Home | History | Annotate | Download | only in X86
      1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the X86-specific support for the FastISel class. Much
     11 // of the target-specific code is generated by tablegen in the file
     12 // X86GenFastISel.inc, which is #included here.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "X86.h"
     17 #include "X86InstrBuilder.h"
     18 #include "X86ISelLowering.h"
     19 #include "X86RegisterInfo.h"
     20 #include "X86Subtarget.h"
     21 #include "X86TargetMachine.h"
     22 #include "llvm/CallingConv.h"
     23 #include "llvm/DerivedTypes.h"
     24 #include "llvm/GlobalVariable.h"
     25 #include "llvm/GlobalAlias.h"
     26 #include "llvm/Instructions.h"
     27 #include "llvm/IntrinsicInst.h"
     28 #include "llvm/Operator.h"
     29 #include "llvm/CodeGen/Analysis.h"
     30 #include "llvm/CodeGen/FastISel.h"
     31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     32 #include "llvm/CodeGen/MachineConstantPool.h"
     33 #include "llvm/CodeGen/MachineFrameInfo.h"
     34 #include "llvm/CodeGen/MachineRegisterInfo.h"
     35 #include "llvm/Support/CallSite.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/GetElementPtrTypeIterator.h"
     38 #include "llvm/Target/TargetOptions.h"
     39 using namespace llvm;
     40 
     41 namespace {
     42 
     43 class X86FastISel : public FastISel {
     44   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
     45   /// make the right decision when generating code for different targets.
     46   const X86Subtarget *Subtarget;
     47 
     48   /// StackPtr - Register used as the stack pointer.
     49   ///
     50   unsigned StackPtr;
     51 
     52   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
     53   /// floating point ops.
     54   /// When SSE is available, use it for f32 operations.
     55   /// When SSE2 is available, use it for f64 operations.
     56   bool X86ScalarSSEf64;
     57   bool X86ScalarSSEf32;
     58 
     59 public:
     60   explicit X86FastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo) {
     61     Subtarget = &TM.getSubtarget<X86Subtarget>();
     62     StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
     63     X86ScalarSSEf64 = Subtarget->hasSSE2() || Subtarget->hasAVX();
     64     X86ScalarSSEf32 = Subtarget->hasSSE1() || Subtarget->hasAVX();
     65   }
     66 
     67   virtual bool TargetSelectInstruction(const Instruction *I);
     68 
     69   /// TryToFoldLoad - The specified machine instr operand is a vreg, and that
     70   /// vreg is being provided by the specified load instruction.  If possible,
     71   /// try to fold the load as an operand to the instruction, returning true if
     72   /// possible.
     73   virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
     74                              const LoadInst *LI);
     75 
     76 #include "X86GenFastISel.inc"
     77 
     78 private:
     79   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
     80 
     81   bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
     82 
     83   bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM);
     84   bool X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM);
     85 
     86   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
     87                          unsigned &ResultReg);
     88 
     89   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
     90   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
     91 
     92   bool X86SelectLoad(const Instruction *I);
     93 
     94   bool X86SelectStore(const Instruction *I);
     95 
     96   bool X86SelectRet(const Instruction *I);
     97 
     98   bool X86SelectCmp(const Instruction *I);
     99 
    100   bool X86SelectZExt(const Instruction *I);
    101 
    102   bool X86SelectBranch(const Instruction *I);
    103 
    104   bool X86SelectShift(const Instruction *I);
    105 
    106   bool X86SelectSelect(const Instruction *I);
    107 
    108   bool X86SelectTrunc(const Instruction *I);
    109 
    110   bool X86SelectFPExt(const Instruction *I);
    111   bool X86SelectFPTrunc(const Instruction *I);
    112 
    113   bool X86VisitIntrinsicCall(const IntrinsicInst &I);
    114   bool X86SelectCall(const Instruction *I);
    115 
    116   bool DoSelectCall(const Instruction *I, const char *MemIntName);
    117 
    118   const X86InstrInfo *getInstrInfo() const {
    119     return getTargetMachine()->getInstrInfo();
    120   }
    121   const X86TargetMachine *getTargetMachine() const {
    122     return static_cast<const X86TargetMachine *>(&TM);
    123   }
    124 
    125   unsigned TargetMaterializeConstant(const Constant *C);
    126 
    127   unsigned TargetMaterializeAlloca(const AllocaInst *C);
    128 
    129   unsigned TargetMaterializeFloatZero(const ConstantFP *CF);
    130 
    131   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
    132   /// computed in an SSE register, not on the X87 floating point stack.
    133   bool isScalarFPTypeInSSEReg(EVT VT) const {
    134     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
    135       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    136   }
    137 
    138   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
    139 
    140   bool IsMemcpySmall(uint64_t Len);
    141 
    142   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
    143                           X86AddressMode SrcAM, uint64_t Len);
    144 };
    145 
    146 } // end anonymous namespace.
    147 
    148 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
    149   EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
    150   if (evt == MVT::Other || !evt.isSimple())
    151     // Unhandled type. Halt "fast" selection and bail.
    152     return false;
    153 
    154   VT = evt.getSimpleVT();
    155   // For now, require SSE/SSE2 for performing floating-point operations,
    156   // since x87 requires additional work.
    157   if (VT == MVT::f64 && !X86ScalarSSEf64)
    158      return false;
    159   if (VT == MVT::f32 && !X86ScalarSSEf32)
    160      return false;
    161   // Similarly, no f80 support yet.
    162   if (VT == MVT::f80)
    163     return false;
    164   // We only handle legal types. For example, on x86-32 the instruction
    165   // selector contains all of the 64-bit instructions from x86-64,
    166   // under the assumption that i64 won't be used if the target doesn't
    167   // support it.
    168   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
    169 }
    170 
    171 #include "X86GenCallingConv.inc"
    172 
    173 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
    174 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
    175 /// Return true and the result register by reference if it is possible.
    176 bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
    177                                   unsigned &ResultReg) {
    178   // Get opcode and regclass of the output for the given load instruction.
    179   unsigned Opc = 0;
    180   const TargetRegisterClass *RC = NULL;
    181   switch (VT.getSimpleVT().SimpleTy) {
    182   default: return false;
    183   case MVT::i1:
    184   case MVT::i8:
    185     Opc = X86::MOV8rm;
    186     RC  = X86::GR8RegisterClass;
    187     break;
    188   case MVT::i16:
    189     Opc = X86::MOV16rm;
    190     RC  = X86::GR16RegisterClass;
    191     break;
    192   case MVT::i32:
    193     Opc = X86::MOV32rm;
    194     RC  = X86::GR32RegisterClass;
    195     break;
    196   case MVT::i64:
    197     // Must be in x86-64 mode.
    198     Opc = X86::MOV64rm;
    199     RC  = X86::GR64RegisterClass;
    200     break;
    201   case MVT::f32:
    202     if (X86ScalarSSEf32) {
    203       Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
    204       RC  = X86::FR32RegisterClass;
    205     } else {
    206       Opc = X86::LD_Fp32m;
    207       RC  = X86::RFP32RegisterClass;
    208     }
    209     break;
    210   case MVT::f64:
    211     if (X86ScalarSSEf64) {
    212       Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
    213       RC  = X86::FR64RegisterClass;
    214     } else {
    215       Opc = X86::LD_Fp64m;
    216       RC  = X86::RFP64RegisterClass;
    217     }
    218     break;
    219   case MVT::f80:
    220     // No f80 support yet.
    221     return false;
    222   }
    223 
    224   ResultReg = createResultReg(RC);
    225   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
    226                          DL, TII.get(Opc), ResultReg), AM);
    227   return true;
    228 }
    229 
    230 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
    231 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
    232 /// and a displacement offset, or a GlobalAddress,
    233 /// i.e. V. Return true if it is possible.
    234 bool
    235 X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) {
    236   // Get opcode and regclass of the output for the given store instruction.
    237   unsigned Opc = 0;
    238   switch (VT.getSimpleVT().SimpleTy) {
    239   case MVT::f80: // No f80 support yet.
    240   default: return false;
    241   case MVT::i1: {
    242     // Mask out all but lowest bit.
    243     unsigned AndResult = createResultReg(X86::GR8RegisterClass);
    244     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    245             TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
    246     Val = AndResult;
    247   }
    248   // FALLTHROUGH, handling i1 as i8.
    249   case MVT::i8:  Opc = X86::MOV8mr;  break;
    250   case MVT::i16: Opc = X86::MOV16mr; break;
    251   case MVT::i32: Opc = X86::MOV32mr; break;
    252   case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
    253   case MVT::f32:
    254     Opc = X86ScalarSSEf32 ?
    255           (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
    256     break;
    257   case MVT::f64:
    258     Opc = X86ScalarSSEf64 ?
    259           (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
    260     break;
    261   }
    262 
    263   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
    264                          DL, TII.get(Opc)), AM).addReg(Val);
    265   return true;
    266 }
    267 
    268 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
    269                                    const X86AddressMode &AM) {
    270   // Handle 'null' like i32/i64 0.
    271   if (isa<ConstantPointerNull>(Val))
    272     Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
    273 
    274   // If this is a store of a simple constant, fold the constant into the store.
    275   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
    276     unsigned Opc = 0;
    277     bool Signed = true;
    278     switch (VT.getSimpleVT().SimpleTy) {
    279     default: break;
    280     case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
    281     case MVT::i8:  Opc = X86::MOV8mi;  break;
    282     case MVT::i16: Opc = X86::MOV16mi; break;
    283     case MVT::i32: Opc = X86::MOV32mi; break;
    284     case MVT::i64:
    285       // Must be a 32-bit sign extended value.
    286       if ((int)CI->getSExtValue() == CI->getSExtValue())
    287         Opc = X86::MOV64mi32;
    288       break;
    289     }
    290 
    291     if (Opc) {
    292       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
    293                              DL, TII.get(Opc)), AM)
    294                              .addImm(Signed ? (uint64_t) CI->getSExtValue() :
    295                                               CI->getZExtValue());
    296       return true;
    297     }
    298   }
    299 
    300   unsigned ValReg = getRegForValue(Val);
    301   if (ValReg == 0)
    302     return false;
    303 
    304   return X86FastEmitStore(VT, ValReg, AM);
    305 }
    306 
    307 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
    308 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
    309 /// ISD::SIGN_EXTEND).
    310 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
    311                                     unsigned Src, EVT SrcVT,
    312                                     unsigned &ResultReg) {
    313   unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
    314                            Src, /*TODO: Kill=*/false);
    315 
    316   if (RR != 0) {
    317     ResultReg = RR;
    318     return true;
    319   } else
    320     return false;
    321 }
    322 
    323 /// X86SelectAddress - Attempt to fill in an address from the given value.
    324 ///
    325 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
    326   const User *U = NULL;
    327   unsigned Opcode = Instruction::UserOp1;
    328   if (const Instruction *I = dyn_cast<Instruction>(V)) {
    329     // Don't walk into other basic blocks; it's possible we haven't
    330     // visited them yet, so the instructions may not yet be assigned
    331     // virtual registers.
    332     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
    333         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
    334       Opcode = I->getOpcode();
    335       U = I;
    336     }
    337   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
    338     Opcode = C->getOpcode();
    339     U = C;
    340   }
    341 
    342   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
    343     if (Ty->getAddressSpace() > 255)
    344       // Fast instruction selection doesn't support the special
    345       // address spaces.
    346       return false;
    347 
    348   switch (Opcode) {
    349   default: break;
    350   case Instruction::BitCast:
    351     // Look past bitcasts.
    352     return X86SelectAddress(U->getOperand(0), AM);
    353 
    354   case Instruction::IntToPtr:
    355     // Look past no-op inttoptrs.
    356     if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    357       return X86SelectAddress(U->getOperand(0), AM);
    358     break;
    359 
    360   case Instruction::PtrToInt:
    361     // Look past no-op ptrtoints.
    362     if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
    363       return X86SelectAddress(U->getOperand(0), AM);
    364     break;
    365 
    366   case Instruction::Alloca: {
    367     // Do static allocas.
    368     const AllocaInst *A = cast<AllocaInst>(V);
    369     DenseMap<const AllocaInst*, int>::iterator SI =
    370       FuncInfo.StaticAllocaMap.find(A);
    371     if (SI != FuncInfo.StaticAllocaMap.end()) {
    372       AM.BaseType = X86AddressMode::FrameIndexBase;
    373       AM.Base.FrameIndex = SI->second;
    374       return true;
    375     }
    376     break;
    377   }
    378 
    379   case Instruction::Add: {
    380     // Adds of constants are common and easy enough.
    381     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
    382       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
    383       // They have to fit in the 32-bit signed displacement field though.
    384       if (isInt<32>(Disp)) {
    385         AM.Disp = (uint32_t)Disp;
    386         return X86SelectAddress(U->getOperand(0), AM);
    387       }
    388     }
    389     break;
    390   }
    391 
    392   case Instruction::GetElementPtr: {
    393     X86AddressMode SavedAM = AM;
    394 
    395     // Pattern-match simple GEPs.
    396     uint64_t Disp = (int32_t)AM.Disp;
    397     unsigned IndexReg = AM.IndexReg;
    398     unsigned Scale = AM.Scale;
    399     gep_type_iterator GTI = gep_type_begin(U);
    400     // Iterate through the indices, folding what we can. Constants can be
    401     // folded, and one dynamic index can be handled, if the scale is supported.
    402     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
    403          i != e; ++i, ++GTI) {
    404       const Value *Op = *i;
    405       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    406         const StructLayout *SL = TD.getStructLayout(STy);
    407         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
    408         continue;
    409       }
    410 
    411       // A array/variable index is always of the form i*S where S is the
    412       // constant scale size.  See if we can push the scale into immediates.
    413       uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
    414       for (;;) {
    415         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    416           // Constant-offset addressing.
    417           Disp += CI->getSExtValue() * S;
    418           break;
    419         }
    420         if (isa<AddOperator>(Op) &&
    421             (!isa<Instruction>(Op) ||
    422              FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
    423                == FuncInfo.MBB) &&
    424             isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
    425           // An add (in the same block) with a constant operand. Fold the
    426           // constant.
    427           ConstantInt *CI =
    428             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
    429           Disp += CI->getSExtValue() * S;
    430           // Iterate on the other operand.
    431           Op = cast<AddOperator>(Op)->getOperand(0);
    432           continue;
    433         }
    434         if (IndexReg == 0 &&
    435             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
    436             (S == 1 || S == 2 || S == 4 || S == 8)) {
    437           // Scaled-index addressing.
    438           Scale = S;
    439           IndexReg = getRegForGEPIndex(Op).first;
    440           if (IndexReg == 0)
    441             return false;
    442           break;
    443         }
    444         // Unsupported.
    445         goto unsupported_gep;
    446       }
    447     }
    448     // Check for displacement overflow.
    449     if (!isInt<32>(Disp))
    450       break;
    451     // Ok, the GEP indices were covered by constant-offset and scaled-index
    452     // addressing. Update the address state and move on to examining the base.
    453     AM.IndexReg = IndexReg;
    454     AM.Scale = Scale;
    455     AM.Disp = (uint32_t)Disp;
    456     if (X86SelectAddress(U->getOperand(0), AM))
    457       return true;
    458 
    459     // If we couldn't merge the gep value into this addr mode, revert back to
    460     // our address and just match the value instead of completely failing.
    461     AM = SavedAM;
    462     break;
    463   unsupported_gep:
    464     // Ok, the GEP indices weren't all covered.
    465     break;
    466   }
    467   }
    468 
    469   // Handle constant address.
    470   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    471     // Can't handle alternate code models yet.
    472     if (TM.getCodeModel() != CodeModel::Small)
    473       return false;
    474 
    475     // Can't handle TLS yet.
    476     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
    477       if (GVar->isThreadLocal())
    478         return false;
    479 
    480     // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how
    481     // it works...).
    482     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
    483       if (const GlobalVariable *GVar =
    484             dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false)))
    485         if (GVar->isThreadLocal())
    486           return false;
    487 
    488     // RIP-relative addresses can't have additional register operands, so if
    489     // we've already folded stuff into the addressing mode, just force the
    490     // global value into its own register, which we can use as the basereg.
    491     if (!Subtarget->isPICStyleRIPRel() ||
    492         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
    493       // Okay, we've committed to selecting this global. Set up the address.
    494       AM.GV = GV;
    495 
    496       // Allow the subtarget to classify the global.
    497       unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
    498 
    499       // If this reference is relative to the pic base, set it now.
    500       if (isGlobalRelativeToPICBase(GVFlags)) {
    501         // FIXME: How do we know Base.Reg is free??
    502         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
    503       }
    504 
    505       // Unless the ABI requires an extra load, return a direct reference to
    506       // the global.
    507       if (!isGlobalStubReference(GVFlags)) {
    508         if (Subtarget->isPICStyleRIPRel()) {
    509           // Use rip-relative addressing if we can.  Above we verified that the
    510           // base and index registers are unused.
    511           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
    512           AM.Base.Reg = X86::RIP;
    513         }
    514         AM.GVOpFlags = GVFlags;
    515         return true;
    516       }
    517 
    518       // Ok, we need to do a load from a stub.  If we've already loaded from
    519       // this stub, reuse the loaded pointer, otherwise emit the load now.
    520       DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
    521       unsigned LoadReg;
    522       if (I != LocalValueMap.end() && I->second != 0) {
    523         LoadReg = I->second;
    524       } else {
    525         // Issue load from stub.
    526         unsigned Opc = 0;
    527         const TargetRegisterClass *RC = NULL;
    528         X86AddressMode StubAM;
    529         StubAM.Base.Reg = AM.Base.Reg;
    530         StubAM.GV = GV;
    531         StubAM.GVOpFlags = GVFlags;
    532 
    533         // Prepare for inserting code in the local-value area.
    534         SavePoint SaveInsertPt = enterLocalValueArea();
    535 
    536         if (TLI.getPointerTy() == MVT::i64) {
    537           Opc = X86::MOV64rm;
    538           RC  = X86::GR64RegisterClass;
    539 
    540           if (Subtarget->isPICStyleRIPRel())
    541             StubAM.Base.Reg = X86::RIP;
    542         } else {
    543           Opc = X86::MOV32rm;
    544           RC  = X86::GR32RegisterClass;
    545         }
    546 
    547         LoadReg = createResultReg(RC);
    548         MachineInstrBuilder LoadMI =
    549           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
    550         addFullAddress(LoadMI, StubAM);
    551 
    552         // Ok, back to normal mode.
    553         leaveLocalValueArea(SaveInsertPt);
    554 
    555         // Prevent loading GV stub multiple times in same MBB.
    556         LocalValueMap[V] = LoadReg;
    557       }
    558 
    559       // Now construct the final address. Note that the Disp, Scale,
    560       // and Index values may already be set here.
    561       AM.Base.Reg = LoadReg;
    562       AM.GV = 0;
    563       return true;
    564     }
    565   }
    566 
    567   // If all else fails, try to materialize the value in a register.
    568   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
    569     if (AM.Base.Reg == 0) {
    570       AM.Base.Reg = getRegForValue(V);
    571       return AM.Base.Reg != 0;
    572     }
    573     if (AM.IndexReg == 0) {
    574       assert(AM.Scale == 1 && "Scale with no index!");
    575       AM.IndexReg = getRegForValue(V);
    576       return AM.IndexReg != 0;
    577     }
    578   }
    579 
    580   return false;
    581 }
    582 
    583 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
    584 ///
    585 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
    586   const User *U = NULL;
    587   unsigned Opcode = Instruction::UserOp1;
    588   if (const Instruction *I = dyn_cast<Instruction>(V)) {
    589     Opcode = I->getOpcode();
    590     U = I;
    591   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
    592     Opcode = C->getOpcode();
    593     U = C;
    594   }
    595 
    596   switch (Opcode) {
    597   default: break;
    598   case Instruction::BitCast:
    599     // Look past bitcasts.
    600     return X86SelectCallAddress(U->getOperand(0), AM);
    601 
    602   case Instruction::IntToPtr:
    603     // Look past no-op inttoptrs.
    604     if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    605       return X86SelectCallAddress(U->getOperand(0), AM);
    606     break;
    607 
    608   case Instruction::PtrToInt:
    609     // Look past no-op ptrtoints.
    610     if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
    611       return X86SelectCallAddress(U->getOperand(0), AM);
    612     break;
    613   }
    614 
    615   // Handle constant address.
    616   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    617     // Can't handle alternate code models yet.
    618     if (TM.getCodeModel() != CodeModel::Small)
    619       return false;
    620 
    621     // RIP-relative addresses can't have additional register operands.
    622     if (Subtarget->isPICStyleRIPRel() &&
    623         (AM.Base.Reg != 0 || AM.IndexReg != 0))
    624       return false;
    625 
    626     // Can't handle DLLImport.
    627     if (GV->hasDLLImportLinkage())
    628       return false;
    629 
    630     // Can't handle TLS.
    631     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
    632       if (GVar->isThreadLocal())
    633         return false;
    634 
    635     // Okay, we've committed to selecting this global. Set up the basic address.
    636     AM.GV = GV;
    637 
    638     // No ABI requires an extra load for anything other than DLLImport, which
    639     // we rejected above. Return a direct reference to the global.
    640     if (Subtarget->isPICStyleRIPRel()) {
    641       // Use rip-relative addressing if we can.  Above we verified that the
    642       // base and index registers are unused.
    643       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
    644       AM.Base.Reg = X86::RIP;
    645     } else if (Subtarget->isPICStyleStubPIC()) {
    646       AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
    647     } else if (Subtarget->isPICStyleGOT()) {
    648       AM.GVOpFlags = X86II::MO_GOTOFF;
    649     }
    650 
    651     return true;
    652   }
    653 
    654   // If all else fails, try to materialize the value in a register.
    655   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
    656     if (AM.Base.Reg == 0) {
    657       AM.Base.Reg = getRegForValue(V);
    658       return AM.Base.Reg != 0;
    659     }
    660     if (AM.IndexReg == 0) {
    661       assert(AM.Scale == 1 && "Scale with no index!");
    662       AM.IndexReg = getRegForValue(V);
    663       return AM.IndexReg != 0;
    664     }
    665   }
    666 
    667   return false;
    668 }
    669 
    670 
    671 /// X86SelectStore - Select and emit code to implement store instructions.
    672 bool X86FastISel::X86SelectStore(const Instruction *I) {
    673   // Atomic stores need special handling.
    674   if (cast<StoreInst>(I)->isAtomic())
    675     return false;
    676 
    677   MVT VT;
    678   if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
    679     return false;
    680 
    681   X86AddressMode AM;
    682   if (!X86SelectAddress(I->getOperand(1), AM))
    683     return false;
    684 
    685   return X86FastEmitStore(VT, I->getOperand(0), AM);
    686 }
    687 
    688 /// X86SelectRet - Select and emit code to implement ret instructions.
    689 bool X86FastISel::X86SelectRet(const Instruction *I) {
    690   const ReturnInst *Ret = cast<ReturnInst>(I);
    691   const Function &F = *I->getParent()->getParent();
    692 
    693   if (!FuncInfo.CanLowerReturn)
    694     return false;
    695 
    696   CallingConv::ID CC = F.getCallingConv();
    697   if (CC != CallingConv::C &&
    698       CC != CallingConv::Fast &&
    699       CC != CallingConv::X86_FastCall)
    700     return false;
    701 
    702   if (Subtarget->isTargetWin64())
    703     return false;
    704 
    705   // Don't handle popping bytes on return for now.
    706   if (FuncInfo.MF->getInfo<X86MachineFunctionInfo>()
    707         ->getBytesToPopOnReturn() != 0)
    708     return 0;
    709 
    710   // fastcc with -tailcallopt is intended to provide a guaranteed
    711   // tail call optimization. Fastisel doesn't know how to do that.
    712   if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
    713     return false;
    714 
    715   // Let SDISel handle vararg functions.
    716   if (F.isVarArg())
    717     return false;
    718 
    719   if (Ret->getNumOperands() > 0) {
    720     SmallVector<ISD::OutputArg, 4> Outs;
    721     GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
    722                   Outs, TLI);
    723 
    724     // Analyze operands of the call, assigning locations to each operand.
    725     SmallVector<CCValAssign, 16> ValLocs;
    726     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
    727 		   I->getContext());
    728     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
    729 
    730     const Value *RV = Ret->getOperand(0);
    731     unsigned Reg = getRegForValue(RV);
    732     if (Reg == 0)
    733       return false;
    734 
    735     // Only handle a single return value for now.
    736     if (ValLocs.size() != 1)
    737       return false;
    738 
    739     CCValAssign &VA = ValLocs[0];
    740 
    741     // Don't bother handling odd stuff for now.
    742     if (VA.getLocInfo() != CCValAssign::Full)
    743       return false;
    744     // Only handle register returns for now.
    745     if (!VA.isRegLoc())
    746       return false;
    747 
    748     // The calling-convention tables for x87 returns don't tell
    749     // the whole story.
    750     if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
    751       return false;
    752 
    753     unsigned SrcReg = Reg + VA.getValNo();
    754     EVT SrcVT = TLI.getValueType(RV->getType());
    755     EVT DstVT = VA.getValVT();
    756     // Special handling for extended integers.
    757     if (SrcVT != DstVT) {
    758       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
    759         return false;
    760 
    761       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
    762         return false;
    763 
    764       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
    765 
    766       if (SrcVT == MVT::i1) {
    767         if (Outs[0].Flags.isSExt())
    768           return false;
    769         SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
    770         SrcVT = MVT::i8;
    771       }
    772       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
    773                                              ISD::SIGN_EXTEND;
    774       SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
    775                           SrcReg, /*TODO: Kill=*/false);
    776     }
    777 
    778     // Make the copy.
    779     unsigned DstReg = VA.getLocReg();
    780     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
    781     // Avoid a cross-class copy. This is very unlikely.
    782     if (!SrcRC->contains(DstReg))
    783       return false;
    784     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
    785             DstReg).addReg(SrcReg);
    786 
    787     // Mark the register as live out of the function.
    788     MRI.addLiveOut(VA.getLocReg());
    789   }
    790 
    791   // Now emit the RET.
    792   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET));
    793   return true;
    794 }
    795 
    796 /// X86SelectLoad - Select and emit code to implement load instructions.
    797 ///
    798 bool X86FastISel::X86SelectLoad(const Instruction *I)  {
    799   // Atomic loads need special handling.
    800   if (cast<LoadInst>(I)->isAtomic())
    801     return false;
    802 
    803   MVT VT;
    804   if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
    805     return false;
    806 
    807   X86AddressMode AM;
    808   if (!X86SelectAddress(I->getOperand(0), AM))
    809     return false;
    810 
    811   unsigned ResultReg = 0;
    812   if (X86FastEmitLoad(VT, AM, ResultReg)) {
    813     UpdateValueMap(I, ResultReg);
    814     return true;
    815   }
    816   return false;
    817 }
    818 
    819 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
    820   bool HasAVX = Subtarget->hasAVX();
    821   bool X86ScalarSSEf32 = HasAVX || Subtarget->hasSSE1();
    822   bool X86ScalarSSEf64 = HasAVX || Subtarget->hasSSE2();
    823 
    824   switch (VT.getSimpleVT().SimpleTy) {
    825   default:       return 0;
    826   case MVT::i8:  return X86::CMP8rr;
    827   case MVT::i16: return X86::CMP16rr;
    828   case MVT::i32: return X86::CMP32rr;
    829   case MVT::i64: return X86::CMP64rr;
    830   case MVT::f32:
    831     return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
    832   case MVT::f64:
    833     return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
    834   }
    835 }
    836 
    837 /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
    838 /// of the comparison, return an opcode that works for the compare (e.g.
    839 /// CMP32ri) otherwise return 0.
    840 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
    841   switch (VT.getSimpleVT().SimpleTy) {
    842   // Otherwise, we can't fold the immediate into this comparison.
    843   default: return 0;
    844   case MVT::i8: return X86::CMP8ri;
    845   case MVT::i16: return X86::CMP16ri;
    846   case MVT::i32: return X86::CMP32ri;
    847   case MVT::i64:
    848     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
    849     // field.
    850     if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
    851       return X86::CMP64ri32;
    852     return 0;
    853   }
    854 }
    855 
    856 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
    857                                      EVT VT) {
    858   unsigned Op0Reg = getRegForValue(Op0);
    859   if (Op0Reg == 0) return false;
    860 
    861   // Handle 'null' like i32/i64 0.
    862   if (isa<ConstantPointerNull>(Op1))
    863     Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
    864 
    865   // We have two options: compare with register or immediate.  If the RHS of
    866   // the compare is an immediate that we can fold into this compare, use
    867   // CMPri, otherwise use CMPrr.
    868   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    869     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
    870       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc))
    871         .addReg(Op0Reg)
    872         .addImm(Op1C->getSExtValue());
    873       return true;
    874     }
    875   }
    876 
    877   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
    878   if (CompareOpc == 0) return false;
    879 
    880   unsigned Op1Reg = getRegForValue(Op1);
    881   if (Op1Reg == 0) return false;
    882   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
    883     .addReg(Op0Reg)
    884     .addReg(Op1Reg);
    885 
    886   return true;
    887 }
    888 
    889 bool X86FastISel::X86SelectCmp(const Instruction *I) {
    890   const CmpInst *CI = cast<CmpInst>(I);
    891 
    892   MVT VT;
    893   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
    894     return false;
    895 
    896   unsigned ResultReg = createResultReg(&X86::GR8RegClass);
    897   unsigned SetCCOpc;
    898   bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
    899   switch (CI->getPredicate()) {
    900   case CmpInst::FCMP_OEQ: {
    901     if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
    902       return false;
    903 
    904     unsigned EReg = createResultReg(&X86::GR8RegClass);
    905     unsigned NPReg = createResultReg(&X86::GR8RegClass);
    906     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
    907     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    908             TII.get(X86::SETNPr), NPReg);
    909     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    910             TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
    911     UpdateValueMap(I, ResultReg);
    912     return true;
    913   }
    914   case CmpInst::FCMP_UNE: {
    915     if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
    916       return false;
    917 
    918     unsigned NEReg = createResultReg(&X86::GR8RegClass);
    919     unsigned PReg = createResultReg(&X86::GR8RegClass);
    920     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNEr), NEReg);
    921     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETPr), PReg);
    922     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::OR8rr),ResultReg)
    923       .addReg(PReg).addReg(NEReg);
    924     UpdateValueMap(I, ResultReg);
    925     return true;
    926   }
    927   case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
    928   case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
    929   case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
    930   case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
    931   case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
    932   case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
    933   case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
    934   case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
    935   case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
    936   case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
    937   case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
    938   case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
    939 
    940   case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
    941   case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
    942   case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
    943   case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
    944   case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
    945   case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
    946   case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
    947   case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
    948   case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
    949   case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
    950   default:
    951     return false;
    952   }
    953 
    954   const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
    955   if (SwapArgs)
    956     std::swap(Op0, Op1);
    957 
    958   // Emit a compare of Op0/Op1.
    959   if (!X86FastEmitCompare(Op0, Op1, VT))
    960     return false;
    961 
    962   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
    963   UpdateValueMap(I, ResultReg);
    964   return true;
    965 }
    966 
    967 bool X86FastISel::X86SelectZExt(const Instruction *I) {
    968   // Handle zero-extension from i1 to i8, which is common.
    969   if (!I->getOperand(0)->getType()->isIntegerTy(1))
    970     return false;
    971 
    972   EVT DstVT = TLI.getValueType(I->getType());
    973   if (!TLI.isTypeLegal(DstVT))
    974     return false;
    975 
    976   unsigned ResultReg = getRegForValue(I->getOperand(0));
    977   if (ResultReg == 0)
    978     return false;
    979 
    980   // Set the high bits to zero.
    981   ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
    982   if (ResultReg == 0)
    983     return false;
    984 
    985   if (DstVT != MVT::i8) {
    986     ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
    987                            ResultReg, /*Kill=*/true);
    988     if (ResultReg == 0)
    989       return false;
    990   }
    991 
    992   UpdateValueMap(I, ResultReg);
    993   return true;
    994 }
    995 
    996 
    997 bool X86FastISel::X86SelectBranch(const Instruction *I) {
    998   // Unconditional branches are selected by tablegen-generated code.
    999   // Handle a conditional branch.
   1000   const BranchInst *BI = cast<BranchInst>(I);
   1001   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
   1002   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
   1003 
   1004   // Fold the common case of a conditional branch with a comparison
   1005   // in the same block (values defined on other blocks may not have
   1006   // initialized registers).
   1007   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
   1008     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
   1009       EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
   1010 
   1011       // Try to take advantage of fallthrough opportunities.
   1012       CmpInst::Predicate Predicate = CI->getPredicate();
   1013       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
   1014         std::swap(TrueMBB, FalseMBB);
   1015         Predicate = CmpInst::getInversePredicate(Predicate);
   1016       }
   1017 
   1018       bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
   1019       unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
   1020 
   1021       switch (Predicate) {
   1022       case CmpInst::FCMP_OEQ:
   1023         std::swap(TrueMBB, FalseMBB);
   1024         Predicate = CmpInst::FCMP_UNE;
   1025         // FALL THROUGH
   1026       case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
   1027       case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
   1028       case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
   1029       case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
   1030       case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
   1031       case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
   1032       case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
   1033       case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
   1034       case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
   1035       case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
   1036       case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
   1037       case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
   1038       case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
   1039 
   1040       case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
   1041       case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
   1042       case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
   1043       case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
   1044       case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
   1045       case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
   1046       case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
   1047       case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
   1048       case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
   1049       case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
   1050       default:
   1051         return false;
   1052       }
   1053 
   1054       const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
   1055       if (SwapArgs)
   1056         std::swap(Op0, Op1);
   1057 
   1058       // Emit a compare of the LHS and RHS, setting the flags.
   1059       if (!X86FastEmitCompare(Op0, Op1, VT))
   1060         return false;
   1061 
   1062       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
   1063         .addMBB(TrueMBB);
   1064 
   1065       if (Predicate == CmpInst::FCMP_UNE) {
   1066         // X86 requires a second branch to handle UNE (and OEQ,
   1067         // which is mapped to UNE above).
   1068         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4))
   1069           .addMBB(TrueMBB);
   1070       }
   1071 
   1072       FastEmitBranch(FalseMBB, DL);
   1073       FuncInfo.MBB->addSuccessor(TrueMBB);
   1074       return true;
   1075     }
   1076   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
   1077     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
   1078     // typically happen for _Bool and C++ bools.
   1079     MVT SourceVT;
   1080     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
   1081         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
   1082       unsigned TestOpc = 0;
   1083       switch (SourceVT.SimpleTy) {
   1084       default: break;
   1085       case MVT::i8:  TestOpc = X86::TEST8ri; break;
   1086       case MVT::i16: TestOpc = X86::TEST16ri; break;
   1087       case MVT::i32: TestOpc = X86::TEST32ri; break;
   1088       case MVT::i64: TestOpc = X86::TEST64ri32; break;
   1089       }
   1090       if (TestOpc) {
   1091         unsigned OpReg = getRegForValue(TI->getOperand(0));
   1092         if (OpReg == 0) return false;
   1093         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc))
   1094           .addReg(OpReg).addImm(1);
   1095 
   1096         unsigned JmpOpc = X86::JNE_4;
   1097         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
   1098           std::swap(TrueMBB, FalseMBB);
   1099           JmpOpc = X86::JE_4;
   1100         }
   1101 
   1102         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc))
   1103           .addMBB(TrueMBB);
   1104         FastEmitBranch(FalseMBB, DL);
   1105         FuncInfo.MBB->addSuccessor(TrueMBB);
   1106         return true;
   1107       }
   1108     }
   1109   }
   1110 
   1111   // Otherwise do a clumsy setcc and re-test it.
   1112   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
   1113   // in an explicit cast, so make sure to handle that correctly.
   1114   unsigned OpReg = getRegForValue(BI->getCondition());
   1115   if (OpReg == 0) return false;
   1116 
   1117   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8ri))
   1118     .addReg(OpReg).addImm(1);
   1119   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
   1120     .addMBB(TrueMBB);
   1121   FastEmitBranch(FalseMBB, DL);
   1122   FuncInfo.MBB->addSuccessor(TrueMBB);
   1123   return true;
   1124 }
   1125 
   1126 bool X86FastISel::X86SelectShift(const Instruction *I) {
   1127   unsigned CReg = 0, OpReg = 0;
   1128   const TargetRegisterClass *RC = NULL;
   1129   if (I->getType()->isIntegerTy(8)) {
   1130     CReg = X86::CL;
   1131     RC = &X86::GR8RegClass;
   1132     switch (I->getOpcode()) {
   1133     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
   1134     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
   1135     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
   1136     default: return false;
   1137     }
   1138   } else if (I->getType()->isIntegerTy(16)) {
   1139     CReg = X86::CX;
   1140     RC = &X86::GR16RegClass;
   1141     switch (I->getOpcode()) {
   1142     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
   1143     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
   1144     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
   1145     default: return false;
   1146     }
   1147   } else if (I->getType()->isIntegerTy(32)) {
   1148     CReg = X86::ECX;
   1149     RC = &X86::GR32RegClass;
   1150     switch (I->getOpcode()) {
   1151     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
   1152     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
   1153     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
   1154     default: return false;
   1155     }
   1156   } else if (I->getType()->isIntegerTy(64)) {
   1157     CReg = X86::RCX;
   1158     RC = &X86::GR64RegClass;
   1159     switch (I->getOpcode()) {
   1160     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
   1161     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
   1162     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
   1163     default: return false;
   1164     }
   1165   } else {
   1166     return false;
   1167   }
   1168 
   1169   MVT VT;
   1170   if (!isTypeLegal(I->getType(), VT))
   1171     return false;
   1172 
   1173   unsigned Op0Reg = getRegForValue(I->getOperand(0));
   1174   if (Op0Reg == 0) return false;
   1175 
   1176   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1177   if (Op1Reg == 0) return false;
   1178   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1179           CReg).addReg(Op1Reg);
   1180 
   1181   // The shift instruction uses X86::CL. If we defined a super-register
   1182   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
   1183   if (CReg != X86::CL)
   1184     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1185             TII.get(TargetOpcode::KILL), X86::CL)
   1186       .addReg(CReg, RegState::Kill);
   1187 
   1188   unsigned ResultReg = createResultReg(RC);
   1189   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg)
   1190     .addReg(Op0Reg);
   1191   UpdateValueMap(I, ResultReg);
   1192   return true;
   1193 }
   1194 
   1195 bool X86FastISel::X86SelectSelect(const Instruction *I) {
   1196   MVT VT;
   1197   if (!isTypeLegal(I->getType(), VT))
   1198     return false;
   1199 
   1200   // We only use cmov here, if we don't have a cmov instruction bail.
   1201   if (!Subtarget->hasCMov()) return false;
   1202 
   1203   unsigned Opc = 0;
   1204   const TargetRegisterClass *RC = NULL;
   1205   if (VT == MVT::i16) {
   1206     Opc = X86::CMOVE16rr;
   1207     RC = &X86::GR16RegClass;
   1208   } else if (VT == MVT::i32) {
   1209     Opc = X86::CMOVE32rr;
   1210     RC = &X86::GR32RegClass;
   1211   } else if (VT == MVT::i64) {
   1212     Opc = X86::CMOVE64rr;
   1213     RC = &X86::GR64RegClass;
   1214   } else {
   1215     return false;
   1216   }
   1217 
   1218   unsigned Op0Reg = getRegForValue(I->getOperand(0));
   1219   if (Op0Reg == 0) return false;
   1220   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1221   if (Op1Reg == 0) return false;
   1222   unsigned Op2Reg = getRegForValue(I->getOperand(2));
   1223   if (Op2Reg == 0) return false;
   1224 
   1225   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
   1226     .addReg(Op0Reg).addReg(Op0Reg);
   1227   unsigned ResultReg = createResultReg(RC);
   1228   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
   1229     .addReg(Op1Reg).addReg(Op2Reg);
   1230   UpdateValueMap(I, ResultReg);
   1231   return true;
   1232 }
   1233 
   1234 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
   1235   // fpext from float to double.
   1236   if (X86ScalarSSEf64 &&
   1237       I->getType()->isDoubleTy()) {
   1238     const Value *V = I->getOperand(0);
   1239     if (V->getType()->isFloatTy()) {
   1240       unsigned OpReg = getRegForValue(V);
   1241       if (OpReg == 0) return false;
   1242       unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
   1243       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1244               TII.get(X86::CVTSS2SDrr), ResultReg)
   1245         .addReg(OpReg);
   1246       UpdateValueMap(I, ResultReg);
   1247       return true;
   1248     }
   1249   }
   1250 
   1251   return false;
   1252 }
   1253 
   1254 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
   1255   if (X86ScalarSSEf64) {
   1256     if (I->getType()->isFloatTy()) {
   1257       const Value *V = I->getOperand(0);
   1258       if (V->getType()->isDoubleTy()) {
   1259         unsigned OpReg = getRegForValue(V);
   1260         if (OpReg == 0) return false;
   1261         unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
   1262         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1263                 TII.get(X86::CVTSD2SSrr), ResultReg)
   1264           .addReg(OpReg);
   1265         UpdateValueMap(I, ResultReg);
   1266         return true;
   1267       }
   1268     }
   1269   }
   1270 
   1271   return false;
   1272 }
   1273 
   1274 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
   1275   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
   1276   EVT DstVT = TLI.getValueType(I->getType());
   1277 
   1278   // This code only handles truncation to byte.
   1279   if (DstVT != MVT::i8 && DstVT != MVT::i1)
   1280     return false;
   1281   if (!TLI.isTypeLegal(SrcVT))
   1282     return false;
   1283 
   1284   unsigned InputReg = getRegForValue(I->getOperand(0));
   1285   if (!InputReg)
   1286     // Unhandled operand.  Halt "fast" selection and bail.
   1287     return false;
   1288 
   1289   if (SrcVT == MVT::i8) {
   1290     // Truncate from i8 to i1; no code needed.
   1291     UpdateValueMap(I, InputReg);
   1292     return true;
   1293   }
   1294 
   1295   if (!Subtarget->is64Bit()) {
   1296     // If we're on x86-32; we can't extract an i8 from a general register.
   1297     // First issue a copy to GR16_ABCD or GR32_ABCD.
   1298     const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
   1299       ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
   1300     unsigned CopyReg = createResultReg(CopyRC);
   1301     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1302             CopyReg).addReg(InputReg);
   1303     InputReg = CopyReg;
   1304   }
   1305 
   1306   // Issue an extract_subreg.
   1307   unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
   1308                                                   InputReg, /*Kill=*/true,
   1309                                                   X86::sub_8bit);
   1310   if (!ResultReg)
   1311     return false;
   1312 
   1313   UpdateValueMap(I, ResultReg);
   1314   return true;
   1315 }
   1316 
   1317 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
   1318   return Len <= (Subtarget->is64Bit() ? 32 : 16);
   1319 }
   1320 
   1321 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
   1322                                      X86AddressMode SrcAM, uint64_t Len) {
   1323 
   1324   // Make sure we don't bloat code by inlining very large memcpy's.
   1325   if (!IsMemcpySmall(Len))
   1326     return false;
   1327 
   1328   bool i64Legal = Subtarget->is64Bit();
   1329 
   1330   // We don't care about alignment here since we just emit integer accesses.
   1331   while (Len) {
   1332     MVT VT;
   1333     if (Len >= 8 && i64Legal)
   1334       VT = MVT::i64;
   1335     else if (Len >= 4)
   1336       VT = MVT::i32;
   1337     else if (Len >= 2)
   1338       VT = MVT::i16;
   1339     else {
   1340       assert(Len == 1);
   1341       VT = MVT::i8;
   1342     }
   1343 
   1344     unsigned Reg;
   1345     bool RV = X86FastEmitLoad(VT, SrcAM, Reg);
   1346     RV &= X86FastEmitStore(VT, Reg, DestAM);
   1347     assert(RV && "Failed to emit load or store??");
   1348 
   1349     unsigned Size = VT.getSizeInBits()/8;
   1350     Len -= Size;
   1351     DestAM.Disp += Size;
   1352     SrcAM.Disp += Size;
   1353   }
   1354 
   1355   return true;
   1356 }
   1357 
   1358 bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
   1359   // FIXME: Handle more intrinsics.
   1360   switch (I.getIntrinsicID()) {
   1361   default: return false;
   1362   case Intrinsic::memcpy: {
   1363     const MemCpyInst &MCI = cast<MemCpyInst>(I);
   1364     // Don't handle volatile or variable length memcpys.
   1365     if (MCI.isVolatile())
   1366       return false;
   1367 
   1368     if (isa<ConstantInt>(MCI.getLength())) {
   1369       // Small memcpy's are common enough that we want to do them
   1370       // without a call if possible.
   1371       uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
   1372       if (IsMemcpySmall(Len)) {
   1373         X86AddressMode DestAM, SrcAM;
   1374         if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
   1375             !X86SelectAddress(MCI.getRawSource(), SrcAM))
   1376           return false;
   1377         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
   1378         return true;
   1379       }
   1380     }
   1381 
   1382     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
   1383     if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth))
   1384       return false;
   1385 
   1386     if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255)
   1387       return false;
   1388 
   1389     return DoSelectCall(&I, "memcpy");
   1390   }
   1391   case Intrinsic::memset: {
   1392     const MemSetInst &MSI = cast<MemSetInst>(I);
   1393 
   1394     if (MSI.isVolatile())
   1395       return false;
   1396 
   1397     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
   1398     if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth))
   1399       return false;
   1400 
   1401     if (MSI.getDestAddressSpace() > 255)
   1402       return false;
   1403 
   1404     return DoSelectCall(&I, "memset");
   1405   }
   1406   case Intrinsic::stackprotector: {
   1407     // Emit code inline code to store the stack guard onto the stack.
   1408     EVT PtrTy = TLI.getPointerTy();
   1409 
   1410     const Value *Op1 = I.getArgOperand(0); // The guard's value.
   1411     const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
   1412 
   1413     // Grab the frame index.
   1414     X86AddressMode AM;
   1415     if (!X86SelectAddress(Slot, AM)) return false;
   1416     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
   1417     return true;
   1418   }
   1419   case Intrinsic::dbg_declare: {
   1420     const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
   1421     X86AddressMode AM;
   1422     assert(DI->getAddress() && "Null address should be checked earlier!");
   1423     if (!X86SelectAddress(DI->getAddress(), AM))
   1424       return false;
   1425     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
   1426     // FIXME may need to add RegState::Debug to any registers produced,
   1427     // although ESP/EBP should be the only ones at the moment.
   1428     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM).
   1429       addImm(0).addMetadata(DI->getVariable());
   1430     return true;
   1431   }
   1432   case Intrinsic::trap: {
   1433     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP));
   1434     return true;
   1435   }
   1436   case Intrinsic::sadd_with_overflow:
   1437   case Intrinsic::uadd_with_overflow: {
   1438     // FIXME: Should fold immediates.
   1439 
   1440     // Replace "add with overflow" intrinsics with an "add" instruction followed
   1441     // by a seto/setc instruction.
   1442     const Function *Callee = I.getCalledFunction();
   1443     Type *RetTy =
   1444       cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
   1445 
   1446     MVT VT;
   1447     if (!isTypeLegal(RetTy, VT))
   1448       return false;
   1449 
   1450     const Value *Op1 = I.getArgOperand(0);
   1451     const Value *Op2 = I.getArgOperand(1);
   1452     unsigned Reg1 = getRegForValue(Op1);
   1453     unsigned Reg2 = getRegForValue(Op2);
   1454 
   1455     if (Reg1 == 0 || Reg2 == 0)
   1456       // FIXME: Handle values *not* in registers.
   1457       return false;
   1458 
   1459     unsigned OpC = 0;
   1460     if (VT == MVT::i32)
   1461       OpC = X86::ADD32rr;
   1462     else if (VT == MVT::i64)
   1463       OpC = X86::ADD64rr;
   1464     else
   1465       return false;
   1466 
   1467     // The call to CreateRegs builds two sequential registers, to store the
   1468     // both the the returned values.
   1469     unsigned ResultReg = FuncInfo.CreateRegs(I.getType());
   1470     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
   1471       .addReg(Reg1).addReg(Reg2);
   1472 
   1473     unsigned Opc = X86::SETBr;
   1474     if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
   1475       Opc = X86::SETOr;
   1476     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg+1);
   1477 
   1478     UpdateValueMap(&I, ResultReg, 2);
   1479     return true;
   1480   }
   1481   }
   1482 }
   1483 
   1484 bool X86FastISel::X86SelectCall(const Instruction *I) {
   1485   const CallInst *CI = cast<CallInst>(I);
   1486   const Value *Callee = CI->getCalledValue();
   1487 
   1488   // Can't handle inline asm yet.
   1489   if (isa<InlineAsm>(Callee))
   1490     return false;
   1491 
   1492   // Handle intrinsic calls.
   1493   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
   1494     return X86VisitIntrinsicCall(*II);
   1495 
   1496   return DoSelectCall(I, 0);
   1497 }
   1498 
   1499 // Select either a call, or an llvm.memcpy/memmove/memset intrinsic
   1500 bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
   1501   const CallInst *CI = cast<CallInst>(I);
   1502   const Value *Callee = CI->getCalledValue();
   1503 
   1504   // Handle only C and fastcc calling conventions for now.
   1505   ImmutableCallSite CS(CI);
   1506   CallingConv::ID CC = CS.getCallingConv();
   1507   if (CC != CallingConv::C && CC != CallingConv::Fast &&
   1508       CC != CallingConv::X86_FastCall)
   1509     return false;
   1510 
   1511   // fastcc with -tailcallopt is intended to provide a guaranteed
   1512   // tail call optimization. Fastisel doesn't know how to do that.
   1513   if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
   1514     return false;
   1515 
   1516   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   1517   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   1518   bool isVarArg = FTy->isVarArg();
   1519 
   1520   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
   1521   // x86-32.  Special handling for x86-64 is implemented.
   1522   if (isVarArg && Subtarget->isTargetWin64())
   1523     return false;
   1524 
   1525   // Fast-isel doesn't know about callee-pop yet.
   1526   if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
   1527                        GuaranteedTailCallOpt))
   1528     return false;
   1529 
   1530   // Check whether the function can return without sret-demotion.
   1531   SmallVector<ISD::OutputArg, 4> Outs;
   1532   SmallVector<uint64_t, 4> Offsets;
   1533   GetReturnInfo(I->getType(), CS.getAttributes().getRetAttributes(),
   1534                 Outs, TLI, &Offsets);
   1535   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
   1536 					   *FuncInfo.MF, FTy->isVarArg(),
   1537 					   Outs, FTy->getContext());
   1538   if (!CanLowerReturn)
   1539     return false;
   1540 
   1541   // Materialize callee address in a register. FIXME: GV address can be
   1542   // handled with a CALLpcrel32 instead.
   1543   X86AddressMode CalleeAM;
   1544   if (!X86SelectCallAddress(Callee, CalleeAM))
   1545     return false;
   1546   unsigned CalleeOp = 0;
   1547   const GlobalValue *GV = 0;
   1548   if (CalleeAM.GV != 0) {
   1549     GV = CalleeAM.GV;
   1550   } else if (CalleeAM.Base.Reg != 0) {
   1551     CalleeOp = CalleeAM.Base.Reg;
   1552   } else
   1553     return false;
   1554 
   1555   // Deal with call operands first.
   1556   SmallVector<const Value *, 8> ArgVals;
   1557   SmallVector<unsigned, 8> Args;
   1558   SmallVector<MVT, 8> ArgVTs;
   1559   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   1560   Args.reserve(CS.arg_size());
   1561   ArgVals.reserve(CS.arg_size());
   1562   ArgVTs.reserve(CS.arg_size());
   1563   ArgFlags.reserve(CS.arg_size());
   1564   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   1565        i != e; ++i) {
   1566     // If we're lowering a mem intrinsic instead of a regular call, skip the
   1567     // last two arguments, which should not passed to the underlying functions.
   1568     if (MemIntName && e-i <= 2)
   1569       break;
   1570     Value *ArgVal = *i;
   1571     ISD::ArgFlagsTy Flags;
   1572     unsigned AttrInd = i - CS.arg_begin() + 1;
   1573     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
   1574       Flags.setSExt();
   1575     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
   1576       Flags.setZExt();
   1577 
   1578     if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
   1579       PointerType *Ty = cast<PointerType>(ArgVal->getType());
   1580       Type *ElementTy = Ty->getElementType();
   1581       unsigned FrameSize = TD.getTypeAllocSize(ElementTy);
   1582       unsigned FrameAlign = CS.getParamAlignment(AttrInd);
   1583       if (!FrameAlign)
   1584         FrameAlign = TLI.getByValTypeAlignment(ElementTy);
   1585       Flags.setByVal();
   1586       Flags.setByValSize(FrameSize);
   1587       Flags.setByValAlign(FrameAlign);
   1588       if (!IsMemcpySmall(FrameSize))
   1589         return false;
   1590     }
   1591 
   1592     if (CS.paramHasAttr(AttrInd, Attribute::InReg))
   1593       Flags.setInReg();
   1594     if (CS.paramHasAttr(AttrInd, Attribute::Nest))
   1595       Flags.setNest();
   1596 
   1597     // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
   1598     // instruction.  This is safe because it is common to all fastisel supported
   1599     // calling conventions on x86.
   1600     if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
   1601       if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
   1602           CI->getBitWidth() == 16) {
   1603         if (Flags.isSExt())
   1604           ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
   1605         else
   1606           ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
   1607       }
   1608     }
   1609 
   1610     unsigned ArgReg;
   1611 
   1612     // Passing bools around ends up doing a trunc to i1 and passing it.
   1613     // Codegen this as an argument + "and 1".
   1614     if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
   1615         cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
   1616         ArgVal->hasOneUse()) {
   1617       ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
   1618       ArgReg = getRegForValue(ArgVal);
   1619       if (ArgReg == 0) return false;
   1620 
   1621       MVT ArgVT;
   1622       if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
   1623 
   1624       ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
   1625                            ArgVal->hasOneUse(), 1);
   1626     } else {
   1627       ArgReg = getRegForValue(ArgVal);
   1628     }
   1629 
   1630     if (ArgReg == 0) return false;
   1631 
   1632     Type *ArgTy = ArgVal->getType();
   1633     MVT ArgVT;
   1634     if (!isTypeLegal(ArgTy, ArgVT))
   1635       return false;
   1636     if (ArgVT == MVT::x86mmx)
   1637       return false;
   1638     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
   1639     Flags.setOrigAlign(OriginalAlignment);
   1640 
   1641     Args.push_back(ArgReg);
   1642     ArgVals.push_back(ArgVal);
   1643     ArgVTs.push_back(ArgVT);
   1644     ArgFlags.push_back(Flags);
   1645   }
   1646 
   1647   // Analyze operands of the call, assigning locations to each operand.
   1648   SmallVector<CCValAssign, 16> ArgLocs;
   1649   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
   1650 		 I->getParent()->getContext());
   1651 
   1652   // Allocate shadow area for Win64
   1653   if (Subtarget->isTargetWin64())
   1654     CCInfo.AllocateStack(32, 8);
   1655 
   1656   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
   1657 
   1658   // Get a count of how many bytes are to be pushed on the stack.
   1659   unsigned NumBytes = CCInfo.getNextStackOffset();
   1660 
   1661   // Issue CALLSEQ_START
   1662   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
   1663   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
   1664     .addImm(NumBytes);
   1665 
   1666   // Process argument: walk the register/memloc assignments, inserting
   1667   // copies / loads.
   1668   SmallVector<unsigned, 4> RegArgs;
   1669   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1670     CCValAssign &VA = ArgLocs[i];
   1671     unsigned Arg = Args[VA.getValNo()];
   1672     EVT ArgVT = ArgVTs[VA.getValNo()];
   1673 
   1674     // Promote the value if needed.
   1675     switch (VA.getLocInfo()) {
   1676     default: llvm_unreachable("Unknown loc info!");
   1677     case CCValAssign::Full: break;
   1678     case CCValAssign::SExt: {
   1679       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   1680              "Unexpected extend");
   1681       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
   1682                                        Arg, ArgVT, Arg);
   1683       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
   1684       ArgVT = VA.getLocVT();
   1685       break;
   1686     }
   1687     case CCValAssign::ZExt: {
   1688       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   1689              "Unexpected extend");
   1690       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
   1691                                        Arg, ArgVT, Arg);
   1692       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
   1693       ArgVT = VA.getLocVT();
   1694       break;
   1695     }
   1696     case CCValAssign::AExt: {
   1697       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   1698              "Unexpected extend");
   1699       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
   1700                                        Arg, ArgVT, Arg);
   1701       if (!Emitted)
   1702         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
   1703                                     Arg, ArgVT, Arg);
   1704       if (!Emitted)
   1705         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
   1706                                     Arg, ArgVT, Arg);
   1707 
   1708       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
   1709       ArgVT = VA.getLocVT();
   1710       break;
   1711     }
   1712     case CCValAssign::BCvt: {
   1713       unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
   1714                                ISD::BITCAST, Arg, /*TODO: Kill=*/false);
   1715       assert(BC != 0 && "Failed to emit a bitcast!");
   1716       Arg = BC;
   1717       ArgVT = VA.getLocVT();
   1718       break;
   1719     }
   1720     }
   1721 
   1722     if (VA.isRegLoc()) {
   1723       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1724               VA.getLocReg()).addReg(Arg);
   1725       RegArgs.push_back(VA.getLocReg());
   1726     } else {
   1727       unsigned LocMemOffset = VA.getLocMemOffset();
   1728       X86AddressMode AM;
   1729       AM.Base.Reg = StackPtr;
   1730       AM.Disp = LocMemOffset;
   1731       const Value *ArgVal = ArgVals[VA.getValNo()];
   1732       ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
   1733 
   1734       if (Flags.isByVal()) {
   1735         X86AddressMode SrcAM;
   1736         SrcAM.Base.Reg = Arg;
   1737         bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
   1738         assert(Res && "memcpy length already checked!"); (void)Res;
   1739       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
   1740         // If this is a really simple value, emit this with the Value* version
   1741         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
   1742         // as it can cause us to reevaluate the argument.
   1743         X86FastEmitStore(ArgVT, ArgVal, AM);
   1744       } else {
   1745         X86FastEmitStore(ArgVT, Arg, AM);
   1746       }
   1747     }
   1748   }
   1749 
   1750   // ELF / PIC requires GOT in the EBX register before function calls via PLT
   1751   // GOT pointer.
   1752   if (Subtarget->isPICStyleGOT()) {
   1753     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   1754     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1755             X86::EBX).addReg(Base);
   1756   }
   1757 
   1758   if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64()) {
   1759     // Count the number of XMM registers allocated.
   1760     static const unsigned XMMArgRegs[] = {
   1761       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   1762       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   1763     };
   1764     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
   1765     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::MOV8ri),
   1766             X86::AL).addImm(NumXMMRegs);
   1767   }
   1768 
   1769   // Issue the call.
   1770   MachineInstrBuilder MIB;
   1771   if (CalleeOp) {
   1772     // Register-indirect call.
   1773     unsigned CallOpc;
   1774     if (Subtarget->isTargetWin64())
   1775       CallOpc = X86::WINCALL64r;
   1776     else if (Subtarget->is64Bit())
   1777       CallOpc = X86::CALL64r;
   1778     else
   1779       CallOpc = X86::CALL32r;
   1780     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
   1781       .addReg(CalleeOp);
   1782 
   1783   } else {
   1784     // Direct call.
   1785     assert(GV && "Not a direct call");
   1786     unsigned CallOpc;
   1787     if (Subtarget->isTargetWin64())
   1788       CallOpc = X86::WINCALL64pcrel32;
   1789     else if (Subtarget->is64Bit())
   1790       CallOpc = X86::CALL64pcrel32;
   1791     else
   1792       CallOpc = X86::CALLpcrel32;
   1793 
   1794     // See if we need any target-specific flags on the GV operand.
   1795     unsigned char OpFlags = 0;
   1796 
   1797     // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
   1798     // external symbols most go through the PLT in PIC mode.  If the symbol
   1799     // has hidden or protected visibility, or if it is static or local, then
   1800     // we don't need to use the PLT - we can directly call it.
   1801     if (Subtarget->isTargetELF() &&
   1802         TM.getRelocationModel() == Reloc::PIC_ &&
   1803         GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
   1804       OpFlags = X86II::MO_PLT;
   1805     } else if (Subtarget->isPICStyleStubAny() &&
   1806                (GV->isDeclaration() || GV->isWeakForLinker()) &&
   1807                (!Subtarget->getTargetTriple().isMacOSX() ||
   1808                 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   1809       // PC-relative references to external symbols should go through $stub,
   1810       // unless we're building with the leopard linker or later, which
   1811       // automatically synthesizes these stubs.
   1812       OpFlags = X86II::MO_DARWIN_STUB;
   1813     }
   1814 
   1815 
   1816     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc));
   1817     if (MemIntName)
   1818       MIB.addExternalSymbol(MemIntName, OpFlags);
   1819     else
   1820       MIB.addGlobalAddress(GV, 0, OpFlags);
   1821   }
   1822 
   1823   // Add an implicit use GOT pointer in EBX.
   1824   if (Subtarget->isPICStyleGOT())
   1825     MIB.addReg(X86::EBX);
   1826 
   1827   if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64())
   1828     MIB.addReg(X86::AL);
   1829 
   1830   // Add implicit physical register uses to the call.
   1831   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
   1832     MIB.addReg(RegArgs[i]);
   1833 
   1834   // Issue CALLSEQ_END
   1835   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
   1836   unsigned NumBytesCallee = 0;
   1837   if (!Subtarget->is64Bit() && CS.paramHasAttr(1, Attribute::StructRet))
   1838     NumBytesCallee = 4;
   1839   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
   1840     .addImm(NumBytes).addImm(NumBytesCallee);
   1841 
   1842   // Build info for return calling conv lowering code.
   1843   // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
   1844   SmallVector<ISD::InputArg, 32> Ins;
   1845   SmallVector<EVT, 4> RetTys;
   1846   ComputeValueVTs(TLI, I->getType(), RetTys);
   1847   for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
   1848     EVT VT = RetTys[i];
   1849     EVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
   1850     unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
   1851     for (unsigned j = 0; j != NumRegs; ++j) {
   1852       ISD::InputArg MyFlags;
   1853       MyFlags.VT = RegisterVT.getSimpleVT();
   1854       MyFlags.Used = !CS.getInstruction()->use_empty();
   1855       if (CS.paramHasAttr(0, Attribute::SExt))
   1856         MyFlags.Flags.setSExt();
   1857       if (CS.paramHasAttr(0, Attribute::ZExt))
   1858         MyFlags.Flags.setZExt();
   1859       if (CS.paramHasAttr(0, Attribute::InReg))
   1860         MyFlags.Flags.setInReg();
   1861       Ins.push_back(MyFlags);
   1862     }
   1863   }
   1864 
   1865   // Now handle call return values.
   1866   SmallVector<unsigned, 4> UsedRegs;
   1867   SmallVector<CCValAssign, 16> RVLocs;
   1868   CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
   1869 		    I->getParent()->getContext());
   1870   unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
   1871   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
   1872   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1873     EVT CopyVT = RVLocs[i].getValVT();
   1874     unsigned CopyReg = ResultReg + i;
   1875 
   1876     // If this is a call to a function that returns an fp value on the x87 fp
   1877     // stack, but where we prefer to use the value in xmm registers, copy it
   1878     // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
   1879     if ((RVLocs[i].getLocReg() == X86::ST0 ||
   1880          RVLocs[i].getLocReg() == X86::ST1)) {
   1881       if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
   1882         CopyVT = MVT::f80;
   1883         CopyReg = createResultReg(X86::RFP80RegisterClass);
   1884       }
   1885       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::FpPOP_RETVAL),
   1886               CopyReg);
   1887     } else {
   1888       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1889               CopyReg).addReg(RVLocs[i].getLocReg());
   1890       UsedRegs.push_back(RVLocs[i].getLocReg());
   1891     }
   1892 
   1893     if (CopyVT != RVLocs[i].getValVT()) {
   1894       // Round the F80 the right size, which also moves to the appropriate xmm
   1895       // register. This is accomplished by storing the F80 value in memory and
   1896       // then loading it back. Ewww...
   1897       EVT ResVT = RVLocs[i].getValVT();
   1898       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
   1899       unsigned MemSize = ResVT.getSizeInBits()/8;
   1900       int FI = MFI.CreateStackObject(MemSize, MemSize, false);
   1901       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1902                                 TII.get(Opc)), FI)
   1903         .addReg(CopyReg);
   1904       Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
   1905       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1906                                 TII.get(Opc), ResultReg + i), FI);
   1907     }
   1908   }
   1909 
   1910   if (RVLocs.size())
   1911     UpdateValueMap(I, ResultReg, RVLocs.size());
   1912 
   1913   // Set all unused physreg defs as dead.
   1914   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   1915 
   1916   return true;
   1917 }
   1918 
   1919 
   1920 bool
   1921 X86FastISel::TargetSelectInstruction(const Instruction *I)  {
   1922   switch (I->getOpcode()) {
   1923   default: break;
   1924   case Instruction::Load:
   1925     return X86SelectLoad(I);
   1926   case Instruction::Store:
   1927     return X86SelectStore(I);
   1928   case Instruction::Ret:
   1929     return X86SelectRet(I);
   1930   case Instruction::ICmp:
   1931   case Instruction::FCmp:
   1932     return X86SelectCmp(I);
   1933   case Instruction::ZExt:
   1934     return X86SelectZExt(I);
   1935   case Instruction::Br:
   1936     return X86SelectBranch(I);
   1937   case Instruction::Call:
   1938     return X86SelectCall(I);
   1939   case Instruction::LShr:
   1940   case Instruction::AShr:
   1941   case Instruction::Shl:
   1942     return X86SelectShift(I);
   1943   case Instruction::Select:
   1944     return X86SelectSelect(I);
   1945   case Instruction::Trunc:
   1946     return X86SelectTrunc(I);
   1947   case Instruction::FPExt:
   1948     return X86SelectFPExt(I);
   1949   case Instruction::FPTrunc:
   1950     return X86SelectFPTrunc(I);
   1951   case Instruction::IntToPtr: // Deliberate fall-through.
   1952   case Instruction::PtrToInt: {
   1953     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
   1954     EVT DstVT = TLI.getValueType(I->getType());
   1955     if (DstVT.bitsGT(SrcVT))
   1956       return X86SelectZExt(I);
   1957     if (DstVT.bitsLT(SrcVT))
   1958       return X86SelectTrunc(I);
   1959     unsigned Reg = getRegForValue(I->getOperand(0));
   1960     if (Reg == 0) return false;
   1961     UpdateValueMap(I, Reg);
   1962     return true;
   1963   }
   1964   }
   1965 
   1966   return false;
   1967 }
   1968 
   1969 unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
   1970   MVT VT;
   1971   if (!isTypeLegal(C->getType(), VT))
   1972     return false;
   1973 
   1974   // Get opcode and regclass of the output for the given load instruction.
   1975   unsigned Opc = 0;
   1976   const TargetRegisterClass *RC = NULL;
   1977   switch (VT.SimpleTy) {
   1978   default: return false;
   1979   case MVT::i8:
   1980     Opc = X86::MOV8rm;
   1981     RC  = X86::GR8RegisterClass;
   1982     break;
   1983   case MVT::i16:
   1984     Opc = X86::MOV16rm;
   1985     RC  = X86::GR16RegisterClass;
   1986     break;
   1987   case MVT::i32:
   1988     Opc = X86::MOV32rm;
   1989     RC  = X86::GR32RegisterClass;
   1990     break;
   1991   case MVT::i64:
   1992     // Must be in x86-64 mode.
   1993     Opc = X86::MOV64rm;
   1994     RC  = X86::GR64RegisterClass;
   1995     break;
   1996   case MVT::f32:
   1997     if (X86ScalarSSEf32) {
   1998       Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
   1999       RC  = X86::FR32RegisterClass;
   2000     } else {
   2001       Opc = X86::LD_Fp32m;
   2002       RC  = X86::RFP32RegisterClass;
   2003     }
   2004     break;
   2005   case MVT::f64:
   2006     if (X86ScalarSSEf64) {
   2007       Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
   2008       RC  = X86::FR64RegisterClass;
   2009     } else {
   2010       Opc = X86::LD_Fp64m;
   2011       RC  = X86::RFP64RegisterClass;
   2012     }
   2013     break;
   2014   case MVT::f80:
   2015     // No f80 support yet.
   2016     return false;
   2017   }
   2018 
   2019   // Materialize addresses with LEA instructions.
   2020   if (isa<GlobalValue>(C)) {
   2021     X86AddressMode AM;
   2022     if (X86SelectAddress(C, AM)) {
   2023       // If the expression is just a basereg, then we're done, otherwise we need
   2024       // to emit an LEA.
   2025       if (AM.BaseType == X86AddressMode::RegBase &&
   2026           AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0)
   2027         return AM.Base.Reg;
   2028 
   2029       Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
   2030       unsigned ResultReg = createResultReg(RC);
   2031       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2032                              TII.get(Opc), ResultReg), AM);
   2033       return ResultReg;
   2034     }
   2035     return 0;
   2036   }
   2037 
   2038   // MachineConstantPool wants an explicit alignment.
   2039   unsigned Align = TD.getPrefTypeAlignment(C->getType());
   2040   if (Align == 0) {
   2041     // Alignment of vector types.  FIXME!
   2042     Align = TD.getTypeAllocSize(C->getType());
   2043   }
   2044 
   2045   // x86-32 PIC requires a PIC base register for constant pools.
   2046   unsigned PICBase = 0;
   2047   unsigned char OpFlag = 0;
   2048   if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
   2049     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   2050     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   2051   } else if (Subtarget->isPICStyleGOT()) {
   2052     OpFlag = X86II::MO_GOTOFF;
   2053     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   2054   } else if (Subtarget->isPICStyleRIPRel() &&
   2055              TM.getCodeModel() == CodeModel::Small) {
   2056     PICBase = X86::RIP;
   2057   }
   2058 
   2059   // Create the load from the constant pool.
   2060   unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
   2061   unsigned ResultReg = createResultReg(RC);
   2062   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2063                                    TII.get(Opc), ResultReg),
   2064                            MCPOffset, PICBase, OpFlag);
   2065 
   2066   return ResultReg;
   2067 }
   2068 
   2069 unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
   2070   // Fail on dynamic allocas. At this point, getRegForValue has already
   2071   // checked its CSE maps, so if we're here trying to handle a dynamic
   2072   // alloca, we're not going to succeed. X86SelectAddress has a
   2073   // check for dynamic allocas, because it's called directly from
   2074   // various places, but TargetMaterializeAlloca also needs a check
   2075   // in order to avoid recursion between getRegForValue,
   2076   // X86SelectAddrss, and TargetMaterializeAlloca.
   2077   if (!FuncInfo.StaticAllocaMap.count(C))
   2078     return 0;
   2079 
   2080   X86AddressMode AM;
   2081   if (!X86SelectAddress(C, AM))
   2082     return 0;
   2083   unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
   2084   TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
   2085   unsigned ResultReg = createResultReg(RC);
   2086   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2087                          TII.get(Opc), ResultReg), AM);
   2088   return ResultReg;
   2089 }
   2090 
   2091 unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
   2092   MVT VT;
   2093   if (!isTypeLegal(CF->getType(), VT))
   2094     return false;
   2095 
   2096   // Get opcode and regclass for the given zero.
   2097   unsigned Opc = 0;
   2098   const TargetRegisterClass *RC = NULL;
   2099   switch (VT.SimpleTy) {
   2100     default: return false;
   2101     case MVT::f32:
   2102       if (X86ScalarSSEf32) {
   2103         Opc = X86::FsFLD0SS;
   2104         RC  = X86::FR32RegisterClass;
   2105       } else {
   2106         Opc = X86::LD_Fp032;
   2107         RC  = X86::RFP32RegisterClass;
   2108       }
   2109       break;
   2110     case MVT::f64:
   2111       if (X86ScalarSSEf64) {
   2112         Opc = X86::FsFLD0SD;
   2113         RC  = X86::FR64RegisterClass;
   2114       } else {
   2115         Opc = X86::LD_Fp064;
   2116         RC  = X86::RFP64RegisterClass;
   2117       }
   2118       break;
   2119     case MVT::f80:
   2120       // No f80 support yet.
   2121       return false;
   2122   }
   2123 
   2124   unsigned ResultReg = createResultReg(RC);
   2125   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
   2126   return ResultReg;
   2127 }
   2128 
   2129 
   2130 /// TryToFoldLoad - The specified machine instr operand is a vreg, and that
   2131 /// vreg is being provided by the specified load instruction.  If possible,
   2132 /// try to fold the load as an operand to the instruction, returning true if
   2133 /// possible.
   2134 bool X86FastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
   2135                                 const LoadInst *LI) {
   2136   X86AddressMode AM;
   2137   if (!X86SelectAddress(LI->getOperand(0), AM))
   2138     return false;
   2139 
   2140   X86InstrInfo &XII = (X86InstrInfo&)TII;
   2141 
   2142   unsigned Size = TD.getTypeAllocSize(LI->getType());
   2143   unsigned Alignment = LI->getAlignment();
   2144 
   2145   SmallVector<MachineOperand, 8> AddrOps;
   2146   AM.getFullAddress(AddrOps);
   2147 
   2148   MachineInstr *Result =
   2149     XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
   2150   if (Result == 0) return false;
   2151 
   2152   FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
   2153   MI->eraseFromParent();
   2154   return true;
   2155 }
   2156 
   2157 
   2158 namespace llvm {
   2159   llvm::FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo) {
   2160     return new X86FastISel(funcInfo);
   2161   }
   2162 }
   2163