ctx, SI_PARAM_TCS_OUT_LAYOUT, 26, 6);
   1750 		else if (ctx->type == PIPE_SHADER_TESS_EVAL)
   1751 			value = unpack_param(ctx, SI_PARAM_TCS_OFFCHIP_LAYOUT, 9, 7);
   1752 		else
   1753 			assert(!"invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
   1754 		break;
   1755 
   1756 	case TGSI_SEMANTIC_TESSINNER:
   1757 	case TGSI_SEMANTIC_TESSOUTER:
   1758 	{
   1759 		LLVMValueRef rw_buffers, buffer, base, addr;
   1760 		int param = si_shader_io_get_unique_index(decl->Semantic.Name, 0);
   1761 
   1762 		rw_buffers = LLVMGetParam(ctx->main_fn,
   1763 					SI_PARAM_RW_BUFFERS);
   1764 		buffer = build_indexed_load_const(ctx, rw_buffers,
   1765 		        lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
   1766 
   1767 		base = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
   1768 		addr = get_tcs_tes_buffer_address(ctx, NULL,
   1769 		                          lp_build_const_int32(gallivm, param));
   1770 
   1771 		value = buffer_load(&radeon_bld->bld_base, TGSI_TYPE_FLOAT,
   1772 		                    ~0, buffer, base, addr);
   1773 
   1774 		break;
   1775 	}
   1776 
   1777 	case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
   1778 	case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
   1779 	{
   1780 		LLVMValueRef buf, slot, val[4];
   1781 		int i, offset;
   1782 
   1783 		slot = lp_build_const_int32(gallivm, SI_HS_CONST_DEFAULT_TESS_LEVELS);
   1784 		buf = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
   1785 		buf = build_indexed_load_const(ctx, buf, slot);
   1786 		offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
   1787 
   1788 		for (i = 0; i < 4; i++)
   1789 			val[i] = buffer_load_const(ctx, buf,
   1790 						   lp_build_const_int32(gallivm, (offset + i) * 4));
   1791 		value = lp_build_gather_values(gallivm, val, 4);
   1792 		break;
   1793 	}
   1794 
   1795 	case TGSI_SEMANTIC_PRIMID:
   1796 		value = get_primitive_id(&radeon_bld->bld_base, 0);
   1797 		break;
   1798 
   1799 	case TGSI_SEMANTIC_GRID_SIZE:
   1800 		value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_GRID_SIZE);
   1801 		break;
   1802 
   1803 	case TGSI_SEMANTIC_BLOCK_SIZE:
   1804 	{
   1805 		LLVMValueRef values[3];
   1806 		unsigned i;
   1807 		unsigned *properties = ctx->shader->selector->info.properties;
   1808 
   1809 		if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
   1810 			unsigned sizes[3] = {
   1811 				properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
   1812 				properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
   1813 				properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
   1814 			};
   1815 
   1816 			for (i = 0; i < 3; ++i)
   1817 				values[i] = lp_build_const_int32(gallivm, sizes[i]);
   1818 
   1819 			value = lp_build_gather_values(gallivm, values, 3);
   1820 		} else {
   1821 			value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_BLOCK_SIZE);
   1822 		}
   1823 		break;
   1824 	}
   1825 
   1826 	case TGSI_SEMANTIC_BLOCK_ID:
   1827 		value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_BLOCK_ID);
   1828 		break;
   1829 
   1830 	case TGSI_SEMANTIC_THREAD_ID:
   1831 		value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_THREAD_ID);
   1832 		break;
   1833 
   1834 	case TGSI_SEMANTIC_HELPER_INVOCATION:
   1835 		if (HAVE_LLVM >= 0x0309) {
   1836 			value = lp_build_intrinsic(gallivm->builder,
   1837 						   "llvm.amdgcn.ps.live",
   1838 						   ctx->i1, NULL, 0,
   1839 						   LP_FUNC_ATTR_READNONE);
   1840 			value = LLVMBuildNot(gallivm->builder, value, "");
   1841 			value = LLVMBuildSExt(gallivm->builder, value, ctx->i32, "");
   1842 		} else {
   1843 			assert(!"TGSI_SEMANTIC_HELPER_INVOCATION unsupported");
   1844 			return;
   1845 		}
   1846 		break;
   1847 
   1848 	default:
   1849 		assert(!"unknown system value");
   1850 		return;
   1851 	}
   1852 
   1853 	radeon_bld->system_values[index] = value;
   1854 }
   1855 
   1856 static void declare_compute_memory(struct si_shader_context *radeon_bld,
   1857                                    const struct tgsi_full_declaration *decl)
   1858 {
   1859 	struct si_shader_context *ctx =
   1860 		si_shader_context(&radeon_bld->bld_base);
   1861 	struct si_shader_selector *sel = ctx->shader->selector;
   1862 	struct gallivm_state *gallivm = &radeon_bld->gallivm;
   1863 
   1864 	LLVMTypeRef i8p = LLVMPointerType(ctx->i8, LOCAL_ADDR_SPACE);
   1865 	LLVMValueRef var;
   1866 
   1867 	assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
   1868 	assert(decl->Range.First == decl->Range.Last);
   1869 	assert(!ctx->shared_memory);
   1870 
   1871 	var = LLVMAddGlobalInAddressSpace(gallivm->module,
   1872 	                                  LLVMArrayType(ctx->i8, sel->local_size),
   1873 	                                  "compute_lds",
   1874 	                                  LOCAL_ADDR_SPACE);
   1875 	LLVMSetAlignment(var, 4);
   1876 
   1877 	ctx->shared_memory = LLVMBuildBitCast(gallivm->builder, var, i8p, "");
   1878 }
   1879 
   1880 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
   1881 {
   1882 	LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
   1883 					     SI_PARAM_CONST_BUFFERS);
   1884 
   1885 	return build_indexed_load_const(ctx, list_ptr,
   1886 					LLVMConstInt(ctx->i32, i, 0));
   1887 }
   1888 
   1889 static LLVMValueRef fetch_constant(
   1890 	struct lp_build_tgsi_context *bld_base,
   1891 	const struct tgsi_full_src_register *reg,
   1892 	enum tgsi_opcode_type type,
   1893 	unsigned swizzle)
   1894 {
   1895 	struct si_shader_context *ctx = si_shader_context(bld_base);
   1896 	struct lp_build_context *base = &bld_base->base;
   1897 	const struct tgsi_ind_register *ireg = &reg->Indirect;
   1898 	unsigned buf, idx;
   1899 
   1900 	LLVMValueRef addr, bufp;
   1901 	LLVMValueRef result;
   1902 
   1903 	if (swizzle == LP_CHAN_ALL) {
   1904 		unsigned chan;
   1905 		LLVMValueRef values[4];
   1906 		for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
   1907 			values[chan] = fetch_constant(bld_base, reg, type, chan);
   1908 
   1909 		return lp_build_gather_values(bld_base->base.gallivm, values, 4);
   1910 	}
   1911 
   1912 	buf = reg->Register.Dimension ? reg->Dimension.Index : 0;
   1913 	idx = reg->Register.Index * 4 + swizzle;
   1914 
   1915 	if (reg->Register.Dimension && reg->Dimension.Indirect) {
   1916 		LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_CONST_BUFFERS);
   1917 		LLVMValueRef index;
   1918 		index = get_bounded_indirect_index(ctx, &reg->DimIndirect,
   1919 						   reg->Dimension.Index,
   1920 						   SI_NUM_CONST_BUFFERS);
   1921 		bufp = build_indexed_load_const(ctx, ptr, index);
   1922 	} else
   1923 		bufp = load_const_buffer_desc(ctx, buf);
   1924 
   1925 	if (reg->Register.Indirect) {
   1926 		addr = ctx->addrs[ireg->Index][ireg->Swizzle];
   1927 		addr = LLVMBuildLoad(base->gallivm->builder, addr, "load addr reg");
   1928 		addr = lp_build_mul_imm(&bld_base->uint_bld, addr, 16);
   1929 		addr = lp_build_add(&bld_base->uint_bld, addr,
   1930 				    lp_build_const_int32(base->gallivm, idx * 4));
   1931 	} else {
   1932 		addr = LLVMConstInt(ctx->i32, idx * 4, 0);
   1933 	}
   1934 
   1935 	result = buffer_load_const(ctx, bufp, addr);
   1936 
   1937 	if (!tgsi_type_is_64bit(type))
   1938 		result = bitcast(bld_base, type, result);
   1939 	else {
   1940 		LLVMValueRef addr2, result2;
   1941 
   1942 		addr2 = lp_build_add(&bld_base->uint_bld, addr,
   1943 				     LLVMConstInt(ctx->i32, 4, 0));
   1944 		result2 = buffer_load_const(ctx, bufp, addr2);
   1945 
   1946 		result = si_llvm_emit_fetch_64bit(bld_base, type,
   1947 						  result, result2);
   1948 	}
   1949 	return result;
   1950 }
   1951 
   1952 /* Upper 16 bits must be zero. */
   1953 static LLVMValueRef si_llvm_pack_two_int16(struct gallivm_state *gallivm,
   1954 					   LLVMValueRef val[2])
   1955 {
   1956 	return LLVMBuildOr(gallivm->builder, val[0],
   1957 			   LLVMBuildShl(gallivm->builder, val[1],
   1958 					lp_build_const_int32(gallivm, 16),
   1959 					""), "");
   1960 }
   1961 
   1962 /* Upper 16 bits are ignored and will be dropped. */
   1963 static LLVMValueRef si_llvm_pack_two_int32_as_int16(struct gallivm_state *gallivm,
   1964 						    LLVMValueRef val[2])
   1965 {
   1966 	LLVMValueRef v[2] = {
   1967 		LLVMBuildAnd(gallivm->builder, val[0],
   1968 			     lp_build_const_int32(gallivm, 0xffff), ""),
   1969 		val[1],
   1970 	};
   1971 	return si_llvm_pack_two_int16(gallivm, v);
   1972 }
   1973 
   1974 /* Initialize arguments for the shader export intrinsic */
   1975 static void si_llvm_init_export_args(struct lp_build_tgsi_context *bld_base,
   1976 				     LLVMValueRef *values,
   1977 				     unsigned target,
   1978 				     LLVMValueRef *args)
   1979 {
   1980 	struct si_shader_context *ctx = si_shader_context(bld_base);
   1981 	struct lp_build_context *uint = &ctx->bld_base.uint_bld;
   1982 	struct lp_build_context *base = &bld_base->base;
   1983 	struct gallivm_state *gallivm = base->gallivm;
   1984 	LLVMBuilderRef builder = base->gallivm->builder;
   1985 	LLVMValueRef val[4];
   1986 	unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
   1987 	unsigned chan;
   1988 	bool is_int8, is_int10;
   1989 
   1990 	/* Default is 0xf. Adjusted below depending on the format. */
   1991 	args[0] = lp_build_const_int32(base->gallivm, 0xf); /* writemask */
   1992 
   1993 	/* Specify whether the EXEC mask represents the valid mask */
   1994 	args[1] = uint->zero;
   1995 
   1996 	/* Specify whether this is the last export */
   1997 	args[2] = uint->zero;
   1998 
   1999 	/* Specify the target we are exporting */
   2000 	args[3] = lp_build_const_int32(base->gallivm, target);
   2001 
   2002 	if (ctx->type == PIPE_SHADER_FRAGMENT) {
   2003 		const struct si_shader_key *key = &ctx->shader->key;
   2004 		unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
   2005 		int cbuf = target - V_008DFC_SQ_EXP_MRT;
   2006 
   2007 		assert(cbuf >= 0 && cbuf < 8);
   2008 		spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
   2009 		is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
   2010 		is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
   2011 	}
   2012 
   2013 	args[4] = uint->zero; /* COMPR flag */
   2014 	args[5] = base->undef;
   2015 	args[6] = base->undef;
   2016 	args[7] = base->undef;
   2017 	args[8] = base->undef;
   2018 
   2019 	switch (spi_shader_col_format) {
   2020 	case V_028714_SPI_SHADER_ZERO:
   2021 		args[0] = uint->zero; /* writemask */
   2022 		args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_NULL);
   2023 		break;
   2024 
   2025 	case V_028714_SPI_SHADER_32_R:
   2026 		args[0] = uint->one; /* writemask */
   2027 		args[5] = values[0];
   2028 		break;
   2029 
   2030 	case V_028714_SPI_SHADER_32_GR:
   2031 		args[0] = lp_build_const_int32(base->gallivm, 0x3); /* writemask */
   2032 		args[5] = values[0];
   2033 		args[6] = values[1];
   2034 		break;
   2035 
   2036 	case V_028714_SPI_SHADER_32_AR:
   2037 		args[0] = lp_build_const_int32(base->gallivm, 0x9); /* writemask */
   2038 		args[5] = values[0];
   2039 		args[8] = values[3];
   2040 		break;
   2041 
   2042 	case V_028714_SPI_SHADER_FP16_ABGR:
   2043 		args[4] = uint->one; /* COMPR flag */
   2044 
   2045 		for (chan = 0; chan < 2; chan++) {
   2046 			LLVMValueRef pack_args[2] = {
   2047 				values[2 * chan],
   2048 				values[2 * chan + 1]
   2049 			};
   2050 			LLVMValueRef packed;
   2051 
   2052 			packed = lp_build_intrinsic(base->gallivm->builder,
   2053 						    "llvm.SI.packf16",
   2054 						    ctx->i32, pack_args, 2,
   2055 						    LP_FUNC_ATTR_READNONE);
   2056 			args[chan + 5] =
   2057 				LLVMBuildBitCast(base->gallivm->builder,
   2058 						 packed, ctx->f32, "");
   2059 		}
   2060 		break;
   2061 
   2062 	case V_028714_SPI_SHADER_UNORM16_ABGR:
   2063 		for (chan = 0; chan < 4; chan++) {
   2064 			val[chan] = si_llvm_saturate(bld_base, values[chan]);
   2065 			val[chan] = LLVMBuildFMul(builder, val[chan],
   2066 						  lp_build_const_float(gallivm, 65535), "");
   2067 			val[chan] = LLVMBuildFAdd(builder, val[chan],
   2068 						  lp_build_const_float(gallivm, 0.5), "");
   2069 			val[chan] = LLVMBuildFPToUI(builder, val[chan],
   2070 						    ctx->i32, "");
   2071 		}
   2072 
   2073 		args[4] = uint->one; /* COMPR flag */
   2074 		args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
   2075 				  si_llvm_pack_two_int16(gallivm, val));
   2076 		args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
   2077 				  si_llvm_pack_two_int16(gallivm, val+2));
   2078 		break;
   2079 
   2080 	case V_028714_SPI_SHADER_SNORM16_ABGR:
   2081 		for (chan = 0; chan < 4; chan++) {
   2082 			/* Clamp between [-1, 1]. */
   2083 			val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_MIN,
   2084 							      values[chan],
   2085 							      lp_build_const_float(gallivm, 1));
   2086 			val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_MAX,
   2087 							      val[chan],
   2088 							      lp_build_const_float(gallivm, -1));
   2089 			/* Convert to a signed integer in [-32767, 32767]. */
   2090 			val[chan] = LLVMBuildFMul(builder, val[chan],
   2091 						  lp_build_const_float(gallivm, 32767), "");
   2092 			/* If positive, add 0.5, else add -0.5. */
   2093 			val[chan] = LLVMBuildFAdd(builder, val[chan],
   2094 					LLVMBuildSelect(builder,
   2095 						LLVMBuildFCmp(builder, LLVMRealOGE,
   2096 							      val[chan], base->zero, ""),
   2097 						lp_build_const_float(gallivm, 0.5),
   2098 						lp_build_const_float(gallivm, -0.5), ""), "");
   2099 			val[chan] = LLVMBuildFPToSI(builder, val[chan], ctx->i32, "");
   2100 		}
   2101 
   2102 		args[4] = uint->one; /* COMPR flag */
   2103 		args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
   2104 				  si_llvm_pack_two_int32_as_int16(gallivm, val));
   2105 		args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
   2106 				  si_llvm_pack_two_int32_as_int16(gallivm, val+2));
   2107 		break;
   2108 
   2109 	case V_028714_SPI_SHADER_UINT16_ABGR: {
   2110 		LLVMValueRef max_rgb = lp_build_const_int32(gallivm,
   2111 			is_int8 ? 255 : is_int10 ? 1023 : 65535);
   2112 		LLVMValueRef max_alpha =
   2113 			!is_int10 ? max_rgb : lp_build_const_int32(gallivm, 3);
   2114 
   2115 		/* Clamp. */
   2116 		for (chan = 0; chan < 4; chan++) {
   2117 			val[chan] = bitcast(bld_base, TGSI_TYPE_UNSIGNED, values[chan]);
   2118 			val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_UMIN,
   2119 					val[chan],
   2120 					chan == 3 ? max_alpha : max_rgb);
   2121 		}
   2122 
   2123 		args[4] = uint->one; /* COMPR flag */
   2124 		args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
   2125 				  si_llvm_pack_two_int16(gallivm, val));
   2126 		args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
   2127 				  si_llvm_pack_two_int16(gallivm, val+2));
   2128 		break;
   2129 	}
   2130 
   2131 	case V_028714_SPI_SHADER_SINT16_ABGR: {
   2132 		LLVMValueRef max_rgb = lp_build_const_int32(gallivm,
   2133 			is_int8 ? 127 : is_int10 ? 511 : 32767);
   2134 		LLVMValueRef min_rgb = lp_build_const_int32(gallivm,
   2135 			is_int8 ? -128 : is_int10 ? -512 : -32768);
   2136 		LLVMValueRef max_alpha =
   2137 			!is_int10 ? max_rgb : lp_build_const_int32(gallivm, 1);
   2138 		LLVMValueRef min_alpha =
   2139 			!is_int10 ? min_rgb : lp_build_const_int32(gallivm, -2);
   2140 
   2141 		/* Clamp. */
   2142 		for (chan = 0; chan < 4; chan++) {
   2143 			val[chan] = bitcast(bld_base, TGSI_TYPE_UNSIGNED, values[chan]);
   2144 			val[chan] = lp_build_emit_llvm_binary(bld_base,
   2145 					TGSI_OPCODE_IMIN,
   2146 					val[chan], chan == 3 ? max_alpha : max_rgb);
   2147 			val[chan] = lp_build_emit_llvm_binary(bld_base,
   2148 					TGSI_OPCODE_IMAX,
   2149 					val[chan], chan == 3 ? min_alpha : min_rgb);
   2150 		}
   2151 
   2152 		args[4] = uint->one; /* COMPR flag */
   2153 		args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
   2154 				  si_llvm_pack_two_int32_as_int16(gallivm, val));
   2155 		args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
   2156 				  si_llvm_pack_two_int32_as_int16(gallivm, val+2));
   2157 		break;
   2158 	}
   2159 
   2160 	case V_028714_SPI_SHADER_32_ABGR:
   2161 		memcpy(&args[5], values, sizeof(values[0]) * 4);
   2162 		break;
   2163 	}
   2164 }
   2165 
   2166 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
   2167 			  LLVMValueRef alpha)
   2168 {
   2169 	struct si_shader_context *ctx = si_shader_context(bld_base);
   2170 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   2171 
   2172 	if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
   2173 		LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
   2174 				SI_PARAM_ALPHA_REF);
   2175 
   2176 		LLVMValueRef alpha_pass =
   2177 			lp_build_cmp(&bld_base->base,
   2178 				     ctx->shader->key.part.ps.epilog.alpha_func,
   2179 				     alpha, alpha_ref);
   2180 		LLVMValueRef arg =
   2181 			lp_build_select(&bld_base->base,
   2182 					alpha_pass,
   2183 					lp_build_const_float(gallivm, 1.0f),
   2184 					lp_build_const_float(gallivm, -1.0f));
   2185 
   2186 		lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill",
   2187 				   ctx->voidt, &arg, 1, 0);
   2188 	} else {
   2189 		lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kilp",
   2190 				   ctx->voidt, NULL, 0, 0);
   2191 	}
   2192 }
   2193 
   2194 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
   2195 						  LLVMValueRef alpha,
   2196 						  unsigned samplemask_param)
   2197 {
   2198 	struct si_shader_context *ctx = si_shader_context(bld_base);
   2199 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   2200 	LLVMValueRef coverage;
   2201 
   2202 	/* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
   2203 	coverage = LLVMGetParam(ctx->main_fn,
   2204 				samplemask_param);
   2205 	coverage = bitcast(bld_base, TGSI_TYPE_SIGNED, coverage);
   2206 
   2207 	coverage = lp_build_intrinsic(gallivm->builder, "llvm.ctpop.i32",
   2208 				   ctx->i32,
   2209 				   &coverage, 1, LP_FUNC_ATTR_READNONE);
   2210 
   2211 	coverage = LLVMBuildUIToFP(gallivm->builder, coverage,
   2212 				   ctx->f32, "");
   2213 
   2214 	coverage = LLVMBuildFMul(gallivm->builder, coverage,
   2215 				 lp_build_const_float(gallivm,
   2216 					1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
   2217 
   2218 	return LLVMBuildFMul(gallivm->builder, alpha, coverage, "");
   2219 }
   2220 
   2221 static void si_llvm_emit_clipvertex(struct lp_build_tgsi_context *bld_base,
   2222 				    LLVMValueRef (*pos)[9], LLVMValueRef *out_elts)
   2223 {
   2224 	struct si_shader_context *ctx = si_shader_context(bld_base);
   2225 	struct lp_build_context *base = &bld_base->base;
   2226 	struct lp_build_context *uint = &ctx->bld_base.uint_bld;
   2227 	unsigned reg_index;
   2228 	unsigned chan;
   2229 	unsigned const_chan;
   2230 	LLVMValueRef base_elt;
   2231 	LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
   2232 	LLVMValueRef constbuf_index = lp_build_const_int32(base->gallivm,
   2233 							   SI_VS_CONST_CLIP_PLANES);
   2234 	LLVMValueRef const_resource = build_indexed_load_const(ctx, ptr, constbuf_index);
   2235 
   2236 	for (reg_index = 0; reg_index < 2; reg_index ++) {
   2237 		LLVMValueRef *args = pos[2 + reg_index];
   2238 
   2239 		args[5] =
   2240 		args[6] =
   2241 		args[7] =
   2242 		args[8] = lp_build_const_float(base->gallivm, 0.0f);
   2243 
   2244 		/* Compute dot products of position and user clip plane vectors */
   2245 		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
   2246 			for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
   2247 				args[1] = lp_build_const_int32(base->gallivm,
   2248 							       ((reg_index * 4 + chan) * 4 +
   2249 								const_chan) * 4);
   2250 				base_elt = buffer_load_const(ctx, const_resource,
   2251 							     args[1]);
   2252 				args[5 + chan] =
   2253 					lp_build_add(base, args[5 + chan],
   2254 						     lp_build_mul(base, base_elt,
   2255 								  out_elts[const_chan]));
   2256 			}
   2257 		}
   2258 
   2259 		args[0] = lp_build_const_int32(base->gallivm, 0xf);
   2260 		args[1] = uint->zero;
   2261 		args[2] = uint->zero;
   2262 		args[3] = lp_build_const_int32(base->gallivm,
   2263 					       V_008DFC_SQ_EXP_POS + 2 + reg_index);
   2264 		args[4] = uint->zero;
   2265 	}
   2266 }
   2267 
   2268 static void si_dump_streamout(struct pipe_stream_output_info *so)
   2269 {
   2270 	unsigned i;
   2271 
   2272 	if (so->num_outputs)
   2273 		fprintf(stderr, "STREAMOUT\n");
   2274 
   2275 	for (i = 0; i < so->num_outputs; i++) {
   2276 		unsigned mask = ((1 << so->output[i].num_components) - 1) <<
   2277 				so->output[i].start_component;
   2278 		fprintf(stderr, "  %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
   2279 			i, so->output[i].output_buffer,
   2280 			so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
   2281 			so->output[i].register_index,
   2282 			mask & 1 ? "x" : "",
   2283 		        mask & 2 ? "y" : "",
   2284 		        mask & 4 ? "z" : "",
   2285 		        mask & 8 ? "w" : "");
   2286 	}
   2287 }
   2288 
   2289 static void emit_streamout_output(struct si_shader_context *ctx,
   2290 				  LLVMValueRef const *so_buffers,
   2291 				  LLVMValueRef const *so_write_offsets,
   2292 				  struct pipe_stream_output *stream_out,
   2293 				  struct si_shader_output_values *shader_out)
   2294 {
   2295 	struct gallivm_state *gallivm = &ctx->gallivm;
   2296 	LLVMBuilderRef builder = gallivm->builder;
   2297 	unsigned buf_idx = stream_out->output_buffer;
   2298 	unsigned start = stream_out->start_component;
   2299 	unsigned num_comps = stream_out->num_components;
   2300 	LLVMValueRef out[4];
   2301 
   2302 	assert(num_comps && num_comps <= 4);
   2303 	if (!num_comps || num_comps > 4)
   2304 		return;
   2305 
   2306 	/* Load the output as int. */
   2307 	for (int j = 0; j < num_comps; j++) {
   2308 		assert(stream_out->stream == shader_out->vertex_stream[start + j]);
   2309 
   2310 		out[j] = LLVMBuildBitCast(builder,
   2311 					  shader_out->values[start + j],
   2312 				ctx->i32, "");
   2313 	}
   2314 
   2315 	/* Pack the output. */
   2316 	LLVMValueRef vdata = NULL;
   2317 
   2318 	switch (num_comps) {
   2319 	case 1: /* as i32 */
   2320 		vdata = out[0];
   2321 		break;
   2322 	case 2: /* as v2i32 */
   2323 	case 3: /* as v4i32 (aligned to 4) */
   2324 	case 4: /* as v4i32 */
   2325 		vdata = LLVMGetUndef(LLVMVectorType(ctx->i32, util_next_power_of_two(num_comps)));
   2326 		for (int j = 0; j < num_comps; j++) {
   2327 			vdata = LLVMBuildInsertElement(builder, vdata, out[j],
   2328 						       LLVMConstInt(ctx->i32, j, 0), "");
   2329 		}
   2330 		break;
   2331 	}
   2332 
   2333 	build_tbuffer_store_dwords(ctx, so_buffers[buf_idx],
   2334 				   vdata, num_comps,
   2335 				   so_write_offsets[buf_idx],
   2336 				   LLVMConstInt(ctx->i32, 0, 0),
   2337 				   stream_out->dst_offset * 4);
   2338 }
   2339 
   2340 /**
   2341  * Write streamout data to buffers for vertex stream @p stream (different
   2342  * vertex streams can occur for GS copy shaders).
   2343  */
   2344 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
   2345 				   struct si_shader_output_values *outputs,
   2346 				   unsigned noutput, unsigned stream)
   2347 {
   2348 	struct si_shader_selector *sel = ctx->shader->selector;
   2349 	struct pipe_stream_output_info *so = &sel->so;
   2350 	struct gallivm_state *gallivm = &ctx->gallivm;
   2351 	LLVMBuilderRef builder = gallivm->builder;
   2352 	int i;
   2353 	struct lp_build_if_state if_ctx;
   2354 
   2355 	/* Get bits [22:16], i.e. (so_param >> 16) & 127; */
   2356 	LLVMValueRef so_vtx_count =
   2357 		unpack_param(ctx, ctx->param_streamout_config, 16, 7);
   2358 
   2359 	LLVMValueRef tid = get_thread_id(ctx);
   2360 
   2361 	/* can_emit = tid < so_vtx_count; */
   2362 	LLVMValueRef can_emit =
   2363 		LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
   2364 
   2365 	/* Emit the streamout code conditionally. This actually avoids
   2366 	 * out-of-bounds buffer access. The hw tells us via the SGPR
   2367 	 * (so_vtx_count) which threads are allowed to emit streamout data. */
   2368 	lp_build_if(&if_ctx, gallivm, can_emit);
   2369 	{
   2370 		/* The buffer offset is computed as follows:
   2371 		 *   ByteOffset = streamout_offset[buffer_id]*4 +
   2372 		 *                (streamout_write_index + thread_id)*stride[buffer_id] +
   2373 		 *                attrib_offset
   2374                  */
   2375 
   2376 		LLVMValueRef so_write_index =
   2377 			LLVMGetParam(ctx->main_fn,
   2378 				     ctx->param_streamout_write_index);
   2379 
   2380 		/* Compute (streamout_write_index + thread_id). */
   2381 		so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
   2382 
   2383 		/* Load the descriptor and compute the write offset for each
   2384 		 * enabled buffer. */
   2385 		LLVMValueRef so_write_offset[4] = {};
   2386 		LLVMValueRef so_buffers[4];
   2387 		LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
   2388 						    SI_PARAM_RW_BUFFERS);
   2389 
   2390 		for (i = 0; i < 4; i++) {
   2391 			if (!so->stride[i])
   2392 				continue;
   2393 
   2394 			LLVMValueRef offset = lp_build_const_int32(gallivm,
   2395 								   SI_VS_STREAMOUT_BUF0 + i);
   2396 
   2397 			so_buffers[i] = build_indexed_load_const(ctx, buf_ptr, offset);
   2398 
   2399 			LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
   2400 							      ctx->param_streamout_offset[i]);
   2401 			so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
   2402 
   2403 			so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
   2404 							  LLVMConstInt(ctx->i32, so->stride[i]*4, 0), "");
   2405 			so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
   2406 		}
   2407 
   2408 		/* Write streamout data. */
   2409 		for (i = 0; i < so->num_outputs; i++) {
   2410 			unsigned reg = so->output[i].register_index;
   2411 
   2412 			if (reg >= noutput)
   2413 				continue;
   2414 
   2415 			if (stream != so->output[i].stream)
   2416 				continue;
   2417 
   2418 			emit_streamout_output(ctx, so_buffers, so_write_offset,
   2419 					      &so->output[i], &outputs[reg]);
   2420 		}
   2421 	}
   2422 	lp_build_endif(&if_ctx);
   2423 }
   2424 
   2425 
   2426 /* Generate export instructions for hardware VS shader stage */
   2427 static void si_llvm_export_vs(struct lp_build_tgsi_context *bld_base,
   2428 			      struct si_shader_output_values *outputs,
   2429 			      unsigned noutput)
   2430 {
   2431 	struct si_shader_context *ctx = si_shader_context(bld_base);
   2432 	struct si_shader *shader = ctx->shader;
   2433 	struct lp_build_context *base = &bld_base->base;
   2434 	struct lp_build_context *uint = &ctx->bld_base.uint_bld;
   2435 	LLVMValueRef args[9];
   2436 	LLVMValueRef pos_args[4][9] = { { 0 } };
   2437 	LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
   2438 	unsigned semantic_name, semantic_index;
   2439 	unsigned target;
   2440 	unsigned param_count = 0;
   2441 	unsigned pos_idx;
   2442 	int i;
   2443 
   2444 	for (i = 0; i < noutput; i++) {
   2445 		semantic_name = outputs[i].semantic_name;
   2446 		semantic_index = outputs[i].semantic_index;
   2447 		bool export_param = true;
   2448 
   2449 		switch (semantic_name) {
   2450 		case TGSI_SEMANTIC_POSITION: /* ignore these */
   2451 		case TGSI_SEMANTIC_PSIZE:
   2452 		case TGSI_SEMANTIC_CLIPVERTEX:
   2453 		case TGSI_SEMANTIC_EDGEFLAG:
   2454 			break;
   2455 		case TGSI_SEMANTIC_GENERIC:
   2456 		case TGSI_SEMANTIC_CLIPDIST:
   2457 			if (shader->key.opt.hw_vs.kill_outputs &
   2458 			    (1ull << si_shader_io_get_unique_index(semantic_name, semantic_index)))
   2459 				export_param = false;
   2460 			break;
   2461 		default:
   2462 			if (shader->key.opt.hw_vs.kill_outputs2 &
   2463 			    (1u << si_shader_io_get_unique_index2(semantic_name, semantic_index)))
   2464 				export_param = false;
   2465 			break;
   2466 		}
   2467 
   2468 		if (outputs[i].vertex_stream[0] != 0 &&
   2469 		    outputs[i].vertex_stream[1] != 0 &&
   2470 		    outputs[i].vertex_stream[2] != 0 &&
   2471 		    outputs[i].vertex_stream[3] != 0)
   2472 			export_param = false;
   2473 
   2474 handle_semantic:
   2475 		/* Select the correct target */
   2476 		switch(semantic_name) {
   2477 		case TGSI_SEMANTIC_PSIZE:
   2478 			psize_value = outputs[i].values[0];
   2479 			continue;
   2480 		case TGSI_SEMANTIC_EDGEFLAG:
   2481 			edgeflag_value = outputs[i].values[0];
   2482 			continue;
   2483 		case TGSI_SEMANTIC_LAYER:
   2484 			layer_value = outputs[i].values[0];
   2485 			semantic_name = TGSI_SEMANTIC_GENERIC;
   2486 			goto handle_semantic;
   2487 		case TGSI_SEMANTIC_VIEWPORT_INDEX:
   2488 			viewport_index_value = outputs[i].values[0];
   2489 			semantic_name = TGSI_SEMANTIC_GENERIC;
   2490 			goto handle_semantic;
   2491 		case TGSI_SEMANTIC_POSITION:
   2492 			target = V_008DFC_SQ_EXP_POS;
   2493 			break;
   2494 		case TGSI_SEMANTIC_CLIPDIST:
   2495 			if (shader->key.opt.hw_vs.clip_disable) {
   2496 				semantic_name = TGSI_SEMANTIC_GENERIC;
   2497 				goto handle_semantic;
   2498 			}
   2499 			target = V_008DFC_SQ_EXP_POS + 2 + semantic_index;
   2500 			break;
   2501 		case TGSI_SEMANTIC_CLIPVERTEX:
   2502 			if (shader->key.opt.hw_vs.clip_disable)
   2503 				continue;
   2504 			si_llvm_emit_clipvertex(bld_base, pos_args, outputs[i].values);
   2505 			continue;
   2506 		case TGSI_SEMANTIC_COLOR:
   2507 		case TGSI_SEMANTIC_BCOLOR:
   2508 		case TGSI_SEMANTIC_PRIMID:
   2509 		case TGSI_SEMANTIC_FOG:
   2510 		case TGSI_SEMANTIC_TEXCOORD:
   2511 		case TGSI_SEMANTIC_GENERIC:
   2512 			if (!export_param)
   2513 				continue;
   2514 			target = V_008DFC_SQ_EXP_PARAM + param_count;
   2515 			assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
   2516 			shader->info.vs_output_param_offset[i] = param_count;
   2517 			param_count++;
   2518 			break;
   2519 		default:
   2520 			target = 0;
   2521 			fprintf(stderr,
   2522 				"Warning: SI unhandled vs output type:%d\n",
   2523 				semantic_name);
   2524 		}
   2525 
   2526 		si_llvm_init_export_args(bld_base, outputs[i].values, target, args);
   2527 
   2528 		if (target >= V_008DFC_SQ_EXP_POS &&
   2529 		    target <= (V_008DFC_SQ_EXP_POS + 3)) {
   2530 			memcpy(pos_args[target - V_008DFC_SQ_EXP_POS],
   2531 			       args, sizeof(args));
   2532 		} else {
   2533 			lp_build_intrinsic(base->gallivm->builder,
   2534 					   "llvm.SI.export", ctx->voidt,
   2535 					   args, 9, 0);
   2536 		}
   2537 
   2538 		if (semantic_name == TGSI_SEMANTIC_CLIPDIST) {
   2539 			semantic_name = TGSI_SEMANTIC_GENERIC;
   2540 			goto handle_semantic;
   2541 		}
   2542 	}
   2543 
   2544 	shader->info.nr_param_exports = param_count;
   2545 
   2546 	/* We need to add the position output manually if it's missing. */
   2547 	if (!pos_args[0][0]) {
   2548 		pos_args[0][0] = lp_build_const_int32(base->gallivm, 0xf); /* writemask */
   2549 		pos_args[0][1] = uint->zero; /* EXEC mask */
   2550 		pos_args[0][2] = uint->zero; /* last export? */
   2551 		pos_args[0][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS);
   2552 		pos_args[0][4] = uint->zero; /* COMPR flag */
   2553 		pos_args[0][5] = base->zero; /* X */
   2554 		pos_args[0][6] = base->zero; /* Y */
   2555 		pos_args[0][7] = base->zero; /* Z */
   2556 		pos_args[0][8] = base->one;  /* W */
   2557 	}
   2558 
   2559 	/* Write the misc vector (point size, edgeflag, layer, viewport). */
   2560 	if (shader->selector->info.writes_psize ||
   2561 	    shader->selector->info.writes_edgeflag ||
   2562 	    shader->selector->info.writes_viewport_index ||
   2563 	    shader->selector->info.writes_layer) {
   2564 		pos_args[1][0] = lp_build_const_int32(base->gallivm, /* writemask */
   2565 						      shader->selector->info.writes_psize |
   2566 						      (shader->selector->info.writes_edgeflag << 1) |
   2567 						      (shader->selector->info.writes_layer << 2) |
   2568 						      (shader->selector->info.writes_viewport_index << 3));
   2569 		pos_args[1][1] = uint->zero; /* EXEC mask */
   2570 		pos_args[1][2] = uint->zero; /* last export? */
   2571 		pos_args[1][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + 1);
   2572 		pos_args[1][4] = uint->zero; /* COMPR flag */
   2573 		pos_args[1][5] = base->zero; /* X */
   2574 		pos_args[1][6] = base->zero; /* Y */
   2575 		pos_args[1][7] = base->zero; /* Z */
   2576 		pos_args[1][8] = base->zero; /* W */
   2577 
   2578 		if (shader->selector->info.writes_psize)
   2579 			pos_args[1][5] = psize_value;
   2580 
   2581 		if (shader->selector->info.writes_edgeflag) {
   2582 			/* The output is a float, but the hw expects an integer
   2583 			 * with the first bit containing the edge flag. */
   2584 			edgeflag_value = LLVMBuildFPToUI(base->gallivm->builder,
   2585 							 edgeflag_value,
   2586 							 ctx->i32, "");
   2587 			edgeflag_value = lp_build_min(&bld_base->int_bld,
   2588 						      edgeflag_value,
   2589 						      bld_base->int_bld.one);
   2590 
   2591 			/* The LLVM intrinsic expects a float. */
   2592 			pos_args[1][6] = LLVMBuildBitCast(base->gallivm->builder,
   2593 							  edgeflag_value,
   2594 							  ctx->f32, "");
   2595 		}
   2596 
   2597 		if (shader->selector->info.writes_layer)
   2598 			pos_args[1][7] = layer_value;
   2599 
   2600 		if (shader->selector->info.writes_viewport_index)
   2601 			pos_args[1][8] = viewport_index_value;
   2602 	}
   2603 
   2604 	for (i = 0; i < 4; i++)
   2605 		if (pos_args[i][0])
   2606 			shader->info.nr_pos_exports++;
   2607 
   2608 	pos_idx = 0;
   2609 	for (i = 0; i < 4; i++) {
   2610 		if (!pos_args[i][0])
   2611 			continue;
   2612 
   2613 		/* Specify the target we are exporting */
   2614 		pos_args[i][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + pos_idx++);
   2615 
   2616 		if (pos_idx == shader->info.nr_pos_exports)
   2617 			/* Specify that this is the last export */
   2618 			pos_args[i][2] = uint->one;
   2619 
   2620 		lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
   2621 				   ctx->voidt, pos_args[i], 9, 0);
   2622 	}
   2623 }
   2624 
   2625 /**
   2626  * Forward all outputs from the vertex shader to the TES. This is only used
   2627  * for the fixed function TCS.
   2628  */
   2629 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
   2630 {
   2631 	struct si_shader_context *ctx = si_shader_context(bld_base);
   2632 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   2633 	LLVMValueRef invocation_id, rw_buffers, buffer, buffer_offset;
   2634 	LLVMValueRef lds_vertex_stride, lds_vertex_offset, lds_base;
   2635 	uint64_t inputs;
   2636 
   2637 	invocation_id = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
   2638 
   2639 	rw_buffers = LLVMGetParam(ctx->main_fn, SI_PARAM_RW_BUFFERS);
   2640 	buffer = build_indexed_load_const(ctx, rw_buffers,
   2641 	                lp_build_const_int32(gallivm, SI_HS_RING_TESS_OFFCHIP));
   2642 
   2643 	buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_oc_lds);
   2644 
   2645 	lds_vertex_stride = unpack_param(ctx, SI_PARAM_TCS_IN_LAYOUT, 13, 8);
   2646 	lds_vertex_offset = LLVMBuildMul(gallivm->builder, invocation_id,
   2647 	                                 lds_vertex_stride, "");
   2648 	lds_base = get_tcs_in_current_patch_offset(ctx);
   2649 	lds_base = LLVMBuildAdd(gallivm->builder, lds_base, lds_vertex_offset, "");
   2650 
   2651 	inputs = ctx->shader->key.mono.tcs.inputs_to_copy;
   2652 	while (inputs) {
   2653 		unsigned i = u_bit_scan64(&inputs);
   2654 
   2655 		LLVMValueRef lds_ptr = LLVMBuildAdd(gallivm->builder, lds_base,
   2656 		                            lp_build_const_int32(gallivm, 4 * i),
   2657 		                             "");
   2658 
   2659 		LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
   2660 		                              invocation_id,
   2661 		                              lp_build_const_int32(gallivm, i));
   2662 
   2663 		LLVMValueRef value = lds_load(bld_base, TGSI_TYPE_SIGNED, ~0,
   2664 		                              lds_ptr);
   2665 
   2666 		build_tbuffer_store_dwords(ctx, buffer, value, 4, buffer_addr,
   2667 		                           buffer_offset, 0);
   2668 	}
   2669 }
   2670 
   2671 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
   2672 				  LLVMValueRef rel_patch_id,
   2673 				  LLVMValueRef invocation_id,
   2674 				  LLVMValueRef tcs_out_current_patch_data_offset)
   2675 {
   2676 	struct si_shader_context *ctx = si_shader_context(bld_base);
   2677 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   2678 	struct si_shader *shader = ctx->shader;
   2679 	unsigned tess_inner_index, tess_outer_index;
   2680 	LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
   2681 	LLVMValueRef out[6], vec0, vec1, rw_buffers, tf_base;
   2682 	unsigned stride, outer_comps, inner_comps, i;
   2683 	struct lp_build_if_state if_ctx, inner_if_ctx;
   2684 
   2685 	si_llvm_emit_barrier(NULL, bld_base, NULL);
   2686 
   2687 	/* Do this only for invocation 0, because the tess levels are per-patch,
   2688 	 * not per-vertex.
   2689 	 *
   2690 	 * This can't jump, because invocation 0 executes this. It should
   2691 	 * at least mask out the loads and stores for other invocations.
   2692 	 */
   2693 	lp_build_if(&if_ctx, gallivm,
   2694 		    LLVMBuildICmp(gallivm->builder, LLVMIntEQ,
   2695 				  invocation_id, bld_base->uint_bld.zero, ""));
   2696 
   2697 	/* Determine the layout of one tess factor element in the buffer. */
   2698 	switch (shader->key.part.tcs.epilog.prim_mode) {
   2699 	case PIPE_PRIM_LINES:
   2700 		stride = 2; /* 2 dwords, 1 vec2 store */
   2701 		outer_comps = 2;
   2702 		inner_comps = 0;
   2703 		break;
   2704 	case PIPE_PRIM_TRIANGLES:
   2705 		stride = 4; /* 4 dwords, 1 vec4 store */
   2706 		outer_comps = 3;
   2707 		inner_comps = 1;
   2708 		break;
   2709 	case PIPE_PRIM_QUADS:
   2710 		stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
   2711 		outer_comps = 4;
   2712 		inner_comps = 2;
   2713 		break;
   2714 	default:
   2715 		assert(0);
   2716 		return;
   2717 	}
   2718 
   2719 	/* Load tess_inner and tess_outer from LDS.
   2720 	 * Any invocation can write them, so we can't get them from a temporary.
   2721 	 */
   2722 	tess_inner_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0);
   2723 	tess_outer_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0);
   2724 
   2725 	lds_base = tcs_out_current_patch_data_offset;
   2726 	lds_inner = LLVMBuildAdd(gallivm->builder, lds_base,
   2727 				 lp_build_const_int32(gallivm,
   2728 						      tess_inner_index * 4), "");
   2729 	lds_outer = LLVMBuildAdd(gallivm->builder, lds_base,
   2730 				 lp_build_const_int32(gallivm,
   2731 						      tess_outer_index * 4), "");
   2732 
   2733 	if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
   2734 		/* For isolines, the hardware expects tess factors in the
   2735 		 * reverse order from what GLSL / TGSI specify.
   2736 		 */
   2737 		out[0] = lds_load(bld_base, TGSI_TYPE_SIGNED, 1, lds_outer);
   2738 		out[1] = lds_load(bld_base, TGSI_TYPE_SIGNED, 0, lds_outer);
   2739 	} else {
   2740 		for (i = 0; i < outer_comps; i++)
   2741 			out[i] = lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_outer);
   2742 		for (i = 0; i < inner_comps; i++)
   2743 			out[outer_comps+i] = lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_inner);
   2744 	}
   2745 
   2746 	/* Convert the outputs to vectors for stores. */
   2747 	vec0 = lp_build_gather_values(gallivm, out, MIN2(stride, 4));
   2748 	vec1 = NULL;
   2749 
   2750 	if (stride > 4)
   2751 		vec1 = lp_build_gather_values(gallivm, out+4, stride - 4);
   2752 
   2753 	/* Get the buffer. */
   2754 	rw_buffers = LLVMGetParam(ctx->main_fn,
   2755 				  SI_PARAM_RW_BUFFERS);
   2756 	buffer = build_indexed_load_const(ctx, rw_buffers,
   2757 			lp_build_const_int32(gallivm, SI_HS_RING_TESS_FACTOR));
   2758 
   2759 	/* Get the offset. */
   2760 	tf_base = LLVMGetParam(ctx->main_fn,
   2761 			       SI_PARAM_TESS_FACTOR_OFFSET);
   2762 	byteoffset = LLVMBuildMul(gallivm->builder, rel_patch_id,
   2763 				  lp_build_const_int32(gallivm, 4 * stride), "");
   2764 
   2765 	lp_build_if(&inner_if_ctx, gallivm,
   2766 		    LLVMBuildICmp(gallivm->builder, LLVMIntEQ,
   2767 				  rel_patch_id, bld_base->uint_bld.zero, ""));
   2768 
   2769 	/* Store the dynamic HS control word. */
   2770 	build_tbuffer_store_dwords(ctx, buffer,
   2771 	                           lp_build_const_int32(gallivm, 0x80000000),
   2772 	                           1, lp_build_const_int32(gallivm, 0), tf_base, 0);
   2773 
   2774 	lp_build_endif(&inner_if_ctx);
   2775 
   2776 	/* Store the tessellation factors. */
   2777 	build_tbuffer_store_dwords(ctx, buffer, vec0,
   2778 				   MIN2(stride, 4), byteoffset, tf_base, 4);
   2779 	if (vec1)
   2780 		build_tbuffer_store_dwords(ctx, buffer, vec1,
   2781 					   stride - 4, byteoffset, tf_base, 20);
   2782 	lp_build_endif(&if_ctx);
   2783 }
   2784 
   2785 /* This only writes the tessellation factor levels. */
   2786 static void si_llvm_emit_tcs_epilogue(struct lp_build_tgsi_context *bld_base)
   2787 {
   2788 	struct si_shader_context *ctx = si_shader_context(bld_base);
   2789 	LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
   2790 
   2791 	si_copy_tcs_inputs(bld_base);
   2792 
   2793 	rel_patch_id = get_rel_patch_id(ctx);
   2794 	invocation_id = unpack_param(ctx, SI_PARAM_REL_IDS, 8, 5);
   2795 	tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
   2796 
   2797 	/* Return epilog parameters from this function. */
   2798 	LLVMBuilderRef builder = bld_base->base.gallivm->builder;
   2799 	LLVMValueRef ret = ctx->return_value;
   2800 	LLVMValueRef rw_buffers, rw0, rw1, tf_soffset;
   2801 	unsigned vgpr;
   2802 
   2803 	/* RW_BUFFERS pointer */
   2804 	rw_buffers = LLVMGetParam(ctx->main_fn,
   2805 				  SI_PARAM_RW_BUFFERS);
   2806 	rw_buffers = LLVMBuildPtrToInt(builder, rw_buffers, ctx->i64, "");
   2807 	rw_buffers = LLVMBuildBitCast(builder, rw_buffers, ctx->v2i32, "");
   2808 	rw0 = LLVMBuildExtractElement(builder, rw_buffers,
   2809 				      bld_base->uint_bld.zero, "");
   2810 	rw1 = LLVMBuildExtractElement(builder, rw_buffers,
   2811 				      bld_base->uint_bld.one, "");
   2812 	ret = LLVMBuildInsertValue(builder, ret, rw0, 0, "");
   2813 	ret = LLVMBuildInsertValue(builder, ret, rw1, 1, "");
   2814 
   2815 	/* Tess factor buffer soffset is after user SGPRs. */
   2816 	tf_soffset = LLVMGetParam(ctx->main_fn,
   2817 				  SI_PARAM_TESS_FACTOR_OFFSET);
   2818 	ret = LLVMBuildInsertValue(builder, ret, tf_soffset,
   2819 				   SI_TCS_NUM_USER_SGPR + 1, "");
   2820 
   2821 	/* VGPRs */
   2822 	rel_patch_id = bitcast(bld_base, TGSI_TYPE_FLOAT, rel_patch_id);
   2823 	invocation_id = bitcast(bld_base, TGSI_TYPE_FLOAT, invocation_id);
   2824 	tf_lds_offset = bitcast(bld_base, TGSI_TYPE_FLOAT, tf_lds_offset);
   2825 
   2826 	vgpr = SI_TCS_NUM_USER_SGPR + 2;
   2827 	ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
   2828 	ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
   2829 	ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
   2830 	ctx->return_value = ret;
   2831 }
   2832 
   2833 static void si_llvm_emit_ls_epilogue(struct lp_build_tgsi_context *bld_base)
   2834 {
   2835 	struct si_shader_context *ctx = si_shader_context(bld_base);
   2836 	struct si_shader *shader = ctx->shader;
   2837 	struct tgsi_shader_info *info = &shader->selector->info;
   2838 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   2839 	unsigned i, chan;
   2840 	LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
   2841 					      ctx->param_rel_auto_id);
   2842 	LLVMValueRef vertex_dw_stride =
   2843 		unpack_param(ctx, SI_PARAM_LS_OUT_LAYOUT, 13, 8);
   2844 	LLVMValueRef base_dw_addr = LLVMBuildMul(gallivm->builder, vertex_id,
   2845 						 vertex_dw_stride, "");
   2846 
   2847 	/* Write outputs to LDS. The next shader (TCS aka HS) will read
   2848 	 * its inputs from it. */
   2849 	for (i = 0; i < info->num_outputs; i++) {
   2850 		LLVMValueRef *out_ptr = ctx->outputs[i];
   2851 		unsigned name = info->output_semantic_name[i];
   2852 		unsigned index = info->output_semantic_index[i];
   2853 		int param = si_shader_io_get_unique_index(name, index);
   2854 		LLVMValueRef dw_addr = LLVMBuildAdd(gallivm->builder, base_dw_addr,
   2855 					lp_build_const_int32(gallivm, param * 4), "");
   2856 
   2857 		for (chan = 0; chan < 4; chan++) {
   2858 			lds_store(bld_base, chan, dw_addr,
   2859 				  LLVMBuildLoad(gallivm->builder, out_ptr[chan], ""));
   2860 		}
   2861 	}
   2862 }
   2863 
   2864 static void si_llvm_emit_es_epilogue(struct lp_build_tgsi_context *bld_base)
   2865 {
   2866 	struct si_shader_context *ctx = si_shader_context(bld_base);
   2867 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   2868 	struct si_shader *es = ctx->shader;
   2869 	struct tgsi_shader_info *info = &es->selector->info;
   2870 	LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
   2871 					    ctx->param_es2gs_offset);
   2872 	unsigned chan;
   2873 	int i;
   2874 
   2875 	for (i = 0; i < info->num_outputs; i++) {
   2876 		LLVMValueRef *out_ptr = ctx->outputs[i];
   2877 		int param_index;
   2878 
   2879 		if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
   2880 		    info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
   2881 			continue;
   2882 
   2883 		param_index = si_shader_io_get_unique_index(info->output_semantic_name[i],
   2884 							    info->output_semantic_index[i]);
   2885 
   2886 		for (chan = 0; chan < 4; chan++) {
   2887 			LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
   2888 			out_val = LLVMBuildBitCast(gallivm->builder, out_val, ctx->i32, "");
   2889 
   2890 			build_tbuffer_store(ctx,
   2891 					    ctx->esgs_ring,
   2892 					    out_val, 1,
   2893 					    LLVMGetUndef(ctx->i32), soffset,
   2894 					    (4 * param_index + chan) * 4,
   2895 					    V_008F0C_BUF_DATA_FORMAT_32,
   2896 					    V_008F0C_BUF_NUM_FORMAT_UINT,
   2897 					    0, 0, 1, 1, 0);
   2898 		}
   2899 	}
   2900 }
   2901 
   2902 static void si_llvm_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
   2903 {
   2904 	struct si_shader_context *ctx = si_shader_context(bld_base);
   2905 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   2906 	LLVMValueRef args[2];
   2907 
   2908 	args[0] = lp_build_const_int32(gallivm,	SENDMSG_GS_OP_NOP | SENDMSG_GS_DONE);
   2909 	args[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID);
   2910 	lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
   2911 			   ctx->voidt, args, 2, 0);
   2912 }
   2913 
   2914 static void si_llvm_emit_vs_epilogue(struct lp_build_tgsi_context *bld_base)
   2915 {
   2916 	struct si_shader_context *ctx = si_shader_context(bld_base);
   2917 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   2918 	struct tgsi_shader_info *info = &ctx->shader->selector->info;
   2919 	struct si_shader_output_values *outputs = NULL;
   2920 	int i,j;
   2921 
   2922 	assert(!ctx->shader->is_gs_copy_shader);
   2923 
   2924 	outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
   2925 
   2926 	/* Vertex color clamping.
   2927 	 *
   2928 	 * This uses a state constant loaded in a user data SGPR and
   2929 	 * an IF statement is added that clamps all colors if the constant
   2930 	 * is true.
   2931 	 */
   2932 	if (ctx->type == PIPE_SHADER_VERTEX) {
   2933 		struct lp_build_if_state if_ctx;
   2934 		LLVMValueRef cond = NULL;
   2935 		LLVMValueRef addr, val;
   2936 
   2937 		for (i = 0; i < info->num_outputs; i++) {
   2938 			if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
   2939 			    info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
   2940 				continue;
   2941 
   2942 			/* We've found a color. */
   2943 			if (!cond) {
   2944 				/* The state is in the first bit of the user SGPR. */
   2945 				cond = LLVMGetParam(ctx->main_fn,
   2946 						    SI_PARAM_VS_STATE_BITS);
   2947 				cond = LLVMBuildTrunc(gallivm->builder, cond,
   2948 						      ctx->i1, "");
   2949 				lp_build_if(&if_ctx, gallivm, cond);
   2950 			}
   2951 
   2952 			for (j = 0; j < 4; j++) {
   2953 				addr = ctx->outputs[i][j];
   2954 				val = LLVMBuildLoad(gallivm->builder, addr, "");
   2955 				val = si_llvm_saturate(bld_base, val);
   2956 				LLVMBuildStore(gallivm->builder, val, addr);
   2957 			}
   2958 		}
   2959 
   2960 		if (cond)
   2961 			lp_build_endif(&if_ctx);
   2962 	}
   2963 
   2964 	for (i = 0; i < info->num_outputs; i++) {
   2965 		outputs[i].semantic_name = info->output_semantic_name[i];
   2966 		outputs[i].semantic_index = info->output_semantic_index[i];
   2967 
   2968 		for (j = 0; j < 4; j++) {
   2969 			outputs[i].values[j] =
   2970 				LLVMBuildLoad(gallivm->builder,
   2971 					      ctx->outputs[i][j],
   2972 					      "");
   2973 			outputs[i].vertex_stream[j] =
   2974 				(info->output_streams[i] >> (2 * j)) & 3;
   2975 		}
   2976 
   2977 	}
   2978 
   2979 	/* Return the primitive ID from the LLVM function. */
   2980 	ctx->return_value =
   2981 		LLVMBuildInsertValue(gallivm->builder,
   2982 				     ctx->return_value,
   2983 				     bitcast(bld_base, TGSI_TYPE_FLOAT,
   2984 					     get_primitive_id(bld_base, 0)),
   2985 				     VS_EPILOG_PRIMID_LOC, "");
   2986 
   2987 	if (ctx->shader->selector->so.num_outputs)
   2988 		si_llvm_emit_streamout(ctx, outputs, i, 0);
   2989 	si_llvm_export_vs(bld_base, outputs, i);
   2990 	FREE(outputs);
   2991 }
   2992 
   2993 struct si_ps_exports {
   2994 	unsigned num;
   2995 	LLVMValueRef args[10][9];
   2996 };
   2997 
   2998 unsigned si_get_spi_shader_z_format(bool writes_z, bool writes_stencil,
   2999 				    bool writes_samplemask)
   3000 {
   3001 	if (writes_z) {
   3002 		/* Z needs 32 bits. */
   3003 		if (writes_samplemask)
   3004 			return V_028710_SPI_SHADER_32_ABGR;
   3005 		else if (writes_stencil)
   3006 			return V_028710_SPI_SHADER_32_GR;
   3007 		else
   3008 			return V_028710_SPI_SHADER_32_R;
   3009 	} else if (writes_stencil || writes_samplemask) {
   3010 		/* Both stencil and sample mask need only 16 bits. */
   3011 		return V_028710_SPI_SHADER_UINT16_ABGR;
   3012 	} else {
   3013 		return V_028710_SPI_SHADER_ZERO;
   3014 	}
   3015 }
   3016 
   3017 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
   3018 			    LLVMValueRef depth, LLVMValueRef stencil,
   3019 			    LLVMValueRef samplemask, struct si_ps_exports *exp)
   3020 {
   3021 	struct si_shader_context *ctx = si_shader_context(bld_base);
   3022 	struct lp_build_context *base = &bld_base->base;
   3023 	struct lp_build_context *uint = &bld_base->uint_bld;
   3024 	LLVMValueRef args[9];
   3025 	unsigned mask = 0;
   3026 	unsigned format = si_get_spi_shader_z_format(depth != NULL,
   3027 						     stencil != NULL,
   3028 						     samplemask != NULL);
   3029 
   3030 	assert(depth || stencil || samplemask);
   3031 
   3032 	args[1] = uint->one; /* whether the EXEC mask is valid */
   3033 	args[2] = uint->one; /* DONE bit */
   3034 
   3035 	/* Specify the target we are exporting */
   3036 	args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_MRTZ);
   3037 
   3038 	args[4] = uint->zero; /* COMP flag */
   3039 	args[5] = base->undef; /* R, depth */
   3040 	args[6] = base->undef; /* G, stencil test value[0:7], stencil op value[8:15] */
   3041 	args[7] = base->undef; /* B, sample mask */
   3042 	args[8] = base->undef; /* A, alpha to mask */
   3043 
   3044 	if (format == V_028710_SPI_SHADER_UINT16_ABGR) {
   3045 		assert(!depth);
   3046 		args[4] = uint->one; /* COMPR flag */
   3047 
   3048 		if (stencil) {
   3049 			/* Stencil should be in X[23:16]. */
   3050 			stencil = bitcast(bld_base, TGSI_TYPE_UNSIGNED, stencil);
   3051 			stencil = LLVMBuildShl(base->gallivm->builder, stencil,
   3052 					       LLVMConstInt(ctx->i32, 16, 0), "");
   3053 			args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT, stencil);
   3054 			mask |= 0x3;
   3055 		}
   3056 		if (samplemask) {
   3057 			/* SampleMask should be in Y[15:0]. */
   3058 			args[6] = samplemask;
   3059 			mask |= 0xc;
   3060 		}
   3061 	} else {
   3062 		if (depth) {
   3063 			args[5] = depth;
   3064 			mask |= 0x1;
   3065 		}
   3066 		if (stencil) {
   3067 			args[6] = stencil;
   3068 			mask |= 0x2;
   3069 		}
   3070 		if (samplemask) {
   3071 			args[7] = samplemask;
   3072 			mask |= 0x4;
   3073 		}
   3074 	}
   3075 
   3076 	/* SI (except OLAND and HAINAN) has a bug that it only looks
   3077 	 * at the X writemask component. */
   3078 	if (ctx->screen->b.chip_class == SI &&
   3079 	    ctx->screen->b.family != CHIP_OLAND &&
   3080 	    ctx->screen->b.family != CHIP_HAINAN)
   3081 		mask |= 0x1;
   3082 
   3083 	/* Specify which components to enable */
   3084 	args[0] = lp_build_const_int32(base->gallivm, mask);
   3085 
   3086 	memcpy(exp->args[exp->num++], args, sizeof(args));
   3087 }
   3088 
   3089 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
   3090 				LLVMValueRef *color, unsigned index,
   3091 				unsigned samplemask_param,
   3092 				bool is_last, struct si_ps_exports *exp)
   3093 {
   3094 	struct si_shader_context *ctx = si_shader_context(bld_base);
   3095 	struct lp_build_context *base = &bld_base->base;
   3096 	int i;
   3097 
   3098 	/* Clamp color */
   3099 	if (ctx->shader->key.part.ps.epilog.clamp_color)
   3100 		for (i = 0; i < 4; i++)
   3101 			color[i] = si_llvm_saturate(bld_base, color[i]);
   3102 
   3103 	/* Alpha to one */
   3104 	if (ctx->shader->key.part.ps.epilog.alpha_to_one)
   3105 		color[3] = base->one;
   3106 
   3107 	/* Alpha test */
   3108 	if (index == 0 &&
   3109 	    ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
   3110 		si_alpha_test(bld_base, color[3]);
   3111 
   3112 	/* Line & polygon smoothing */
   3113 	if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
   3114 		color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
   3115 							 samplemask_param);
   3116 
   3117 	/* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
   3118 	if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
   3119 		LLVMValueRef args[8][9];
   3120 		int c, last = -1;
   3121 
   3122 		/* Get the export arguments, also find out what the last one is. */
   3123 		for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
   3124 			si_llvm_init_export_args(bld_base, color,
   3125 						 V_008DFC_SQ_EXP_MRT + c, args[c]);
   3126 			if (args[c][0] != bld_base->uint_bld.zero)
   3127 				last = c;
   3128 		}
   3129 
   3130 		/* Emit all exports. */
   3131 		for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
   3132 			if (is_last && last == c) {
   3133 				args[c][1] = bld_base->uint_bld.one; /* whether the EXEC mask is valid */
   3134 				args[c][2] = bld_base->uint_bld.one; /* DONE bit */
   3135 			} else if (args[c][0] == bld_base->uint_bld.zero)
   3136 				continue; /* unnecessary NULL export */
   3137 
   3138 			memcpy(exp->args[exp->num++], args[c], sizeof(args[c]));
   3139 		}
   3140 	} else {
   3141 		LLVMValueRef args[9];
   3142 
   3143 		/* Export */
   3144 		si_llvm_init_export_args(bld_base, color, V_008DFC_SQ_EXP_MRT + index,
   3145 					 args);
   3146 		if (is_last) {
   3147 			args[1] = bld_base->uint_bld.one; /* whether the EXEC mask is valid */
   3148 			args[2] = bld_base->uint_bld.one; /* DONE bit */
   3149 		} else if (args[0] == bld_base->uint_bld.zero)
   3150 			return; /* unnecessary NULL export */
   3151 
   3152 		memcpy(exp->args[exp->num++], args, sizeof(args));
   3153 	}
   3154 }
   3155 
   3156 static void si_emit_ps_exports(struct si_shader_context *ctx,
   3157 			       struct si_ps_exports *exp)
   3158 {
   3159 	for (unsigned i = 0; i < exp->num; i++)
   3160 		lp_build_intrinsic(ctx->gallivm.builder,
   3161 				   "llvm.SI.export", ctx->voidt,
   3162 				   exp->args[i], 9, 0);
   3163 }
   3164 
   3165 static void si_export_null(struct lp_build_tgsi_context *bld_base)
   3166 {
   3167 	struct si_shader_context *ctx = si_shader_context(bld_base);
   3168 	struct lp_build_context *base = &bld_base->base;
   3169 	struct lp_build_context *uint = &bld_base->uint_bld;
   3170 	LLVMValueRef args[9];
   3171 
   3172 	args[0] = lp_build_const_int32(base->gallivm, 0x0); /* enabled channels */
   3173 	args[1] = uint->one; /* whether the EXEC mask is valid */
   3174 	args[2] = uint->one; /* DONE bit */
   3175 	args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_NULL);
   3176 	args[4] = uint->zero; /* COMPR flag (0 = 32-bit export) */
   3177 	args[5] = base->undef; /* R */
   3178 	args[6] = base->undef; /* G */
   3179 	args[7] = base->undef; /* B */
   3180 	args[8] = base->undef; /* A */
   3181 
   3182 	lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
   3183 			   ctx->voidt, args, 9, 0);
   3184 }
   3185 
   3186 /**
   3187  * Return PS outputs in this order:
   3188  *
   3189  * v[0:3] = color0.xyzw
   3190  * v[4:7] = color1.xyzw
   3191  * ...
   3192  * vN+0 = Depth
   3193  * vN+1 = Stencil
   3194  * vN+2 = SampleMask
   3195  * vN+3 = SampleMaskIn (used for OpenGL smoothing)
   3196  *
   3197  * The alpha-ref SGPR is returned via its original location.
   3198  */
   3199 static void si_llvm_return_fs_outputs(struct lp_build_tgsi_context *bld_base)
   3200 {
   3201 	struct si_shader_context *ctx = si_shader_context(bld_base);
   3202 	struct si_shader *shader = ctx->shader;
   3203 	struct lp_build_context *base = &bld_base->base;
   3204 	struct tgsi_shader_info *info = &shader->selector->info;
   3205 	LLVMBuilderRef builder = base->gallivm->builder;
   3206 	unsigned i, j, first_vgpr, vgpr;
   3207 
   3208 	LLVMValueRef color[8][4] = {};
   3209 	LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
   3210 	LLVMValueRef ret;
   3211 
   3212 	/* Read the output values. */
   3213 	for (i = 0; i < info->num_outputs; i++) {
   3214 		unsigned semantic_name = info->output_semantic_name[i];
   3215 		unsigned semantic_index = info->output_semantic_index[i];
   3216 
   3217 		switch (semantic_name) {
   3218 		case TGSI_SEMANTIC_COLOR:
   3219 			assert(semantic_index < 8);
   3220 			for (j = 0; j < 4; j++) {
   3221 				LLVMValueRef ptr = ctx->outputs[i][j];
   3222 				LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
   3223 				color[semantic_index][j] = result;
   3224 			}
   3225 			break;
   3226 		case TGSI_SEMANTIC_POSITION:
   3227 			depth = LLVMBuildLoad(builder,
   3228 					      ctx->outputs[i][2], "");
   3229 			break;
   3230 		case TGSI_SEMANTIC_STENCIL:
   3231 			stencil = LLVMBuildLoad(builder,
   3232 						ctx->outputs[i][1], "");
   3233 			break;
   3234 		case TGSI_SEMANTIC_SAMPLEMASK:
   3235 			samplemask = LLVMBuildLoad(builder,
   3236 						   ctx->outputs[i][0], "");
   3237 			break;
   3238 		default:
   3239 			fprintf(stderr, "Warning: SI unhandled fs output type:%d\n",
   3240 				semantic_name);
   3241 		}
   3242 	}
   3243 
   3244 	/* Fill the return structure. */
   3245 	ret = ctx->return_value;
   3246 
   3247 	/* Set SGPRs. */
   3248 	ret = LLVMBuildInsertValue(builder, ret,
   3249 				   bitcast(bld_base, TGSI_TYPE_SIGNED,
   3250 					   LLVMGetParam(ctx->main_fn,
   3251 							SI_PARAM_ALPHA_REF)),
   3252 				   SI_SGPR_ALPHA_REF, "");
   3253 
   3254 	/* Set VGPRs */
   3255 	first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
   3256 	for (i = 0; i < ARRAY_SIZE(color); i++) {
   3257 		if (!color[i][0])
   3258 			continue;
   3259 
   3260 		for (j = 0; j < 4; j++)
   3261 			ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
   3262 	}
   3263 	if (depth)
   3264 		ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
   3265 	if (stencil)
   3266 		ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
   3267 	if (samplemask)
   3268 		ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
   3269 
   3270 	/* Add the input sample mask for smoothing at the end. */
   3271 	if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
   3272 		vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
   3273 	ret = LLVMBuildInsertValue(builder, ret,
   3274 				   LLVMGetParam(ctx->main_fn,
   3275 						SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
   3276 
   3277 	ctx->return_value = ret;
   3278 }
   3279 
   3280 /**
   3281  * Given a v8i32 resource descriptor for a buffer, extract the size of the
   3282  * buffer in number of elements and return it as an i32.
   3283  */
   3284 static LLVMValueRef get_buffer_size(
   3285 	struct lp_build_tgsi_context *bld_base,
   3286 	LLVMValueRef descriptor)
   3287 {
   3288 	struct si_shader_context *ctx = si_shader_context(bld_base);
   3289 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   3290 	LLVMBuilderRef builder = gallivm->builder;
   3291 	LLVMValueRef size =
   3292 		LLVMBuildExtractElement(builder, descriptor,
   3293 					lp_build_const_int32(gallivm, 2), "");
   3294 
   3295 	if (ctx->screen->b.chip_class >= VI) {
   3296 		/* On VI, the descriptor contains the size in bytes,
   3297 		 * but TXQ must return the size in elements.
   3298 		 * The stride is always non-zero for resources using TXQ.
   3299 		 */
   3300 		LLVMValueRef stride =
   3301 			LLVMBuildExtractElement(builder, descriptor,
   3302 						lp_build_const_int32(gallivm, 1), "");
   3303 		stride = LLVMBuildLShr(builder, stride,
   3304 				       lp_build_const_int32(gallivm, 16), "");
   3305 		stride = LLVMBuildAnd(builder, stride,
   3306 				      lp_build_const_int32(gallivm, 0x3FFF), "");
   3307 
   3308 		size = LLVMBuildUDiv(builder, size, stride, "");
   3309 	}
   3310 
   3311 	return size;
   3312 }
   3313 
   3314 /**
   3315  * Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
   3316  * intrinsic names).
   3317  */
   3318 static void build_type_name_for_intr(
   3319 	LLVMTypeRef type,
   3320 	char *buf, unsigned bufsize)
   3321 {
   3322 	LLVMTypeRef elem_type = type;
   3323 
   3324 	assert(bufsize >= 8);
   3325 
   3326 	if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
   3327 		int ret = snprintf(buf, bufsize, "v%u",
   3328 					LLVMGetVectorSize(type));
   3329 		if (ret < 0) {
   3330 			char *type_name = LLVMPrintTypeToString(type);
   3331 			fprintf(stderr, "Error building type name for: %s\n",
   3332 				type_name);
   3333 			return;
   3334 		}
   3335 		elem_type = LLVMGetElementType(type);
   3336 		buf += ret;
   3337 		bufsize -= ret;
   3338 	}
   3339 	switch (LLVMGetTypeKind(elem_type)) {
   3340 	default: break;
   3341 	case LLVMIntegerTypeKind:
   3342 		snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type));
   3343 		break;
   3344 	case LLVMFloatTypeKind:
   3345 		snprintf(buf, bufsize, "f32");
   3346 		break;
   3347 	case LLVMDoubleTypeKind:
   3348 		snprintf(buf, bufsize, "f64");
   3349 		break;
   3350 	}
   3351 }
   3352 
   3353 static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
   3354 				struct lp_build_tgsi_context *bld_base,
   3355 				struct lp_build_emit_data *emit_data);
   3356 
   3357 /* Prevent optimizations (at least of memory accesses) across the current
   3358  * point in the program by emitting empty inline assembly that is marked as
   3359  * having side effects.
   3360  */
   3361 #if 0 /* unused currently */
   3362 static void emit_optimization_barrier(struct si_shader_context *ctx)
   3363 {
   3364 	LLVMBuilderRef builder = ctx->gallivm.builder;
   3365 	LLVMTypeRef ftype = LLVMFunctionType(ctx->voidt, NULL, 0, false);
   3366 	LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, "", "", true, false);
   3367 	LLVMBuildCall(builder, inlineasm, NULL, 0, "");
   3368 }
   3369 #endif
   3370 
   3371 /* Combine these with & instead of |. */
   3372 #define NOOP_WAITCNT 0xf7f
   3373 #define LGKM_CNT 0x07f
   3374 #define VM_CNT 0xf70
   3375 
   3376 static void emit_waitcnt(struct si_shader_context *ctx, unsigned simm16)
   3377 {
   3378 	struct gallivm_state *gallivm = &ctx->gallivm;
   3379 	LLVMBuilderRef builder = gallivm->builder;
   3380 	LLVMValueRef args[1] = {
   3381 		lp_build_const_int32(gallivm, simm16)
   3382 	};
   3383 	lp_build_intrinsic(builder, "llvm.amdgcn.s.waitcnt",
   3384 			   ctx->voidt, args, 1, 0);
   3385 }
   3386 
   3387 static void membar_emit(
   3388 		const struct lp_build_tgsi_action *action,
   3389 		struct lp_build_tgsi_context *bld_base,
   3390 		struct lp_build_emit_data *emit_data)
   3391 {
   3392 	struct si_shader_context *ctx = si_shader_context(bld_base);
   3393 	LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
   3394 	unsigned flags = LLVMConstIntGetZExtValue(src0);
   3395 	unsigned waitcnt = NOOP_WAITCNT;
   3396 
   3397 	if (flags & TGSI_MEMBAR_THREAD_GROUP)
   3398 		waitcnt &= VM_CNT & LGKM_CNT;
   3399 
   3400 	if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
   3401 		     TGSI_MEMBAR_SHADER_BUFFER |
   3402 		     TGSI_MEMBAR_SHADER_IMAGE))
   3403 		waitcnt &= VM_CNT;
   3404 
   3405 	if (flags & TGSI_MEMBAR_SHARED)
   3406 		waitcnt &= LGKM_CNT;
   3407 
   3408 	if (waitcnt != NOOP_WAITCNT)
   3409 		emit_waitcnt(ctx, waitcnt);
   3410 }
   3411 
   3412 static LLVMValueRef
   3413 shader_buffer_fetch_rsrc(struct si_shader_context *ctx,
   3414 			 const struct tgsi_full_src_register *reg)
   3415 {
   3416 	LLVMValueRef index;
   3417 	LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
   3418 					     SI_PARAM_SHADER_BUFFERS);
   3419 
   3420 	if (!reg->Register.Indirect)
   3421 		index = LLVMConstInt(ctx->i32, reg->Register.Index, 0);
   3422 	else
   3423 		index = get_bounded_indirect_index(ctx, &reg->Indirect,
   3424 						   reg->Register.Index,
   3425 						   SI_NUM_SHADER_BUFFERS);
   3426 
   3427 	return build_indexed_load_const(ctx, rsrc_ptr, index);
   3428 }
   3429 
   3430 static bool tgsi_is_array_sampler(unsigned target)
   3431 {
   3432 	return target == TGSI_TEXTURE_1D_ARRAY ||
   3433 	       target == TGSI_TEXTURE_SHADOW1D_ARRAY ||
   3434 	       target == TGSI_TEXTURE_2D_ARRAY ||
   3435 	       target == TGSI_TEXTURE_SHADOW2D_ARRAY ||
   3436 	       target == TGSI_TEXTURE_CUBE_ARRAY ||
   3437 	       target == TGSI_TEXTURE_SHADOWCUBE_ARRAY ||
   3438 	       target == TGSI_TEXTURE_2D_ARRAY_MSAA;
   3439 }
   3440 
   3441 static bool tgsi_is_array_image(unsigned target)
   3442 {
   3443 	return target == TGSI_TEXTURE_3D ||
   3444 	       target == TGSI_TEXTURE_CUBE ||
   3445 	       target == TGSI_TEXTURE_1D_ARRAY ||
   3446 	       target == TGSI_TEXTURE_2D_ARRAY ||
   3447 	       target == TGSI_TEXTURE_CUBE_ARRAY ||
   3448 	       target == TGSI_TEXTURE_2D_ARRAY_MSAA;
   3449 }
   3450 
   3451 /**
   3452  * Given a 256-bit resource descriptor, force the DCC enable bit to off.
   3453  *
   3454  * At least on Tonga, executing image stores on images with DCC enabled and
   3455  * non-trivial can eventually lead to lockups. This can occur when an
   3456  * application binds an image as read-only but then uses a shader that writes
   3457  * to it. The OpenGL spec allows almost arbitrarily bad behavior (including
   3458  * program termination) in this case, but it doesn't cost much to be a bit
   3459  * nicer: disabling DCC in the shader still leads to undefined results but
   3460  * avoids the lockup.
   3461  */
   3462 static LLVMValueRef force_dcc_off(struct si_shader_context *ctx,
   3463 				  LLVMValueRef rsrc)
   3464 {
   3465 	if (ctx->screen->b.chip_class <= CIK) {
   3466 		return rsrc;
   3467 	} else {
   3468 		LLVMBuilderRef builder = ctx->gallivm.builder;
   3469 		LLVMValueRef i32_6 = LLVMConstInt(ctx->i32, 6, 0);
   3470 		LLVMValueRef i32_C = LLVMConstInt(ctx->i32, C_008F28_COMPRESSION_EN, 0);
   3471 		LLVMValueRef tmp;
   3472 
   3473 		tmp = LLVMBuildExtractElement(builder, rsrc, i32_6, "");
   3474 		tmp = LLVMBuildAnd(builder, tmp, i32_C, "");
   3475 		return LLVMBuildInsertElement(builder, rsrc, tmp, i32_6, "");
   3476 	}
   3477 }
   3478 
   3479 static LLVMTypeRef const_array(LLVMTypeRef elem_type, int num_elements)
   3480 {
   3481 	return LLVMPointerType(LLVMArrayType(elem_type, num_elements),
   3482 			       CONST_ADDR_SPACE);
   3483 }
   3484 
   3485 /**
   3486  * Load the resource descriptor for \p image.
   3487  */
   3488 static void
   3489 image_fetch_rsrc(
   3490 	struct lp_build_tgsi_context *bld_base,
   3491 	const struct tgsi_full_src_register *image,
   3492 	bool is_store, unsigned target,
   3493 	LLVMValueRef *rsrc)
   3494 {
   3495 	struct si_shader_context *ctx = si_shader_context(bld_base);
   3496 	LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
   3497 					     SI_PARAM_IMAGES);
   3498 	LLVMValueRef index, tmp;
   3499 	bool dcc_off = target != TGSI_TEXTURE_BUFFER && is_store;
   3500 
   3501 	assert(image->Register.File == TGSI_FILE_IMAGE);
   3502 
   3503 	if (!image->Register.Indirect) {
   3504 		const struct tgsi_shader_info *info = bld_base->info;
   3505 
   3506 		index = LLVMConstInt(ctx->i32, image->Register.Index, 0);
   3507 
   3508 		if (info->images_writemask & (1 << image->Register.Index) &&
   3509 		    target != TGSI_TEXTURE_BUFFER)
   3510 			dcc_off = true;
   3511 	} else {
   3512 		/* From the GL_ARB_shader_image_load_store extension spec:
   3513 		 *
   3514 		 *    If a shader performs an image load, store, or atomic
   3515 		 *    operation using an image variable declared as an array,
   3516 		 *    and if the index used to select an individual element is
   3517 		 *    negative or greater than or equal to the size of the
   3518 		 *    array, the results of the operation are undefined but may
   3519 		 *    not lead to termination.
   3520 		 */
   3521 		index = get_bounded_indirect_index(ctx, &image->Indirect,
   3522 						   image->Register.Index,
   3523 						   SI_NUM_IMAGES);
   3524 	}
   3525 
   3526 	if (target == TGSI_TEXTURE_BUFFER) {
   3527 		LLVMBuilderRef builder = ctx->gallivm.builder;
   3528 
   3529 		rsrc_ptr = LLVMBuildPointerCast(builder, rsrc_ptr,
   3530 						const_array(ctx->v4i32, 0), "");
   3531 		index = LLVMBuildMul(builder, index,
   3532 				     LLVMConstInt(ctx->i32, 2, 0), "");
   3533 		index = LLVMBuildAdd(builder, index,
   3534 				     LLVMConstInt(ctx->i32, 1, 0), "");
   3535 		*rsrc = build_indexed_load_const(ctx, rsrc_ptr, index);
   3536 		return;
   3537 	}
   3538 
   3539 	tmp = build_indexed_load_const(ctx, rsrc_ptr, index);
   3540 	if (dcc_off)
   3541 		tmp = force_dcc_off(ctx, tmp);
   3542 	*rsrc = tmp;
   3543 }
   3544 
   3545 static LLVMValueRef image_fetch_coords(
   3546 		struct lp_build_tgsi_context *bld_base,
   3547 		const struct tgsi_full_instruction *inst,
   3548 		unsigned src)
   3549 {
   3550 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   3551 	LLVMBuilderRef builder = gallivm->builder;
   3552 	unsigned target = inst->Memory.Texture;
   3553 	unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
   3554 	LLVMValueRef coords[4];
   3555 	LLVMValueRef tmp;
   3556 	int chan;
   3557 
   3558 	for (chan = 0; chan < num_coords; ++chan) {
   3559 		tmp = lp_build_emit_fetch(bld_base, inst, src, chan);
   3560 		tmp = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
   3561 		coords[chan] = tmp;
   3562 	}
   3563 
   3564 	if (num_coords == 1)
   3565 		return coords[0];
   3566 
   3567 	if (num_coords == 3) {
   3568 		/* LLVM has difficulties lowering 3-element vectors. */
   3569 		coords[3] = bld_base->uint_bld.undef;
   3570 		num_coords = 4;
   3571 	}
   3572 
   3573 	return lp_build_gather_values(gallivm, coords, num_coords);
   3574 }
   3575 
   3576 /**
   3577  * Append the extra mode bits that are used by image load and store.
   3578  */
   3579 static void image_append_args(
   3580 		struct si_shader_context *ctx,
   3581 		struct lp_build_emit_data * emit_data,
   3582 		unsigned target,
   3583 		bool atomic,
   3584 		bool force_glc)
   3585 {
   3586 	const struct tgsi_full_instruction *inst = emit_data->inst;
   3587 	LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
   3588 	LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
   3589 	LLVMValueRef r128 = i1false;
   3590 	LLVMValueRef da = tgsi_is_array_image(target) ? i1true : i1false;
   3591 	LLVMValueRef glc =
   3592 		force_glc ||
   3593 		inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE) ?
   3594 		i1true : i1false;
   3595 	LLVMValueRef slc = i1false;
   3596 	LLVMValueRef lwe = i1false;
   3597 
   3598 	if (atomic || (HAVE_LLVM <= 0x0309)) {
   3599 		emit_data->args[emit_data->arg_count++] = r128;
   3600 		emit_data->args[emit_data->arg_count++] = da;
   3601 		if (!atomic) {
   3602 			emit_data->args[emit_data->arg_count++] = glc;
   3603 		}
   3604 		emit_data->args[emit_data->arg_count++] = slc;
   3605 		return;
   3606 	}
   3607 
   3608 	/* HAVE_LLVM >= 0x0400 */
   3609 	emit_data->args[emit_data->arg_count++] = glc;
   3610 	emit_data->args[emit_data->arg_count++] = slc;
   3611 	emit_data->args[emit_data->arg_count++] = lwe;
   3612 	emit_data->args[emit_data->arg_count++] = da;
   3613 }
   3614 
   3615 /**
   3616  * Append the resource and indexing arguments for buffer intrinsics.
   3617  *
   3618  * \param rsrc the v4i32 buffer resource
   3619  * \param index index into the buffer (stride-based)
   3620  * \param offset byte offset into the buffer
   3621  */
   3622 static void buffer_append_args(
   3623 		struct si_shader_context *ctx,
   3624 		struct lp_build_emit_data *emit_data,
   3625 		LLVMValueRef rsrc,
   3626 		LLVMValueRef index,
   3627 		LLVMValueRef offset,
   3628 		bool atomic,
   3629 		bool force_glc)
   3630 {
   3631 	const struct tgsi_full_instruction *inst = emit_data->inst;
   3632 	LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
   3633 	LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
   3634 
   3635 	emit_data->args[emit_data->arg_count++] = rsrc;
   3636 	emit_data->args[emit_data->arg_count++] = index; /* vindex */
   3637 	emit_data->args[emit_data->arg_count++] = offset; /* voffset */
   3638 	if (!atomic) {
   3639 		emit_data->args[emit_data->arg_count++] =
   3640 			force_glc ||
   3641 			inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE) ?
   3642 			i1true : i1false; /* glc */
   3643 	}
   3644 	emit_data->args[emit_data->arg_count++] = i1false; /* slc */
   3645 }
   3646 
   3647 static void load_fetch_args(
   3648 		struct lp_build_tgsi_context * bld_base,
   3649 		struct lp_build_emit_data * emit_data)
   3650 {
   3651 	struct si_shader_context *ctx = si_shader_context(bld_base);
   3652 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   3653 	const struct tgsi_full_instruction * inst = emit_data->inst;
   3654 	unsigned target = inst->Memory.Texture;
   3655 	LLVMValueRef rsrc;
   3656 
   3657 	emit_data->dst_type = LLVMVectorType(bld_base->base.elem_type, 4);
   3658 
   3659 	if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
   3660 		LLVMBuilderRef builder = gallivm->builder;
   3661 		LLVMValueRef offset;
   3662 		LLVMValueRef tmp;
   3663 
   3664 		rsrc = shader_buffer_fetch_rsrc(ctx, &inst->Src[0]);
   3665 
   3666 		tmp = lp_build_emit_fetch(bld_base, inst, 1, 0);
   3667 		offset = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
   3668 
   3669 		buffer_append_args(ctx, emit_data, rsrc, bld_base->uint_bld.zero,
   3670 				   offset, false, false);
   3671 	} else if (inst->Src[0].Register.File == TGSI_FILE_IMAGE) {
   3672 		LLVMValueRef coords;
   3673 
   3674 		image_fetch_rsrc(bld_base, &inst->Src[0], false, target, &rsrc);
   3675 		coords = image_fetch_coords(bld_base, inst, 1);
   3676 
   3677 		if (target == TGSI_TEXTURE_BUFFER) {
   3678 			buffer_append_args(ctx, emit_data, rsrc, coords,
   3679 					   bld_base->uint_bld.zero, false, false);
   3680 		} else {
   3681 			emit_data->args[0] = coords;
   3682 			emit_data->args[1] = rsrc;
   3683 			emit_data->args[2] = lp_build_const_int32(gallivm, 15); /* dmask */
   3684 			emit_data->arg_count = 3;
   3685 
   3686 			image_append_args(ctx, emit_data, target, false, false);
   3687 		}
   3688 	}
   3689 }
   3690 
   3691 static void load_emit_buffer(struct si_shader_context *ctx,
   3692 			     struct lp_build_emit_data *emit_data)
   3693 {
   3694 	const struct tgsi_full_instruction *inst = emit_data->inst;
   3695 	struct gallivm_state *gallivm = &ctx->gallivm;
   3696 	LLVMBuilderRef builder = gallivm->builder;
   3697 	uint writemask = inst->Dst[0].Register.WriteMask;
   3698 	uint count = util_last_bit(writemask);
   3699 	const char *intrinsic_name;
   3700 	LLVMTypeRef dst_type;
   3701 
   3702 	switch (count) {
   3703 	case 1:
   3704 		intrinsic_name = "llvm.amdgcn.buffer.load.f32";
   3705 		dst_type = ctx->f32;
   3706 		break;
   3707 	case 2:
   3708 		intrinsic_name = "llvm.amdgcn.buffer.load.v2f32";
   3709 		dst_type = LLVMVectorType(ctx->f32, 2);
   3710 		break;
   3711 	default: // 3 & 4
   3712 		intrinsic_name = "llvm.amdgcn.buffer.load.v4f32";
   3713 		dst_type = ctx->v4f32;
   3714 		count = 4;
   3715 	}
   3716 
   3717 	emit_data->output[emit_data->chan] = lp_build_intrinsic(
   3718 			builder, intrinsic_name, dst_type,
   3719 			emit_data->args, emit_data->arg_count,
   3720 			LP_FUNC_ATTR_READONLY);
   3721 }
   3722 
   3723 static LLVMValueRef get_memory_ptr(struct si_shader_context *ctx,
   3724                                    const struct tgsi_full_instruction *inst,
   3725                                    LLVMTypeRef type, int arg)
   3726 {
   3727 	struct gallivm_state *gallivm = &ctx->gallivm;
   3728 	LLVMBuilderRef builder = gallivm->builder;
   3729 	LLVMValueRef offset, ptr;
   3730 	int addr_space;
   3731 
   3732 	offset = lp_build_emit_fetch(&ctx->bld_base, inst, arg, 0);
   3733 	offset = LLVMBuildBitCast(builder, offset, ctx->i32, "");
   3734 
   3735 	ptr = ctx->shared_memory;
   3736 	ptr = LLVMBuildGEP(builder, ptr, &offset, 1, "");
   3737 	addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
   3738 	ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(type, addr_space), "");
   3739 
   3740 	return ptr;
   3741 }
   3742 
   3743 static void load_emit_memory(
   3744 		struct si_shader_context *ctx,
   3745 		struct lp_build_emit_data *emit_data)
   3746 {
   3747 	const struct tgsi_full_instruction *inst = emit_data->inst;
   3748 	struct lp_build_context *base = &ctx->bld_base.base;
   3749 	struct gallivm_state *gallivm = &ctx->gallivm;
   3750 	LLVMBuilderRef builder = gallivm->builder;
   3751 	unsigned writemask = inst->Dst[0].Register.WriteMask;
   3752 	LLVMValueRef channels[4], ptr, derived_ptr, index;
   3753 	int chan;
   3754 
   3755 	ptr = get_memory_ptr(ctx, inst, base->elem_type, 1);
   3756 
   3757 	for (chan = 0; chan < 4; ++chan) {
   3758 		if (!(writemask & (1 << chan))) {
   3759 			channels[chan] = LLVMGetUndef(base->elem_type);
   3760 			continue;
   3761 		}
   3762 
   3763 		index = lp_build_const_int32(gallivm, chan);
   3764 		derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
   3765 		channels[chan] = LLVMBuildLoad(builder, derived_ptr, "");
   3766 	}
   3767 	emit_data->output[emit_data->chan] = lp_build_gather_values(gallivm, channels, 4);
   3768 }
   3769 
   3770 static void get_image_intr_name(const char *base_name,
   3771 				LLVMTypeRef data_type,
   3772 				LLVMTypeRef coords_type,
   3773 				LLVMTypeRef rsrc_type,
   3774 				char *out_name, unsigned out_len)
   3775 {
   3776 	char coords_type_name[8];
   3777 
   3778 	build_type_name_for_intr(coords_type, coords_type_name,
   3779 			    sizeof(coords_type_name));
   3780 
   3781 	if (HAVE_LLVM <= 0x0309) {
   3782 		snprintf(out_name, out_len, "%s.%s", base_name, coords_type_name);
   3783 	} else {
   3784 		char data_type_name[8];
   3785 		char rsrc_type_name[8];
   3786 
   3787 		build_type_name_for_intr(data_type, data_type_name,
   3788 					sizeof(data_type_name));
   3789 		build_type_name_for_intr(rsrc_type, rsrc_type_name,
   3790 					sizeof(rsrc_type_name));
   3791 		snprintf(out_name, out_len, "%s.%s.%s.%s", base_name,
   3792 			 data_type_name, coords_type_name, rsrc_type_name);
   3793 	}
   3794 }
   3795 
   3796 static void load_emit(
   3797 		const struct lp_build_tgsi_action *action,
   3798 		struct lp_build_tgsi_context *bld_base,
   3799 		struct lp_build_emit_data *emit_data)
   3800 {
   3801 	struct si_shader_context *ctx = si_shader_context(bld_base);
   3802 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   3803 	LLVMBuilderRef builder = gallivm->builder;
   3804 	const struct tgsi_full_instruction * inst = emit_data->inst;
   3805 	char intrinsic_name[64];
   3806 
   3807 	if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
   3808 		load_emit_memory(ctx, emit_data);
   3809 		return;
   3810 	}
   3811 
   3812 	if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
   3813 		emit_waitcnt(ctx, VM_CNT);
   3814 
   3815 	if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
   3816 		load_emit_buffer(ctx, emit_data);
   3817 		return;
   3818 	}
   3819 
   3820 	if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
   3821 		emit_data->output[emit_data->chan] =
   3822 			lp_build_intrinsic(
   3823 				builder, "llvm.amdgcn.buffer.load.format.v4f32", emit_data->dst_type,
   3824 				emit_data->args, emit_data->arg_count,
   3825 				LP_FUNC_ATTR_READONLY);
   3826 	} else {
   3827 		get_image_intr_name("llvm.amdgcn.image.load",
   3828 				emit_data->dst_type,		/* vdata */
   3829 				LLVMTypeOf(emit_data->args[0]), /* coords */
   3830 				LLVMTypeOf(emit_data->args[1]), /* rsrc */
   3831 				intrinsic_name, sizeof(intrinsic_name));
   3832 
   3833 		emit_data->output[emit_data->chan] =
   3834 			lp_build_intrinsic(
   3835 				builder, intrinsic_name, emit_data->dst_type,
   3836 				emit_data->args, emit_data->arg_count,
   3837 				LP_FUNC_ATTR_READONLY);
   3838 	}
   3839 }
   3840 
   3841 static void store_fetch_args(
   3842 		struct lp_build_tgsi_context * bld_base,
   3843 		struct lp_build_emit_data * emit_data)
   3844 {
   3845 	struct si_shader_context *ctx = si_shader_context(bld_base);
   3846 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   3847 	LLVMBuilderRef builder = gallivm->builder;
   3848 	const struct tgsi_full_instruction * inst = emit_data->inst;
   3849 	struct tgsi_full_src_register memory;
   3850 	LLVMValueRef chans[4];
   3851 	LLVMValueRef data;
   3852 	LLVMValueRef rsrc;
   3853 	unsigned chan;
   3854 
   3855 	emit_data->dst_type = LLVMVoidTypeInContext(gallivm->context);
   3856 
   3857 	for (chan = 0; chan < 4; ++chan) {
   3858 		chans[chan] = lp_build_emit_fetch(bld_base, inst, 1, chan);
   3859 	}
   3860 	data = lp_build_gather_values(gallivm, chans, 4);
   3861 
   3862 	emit_data->args[emit_data->arg_count++] = data;
   3863 
   3864 	memory = tgsi_full_src_register_from_dst(&inst->Dst[0]);
   3865 
   3866 	if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
   3867 		LLVMValueRef offset;
   3868 		LLVMValueRef tmp;
   3869 
   3870 		rsrc = shader_buffer_fetch_rsrc(ctx, &memory);
   3871 
   3872 		tmp = lp_build_emit_fetch(bld_base, inst, 0, 0);
   3873 		offset = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
   3874 
   3875 		buffer_append_args(ctx, emit_data, rsrc, bld_base->uint_bld.zero,
   3876 				   offset, false, false);
   3877 	} else if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE) {
   3878 		unsigned target = inst->Memory.Texture;
   3879 		LLVMValueRef coords;
   3880 
   3881 		/* 8bit/16bit TC L1 write corruption bug on SI.
   3882 		 * All store opcodes not aligned to a dword are affected.
   3883 		 *
   3884 		 * The only way to get unaligned stores in radeonsi is through
   3885 		 * shader images.
   3886 		 */
   3887 		bool force_glc = ctx->screen->b.chip_class == SI;
   3888 
   3889 		coords = image_fetch_coords(bld_base, inst, 0);
   3890 
   3891 		if (target == TGSI_TEXTURE_BUFFER) {
   3892 			image_fetch_rsrc(bld_base, &memory, true, target, &rsrc);
   3893 			buffer_append_args(ctx, emit_data, rsrc, coords,
   3894 					   bld_base->uint_bld.zero, false, force_glc);
   3895 		} else {
   3896 			emit_data->args[1] = coords;
   3897 			image_fetch_rsrc(bld_base, &memory, true, target,
   3898 					 &emit_data->args[2]);
   3899 			emit_data->args[3] = lp_build_const_int32(gallivm, 15); /* dmask */
   3900 			emit_data->arg_count = 4;
   3901 
   3902 			image_append_args(ctx, emit_data, target, false, force_glc);
   3903 		}
   3904 	}
   3905 }
   3906 
   3907 static void store_emit_buffer(
   3908 		struct si_shader_context *ctx,
   3909 		struct lp_build_emit_data *emit_data)
   3910 {
   3911 	const struct tgsi_full_instruction *inst = emit_data->inst;
   3912 	struct gallivm_state *gallivm = &ctx->gallivm;
   3913 	LLVMBuilderRef builder = gallivm->builder;
   3914 	struct lp_build_context *uint_bld = &ctx->bld_base.uint_bld;
   3915 	LLVMValueRef base_data = emit_data->args[0];
   3916 	LLVMValueRef base_offset = emit_data->args[3];
   3917 	unsigned writemask = inst->Dst[0].Register.WriteMask;
   3918 
   3919 	while (writemask) {
   3920 		int start, count;
   3921 		const char *intrinsic_name;
   3922 		LLVMValueRef data;
   3923 		LLVMValueRef offset;
   3924 		LLVMValueRef tmp;
   3925 
   3926 		u_bit_scan_consecutive_range(&writemask, &start, &count);
   3927 
   3928 		/* Due to an LLVM limitation, split 3-element writes
   3929 		 * into a 2-element and a 1-element write. */
   3930 		if (count == 3) {
   3931 			writemask |= 1 << (start + 2);
   3932 			count = 2;
   3933 		}
   3934 
   3935 		if (count == 4) {
   3936 			data = base_data;
   3937 			intrinsic_name = "llvm.amdgcn.buffer.store.v4f32";
   3938 		} else if (count == 2) {
   3939 			LLVMTypeRef v2f32 = LLVMVectorType(ctx->f32, 2);
   3940 
   3941 			tmp = LLVMBuildExtractElement(
   3942 				builder, base_data,
   3943 				lp_build_const_int32(gallivm, start), "");
   3944 			data = LLVMBuildInsertElement(
   3945 				builder, LLVMGetUndef(v2f32), tmp,
   3946 				uint_bld->zero, "");
   3947 
   3948 			tmp = LLVMBuildExtractElement(
   3949 				builder, base_data,
   3950 				lp_build_const_int32(gallivm, start + 1), "");
   3951 			data = LLVMBuildInsertElement(
   3952 				builder, data, tmp, uint_bld->one, "");
   3953 
   3954 			intrinsic_name = "llvm.amdgcn.buffer.store.v2f32";
   3955 		} else {
   3956 			assert(count == 1);
   3957 			data = LLVMBuildExtractElement(
   3958 				builder, base_data,
   3959 				lp_build_const_int32(gallivm, start), "");
   3960 			intrinsic_name = "llvm.amdgcn.buffer.store.f32";
   3961 		}
   3962 
   3963 		offset = base_offset;
   3964 		if (start != 0) {
   3965 			offset = LLVMBuildAdd(
   3966 				builder, offset,
   3967 				lp_build_const_int32(gallivm, start * 4), "");
   3968 		}
   3969 
   3970 		emit_data->args[0] = data;
   3971 		emit_data->args[3] = offset;
   3972 
   3973 		lp_build_intrinsic(
   3974 			builder, intrinsic_name, emit_data->dst_type,
   3975 			emit_data->args, emit_data->arg_count, 0);
   3976 	}
   3977 }
   3978 
   3979 static void store_emit_memory(
   3980 		struct si_shader_context *ctx,
   3981 		struct lp_build_emit_data *emit_data)
   3982 {
   3983 	const struct tgsi_full_instruction *inst = emit_data->inst;
   3984 	struct gallivm_state *gallivm = &ctx->gallivm;
   3985 	struct lp_build_context *base = &ctx->bld_base.base;
   3986 	LLVMBuilderRef builder = gallivm->builder;
   3987 	unsigned writemask = inst->Dst[0].Register.WriteMask;
   3988 	LLVMValueRef ptr, derived_ptr, data, index;
   3989 	int chan;
   3990 
   3991 	ptr = get_memory_ptr(ctx, inst, base->elem_type, 0);
   3992 
   3993 	for (chan = 0; chan < 4; ++chan) {
   3994 		if (!(writemask & (1 << chan))) {
   3995 			continue;
   3996 		}
   3997 		data = lp_build_emit_fetch(&ctx->bld_base, inst, 1, chan);
   3998 		index = lp_build_const_int32(gallivm, chan);
   3999 		derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
   4000 		LLVMBuildStore(builder, data, derived_ptr);
   4001 	}
   4002 }
   4003 
   4004 static void store_emit(
   4005 		const struct lp_build_tgsi_action *action,
   4006 		struct lp_build_tgsi_context *bld_base,
   4007 		struct lp_build_emit_data *emit_data)
   4008 {
   4009 	struct si_shader_context *ctx = si_shader_context(bld_base);
   4010 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   4011 	LLVMBuilderRef builder = gallivm->builder;
   4012 	const struct tgsi_full_instruction * inst = emit_data->inst;
   4013 	unsigned target = inst->Memory.Texture;
   4014 	char intrinsic_name[64];
   4015 
   4016 	if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY) {
   4017 		store_emit_memory(ctx, emit_data);
   4018 		return;
   4019 	}
   4020 
   4021 	if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
   4022 		emit_waitcnt(ctx, VM_CNT);
   4023 
   4024 	if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
   4025 		store_emit_buffer(ctx, emit_data);
   4026 		return;
   4027 	}
   4028 
   4029 	if (target == TGSI_TEXTURE_BUFFER) {
   4030 		emit_data->output[emit_data->chan] = lp_build_intrinsic(
   4031 			builder, "llvm.amdgcn.buffer.store.format.v4f32",
   4032 			emit_data->dst_type, emit_data->args,
   4033 			emit_data->arg_count, 0);
   4034 	} else {
   4035 		get_image_intr_name("llvm.amdgcn.image.store",
   4036 				LLVMTypeOf(emit_data->args[0]), /* vdata */
   4037 				LLVMTypeOf(emit_data->args[1]), /* coords */
   4038 				LLVMTypeOf(emit_data->args[2]), /* rsrc */
   4039 				intrinsic_name, sizeof(intrinsic_name));
   4040 
   4041 		emit_data->output[emit_data->chan] =
   4042 			lp_build_intrinsic(
   4043 				builder, intrinsic_name, emit_data->dst_type,
   4044 				emit_data->args, emit_data->arg_count, 0);
   4045 	}
   4046 }
   4047 
   4048 static void atomic_fetch_args(
   4049 		struct lp_build_tgsi_context * bld_base,
   4050 		struct lp_build_emit_data * emit_data)
   4051 {
   4052 	struct si_shader_context *ctx = si_shader_context(bld_base);
   4053 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   4054 	LLVMBuilderRef builder = gallivm->builder;
   4055 	const struct tgsi_full_instruction * inst = emit_data->inst;
   4056 	LLVMValueRef data1, data2;
   4057 	LLVMValueRef rsrc;
   4058 	LLVMValueRef tmp;
   4059 
   4060 	emit_data->dst_type = bld_base->base.elem_type;
   4061 
   4062 	tmp = lp_build_emit_fetch(bld_base, inst, 2, 0);
   4063 	data1 = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
   4064 
   4065 	if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
   4066 		tmp = lp_build_emit_fetch(bld_base, inst, 3, 0);
   4067 		data2 = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
   4068 	}
   4069 
   4070 	/* llvm.amdgcn.image/buffer.atomic.cmpswap reflect the hardware order
   4071 	 * of arguments, which is reversed relative to TGSI (and GLSL)
   4072 	 */
   4073 	if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
   4074 		emit_data->args[emit_data->arg_count++] = data2;
   4075 	emit_data->args[emit_data->arg_count++] = data1;
   4076 
   4077 	if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
   4078 		LLVMValueRef offset;
   4079 
   4080 		rsrc = shader_buffer_fetch_rsrc(ctx, &inst->Src[0]);
   4081 
   4082 		tmp = lp_build_emit_fetch(bld_base, inst, 1, 0);
   4083 		offset = LLVMBuildBitCast(builder, tmp, bld_base->uint_bld.elem_type, "");
   4084 
   4085 		buffer_append_args(ctx, emit_data, rsrc, bld_base->uint_bld.zero,
   4086 				   offset, true, false);
   4087 	} else if (inst->Src[0].Register.File == TGSI_FILE_IMAGE) {
   4088 		unsigned target = inst->Memory.Texture;
   4089 		LLVMValueRef coords;
   4090 
   4091 		image_fetch_rsrc(bld_base, &inst->Src[0], true, target, &rsrc);
   4092 		coords = image_fetch_coords(bld_base, inst, 1);
   4093 
   4094 		if (target == TGSI_TEXTURE_BUFFER) {
   4095 			buffer_append_args(ctx, emit_data, rsrc, coords,
   4096 					   bld_base->uint_bld.zero, true, false);
   4097 		} else {
   4098 			emit_data->args[emit_data->arg_count++] = coords;
   4099 			emit_data->args[emit_data->arg_count++] = rsrc;
   4100 
   4101 			image_append_args(ctx, emit_data, target, true, false);
   4102 		}
   4103 	}
   4104 }
   4105 
   4106 static void atomic_emit_memory(struct si_shader_context *ctx,
   4107                                struct lp_build_emit_data *emit_data) {
   4108 	struct gallivm_state *gallivm = &ctx->gallivm;
   4109 	LLVMBuilderRef builder = gallivm->builder;
   4110 	const struct tgsi_full_instruction * inst = emit_data->inst;
   4111 	LLVMValueRef ptr, result, arg;
   4112 
   4113 	ptr = get_memory_ptr(ctx, inst, ctx->i32, 1);
   4114 
   4115 	arg = lp_build_emit_fetch(&ctx->bld_base, inst, 2, 0);
   4116 	arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
   4117 
   4118 	if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
   4119 		LLVMValueRef new_data;
   4120 		new_data = lp_build_emit_fetch(&ctx->bld_base,
   4121 		                               inst, 3, 0);
   4122 
   4123 		new_data = LLVMBuildBitCast(builder, new_data, ctx->i32, "");
   4124 
   4125 #if HAVE_LLVM >= 0x309
   4126 		result = LLVMBuildAtomicCmpXchg(builder, ptr, arg, new_data,
   4127 		                       LLVMAtomicOrderingSequentiallyConsistent,
   4128 		                       LLVMAtomicOrderingSequentiallyConsistent,
   4129 		                       false);
   4130 #endif
   4131 
   4132 		result = LLVMBuildExtractValue(builder, result, 0, "");
   4133 	} else {
   4134 		LLVMAtomicRMWBinOp op;
   4135 
   4136 		switch(inst->Instruction.Opcode) {
   4137 			case TGSI_OPCODE_ATOMUADD:
   4138 				op = LLVMAtomicRMWBinOpAdd;
   4139 				break;
   4140 			case TGSI_OPCODE_ATOMXCHG:
   4141 				op = LLVMAtomicRMWBinOpXchg;
   4142 				break;
   4143 			case TGSI_OPCODE_ATOMAND:
   4144 				op = LLVMAtomicRMWBinOpAnd;
   4145 				break;
   4146 			case TGSI_OPCODE_ATOMOR:
   4147 				op = LLVMAtomicRMWBinOpOr;
   4148 				break;
   4149 			case TGSI_OPCODE_ATOMXOR:
   4150 				op = LLVMAtomicRMWBinOpXor;
   4151 				break;
   4152 			case TGSI_OPCODE_ATOMUMIN:
   4153 				op = LLVMAtomicRMWBinOpUMin;
   4154 				break;
   4155 			case TGSI_OPCODE_ATOMUMAX:
   4156 				op = LLVMAtomicRMWBinOpUMax;
   4157 				break;
   4158 			case TGSI_OPCODE_ATOMIMIN:
   4159 				op = LLVMAtomicRMWBinOpMin;
   4160 				break;
   4161 			case TGSI_OPCODE_ATOMIMAX:
   4162 				op = LLVMAtomicRMWBinOpMax;
   4163 				break;
   4164 			default:
   4165 				unreachable("unknown atomic opcode");
   4166 		}
   4167 
   4168 		result = LLVMBuildAtomicRMW(builder, op, ptr, arg,
   4169 		                       LLVMAtomicOrderingSequentiallyConsistent,
   4170 		                       false);
   4171 	}
   4172 	emit_data->output[emit_data->chan] = LLVMBuildBitCast(builder, result, emit_data->dst_type, "");
   4173 }
   4174 
   4175 static void atomic_emit(
   4176 		const struct lp_build_tgsi_action *action,
   4177 		struct lp_build_tgsi_context *bld_base,
   4178 		struct lp_build_emit_data *emit_data)
   4179 {
   4180 	struct si_shader_context *ctx = si_shader_context(bld_base);
   4181 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   4182 	LLVMBuilderRef builder = gallivm->builder;
   4183 	const struct tgsi_full_instruction * inst = emit_data->inst;
   4184 	char intrinsic_name[40];
   4185 	LLVMValueRef tmp;
   4186 
   4187 	if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
   4188 		atomic_emit_memory(ctx, emit_data);
   4189 		return;
   4190 	}
   4191 
   4192 	if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
   4193 	    inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
   4194 		snprintf(intrinsic_name, sizeof(intrinsic_name),
   4195 			 "llvm.amdgcn.buffer.atomic.%s", action->intr_name);
   4196 	} else {
   4197 		LLVMValueRef coords;
   4198 		char coords_type[8];
   4199 
   4200 		if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
   4201 			coords = emit_data->args[2];
   4202 		else
   4203 			coords = emit_data->args[1];
   4204 
   4205 		build_type_name_for_intr(LLVMTypeOf(coords), coords_type, sizeof(coords_type));
   4206 		snprintf(intrinsic_name, sizeof(intrinsic_name),
   4207 			 "llvm.amdgcn.image.atomic.%s.%s",
   4208 			 action->intr_name, coords_type);
   4209 	}
   4210 
   4211 	tmp = lp_build_intrinsic(
   4212 		builder, intrinsic_name, bld_base->uint_bld.elem_type,
   4213 		emit_data->args, emit_data->arg_count, 0);
   4214 	emit_data->output[emit_data->chan] =
   4215 		LLVMBuildBitCast(builder, tmp, bld_base->base.elem_type, "");
   4216 }
   4217 
   4218 static void resq_fetch_args(
   4219 		struct lp_build_tgsi_context * bld_base,
   4220 		struct lp_build_emit_data * emit_data)
   4221 {
   4222 	struct si_shader_context *ctx = si_shader_context(bld_base);
   4223 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   4224 	const struct tgsi_full_instruction *inst = emit_data->inst;
   4225 	const struct tgsi_full_src_register *reg = &inst->Src[0];
   4226 
   4227 	emit_data->dst_type = ctx->v4i32;
   4228 
   4229 	if (reg->Register.File == TGSI_FILE_BUFFER) {
   4230 		emit_data->args[0] = shader_buffer_fetch_rsrc(ctx, reg);
   4231 		emit_data->arg_count = 1;
   4232 	} else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
   4233 		image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture,
   4234 				 &emit_data->args[0]);
   4235 		emit_data->arg_count = 1;
   4236 	} else {
   4237 		emit_data->args[0] = bld_base->uint_bld.zero; /* mip level */
   4238 		image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture,
   4239 				 &emit_data->args[1]);
   4240 		emit_data->args[2] = lp_build_const_int32(gallivm, 15); /* dmask */
   4241 		emit_data->args[3] = bld_base->uint_bld.zero; /* unorm */
   4242 		emit_data->args[4] = bld_base->uint_bld.zero; /* r128 */
   4243 		emit_data->args[5] = tgsi_is_array_image(inst->Memory.Texture) ?
   4244 			bld_base->uint_bld.one : bld_base->uint_bld.zero; /* da */
   4245 		emit_data->args[6] = bld_base->uint_bld.zero; /* glc */
   4246 		emit_data->args[7] = bld_base->uint_bld.zero; /* slc */
   4247 		emit_data->args[8] = bld_base->uint_bld.zero; /* tfe */
   4248 		emit_data->args[9] = bld_base->uint_bld.zero; /* lwe */
   4249 		emit_data->arg_count = 10;
   4250 	}
   4251 }
   4252 
   4253 static void resq_emit(
   4254 		const struct lp_build_tgsi_action *action,
   4255 		struct lp_build_tgsi_context *bld_base,
   4256 		struct lp_build_emit_data *emit_data)
   4257 {
   4258 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   4259 	LLVMBuilderRef builder = gallivm->builder;
   4260 	const struct tgsi_full_instruction *inst = emit_data->inst;
   4261 	LLVMValueRef out;
   4262 
   4263 	if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
   4264 		out = LLVMBuildExtractElement(builder, emit_data->args[0],
   4265 					      lp_build_const_int32(gallivm, 2), "");
   4266 	} else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
   4267 		out = get_buffer_size(bld_base, emit_data->args[0]);
   4268 	} else {
   4269 		out = lp_build_intrinsic(
   4270 			builder, "llvm.SI.getresinfo.i32", emit_data->dst_type,
   4271 			emit_data->args, emit_data->arg_count,
   4272 			LP_FUNC_ATTR_READNONE);
   4273 
   4274 		/* Divide the number of layers by 6 to get the number of cubes. */
   4275 		if (inst->Memory.Texture == TGSI_TEXTURE_CUBE_ARRAY) {
   4276 			LLVMValueRef imm2 = lp_build_const_int32(gallivm, 2);
   4277 			LLVMValueRef imm6 = lp_build_const_int32(gallivm, 6);
   4278 
   4279 			LLVMValueRef z = LLVMBuildExtractElement(builder, out, imm2, "");
   4280 			z = LLVMBuildSDiv(builder, z, imm6, "");
   4281 			out = LLVMBuildInsertElement(builder, out, z, imm2, "");
   4282 		}
   4283 	}
   4284 
   4285 	emit_data->output[emit_data->chan] = out;
   4286 }
   4287 
   4288 static void set_tex_fetch_args(struct si_shader_context *ctx,
   4289 			       struct lp_build_emit_data *emit_data,
   4290 			       unsigned opcode, unsigned target,
   4291 			       LLVMValueRef res_ptr, LLVMValueRef samp_ptr,
   4292 			       LLVMValueRef *param, unsigned count,
   4293 			       unsigned dmask)
   4294 {
   4295 	struct gallivm_state *gallivm = &ctx->gallivm;
   4296 	unsigned num_args;
   4297 	unsigned is_rect = target == TGSI_TEXTURE_RECT;
   4298 
   4299 	/* Pad to power of two vector */
   4300 	while (count < util_next_power_of_two(count))
   4301 		param[count++] = LLVMGetUndef(ctx->i32);
   4302 
   4303 	/* Texture coordinates. */
   4304 	if (count > 1)
   4305 		emit_data->args[0] = lp_build_gather_values(gallivm, param, count);
   4306 	else
   4307 		emit_data->args[0] = param[0];
   4308 
   4309 	/* Resource. */
   4310 	emit_data->args[1] = res_ptr;
   4311 	num_args = 2;
   4312 
   4313 	if (opcode == TGSI_OPCODE_TXF || opcode == TGSI_OPCODE_TXQ)
   4314 		emit_data->dst_type = ctx->v4i32;
   4315 	else {
   4316 		emit_data->dst_type = ctx->v4f32;
   4317 
   4318 		emit_data->args[num_args++] = samp_ptr;
   4319 	}
   4320 
   4321 	emit_data->args[num_args++] = lp_build_const_int32(gallivm, dmask);
   4322 	emit_data->args[num_args++] = lp_build_const_int32(gallivm, is_rect); /* unorm */
   4323 	emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* r128 */
   4324 	emit_data->args[num_args++] = lp_build_const_int32(gallivm,
   4325 					tgsi_is_array_sampler(target)); /* da */
   4326 	emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* glc */
   4327 	emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* slc */
   4328 	emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* tfe */
   4329 	emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* lwe */
   4330 
   4331 	emit_data->arg_count = num_args;
   4332 }
   4333 
   4334 static const struct lp_build_tgsi_action tex_action;
   4335 
   4336 enum desc_type {
   4337 	DESC_IMAGE,
   4338 	DESC_BUFFER,
   4339 	DESC_FMASK,
   4340 	DESC_SAMPLER,
   4341 };
   4342 
   4343 /**
   4344  * Load an image view, fmask view. or sampler state descriptor.
   4345  */
   4346 static LLVMValueRef load_sampler_desc_custom(struct si_shader_context *ctx,
   4347 					     LLVMValueRef list, LLVMValueRef index,
   4348 					     enum desc_type type)
   4349 {
   4350 	struct gallivm_state *gallivm = &ctx->gallivm;
   4351 	LLVMBuilderRef builder = gallivm->builder;
   4352 
   4353 	switch (type) {
   4354 	case DESC_IMAGE:
   4355 		/* The image is at [0:7]. */
   4356 		index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
   4357 		break;
   4358 	case DESC_BUFFER:
   4359 		/* The buffer is in [4:7]. */
   4360 		index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
   4361 		index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->i32, 1, 0), "");
   4362 		list = LLVMBuildPointerCast(builder, list,
   4363 					    const_array(ctx->v4i32, 0), "");
   4364 		break;
   4365 	case DESC_FMASK:
   4366 		/* The FMASK is at [8:15]. */
   4367 		index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
   4368 		index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->i32, 1, 0), "");
   4369 		break;
   4370 	case DESC_SAMPLER:
   4371 		/* The sampler state is at [12:15]. */
   4372 		index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
   4373 		index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->i32, 3, 0), "");
   4374 		list = LLVMBuildPointerCast(builder, list,
   4375 					    const_array(ctx->v4i32, 0), "");
   4376 		break;
   4377 	}
   4378 
   4379 	return build_indexed_load_const(ctx, list, index);
   4380 }
   4381 
   4382 static LLVMValueRef load_sampler_desc(struct si_shader_context *ctx,
   4383 				     LLVMValueRef index, enum desc_type type)
   4384 {
   4385 	LLVMValueRef list = LLVMGetParam(ctx->main_fn,
   4386 					 SI_PARAM_SAMPLERS);
   4387 
   4388 	return load_sampler_desc_custom(ctx, list, index, type);
   4389 }
   4390 
   4391 /* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
   4392  *
   4393  * SI-CI:
   4394  *   If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
   4395  *   filtering manually. The driver sets img7 to a mask clearing
   4396  *   MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
   4397  *     s_and_b32 samp0, samp0, img7
   4398  *
   4399  * VI:
   4400  *   The ANISO_OVERRIDE sampler field enables this fix in TA.
   4401  */
   4402 static LLVMValueRef sici_fix_sampler_aniso(struct si_shader_context *ctx,
   4403 					   LLVMValueRef res, LLVMValueRef samp)
   4404 {
   4405 	LLVMBuilderRef builder = ctx->gallivm.builder;
   4406 	LLVMValueRef img7, samp0;
   4407 
   4408 	if (ctx->screen->b.chip_class >= VI)
   4409 		return samp;
   4410 
   4411 	img7 = LLVMBuildExtractElement(builder, res,
   4412 				       LLVMConstInt(ctx->i32, 7, 0), "");
   4413 	samp0 = LLVMBuildExtractElement(builder, samp,
   4414 					LLVMConstInt(ctx->i32, 0, 0), "");
   4415 	samp0 = LLVMBuildAnd(builder, samp0, img7, "");
   4416 	return LLVMBuildInsertElement(builder, samp, samp0,
   4417 				      LLVMConstInt(ctx->i32, 0, 0), "");
   4418 }
   4419 
   4420 static void tex_fetch_ptrs(
   4421 	struct lp_build_tgsi_context *bld_base,
   4422 	struct lp_build_emit_data *emit_data,
   4423 	LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr, LLVMValueRef *fmask_ptr)
   4424 {
   4425 	struct si_shader_context *ctx = si_shader_context(bld_base);
   4426 	const struct tgsi_full_instruction *inst = emit_data->inst;
   4427 	unsigned target = inst->Texture.Texture;
   4428 	unsigned sampler_src;
   4429 	unsigned sampler_index;
   4430 	LLVMValueRef index;
   4431 
   4432 	sampler_src = emit_data->inst->Instruction.NumSrcRegs - 1;
   4433 	sampler_index = emit_data->inst->Src[sampler_src].Register.Index;
   4434 
   4435 	if (emit_data->inst->Src[sampler_src].Register.Indirect) {
   4436 		const struct tgsi_full_src_register *reg = &emit_data->inst->Src[sampler_src];
   4437 
   4438 		index = get_bounded_indirect_index(ctx,
   4439 						   &reg->Indirect,
   4440 						   reg->Register.Index,
   4441 						   SI_NUM_SAMPLERS);
   4442 	} else {
   4443 		index = LLVMConstInt(ctx->i32, sampler_index, 0);
   4444 	}
   4445 
   4446 	if (target == TGSI_TEXTURE_BUFFER)
   4447 		*res_ptr = load_sampler_desc(ctx, index, DESC_BUFFER);
   4448 	else
   4449 		*res_ptr = load_sampler_desc(ctx, index, DESC_IMAGE);
   4450 
   4451 	if (samp_ptr)
   4452 		*samp_ptr = NULL;
   4453 	if (fmask_ptr)
   4454 		*fmask_ptr = NULL;
   4455 
   4456 	if (target == TGSI_TEXTURE_2D_MSAA ||
   4457 	    target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
   4458 		if (fmask_ptr)
   4459 			*fmask_ptr = load_sampler_desc(ctx, index, DESC_FMASK);
   4460 	} else if (target != TGSI_TEXTURE_BUFFER) {
   4461 		if (samp_ptr) {
   4462 			*samp_ptr = load_sampler_desc(ctx, index, DESC_SAMPLER);
   4463 			*samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
   4464 		}
   4465 	}
   4466 }
   4467 
   4468 static void txq_fetch_args(
   4469 	struct lp_build_tgsi_context *bld_base,
   4470 	struct lp_build_emit_data *emit_data)
   4471 {
   4472 	struct si_shader_context *ctx = si_shader_context(bld_base);
   4473 	const struct tgsi_full_instruction *inst = emit_data->inst;
   4474 	unsigned target = inst->Texture.Texture;
   4475 	LLVMValueRef res_ptr;
   4476 	LLVMValueRef address;
   4477 
   4478 	tex_fetch_ptrs(bld_base, emit_data, &res_ptr, NULL, NULL);
   4479 
   4480 	if (target == TGSI_TEXTURE_BUFFER) {
   4481 		/* Read the size from the buffer descriptor directly. */
   4482 		emit_data->args[0] = get_buffer_size(bld_base, res_ptr);
   4483 		return;
   4484 	}
   4485 
   4486 	/* Textures - set the mip level. */
   4487 	address = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X);
   4488 
   4489 	set_tex_fetch_args(ctx, emit_data, TGSI_OPCODE_TXQ, target, res_ptr,
   4490 			   NULL, &address, 1, 0xf);
   4491 }
   4492 
   4493 static void txq_emit(const struct lp_build_tgsi_action *action,
   4494 		     struct lp_build_tgsi_context *bld_base,
   4495 		     struct lp_build_emit_data *emit_data)
   4496 {
   4497 	struct lp_build_context *base = &bld_base->base;
   4498 	unsigned target = emit_data->inst->Texture.Texture;
   4499 
   4500 	if (target == TGSI_TEXTURE_BUFFER) {
   4501 		/* Just return the buffer size. */
   4502 		emit_data->output[emit_data->chan] = emit_data->args[0];
   4503 		return;
   4504 	}
   4505 
   4506 	emit_data->output[emit_data->chan] = lp_build_intrinsic(
   4507 		base->gallivm->builder, "llvm.SI.getresinfo.i32",
   4508 		emit_data->dst_type, emit_data->args, emit_data->arg_count,
   4509 		LP_FUNC_ATTR_READNONE);
   4510 
   4511 	/* Divide the number of layers by 6 to get the number of cubes. */
   4512 	if (target == TGSI_TEXTURE_CUBE_ARRAY ||
   4513 	    target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
   4514 		LLVMBuilderRef builder = bld_base->base.gallivm->builder;
   4515 		LLVMValueRef two = lp_build_const_int32(bld_base->base.gallivm, 2);
   4516 		LLVMValueRef six = lp_build_const_int32(bld_base->base.gallivm, 6);
   4517 
   4518 		LLVMValueRef v4 = emit_data->output[emit_data->chan];
   4519 		LLVMValueRef z = LLVMBuildExtractElement(builder, v4, two, "");
   4520 		z = LLVMBuildSDiv(builder, z, six, "");
   4521 
   4522 		emit_data->output[emit_data->chan] =
   4523 			LLVMBuildInsertElement(builder, v4, z, two, "");
   4524 	}
   4525 }
   4526 
   4527 static void tex_fetch_args(
   4528 	struct lp_build_tgsi_context *bld_base,
   4529 	struct lp_build_emit_data *emit_data)
   4530 {
   4531 	struct si_shader_context *ctx = si_shader_context(bld_base);
   4532 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   4533 	const struct tgsi_full_instruction *inst = emit_data->inst;
   4534 	unsigned opcode = inst->Instruction.Opcode;
   4535 	unsigned target = inst->Texture.Texture;
   4536 	LLVMValueRef coords[5], derivs[6];
   4537 	LLVMValueRef address[16];
   4538 	unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
   4539 	int ref_pos = tgsi_util_get_shadow_ref_src_index(target);
   4540 	unsigned count = 0;
   4541 	unsigned chan;
   4542 	unsigned num_deriv_channels = 0;
   4543 	bool has_offset = inst->Texture.NumOffsets > 0;
   4544 	LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
   4545 	unsigned dmask = 0xf;
   4546 
   4547 	tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
   4548 
   4549 	if (target == TGSI_TEXTURE_BUFFER) {
   4550 		emit_data->dst_type = ctx->v4f32;
   4551 		emit_data->args[0] = LLVMBuildBitCast(gallivm->builder, res_ptr,
   4552 						      ctx->v16i8, "");
   4553 		emit_data->args[1] = bld_base->uint_bld.zero;
   4554 		emit_data->args[2] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
   4555 		emit_data->arg_count = 3;
   4556 		return;
   4557 	}
   4558 
   4559 	/* Fetch and project texture coordinates */
   4560 	coords[3] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_W);
   4561 	for (chan = 0; chan < 3; chan++ ) {
   4562 		coords[chan] = lp_build_emit_fetch(bld_base,
   4563 						   emit_data->inst, 0,
   4564 						   chan);
   4565 		if (opcode == TGSI_OPCODE_TXP)
   4566 			coords[chan] = lp_build_emit_llvm_binary(bld_base,
   4567 								 TGSI_OPCODE_DIV,
   4568 								 coords[chan],
   4569 								 coords[3]);
   4570 	}
   4571 
   4572 	if (opcode == TGSI_OPCODE_TXP)
   4573 		coords[3] = bld_base->base.one;
   4574 
   4575 	/* Pack offsets. */
   4576 	if (has_offset && opcode != TGSI_OPCODE_TXF) {
   4577 		/* The offsets are six-bit signed integers packed like this:
   4578 		 *   X=[5:0], Y=[13:8], and Z=[21:16].
   4579 		 */
   4580 		LLVMValueRef offset[3], pack;
   4581 
   4582 		assert(inst->Texture.NumOffsets == 1);
   4583 
   4584 		for (chan = 0; chan < 3; chan++) {
   4585 			offset[chan] = lp_build_emit_fetch_texoffset(bld_base,
   4586 								     emit_data->inst, 0, chan);
   4587 			offset[chan] = LLVMBuildAnd(gallivm->builder, offset[chan],
   4588 						    lp_build_const_int32(gallivm, 0x3f), "");
   4589 			if (chan)
   4590 				offset[chan] = LLVMBuildShl(gallivm->builder, offset[chan],
   4591 							    lp_build_const_int32(gallivm, chan*8), "");
   4592 		}
   4593 
   4594 		pack = LLVMBuildOr(gallivm->builder, offset[0], offset[1], "");
   4595 		pack = LLVMBuildOr(gallivm->builder, pack, offset[2], "");
   4596 		address[count++] = pack;
   4597 	}
   4598 
   4599 	/* Pack LOD bias value */
   4600 	if (opcode == TGSI_OPCODE_TXB)
   4601 		address[count++] = coords[3];
   4602 	if (opcode == TGSI_OPCODE_TXB2)
   4603 		address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
   4604 
   4605 	/* Pack depth comparison value */
   4606 	if (tgsi_is_shadow_target(target) && opcode != TGSI_OPCODE_LODQ) {
   4607 		LLVMValueRef z;
   4608 
   4609 		if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
   4610 			z = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
   4611 		} else {
   4612 			assert(ref_pos >= 0);
   4613 			z = coords[ref_pos];
   4614 		}
   4615 
   4616 		/* TC-compatible HTILE promotes Z16 and Z24 to Z32_FLOAT,
   4617 		 * so the depth comparison value isn't clamped for Z16 and
   4618 		 * Z24 anymore. Do it manually here.
   4619 		 *
   4620 		 * It's unnecessary if the original texture format was
   4621 		 * Z32_FLOAT, but we don't know that here.
   4622 		 */
   4623 		if (ctx->screen->b.chip_class == VI)
   4624 			z = si_llvm_saturate(bld_base, z);
   4625 
   4626 		address[count++] = z;
   4627 	}
   4628 
   4629 	/* Pack user derivatives */
   4630 	if (opcode == TGSI_OPCODE_TXD) {
   4631 		int param, num_src_deriv_channels;
   4632 
   4633 		switch (target) {
   4634 		case TGSI_TEXTURE_3D:
   4635 			num_src_deriv_channels = 3;
   4636 			num_deriv_channels = 3;
   4637 			break;
   4638 		case TGSI_TEXTURE_2D:
   4639 		case TGSI_TEXTURE_SHADOW2D:
   4640 		case TGSI_TEXTURE_RECT:
   4641 		case TGSI_TEXTURE_SHADOWRECT:
   4642 		case TGSI_TEXTURE_2D_ARRAY:
   4643 		case TGSI_TEXTURE_SHADOW2D_ARRAY:
   4644 			num_src_deriv_channels = 2;
   4645 			num_deriv_channels = 2;
   4646 			break;
   4647 		case TGSI_TEXTURE_CUBE:
   4648 		case TGSI_TEXTURE_SHADOWCUBE:
   4649 		case TGSI_TEXTURE_CUBE_ARRAY:
   4650 		case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
   4651 			/* Cube derivatives will be converted to 2D. */
   4652 			num_src_deriv_channels = 3;
   4653 			num_deriv_channels = 2;
   4654 			break;
   4655 		case TGSI_TEXTURE_1D:
   4656 		case TGSI_TEXTURE_SHADOW1D:
   4657 		case TGSI_TEXTURE_1D_ARRAY:
   4658 		case TGSI_TEXTURE_SHADOW1D_ARRAY:
   4659 			num_src_deriv_channels = 1;
   4660 			num_deriv_channels = 1;
   4661 			break;
   4662 		default:
   4663 			unreachable("invalid target");
   4664 		}
   4665 
   4666 		for (param = 0; param < 2; param++)
   4667 			for (chan = 0; chan < num_src_deriv_channels; chan++)
   4668 				derivs[param * num_src_deriv_channels + chan] =
   4669 					lp_build_emit_fetch(bld_base, inst, param+1, chan);
   4670 	}
   4671 
   4672 	if (target == TGSI_TEXTURE_CUBE ||
   4673 	    target == TGSI_TEXTURE_CUBE_ARRAY ||
   4674 	    target == TGSI_TEXTURE_SHADOWCUBE ||
   4675 	    target == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
   4676 		ac_prepare_cube_coords(&ctx->ac,
   4677 				       opcode == TGSI_OPCODE_TXD,
   4678 				       target == TGSI_TEXTURE_CUBE_ARRAY ||
   4679 				       target == TGSI_TEXTURE_SHADOWCUBE_ARRAY,
   4680 				       coords, derivs);
   4681 
   4682 	if (opcode == TGSI_OPCODE_TXD)
   4683 		for (int i = 0; i < num_deriv_channels * 2; i++)
   4684 			address[count++] = derivs[i];
   4685 
   4686 	/* Pack texture coordinates */
   4687 	address[count++] = coords[0];
   4688 	if (num_coords > 1)
   4689 		address[count++] = coords[1];
   4690 	if (num_coords > 2)
   4691 		address[count++] = coords[2];
   4692 
   4693 	/* Pack LOD or sample index */
   4694 	if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXF)
   4695 		address[count++] = coords[3];
   4696 	else if (opcode == TGSI_OPCODE_TXL2)
   4697 		address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
   4698 
   4699 	if (count > 16) {
   4700 		assert(!"Cannot handle more than 16 texture address parameters");
   4701 		count = 16;
   4702 	}
   4703 
   4704 	for (chan = 0; chan < count; chan++ ) {
   4705 		address[chan] = LLVMBuildBitCast(gallivm->builder,
   4706 						 address[chan], ctx->i32, "");
   4707 	}
   4708 
   4709 	/* Adjust the sample index according to FMASK.
   4710 	 *
   4711 	 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
   4712 	 * which is the identity mapping. Each nibble says which physical sample
   4713 	 * should be fetched to get that sample.
   4714 	 *
   4715 	 * For example, 0x11111100 means there are only 2 samples stored and
   4716 	 * the second sample covers 3/4 of the pixel. When reading samples 0
   4717 	 * and 1, return physical sample 0 (determined by the first two 0s
   4718 	 * in FMASK), otherwise return physical sample 1.
   4719 	 *
   4720 	 * The sample index should be adjusted as follows:
   4721 	 *   sample_index = (fmask >> (sample_index * 4)) & 0xF;
   4722 	 */
   4723 	if (target == TGSI_TEXTURE_2D_MSAA ||
   4724 	    target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
   4725 		struct lp_build_context *uint_bld = &bld_base->uint_bld;
   4726 		struct lp_build_emit_data txf_emit_data = *emit_data;
   4727 		LLVMValueRef txf_address[4];
   4728 		unsigned txf_count = count;
   4729 		struct tgsi_full_instruction inst = {};
   4730 
   4731 		memcpy(txf_address, address, sizeof(txf_address));
   4732 
   4733 		if (target == TGSI_TEXTURE_2D_MSAA) {
   4734 			txf_address[2] = bld_base->uint_bld.zero;
   4735 		}
   4736 		txf_address[3] = bld_base->uint_bld.zero;
   4737 
   4738 		/* Read FMASK using TXF. */
   4739 		inst.Instruction.Opcode = TGSI_OPCODE_TXF;
   4740 		inst.Texture.Texture = target;
   4741 		txf_emit_data.inst = &inst;
   4742 		txf_emit_data.chan = 0;
   4743 		set_tex_fetch_args(ctx, &txf_emit_data, TGSI_OPCODE_TXF,
   4744 				   target, fmask_ptr, NULL,
   4745 				   txf_address, txf_count, 0xf);
   4746 		build_tex_intrinsic(&tex_action, bld_base, &txf_emit_data);
   4747 
   4748 		/* Initialize some constants. */
   4749 		LLVMValueRef four = LLVMConstInt(ctx->i32, 4, 0);
   4750 		LLVMValueRef F = LLVMConstInt(ctx->i32, 0xF, 0);
   4751 
   4752 		/* Apply the formula. */
   4753 		LLVMValueRef fmask =
   4754 			LLVMBuildExtractElement(gallivm->builder,
   4755 						txf_emit_data.output[0],
   4756 						uint_bld->zero, "");
   4757 
   4758 		unsigned sample_chan = target == TGSI_TEXTURE_2D_MSAA ? 2 : 3;
   4759 
   4760 		LLVMValueRef sample_index4 =
   4761 			LLVMBuildMul(gallivm->builder, address[sample_chan], four, "");
   4762 
   4763 		LLVMValueRef shifted_fmask =
   4764 			LLVMBuildLShr(gallivm->builder, fmask, sample_index4, "");
   4765 
   4766 		LLVMValueRef final_sample =
   4767 			LLVMBuildAnd(gallivm->builder, shifted_fmask, F, "");
   4768 
   4769 		/* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
   4770 		 * resource descriptor is 0 (invalid),
   4771 		 */
   4772 		LLVMValueRef fmask_desc =
   4773 			LLVMBuildBitCast(gallivm->builder, fmask_ptr,
   4774 					 ctx->v8i32, "");
   4775 
   4776 		LLVMValueRef fmask_word1 =
   4777 			LLVMBuildExtractElement(gallivm->builder, fmask_desc,
   4778 						uint_bld->one, "");
   4779 
   4780 		LLVMValueRef word1_is_nonzero =
   4781 			LLVMBuildICmp(gallivm->builder, LLVMIntNE,
   4782 				      fmask_word1, uint_bld->zero, "");
   4783 
   4784 		/* Replace the MSAA sample index. */
   4785 		address[sample_chan] =
   4786 			LLVMBuildSelect(gallivm->builder, word1_is_nonzero,
   4787 					final_sample, address[sample_chan], "");
   4788 	}
   4789 
   4790 	if (opcode == TGSI_OPCODE_TXF) {
   4791 		/* add tex offsets */
   4792 		if (inst->Texture.NumOffsets) {
   4793 			struct lp_build_context *uint_bld = &bld_base->uint_bld;
   4794 			const struct tgsi_texture_offset *off = inst->TexOffsets;
   4795 
   4796 			assert(inst->Texture.NumOffsets == 1);
   4797 
   4798 			switch (target) {
   4799 			case TGSI_TEXTURE_3D:
   4800 				address[2] = lp_build_add(uint_bld, address[2],
   4801 						ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleZ]);
   4802 				/* fall through */
   4803 			case TGSI_TEXTURE_2D:
   4804 			case TGSI_TEXTURE_SHADOW2D:
   4805 			case TGSI_TEXTURE_RECT:
   4806 			case TGSI_TEXTURE_SHADOWRECT:
   4807 			case TGSI_TEXTURE_2D_ARRAY:
   4808 			case TGSI_TEXTURE_SHADOW2D_ARRAY:
   4809 				address[1] =
   4810 					lp_build_add(uint_bld, address[1],
   4811 						ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleY]);
   4812 				/* fall through */
   4813 			case TGSI_TEXTURE_1D:
   4814 			case TGSI_TEXTURE_SHADOW1D:
   4815 			case TGSI_TEXTURE_1D_ARRAY:
   4816 			case TGSI_TEXTURE_SHADOW1D_ARRAY:
   4817 				address[0] =
   4818 					lp_build_add(uint_bld, address[0],
   4819 						ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleX]);
   4820 				break;
   4821 				/* texture offsets do not apply to other texture targets */
   4822 			}
   4823 		}
   4824 	}
   4825 
   4826 	if (opcode == TGSI_OPCODE_TG4) {
   4827 		unsigned gather_comp = 0;
   4828 
   4829 		/* DMASK was repurposed for GATHER4. 4 components are always
   4830 		 * returned and DMASK works like a swizzle - it selects
   4831 		 * the component to fetch. The only valid DMASK values are
   4832 		 * 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
   4833 		 * (red,red,red,red) etc.) The ISA document doesn't mention
   4834 		 * this.
   4835 		 */
   4836 
   4837 		/* Get the component index from src1.x for Gather4. */
   4838 		if (!tgsi_is_shadow_target(target)) {
   4839 			LLVMValueRef comp_imm;
   4840 			struct tgsi_src_register src1 = inst->Src[1].Register;
   4841 
   4842 			assert(src1.File == TGSI_FILE_IMMEDIATE);
   4843 
   4844 			comp_imm = ctx->imms[src1.Index * TGSI_NUM_CHANNELS + src1.SwizzleX];
   4845 			gather_comp = LLVMConstIntGetZExtValue(comp_imm);
   4846 			gather_comp = CLAMP(gather_comp, 0, 3);
   4847 		}
   4848 
   4849 		dmask = 1 << gather_comp;
   4850 	}
   4851 
   4852 	set_tex_fetch_args(ctx, emit_data, opcode, target, res_ptr,
   4853 			   samp_ptr, address, count, dmask);
   4854 }
   4855 
   4856 /* Gather4 should follow the same rules as bilinear filtering, but the hardware
   4857  * incorrectly forces nearest filtering if the texture format is integer.
   4858  * The only effect it has on Gather4, which always returns 4 texels for
   4859  * bilinear filtering, is that the final coordinates are off by 0.5 of
   4860  * the texel size.
   4861  *
   4862  * The workaround is to subtract 0.5 from the unnormalized coordinates,
   4863  * or (0.5 / size) from the normalized coordinates.
   4864  */
   4865 static void si_lower_gather4_integer(struct si_shader_context *ctx,
   4866 				     struct lp_build_emit_data *emit_data,
   4867 				     const char *intr_name,
   4868 				     unsigned coord_vgpr_index)
   4869 {
   4870 	LLVMBuilderRef builder = ctx->gallivm.builder;
   4871 	LLVMValueRef coord = emit_data->args[0];
   4872 	LLVMValueRef half_texel[2];
   4873 	int c;
   4874 
   4875 	if (emit_data->inst->Texture.Texture == TGSI_TEXTURE_RECT ||
   4876 	    emit_data->inst->Texture.Texture == TGSI_TEXTURE_SHADOWRECT) {
   4877 		half_texel[0] = half_texel[1] = LLVMConstReal(ctx->f32, -0.5);
   4878 	} else {
   4879 		struct tgsi_full_instruction txq_inst = {};
   4880 		struct lp_build_emit_data txq_emit_data = {};
   4881 
   4882 		/* Query the texture size. */
   4883 		txq_inst.Texture.Texture = emit_data->inst->Texture.Texture;
   4884 		txq_emit_data.inst = &txq_inst;
   4885 		txq_emit_data.dst_type = ctx->v4i32;
   4886 		set_tex_fetch_args(ctx, &txq_emit_data, TGSI_OPCODE_TXQ,
   4887 				   txq_inst.Texture.Texture,
   4888 				   emit_data->args[1], NULL,
   4889 				   &ctx->bld_base.uint_bld.zero,
   4890 				   1, 0xf);
   4891 		txq_emit(NULL, &ctx->bld_base, &txq_emit_data);
   4892 
   4893 		/* Compute -0.5 / size. */
   4894 		for (c = 0; c < 2; c++) {
   4895 			half_texel[c] =
   4896 				LLVMBuildExtractElement(builder, txq_emit_data.output[0],
   4897 							LLVMConstInt(ctx->i32, c, 0), "");
   4898 			half_texel[c] = LLVMBuildUIToFP(builder, half_texel[c], ctx->f32, "");
   4899 			half_texel[c] =
   4900 				lp_build_emit_llvm_unary(&ctx->bld_base,
   4901 							 TGSI_OPCODE_RCP, half_texel[c]);
   4902 			half_texel[c] = LLVMBuildFMul(builder, half_texel[c],
   4903 						      LLVMConstReal(ctx->f32, -0.5), "");
   4904 		}
   4905 	}
   4906 
   4907 	for (c = 0; c < 2; c++) {
   4908 		LLVMValueRef tmp;
   4909 		LLVMValueRef index = LLVMConstInt(ctx->i32, coord_vgpr_index + c, 0);
   4910 
   4911 		tmp = LLVMBuildExtractElement(builder, coord, index, "");
   4912 		tmp = LLVMBuildBitCast(builder, tmp, ctx->f32, "");
   4913 		tmp = LLVMBuildFAdd(builder, tmp, half_texel[c], "");
   4914 		tmp = LLVMBuildBitCast(builder, tmp, ctx->i32, "");
   4915 		coord = LLVMBuildInsertElement(builder, coord, tmp, index, "");
   4916 	}
   4917 
   4918 	emit_data->args[0] = coord;
   4919 	emit_data->output[emit_data->chan] =
   4920 		lp_build_intrinsic(builder, intr_name, emit_data->dst_type,
   4921 				   emit_data->args, emit_data->arg_count,
   4922 				   LP_FUNC_ATTR_READNONE);
   4923 }
   4924 
   4925 static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
   4926 				struct lp_build_tgsi_context *bld_base,
   4927 				struct lp_build_emit_data *emit_data)
   4928 {
   4929 	struct si_shader_context *ctx = si_shader_context(bld_base);
   4930 	struct lp_build_context *base = &bld_base->base;
   4931 	const struct tgsi_full_instruction *inst = emit_data->inst;
   4932 	unsigned opcode = inst->Instruction.Opcode;
   4933 	unsigned target = inst->Texture.Texture;
   4934 	char intr_name[127];
   4935 	bool has_offset = inst->Texture.NumOffsets > 0;
   4936 	bool is_shadow = tgsi_is_shadow_target(target);
   4937 	char type[64];
   4938 	const char *name = "llvm.SI.image.sample";
   4939 	const char *infix = "";
   4940 
   4941 	if (target == TGSI_TEXTURE_BUFFER) {
   4942 		emit_data->output[emit_data->chan] = lp_build_intrinsic(
   4943 			base->gallivm->builder,
   4944 			"llvm.SI.vs.load.input", emit_data->dst_type,
   4945 			emit_data->args, emit_data->arg_count,
   4946 			LP_FUNC_ATTR_READNONE);
   4947 		return;
   4948 	}
   4949 
   4950 	switch (opcode) {
   4951 	case TGSI_OPCODE_TXF:
   4952 		name = target == TGSI_TEXTURE_2D_MSAA ||
   4953 		       target == TGSI_TEXTURE_2D_ARRAY_MSAA ?
   4954 			       "llvm.SI.image.load" :
   4955 			       "llvm.SI.image.load.mip";
   4956 		is_shadow = false;
   4957 		has_offset = false;
   4958 		break;
   4959 	case TGSI_OPCODE_LODQ:
   4960 		name = "llvm.SI.getlod";
   4961 		is_shadow = false;
   4962 		has_offset = false;
   4963 		break;
   4964 	case TGSI_OPCODE_TEX:
   4965 	case TGSI_OPCODE_TEX2:
   4966 	case TGSI_OPCODE_TXP:
   4967 		if (ctx->type != PIPE_SHADER_FRAGMENT)
   4968 			infix = ".lz";
   4969 		break;
   4970 	case TGSI_OPCODE_TXB:
   4971 	case TGSI_OPCODE_TXB2:
   4972 		assert(ctx->type == PIPE_SHADER_FRAGMENT);
   4973 		infix = ".b";
   4974 		break;
   4975 	case TGSI_OPCODE_TXL:
   4976 	case TGSI_OPCODE_TXL2:
   4977 		infix = ".l";
   4978 		break;
   4979 	case TGSI_OPCODE_TXD:
   4980 		infix = ".d";
   4981 		break;
   4982 	case TGSI_OPCODE_TG4:
   4983 		name = "llvm.SI.gather4";
   4984 		infix = ".lz";
   4985 		break;
   4986 	default:
   4987 		assert(0);
   4988 		return;
   4989 	}
   4990 
   4991 	/* Add the type and suffixes .c, .o if needed. */
   4992 	build_type_name_for_intr(LLVMTypeOf(emit_data->args[0]), type, sizeof(type));
   4993 	sprintf(intr_name, "%s%s%s%s.%s",
   4994 		name, is_shadow ? ".c" : "", infix,
   4995 		has_offset ? ".o" : "", type);
   4996 
   4997 	/* The hardware needs special lowering for Gather4 with integer formats. */
   4998 	if (opcode == TGSI_OPCODE_TG4) {
   4999 		struct tgsi_shader_info *info = &ctx->shader->selector->info;
   5000 		/* This will also work with non-constant indexing because of how
   5001 		 * glsl_to_tgsi works and we intent to preserve that behavior.
   5002 		 */
   5003 		const unsigned src_idx = 2;
   5004 		unsigned sampler = inst->Src[src_idx].Register.Index;
   5005 
   5006 		assert(inst->Src[src_idx].Register.File == TGSI_FILE_SAMPLER);
   5007 
   5008 		if (info->sampler_type[sampler] == TGSI_RETURN_TYPE_SINT ||
   5009 		    info->sampler_type[sampler] == TGSI_RETURN_TYPE_UINT) {
   5010 			/* Texture coordinates start after:
   5011 			 *   {offset, bias, z-compare, derivatives}
   5012 			 * Only the offset and z-compare can occur here.
   5013 			 */
   5014 			si_lower_gather4_integer(ctx, emit_data, intr_name,
   5015 						 (int)has_offset + (int)is_shadow);
   5016 			return;
   5017 		}
   5018 	}
   5019 
   5020 	emit_data->output[emit_data->chan] = lp_build_intrinsic(
   5021 		base->gallivm->builder, intr_name, emit_data->dst_type,
   5022 		emit_data->args, emit_data->arg_count,
   5023 		LP_FUNC_ATTR_READNONE);
   5024 }
   5025 
   5026 static void si_llvm_emit_txqs(
   5027 	const struct lp_build_tgsi_action *action,
   5028 	struct lp_build_tgsi_context *bld_base,
   5029 	struct lp_build_emit_data *emit_data)
   5030 {
   5031 	struct si_shader_context *ctx = si_shader_context(bld_base);
   5032 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   5033 	LLVMBuilderRef builder = gallivm->builder;
   5034 	LLVMValueRef res, samples;
   5035 	LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
   5036 
   5037 	tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
   5038 
   5039 
   5040 	/* Read the samples from the descriptor directly. */
   5041 	res = LLVMBuildBitCast(builder, res_ptr, ctx->v8i32, "");
   5042 	samples = LLVMBuildExtractElement(
   5043 		builder, res,
   5044 		lp_build_const_int32(gallivm, 3), "");
   5045 	samples = LLVMBuildLShr(builder, samples,
   5046 				lp_build_const_int32(gallivm, 16), "");
   5047 	samples = LLVMBuildAnd(builder, samples,
   5048 			       lp_build_const_int32(gallivm, 0xf), "");
   5049 	samples = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1),
   5050 			       samples, "");
   5051 
   5052 	emit_data->output[emit_data->chan] = samples;
   5053 }
   5054 
   5055 /*
   5056  * SI implements derivatives using the local data store (LDS)
   5057  * All writes to the LDS happen in all executing threads at
   5058  * the same time. TID is the Thread ID for the current
   5059  * thread and is a value between 0 and 63, representing
   5060  * the thread's position in the wavefront.
   5061  *
   5062  * For the pixel shader threads are grouped into quads of four pixels.
   5063  * The TIDs of the pixels of a quad are:
   5064  *
   5065  *  +------+------+
   5066  *  |4n + 0|4n + 1|
   5067  *  +------+------+
   5068  *  |4n + 2|4n + 3|
   5069  *  +------+------+
   5070  *
   5071  * So, masking the TID with 0xfffffffc yields the TID of the top left pixel
   5072  * of the quad, masking with 0xfffffffd yields the TID of the top pixel of
   5073  * the current pixel's column, and masking with 0xfffffffe yields the TID
   5074  * of the left pixel of the current pixel's row.
   5075  *
   5076  * Adding 1 yields the TID of the pixel to the right of the left pixel, and
   5077  * adding 2 yields the TID of the pixel below the top pixel.
   5078  */
   5079 /* masks for thread ID. */
   5080 #define TID_MASK_TOP_LEFT 0xfffffffc
   5081 #define TID_MASK_TOP      0xfffffffd
   5082 #define TID_MASK_LEFT     0xfffffffe
   5083 
   5084 static void si_llvm_emit_ddxy(
   5085 	const struct lp_build_tgsi_action *action,
   5086 	struct lp_build_tgsi_context *bld_base,
   5087 	struct lp_build_emit_data *emit_data)
   5088 {
   5089 	struct si_shader_context *ctx = si_shader_context(bld_base);
   5090 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   5091 	unsigned opcode = emit_data->info->opcode;
   5092 	LLVMValueRef thread_id, tl, trbl, tl_tid, trbl_tid, val, args[2];
   5093 	int idx;
   5094 	unsigned mask;
   5095 
   5096 	thread_id = get_thread_id(ctx);
   5097 
   5098 	if (opcode == TGSI_OPCODE_DDX_FINE)
   5099 		mask = TID_MASK_LEFT;
   5100 	else if (opcode == TGSI_OPCODE_DDY_FINE)
   5101 		mask = TID_MASK_TOP;
   5102 	else
   5103 		mask = TID_MASK_TOP_LEFT;
   5104 
   5105 	tl_tid = LLVMBuildAnd(gallivm->builder, thread_id,
   5106 				lp_build_const_int32(gallivm, mask), "");
   5107 
   5108 	/* for DDX we want to next X pixel, DDY next Y pixel. */
   5109 	idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
   5110 	trbl_tid = LLVMBuildAdd(gallivm->builder, tl_tid,
   5111 				  lp_build_const_int32(gallivm, idx), "");
   5112 
   5113 	val = LLVMBuildBitCast(gallivm->builder, emit_data->args[0], ctx->i32, "");
   5114 
   5115 	if (ctx->screen->has_ds_bpermute) {
   5116 		args[0] = LLVMBuildMul(gallivm->builder, tl_tid,
   5117 				       lp_build_const_int32(gallivm, 4), "");
   5118 		args[1] = val;
   5119 		tl = lp_build_intrinsic(gallivm->builder,
   5120 					"llvm.amdgcn.ds.bpermute", ctx->i32,
   5121 					args, 2, LP_FUNC_ATTR_READNONE);
   5122 
   5123 		args[0] = LLVMBuildMul(gallivm->builder, trbl_tid,
   5124 				       lp_build_const_int32(gallivm, 4), "");
   5125 		trbl = lp_build_intrinsic(gallivm->builder,
   5126 					  "llvm.amdgcn.ds.bpermute", ctx->i32,
   5127 					  args, 2, LP_FUNC_ATTR_READNONE);
   5128 	} else {
   5129 		LLVMValueRef store_ptr, load_ptr0, load_ptr1;
   5130 
   5131 		store_ptr = build_gep0(ctx, ctx->lds, thread_id);
   5132 		load_ptr0 = build_gep0(ctx, ctx->lds, tl_tid);
   5133 		load_ptr1 = build_gep0(ctx, ctx->lds, trbl_tid);
   5134 
   5135 		LLVMBuildStore(gallivm->builder, val, store_ptr);
   5136 		tl = LLVMBuildLoad(gallivm->builder, load_ptr0, "");
   5137 		trbl = LLVMBuildLoad(gallivm->builder, load_ptr1, "");
   5138 	}
   5139 
   5140 	tl = LLVMBuildBitCast(gallivm->builder, tl, ctx->f32, "");
   5141 	trbl = LLVMBuildBitCast(gallivm->builder, trbl,	ctx->f32, "");
   5142 
   5143 	emit_data->output[emit_data->chan] =
   5144 		LLVMBuildFSub(gallivm->builder, trbl, tl, "");
   5145 }
   5146 
   5147 /*
   5148  * this takes an I,J coordinate pair,
   5149  * and works out the X and Y derivatives.
   5150  * it returns DDX(I), DDX(J), DDY(I), DDY(J).
   5151  */
   5152 static LLVMValueRef si_llvm_emit_ddxy_interp(
   5153 	struct lp_build_tgsi_context *bld_base,
   5154 	LLVMValueRef interp_ij)
   5155 {
   5156 	struct si_shader_context *ctx = si_shader_context(bld_base);
   5157 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   5158 	LLVMValueRef result[4], a;
   5159 	unsigned i;
   5160 
   5161 	for (i = 0; i < 2; i++) {
   5162 		a = LLVMBuildExtractElement(gallivm->builder, interp_ij,
   5163 					    LLVMConstInt(ctx->i32, i, 0), "");
   5164 		result[i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDX, a);
   5165 		result[2+i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDY, a);
   5166 	}
   5167 
   5168 	return lp_build_gather_values(gallivm, result, 4);
   5169 }
   5170 
   5171 static void interp_fetch_args(
   5172 	struct lp_build_tgsi_context *bld_base,
   5173 	struct lp_build_emit_data *emit_data)
   5174 {
   5175 	struct si_shader_context *ctx = si_shader_context(bld_base);
   5176 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   5177 	const struct tgsi_full_instruction *inst = emit_data->inst;
   5178 
   5179 	if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
   5180 		/* offset is in second src, first two channels */
   5181 		emit_data->args[0] = lp_build_emit_fetch(bld_base,
   5182 							 emit_data->inst, 1,
   5183 							 TGSI_CHAN_X);
   5184 		emit_data->args[1] = lp_build_emit_fetch(bld_base,
   5185 							 emit_data->inst, 1,
   5186 							 TGSI_CHAN_Y);
   5187 		emit_data->arg_count = 2;
   5188 	} else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
   5189 		LLVMValueRef sample_position;
   5190 		LLVMValueRef sample_id;
   5191 		LLVMValueRef halfval = lp_build_const_float(gallivm, 0.5f);
   5192 
   5193 		/* fetch sample ID, then fetch its sample position,
   5194 		 * and place into first two channels.
   5195 		 */
   5196 		sample_id = lp_build_emit_fetch(bld_base,
   5197 						emit_data->inst, 1, TGSI_CHAN_X);
   5198 		sample_id = LLVMBuildBitCast(gallivm->builder, sample_id,
   5199 					     ctx->i32, "");
   5200 		sample_position = load_sample_position(ctx, sample_id);
   5201 
   5202 		emit_data->args[0] = LLVMBuildExtractElement(gallivm->builder,
   5203 							     sample_position,
   5204 							     lp_build_const_int32(gallivm, 0), "");
   5205 
   5206 		emit_data->args[0] = LLVMBuildFSub(gallivm->builder, emit_data->args[0], halfval, "");
   5207 		emit_data->args[1] = LLVMBuildExtractElement(gallivm->builder,
   5208 							     sample_position,
   5209 							     lp_build_const_int32(gallivm, 1), "");
   5210 		emit_data->args[1] = LLVMBuildFSub(gallivm->builder, emit_data->args[1], halfval, "");
   5211 		emit_data->arg_count = 2;
   5212 	}
   5213 }
   5214 
   5215 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
   5216 				struct lp_build_tgsi_context *bld_base,
   5217 				struct lp_build_emit_data *emit_data)
   5218 {
   5219 	struct si_shader_context *ctx = si_shader_context(bld_base);
   5220 	struct si_shader *shader = ctx->shader;
   5221 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   5222 	struct lp_build_context *uint = &bld_base->uint_bld;
   5223 	LLVMValueRef interp_param;
   5224 	const struct tgsi_full_instruction *inst = emit_data->inst;
   5225 	int input_index = inst->Src[0].Register.Index;
   5226 	int chan;
   5227 	int i;
   5228 	LLVMValueRef attr_number;
   5229 	LLVMValueRef params = LLVMGetParam(ctx->main_fn, SI_PARAM_PRIM_MASK);
   5230 	int interp_param_idx;
   5231 	unsigned interp = shader->selector->info.input_interpolate[input_index];
   5232 	unsigned location;
   5233 
   5234 	assert(inst->Src[0].Register.File == TGSI_FILE_INPUT);
   5235 
   5236 	if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
   5237 	    inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
   5238 		location = TGSI_INTERPOLATE_LOC_CENTER;
   5239 	else
   5240 		location = TGSI_INTERPOLATE_LOC_CENTROID;
   5241 
   5242 	interp_param_idx = lookup_interp_param_index(interp, location);
   5243 	if (interp_param_idx == -1)
   5244 		return;
   5245 	else if (interp_param_idx)
   5246 		interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
   5247 	else
   5248 		interp_param = NULL;
   5249 
   5250 	attr_number = lp_build_const_int32(gallivm, input_index);
   5251 
   5252 	if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
   5253 	    inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
   5254 		LLVMValueRef ij_out[2];
   5255 		LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param);
   5256 
   5257 		/*
   5258 		 * take the I then J parameters, and the DDX/Y for it, and
   5259 		 * calculate the IJ inputs for the interpolator.
   5260 		 * temp1 = ddx * offset/sample.x + I;
   5261 		 * interp_param.I = ddy * offset/sample.y + temp1;
   5262 		 * temp1 = ddx * offset/sample.x + J;
   5263 		 * interp_param.J = ddy * offset/sample.y + temp1;
   5264 		 */
   5265 		for (i = 0; i < 2; i++) {
   5266 			LLVMValueRef ix_ll = lp_build_const_int32(gallivm, i);
   5267 			LLVMValueRef iy_ll = lp_build_const_int32(gallivm, i + 2);
   5268 			LLVMValueRef ddx_el = LLVMBuildExtractElement(gallivm->builder,
   5269 								      ddxy_out, ix_ll, "");
   5270 			LLVMValueRef ddy_el = LLVMBuildExtractElement(gallivm->builder,
   5271 								      ddxy_out, iy_ll, "");
   5272 			LLVMValueRef interp_el = LLVMBuildExtractElement(gallivm->builder,
   5273 									 interp_param, ix_ll, "");
   5274 			LLVMValueRef temp1, temp2;
   5275 
   5276 			interp_el = LLVMBuildBitCast(gallivm->builder, interp_el,
   5277 						     ctx->f32, "");
   5278 
   5279 			temp1 = LLVMBuildFMul(gallivm->builder, ddx_el, emit_data->args[0], "");
   5280 
   5281 			temp1 = LLVMBuildFAdd(gallivm->builder, temp1, interp_el, "");
   5282 
   5283 			temp2 = LLVMBuildFMul(gallivm->builder, ddy_el, emit_data->args[1], "");
   5284 
   5285 			ij_out[i] = LLVMBuildFAdd(gallivm->builder, temp2, temp1, "");
   5286 		}
   5287 		interp_param = lp_build_gather_values(bld_base->base.gallivm, ij_out, 2);
   5288 	}
   5289 
   5290 	for (chan = 0; chan < 4; chan++) {
   5291 		LLVMValueRef llvm_chan;
   5292 		unsigned schan;
   5293 
   5294 		schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
   5295 		llvm_chan = lp_build_const_int32(gallivm, schan);
   5296 
   5297 		if (interp_param) {
   5298 			interp_param = LLVMBuildBitCast(gallivm->builder,
   5299 				interp_param, LLVMVectorType(ctx->f32, 2), "");
   5300 			LLVMValueRef i = LLVMBuildExtractElement(
   5301 				gallivm->builder, interp_param, uint->zero, "");
   5302 			LLVMValueRef j = LLVMBuildExtractElement(
   5303 				gallivm->builder, interp_param, uint->one, "");
   5304 			emit_data->output[chan] = build_fs_interp(bld_base,
   5305 				llvm_chan, attr_number, params,
   5306 				i, j);
   5307 		} else {
   5308 			emit_data->output[chan] = build_fs_interp_mov(bld_base,
   5309 				lp_build_const_int32(gallivm, 2), /* P0 */
   5310 				llvm_chan, attr_number, params);
   5311 		}
   5312 	}
   5313 }
   5314 
   5315 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
   5316 				       struct lp_build_emit_data *emit_data)
   5317 {
   5318 	struct si_shader_context *ctx = si_shader_context(bld_base);
   5319 	struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
   5320 	LLVMValueRef imm;
   5321 	unsigned stream;
   5322 
   5323 	assert(src0.File == TGSI_FILE_IMMEDIATE);
   5324 
   5325 	imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
   5326 	stream = LLVMConstIntGetZExtValue(imm) & 0x3;
   5327 	return stream;
   5328 }
   5329 
   5330 /* Emit one vertex from the geometry shader */
   5331 static void si_llvm_emit_vertex(
   5332 	const struct lp_build_tgsi_action *action,
   5333 	struct lp_build_tgsi_context *bld_base,
   5334 	struct lp_build_emit_data *emit_data)
   5335 {
   5336 	struct si_shader_context *ctx = si_shader_context(bld_base);
   5337 	struct lp_build_context *uint = &bld_base->uint_bld;
   5338 	struct si_shader *shader = ctx->shader;
   5339 	struct tgsi_shader_info *info = &shader->selector->info;
   5340 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   5341 	struct lp_build_if_state if_state;
   5342 	LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
   5343 					    SI_PARAM_GS2VS_OFFSET);
   5344 	LLVMValueRef gs_next_vertex;
   5345 	LLVMValueRef can_emit, kill;
   5346 	LLVMValueRef args[2];
   5347 	unsigned chan, offset;
   5348 	int i;
   5349 	unsigned stream;
   5350 
   5351 	stream = si_llvm_get_stream(bld_base, emit_data);
   5352 
   5353 	/* Write vertex attribute values to GSVS ring */
   5354 	gs_next_vertex = LLVMBuildLoad(gallivm->builder,
   5355 				       ctx->gs_next_vertex[stream],
   5356 				       "");
   5357 
   5358 	/* If this thread has already emitted the declared maximum number of
   5359 	 * vertices, skip the write: excessive vertex emissions are not
   5360 	 * supposed to have any effect.
   5361 	 *
   5362 	 * If the shader has no writes to memory, kill it instead. This skips
   5363 	 * further memory loads and may allow LLVM to skip to the end
   5364 	 * altogether.
   5365 	 */
   5366 	can_emit = LLVMBuildICmp(gallivm->builder, LLVMIntULT, gs_next_vertex,
   5367 				 lp_build_const_int32(gallivm,
   5368 						      shader->selector->gs_max_out_vertices), "");
   5369 
   5370 	bool use_kill = !info->writes_memory;
   5371 	if (use_kill) {
   5372 		kill = lp_build_select(&bld_base->base, can_emit,
   5373 				       lp_build_const_float(gallivm, 1.0f),
   5374 				       lp_build_const_float(gallivm, -1.0f));
   5375 
   5376 		lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill",
   5377 				   ctx->voidt, &kill, 1, 0);
   5378 	} else {
   5379 		lp_build_if(&if_state, gallivm, can_emit);
   5380 	}
   5381 
   5382 	offset = 0;
   5383 	for (i = 0; i < info->num_outputs; i++) {
   5384 		LLVMValueRef *out_ptr = ctx->outputs[i];
   5385 
   5386 		for (chan = 0; chan < 4; chan++) {
   5387 			if (!(info->output_usagemask[i] & (1 << chan)) ||
   5388 			    ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
   5389 				continue;
   5390 
   5391 			LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
   5392 			LLVMValueRef voffset =
   5393 				lp_build_const_int32(gallivm, offset *
   5394 						     shader->selector->gs_max_out_vertices);
   5395 			offset++;
   5396 
   5397 			voffset = lp_build_add(uint, voffset, gs_next_vertex);
   5398 			voffset = lp_build_mul_imm(uint, voffset, 4);
   5399 
   5400 			out_val = LLVMBuildBitCast(gallivm->builder, out_val, ctx->i32, "");
   5401 
   5402 			build_tbuffer_store(ctx,
   5403 					    ctx->gsvs_ring[stream],
   5404 					    out_val, 1,
   5405 					    voffset, soffset, 0,
   5406 					    V_008F0C_BUF_DATA_FORMAT_32,
   5407 					    V_008F0C_BUF_NUM_FORMAT_UINT,
   5408 					    1, 0, 1, 1, 0);
   5409 		}
   5410 	}
   5411 
   5412 	gs_next_vertex = lp_build_add(uint, gs_next_vertex,
   5413 				      lp_build_const_int32(gallivm, 1));
   5414 
   5415 	LLVMBuildStore(gallivm->builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
   5416 
   5417 	/* Signal vertex emission */
   5418 	args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_EMIT | SENDMSG_GS | (stream << 8));
   5419 	args[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID);
   5420 	lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
   5421 			   ctx->voidt, args, 2, 0);
   5422 
   5423 	if (!use_kill)
   5424 		lp_build_endif(&if_state);
   5425 }
   5426 
   5427 /* Cut one primitive from the geometry shader */
   5428 static void si_llvm_emit_primitive(
   5429 	const struct lp_build_tgsi_action *action,
   5430 	struct lp_build_tgsi_context *bld_base,
   5431 	struct lp_build_emit_data *emit_data)
   5432 {
   5433 	struct si_shader_context *ctx = si_shader_context(bld_base);
   5434 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   5435 	LLVMValueRef args[2];
   5436 	unsigned stream;
   5437 
   5438 	/* Signal primitive cut */
   5439 	stream = si_llvm_get_stream(bld_base, emit_data);
   5440 	args[0] = lp_build_const_int32(gallivm,	SENDMSG_GS_OP_CUT | SENDMSG_GS | (stream << 8));
   5441 	args[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_GS_WAVE_ID);
   5442 	lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
   5443 			   ctx->voidt, args, 2, 0);
   5444 }
   5445 
   5446 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
   5447 				 struct lp_build_tgsi_context *bld_base,
   5448 				 struct lp_build_emit_data *emit_data)
   5449 {
   5450 	struct si_shader_context *ctx = si_shader_context(bld_base);
   5451 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   5452 
   5453 	/* SI only (thanks to a hw bug workaround):
   5454 	 * The real barrier instruction isnt needed, because an entire patch
   5455 	 * always fits into a single wave.
   5456 	 */
   5457 	if (HAVE_LLVM >= 0x0309 &&
   5458 	    ctx->screen->b.chip_class == SI &&
   5459 	    ctx->type == PIPE_SHADER_TESS_CTRL) {
   5460 		emit_waitcnt(ctx, LGKM_CNT & VM_CNT);
   5461 		return;
   5462 	}
   5463 
   5464 	lp_build_intrinsic(gallivm->builder,
   5465 			   HAVE_LLVM >= 0x0309 ? "llvm.amdgcn.s.barrier"
   5466 					       : "llvm.AMDGPU.barrier.local",
   5467 			   ctx->voidt, NULL, 0, 0);
   5468 }
   5469 
   5470 static const struct lp_build_tgsi_action tex_action = {
   5471 	.fetch_args = tex_fetch_args,
   5472 	.emit = build_tex_intrinsic,
   5473 };
   5474 
   5475 static const struct lp_build_tgsi_action interp_action = {
   5476 	.fetch_args = interp_fetch_args,
   5477 	.emit = build_interp_intrinsic,
   5478 };
   5479 
   5480 static void si_create_function(struct si_shader_context *ctx,
   5481 			       const char *name,
   5482 			       LLVMTypeRef *returns, unsigned num_returns,
   5483 			       LLVMTypeRef *params, unsigned num_params,
   5484 			       int last_sgpr)
   5485 {
   5486 	int i;
   5487 
   5488 	si_llvm_create_func(ctx, name, returns, num_returns,
   5489 			    params, num_params);
   5490 	si_llvm_shader_type(ctx->main_fn, ctx->type);
   5491 	ctx->return_value = LLVMGetUndef(ctx->return_type);
   5492 
   5493 	for (i = 0; i <= last_sgpr; ++i) {
   5494 		LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
   5495 
   5496 		/* The combination of:
   5497 		 * - ByVal
   5498 		 * - dereferenceable
   5499 		 * - invariant.load
   5500 		 * allows the optimization passes to move loads and reduces
   5501 		 * SGPR spilling significantly.
   5502 		 */
   5503 		if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
   5504 			lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_BYVAL);
   5505 			lp_add_attr_dereferenceable(P, UINT64_MAX);
   5506 		} else
   5507 			lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_INREG);
   5508 	}
   5509 
   5510 	if (ctx->screen->b.debug_flags & DBG_UNSAFE_MATH) {
   5511 		/* These were copied from some LLVM test. */
   5512 		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
   5513 						   "less-precise-fpmad",
   5514 						   "true");
   5515 		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
   5516 						   "no-infs-fp-math",
   5517 						   "true");
   5518 		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
   5519 						   "no-nans-fp-math",
   5520 						   "true");
   5521 		LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
   5522 						   "unsafe-fp-math",
   5523 						   "true");
   5524 	}
   5525 }
   5526 
   5527 static void create_meta_data(struct si_shader_context *ctx)
   5528 {
   5529 	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
   5530 
   5531 	ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(gallivm->context,
   5532 							       "invariant.load", 14);
   5533 	ctx->range_md_kind = LLVMGetMDKindIDInContext(gallivm->context,
   5534 						     "range", 5);
   5535 	ctx->uniform_md_kind = LLVMGetMDKindIDInContext(gallivm->context,
   5536 							"amdgpu.uniform", 14);
   5537 
   5538 	ctx->empty_md = LLVMMDNodeInContext(gallivm->context, NULL, 0);
   5539 }
   5540 
   5541 static void declare_streamout_params(struct si_shader_context *ctx,
   5542 				     struct pipe_stream_output_info *so,
   5543 				     LLVMTypeRef *params, LLVMTypeRef i32,
   5544 				     unsigned *num_params)
   5545 {
   5546 	int i;
   5547 
   5548 	/* Streamout SGPRs. */
   5549 	if (so->num_outputs) {
   5550 		if (ctx->type != PIPE_SHADER_TESS_EVAL)
   5551 			params[ctx->param_streamout_config = (*num_params)++] = i32;
   5552 		else
   5553 			ctx->param_streamout_config = ctx->param_tess_offchip;
   5554 
   5555 		params[ctx->param_streamout_write_index = (*num_params)++] = i32;
   5556 	}
   5557 	/* A streamout buffer offset is loaded if the stride is non-zero. */
   5558 	for (i = 0; i < 4; i++) {
   5559 		if (!so->stride[i])
   5560 			continue;
   5561 
   5562 		params[ctx->param_streamout_offset[i] = (*num_params)++] = i32;
   5563 	}
   5564 }
   5565 
   5566 static unsigned llvm_get_type_size(LLVMTypeRef type)
   5567 {
   5568 	LLVMTypeKind kind = LLVMGetTypeKind(type);
   5569 
   5570 	switch (kind) {
   5571 	case LLVMIntegerTypeKind:
   5572 		return LLVMGetIntTypeWidth(type) / 8;
   5573 	case LLVMFloatTypeKind:
   5574 		return 4;
   5575 	case LLVMPointerTypeKind:
   5576 		return 8;
   5577 	case LLVMVectorTypeKind:
   5578 		return LLVMGetVectorSize(type) *
   5579 		       llvm_get_type_size(LLVMGetElementType(type));
   5580 	case LLVMArrayTypeKind:
   5581 		return LLVMGetArrayLength(type) *
   5582 		       llvm_get_type_size(LLVMGetElementType(type));
   5583 	default:
   5584 		assert(0);
   5585 		return 0;
   5586 	}
   5587 }
   5588 
   5589 static void declare_tess_lds(struct si_shader_context *ctx)
   5590 {
   5591 	struct gallivm_state *gallivm = &ctx->gallivm;
   5592 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
   5593 	struct lp_build_context *uint = &bld_base->uint_bld;
   5594 
   5595 	unsigned lds_size = ctx->screen->b.chip_class >= CIK ? 65536 : 32768;
   5596 	ctx->lds = LLVMBuildIntToPtr(gallivm->builder, uint->zero,
   5597 		LLVMPointerType(LLVMArrayType(ctx->i32, lds_size / 4), LOCAL_ADDR_SPACE),
   5598 		"tess_lds");
   5599 }
   5600 
   5601 static unsigned si_get_max_workgroup_size(struct si_shader *shader)
   5602 {
   5603 	const unsigned *properties = shader->selector->info.properties;
   5604 	unsigned max_work_group_size =
   5605 	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
   5606 	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
   5607 	               properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
   5608 
   5609 	if (!max_work_group_size) {
   5610 		/* This is a variable group size compute shader,
   5611 		 * compile it for the maximum possible group size.
   5612 		 */
   5613 		max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
   5614 	}
   5615 	return max_work_group_size;
   5616 }
   5617 
   5618 static void create_function(struct si_shader_context *ctx)
   5619 {
   5620 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
   5621 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   5622 	struct si_shader *shader = ctx->shader;
   5623 	LLVMTypeRef params[SI_NUM_PARAMS + SI_NUM_VERTEX_BUFFERS], v3i32;
   5624 	LLVMTypeRef returns[16+32*4];
   5625 	unsigned i, last_sgpr, num_params, num_return_sgprs;
   5626 	unsigned num_returns = 0;
   5627 	unsigned num_prolog_vgprs = 0;
   5628 
   5629 	v3i32 = LLVMVectorType(ctx->i32, 3);
   5630 
   5631 	params[SI_PARAM_RW_BUFFERS] = const_array(ctx->v16i8, SI_NUM_RW_BUFFERS);
   5632 	params[SI_PARAM_CONST_BUFFERS] = const_array(ctx->v16i8, SI_NUM_CONST_BUFFERS);
   5633 	params[SI_PARAM_SAMPLERS] = const_array(ctx->v8i32, SI_NUM_SAMPLERS);
   5634 	params[SI_PARAM_IMAGES] = const_array(ctx->v8i32, SI_NUM_IMAGES);
   5635 	params[SI_PARAM_SHADER_BUFFERS] = const_array(ctx->v4i32, SI_NUM_SHADER_BUFFERS);
   5636 
   5637 	switch (ctx->type) {
   5638 	case PIPE_SHADER_VERTEX:
   5639 		params[SI_PARAM_VERTEX_BUFFERS] = const_array(ctx->v16i8, SI_NUM_VERTEX_BUFFERS);
   5640 		params[SI_PARAM_BASE_VERTEX] = ctx->i32;
   5641 		params[SI_PARAM_START_INSTANCE] = ctx->i32;
   5642 		params[SI_PARAM_DRAWID] = ctx->i32;
   5643 		num_params = SI_PARAM_DRAWID+1;
   5644 
   5645 		if (shader->key.as_es) {
   5646 			params[ctx->param_es2gs_offset = num_params++] = ctx->i32;
   5647 		} else if (shader->key.as_ls) {
   5648 			params[SI_PARAM_LS_OUT_LAYOUT] = ctx->i32;
   5649 			num_params = SI_PARAM_LS_OUT_LAYOUT+1;
   5650 		} else {
   5651 			if (shader->is_gs_copy_shader) {
   5652 				num_params = SI_PARAM_RW_BUFFERS+1;
   5653 			} else {
   5654 				params[SI_PARAM_VS_STATE_BITS] = ctx->i32;
   5655 				num_params = SI_PARAM_VS_STATE_BITS+1;
   5656 			}
   5657 
   5658 			/* The locations of the other parameters are assigned dynamically. */
   5659 			declare_streamout_params(ctx, &shader->selector->so,
   5660 						 params, ctx->i32, &num_params);
   5661 		}
   5662 
   5663 		last_sgpr = num_params-1;
   5664 
   5665 		/* VGPRs */
   5666 		params[ctx->param_vertex_id = num_params++] = ctx->i32;
   5667 		params[ctx->param_rel_auto_id = num_params++] = ctx->i32;
   5668 		params[ctx->param_vs_prim_id = num_params++] = ctx->i32;
   5669 		params[ctx->param_instance_id = num_params++] = ctx->i32;
   5670 
   5671 		if (!shader->is_gs_copy_shader) {
   5672 			/* Vertex load indices. */
   5673 			ctx->param_vertex_index0 = num_params;
   5674 
   5675 			for (i = 0; i < shader->selector->info.num_inputs; i++)
   5676 				params[num_params++] = ctx->i32;
   5677 
   5678 			num_prolog_vgprs += shader->selector->info.num_inputs;
   5679 
   5680 			/* PrimitiveID output. */
   5681 			if (!shader->key.as_es && !shader->key.as_ls)
   5682 				for (i = 0; i <= VS_EPILOG_PRIMID_LOC; i++)
   5683 					returns[num_returns++] = ctx->f32;
   5684 		}
   5685 		break;
   5686 
   5687 	case PIPE_SHADER_TESS_CTRL:
   5688 		params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
   5689 		params[SI_PARAM_TCS_OUT_OFFSETS] = ctx->i32;
   5690 		params[SI_PARAM_TCS_OUT_LAYOUT] = ctx->i32;
   5691 		params[SI_PARAM_TCS_IN_LAYOUT] = ctx->i32;
   5692 		params[ctx->param_oc_lds = SI_PARAM_TCS_OC_LDS] = ctx->i32;
   5693 		params[SI_PARAM_TESS_FACTOR_OFFSET] = ctx->i32;
   5694 		last_sgpr = SI_PARAM_TESS_FACTOR_OFFSET;
   5695 
   5696 		/* VGPRs */
   5697 		params[SI_PARAM_PATCH_ID] = ctx->i32;
   5698 		params[SI_PARAM_REL_IDS] = ctx->i32;
   5699 		num_params = SI_PARAM_REL_IDS+1;
   5700 
   5701 		/* SI_PARAM_TCS_OC_LDS and PARAM_TESS_FACTOR_OFFSET are
   5702 		 * placed after the user SGPRs.
   5703 		 */
   5704 		for (i = 0; i < SI_TCS_NUM_USER_SGPR + 2; i++)
   5705 			returns[num_returns++] = ctx->i32; /* SGPRs */
   5706 
   5707 		for (i = 0; i < 3; i++)
   5708 			returns[num_returns++] = ctx->f32; /* VGPRs */
   5709 		break;
   5710 
   5711 	case PIPE_SHADER_TESS_EVAL:
   5712 		params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
   5713 		num_params = SI_PARAM_TCS_OFFCHIP_LAYOUT+1;
   5714 
   5715 		if (shader->key.as_es) {
   5716 			params[ctx->param_oc_lds = num_params++] = ctx->i32;
   5717 			params[ctx->param_tess_offchip = num_params++] = ctx->i32;
   5718 			params[ctx->param_es2gs_offset = num_params++] = ctx->i32;
   5719 		} else {
   5720 			params[ctx->param_tess_offchip = num_params++] = ctx->i32;
   5721 			declare_streamout_params(ctx, &shader->selector->so,
   5722 						 params, ctx->i32, &num_params);
   5723 			params[ctx->param_oc_lds = num_params++] = ctx->i32;
   5724 		}
   5725 		last_sgpr = num_params - 1;
   5726 
   5727 		/* VGPRs */
   5728 		params[ctx->param_tes_u = num_params++] = ctx->f32;
   5729 		params[ctx->param_tes_v = num_params++] = ctx->f32;
   5730 		params[ctx->param_tes_rel_patch_id = num_params++] = ctx->i32;
   5731 		params[ctx->param_tes_patch_id = num_params++] = ctx->i32;
   5732 
   5733 		/* PrimitiveID output. */
   5734 		if (!shader->key.as_es)
   5735 			for (i = 0; i <= VS_EPILOG_PRIMID_LOC; i++)
   5736 				returns[num_returns++] = ctx->f32;
   5737 		break;
   5738 
   5739 	case PIPE_SHADER_GEOMETRY:
   5740 		params[SI_PARAM_GS2VS_OFFSET] = ctx->i32;
   5741 		params[SI_PARAM_GS_WAVE_ID] = ctx->i32;
   5742 		last_sgpr = SI_PARAM_GS_WAVE_ID;
   5743 
   5744 		/* VGPRs */
   5745 		params[SI_PARAM_VTX0_OFFSET] = ctx->i32;
   5746 		params[SI_PARAM_VTX1_OFFSET] = ctx->i32;
   5747 		params[SI_PARAM_PRIMITIVE_ID] = ctx->i32;
   5748 		params[SI_PARAM_VTX2_OFFSET] = ctx->i32;
   5749 		params[SI_PARAM_VTX3_OFFSET] = ctx->i32;
   5750 		params[SI_PARAM_VTX4_OFFSET] = ctx->i32;
   5751 		params[SI_PARAM_VTX5_OFFSET] = ctx->i32;
   5752 		params[SI_PARAM_GS_INSTANCE_ID] = ctx->i32;
   5753 		num_params = SI_PARAM_GS_INSTANCE_ID+1;
   5754 		break;
   5755 
   5756 	case PIPE_SHADER_FRAGMENT:
   5757 		params[SI_PARAM_ALPHA_REF] = ctx->f32;
   5758 		params[SI_PARAM_PRIM_MASK] = ctx->i32;
   5759 		last_sgpr = SI_PARAM_PRIM_MASK;
   5760 		params[SI_PARAM_PERSP_SAMPLE] = ctx->v2i32;
   5761 		params[SI_PARAM_PERSP_CENTER] = ctx->v2i32;
   5762 		params[SI_PARAM_PERSP_CENTROID] = ctx->v2i32;
   5763 		params[SI_PARAM_PERSP_PULL_MODEL] = v3i32;
   5764 		params[SI_PARAM_LINEAR_SAMPLE] = ctx->v2i32;
   5765 		params[SI_PARAM_LINEAR_CENTER] = ctx->v2i32;
   5766 		params[SI_PARAM_LINEAR_CENTROID] = ctx->v2i32;
   5767 		params[SI_PARAM_LINE_STIPPLE_TEX] = ctx->f32;
   5768 		params[SI_PARAM_POS_X_FLOAT] = ctx->f32;
   5769 		params[SI_PARAM_POS_Y_FLOAT] = ctx->f32;
   5770 		params[SI_PARAM_POS_Z_FLOAT] = ctx->f32;
   5771 		params[SI_PARAM_POS_W_FLOAT] = ctx->f32;
   5772 		params[SI_PARAM_FRONT_FACE] = ctx->i32;
   5773 		shader->info.face_vgpr_index = 20;
   5774 		params[SI_PARAM_ANCILLARY] = ctx->i32;
   5775 		params[SI_PARAM_SAMPLE_COVERAGE] = ctx->f32;
   5776 		params[SI_PARAM_POS_FIXED_PT] = ctx->i32;
   5777 		num_params = SI_PARAM_POS_FIXED_PT+1;
   5778 
   5779 		/* Color inputs from the prolog. */
   5780 		if (shader->selector->info.colors_read) {
   5781 			unsigned num_color_elements =
   5782 				util_bitcount(shader->selector->info.colors_read);
   5783 
   5784 			assert(num_params + num_color_elements <= ARRAY_SIZE(params));
   5785 			for (i = 0; i < num_color_elements; i++)
   5786 				params[num_params++] = ctx->f32;
   5787 
   5788 			num_prolog_vgprs += num_color_elements;
   5789 		}
   5790 
   5791 		/* Outputs for the epilog. */
   5792 		num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
   5793 		num_returns =
   5794 			num_return_sgprs +
   5795 			util_bitcount(shader->selector->info.colors_written) * 4 +
   5796 			shader->selector->info.writes_z +
   5797 			shader->selector->info.writes_stencil +
   5798 			shader->selector->info.writes_samplemask +
   5799 			1 /* SampleMaskIn */;
   5800 
   5801 		num_returns = MAX2(num_returns,
   5802 				   num_return_sgprs +
   5803 				   PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
   5804 
   5805 		for (i = 0; i < num_return_sgprs; i++)
   5806 			returns[i] = ctx->i32;
   5807 		for (; i < num_returns; i++)
   5808 			returns[i] = ctx->f32;
   5809 		break;
   5810 
   5811 	case PIPE_SHADER_COMPUTE:
   5812 		params[SI_PARAM_GRID_SIZE] = v3i32;
   5813 		params[SI_PARAM_BLOCK_SIZE] = v3i32;
   5814 		params[SI_PARAM_BLOCK_ID] = v3i32;
   5815 		last_sgpr = SI_PARAM_BLOCK_ID;
   5816 
   5817 		params[SI_PARAM_THREAD_ID] = v3i32;
   5818 		num_params = SI_PARAM_THREAD_ID + 1;
   5819 		break;
   5820 	default:
   5821 		assert(0 && "unimplemented shader");
   5822 		return;
   5823 	}
   5824 
   5825 	assert(num_params <= ARRAY_SIZE(params));
   5826 
   5827 	si_create_function(ctx, "main", returns, num_returns, params,
   5828 			   num_params, last_sgpr);
   5829 
   5830 	/* Reserve register locations for VGPR inputs the PS prolog may need. */
   5831 	if (ctx->type == PIPE_SHADER_FRAGMENT &&
   5832 	    ctx->separate_prolog) {
   5833 		si_llvm_add_attribute(ctx->main_fn,
   5834 				      "InitialPSInputAddr",
   5835 				      S_0286D0_PERSP_SAMPLE_ENA(1) |
   5836 				      S_0286D0_PERSP_CENTER_ENA(1) |
   5837 				      S_0286D0_PERSP_CENTROID_ENA(1) |
   5838 				      S_0286D0_LINEAR_SAMPLE_ENA(1) |
   5839 				      S_0286D0_LINEAR_CENTER_ENA(1) |
   5840 				      S_0286D0_LINEAR_CENTROID_ENA(1) |
   5841 				      S_0286D0_FRONT_FACE_ENA(1) |
   5842 				      S_0286D0_POS_FIXED_PT_ENA(1));
   5843 	} else if (ctx->type == PIPE_SHADER_COMPUTE) {
   5844 		si_llvm_add_attribute(ctx->main_fn,
   5845 				      "amdgpu-max-work-group-size",
   5846 				      si_get_max_workgroup_size(shader));
   5847 	}
   5848 
   5849 	shader->info.num_input_sgprs = 0;
   5850 	shader->info.num_input_vgprs = 0;
   5851 
   5852 	for (i = 0; i <= last_sgpr; ++i)
   5853 		shader->info.num_input_sgprs += llvm_get_type_size(params[i]) / 4;
   5854 
   5855 	for (; i < num_params; ++i)
   5856 		shader->info.num_input_vgprs += llvm_get_type_size(params[i]) / 4;
   5857 
   5858 	assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
   5859 	shader->info.num_input_vgprs -= num_prolog_vgprs;
   5860 
   5861 	if (!ctx->screen->has_ds_bpermute &&
   5862 	    bld_base->info &&
   5863 	    (bld_base->info->opcode_count[TGSI_OPCODE_DDX] > 0 ||
   5864 	     bld_base->info->opcode_count[TGSI_OPCODE_DDY] > 0 ||
   5865 	     bld_base->info->opcode_count[TGSI_OPCODE_DDX_FINE] > 0 ||
   5866 	     bld_base->info->opcode_count[TGSI_OPCODE_DDY_FINE] > 0 ||
   5867 	     bld_base->info->opcode_count[TGSI_OPCODE_INTERP_OFFSET] > 0 ||
   5868 	     bld_base->info->opcode_count[TGSI_OPCODE_INTERP_SAMPLE] > 0))
   5869 		ctx->lds =
   5870 			LLVMAddGlobalInAddressSpace(gallivm->module,
   5871 						    LLVMArrayType(ctx->i32, 64),
   5872 						    "ddxy_lds",
   5873 						    LOCAL_ADDR_SPACE);
   5874 
   5875 	if ((ctx->type == PIPE_SHADER_VERTEX && shader->key.as_ls) ||
   5876 	    ctx->type == PIPE_SHADER_TESS_CTRL ||
   5877 	    ctx->type == PIPE_SHADER_TESS_EVAL)
   5878 		declare_tess_lds(ctx);
   5879 }
   5880 
   5881 /**
   5882  * Load ESGS and GSVS ring buffer resource descriptors and save the variables
   5883  * for later use.
   5884  */
   5885 static void preload_ring_buffers(struct si_shader_context *ctx)
   5886 {
   5887 	struct gallivm_state *gallivm = ctx->bld_base.base.gallivm;
   5888 	LLVMBuilderRef builder = gallivm->builder;
   5889 
   5890 	LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
   5891 					    SI_PARAM_RW_BUFFERS);
   5892 
   5893 	if ((ctx->type == PIPE_SHADER_VERTEX &&
   5894 	     ctx->shader->key.as_es) ||
   5895 	    (ctx->type == PIPE_SHADER_TESS_EVAL &&
   5896 	     ctx->shader->key.as_es) ||
   5897 	    ctx->type == PIPE_SHADER_GEOMETRY) {
   5898 		unsigned ring =
   5899 			ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
   5900 							     : SI_ES_RING_ESGS;
   5901 		LLVMValueRef offset = lp_build_const_int32(gallivm, ring);
   5902 
   5903 		ctx->esgs_ring =
   5904 			build_indexed_load_const(ctx, buf_ptr, offset);
   5905 	}
   5906 
   5907 	if (ctx->shader->is_gs_copy_shader) {
   5908 		LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_GSVS);
   5909 
   5910 		ctx->gsvs_ring[0] =
   5911 			build_indexed_load_const(ctx, buf_ptr, offset);
   5912 	} else if (ctx->type == PIPE_SHADER_GEOMETRY) {
   5913 		const struct si_shader_selector *sel = ctx->shader->selector;
   5914 		struct lp_build_context *uint = &ctx->bld_base.uint_bld;
   5915 		LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_GSVS);
   5916 		LLVMValueRef base_ring;
   5917 
   5918 		base_ring = build_indexed_load_const(ctx, buf_ptr, offset);
   5919 
   5920 		/* The conceptual layout of the GSVS ring is
   5921 		 *   v0c0 .. vLv0 v0c1 .. vLc1 ..
   5922 		 * but the real memory layout is swizzled across
   5923 		 * threads:
   5924 		 *   t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
   5925 		 *   t16v0c0 ..
   5926 		 * Override the buffer descriptor accordingly.
   5927 		 */
   5928 		LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
   5929 		uint64_t stream_offset = 0;
   5930 
   5931 		for (unsigned stream = 0; stream < 4; ++stream) {
   5932 			unsigned num_components;
   5933 			unsigned stride;
   5934 			unsigned num_records;
   5935 			LLVMValueRef ring, tmp;
   5936 
   5937 			num_components = sel->info.num_stream_output_components[stream];
   5938 			if (!num_components)
   5939 				continue;
   5940 
   5941 			stride = 4 * num_components * sel->gs_max_out_vertices;
   5942 
   5943 			/* Limit on the stride field for <= CIK. */
   5944 			assert(stride < (1 << 14));
   5945 
   5946 			num_records = 64;
   5947 
   5948 			ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
   5949 			tmp = LLVMBuildExtractElement(builder, ring, uint->zero, "");
   5950 			tmp = LLVMBuildAdd(builder, tmp,
   5951 					   LLVMConstInt(ctx->i64,
   5952 							stream_offset, 0), "");
   5953 			stream_offset += stride * 64;
   5954 
   5955 			ring = LLVMBuildInsertElement(builder, ring, tmp, uint->zero, "");
   5956 			ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
   5957 			tmp = LLVMBuildExtractElement(builder, ring, uint->one, "");
   5958 			tmp = LLVMBuildOr(builder, tmp,
   5959 				LLVMConstInt(ctx->i32,
   5960 					     S_008F04_STRIDE(stride) |
   5961 					     S_008F04_SWIZZLE_ENABLE(1), 0), "");
   5962 			ring = LLVMBuildInsertElement(builder, ring, tmp, uint->one, "");
   5963 			ring = LLVMBuildInsertElement(builder, ring,
   5964 					LLVMConstInt(ctx->i32, num_records, 0),
   5965 					LLVMConstInt(ctx->i32, 2, 0), "");
   5966 			ring = LLVMBuildInsertElement(builder, ring,
   5967 				LLVMConstInt(ctx->i32,
   5968 					     S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
   5969 					     S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
   5970 					     S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
   5971 					     S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
   5972 					     S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
   5973 					     S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
   5974 					     S_008F0C_ELEMENT_SIZE(1) | /* element_size = 4 (bytes) */
   5975 					     S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
   5976 					     S_008F0C_ADD_TID_ENABLE(1),
   5977 					     0),
   5978 				LLVMConstInt(ctx->i32, 3, 0), "");
   5979 			ring = LLVMBuildBitCast(builder, ring, ctx->v16i8, "");
   5980 
   5981 			ctx->gsvs_ring[stream] = ring;
   5982 		}
   5983 	}
   5984 }
   5985 
   5986 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
   5987 					 LLVMValueRef param_rw_buffers,
   5988 					 unsigned param_pos_fixed_pt)
   5989 {
   5990 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
   5991 	struct gallivm_state *gallivm = bld_base->base.gallivm;
   5992 	LLVMBuilderRef builder = gallivm->builder;
   5993 	LLVMValueRef slot, desc, offset, row, bit, address[2];
   5994 
   5995 	/* Use the fixed-point gl_FragCoord input.
   5996 	 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
   5997 	 * per coordinate to get the repeating effect.
   5998 	 */
   5999 	address[0] = unpack_param(ctx, param_pos_fixed_pt, 0, 5);
   6000 	address[1] = unpack_param(ctx, param_pos_fixed_pt, 16, 5);
   6001 
   6002 	/* Load the buffer descriptor. */
   6003 	slot = lp_build_const_int32(gallivm, SI_PS_CONST_POLY_STIPPLE);
   6004 	desc = build_indexed_load_const(ctx, param_rw_buffers, slot);
   6005 
   6006 	/* The stipple pattern is 32x32, each row has 32 bits. */
   6007 	offset = LLVMBuildMul(builder, address[1],
   6008 			      LLVMConstInt(ctx->i32, 4, 0), "");
   6009 	row = buffer_load_const(ctx, desc, offset);
   6010 	row = LLVMBuildBitCast(builder, row, ctx->i32, "");
   6011 	bit = LLVMBuildLShr(builder, row, address[0], "");
   6012 	bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
   6013 
   6014 	/* The intrinsic kills the thread if arg < 0. */
   6015 	bit = LLVMBuildSelect(builder, bit, LLVMConstReal(ctx->f32, 0),
   6016 			      LLVMConstReal(ctx->f32, -1), "");
   6017 	lp_build_intrinsic(builder, "llvm.AMDGPU.kill", ctx->voidt, &bit, 1, 0);
   6018 }
   6019 
   6020 void si_shader_binary_read_config(struct radeon_shader_binary *binary,
   6021 				  struct si_shader_config *conf,
   6022 				  unsigned symbol_offset)
   6023 {
   6024 	unsigned i;
   6025 	const unsigned char *config =
   6026 		radeon_shader_binary_config_start(binary, symbol_offset);
   6027 	bool really_needs_scratch = false;
   6028 
   6029 	/* LLVM adds SGPR spills to the scratch size.
   6030 	 * Find out if we really need the scratch buffer.
   6031 	 */
   6032 	for (i = 0; i < binary->reloc_count; i++) {
   6033 		const struct radeon_shader_reloc *reloc = &binary->relocs[i];
   6034 
   6035 		if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name) ||
   6036 		    !strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
   6037 			really_needs_scratch = true;
   6038 			break;
   6039 		}
   6040 	}
   6041 
   6042 	/* XXX: We may be able to emit some of these values directly rather than
   6043 	 * extracting fields to be emitted later.
   6044 	 */
   6045 
   6046 	for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
   6047 		unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
   6048 		unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
   6049 		switch (reg) {
   6050 		case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
   6051 		case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
   6052 		case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
   6053 		case R_00B848_COMPUTE_PGM_RSRC1:
   6054 			conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
   6055 			conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
   6056 			conf->float_mode =  G_00B028_FLOAT_MODE(value);
   6057 			conf->rsrc1 = value;
   6058 			break;
   6059 		case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
   6060 			conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
   6061 			break;
   6062 		case R_00B84C_COMPUTE_PGM_RSRC2:
   6063 			conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
   6064 			conf->rsrc2 = value;
   6065 			break;
   6066 		case R_0286CC_SPI_PS_INPUT_ENA:
   6067 			conf->spi_ps_input_ena = value;
   6068 			break;
   6069 		case R_0286D0_SPI_PS_INPUT_ADDR:
   6070 			conf->spi_ps_input_addr = value;
   6071 			break;
   6072 		case R_0286E8_SPI_TMPRING_SIZE:
   6073 		case R_00B860_COMPUTE_TMPRING_SIZE:
   6074 			/* WAVESIZE is in units of 256 dwords. */
   6075 			if (really_needs_scratch)
   6076 				conf->scratch_bytes_per_wave =
   6077 					G_00B860_WAVESIZE(value) * 256 * 4;
   6078 			break;
   6079 		case 0x4: /* SPILLED_SGPRS */
   6080 			conf->spilled_sgprs = value;
   6081 			break;
   6082 		case 0x8: /* SPILLED_VGPRS */
   6083 			conf->spilled_vgprs = value;
   6084 			break;
   6085 		default:
   6086 			{
   6087 				static bool printed;
   6088 
   6089 				if (!printed) {
   6090 					fprintf(stderr, "Warning: LLVM emitted unknown "
   6091 						"config register: 0x%x\n", reg);
   6092 					printed = true;
   6093 				}
   6094 			}
   6095 			break;
   6096 		}
   6097 	}
   6098 
   6099 	if (!conf->spi_ps_input_addr)
   6100 		conf->spi_ps_input_addr = conf->spi_ps_input_ena;
   6101 }
   6102 
   6103 void si_shader_apply_scratch_relocs(struct si_context *sctx,
   6104 			struct si_shader *shader,
   6105 			struct si_shader_config *config,
   6106 			uint64_t scratch_va)
   6107 {
   6108 	unsigned i;
   6109 	uint32_t scratch_rsrc_dword0 = scratch_va;
   6110 	uint32_t scratch_rsrc_dword1 =
   6111 		S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
   6112 
   6113 	/* Enable scratch coalescing if LLVM sets ELEMENT_SIZE & INDEX_STRIDE
   6114 	 * correctly.
   6115 	 */
   6116 	if (HAVE_LLVM >= 0x0309)
   6117 		scratch_rsrc_dword1 |= S_008F04_SWIZZLE_ENABLE(1);
   6118 	else
   6119 		scratch_rsrc_dword1 |=
   6120 			S_008F04_STRIDE(config->scratch_bytes_per_wave / 64);
   6121 
   6122 	for (i = 0 ; i < shader->binary.reloc_count; i++) {
   6123 		const struct radeon_shader_reloc *reloc =
   6124 					&shader->binary.relocs[i];
   6125 		if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
   6126 			util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
   6127 			&scratch_rsrc_dword0, 4);
   6128 		} else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
   6129 			util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
   6130 			&scratch_rsrc_dword1, 4);
   6131 		}
   6132 	}
   6133 }
   6134 
   6135 static unsigned si_get_shader_binary_size(struct si_shader *shader)
   6136 {
   6137 	unsigned size = shader->binary.code_size;
   6138 
   6139 	if (shader->prolog)
   6140 		size += shader->prolog->binary.code_size;
   6141 	if (shader->epilog)
   6142 		size += shader->epilog->binary.code_size;
   6143 	return size;
   6144 }
   6145 
   6146 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
   6147 {
   6148 	const struct radeon_shader_binary *prolog =
   6149 		shader->prolog ? &shader->prolog->binary : NULL;
   6150 	const struct radeon_shader_binary *epilog =
   6151 		shader->epilog ? &shader->epilog->binary : NULL;
   6152 	const struct radeon_shader_binary *mainb = &shader->binary;
   6153 	unsigned bo_size = si_get_shader_binary_size(shader) +
   6154 			   (!epilog ? mainb->rodata_size : 0);
   6155 	unsigned char *ptr;
   6156 
   6157 	assert(!prolog || !prolog->rodata_size);
   6158 	assert((!prolog && !epilog) || !mainb->rodata_size);
   6159 	assert(!epilog || !epilog->rodata_size);
   6160 
   6161 	r600_resource_reference(&shader->bo, NULL);
   6162 	shader->bo = (struct r600_resource*)
   6163 		     pipe_buffer_create(&sscreen->b.b, 0,
   6164 					PIPE_USAGE_IMMUTABLE, bo_size);
   6165 	if (!shader->bo)
   6166 		return -ENOMEM;
   6167 
   6168 	/* Upload. */
   6169 	ptr = sscreen->b.ws->buffer_map(shader->bo->buf, NULL,
   6170 					PIPE_TRANSFER_READ_WRITE);
   6171 
   6172 	if (prolog) {
   6173 		util_memcpy_cpu_to_le32(ptr, prolog->code, prolog->code_size);
   6174 		ptr += prolog->code_size;
   6175 	}
   6176 
   6177 	util_memcpy_cpu_to_le32(ptr, mainb->code, mainb->code_size);
   6178 	ptr += mainb->code_size;
   6179 
   6180 	if (epilog)
   6181 		util_memcpy_cpu_to_le32(ptr, epilog->code, epilog->code_size);
   6182 	else if (mainb->rodata_size > 0)
   6183 		util_memcpy_cpu_to_le32(ptr, mainb->rodata, mainb->rodata_size);
   6184 
   6185 	sscreen->b.ws->buffer_unmap(shader->bo->buf);
   6186 	return 0;
   6187 }
   6188 
   6189 static void si_shader_dump_disassembly(const struct radeon_shader_binary *binary,
   6190 				       struct pipe_debug_callback *debug,
   6191 				       const char *name, FILE *file)
   6192 {
   6193 	char *line, *p;
   6194 	unsigned i, count;
   6195 
   6196 	if (binary->disasm_string) {
   6197 		fprintf(file, "Shader %s disassembly:\n", name);
   6198 		fprintf(file, "%s", binary->disasm_string);
   6199 
   6200 		if (debug && debug->debug_message) {
   6201 			/* Very long debug messages are cut off, so send the
   6202 			 * disassembly one line at a time. This causes more
   6203 			 * overhead, but on the plus side it simplifies
   6204 			 * parsing of resulting logs.
   6205 			 */
   6206 			pipe_debug_message(debug, SHADER_INFO,
   6207 					   "Shader Disassembly Begin");
   6208 
   6209 			line = binary->disasm_string;
   6210 			while (*line) {
   6211 				p = util_strchrnul(line, '\n');
   6212 				count = p - line;
   6213 
   6214 				if (count) {
   6215 					pipe_debug_message(debug, SHADER_INFO,
   6216 							   "%.*s", count, line);
   6217 				}
   6218 
   6219 				if (!*p)
   6220 					break;
   6221 				line = p + 1;
   6222 			}
   6223 
   6224 			pipe_debug_message(debug, SHADER_INFO,
   6225 					   "Shader Disassembly End");
   6226 		}
   6227 	} else {
   6228 		fprintf(file, "Shader %s binary:\n", name);
   6229 		for (i = 0; i < binary->code_size; i += 4) {
   6230 			fprintf(file, "@0x%x: %02x%02x%02x%02x\n", i,
   6231 				binary->code[i + 3], binary->code[i + 2],
   6232 				binary->code[i + 1], binary->code[i]);
   6233 		}
   6234 	}
   6235 }
   6236 
   6237 static void si_shader_dump_stats(struct si_screen *sscreen,
   6238 				 struct si_shader *shader,
   6239 			         struct pipe_debug_callback *debug,
   6240 			         unsigned processor,
   6241 				 FILE *file,
   6242 				 bool check_debug_option)
   6243 {
   6244 	struct si_shader_config *conf = &shader->config;
   6245 	unsigned num_inputs = shader->selector ? shader->selector->info.num_inputs : 0;
   6246 	unsigned code_size = si_get_shader_binary_size(shader);
   6247 	unsigned lds_increment = sscreen->b.chip_class >= CIK ? 512 : 256;
   6248 	unsigned lds_per_wave = 0;
   6249 	unsigned max_simd_waves = 10;
   6250 
   6251 	/* Compute LDS usage for PS. */
   6252 	switch (processor) {
   6253 	case PIPE_SHADER_FRAGMENT:
   6254 		/* The minimum usage per wave is (num_inputs * 48). The maximum
   6255 		 * usage is (num_inputs * 48 * 16).
   6256 		 * We can get anything in between and it varies between waves.
   6257 		 *
   6258 		 * The 48 bytes per input for a single primitive is equal to
   6259 		 * 4 bytes/component * 4 components/input * 3 points.
   6260 		 *
   6261 		 * Other stages don't know the size at compile time or don't
   6262 		 * allocate LDS per wave, but instead they do it per thread group.
   6263 		 */
   6264 		lds_per_wave = conf->lds_size * lds_increment +
   6265 			       align(num_inputs * 48, lds_increment);
   6266 		break;
   6267 	case PIPE_SHADER_COMPUTE:
   6268 		if (shader->selector) {
   6269 			unsigned max_workgroup_size =
   6270 				si_get_max_workgroup_size(shader);
   6271 			lds_per_wave = (conf->lds_size * lds_increment) /
   6272 				       DIV_ROUND_UP(max_workgroup_size, 64);
   6273 		}
   6274 		break;
   6275 	}
   6276 
   6277 	/* Compute the per-SIMD wave counts. */
   6278 	if (conf->num_sgprs) {
   6279 		if (sscreen->b.chip_class >= VI)
   6280 			max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
   6281 		else
   6282 			max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
   6283 	}
   6284 
   6285 	if (conf->num_vgprs)
   6286 		max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
   6287 
   6288 	/* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
   6289 	 * 16KB makes some SIMDs unoccupied). */
   6290 	if (lds_per_wave)
   6291 		max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
   6292 
   6293 	if (!check_debug_option ||
   6294 	    r600_can_dump_shader(&sscreen->b, processor)) {
   6295 		if (processor == PIPE_SHADER_FRAGMENT) {
   6296 			fprintf(file, "*** SHADER CONFIG ***\n"
   6297 				"SPI_PS_INPUT_ADDR = 0x%04x\n"
   6298 				"SPI_PS_INPUT_ENA  = 0x%04x\n",
   6299 				conf->spi_ps_input_addr, conf->spi_ps_input_ena);
   6300 		}
   6301 
   6302 		fprintf(file, "*** SHADER STATS ***\n"
   6303 			"SGPRS: %d\n"
   6304 			"VGPRS: %d\n"
   6305 		        "Spilled SGPRs: %d\n"
   6306 			"Spilled VGPRs: %d\n"
   6307 			"Private memory VGPRs: %d\n"
   6308 			"Code Size: %d bytes\n"
   6309 			"LDS: %d blocks\n"
   6310 			"Scratch: %d bytes per wave\n"
   6311 			"Max Waves: %d\n"
   6312 			"********************\n\n\n",
   6313 			conf->num_sgprs, conf->num_vgprs,
   6314 			conf->spilled_sgprs, conf->spilled_vgprs,
   6315 			conf->private_mem_vgprs, code_size,
   6316 			conf->lds_size, conf->scratch_bytes_per_wave,
   6317 			max_simd_waves);
   6318 	}
   6319 
   6320 	pipe_debug_message(debug, SHADER_INFO,
   6321 			   "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
   6322 			   "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
   6323 			   "Spilled VGPRs: %d PrivMem VGPRs: %d",
   6324 			   conf->num_sgprs, conf->num_vgprs, code_size,
   6325 			   conf->lds_size, conf->scratch_bytes_per_wave,
   6326 			   max_simd_waves, conf->spilled_sgprs,
   6327 			   conf->spilled_vgprs, conf->private_mem_vgprs);
   6328 }
   6329 
   6330 static const char *si_get_shader_name(struct si_shader *shader,
   6331 				      unsigned processor)
   6332 {
   6333 	switch (processor) {
   6334 	case PIPE_SHADER_VERTEX:
   6335 		if (shader->key.as_es)
   6336 			return "Vertex Shader as ES";
   6337 		else if (shader->key.as_ls)
   6338 			return "Vertex Shader as LS";
   6339 		else
   6340 			return "Vertex Shader as VS";
   6341 	case PIPE_SHADER_TESS_CTRL:
   6342 		return "Tessellation Control Shader";
   6343 	case PIPE_SHADER_TESS_EVAL:
   6344 		if (shader->key.as_es)
   6345 			return "Tessellation Evaluation Shader as ES";
   6346 		else
   6347 			return "Tessellation Evaluation Shader as VS";
   6348 	case PIPE_SHADER_GEOMETRY:
   6349 		if (shader->is_gs_copy_shader)
   6350 			return "GS Copy Shader as VS";
   6351 		else
   6352 			return "Geometry Shader";
   6353 	case PIPE_SHADER_FRAGMENT:
   6354 		return "Pixel Shader";
   6355 	case PIPE_SHADER_COMPUTE:
   6356 		return "Compute Shader";
   6357 	default:
   6358 		return "Unknown Shader";
   6359 	}
   6360 }
   6361 
   6362 void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
   6363 		    struct pipe_debug_callback *debug, unsigned processor,
   6364 		    FILE *file, bool check_debug_option)
   6365 {
   6366 	if (!check_debug_option ||
   6367 	    r600_can_dump_shader(&sscreen->b, processor))
   6368 		si_dump_shader_key(processor, &shader->key, file);
   6369 
   6370 	if (!check_debug_option && shader->binary.llvm_ir_string) {
   6371 		fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
   6372 			si_get_shader_name(shader, processor));
   6373 		fprintf(file, "%s\n", shader->binary.llvm_ir_string);
   6374 	}
   6375 
   6376 	if (!check_debug_option ||
   6377 	    (r600_can_dump_shader(&sscreen->b, processor) &&
   6378 	     !(sscreen->b.debug_flags & DBG_NO_ASM))) {
   6379 		fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
   6380 
   6381 		if (shader->prolog)
   6382 			si_shader_dump_disassembly(&shader->prolog->binary,
   6383 						   debug, "prolog", file);
   6384 
   6385 		si_shader_dump_disassembly(&shader->binary, debug, "main", file);
   6386 
   6387 		if (shader->epilog)
   6388 			si_shader_dump_disassembly(&shader->epilog->binary,
   6389 						   debug, "epilog", file);
   6390 		fprintf(file, "\n");
   6391 	}
   6392 
   6393 	si_shader_dump_stats(sscreen, shader, debug, processor, file,
   6394 			     check_debug_option);
   6395 }
   6396 
   6397 int si_compile_llvm(struct si_screen *sscreen,
   6398 		    struct radeon_shader_binary *binary,
   6399 		    struct si_shader_config *conf,
   6400 		    LLVMTargetMachineRef tm,
   6401 		    LLVMModuleRef mod,
   6402 		    struct pipe_debug_callback *debug,
   6403 		    unsigned processor,
   6404 		    const char *name)
   6405 {
   6406 	int r = 0;
   6407 	unsigned count = p_atomic_inc_return(&sscreen->b.num_compilations);
   6408 
   6409 	if (r600_can_dump_shader(&sscreen->b, processor)) {
   6410 		fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
   6411 
   6412 		if (!(sscreen->b.debug_flags & (DBG_NO_IR | DBG_PREOPT_IR))) {
   6413 			fprintf(stderr, "%s LLVM IR:\n\n", name);
   6414 			LLVMDumpModule(mod);
   6415 			fprintf(stderr, "\n");
   6416 		}
   6417 	}
   6418 
   6419 	if (sscreen->record_llvm_ir) {
   6420 		char *ir = LLVMPrintModuleToString(mod);
   6421 		binary->llvm_ir_string = strdup(ir);
   6422 		LLVMDisposeMessage(ir);
   6423 	}
   6424 
   6425 	if (!si_replace_shader(count, binary)) {
   6426 		r = si_llvm_compile(mod, binary, tm, debug);
   6427 		if (r)
   6428 			return r;
   6429 	}
   6430 
   6431 	si_shader_binary_read_config(binary, conf, 0);
   6432 
   6433 	/* Enable 64-bit and 16-bit denormals, because there is no performance
   6434 	 * cost.
   6435 	 *
   6436 	 * If denormals are enabled, all floating-point output modifiers are
   6437 	 * ignored.
   6438 	 *
   6439 	 * Don't enable denormals for 32-bit floats, because:
   6440 	 * - Floating-point output modifiers would be ignored by the hw.
   6441 	 * - Some opcodes don't support denormals, such as v_mad_f32. We would
   6442 	 *   have to stop using those.
   6443 	 * - SI & CI would be very slow.
   6444 	 */
   6445 	conf->float_mode |= V_00B028_FP_64_DENORMS;
   6446 
   6447 	FREE(binary->config);
   6448 	FREE(binary->global_symbol_offsets);
   6449 	binary->config = NULL;
   6450 	binary->global_symbol_offsets = NULL;
   6451 
   6452 	/* Some shaders can't have rodata because their binaries can be
   6453 	 * concatenated.
   6454 	 */
   6455 	if (binary->rodata_size &&
   6456 	    (processor == PIPE_SHADER_VERTEX ||
   6457 	     processor == PIPE_SHADER_TESS_CTRL ||
   6458 	     processor == PIPE_SHADER_TESS_EVAL ||
   6459 	     processor == PIPE_SHADER_FRAGMENT)) {
   6460 		fprintf(stderr, "radeonsi: The shader can't have rodata.");
   6461 		return -EINVAL;
   6462 	}
   6463 
   6464 	return r;
   6465 }
   6466 
   6467 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
   6468 {
   6469 	if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
   6470 		LLVMBuildRetVoid(ctx->gallivm.builder);
   6471 	else
   6472 		LLVMBuildRet(ctx->gallivm.builder, ret);
   6473 }
   6474 
   6475 /* Generate code for the hardware VS shader stage to go with a geometry shader */
   6476 struct si_shader *
   6477 si_generate_gs_copy_shader(struct si_screen *sscreen,
   6478 			   LLVMTargetMachineRef tm,
   6479 			   struct si_shader_selector *gs_selector,
   6480 			   struct pipe_debug_callback *debug)
   6481 {
   6482 	struct si_shader_context ctx;
   6483 	struct si_shader *shader;
   6484 	struct gallivm_state *gallivm = &ctx.gallivm;
   6485 	LLVMBuilderRef builder;
   6486 	struct lp_build_tgsi_context *bld_base = &ctx.bld_base;
   6487 	struct lp_build_context *uint = &bld_base->uint_bld;
   6488 	struct si_shader_output_values *outputs;
   6489 	struct tgsi_shader_info *gsinfo = &gs_selector->info;
   6490 	LLVMValueRef args[9];
   6491 	int i, r;
   6492 
   6493 	outputs = MALLOC(gsinfo->num_outputs * sizeof(outputs[0]));
   6494 
   6495 	if (!outputs)
   6496 		return NULL;
   6497 
   6498 	shader = CALLOC_STRUCT(si_shader);
   6499 	if (!shader) {
   6500 		FREE(outputs);
   6501 		return NULL;
   6502 	}
   6503 
   6504 
   6505 	shader->selector = gs_selector;
   6506 	shader->is_gs_copy_shader = true;
   6507 
   6508 	si_init_shader_ctx(&ctx, sscreen, shader, tm);
   6509 	ctx.type = PIPE_SHADER_VERTEX;
   6510 
   6511 	builder = gallivm->builder;
   6512 
   6513 	create_meta_data(&ctx);
   6514 	create_function(&ctx);
   6515 	preload_ring_buffers(&ctx);
   6516 
   6517 	args[0] = ctx.gsvs_ring[0];
   6518 	args[1] = lp_build_mul_imm(uint,
   6519 				   LLVMGetParam(ctx.main_fn,
   6520 						ctx.param_vertex_id),
   6521 				   4);
   6522 	args[3] = uint->zero;
   6523 	args[4] = uint->one;  /* OFFEN */
   6524 	args[5] = uint->zero; /* IDXEN */
   6525 	args[6] = uint->one;  /* GLC */
   6526 	args[7] = uint->one;  /* SLC */
   6527 	args[8] = uint->zero; /* TFE */
   6528 
   6529 	/* Fetch the vertex stream ID.*/
   6530 	LLVMValueRef stream_id;
   6531 
   6532 	if (gs_selector->so.num_outputs)
   6533 		stream_id = unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
   6534 	else
   6535 		stream_id = uint->zero;
   6536 
   6537 	/* Fill in output information. */
   6538 	for (i = 0; i < gsinfo->num_outputs; ++i) {
   6539 		outputs[i].semantic_name = gsinfo->output_semantic_name[i];
   6540 		outputs[i].semantic_index = gsinfo->output_semantic_index[i];
   6541 
   6542 		for (int chan = 0; chan < 4; chan++) {
   6543 			outputs[i].vertex_stream[chan] =
   6544 				(gsinfo->output_streams[i] >> (2 * chan)) & 3;
   6545 		}
   6546 	}
   6547 
   6548 	LLVMBasicBlockRef end_bb;
   6549 	LLVMValueRef switch_inst;
   6550 
   6551 	end_bb = LLVMAppendBasicBlockInContext(gallivm->context, ctx.main_fn, "end");
   6552 	switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
   6553 
   6554 	for (int stream = 0; stream < 4; stream++) {
   6555 		LLVMBasicBlockRef bb;
   6556 		unsigned offset;
   6557 
   6558 		if (!gsinfo->num_stream_output_components[stream])
   6559 			continue;
   6560 
   6561 		if (stream > 0 && !gs_selector->so.num_outputs)
   6562 			continue;
   6563 
   6564 		bb = LLVMInsertBasicBlockInContext(gallivm->context, end_bb, "out");
   6565 		LLVMAddCase(switch_inst, lp_build_const_int32(gallivm, stream), bb);
   6566 		LLVMPositionBuilderAtEnd(builder, bb);
   6567 
   6568 		/* Fetch vertex data from GSVS ring */
   6569 		offset = 0;
   6570 		for (i = 0; i < gsinfo->num_outputs; ++i) {
   6571 			for (unsigned chan = 0; chan < 4; chan++) {
   6572 				if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
   6573 				    outputs[i].vertex_stream[chan] != stream) {
   6574 					outputs[i].values[chan] = ctx.bld_base.base.undef;
   6575 					continue;
   6576 				}
   6577 
   6578 				args[2] = lp_build_const_int32(
   6579 					gallivm,
   6580 					offset * gs_selector->gs_max_out_vertices * 16 * 4);
   6581 				offset++;
   6582 
   6583 				outputs[i].values[chan] =
   6584 					LLVMBuildBitCast(gallivm->builder,
   6585 						 lp_build_intrinsic(gallivm->builder,
   6586 								 "llvm.SI.buffer.load.dword.i32.i32",
   6587 								 ctx.i32, args, 9,
   6588 								 LP_FUNC_ATTR_READONLY),
   6589 						 ctx.f32, "");
   6590 			}
   6591 		}
   6592 
   6593 		/* Streamout and exports. */
   6594 		if (gs_selector->so.num_outputs) {
   6595 			si_llvm_emit_streamout(&ctx, outputs,
   6596 					       gsinfo->num_outputs,
   6597 					       stream);
   6598 		}
   6599 
   6600 		if (stream == 0)
   6601 			si_llvm_export_vs(bld_base, outputs, gsinfo->num_outputs);
   6602 
   6603 		LLVMBuildBr(builder, end_bb);
   6604 	}
   6605 
   6606 	LLVMPositionBuilderAtEnd(builder, end_bb);
   6607 
   6608 	LLVMBuildRetVoid(gallivm->builder);
   6609 
   6610 	/* Dump LLVM IR before any optimization passes */
   6611 	if (sscreen->b.debug_flags & DBG_PREOPT_IR &&
   6612 	    r600_can_dump_shader(&sscreen->b, PIPE_SHADER_GEOMETRY))
   6613 		LLVMDumpModule(bld_base->base.gallivm->module);
   6614 
   6615 	si_llvm_finalize_module(&ctx,
   6616 		r600_extra_shader_checks(&sscreen->b, PIPE_SHADER_GEOMETRY));
   6617 
   6618 	r = si_compile_llvm(sscreen, &ctx.shader->binary,
   6619 			    &ctx.shader->config, ctx.tm,
   6620 			    bld_base->base.gallivm->module,
   6621 			    debug, PIPE_SHADER_GEOMETRY,
   6622 			    "GS Copy Shader");
   6623 	if (!r) {
   6624 		if (r600_can_dump_shader(&sscreen->b, PIPE_SHADER_GEOMETRY))
   6625 			fprintf(stderr, "GS Copy Shader:\n");
   6626 		si_shader_dump(sscreen, ctx.shader, debug,
   6627 			       PIPE_SHADER_GEOMETRY, stderr, true);
   6628 		r = si_shader_binary_upload(sscreen, ctx.shader);
   6629 	}
   6630 
   6631 	si_llvm_dispose(&ctx);
   6632 
   6633 	FREE(outputs);
   6634 
   6635 	if (r != 0) {
   6636 		FREE(shader);
   6637 		shader = NULL;
   6638 	}
   6639 	return shader;
   6640 }
   6641 
   6642 static void si_dump_shader_key(unsigned shader, struct si_shader_key *key,
   6643 			       FILE *f)
   6644 {
   6645 	int i;
   6646 
   6647 	fprintf(f, "SHADER KEY\n");
   6648 
   6649 	switch (shader) {
   6650 	case PIPE_SHADER_VERTEX:
   6651 		fprintf(f, "  part.vs.prolog.instance_divisors = {");
   6652 		for (i = 0; i < ARRAY_SIZE(key->part.vs.prolog.instance_divisors); i++)
   6653 			fprintf(f, !i ? "%u" : ", %u",
   6654 				key->part.vs.prolog.instance_divisors[i]);
   6655 		fprintf(f, "}\n");
   6656 		fprintf(f, "  part.vs.epilog.export_prim_id = %u\n", key->part.vs.epilog.export_prim_id);
   6657 		fprintf(f, "  as_es = %u\n", key->as_es);
   6658 		fprintf(f, "  as_ls = %u\n", key->as_ls);
   6659 		fprintf(f, "  mono.vs.fix_fetch = 0x%"PRIx64"\n", key->mono.vs.fix_fetch);
   6660 		break;
   6661 
   6662 	case PIPE_SHADER_TESS_CTRL:
   6663 		fprintf(f, "  part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
   6664 		fprintf(f, "  mono.tcs.inputs_to_copy = 0x%"PRIx64"\n", key->mono.tcs.inputs_to_copy);
   6665 		break;
   6666 
   6667 	case PIPE_SHADER_TESS_EVAL:
   6668 		fprintf(f, "  part.tes.epilog.export_prim_id = %u\n", key->part.tes.epilog.export_prim_id);
   6669 		fprintf(f, "  as_es = %u\n", key->as_es);
   6670 		break;
   6671 
   6672 	case PIPE_SHADER_GEOMETRY:
   6673 		fprintf(f, "  part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
   6674 		break;
   6675 
   6676 	case PIPE_SHADER_COMPUTE:
   6677 		break;
   6678 
   6679 	case PIPE_SHADER_FRAGMENT:
   6680 		fprintf(f, "  part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
   6681 		fprintf(f, "  part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
   6682 		fprintf(f, "  part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
   6683 		fprintf(f, "  part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
   6684 		fprintf(f, "  part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
   6685 		fprintf(f, "  part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
   6686 		fprintf(f, "  part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
   6687 		fprintf(f, "  part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
   6688 		fprintf(f, "  part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
   6689 		fprintf(f, "  part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
   6690 		fprintf(f, "  part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
   6691 		fprintf(f, "  part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
   6692 		fprintf(f, "  part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
   6693 		fprintf(f, "  part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
   6694 		fprintf(f, "  part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
   6695 		fprintf(f, "  part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
   6696 		fprintf(f, "  part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
   6697 		break;
   6698 
   6699 	default:
   6700 		assert(0);
   6701 	}
   6702 
   6703 	if ((shader == PIPE_SHADER_GEOMETRY ||
   6704 	     shader == PIPE_SHADER_TESS_EVAL ||
   6705 	     shader == PIPE_SHADER_VERTEX) &&
   6706 	    !key->as_es && !key->as_ls) {
   6707 		fprintf(f, "  opt.hw_vs.kill_outputs = 0x%"PRIx64"\n", key->opt.hw_vs.kill_outputs);
   6708 		fprintf(f, "  opt.hw_vs.kill_outputs2 = 0x%x\n", key->opt.hw_vs.kill_outputs2);
   6709 		fprintf(f, "  opt.hw_vs.clip_disable = %u\n", key->opt.hw_vs.clip_disable);
   6710 	}
   6711 }
   6712 
   6713 static void si_init_shader_ctx(struct si_shader_context *ctx,
   6714 			       struct si_screen *sscreen,
   6715 			       struct si_shader *shader,
   6716 			       LLVMTargetMachineRef tm)
   6717 {
   6718 	struct lp_build_tgsi_context *bld_base;
   6719 	struct lp_build_tgsi_action tmpl = {};
   6720 
   6721 	si_llvm_context_init(ctx, sscreen, shader, tm,
   6722 		(shader && shader->selector) ? &shader->selector->info : NULL,
   6723 		(shader && shader->selector) ? shader->selector->tokens : NULL);
   6724 
   6725 	bld_base = &ctx->bld_base;
   6726 	bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
   6727 
   6728 	bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID] = interp_action;
   6729 	bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE] = interp_action;
   6730 	bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET] = interp_action;
   6731 
   6732 	bld_base->op_actions[TGSI_OPCODE_TEX] = tex_action;
   6733 	bld_base->op_actions[TGSI_OPCODE_TEX2] = tex_action;
   6734 	bld_base->op_actions[TGSI_OPCODE_TXB] = tex_action;
   6735 	bld_base->op_actions[TGSI_OPCODE_TXB2] = tex_action;
   6736 	bld_base->op_actions[TGSI_OPCODE_TXD] = tex_action;
   6737 	bld_base->op_actions[TGSI_OPCODE_TXF] = tex_action;
   6738 	bld_base->op_actions[TGSI_OPCODE_TXL] = tex_action;
   6739 	bld_base->op_actions[TGSI_OPCODE_TXL2] = tex_action;
   6740 	bld_base->op_actions[TGSI_OPCODE_TXP] = tex_action;
   6741 	bld_base->op_actions[TGSI_OPCODE_TXQ].fetch_args = txq_fetch_args;
   6742 	bld_base->op_actions[TGSI_OPCODE_TXQ].emit = txq_emit;
   6743 	bld_base->op_actions[TGSI_OPCODE_TG4] = tex_action;
   6744 	bld_base->op_actions[TGSI_OPCODE_LODQ] = tex_action;
   6745 	bld_base->op_actions[TGSI_OPCODE_TXQS].emit = si_llvm_emit_txqs;
   6746 
   6747 	bld_base->op_actions[TGSI_OPCODE_LOAD].fetch_args = load_fetch_args;
   6748 	bld_base->op_actions[TGSI_OPCODE_LOAD].emit = load_emit;
   6749 	bld_base->op_actions[TGSI_OPCODE_STORE].fetch_args = store_fetch_args;
   6750 	bld_base->op_actions[TGSI_OPCODE_STORE].emit = store_emit;
   6751 	bld_base->op_actions[TGSI_OPCODE_RESQ].fetch_args = resq_fetch_args;
   6752 	bld_base->op_actions[TGSI_OPCODE_RESQ].emit = resq_emit;
   6753 
   6754 	tmpl.fetch_args = atomic_fetch_args;
   6755 	tmpl.emit = atomic_emit;
   6756 	bld_base->op_actions[TGSI_OPCODE_ATOMUADD] = tmpl;
   6757 	bld_base->op_actions[TGSI_OPCODE_ATOMUADD].intr_name = "add";
   6758 	bld_base->op_actions[TGSI_OPCODE_ATOMXCHG] = tmpl;
   6759 	bld_base->op_actions[TGSI_OPCODE_ATOMXCHG].intr_name = "swap";
   6760 	bld_base->op_actions[TGSI_OPCODE_ATOMCAS] = tmpl;
   6761 	bld_base->op_actions[TGSI_OPCODE_ATOMCAS].intr_name = "cmpswap";
   6762 	bld_base->op_actions[TGSI_OPCODE_ATOMAND] = tmpl;
   6763 	bld_base->op_actions[TGSI_OPCODE_ATOMAND].intr_name = "and";
   6764 	bld_base->op_actions[TGSI_OPCODE_ATOMOR] = tmpl;
   6765 	bld_base->op_actions[TGSI_OPCODE_ATOMOR].intr_name = "or";
   6766 	bld_base->op_actions[TGSI_OPCODE_ATOMXOR] = tmpl;
   6767 	bld_base->op_actions[TGSI_OPCODE_ATOMXOR].intr_name = "xor";
   6768 	bld_base->op_actions[TGSI_OPCODE_ATOMUMIN] = tmpl;
   6769 	bld_base->op_actions[TGSI_OPCODE_ATOMUMIN].intr_name = "umin";
   6770 	bld_base->op_actions[TGSI_OPCODE_ATOMUMAX] = tmpl;
   6771 	bld_base->op_actions[TGSI_OPCODE_ATOMUMAX].intr_name = "umax";
   6772 	bld_base->op_actions[TGSI_OPCODE_ATOMIMIN] = tmpl;
   6773 	bld_base->op_actions[TGSI_OPCODE_ATOMIMIN].intr_name = "smin";
   6774 	bld_base->op_actions[TGSI_OPCODE_ATOMIMAX] = tmpl;
   6775 	bld_base->op_actions[TGSI_OPCODE_ATOMIMAX].intr_name = "smax";
   6776 
   6777 	bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
   6778 
   6779 	bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
   6780 	bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
   6781 	bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
   6782 	bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
   6783 
   6784 	bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_llvm_emit_vertex;
   6785 	bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_llvm_emit_primitive;
   6786 	bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
   6787 }
   6788 
   6789 /* Return true if the PARAM export has been eliminated. */
   6790 static bool si_eliminate_const_output(struct si_shader_context *ctx,
   6791 				      LLVMValueRef inst, unsigned offset)
   6792 {
   6793 	struct si_shader *shader = ctx->shader;
   6794 	unsigned num_outputs = shader->selector->info.num_outputs;
   6795 	unsigned i, default_val; /* SPI_PS_INPUT_CNTL_i.DEFAULT_VAL */
   6796 	bool is_zero[4] = {}, is_one[4] = {};
   6797 
   6798 	for (i = 0; i < 4; i++) {
   6799 		LLVMBool loses_info;
   6800 		LLVMValueRef p = LLVMGetOperand(inst, 5 + i);
   6801 
   6802 		/* It's a constant expression. Undef outputs are eliminated too. */
   6803 		if (LLVMIsUndef(p)) {
   6804 			is_zero[i] = true;
   6805 			is_one[i] = true;
   6806 		} else if (LLVMIsAConstantFP(p)) {
   6807 			double a = LLVMConstRealGetDouble(p, &loses_info);
   6808 
   6809 			if (a == 0)
   6810 				is_zero[i] = true;
   6811 			else if (a == 1)
   6812 				is_one[i] = true;
   6813 			else
   6814 				return false; /* other constant */
   6815 		} else
   6816 			return false;
   6817 	}
   6818 
   6819 	/* Only certain combinations of 0 and 1 can be eliminated. */
   6820 	if (is_zero[0] && is_zero[1] && is_zero[2])
   6821 		default_val = is_zero[3] ? 0 : 1;
   6822 	else if (is_one[0] && is_one[1] && is_one[2])
   6823 		default_val = is_zero[3] ? 2 : 3;
   6824 	else
   6825 		return false;
   6826 
   6827 	/* The PARAM export can be represented as DEFAULT_VAL. Kill it. */
   6828 	LLVMInstructionEraseFromParent(inst);
   6829 
   6830 	/* Change OFFSET to DEFAULT_VAL. */
   6831 	for (i = 0; i < num_outputs; i++) {
   6832 		if (shader->info.vs_output_param_offset[i] == offset) {
   6833 			shader->info.vs_output_param_offset[i] =
   6834 				EXP_PARAM_DEFAULT_VAL_0000 + default_val;
   6835 			break;
   6836 		}
   6837 	}
   6838 	return true;
   6839 }
   6840 
   6841 struct si_vs_exports {
   6842 	unsigned num;
   6843 	unsigned offset[SI_MAX_VS_OUTPUTS];
   6844 	LLVMValueRef inst[SI_MAX_VS_OUTPUTS];
   6845 };
   6846 
   6847 static void si_eliminate_const_vs_outputs(struct si_shader_context *ctx)
   6848 {
   6849 	struct si_shader *shader = ctx->shader;
   6850 	struct tgsi_shader_info *info = &shader->selector->info;
   6851 	LLVMBasicBlockRef bb;
   6852 	struct si_vs_exports exports;
   6853 	bool removed_any = false;
   6854 
   6855 	exports.num = 0;
   6856 
   6857 	if (ctx->type == PIPE_SHADER_FRAGMENT ||
   6858 	    ctx->type == PIPE_SHADER_COMPUTE ||
   6859 	    shader->key.as_es ||
   6860 	    shader->key.as_ls)
   6861 		return;
   6862 
   6863 	/* Process all LLVM instructions. */
   6864 	bb = LLVMGetFirstBasicBlock(ctx->main_fn);
   6865 	while (bb) {
   6866 		LLVMValueRef inst = LLVMGetFirstInstruction(bb);
   6867 
   6868 		while (inst) {
   6869 			LLVMValueRef cur = inst;
   6870 			inst = LLVMGetNextInstruction(inst);
   6871 
   6872 			if (LLVMGetInstructionOpcode(cur) != LLVMCall)
   6873 				continue;
   6874 
   6875 			LLVMValueRef callee = lp_get_called_value(cur);
   6876 
   6877 			if (!lp_is_function(callee))
   6878 				continue;
   6879 
   6880 			const char *name = LLVMGetValueName(callee);
   6881 			unsigned num_args = LLVMCountParams(callee);
   6882 
   6883 			/* Check if this is an export instruction. */
   6884 			if (num_args != 9 || strcmp(name, "llvm.SI.export"))
   6885 				continue;
   6886 
   6887 			LLVMValueRef arg = LLVMGetOperand(cur, 3);
   6888 			unsigned target = LLVMConstIntGetZExtValue(arg);
   6889 
   6890 			if (target < V_008DFC_SQ_EXP_PARAM)
   6891 				continue;
   6892 
   6893 			target -= V_008DFC_SQ_EXP_PARAM;
   6894 
   6895 			/* Eliminate constant value PARAM exports. */
   6896 			if (si_eliminate_const_output(ctx, cur, target)) {
   6897 				removed_any = true;
   6898 			} else {
   6899 				exports.offset[exports.num] = target;
   6900 				exports.inst[exports.num] = cur;
   6901 				exports.num++;
   6902 			}
   6903 		}
   6904 		bb = LLVMGetNextBasicBlock(bb);
   6905 	}
   6906 
   6907 	/* Remove holes in export memory due to removed PARAM exports.
   6908 	 * This is done by renumbering all PARAM exports.
   6909 	 */
   6910 	if (removed_any) {
   6911 		ubyte current_offset[SI_MAX_VS_OUTPUTS];
   6912 		unsigned new_count = 0;
   6913 		unsigned out, i;
   6914 
   6915 		/* Make a copy of the offsets. We need the old version while
   6916 		 * we are modifying some of them. */
   6917 		assert(sizeof(current_offset) ==
   6918 		       sizeof(shader->info.vs_output_param_offset));
   6919 		memcpy(current_offset, shader->info.vs_output_param_offset,
   6920 		       sizeof(current_offset));
   6921 
   6922 		for (i = 0; i < exports.num; i++) {
   6923 			unsigned offset = exports.offset[i];
   6924 
   6925 			for (out = 0; out < info->num_outputs; out++) {
   6926 				if (current_offset[out] != offset)
   6927 					continue;
   6928 
   6929 				LLVMSetOperand(exports.inst[i], 3,
   6930 					       LLVMConstInt(ctx->i32,
   6931 							    V_008DFC_SQ_EXP_PARAM + new_count, 0));
   6932 				shader->info.vs_output_param_offset[out] = new_count;
   6933 				new_count++;
   6934 				break;
   6935 			}
   6936 		}
   6937 		shader->info.nr_param_exports = new_count;
   6938 	}
   6939 }
   6940 
   6941 static void si_count_scratch_private_memory(struct si_shader_context *ctx)
   6942 {
   6943 	ctx->shader->config.private_mem_vgprs = 0;
   6944 
   6945 	/* Process all LLVM instructions. */
   6946 	LLVMBasicBlockRef bb = LLVMGetFirstBasicBlock(ctx->main_fn);
   6947 	while (bb) {
   6948 		LLVMValueRef next = LLVMGetFirstInstruction(bb);
   6949 
   6950 		while (next) {
   6951 			LLVMValueRef inst = next;
   6952 			next = LLVMGetNextInstruction(next);
   6953 
   6954 			if (LLVMGetInstructionOpcode(inst) != LLVMAlloca)
   6955 				continue;
   6956 
   6957 			LLVMTypeRef type = LLVMGetElementType(LLVMTypeOf(inst));
   6958 			/* No idea why LLVM aligns allocas to 4 elements. */
   6959 			unsigned alignment = LLVMGetAlignment(inst);
   6960 			unsigned dw_size = align(llvm_get_type_size(type) / 4, alignment);
   6961 			ctx->shader->config.private_mem_vgprs += dw_size;
   6962 		}
   6963 		bb = LLVMGetNextBasicBlock(bb);
   6964 	}
   6965 }
   6966 
   6967 static bool si_compile_tgsi_main(struct si_shader_context *ctx,
   6968 				 struct si_shader *shader)
   6969 {
   6970 	struct si_shader_selector *sel = shader->selector;
   6971 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
   6972 
   6973 	switch (ctx->type) {
   6974 	case PIPE_SHADER_VERTEX:
   6975 		ctx->load_input = declare_input_vs;
   6976 		if (shader->key.as_ls)
   6977 			bld_base->emit_epilogue = si_llvm_emit_ls_epilogue;
   6978 		else if (shader->key.as_es)
   6979 			bld_base->emit_epilogue = si_llvm_emit_es_epilogue;
   6980 		else
   6981 			bld_base->emit_epilogue = si_llvm_emit_vs_epilogue;
   6982 		break;
   6983 	case PIPE_SHADER_TESS_CTRL:
   6984 		bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
   6985 		bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
   6986 		bld_base->emit_store = store_output_tcs;
   6987 		bld_base->emit_epilogue = si_llvm_emit_tcs_epilogue;
   6988 		break;
   6989 	case PIPE_SHADER_TESS_EVAL:
   6990 		bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
   6991 		if (shader->key.as_es)
   6992 			bld_base->emit_epilogue = si_llvm_emit_es_epilogue;
   6993 		else
   6994 			bld_base->emit_epilogue = si_llvm_emit_vs_epilogue;
   6995 		break;
   6996 	case PIPE_SHADER_GEOMETRY:
   6997 		bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
   6998 		bld_base->emit_epilogue = si_llvm_emit_gs_epilogue;
   6999 		break;
   7000 	case PIPE_SHADER_FRAGMENT:
   7001 		ctx->load_input = declare_input_fs;
   7002 		bld_base->emit_epilogue = si_llvm_return_fs_outputs;
   7003 		break;
   7004 	case PIPE_SHADER_COMPUTE:
   7005 		ctx->declare_memory_region = declare_compute_memory;
   7006 		break;
   7007 	default:
   7008 		assert(!"Unsupported shader type");
   7009 		return false;
   7010 	}
   7011 
   7012 	create_meta_data(ctx);
   7013 	create_function(ctx);
   7014 	preload_ring_buffers(ctx);
   7015 
   7016 	if (ctx->type == PIPE_SHADER_GEOMETRY) {
   7017 		int i;
   7018 		for (i = 0; i < 4; i++) {
   7019 			ctx->gs_next_vertex[i] =
   7020 				lp_build_alloca(bld_base->base.gallivm,
   7021 						ctx->i32, "");
   7022 		}
   7023 	}
   7024 
   7025 	if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
   7026 		fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
   7027 		return false;
   7028 	}
   7029 
   7030 	si_llvm_build_ret(ctx, ctx->return_value);
   7031 	return true;
   7032 }
   7033 
   7034 /**
   7035  * Compute the VS prolog key, which contains all the information needed to
   7036  * build the VS prolog function, and set shader->info bits where needed.
   7037  */
   7038 static void si_get_vs_prolog_key(struct si_shader *shader,
   7039 				 union si_shader_part_key *key)
   7040 {
   7041 	struct tgsi_shader_info *info = &shader->selector->info;
   7042 
   7043 	memset(key, 0, sizeof(*key));
   7044 	key->vs_prolog.states = shader->key.part.vs.prolog;
   7045 	key->vs_prolog.num_input_sgprs = shader->info.num_input_sgprs;
   7046 	key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
   7047 
   7048 	/* Set the instanceID flag. */
   7049 	for (unsigned i = 0; i < info->num_inputs; i++)
   7050 		if (key->vs_prolog.states.instance_divisors[i])
   7051 			shader->info.uses_instanceid = true;
   7052 }
   7053 
   7054 /**
   7055  * Compute the VS epilog key, which contains all the information needed to
   7056  * build the VS epilog function, and set the PrimitiveID output offset.
   7057  */
   7058 static void si_get_vs_epilog_key(struct si_shader *shader,
   7059 				 struct si_vs_epilog_bits *states,
   7060 				 union si_shader_part_key *key)
   7061 {
   7062 	memset(key, 0, sizeof(*key));
   7063 	key->vs_epilog.states = *states;
   7064 
   7065 	/* Set up the PrimitiveID output. */
   7066 	if (shader->key.part.vs.epilog.export_prim_id) {
   7067 		unsigned index = shader->selector->info.num_outputs;
   7068 		unsigned offset = shader->info.nr_param_exports++;
   7069 
   7070 		key->vs_epilog.prim_id_param_offset = offset;
   7071 		assert(index < ARRAY_SIZE(shader->info.vs_output_param_offset));
   7072 		shader->info.vs_output_param_offset[index] = offset;
   7073 	}
   7074 }
   7075 
   7076 /**
   7077  * Compute the PS prolog key, which contains all the information needed to
   7078  * build the PS prolog function, and set related bits in shader->config.
   7079  */
   7080 static void si_get_ps_prolog_key(struct si_shader *shader,
   7081 				 union si_shader_part_key *key,
   7082 				 bool separate_prolog)
   7083 {
   7084 	struct tgsi_shader_info *info = &shader->selector->info;
   7085 
   7086 	memset(key, 0, sizeof(*key));
   7087 	key->ps_prolog.states = shader->key.part.ps.prolog;
   7088 	key->ps_prolog.colors_read = info->colors_read;
   7089 	key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
   7090 	key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
   7091 	key->ps_prolog.wqm = info->uses_derivatives &&
   7092 		(key->ps_prolog.colors_read ||
   7093 		 key->ps_prolog.states.force_persp_sample_interp ||
   7094 		 key->ps_prolog.states.force_linear_sample_interp ||
   7095 		 key->ps_prolog.states.force_persp_center_interp ||
   7096 		 key->ps_prolog.states.force_linear_center_interp ||
   7097 		 key->ps_prolog.states.bc_optimize_for_persp ||
   7098 		 key->ps_prolog.states.bc_optimize_for_linear);
   7099 
   7100 	if (info->colors_read) {
   7101 		unsigned *color = shader->selector->color_attr_index;
   7102 
   7103 		if (shader->key.part.ps.prolog.color_two_side) {
   7104 			/* BCOLORs are stored after the last input. */
   7105 			key->ps_prolog.num_interp_inputs = info->num_inputs;
   7106 			key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
   7107 			shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
   7108 		}
   7109 
   7110 		for (unsigned i = 0; i < 2; i++) {
   7111 			unsigned interp = info->input_interpolate[color[i]];
   7112 			unsigned location = info->input_interpolate_loc[color[i]];
   7113 
   7114 			if (!(info->colors_read & (0xf << i*4)))
   7115 				continue;
   7116 
   7117 			key->ps_prolog.color_attr_index[i] = color[i];
   7118 
   7119 			if (shader->key.part.ps.prolog.flatshade_colors &&
   7120 			    interp == TGSI_INTERPOLATE_COLOR)
   7121 				interp = TGSI_INTERPOLATE_CONSTANT;
   7122 
   7123 			switch (interp) {
   7124 			case TGSI_INTERPOLATE_CONSTANT:
   7125 				key->ps_prolog.color_interp_vgpr_index[i] = -1;
   7126 				break;
   7127 			case TGSI_INTERPOLATE_PERSPECTIVE:
   7128 			case TGSI_INTERPOLATE_COLOR:
   7129 				/* Force the interpolation location for colors here. */
   7130 				if (shader->key.part.ps.prolog.force_persp_sample_interp)
   7131 					location = TGSI_INTERPOLATE_LOC_SAMPLE;
   7132 				if (shader->key.part.ps.prolog.force_persp_center_interp)
   7133 					location = TGSI_INTERPOLATE_LOC_CENTER;
   7134 
   7135 				switch (location) {
   7136 				case TGSI_INTERPOLATE_LOC_SAMPLE:
   7137 					key->ps_prolog.color_interp_vgpr_index[i] = 0;
   7138 					shader->config.spi_ps_input_ena |=
   7139 						S_0286CC_PERSP_SAMPLE_ENA(1);
   7140 					break;
   7141 				case TGSI_INTERPOLATE_LOC_CENTER:
   7142 					key->ps_prolog.color_interp_vgpr_index[i] = 2;
   7143 					shader->config.spi_ps_input_ena |=
   7144 						S_0286CC_PERSP_CENTER_ENA(1);
   7145 					break;
   7146 				case TGSI_INTERPOLATE_LOC_CENTROID:
   7147 					key->ps_prolog.color_interp_vgpr_index[i] = 4;
   7148 					shader->config.spi_ps_input_ena |=
   7149 						S_0286CC_PERSP_CENTROID_ENA(1);
   7150 					break;
   7151 				default:
   7152 					assert(0);
   7153 				}
   7154 				break;
   7155 			case TGSI_INTERPOLATE_LINEAR:
   7156 				/* Force the interpolation location for colors here. */
   7157 				if (shader->key.part.ps.prolog.force_linear_sample_interp)
   7158 					location = TGSI_INTERPOLATE_LOC_SAMPLE;
   7159 				if (shader->key.part.ps.prolog.force_linear_center_interp)
   7160 					location = TGSI_INTERPOLATE_LOC_CENTER;
   7161 
   7162 				/* The VGPR assignment for non-monolithic shaders
   7163 				 * works because InitialPSInputAddr is set on the
   7164 				 * main shader and PERSP_PULL_MODEL is never used.
   7165 				 */
   7166 				switch (location) {
   7167 				case TGSI_INTERPOLATE_LOC_SAMPLE:
   7168 					key->ps_prolog.color_interp_vgpr_index[i] =
   7169 						separate_prolog ? 6 : 9;
   7170 					shader->config.spi_ps_input_ena |=
   7171 						S_0286CC_LINEAR_SAMPLE_ENA(1);
   7172 					break;
   7173 				case TGSI_INTERPOLATE_LOC_CENTER:
   7174 					key->ps_prolog.color_interp_vgpr_index[i] =
   7175 						separate_prolog ? 8 : 11;
   7176 					shader->config.spi_ps_input_ena |=
   7177 						S_0286CC_LINEAR_CENTER_ENA(1);
   7178 					break;
   7179 				case TGSI_INTERPOLATE_LOC_CENTROID:
   7180 					key->ps_prolog.color_interp_vgpr_index[i] =
   7181 						separate_prolog ? 10 : 13;
   7182 					shader->config.spi_ps_input_ena |=
   7183 						S_0286CC_LINEAR_CENTROID_ENA(1);
   7184 					break;
   7185 				default:
   7186 					assert(0);
   7187 				}
   7188 				break;
   7189 			default:
   7190 				assert(0);
   7191 			}
   7192 		}
   7193 	}
   7194 }
   7195 
   7196 /**
   7197  * Check whether a PS prolog is required based on the key.
   7198  */
   7199 static bool si_need_ps_prolog(const union si_shader_part_key *key)
   7200 {
   7201 	return key->ps_prolog.colors_read ||
   7202 	       key->ps_prolog.states.force_persp_sample_interp ||
   7203 	       key->ps_prolog.states.force_linear_sample_interp ||
   7204 	       key->ps_prolog.states.force_persp_center_interp ||
   7205 	       key->ps_prolog.states.force_linear_center_interp ||
   7206 	       key->ps_prolog.states.bc_optimize_for_persp ||
   7207 	       key->ps_prolog.states.bc_optimize_for_linear ||
   7208 	       key->ps_prolog.states.poly_stipple;
   7209 }
   7210 
   7211 /**
   7212  * Compute the PS epilog key, which contains all the information needed to
   7213  * build the PS epilog function.
   7214  */
   7215 static void si_get_ps_epilog_key(struct si_shader *shader,
   7216 				 union si_shader_part_key *key)
   7217 {
   7218 	struct tgsi_shader_info *info = &shader->selector->info;
   7219 	memset(key, 0, sizeof(*key));
   7220 	key->ps_epilog.colors_written = info->colors_written;
   7221 	key->ps_epilog.writes_z = info->writes_z;
   7222 	key->ps_epilog.writes_stencil = info->writes_stencil;
   7223 	key->ps_epilog.writes_samplemask = info->writes_samplemask;
   7224 	key->ps_epilog.states = shader->key.part.ps.epilog;
   7225 }
   7226 
   7227 /**
   7228  * Build the GS prolog function. Rotate the input vertices for triangle strips
   7229  * with adjacency.
   7230  */
   7231 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
   7232 					union si_shader_part_key *key)
   7233 {
   7234 	const unsigned num_sgprs = SI_GS_NUM_USER_SGPR + 2;
   7235 	const unsigned num_vgprs = 8;
   7236 	struct gallivm_state *gallivm = &ctx->gallivm;
   7237 	LLVMBuilderRef builder = gallivm->builder;
   7238 	LLVMTypeRef params[32];
   7239 	LLVMTypeRef returns[32];
   7240 	LLVMValueRef func, ret;
   7241 
   7242 	for (unsigned i = 0; i < num_sgprs; ++i) {
   7243 		params[i] = ctx->i32;
   7244 		returns[i] = ctx->i32;
   7245 	}
   7246 
   7247 	for (unsigned i = 0; i < num_vgprs; ++i) {
   7248 		params[num_sgprs + i] = ctx->i32;
   7249 		returns[num_sgprs + i] = ctx->f32;
   7250 	}
   7251 
   7252 	/* Create the function. */
   7253 	si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
   7254 			   params, num_sgprs + num_vgprs, num_sgprs - 1);
   7255 	func = ctx->main_fn;
   7256 
   7257 	/* Copy inputs to outputs. This should be no-op, as the registers match,
   7258 	 * but it will prevent the compiler from overwriting them unintentionally.
   7259 	 */
   7260 	ret = ctx->return_value;
   7261 	for (unsigned i = 0; i < num_sgprs; i++) {
   7262 		LLVMValueRef p = LLVMGetParam(func, i);
   7263 		ret = LLVMBuildInsertValue(builder, ret, p, i, "");
   7264 	}
   7265 	for (unsigned i = 0; i < num_vgprs; i++) {
   7266 		LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
   7267 		p = LLVMBuildBitCast(builder, p, ctx->f32, "");
   7268 		ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
   7269 	}
   7270 
   7271 	if (key->gs_prolog.states.tri_strip_adj_fix) {
   7272 		/* Remap the input vertices for every other primitive. */
   7273 		const unsigned vtx_params[6] = {
   7274 			num_sgprs,
   7275 			num_sgprs + 1,
   7276 			num_sgprs + 3,
   7277 			num_sgprs + 4,
   7278 			num_sgprs + 5,
   7279 			num_sgprs + 6
   7280 		};
   7281 		LLVMValueRef prim_id, rotate;
   7282 
   7283 		prim_id = LLVMGetParam(func, num_sgprs + 2);
   7284 		rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
   7285 
   7286 		for (unsigned i = 0; i < 6; ++i) {
   7287 			LLVMValueRef base, rotated, actual;
   7288 			base = LLVMGetParam(func, vtx_params[i]);
   7289 			rotated = LLVMGetParam(func, vtx_params[(i + 4) % 6]);
   7290 			actual = LLVMBuildSelect(builder, rotate, rotated, base, "");
   7291 			actual = LLVMBuildBitCast(builder, actual, ctx->f32, "");
   7292 			ret = LLVMBuildInsertValue(builder, ret, actual, vtx_params[i], "");
   7293 		}
   7294 	}
   7295 
   7296 	LLVMBuildRet(builder, ret);
   7297 }
   7298 
   7299 /**
   7300  * Given a list of shader part functions, build a wrapper function that
   7301  * runs them in sequence to form a monolithic shader.
   7302  */
   7303 static void si_build_wrapper_function(struct si_shader_context *ctx,
   7304 				      LLVMValueRef *parts,
   7305 				      unsigned num_parts,
   7306 				      unsigned main_part)
   7307 {
   7308 	struct gallivm_state *gallivm = &ctx->gallivm;
   7309 	LLVMBuilderRef builder = ctx->gallivm.builder;
   7310 	/* PS epilog has one arg per color component */
   7311 	LLVMTypeRef param_types[48];
   7312 	LLVMValueRef out[48];
   7313 	LLVMTypeRef function_type;
   7314 	unsigned num_params;
   7315 	unsigned num_out;
   7316 	MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
   7317 	unsigned num_sgprs, num_vgprs;
   7318 	unsigned last_sgpr_param;
   7319 	unsigned gprs;
   7320 
   7321 	for (unsigned i = 0; i < num_parts; ++i) {
   7322 		lp_add_function_attr(parts[i], -1, LP_FUNC_ATTR_ALWAYSINLINE);
   7323 		LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
   7324 	}
   7325 
   7326 	/* The parameters of the wrapper function correspond to those of the
   7327 	 * first part in terms of SGPRs and VGPRs, but we use the types of the
   7328 	 * main part to get the right types. This is relevant for the
   7329 	 * dereferenceable attribute on descriptor table pointers.
   7330 	 */
   7331 	num_sgprs = 0;
   7332 	num_vgprs = 0;
   7333 
   7334 	function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
   7335 	num_params = LLVMCountParamTypes(function_type);
   7336 
   7337 	for (unsigned i = 0; i < num_params; ++i) {
   7338 		LLVMValueRef param = LLVMGetParam(parts[0], i);
   7339 
   7340 		if (ac_is_sgpr_param(param)) {
   7341 			assert(num_vgprs == 0);
   7342 			num_sgprs += llvm_get_type_size(LLVMTypeOf(param)) / 4;
   7343 		} else {
   7344 			num_vgprs += llvm_get_type_size(LLVMTypeOf(param)) / 4;
   7345 		}
   7346 	}
   7347 	assert(num_vgprs + num_sgprs <= ARRAY_SIZE(param_types));
   7348 
   7349 	num_params = 0;
   7350 	last_sgpr_param = 0;
   7351 	gprs = 0;
   7352 	while (gprs < num_sgprs + num_vgprs) {
   7353 		LLVMValueRef param = LLVMGetParam(parts[main_part], num_params);
   7354 		unsigned size;
   7355 
   7356 		param_types[num_params] = LLVMTypeOf(param);
   7357 		if (gprs < num_sgprs)
   7358 			last_sgpr_param = num_params;
   7359 		size = llvm_get_type_size(param_types[num_params]) / 4;
   7360 		num_params++;
   7361 
   7362 		assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
   7363 		assert(gprs + size <= num_sgprs + num_vgprs &&
   7364 		       (gprs >= num_sgprs || gprs + size <= num_sgprs));
   7365 
   7366 		gprs += size;
   7367 	}
   7368 
   7369 	si_create_function(ctx, "wrapper", NULL, 0, param_types, num_params, last_sgpr_param);
   7370 
   7371 	/* Record the arguments of the function as if they were an output of
   7372 	 * a previous part.
   7373 	 */
   7374 	num_out = 0;
   7375 	num_out_sgpr = 0;
   7376 
   7377 	for (unsigned i = 0; i < num_params; ++i) {
   7378 		LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
   7379 		LLVMTypeRef param_type = LLVMTypeOf(param);
   7380 		LLVMTypeRef out_type = i <= last_sgpr_param ? ctx->i32 : ctx->f32;
   7381 		unsigned size = llvm_get_type_size(param_type) / 4;
   7382 
   7383 		if (size == 1) {
   7384 			if (param_type != out_type)
   7385 				param = LLVMBuildBitCast(builder, param, out_type, "");
   7386 			out[num_out++] = param;
   7387 		} else {
   7388 			LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
   7389 
   7390 			if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
   7391 				param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
   7392 				param_type = ctx->i64;
   7393 			}
   7394 
   7395 			if (param_type != vector_type)
   7396 				param = LLVMBuildBitCast(builder, param, vector_type, "");
   7397 
   7398 			for (unsigned j = 0; j < size; ++j)
   7399 				out[num_out++] = LLVMBuildExtractElement(
   7400 					builder, param, LLVMConstInt(ctx->i32, j, 0), "");
   7401 		}
   7402 
   7403 		if (i <= last_sgpr_param)
   7404 			num_out_sgpr = num_out;
   7405 	}
   7406 
   7407 	/* Now chain the parts. */
   7408 	for (unsigned part = 0; part < num_parts; ++part) {
   7409 		LLVMValueRef in[48];
   7410 		LLVMValueRef ret;
   7411 		LLVMTypeRef ret_type;
   7412 		unsigned out_idx = 0;
   7413 
   7414 		num_params = LLVMCountParams(parts[part]);
   7415 		assert(num_params <= ARRAY_SIZE(param_types));
   7416 
   7417 		/* Derive arguments for the next part from outputs of the
   7418 		 * previous one.
   7419 		 */
   7420 		for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
   7421 			LLVMValueRef param;
   7422 			LLVMTypeRef param_type;
   7423 			bool is_sgpr;
   7424 			unsigned param_size;
   7425 			LLVMValueRef arg = NULL;
   7426 
   7427 			param = LLVMGetParam(parts[part], param_idx);
   7428 			param_type = LLVMTypeOf(param);
   7429 			param_size = llvm_get_type_size(param_type) / 4;
   7430 			is_sgpr = ac_is_sgpr_param(param);
   7431 
   7432 			if (is_sgpr) {
   7433 #if HAVE_LLVM < 0x0400
   7434 				LLVMRemoveAttribute(param, LLVMByValAttribute);
   7435 #else
   7436 				unsigned kind_id = LLVMGetEnumAttributeKindForName("byval", 5);
   7437 				LLVMRemoveEnumAttributeAtIndex(parts[part], param_idx + 1, kind_id);
   7438 #endif
   7439 				lp_add_function_attr(parts[part], param_idx + 1, LP_FUNC_ATTR_INREG);
   7440 			}
   7441 
   7442 			assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
   7443 			assert(is_sgpr || out_idx >= num_out_sgpr);
   7444 
   7445 			if (param_size == 1)
   7446 				arg = out[out_idx];
   7447 			else
   7448 				arg = lp_build_gather_values(gallivm, &out[out_idx], param_size);
   7449 
   7450 			if (LLVMTypeOf(arg) != param_type) {
   7451 				if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
   7452 					arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
   7453 					arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
   7454 				} else {
   7455 					arg = LLVMBuildBitCast(builder, arg, param_type, "");
   7456 				}
   7457 			}
   7458 
   7459 			in[param_idx] = arg;
   7460 			out_idx += param_size;
   7461 		}
   7462 
   7463 		ret = LLVMBuildCall(builder, parts[part], in, num_params, "");
   7464 		ret_type = LLVMTypeOf(ret);
   7465 
   7466 		/* Extract the returned GPRs. */
   7467 		num_out = 0;
   7468 		num_out_sgpr = 0;
   7469 
   7470 		if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
   7471 			assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
   7472 
   7473 			unsigned ret_size = LLVMCountStructElementTypes(ret_type);
   7474 
   7475 			for (unsigned i = 0; i < ret_size; ++i) {
   7476 				LLVMValueRef val =
   7477 					LLVMBuildExtractValue(builder, ret, i, "");
   7478 
   7479 				out[num_out++] = val;
   7480 
   7481 				if (LLVMTypeOf(val) == ctx->i32) {
   7482 					assert(num_out_sgpr + 1 == num_out);
   7483 					num_out_sgpr = num_out;
   7484 				}
   7485 			}
   7486 		}
   7487 	}
   7488 
   7489 	LLVMBuildRetVoid(builder);
   7490 }
   7491 
   7492 int si_compile_tgsi_shader(struct si_screen *sscreen,
   7493 			   LLVMTargetMachineRef tm,
   7494 			   struct si_shader *shader,
   7495 			   bool is_monolithic,
   7496 			   struct pipe_debug_callback *debug)
   7497 {
   7498 	struct si_shader_selector *sel = shader->selector;
   7499 	struct si_shader_context ctx;
   7500 	struct lp_build_tgsi_context *bld_base;
   7501 	LLVMModuleRef mod;
   7502 	int r = -1;
   7503 
   7504 	/* Dump TGSI code before doing TGSI->LLVM conversion in case the
   7505 	 * conversion fails. */
   7506 	if (r600_can_dump_shader(&sscreen->b, sel->info.processor) &&
   7507 	    !(sscreen->b.debug_flags & DBG_NO_TGSI)) {
   7508 		tgsi_dump(sel->tokens, 0);
   7509 		si_dump_streamout(&sel->so);
   7510 	}
   7511 
   7512 	si_init_shader_ctx(&ctx, sscreen, shader, tm);
   7513 	ctx.separate_prolog = !is_monolithic;
   7514 
   7515 	memset(shader->info.vs_output_param_offset, EXP_PARAM_UNDEFINED,
   7516 	       sizeof(shader->info.vs_output_param_offset));
   7517 
   7518 	shader->info.uses_instanceid = sel->info.uses_instanceid;
   7519 
   7520 	bld_base = &ctx.bld_base;
   7521 	ctx.load_system_value = declare_system_value;
   7522 
   7523 	if (!si_compile_tgsi_main(&ctx, shader)) {
   7524 		si_llvm_dispose(&ctx);
   7525 		return -1;
   7526 	}
   7527 
   7528 	if (is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
   7529 		LLVMValueRef parts[3];
   7530 		bool need_prolog;
   7531 		bool need_epilog;
   7532 
   7533 		need_prolog = sel->info.num_inputs;
   7534 		need_epilog = !shader->key.as_es && !shader->key.as_ls;
   7535 
   7536 		parts[need_prolog ? 1 : 0] = ctx.main_fn;
   7537 
   7538 		if (need_prolog) {
   7539 			union si_shader_part_key prolog_key;
   7540 			si_get_vs_prolog_key(shader, &prolog_key);
   7541 			si_build_vs_prolog_function(&ctx, &prolog_key);
   7542 			parts[0] = ctx.main_fn;
   7543 		}
   7544 
   7545 		if (need_epilog) {
   7546 			union si_shader_part_key epilog_key;
   7547 			si_get_vs_epilog_key(shader, &shader->key.part.vs.epilog, &epilog_key);
   7548 			si_build_vs_epilog_function(&ctx, &epilog_key);
   7549 			parts[need_prolog ? 2 : 1] = ctx.main_fn;
   7550 		}
   7551 
   7552 		si_build_wrapper_function(&ctx, parts, 1 + need_prolog + need_epilog,
   7553 					  need_prolog ? 1 : 0);
   7554 	} else if (is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
   7555 		LLVMValueRef parts[2];
   7556 		union si_shader_part_key epilog_key;
   7557 
   7558 		parts[0] = ctx.main_fn;
   7559 
   7560 		memset(&epilog_key, 0, sizeof(epilog_key));
   7561 		epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
   7562 		si_build_tcs_epilog_function(&ctx, &epilog_key);
   7563 		parts[1] = ctx.main_fn;
   7564 
   7565 		si_build_wrapper_function(&ctx, parts, 2, 0);
   7566 	} else if (is_monolithic && ctx.type == PIPE_SHADER_TESS_EVAL &&
   7567 		   !shader->key.as_es) {
   7568 		LLVMValueRef parts[2];
   7569 		union si_shader_part_key epilog_key;
   7570 
   7571 		parts[0] = ctx.main_fn;
   7572 
   7573 		si_get_vs_epilog_key(shader, &shader->key.part.tes.epilog, &epilog_key);
   7574 		si_build_vs_epilog_function(&ctx, &epilog_key);
   7575 		parts[1] = ctx.main_fn;
   7576 
   7577 		si_build_wrapper_function(&ctx, parts, 2, 0);
   7578 	} else if (is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
   7579 		LLVMValueRef parts[2];
   7580 		union si_shader_part_key prolog_key;
   7581 
   7582 		parts[1] = ctx.main_fn;
   7583 
   7584 		memset(&prolog_key, 0, sizeof(prolog_key));
   7585 		prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
   7586 		si_build_gs_prolog_function(&ctx, &prolog_key);
   7587 		parts[0] = ctx.main_fn;
   7588 
   7589 		si_build_wrapper_function(&ctx, parts, 2, 1);
   7590 	} else if (is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
   7591 		LLVMValueRef parts[3];
   7592 		union si_shader_part_key prolog_key;
   7593 		union si_shader_part_key epilog_key;
   7594 		bool need_prolog;
   7595 
   7596 		si_get_ps_prolog_key(shader, &prolog_key, false);
   7597 		need_prolog = si_need_ps_prolog(&prolog_key);
   7598 
   7599 		parts[need_prolog ? 1 : 0] = ctx.main_fn;
   7600 
   7601 		if (need_prolog) {
   7602 			si_build_ps_prolog_function(&ctx, &prolog_key);
   7603 			parts[0] = ctx.main_fn;
   7604 		}
   7605 
   7606 		si_get_ps_epilog_key(shader, &epilog_key);
   7607 		si_build_ps_epilog_function(&ctx, &epilog_key);
   7608 		parts[need_prolog ? 2 : 1] = ctx.main_fn;
   7609 
   7610 		si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2, need_prolog ? 1 : 0);
   7611 	}
   7612 
   7613 	mod = bld_base->base.gallivm->module;
   7614 
   7615 	/* Dump LLVM IR before any optimization passes */
   7616 	if (sscreen->b.debug_flags & DBG_PREOPT_IR &&
   7617 	    r600_can_dump_shader(&sscreen->b, ctx.type))
   7618 		LLVMDumpModule(mod);
   7619 
   7620 	si_llvm_finalize_module(&ctx,
   7621 				    r600_extra_shader_checks(&sscreen->b, ctx.type));
   7622 
   7623 	/* Post-optimization transformations and analysis. */
   7624 	si_eliminate_const_vs_outputs(&ctx);
   7625 
   7626 	if ((debug && debug->debug_message) ||
   7627 	    r600_can_dump_shader(&sscreen->b, ctx.type))
   7628 		si_count_scratch_private_memory(&ctx);
   7629 
   7630 	/* Compile to bytecode. */
   7631 	r = si_compile_llvm(sscreen, &shader->binary, &shader->config, tm,
   7632 			    mod, debug, ctx.type, "TGSI shader");
   7633 	si_llvm_dispose(&ctx);
   7634 	if (r) {
   7635 		fprintf(stderr, "LLVM failed to compile shader\n");
   7636 		return r;
   7637 	}
   7638 
   7639 	/* Validate SGPR and VGPR usage for compute to detect compiler bugs.
   7640 	 * LLVM 3.9svn has this bug.
   7641 	 */
   7642 	if (sel->type == PIPE_SHADER_COMPUTE) {
   7643 		unsigned wave_size = 64;
   7644 		unsigned max_vgprs = 256;
   7645 		unsigned max_sgprs = sscreen->b.chip_class >= VI ? 800 : 512;
   7646 		unsigned max_sgprs_per_wave = 128;
   7647 		unsigned max_block_threads = si_get_max_workgroup_size(shader);
   7648 		unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
   7649 		unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
   7650 
   7651 		max_vgprs = max_vgprs / min_waves_per_simd;
   7652 		max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
   7653 
   7654 		if (shader->config.num_sgprs > max_sgprs ||
   7655 		    shader->config.num_vgprs > max_vgprs) {
   7656 			fprintf(stderr, "LLVM failed to compile a shader correctly: "
   7657 				"SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
   7658 				shader->config.num_sgprs, shader->config.num_vgprs,
   7659 				max_sgprs, max_vgprs);
   7660 
   7661 			/* Just terminate the process, because dependent
   7662 			 * shaders can hang due to bad input data, but use
   7663 			 * the env var to allow shader-db to work.
   7664 			 */
   7665 			if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
   7666 				abort();
   7667 		}
   7668 	}
   7669 
   7670 	/* Add the scratch offset to input SGPRs. */
   7671 	if (shader->config.scratch_bytes_per_wave)
   7672 		shader->info.num_input_sgprs += 1; /* scratch byte offset */
   7673 
   7674 	/* Calculate the number of fragment input VGPRs. */
   7675 	if (ctx.type == PIPE_SHADER_FRAGMENT) {
   7676 		shader->info.num_input_vgprs = 0;
   7677 		shader->info.face_vgpr_index = -1;
   7678 
   7679 		if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
   7680 			shader->info.num_input_vgprs += 2;
   7681 		if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
   7682 			shader->info.num_input_vgprs += 2;
   7683 		if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
   7684 			shader->info.num_input_vgprs += 2;
   7685 		if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
   7686 			shader->info.num_input_vgprs += 3;
   7687 		if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
   7688 			shader->info.num_input_vgprs += 2;
   7689 		if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
   7690 			shader->info.num_input_vgprs += 2;
   7691 		if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
   7692 			shader->info.num_input_vgprs += 2;
   7693 		if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
   7694 			shader->info.num_input_vgprs += 1;
   7695 		if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
   7696 			shader->info.num_input_vgprs += 1;
   7697 		if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
   7698 			shader->info.num_input_vgprs += 1;
   7699 		if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
   7700 			shader->info.num_input_vgprs += 1;
   7701 		if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
   7702 			shader->info.num_input_vgprs += 1;
   7703 		if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
   7704 			shader->info.face_vgpr_index = shader->info.num_input_vgprs;
   7705 			shader->info.num_input_vgprs += 1;
   7706 		}
   7707 		if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr))
   7708 			shader->info.num_input_vgprs += 1;
   7709 		if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
   7710 			shader->info.num_input_vgprs += 1;
   7711 		if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
   7712 			shader->info.num_input_vgprs += 1;
   7713 	}
   7714 
   7715 	return 0;
   7716 }
   7717 
   7718 /**
   7719  * Create, compile and return a shader part (prolog or epilog).
   7720  *
   7721  * \param sscreen	screen
   7722  * \param list		list of shader parts of the same category
   7723  * \param type		shader type
   7724  * \param key		shader part key
   7725  * \param prolog	whether the part being requested is a prolog
   7726  * \param tm		LLVM target machine
   7727  * \param debug		debug callback
   7728  * \param build		the callback responsible for building the main function
   7729  * \return		non-NULL on success
   7730  */
   7731 static struct si_shader_part *
   7732 si_get_shader_part(struct si_screen *sscreen,
   7733 		   struct si_shader_part **list,
   7734 		   enum pipe_shader_type type,
   7735 		   bool prolog,
   7736 		   union si_shader_part_key *key,
   7737 		   LLVMTargetMachineRef tm,
   7738 		   struct pipe_debug_callback *debug,
   7739 		   void (*build)(struct si_shader_context *,
   7740 				 union si_shader_part_key *),
   7741 		   const char *name)
   7742 {
   7743 	struct si_shader_part *result;
   7744 
   7745 	pipe_mutex_lock(sscreen->shader_parts_mutex);
   7746 
   7747 	/* Find existing. */
   7748 	for (result = *list; result; result = result->next) {
   7749 		if (memcmp(&result->key, key, sizeof(*key)) == 0) {
   7750 			pipe_mutex_unlock(sscreen->shader_parts_mutex);
   7751 			return result;
   7752 		}
   7753 	}
   7754 
   7755 	/* Compile a new one. */
   7756 	result = CALLOC_STRUCT(si_shader_part);
   7757 	result->key = *key;
   7758 
   7759 	struct si_shader shader = {};
   7760 	struct si_shader_context ctx;
   7761 	struct gallivm_state *gallivm = &ctx.gallivm;
   7762 
   7763 	si_init_shader_ctx(&ctx, sscreen, &shader, tm);
   7764 	ctx.type = type;
   7765 
   7766 	switch (type) {
   7767 	case PIPE_SHADER_VERTEX:
   7768 		break;
   7769 	case PIPE_SHADER_TESS_CTRL:
   7770 		assert(!prolog);
   7771 		shader.key.part.tcs.epilog = key->tcs_epilog.states;
   7772 		break;
   7773 	case PIPE_SHADER_GEOMETRY:
   7774 		assert(prolog);
   7775 		break;
   7776 	case PIPE_SHADER_FRAGMENT:
   7777 		if (prolog)
   7778 			shader.key.part.ps.prolog = key->ps_prolog.states;
   7779 		else
   7780 			shader.key.part.ps.epilog = key->ps_epilog.states;
   7781 		break;
   7782 	default:
   7783 		unreachable("bad shader part");
   7784 	}
   7785 
   7786 	build(&ctx, key);
   7787 
   7788 	/* Compile. */
   7789 	si_llvm_finalize_module(&ctx,
   7790 		r600_extra_shader_checks(&sscreen->b, PIPE_SHADER_FRAGMENT));
   7791 
   7792 	if (si_compile_llvm(sscreen, &result->binary, &result->config, tm,
   7793 			    gallivm->module, debug, ctx.type, name)) {
   7794 		FREE(result);
   7795 		result = NULL;
   7796 		goto out;
   7797 	}
   7798 
   7799 	result->next = *list;
   7800 	*list = result;
   7801 
   7802 out:
   7803 	si_llvm_dispose(&ctx);
   7804 	pipe_mutex_unlock(sscreen->shader_parts_mutex);
   7805 	return result;
   7806 }
   7807 
   7808 /**
   7809  * Build the vertex shader prolog function.
   7810  *
   7811  * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
   7812  * All inputs are returned unmodified. The vertex load indices are
   7813  * stored after them, which will be used by the API VS for fetching inputs.
   7814  *
   7815  * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
   7816  *   input_v0,
   7817  *   input_v1,
   7818  *   input_v2,
   7819  *   input_v3,
   7820  *   (VertexID + BaseVertex),
   7821  *   (InstanceID + StartInstance),
   7822  *   (InstanceID / 2 + StartInstance)
   7823  */
   7824 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
   7825 					union si_shader_part_key *key)
   7826 {
   7827 	struct gallivm_state *gallivm = &ctx->gallivm;
   7828 	LLVMTypeRef *params, *returns;
   7829 	LLVMValueRef ret, func;
   7830 	int last_sgpr, num_params, num_returns, i;
   7831 
   7832 	ctx->param_vertex_id = key->vs_prolog.num_input_sgprs;
   7833 	ctx->param_instance_id = key->vs_prolog.num_input_sgprs + 3;
   7834 
   7835 	/* 4 preloaded VGPRs + vertex load indices as prolog outputs */
   7836 	params = alloca((key->vs_prolog.num_input_sgprs + 4) *
   7837 			sizeof(LLVMTypeRef));
   7838 	returns = alloca((key->vs_prolog.num_input_sgprs + 4 +
   7839 			  key->vs_prolog.last_input + 1) *
   7840 			 sizeof(LLVMTypeRef));
   7841 	num_params = 0;
   7842 	num_returns = 0;
   7843 
   7844 	/* Declare input and output SGPRs. */
   7845 	num_params = 0;
   7846 	for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
   7847 		params[num_params++] = ctx->i32;
   7848 		returns[num_returns++] = ctx->i32;
   7849 	}
   7850 	last_sgpr = num_params - 1;
   7851 
   7852 	/* 4 preloaded VGPRs (outputs must be floats) */
   7853 	for (i = 0; i < 4; i++) {
   7854 		params[num_params++] = ctx->i32;
   7855 		returns[num_returns++] = ctx->f32;
   7856 	}
   7857 
   7858 	/* Vertex load indices. */
   7859 	for (i = 0; i <= key->vs_prolog.last_input; i++)
   7860 		returns[num_returns++] = ctx->f32;
   7861 
   7862 	/* Create the function. */
   7863 	si_create_function(ctx, "vs_prolog", returns, num_returns, params,
   7864 			   num_params, last_sgpr);
   7865 	func = ctx->main_fn;
   7866 
   7867 	/* Copy inputs to outputs. This should be no-op, as the registers match,
   7868 	 * but it will prevent the compiler from overwriting them unintentionally.
   7869 	 */
   7870 	ret = ctx->return_value;
   7871 	for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
   7872 		LLVMValueRef p = LLVMGetParam(func, i);
   7873 		ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
   7874 	}
   7875 	for (i = num_params - 4; i < num_params; i++) {
   7876 		LLVMValueRef p = LLVMGetParam(func, i);
   7877 		p = LLVMBuildBitCast(gallivm->builder, p, ctx->f32, "");
   7878 		ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
   7879 	}
   7880 
   7881 	/* Compute vertex load indices from instance divisors. */
   7882 	for (i = 0; i <= key->vs_prolog.last_input; i++) {
   7883 		unsigned divisor = key->vs_prolog.states.instance_divisors[i];
   7884 		LLVMValueRef index;
   7885 
   7886 		if (divisor) {
   7887 			/* InstanceID / Divisor + StartInstance */
   7888 			index = get_instance_index_for_fetch(ctx,
   7889 							     SI_SGPR_START_INSTANCE,
   7890 							     divisor);
   7891 		} else {
   7892 			/* VertexID + BaseVertex */
   7893 			index = LLVMBuildAdd(gallivm->builder,
   7894 					     LLVMGetParam(func, ctx->param_vertex_id),
   7895 					     LLVMGetParam(func, SI_SGPR_BASE_VERTEX), "");
   7896 		}
   7897 
   7898 		index = LLVMBuildBitCast(gallivm->builder, index, ctx->f32, "");
   7899 		ret = LLVMBuildInsertValue(gallivm->builder, ret, index,
   7900 					   num_params++, "");
   7901 	}
   7902 
   7903 	si_llvm_build_ret(ctx, ret);
   7904 }
   7905 
   7906 /**
   7907  * Build the vertex shader epilog function. This is also used by the tessellation
   7908  * evaluation shader compiled as VS.
   7909  *
   7910  * The input is PrimitiveID.
   7911  *
   7912  * If PrimitiveID is required by the pixel shader, export it.
   7913  * Otherwise, do nothing.
   7914  */
   7915 static void si_build_vs_epilog_function(struct si_shader_context *ctx,
   7916 					union si_shader_part_key *key)
   7917 {
   7918 	struct gallivm_state *gallivm = &ctx->gallivm;
   7919 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
   7920 	LLVMTypeRef params[5];
   7921 	int num_params, i;
   7922 
   7923 	/* Declare input VGPRs. */
   7924 	num_params = key->vs_epilog.states.export_prim_id ?
   7925 			   (VS_EPILOG_PRIMID_LOC + 1) : 0;
   7926 	assert(num_params <= ARRAY_SIZE(params));
   7927 
   7928 	for (i = 0; i < num_params; i++)
   7929 		params[i] = ctx->f32;
   7930 
   7931 	/* Create the function. */
   7932 	si_create_function(ctx, "vs_epilog", NULL, 0, params, num_params, -1);
   7933 
   7934 	/* Emit exports. */
   7935 	if (key->vs_epilog.states.export_prim_id) {
   7936 		struct lp_build_context *base = &bld_base->base;
   7937 		struct lp_build_context *uint = &bld_base->uint_bld;
   7938 		LLVMValueRef args[9];
   7939 
   7940 		args[0] = lp_build_const_int32(base->gallivm, 0x0); /* enabled channels */
   7941 		args[1] = uint->zero; /* whether the EXEC mask is valid */
   7942 		args[2] = uint->zero; /* DONE bit */
   7943 		args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_PARAM +
   7944 					       key->vs_epilog.prim_id_param_offset);
   7945 		args[4] = uint->zero; /* COMPR flag (0 = 32-bit export) */
   7946 		args[5] = LLVMGetParam(ctx->main_fn,
   7947 				       VS_EPILOG_PRIMID_LOC); /* X */
   7948 		args[6] = base->undef; /* Y */
   7949 		args[7] = base->undef; /* Z */
   7950 		args[8] = base->undef; /* W */
   7951 
   7952 		lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
   7953 				   LLVMVoidTypeInContext(base->gallivm->context),
   7954 				   args, 9, 0);
   7955 	}
   7956 
   7957 	LLVMBuildRetVoid(gallivm->builder);
   7958 }
   7959 
   7960 /**
   7961  * Create & compile a vertex shader epilog. This a helper used by VS and TES.
   7962  */
   7963 static bool si_get_vs_epilog(struct si_screen *sscreen,
   7964 			     LLVMTargetMachineRef tm,
   7965 		             struct si_shader *shader,
   7966 		             struct pipe_debug_callback *debug,
   7967 			     struct si_vs_epilog_bits *states)
   7968 {
   7969 	union si_shader_part_key epilog_key;
   7970 
   7971 	si_get_vs_epilog_key(shader, states, &epilog_key);
   7972 
   7973 	shader->epilog = si_get_shader_part(sscreen, &sscreen->vs_epilogs,
   7974 					    PIPE_SHADER_VERTEX, true,
   7975 					    &epilog_key, tm, debug,
   7976 					    si_build_vs_epilog_function,
   7977 					    "Vertex Shader Epilog");
   7978 	return shader->epilog != NULL;
   7979 }
   7980 
   7981 /**
   7982  * Select and compile (or reuse) vertex shader parts (prolog & epilog).
   7983  */
   7984 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
   7985 				      LLVMTargetMachineRef tm,
   7986 				      struct si_shader *shader,
   7987 				      struct pipe_debug_callback *debug)
   7988 {
   7989 	struct tgsi_shader_info *info = &shader->selector->info;
   7990 	union si_shader_part_key prolog_key;
   7991 
   7992 	/* Get the prolog. */
   7993 	si_get_vs_prolog_key(shader, &prolog_key);
   7994 
   7995 	/* The prolog is a no-op if there are no inputs. */
   7996 	if (info->num_inputs) {
   7997 		shader->prolog =
   7998 			si_get_shader_part(sscreen, &sscreen->vs_prologs,
   7999 					   PIPE_SHADER_VERTEX, true,
   8000 					   &prolog_key, tm, debug,
   8001 					   si_build_vs_prolog_function,
   8002 					   "Vertex Shader Prolog");
   8003 		if (!shader->prolog)
   8004 			return false;
   8005 	}
   8006 
   8007 	/* Get the epilog. */
   8008 	if (!shader->key.as_es && !shader->key.as_ls &&
   8009 	    !si_get_vs_epilog(sscreen, tm, shader, debug,
   8010 			      &shader->key.part.vs.epilog))
   8011 		return false;
   8012 
   8013 	return true;
   8014 }
   8015 
   8016 /**
   8017  * Select and compile (or reuse) TES parts (epilog).
   8018  */
   8019 static bool si_shader_select_tes_parts(struct si_screen *sscreen,
   8020 				       LLVMTargetMachineRef tm,
   8021 				       struct si_shader *shader,
   8022 				       struct pipe_debug_callback *debug)
   8023 {
   8024 	if (shader->key.as_es)
   8025 		return true;
   8026 
   8027 	/* TES compiled as VS. */
   8028 	return si_get_vs_epilog(sscreen, tm, shader, debug,
   8029 				&shader->key.part.tes.epilog);
   8030 }
   8031 
   8032 /**
   8033  * Compile the TCS epilog function. This writes tesselation factors to memory
   8034  * based on the output primitive type of the tesselator (determined by TES).
   8035  */
   8036 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
   8037 					 union si_shader_part_key *key)
   8038 {
   8039 	struct gallivm_state *gallivm = &ctx->gallivm;
   8040 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
   8041 	LLVMTypeRef params[16];
   8042 	LLVMValueRef func;
   8043 	int last_sgpr, num_params;
   8044 
   8045 	/* Declare inputs. Only RW_BUFFERS and TESS_FACTOR_OFFSET are used. */
   8046 	params[SI_PARAM_RW_BUFFERS] = const_array(ctx->v16i8, SI_NUM_RW_BUFFERS);
   8047 	params[SI_PARAM_CONST_BUFFERS] = ctx->i64;
   8048 	params[SI_PARAM_SAMPLERS] = ctx->i64;
   8049 	params[SI_PARAM_IMAGES] = ctx->i64;
   8050 	params[SI_PARAM_SHADER_BUFFERS] = ctx->i64;
   8051 	params[SI_PARAM_TCS_OFFCHIP_LAYOUT] = ctx->i32;
   8052 	params[SI_PARAM_TCS_OUT_OFFSETS] = ctx->i32;
   8053 	params[SI_PARAM_TCS_OUT_LAYOUT] = ctx->i32;
   8054 	params[SI_PARAM_TCS_IN_LAYOUT] = ctx->i32;
   8055 	params[ctx->param_oc_lds = SI_PARAM_TCS_OC_LDS] = ctx->i32;
   8056 	params[SI_PARAM_TESS_FACTOR_OFFSET] = ctx->i32;
   8057 	last_sgpr = SI_PARAM_TESS_FACTOR_OFFSET;
   8058 	num_params = last_sgpr + 1;
   8059 
   8060 	params[num_params++] = ctx->i32; /* patch index within the wave (REL_PATCH_ID) */
   8061 	params[num_params++] = ctx->i32; /* invocation ID within the patch */
   8062 	params[num_params++] = ctx->i32; /* LDS offset where tess factors should be loaded from */
   8063 
   8064 	/* Create the function. */
   8065 	si_create_function(ctx, "tcs_epilog", NULL, 0, params, num_params, last_sgpr);
   8066 	declare_tess_lds(ctx);
   8067 	func = ctx->main_fn;
   8068 
   8069 	si_write_tess_factors(bld_base,
   8070 			      LLVMGetParam(func, last_sgpr + 1),
   8071 			      LLVMGetParam(func, last_sgpr + 2),
   8072 			      LLVMGetParam(func, last_sgpr + 3));
   8073 
   8074 	LLVMBuildRetVoid(gallivm->builder);
   8075 }
   8076 
   8077 /**
   8078  * Select and compile (or reuse) TCS parts (epilog).
   8079  */
   8080 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
   8081 				       LLVMTargetMachineRef tm,
   8082 				       struct si_shader *shader,
   8083 				       struct pipe_debug_callback *debug)
   8084 {
   8085 	union si_shader_part_key epilog_key;
   8086 
   8087 	/* Get the epilog. */
   8088 	memset(&epilog_key, 0, sizeof(epilog_key));
   8089 	epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
   8090 
   8091 	shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
   8092 					    PIPE_SHADER_TESS_CTRL, false,
   8093 					    &epilog_key, tm, debug,
   8094 					    si_build_tcs_epilog_function,
   8095 					    "Tessellation Control Shader Epilog");
   8096 	return shader->epilog != NULL;
   8097 }
   8098 
   8099 /**
   8100  * Select and compile (or reuse) GS parts (prolog).
   8101  */
   8102 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
   8103 				      LLVMTargetMachineRef tm,
   8104 				      struct si_shader *shader,
   8105 				      struct pipe_debug_callback *debug)
   8106 {
   8107 	union si_shader_part_key prolog_key;
   8108 
   8109 	if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
   8110 		return true;
   8111 
   8112 	memset(&prolog_key, 0, sizeof(prolog_key));
   8113 	prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
   8114 
   8115 	shader->prolog = si_get_shader_part(sscreen, &sscreen->gs_prologs,
   8116 					    PIPE_SHADER_GEOMETRY, true,
   8117 					    &prolog_key, tm, debug,
   8118 					    si_build_gs_prolog_function,
   8119 					    "Geometry Shader Prolog");
   8120 	return shader->prolog != NULL;
   8121 }
   8122 
   8123 /**
   8124  * Build the pixel shader prolog function. This handles:
   8125  * - two-side color selection and interpolation
   8126  * - overriding interpolation parameters for the API PS
   8127  * - polygon stippling
   8128  *
   8129  * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
   8130  * overriden by other states. (e.g. per-sample interpolation)
   8131  * Interpolated colors are stored after the preloaded VGPRs.
   8132  */
   8133 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
   8134 					union si_shader_part_key *key)
   8135 {
   8136 	struct gallivm_state *gallivm = &ctx->gallivm;
   8137 	LLVMTypeRef *params;
   8138 	LLVMValueRef ret, func;
   8139 	int last_sgpr, num_params, num_returns, i, num_color_channels;
   8140 
   8141 	assert(si_need_ps_prolog(key));
   8142 
   8143 	/* Number of inputs + 8 color elements. */
   8144 	params = alloca((key->ps_prolog.num_input_sgprs +
   8145 			 key->ps_prolog.num_input_vgprs + 8) *
   8146 			sizeof(LLVMTypeRef));
   8147 
   8148 	/* Declare inputs. */
   8149 	num_params = 0;
   8150 	for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
   8151 		params[num_params++] = ctx->i32;
   8152 	last_sgpr = num_params - 1;
   8153 
   8154 	for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
   8155 		params[num_params++] = ctx->f32;
   8156 
   8157 	/* Declare outputs (same as inputs + add colors if needed) */
   8158 	num_returns = num_params;
   8159 	num_color_channels = util_bitcount(key->ps_prolog.colors_read);
   8160 	for (i = 0; i < num_color_channels; i++)
   8161 		params[num_returns++] = ctx->f32;
   8162 
   8163 	/* Create the function. */
   8164 	si_create_function(ctx, "ps_prolog", params, num_returns, params,
   8165 			   num_params, last_sgpr);
   8166 	func = ctx->main_fn;
   8167 
   8168 	/* Copy inputs to outputs. This should be no-op, as the registers match,
   8169 	 * but it will prevent the compiler from overwriting them unintentionally.
   8170 	 */
   8171 	ret = ctx->return_value;
   8172 	for (i = 0; i < num_params; i++) {
   8173 		LLVMValueRef p = LLVMGetParam(func, i);
   8174 		ret = LLVMBuildInsertValue(gallivm->builder, ret, p, i, "");
   8175 	}
   8176 
   8177 	/* Polygon stippling. */
   8178 	if (key->ps_prolog.states.poly_stipple) {
   8179 		/* POS_FIXED_PT is always last. */
   8180 		unsigned pos = key->ps_prolog.num_input_sgprs +
   8181 			       key->ps_prolog.num_input_vgprs - 1;
   8182 		LLVMValueRef ptr[2], list;
   8183 
   8184 		/* Get the pointer to rw buffers. */
   8185 		ptr[0] = LLVMGetParam(func, SI_SGPR_RW_BUFFERS);
   8186 		ptr[1] = LLVMGetParam(func, SI_SGPR_RW_BUFFERS_HI);
   8187 		list = lp_build_gather_values(gallivm, ptr, 2);
   8188 		list = LLVMBuildBitCast(gallivm->builder, list, ctx->i64, "");
   8189 		list = LLVMBuildIntToPtr(gallivm->builder, list,
   8190 					  const_array(ctx->v16i8, SI_NUM_RW_BUFFERS), "");
   8191 
   8192 		si_llvm_emit_polygon_stipple(ctx, list, pos);
   8193 	}
   8194 
   8195 	if (key->ps_prolog.states.bc_optimize_for_persp ||
   8196 	    key->ps_prolog.states.bc_optimize_for_linear) {
   8197 		unsigned i, base = key->ps_prolog.num_input_sgprs;
   8198 		LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
   8199 
   8200 		/* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
   8201 		 * The hw doesn't compute CENTROID if the whole wave only
   8202 		 * contains fully-covered quads.
   8203 		 *
   8204 		 * PRIM_MASK is after user SGPRs.
   8205 		 */
   8206 		bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
   8207 		bc_optimize = LLVMBuildLShr(gallivm->builder, bc_optimize,
   8208 					    LLVMConstInt(ctx->i32, 31, 0), "");
   8209 		bc_optimize = LLVMBuildTrunc(gallivm->builder, bc_optimize,
   8210 					     ctx->i1, "");
   8211 
   8212 		if (key->ps_prolog.states.bc_optimize_for_persp) {
   8213 			/* Read PERSP_CENTER. */
   8214 			for (i = 0; i < 2; i++)
   8215 				center[i] = LLVMGetParam(func, base + 2 + i);
   8216 			/* Read PERSP_CENTROID. */
   8217 			for (i = 0; i < 2; i++)
   8218 				centroid[i] = LLVMGetParam(func, base + 4 + i);
   8219 			/* Select PERSP_CENTROID. */
   8220 			for (i = 0; i < 2; i++) {
   8221 				tmp = LLVMBuildSelect(gallivm->builder, bc_optimize,
   8222 						      center[i], centroid[i], "");
   8223 				ret = LLVMBuildInsertValue(gallivm->builder, ret,
   8224 							   tmp, base + 4 + i, "");
   8225 			}
   8226 		}
   8227 		if (key->ps_prolog.states.bc_optimize_for_linear) {
   8228 			/* Read LINEAR_CENTER. */
   8229 			for (i = 0; i < 2; i++)
   8230 				center[i] = LLVMGetParam(func, base + 8 + i);
   8231 			/* Read LINEAR_CENTROID. */
   8232 			for (i = 0; i < 2; i++)
   8233 				centroid[i] = LLVMGetParam(func, base + 10 + i);
   8234 			/* Select LINEAR_CENTROID. */
   8235 			for (i = 0; i < 2; i++) {
   8236 				tmp = LLVMBuildSelect(gallivm->builder, bc_optimize,
   8237 						      center[i], centroid[i], "");
   8238 				ret = LLVMBuildInsertValue(gallivm->builder, ret,
   8239 							   tmp, base + 10 + i, "");
   8240 			}
   8241 		}
   8242 	}
   8243 
   8244 	/* Force per-sample interpolation. */
   8245 	if (key->ps_prolog.states.force_persp_sample_interp) {
   8246 		unsigned i, base = key->ps_prolog.num_input_sgprs;
   8247 		LLVMValueRef persp_sample[2];
   8248 
   8249 		/* Read PERSP_SAMPLE. */
   8250 		for (i = 0; i < 2; i++)
   8251 			persp_sample[i] = LLVMGetParam(func, base + i);
   8252 		/* Overwrite PERSP_CENTER. */
   8253 		for (i = 0; i < 2; i++)
   8254 			ret = LLVMBuildInsertValue(gallivm->builder, ret,
   8255 						   persp_sample[i], base + 2 + i, "");
   8256 		/* Overwrite PERSP_CENTROID. */
   8257 		for (i = 0; i < 2; i++)
   8258 			ret = LLVMBuildInsertValue(gallivm->builder, ret,
   8259 						   persp_sample[i], base + 4 + i, "");
   8260 	}
   8261 	if (key->ps_prolog.states.force_linear_sample_interp) {
   8262 		unsigned i, base = key->ps_prolog.num_input_sgprs;
   8263 		LLVMValueRef linear_sample[2];
   8264 
   8265 		/* Read LINEAR_SAMPLE. */
   8266 		for (i = 0; i < 2; i++)
   8267 			linear_sample[i] = LLVMGetParam(func, base + 6 + i);
   8268 		/* Overwrite LINEAR_CENTER. */
   8269 		for (i = 0; i < 2; i++)
   8270 			ret = LLVMBuildInsertValue(gallivm->builder, ret,
   8271 						   linear_sample[i], base + 8 + i, "");
   8272 		/* Overwrite LINEAR_CENTROID. */
   8273 		for (i = 0; i < 2; i++)
   8274 			ret = LLVMBuildInsertValue(gallivm->builder, ret,
   8275 						   linear_sample[i], base + 10 + i, "");
   8276 	}
   8277 
   8278 	/* Force center interpolation. */
   8279 	if (key->ps_prolog.states.force_persp_center_interp) {
   8280 		unsigned i, base = key->ps_prolog.num_input_sgprs;
   8281 		LLVMValueRef persp_center[2];
   8282 
   8283 		/* Read PERSP_CENTER. */
   8284 		for (i = 0; i < 2; i++)
   8285 			persp_center[i] = LLVMGetParam(func, base + 2 + i);
   8286 		/* Overwrite PERSP_SAMPLE. */
   8287 		for (i = 0; i < 2; i++)
   8288 			ret = LLVMBuildInsertValue(gallivm->builder, ret,
   8289 						   persp_center[i], base + i, "");
   8290 		/* Overwrite PERSP_CENTROID. */
   8291 		for (i = 0; i < 2; i++)
   8292 			ret = LLVMBuildInsertValue(gallivm->builder, ret,
   8293 						   persp_center[i], base + 4 + i, "");
   8294 	}
   8295 	if (key->ps_prolog.states.force_linear_center_interp) {
   8296 		unsigned i, base = key->ps_prolog.num_input_sgprs;
   8297 		LLVMValueRef linear_center[2];
   8298 
   8299 		/* Read LINEAR_CENTER. */
   8300 		for (i = 0; i < 2; i++)
   8301 			linear_center[i] = LLVMGetParam(func, base + 8 + i);
   8302 		/* Overwrite LINEAR_SAMPLE. */
   8303 		for (i = 0; i < 2; i++)
   8304 			ret = LLVMBuildInsertValue(gallivm->builder, ret,
   8305 						   linear_center[i], base + 6 + i, "");
   8306 		/* Overwrite LINEAR_CENTROID. */
   8307 		for (i = 0; i < 2; i++)
   8308 			ret = LLVMBuildInsertValue(gallivm->builder, ret,
   8309 						   linear_center[i], base + 10 + i, "");
   8310 	}
   8311 
   8312 	/* Interpolate colors. */
   8313 	for (i = 0; i < 2; i++) {
   8314 		unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
   8315 		unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
   8316 				     key->ps_prolog.face_vgpr_index;
   8317 		LLVMValueRef interp[2], color[4];
   8318 		LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
   8319 
   8320 		if (!writemask)
   8321 			continue;
   8322 
   8323 		/* If the interpolation qualifier is not CONSTANT (-1). */
   8324 		if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
   8325 			unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
   8326 					       key->ps_prolog.color_interp_vgpr_index[i];
   8327 
   8328 			/* Get the (i,j) updated by bc_optimize handling. */
   8329 			interp[0] = LLVMBuildExtractValue(gallivm->builder, ret,
   8330 							  interp_vgpr, "");
   8331 			interp[1] = LLVMBuildExtractValue(gallivm->builder, ret,
   8332 							  interp_vgpr + 1, "");
   8333 			interp_ij = lp_build_gather_values(gallivm, interp, 2);
   8334 		}
   8335 
   8336 		/* Use the absolute location of the input. */
   8337 		prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
   8338 
   8339 		if (key->ps_prolog.states.color_two_side) {
   8340 			face = LLVMGetParam(func, face_vgpr);
   8341 			face = LLVMBuildBitCast(gallivm->builder, face, ctx->i32, "");
   8342 		}
   8343 
   8344 		interp_fs_input(ctx,
   8345 				key->ps_prolog.color_attr_index[i],
   8346 				TGSI_SEMANTIC_COLOR, i,
   8347 				key->ps_prolog.num_interp_inputs,
   8348 				key->ps_prolog.colors_read, interp_ij,
   8349 				prim_mask, face, color);
   8350 
   8351 		while (writemask) {
   8352 			unsigned chan = u_bit_scan(&writemask);
   8353 			ret = LLVMBuildInsertValue(gallivm->builder, ret, color[chan],
   8354 						   num_params++, "");
   8355 		}
   8356 	}
   8357 
   8358 	/* Tell LLVM to insert WQM instruction sequence when needed. */
   8359 	if (key->ps_prolog.wqm) {
   8360 		LLVMAddTargetDependentFunctionAttr(func,
   8361 						   "amdgpu-ps-wqm-outputs", "");
   8362 	}
   8363 
   8364 	si_llvm_build_ret(ctx, ret);
   8365 }
   8366 
   8367 /**
   8368  * Build the pixel shader epilog function. This handles everything that must be
   8369  * emulated for pixel shader exports. (alpha-test, format conversions, etc)
   8370  */
   8371 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
   8372 					union si_shader_part_key *key)
   8373 {
   8374 	struct gallivm_state *gallivm = &ctx->gallivm;
   8375 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
   8376 	LLVMTypeRef params[16+8*4+3];
   8377 	LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
   8378 	int last_sgpr, num_params, i;
   8379 	struct si_ps_exports exp = {};
   8380 
   8381 	/* Declare input SGPRs. */
   8382 	params[SI_PARAM_RW_BUFFERS] = ctx->i64;
   8383 	params[SI_PARAM_CONST_BUFFERS] = ctx->i64;
   8384 	params[SI_PARAM_SAMPLERS] = ctx->i64;
   8385 	params[SI_PARAM_IMAGES] = ctx->i64;
   8386 	params[SI_PARAM_SHADER_BUFFERS] = ctx->i64;
   8387 	params[SI_PARAM_ALPHA_REF] = ctx->f32;
   8388 	last_sgpr = SI_PARAM_ALPHA_REF;
   8389 
   8390 	/* Declare input VGPRs. */
   8391 	num_params = (last_sgpr + 1) +
   8392 		     util_bitcount(key->ps_epilog.colors_written) * 4 +
   8393 		     key->ps_epilog.writes_z +
   8394 		     key->ps_epilog.writes_stencil +
   8395 		     key->ps_epilog.writes_samplemask;
   8396 
   8397 	num_params = MAX2(num_params,
   8398 			  last_sgpr + 1 + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
   8399 
   8400 	assert(num_params <= ARRAY_SIZE(params));
   8401 
   8402 	for (i = last_sgpr + 1; i < num_params; i++)
   8403 		params[i] = ctx->f32;
   8404 
   8405 	/* Create the function. */
   8406 	si_create_function(ctx, "ps_epilog", NULL, 0, params, num_params, last_sgpr);
   8407 	/* Disable elimination of unused inputs. */
   8408 	si_llvm_add_attribute(ctx->main_fn,
   8409 				  "InitialPSInputAddr", 0xffffff);
   8410 
   8411 	/* Process colors. */
   8412 	unsigned vgpr = last_sgpr + 1;
   8413 	unsigned colors_written = key->ps_epilog.colors_written;
   8414 	int last_color_export = -1;
   8415 
   8416 	/* Find the last color export. */
   8417 	if (!key->ps_epilog.writes_z &&
   8418 	    !key->ps_epilog.writes_stencil &&
   8419 	    !key->ps_epilog.writes_samplemask) {
   8420 		unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
   8421 
   8422 		/* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
   8423 		if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
   8424 			/* Just set this if any of the colorbuffers are enabled. */
   8425 			if (spi_format &
   8426 			    ((1llu << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
   8427 				last_color_export = 0;
   8428 		} else {
   8429 			for (i = 0; i < 8; i++)
   8430 				if (colors_written & (1 << i) &&
   8431 				    (spi_format >> (i * 4)) & 0xf)
   8432 					last_color_export = i;
   8433 		}
   8434 	}
   8435 
   8436 	while (colors_written) {
   8437 		LLVMValueRef color[4];
   8438 		int mrt = u_bit_scan(&colors_written);
   8439 
   8440 		for (i = 0; i < 4; i++)
   8441 			color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
   8442 
   8443 		si_export_mrt_color(bld_base, color, mrt,
   8444 				    num_params - 1,
   8445 				    mrt == last_color_export, &exp);
   8446 	}
   8447 
   8448 	/* Process depth, stencil, samplemask. */
   8449 	if (key->ps_epilog.writes_z)
   8450 		depth = LLVMGetParam(ctx->main_fn, vgpr++);
   8451 	if (key->ps_epilog.writes_stencil)
   8452 		stencil = LLVMGetParam(ctx->main_fn, vgpr++);
   8453 	if (key->ps_epilog.writes_samplemask)
   8454 		samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
   8455 
   8456 	if (depth || stencil || samplemask)
   8457 		si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
   8458 	else if (last_color_export == -1)
   8459 		si_export_null(bld_base);
   8460 
   8461 	if (exp.num)
   8462 		si_emit_ps_exports(ctx, &exp);
   8463 
   8464 	/* Compile. */
   8465 	LLVMBuildRetVoid(gallivm->builder);
   8466 }
   8467 
   8468 /**
   8469  * Select and compile (or reuse) pixel shader parts (prolog & epilog).
   8470  */
   8471 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
   8472 				      LLVMTargetMachineRef tm,
   8473 				      struct si_shader *shader,
   8474 				      struct pipe_debug_callback *debug)
   8475 {
   8476 	union si_shader_part_key prolog_key;
   8477 	union si_shader_part_key epilog_key;
   8478 
   8479 	/* Get the prolog. */
   8480 	si_get_ps_prolog_key(shader, &prolog_key, true);
   8481 
   8482 	/* The prolog is a no-op if these aren't set. */
   8483 	if (si_need_ps_prolog(&prolog_key)) {
   8484 		shader->prolog =
   8485 			si_get_shader_part(sscreen, &sscreen->ps_prologs,
   8486 					   PIPE_SHADER_FRAGMENT, true,
   8487 					   &prolog_key, tm, debug,
   8488 					   si_build_ps_prolog_function,
   8489 					   "Fragment Shader Prolog");
   8490 		if (!shader->prolog)
   8491 			return false;
   8492 	}
   8493 
   8494 	/* Get the epilog. */
   8495 	si_get_ps_epilog_key(shader, &epilog_key);
   8496 
   8497 	shader->epilog =
   8498 		si_get_shader_part(sscreen, &sscreen->ps_epilogs,
   8499 				   PIPE_SHADER_FRAGMENT, false,
   8500 				   &epilog_key, tm, debug,
   8501 				   si_build_ps_epilog_function,
   8502 				   "Fragment Shader Epilog");
   8503 	if (!shader->epilog)
   8504 		return false;
   8505 
   8506 	/* Enable POS_FIXED_PT if polygon stippling is enabled. */
   8507 	if (shader->key.part.ps.prolog.poly_stipple) {
   8508 		shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
   8509 		assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
   8510 	}
   8511 
   8512 	/* Set up the enable bits for per-sample shading if needed. */
   8513 	if (shader->key.part.ps.prolog.force_persp_sample_interp &&
   8514 	    (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
   8515 	     G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
   8516 		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
   8517 		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
   8518 		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
   8519 	}
   8520 	if (shader->key.part.ps.prolog.force_linear_sample_interp &&
   8521 	    (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
   8522 	     G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
   8523 		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
   8524 		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
   8525 		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
   8526 	}
   8527 	if (shader->key.part.ps.prolog.force_persp_center_interp &&
   8528 	    (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
   8529 	     G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
   8530 		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
   8531 		shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
   8532 		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
   8533 	}
   8534 	if (shader->key.part.ps.prolog.force_linear_center_interp &&
   8535 	    (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
   8536 	     G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
   8537 		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
   8538 		shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
   8539 		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
   8540 	}
   8541 
   8542 	/* POW_W_FLOAT requires that one of the perspective weights is enabled. */
   8543 	if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
   8544 	    !(shader->config.spi_ps_input_ena & 0xf)) {
   8545 		shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
   8546 		assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
   8547 	}
   8548 
   8549 	/* At least one pair of interpolation weights must be enabled. */
   8550 	if (!(shader->config.spi_ps_input_ena & 0x7f)) {
   8551 		shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
   8552 		assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
   8553 	}
   8554 
   8555 	/* The sample mask input is always enabled, because the API shader always
   8556 	 * passes it through to the epilog. Disable it here if it's unused.
   8557 	 */
   8558 	if (!shader->key.part.ps.epilog.poly_line_smoothing &&
   8559 	    !shader->selector->info.reads_samplemask)
   8560 		shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
   8561 
   8562 	return true;
   8563 }
   8564 
   8565 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
   8566 				      unsigned *lds_size)
   8567 {
   8568 	/* SPI barrier management bug:
   8569 	 *   Make sure we have at least 4k of LDS in use to avoid the bug.
   8570 	 *   It applies to workgroup sizes of more than one wavefront.
   8571 	 */
   8572 	if (sscreen->b.family == CHIP_BONAIRE ||
   8573 	    sscreen->b.family == CHIP_KABINI ||
   8574 	    sscreen->b.family == CHIP_MULLINS)
   8575 		*lds_size = MAX2(*lds_size, 8);
   8576 }
   8577 
   8578 static void si_fix_resource_usage(struct si_screen *sscreen,
   8579 				  struct si_shader *shader)
   8580 {
   8581 	unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
   8582 
   8583 	shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
   8584 
   8585 	if (shader->selector->type == PIPE_SHADER_COMPUTE &&
   8586 	    si_get_max_workgroup_size(shader) > 64) {
   8587 		si_multiwave_lds_size_workaround(sscreen,
   8588 						 &shader->config.lds_size);
   8589 	}
   8590 }
   8591 
   8592 int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm,
   8593 		     struct si_shader *shader,
   8594 		     struct pipe_debug_callback *debug)
   8595 {
   8596 	struct si_shader_selector *sel = shader->selector;
   8597 	struct si_shader *mainp = sel->main_shader_part;
   8598 	int r;
   8599 
   8600 	/* LS, ES, VS are compiled on demand if the main part hasn't been
   8601 	 * compiled for that stage.
   8602 	 *
   8603 	 * Vertex shaders are compiled on demand when a vertex fetch
   8604 	 * workaround must be applied.
   8605 	 */
   8606 	if (shader->is_monolithic) {
   8607 		/* Monolithic shader (compiled as a whole, has many variants,
   8608 		 * may take a long time to compile).
   8609 		 */
   8610 		r = si_compile_tgsi_shader(sscreen, tm, shader, true, debug);
   8611 		if (r)
   8612 			return r;
   8613 	} else {
   8614 		/* The shader consists of 2-3 parts:
   8615 		 *
   8616 		 * - the middle part is the user shader, it has 1 variant only
   8617 		 *   and it was compiled during the creation of the shader
   8618 		 *   selector
   8619 		 * - the prolog part is inserted at the beginning
   8620 		 * - the epilog part is inserted at the end
   8621 		 *
   8622 		 * The prolog and epilog have many (but simple) variants.
   8623 		 */
   8624 
   8625 		/* Copy the compiled TGSI shader data over. */
   8626 		shader->is_binary_shared = true;
   8627 		shader->binary = mainp->binary;
   8628 		shader->config = mainp->config;
   8629 		shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
   8630 		shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
   8631 		shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
   8632 		memcpy(shader->info.vs_output_param_offset,
   8633 		       mainp->info.vs_output_param_offset,
   8634 		       sizeof(mainp->info.vs_output_param_offset));
   8635 		shader->info.uses_instanceid = mainp->info.uses_instanceid;
   8636 		shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
   8637 		shader->info.nr_param_exports = mainp->info.nr_param_exports;
   8638 
   8639 		/* Select prologs and/or epilogs. */
   8640 		switch (sel->type) {
   8641 		case PIPE_SHADER_VERTEX:
   8642 			if (!si_shader_select_vs_parts(sscreen, tm, shader, debug))
   8643 				return -1;
   8644 			break;
   8645 		case PIPE_SHADER_TESS_CTRL:
   8646 			if (!si_shader_select_tcs_parts(sscreen, tm, shader, debug))
   8647 				return -1;
   8648 			break;
   8649 		case PIPE_SHADER_TESS_EVAL:
   8650 			if (!si_shader_select_tes_parts(sscreen, tm, shader, debug))
   8651 				return -1;
   8652 			break;
   8653 		case PIPE_SHADER_GEOMETRY:
   8654 			if (!si_shader_select_gs_parts(sscreen, tm, shader, debug))
   8655 				return -1;
   8656 			break;
   8657 		case PIPE_SHADER_FRAGMENT:
   8658 			if (!si_shader_select_ps_parts(sscreen, tm, shader, debug))
   8659 				return -1;
   8660 
   8661 			/* Make sure we have at least as many VGPRs as there
   8662 			 * are allocated inputs.
   8663 			 */
   8664 			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
   8665 							shader->info.num_input_vgprs);
   8666 			break;
   8667 		}
   8668 
   8669 		/* Update SGPR and VGPR counts. */
   8670 		if (shader->prolog) {
   8671 			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
   8672 							shader->prolog->config.num_sgprs);
   8673 			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
   8674 							shader->prolog->config.num_vgprs);
   8675 		}
   8676 		if (shader->epilog) {
   8677 			shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
   8678 							shader->epilog->config.num_sgprs);
   8679 			shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
   8680 							shader->epilog->config.num_vgprs);
   8681 		}
   8682 	}
   8683 
   8684 	si_fix_resource_usage(sscreen, shader);
   8685 	si_shader_dump(sscreen, shader, debug, sel->info.processor,
   8686 		       stderr, true);
   8687 
   8688 	/* Upload. */
   8689 	r = si_shader_binary_upload(sscreen, shader);
   8690 	if (r) {
   8691 		fprintf(stderr, "LLVM failed to upload shader\n");
   8692 		return r;
   8693 	}
   8694 
   8695 	return 0;
   8696 }
   8697 
   8698 void si_shader_destroy(struct si_shader *shader)
   8699 {
   8700 	if (shader->scratch_bo)
   8701 		r600_resource_reference(&shader->scratch_bo, NULL);
   8702 
   8703 	r600_resource_reference(&shader->bo, NULL);
   8704 
   8705 	if (!shader->is_binary_shared)
   8706 		radeon_shader_binary_clean(&shader->binary);
   8707 
   8708 	free(shader->shader_log);
   8709 }
   8710