Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CodeGenDAGPatterns class, which is used to read and
     11 // represent the patterns present in a .td file for instructions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CodeGenDAGPatterns.h"
     16 #include "llvm/TableGen/Error.h"
     17 #include "llvm/TableGen/Record.h"
     18 #include "llvm/ADT/StringExtras.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/Support/Debug.h"
     21 #include <set>
     22 #include <algorithm>
     23 using namespace llvm;
     24 
     25 //===----------------------------------------------------------------------===//
     26 //  EEVT::TypeSet Implementation
     27 //===----------------------------------------------------------------------===//
     28 
     29 static inline bool isInteger(MVT::SimpleValueType VT) {
     30   return EVT(VT).isInteger();
     31 }
     32 static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
     33   return EVT(VT).isFloatingPoint();
     34 }
     35 static inline bool isVector(MVT::SimpleValueType VT) {
     36   return EVT(VT).isVector();
     37 }
     38 static inline bool isScalar(MVT::SimpleValueType VT) {
     39   return !EVT(VT).isVector();
     40 }
     41 
     42 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
     43   if (VT == MVT::iAny)
     44     EnforceInteger(TP);
     45   else if (VT == MVT::fAny)
     46     EnforceFloatingPoint(TP);
     47   else if (VT == MVT::vAny)
     48     EnforceVector(TP);
     49   else {
     50     assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
     51             VT == MVT::iPTRAny) && "Not a concrete type!");
     52     TypeVec.push_back(VT);
     53   }
     54 }
     55 
     56 
     57 EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
     58   assert(!VTList.empty() && "empty list?");
     59   TypeVec.append(VTList.begin(), VTList.end());
     60 
     61   if (!VTList.empty())
     62     assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
     63            VTList[0] != MVT::fAny);
     64 
     65   // Verify no duplicates.
     66   array_pod_sort(TypeVec.begin(), TypeVec.end());
     67   assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
     68 }
     69 
     70 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
     71 /// on completely unknown type sets.
     72 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
     73                                           bool (*Pred)(MVT::SimpleValueType),
     74                                           const char *PredicateName) {
     75   assert(isCompletelyUnknown());
     76   const std::vector<MVT::SimpleValueType> &LegalTypes =
     77     TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
     78 
     79   for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
     80     if (Pred == 0 || Pred(LegalTypes[i]))
     81       TypeVec.push_back(LegalTypes[i]);
     82 
     83   // If we have nothing that matches the predicate, bail out.
     84   if (TypeVec.empty())
     85     TP.error("Type inference contradiction found, no " +
     86              std::string(PredicateName) + " types found");
     87   // No need to sort with one element.
     88   if (TypeVec.size() == 1) return true;
     89 
     90   // Remove duplicates.
     91   array_pod_sort(TypeVec.begin(), TypeVec.end());
     92   TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
     93 
     94   return true;
     95 }
     96 
     97 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
     98 /// integer value type.
     99 bool EEVT::TypeSet::hasIntegerTypes() const {
    100   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
    101     if (isInteger(TypeVec[i]))
    102       return true;
    103   return false;
    104 }
    105 
    106 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
    107 /// a floating point value type.
    108 bool EEVT::TypeSet::hasFloatingPointTypes() const {
    109   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
    110     if (isFloatingPoint(TypeVec[i]))
    111       return true;
    112   return false;
    113 }
    114 
    115 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
    116 /// value type.
    117 bool EEVT::TypeSet::hasVectorTypes() const {
    118   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
    119     if (isVector(TypeVec[i]))
    120       return true;
    121   return false;
    122 }
    123 
    124 
    125 std::string EEVT::TypeSet::getName() const {
    126   if (TypeVec.empty()) return "<empty>";
    127 
    128   std::string Result;
    129 
    130   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
    131     std::string VTName = llvm::getEnumName(TypeVec[i]);
    132     // Strip off MVT:: prefix if present.
    133     if (VTName.substr(0,5) == "MVT::")
    134       VTName = VTName.substr(5);
    135     if (i) Result += ':';
    136     Result += VTName;
    137   }
    138 
    139   if (TypeVec.size() == 1)
    140     return Result;
    141   return "{" + Result + "}";
    142 }
    143 
    144 /// MergeInTypeInfo - This merges in type information from the specified
    145 /// argument.  If 'this' changes, it returns true.  If the two types are
    146 /// contradictory (e.g. merge f32 into i32) then this throws an exception.
    147 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
    148   if (InVT.isCompletelyUnknown() || *this == InVT)
    149     return false;
    150 
    151   if (isCompletelyUnknown()) {
    152     *this = InVT;
    153     return true;
    154   }
    155 
    156   assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
    157 
    158   // Handle the abstract cases, seeing if we can resolve them better.
    159   switch (TypeVec[0]) {
    160   default: break;
    161   case MVT::iPTR:
    162   case MVT::iPTRAny:
    163     if (InVT.hasIntegerTypes()) {
    164       EEVT::TypeSet InCopy(InVT);
    165       InCopy.EnforceInteger(TP);
    166       InCopy.EnforceScalar(TP);
    167 
    168       if (InCopy.isConcrete()) {
    169         // If the RHS has one integer type, upgrade iPTR to i32.
    170         TypeVec[0] = InVT.TypeVec[0];
    171         return true;
    172       }
    173 
    174       // If the input has multiple scalar integers, this doesn't add any info.
    175       if (!InCopy.isCompletelyUnknown())
    176         return false;
    177     }
    178     break;
    179   }
    180 
    181   // If the input constraint is iAny/iPTR and this is an integer type list,
    182   // remove non-integer types from the list.
    183   if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
    184       hasIntegerTypes()) {
    185     bool MadeChange = EnforceInteger(TP);
    186 
    187     // If we're merging in iPTR/iPTRAny and the node currently has a list of
    188     // multiple different integer types, replace them with a single iPTR.
    189     if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
    190         TypeVec.size() != 1) {
    191       TypeVec.resize(1);
    192       TypeVec[0] = InVT.TypeVec[0];
    193       MadeChange = true;
    194     }
    195 
    196     return MadeChange;
    197   }
    198 
    199   // If this is a type list and the RHS is a typelist as well, eliminate entries
    200   // from this list that aren't in the other one.
    201   bool MadeChange = false;
    202   TypeSet InputSet(*this);
    203 
    204   for (unsigned i = 0; i != TypeVec.size(); ++i) {
    205     bool InInVT = false;
    206     for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
    207       if (TypeVec[i] == InVT.TypeVec[j]) {
    208         InInVT = true;
    209         break;
    210       }
    211 
    212     if (InInVT) continue;
    213     TypeVec.erase(TypeVec.begin()+i--);
    214     MadeChange = true;
    215   }
    216 
    217   // If we removed all of our types, we have a type contradiction.
    218   if (!TypeVec.empty())
    219     return MadeChange;
    220 
    221   // FIXME: Really want an SMLoc here!
    222   TP.error("Type inference contradiction found, merging '" +
    223            InVT.getName() + "' into '" + InputSet.getName() + "'");
    224   return true; // unreachable
    225 }
    226 
    227 /// EnforceInteger - Remove all non-integer types from this set.
    228 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
    229   // If we know nothing, then get the full set.
    230   if (TypeVec.empty())
    231     return FillWithPossibleTypes(TP, isInteger, "integer");
    232   if (!hasFloatingPointTypes())
    233     return false;
    234 
    235   TypeSet InputSet(*this);
    236 
    237   // Filter out all the fp types.
    238   for (unsigned i = 0; i != TypeVec.size(); ++i)
    239     if (!isInteger(TypeVec[i]))
    240       TypeVec.erase(TypeVec.begin()+i--);
    241 
    242   if (TypeVec.empty())
    243     TP.error("Type inference contradiction found, '" +
    244              InputSet.getName() + "' needs to be integer");
    245   return true;
    246 }
    247 
    248 /// EnforceFloatingPoint - Remove all integer types from this set.
    249 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
    250   // If we know nothing, then get the full set.
    251   if (TypeVec.empty())
    252     return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
    253 
    254   if (!hasIntegerTypes())
    255     return false;
    256 
    257   TypeSet InputSet(*this);
    258 
    259   // Filter out all the fp types.
    260   for (unsigned i = 0; i != TypeVec.size(); ++i)
    261     if (!isFloatingPoint(TypeVec[i]))
    262       TypeVec.erase(TypeVec.begin()+i--);
    263 
    264   if (TypeVec.empty())
    265     TP.error("Type inference contradiction found, '" +
    266              InputSet.getName() + "' needs to be floating point");
    267   return true;
    268 }
    269 
    270 /// EnforceScalar - Remove all vector types from this.
    271 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
    272   // If we know nothing, then get the full set.
    273   if (TypeVec.empty())
    274     return FillWithPossibleTypes(TP, isScalar, "scalar");
    275 
    276   if (!hasVectorTypes())
    277     return false;
    278 
    279   TypeSet InputSet(*this);
    280 
    281   // Filter out all the vector types.
    282   for (unsigned i = 0; i != TypeVec.size(); ++i)
    283     if (!isScalar(TypeVec[i]))
    284       TypeVec.erase(TypeVec.begin()+i--);
    285 
    286   if (TypeVec.empty())
    287     TP.error("Type inference contradiction found, '" +
    288              InputSet.getName() + "' needs to be scalar");
    289   return true;
    290 }
    291 
    292 /// EnforceVector - Remove all vector types from this.
    293 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
    294   // If we know nothing, then get the full set.
    295   if (TypeVec.empty())
    296     return FillWithPossibleTypes(TP, isVector, "vector");
    297 
    298   TypeSet InputSet(*this);
    299   bool MadeChange = false;
    300 
    301   // Filter out all the scalar types.
    302   for (unsigned i = 0; i != TypeVec.size(); ++i)
    303     if (!isVector(TypeVec[i])) {
    304       TypeVec.erase(TypeVec.begin()+i--);
    305       MadeChange = true;
    306     }
    307 
    308   if (TypeVec.empty())
    309     TP.error("Type inference contradiction found, '" +
    310              InputSet.getName() + "' needs to be a vector");
    311   return MadeChange;
    312 }
    313 
    314 
    315 
    316 /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
    317 /// this an other based on this information.
    318 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
    319   // Both operands must be integer or FP, but we don't care which.
    320   bool MadeChange = false;
    321 
    322   if (isCompletelyUnknown())
    323     MadeChange = FillWithPossibleTypes(TP);
    324 
    325   if (Other.isCompletelyUnknown())
    326     MadeChange = Other.FillWithPossibleTypes(TP);
    327 
    328   // If one side is known to be integer or known to be FP but the other side has
    329   // no information, get at least the type integrality info in there.
    330   if (!hasFloatingPointTypes())
    331     MadeChange |= Other.EnforceInteger(TP);
    332   else if (!hasIntegerTypes())
    333     MadeChange |= Other.EnforceFloatingPoint(TP);
    334   if (!Other.hasFloatingPointTypes())
    335     MadeChange |= EnforceInteger(TP);
    336   else if (!Other.hasIntegerTypes())
    337     MadeChange |= EnforceFloatingPoint(TP);
    338 
    339   assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
    340          "Should have a type list now");
    341 
    342   // If one contains vectors but the other doesn't pull vectors out.
    343   if (!hasVectorTypes())
    344     MadeChange |= Other.EnforceScalar(TP);
    345   if (!hasVectorTypes())
    346     MadeChange |= EnforceScalar(TP);
    347 
    348   if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
    349     // If we are down to concrete types, this code does not currently
    350     // handle nodes which have multiple types, where some types are
    351     // integer, and some are fp.  Assert that this is not the case.
    352     assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
    353            !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
    354            "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
    355 
    356     // Otherwise, if these are both vector types, either this vector
    357     // must have a larger bitsize than the other, or this element type
    358     // must be larger than the other.
    359     EVT Type(TypeVec[0]);
    360     EVT OtherType(Other.TypeVec[0]);
    361 
    362     if (hasVectorTypes() && Other.hasVectorTypes()) {
    363       if (Type.getSizeInBits() >= OtherType.getSizeInBits())
    364         if (Type.getVectorElementType().getSizeInBits()
    365             >= OtherType.getVectorElementType().getSizeInBits())
    366           TP.error("Type inference contradiction found, '" +
    367                    getName() + "' element type not smaller than '" +
    368                    Other.getName() +"'!");
    369     }
    370     else
    371       // For scalar types, the bitsize of this type must be larger
    372       // than that of the other.
    373       if (Type.getSizeInBits() >= OtherType.getSizeInBits())
    374         TP.error("Type inference contradiction found, '" +
    375                  getName() + "' is not smaller than '" +
    376                  Other.getName() +"'!");
    377 
    378   }
    379 
    380 
    381   // Handle int and fp as disjoint sets.  This won't work for patterns
    382   // that have mixed fp/int types but those are likely rare and would
    383   // not have been accepted by this code previously.
    384 
    385   // Okay, find the smallest type from the current set and remove it from the
    386   // largest set.
    387   MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
    388   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
    389     if (isInteger(TypeVec[i])) {
    390       SmallestInt = TypeVec[i];
    391       break;
    392     }
    393   for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
    394     if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
    395       SmallestInt = TypeVec[i];
    396 
    397   MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
    398   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
    399     if (isFloatingPoint(TypeVec[i])) {
    400       SmallestFP = TypeVec[i];
    401       break;
    402     }
    403   for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
    404     if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
    405       SmallestFP = TypeVec[i];
    406 
    407   int OtherIntSize = 0;
    408   int OtherFPSize = 0;
    409   for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
    410          Other.TypeVec.begin();
    411        TVI != Other.TypeVec.end();
    412        /* NULL */) {
    413     if (isInteger(*TVI)) {
    414       ++OtherIntSize;
    415       if (*TVI == SmallestInt) {
    416         TVI = Other.TypeVec.erase(TVI);
    417         --OtherIntSize;
    418         MadeChange = true;
    419         continue;
    420       }
    421     }
    422     else if (isFloatingPoint(*TVI)) {
    423       ++OtherFPSize;
    424       if (*TVI == SmallestFP) {
    425         TVI = Other.TypeVec.erase(TVI);
    426         --OtherFPSize;
    427         MadeChange = true;
    428         continue;
    429       }
    430     }
    431     ++TVI;
    432   }
    433 
    434   // If this is the only type in the large set, the constraint can never be
    435   // satisfied.
    436   if ((Other.hasIntegerTypes() && OtherIntSize == 0)
    437       || (Other.hasFloatingPointTypes() && OtherFPSize == 0))
    438     TP.error("Type inference contradiction found, '" +
    439              Other.getName() + "' has nothing larger than '" + getName() +"'!");
    440 
    441   // Okay, find the largest type in the Other set and remove it from the
    442   // current set.
    443   MVT::SimpleValueType LargestInt = MVT::Other;
    444   for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
    445     if (isInteger(Other.TypeVec[i])) {
    446       LargestInt = Other.TypeVec[i];
    447       break;
    448     }
    449   for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
    450     if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
    451       LargestInt = Other.TypeVec[i];
    452 
    453   MVT::SimpleValueType LargestFP = MVT::Other;
    454   for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
    455     if (isFloatingPoint(Other.TypeVec[i])) {
    456       LargestFP = Other.TypeVec[i];
    457       break;
    458     }
    459   for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
    460     if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
    461       LargestFP = Other.TypeVec[i];
    462 
    463   int IntSize = 0;
    464   int FPSize = 0;
    465   for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
    466          TypeVec.begin();
    467        TVI != TypeVec.end();
    468        /* NULL */) {
    469     if (isInteger(*TVI)) {
    470       ++IntSize;
    471       if (*TVI == LargestInt) {
    472         TVI = TypeVec.erase(TVI);
    473         --IntSize;
    474         MadeChange = true;
    475         continue;
    476       }
    477     }
    478     else if (isFloatingPoint(*TVI)) {
    479       ++FPSize;
    480       if (*TVI == LargestFP) {
    481         TVI = TypeVec.erase(TVI);
    482         --FPSize;
    483         MadeChange = true;
    484         continue;
    485       }
    486     }
    487     ++TVI;
    488   }
    489 
    490   // If this is the only type in the small set, the constraint can never be
    491   // satisfied.
    492   if ((hasIntegerTypes() && IntSize == 0)
    493       || (hasFloatingPointTypes() && FPSize == 0))
    494     TP.error("Type inference contradiction found, '" +
    495              getName() + "' has nothing smaller than '" + Other.getName()+"'!");
    496 
    497   return MadeChange;
    498 }
    499 
    500 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
    501 /// whose element is specified by VTOperand.
    502 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
    503                                            TreePattern &TP) {
    504   // "This" must be a vector and "VTOperand" must be a scalar.
    505   bool MadeChange = false;
    506   MadeChange |= EnforceVector(TP);
    507   MadeChange |= VTOperand.EnforceScalar(TP);
    508 
    509   // If we know the vector type, it forces the scalar to agree.
    510   if (isConcrete()) {
    511     EVT IVT = getConcrete();
    512     IVT = IVT.getVectorElementType();
    513     return MadeChange |
    514       VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
    515   }
    516 
    517   // If the scalar type is known, filter out vector types whose element types
    518   // disagree.
    519   if (!VTOperand.isConcrete())
    520     return MadeChange;
    521 
    522   MVT::SimpleValueType VT = VTOperand.getConcrete();
    523 
    524   TypeSet InputSet(*this);
    525 
    526   // Filter out all the types which don't have the right element type.
    527   for (unsigned i = 0; i != TypeVec.size(); ++i) {
    528     assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
    529     if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
    530       TypeVec.erase(TypeVec.begin()+i--);
    531       MadeChange = true;
    532     }
    533   }
    534 
    535   if (TypeVec.empty())  // FIXME: Really want an SMLoc here!
    536     TP.error("Type inference contradiction found, forcing '" +
    537              InputSet.getName() + "' to have a vector element");
    538   return MadeChange;
    539 }
    540 
    541 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
    542 /// vector type specified by VTOperand.
    543 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
    544                                                  TreePattern &TP) {
    545   // "This" must be a vector and "VTOperand" must be a vector.
    546   bool MadeChange = false;
    547   MadeChange |= EnforceVector(TP);
    548   MadeChange |= VTOperand.EnforceVector(TP);
    549 
    550   // "This" must be larger than "VTOperand."
    551   MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
    552 
    553   // If we know the vector type, it forces the scalar types to agree.
    554   if (isConcrete()) {
    555     EVT IVT = getConcrete();
    556     IVT = IVT.getVectorElementType();
    557 
    558     EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
    559     MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
    560   } else if (VTOperand.isConcrete()) {
    561     EVT IVT = VTOperand.getConcrete();
    562     IVT = IVT.getVectorElementType();
    563 
    564     EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
    565     MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
    566   }
    567 
    568   return MadeChange;
    569 }
    570 
    571 //===----------------------------------------------------------------------===//
    572 // Helpers for working with extended types.
    573 
    574 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
    575   return LHS->getID() < RHS->getID();
    576 }
    577 
    578 /// Dependent variable map for CodeGenDAGPattern variant generation
    579 typedef std::map<std::string, int> DepVarMap;
    580 
    581 /// Const iterator shorthand for DepVarMap
    582 typedef DepVarMap::const_iterator DepVarMap_citer;
    583 
    584 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
    585   if (N->isLeaf()) {
    586     if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL)
    587       DepMap[N->getName()]++;
    588   } else {
    589     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
    590       FindDepVarsOf(N->getChild(i), DepMap);
    591   }
    592 }
    593 
    594 /// Find dependent variables within child patterns
    595 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
    596   DepVarMap depcounts;
    597   FindDepVarsOf(N, depcounts);
    598   for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
    599     if (i->second > 1)            // std::pair<std::string, int>
    600       DepVars.insert(i->first);
    601   }
    602 }
    603 
    604 #ifndef NDEBUG
    605 /// Dump the dependent variable set:
    606 static void DumpDepVars(MultipleUseVarSet &DepVars) {
    607   if (DepVars.empty()) {
    608     DEBUG(errs() << "<empty set>");
    609   } else {
    610     DEBUG(errs() << "[ ");
    611     for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
    612          e = DepVars.end(); i != e; ++i) {
    613       DEBUG(errs() << (*i) << " ");
    614     }
    615     DEBUG(errs() << "]");
    616   }
    617 }
    618 #endif
    619 
    620 
    621 //===----------------------------------------------------------------------===//
    622 // TreePredicateFn Implementation
    623 //===----------------------------------------------------------------------===//
    624 
    625 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
    626 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
    627   assert((getPredCode().empty() || getImmCode().empty()) &&
    628         ".td file corrupt: can't have a node predicate *and* an imm predicate");
    629 }
    630 
    631 std::string TreePredicateFn::getPredCode() const {
    632   return PatFragRec->getRecord()->getValueAsCode("PredicateCode");
    633 }
    634 
    635 std::string TreePredicateFn::getImmCode() const {
    636   return PatFragRec->getRecord()->getValueAsCode("ImmediateCode");
    637 }
    638 
    639 
    640 /// isAlwaysTrue - Return true if this is a noop predicate.
    641 bool TreePredicateFn::isAlwaysTrue() const {
    642   return getPredCode().empty() && getImmCode().empty();
    643 }
    644 
    645 /// Return the name to use in the generated code to reference this, this is
    646 /// "Predicate_foo" if from a pattern fragment "foo".
    647 std::string TreePredicateFn::getFnName() const {
    648   return "Predicate_" + PatFragRec->getRecord()->getName();
    649 }
    650 
    651 /// getCodeToRunOnSDNode - Return the code for the function body that
    652 /// evaluates this predicate.  The argument is expected to be in "Node",
    653 /// not N.  This handles casting and conversion to a concrete node type as
    654 /// appropriate.
    655 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
    656   // Handle immediate predicates first.
    657   std::string ImmCode = getImmCode();
    658   if (!ImmCode.empty()) {
    659     std::string Result =
    660       "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
    661     return Result + ImmCode;
    662   }
    663 
    664   // Handle arbitrary node predicates.
    665   assert(!getPredCode().empty() && "Don't have any predicate code!");
    666   std::string ClassName;
    667   if (PatFragRec->getOnlyTree()->isLeaf())
    668     ClassName = "SDNode";
    669   else {
    670     Record *Op = PatFragRec->getOnlyTree()->getOperator();
    671     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
    672   }
    673   std::string Result;
    674   if (ClassName == "SDNode")
    675     Result = "    SDNode *N = Node;\n";
    676   else
    677     Result = "    " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
    678 
    679   return Result + getPredCode();
    680 }
    681 
    682 //===----------------------------------------------------------------------===//
    683 // PatternToMatch implementation
    684 //
    685 
    686 
    687 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
    688 /// patterns before small ones.  This is used to determine the size of a
    689 /// pattern.
    690 static unsigned getPatternSize(const TreePatternNode *P,
    691                                const CodeGenDAGPatterns &CGP) {
    692   unsigned Size = 3;  // The node itself.
    693   // If the root node is a ConstantSDNode, increases its size.
    694   // e.g. (set R32:$dst, 0).
    695   if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
    696     Size += 2;
    697 
    698   // FIXME: This is a hack to statically increase the priority of patterns
    699   // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
    700   // Later we can allow complexity / cost for each pattern to be (optionally)
    701   // specified. To get best possible pattern match we'll need to dynamically
    702   // calculate the complexity of all patterns a dag can potentially map to.
    703   const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
    704   if (AM)
    705     Size += AM->getNumOperands() * 3;
    706 
    707   // If this node has some predicate function that must match, it adds to the
    708   // complexity of this node.
    709   if (!P->getPredicateFns().empty())
    710     ++Size;
    711 
    712   // Count children in the count if they are also nodes.
    713   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
    714     TreePatternNode *Child = P->getChild(i);
    715     if (!Child->isLeaf() && Child->getNumTypes() &&
    716         Child->getType(0) != MVT::Other)
    717       Size += getPatternSize(Child, CGP);
    718     else if (Child->isLeaf()) {
    719       if (dynamic_cast<IntInit*>(Child->getLeafValue()))
    720         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
    721       else if (Child->getComplexPatternInfo(CGP))
    722         Size += getPatternSize(Child, CGP);
    723       else if (!Child->getPredicateFns().empty())
    724         ++Size;
    725     }
    726   }
    727 
    728   return Size;
    729 }
    730 
    731 /// Compute the complexity metric for the input pattern.  This roughly
    732 /// corresponds to the number of nodes that are covered.
    733 unsigned PatternToMatch::
    734 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
    735   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
    736 }
    737 
    738 
    739 /// getPredicateCheck - Return a single string containing all of this
    740 /// pattern's predicates concatenated with "&&" operators.
    741 ///
    742 std::string PatternToMatch::getPredicateCheck() const {
    743   std::string PredicateCheck;
    744   for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
    745     if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
    746       Record *Def = Pred->getDef();
    747       if (!Def->isSubClassOf("Predicate")) {
    748 #ifndef NDEBUG
    749         Def->dump();
    750 #endif
    751         assert(0 && "Unknown predicate type!");
    752       }
    753       if (!PredicateCheck.empty())
    754         PredicateCheck += " && ";
    755       PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
    756     }
    757   }
    758 
    759   return PredicateCheck;
    760 }
    761 
    762 //===----------------------------------------------------------------------===//
    763 // SDTypeConstraint implementation
    764 //
    765 
    766 SDTypeConstraint::SDTypeConstraint(Record *R) {
    767   OperandNo = R->getValueAsInt("OperandNum");
    768 
    769   if (R->isSubClassOf("SDTCisVT")) {
    770     ConstraintType = SDTCisVT;
    771     x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
    772     if (x.SDTCisVT_Info.VT == MVT::isVoid)
    773       throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
    774 
    775   } else if (R->isSubClassOf("SDTCisPtrTy")) {
    776     ConstraintType = SDTCisPtrTy;
    777   } else if (R->isSubClassOf("SDTCisInt")) {
    778     ConstraintType = SDTCisInt;
    779   } else if (R->isSubClassOf("SDTCisFP")) {
    780     ConstraintType = SDTCisFP;
    781   } else if (R->isSubClassOf("SDTCisVec")) {
    782     ConstraintType = SDTCisVec;
    783   } else if (R->isSubClassOf("SDTCisSameAs")) {
    784     ConstraintType = SDTCisSameAs;
    785     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
    786   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
    787     ConstraintType = SDTCisVTSmallerThanOp;
    788     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
    789       R->getValueAsInt("OtherOperandNum");
    790   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
    791     ConstraintType = SDTCisOpSmallerThanOp;
    792     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
    793       R->getValueAsInt("BigOperandNum");
    794   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
    795     ConstraintType = SDTCisEltOfVec;
    796     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
    797   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
    798     ConstraintType = SDTCisSubVecOfVec;
    799     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
    800       R->getValueAsInt("OtherOpNum");
    801   } else {
    802     errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
    803     exit(1);
    804   }
    805 }
    806 
    807 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
    808 /// N, and the result number in ResNo.
    809 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
    810                                       const SDNodeInfo &NodeInfo,
    811                                       unsigned &ResNo) {
    812   unsigned NumResults = NodeInfo.getNumResults();
    813   if (OpNo < NumResults) {
    814     ResNo = OpNo;
    815     return N;
    816   }
    817 
    818   OpNo -= NumResults;
    819 
    820   if (OpNo >= N->getNumChildren()) {
    821     errs() << "Invalid operand number in type constraint "
    822            << (OpNo+NumResults) << " ";
    823     N->dump();
    824     errs() << '\n';
    825     exit(1);
    826   }
    827 
    828   return N->getChild(OpNo);
    829 }
    830 
    831 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
    832 /// constraint to the nodes operands.  This returns true if it makes a
    833 /// change, false otherwise.  If a type contradiction is found, throw an
    834 /// exception.
    835 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
    836                                            const SDNodeInfo &NodeInfo,
    837                                            TreePattern &TP) const {
    838   unsigned ResNo = 0; // The result number being referenced.
    839   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
    840 
    841   switch (ConstraintType) {
    842   default: assert(0 && "Unknown constraint type!");
    843   case SDTCisVT:
    844     // Operand must be a particular type.
    845     return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
    846   case SDTCisPtrTy:
    847     // Operand must be same as target pointer type.
    848     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
    849   case SDTCisInt:
    850     // Require it to be one of the legal integer VTs.
    851     return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
    852   case SDTCisFP:
    853     // Require it to be one of the legal fp VTs.
    854     return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
    855   case SDTCisVec:
    856     // Require it to be one of the legal vector VTs.
    857     return NodeToApply->getExtType(ResNo).EnforceVector(TP);
    858   case SDTCisSameAs: {
    859     unsigned OResNo = 0;
    860     TreePatternNode *OtherNode =
    861       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
    862     return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
    863            OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
    864   }
    865   case SDTCisVTSmallerThanOp: {
    866     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
    867     // have an integer type that is smaller than the VT.
    868     if (!NodeToApply->isLeaf() ||
    869         !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
    870         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
    871                ->isSubClassOf("ValueType"))
    872       TP.error(N->getOperator()->getName() + " expects a VT operand!");
    873     MVT::SimpleValueType VT =
    874      getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
    875 
    876     EEVT::TypeSet TypeListTmp(VT, TP);
    877 
    878     unsigned OResNo = 0;
    879     TreePatternNode *OtherNode =
    880       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
    881                     OResNo);
    882 
    883     return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
    884   }
    885   case SDTCisOpSmallerThanOp: {
    886     unsigned BResNo = 0;
    887     TreePatternNode *BigOperand =
    888       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
    889                     BResNo);
    890     return NodeToApply->getExtType(ResNo).
    891                   EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
    892   }
    893   case SDTCisEltOfVec: {
    894     unsigned VResNo = 0;
    895     TreePatternNode *VecOperand =
    896       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
    897                     VResNo);
    898 
    899     // Filter vector types out of VecOperand that don't have the right element
    900     // type.
    901     return VecOperand->getExtType(VResNo).
    902       EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
    903   }
    904   case SDTCisSubVecOfVec: {
    905     unsigned VResNo = 0;
    906     TreePatternNode *BigVecOperand =
    907       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
    908                     VResNo);
    909 
    910     // Filter vector types out of BigVecOperand that don't have the
    911     // right subvector type.
    912     return BigVecOperand->getExtType(VResNo).
    913       EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
    914   }
    915   }
    916   return false;
    917 }
    918 
    919 //===----------------------------------------------------------------------===//
    920 // SDNodeInfo implementation
    921 //
    922 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
    923   EnumName    = R->getValueAsString("Opcode");
    924   SDClassName = R->getValueAsString("SDClass");
    925   Record *TypeProfile = R->getValueAsDef("TypeProfile");
    926   NumResults = TypeProfile->getValueAsInt("NumResults");
    927   NumOperands = TypeProfile->getValueAsInt("NumOperands");
    928 
    929   // Parse the properties.
    930   Properties = 0;
    931   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
    932   for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
    933     if (PropList[i]->getName() == "SDNPCommutative") {
    934       Properties |= 1 << SDNPCommutative;
    935     } else if (PropList[i]->getName() == "SDNPAssociative") {
    936       Properties |= 1 << SDNPAssociative;
    937     } else if (PropList[i]->getName() == "SDNPHasChain") {
    938       Properties |= 1 << SDNPHasChain;
    939     } else if (PropList[i]->getName() == "SDNPOutGlue") {
    940       Properties |= 1 << SDNPOutGlue;
    941     } else if (PropList[i]->getName() == "SDNPInGlue") {
    942       Properties |= 1 << SDNPInGlue;
    943     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
    944       Properties |= 1 << SDNPOptInGlue;
    945     } else if (PropList[i]->getName() == "SDNPMayStore") {
    946       Properties |= 1 << SDNPMayStore;
    947     } else if (PropList[i]->getName() == "SDNPMayLoad") {
    948       Properties |= 1 << SDNPMayLoad;
    949     } else if (PropList[i]->getName() == "SDNPSideEffect") {
    950       Properties |= 1 << SDNPSideEffect;
    951     } else if (PropList[i]->getName() == "SDNPMemOperand") {
    952       Properties |= 1 << SDNPMemOperand;
    953     } else if (PropList[i]->getName() == "SDNPVariadic") {
    954       Properties |= 1 << SDNPVariadic;
    955     } else {
    956       errs() << "Unknown SD Node property '" << PropList[i]->getName()
    957              << "' on node '" << R->getName() << "'!\n";
    958       exit(1);
    959     }
    960   }
    961 
    962 
    963   // Parse the type constraints.
    964   std::vector<Record*> ConstraintList =
    965     TypeProfile->getValueAsListOfDefs("Constraints");
    966   TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
    967 }
    968 
    969 /// getKnownType - If the type constraints on this node imply a fixed type
    970 /// (e.g. all stores return void, etc), then return it as an
    971 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
    972 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
    973   unsigned NumResults = getNumResults();
    974   assert(NumResults <= 1 &&
    975          "We only work with nodes with zero or one result so far!");
    976   assert(ResNo == 0 && "Only handles single result nodes so far");
    977 
    978   for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
    979     // Make sure that this applies to the correct node result.
    980     if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value #
    981       continue;
    982 
    983     switch (TypeConstraints[i].ConstraintType) {
    984     default: break;
    985     case SDTypeConstraint::SDTCisVT:
    986       return TypeConstraints[i].x.SDTCisVT_Info.VT;
    987     case SDTypeConstraint::SDTCisPtrTy:
    988       return MVT::iPTR;
    989     }
    990   }
    991   return MVT::Other;
    992 }
    993 
    994 //===----------------------------------------------------------------------===//
    995 // TreePatternNode implementation
    996 //
    997 
    998 TreePatternNode::~TreePatternNode() {
    999 #if 0 // FIXME: implement refcounted tree nodes!
   1000   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1001     delete getChild(i);
   1002 #endif
   1003 }
   1004 
   1005 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
   1006   if (Operator->getName() == "set" ||
   1007       Operator->getName() == "implicit")
   1008     return 0;  // All return nothing.
   1009 
   1010   if (Operator->isSubClassOf("Intrinsic"))
   1011     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
   1012 
   1013   if (Operator->isSubClassOf("SDNode"))
   1014     return CDP.getSDNodeInfo(Operator).getNumResults();
   1015 
   1016   if (Operator->isSubClassOf("PatFrag")) {
   1017     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
   1018     // the forward reference case where one pattern fragment references another
   1019     // before it is processed.
   1020     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
   1021       return PFRec->getOnlyTree()->getNumTypes();
   1022 
   1023     // Get the result tree.
   1024     DagInit *Tree = Operator->getValueAsDag("Fragment");
   1025     Record *Op = 0;
   1026     if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
   1027       Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
   1028     assert(Op && "Invalid Fragment");
   1029     return GetNumNodeResults(Op, CDP);
   1030   }
   1031 
   1032   if (Operator->isSubClassOf("Instruction")) {
   1033     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
   1034 
   1035     // FIXME: Should allow access to all the results here.
   1036     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
   1037 
   1038     // Add on one implicit def if it has a resolvable type.
   1039     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
   1040       ++NumDefsToAdd;
   1041     return NumDefsToAdd;
   1042   }
   1043 
   1044   if (Operator->isSubClassOf("SDNodeXForm"))
   1045     return 1;  // FIXME: Generalize SDNodeXForm
   1046 
   1047   Operator->dump();
   1048   errs() << "Unhandled node in GetNumNodeResults\n";
   1049   exit(1);
   1050 }
   1051 
   1052 void TreePatternNode::print(raw_ostream &OS) const {
   1053   if (isLeaf())
   1054     OS << *getLeafValue();
   1055   else
   1056     OS << '(' << getOperator()->getName();
   1057 
   1058   for (unsigned i = 0, e = Types.size(); i != e; ++i)
   1059     OS << ':' << getExtType(i).getName();
   1060 
   1061   if (!isLeaf()) {
   1062     if (getNumChildren() != 0) {
   1063       OS << " ";
   1064       getChild(0)->print(OS);
   1065       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
   1066         OS << ", ";
   1067         getChild(i)->print(OS);
   1068       }
   1069     }
   1070     OS << ")";
   1071   }
   1072 
   1073   for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
   1074     OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
   1075   if (TransformFn)
   1076     OS << "<<X:" << TransformFn->getName() << ">>";
   1077   if (!getName().empty())
   1078     OS << ":$" << getName();
   1079 
   1080 }
   1081 void TreePatternNode::dump() const {
   1082   print(errs());
   1083 }
   1084 
   1085 /// isIsomorphicTo - Return true if this node is recursively
   1086 /// isomorphic to the specified node.  For this comparison, the node's
   1087 /// entire state is considered. The assigned name is ignored, since
   1088 /// nodes with differing names are considered isomorphic. However, if
   1089 /// the assigned name is present in the dependent variable set, then
   1090 /// the assigned name is considered significant and the node is
   1091 /// isomorphic if the names match.
   1092 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
   1093                                      const MultipleUseVarSet &DepVars) const {
   1094   if (N == this) return true;
   1095   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
   1096       getPredicateFns() != N->getPredicateFns() ||
   1097       getTransformFn() != N->getTransformFn())
   1098     return false;
   1099 
   1100   if (isLeaf()) {
   1101     if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
   1102       if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
   1103         return ((DI->getDef() == NDI->getDef())
   1104                 && (DepVars.find(getName()) == DepVars.end()
   1105                     || getName() == N->getName()));
   1106       }
   1107     }
   1108     return getLeafValue() == N->getLeafValue();
   1109   }
   1110 
   1111   if (N->getOperator() != getOperator() ||
   1112       N->getNumChildren() != getNumChildren()) return false;
   1113   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1114     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
   1115       return false;
   1116   return true;
   1117 }
   1118 
   1119 /// clone - Make a copy of this tree and all of its children.
   1120 ///
   1121 TreePatternNode *TreePatternNode::clone() const {
   1122   TreePatternNode *New;
   1123   if (isLeaf()) {
   1124     New = new TreePatternNode(getLeafValue(), getNumTypes());
   1125   } else {
   1126     std::vector<TreePatternNode*> CChildren;
   1127     CChildren.reserve(Children.size());
   1128     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1129       CChildren.push_back(getChild(i)->clone());
   1130     New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
   1131   }
   1132   New->setName(getName());
   1133   New->Types = Types;
   1134   New->setPredicateFns(getPredicateFns());
   1135   New->setTransformFn(getTransformFn());
   1136   return New;
   1137 }
   1138 
   1139 /// RemoveAllTypes - Recursively strip all the types of this tree.
   1140 void TreePatternNode::RemoveAllTypes() {
   1141   for (unsigned i = 0, e = Types.size(); i != e; ++i)
   1142     Types[i] = EEVT::TypeSet();  // Reset to unknown type.
   1143   if (isLeaf()) return;
   1144   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1145     getChild(i)->RemoveAllTypes();
   1146 }
   1147 
   1148 
   1149 /// SubstituteFormalArguments - Replace the formal arguments in this tree
   1150 /// with actual values specified by ArgMap.
   1151 void TreePatternNode::
   1152 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
   1153   if (isLeaf()) return;
   1154 
   1155   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
   1156     TreePatternNode *Child = getChild(i);
   1157     if (Child->isLeaf()) {
   1158       Init *Val = Child->getLeafValue();
   1159       if (dynamic_cast<DefInit*>(Val) &&
   1160           static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
   1161         // We found a use of a formal argument, replace it with its value.
   1162         TreePatternNode *NewChild = ArgMap[Child->getName()];
   1163         assert(NewChild && "Couldn't find formal argument!");
   1164         assert((Child->getPredicateFns().empty() ||
   1165                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
   1166                "Non-empty child predicate clobbered!");
   1167         setChild(i, NewChild);
   1168       }
   1169     } else {
   1170       getChild(i)->SubstituteFormalArguments(ArgMap);
   1171     }
   1172   }
   1173 }
   1174 
   1175 
   1176 /// InlinePatternFragments - If this pattern refers to any pattern
   1177 /// fragments, inline them into place, giving us a pattern without any
   1178 /// PatFrag references.
   1179 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
   1180   if (isLeaf()) return this;  // nothing to do.
   1181   Record *Op = getOperator();
   1182 
   1183   if (!Op->isSubClassOf("PatFrag")) {
   1184     // Just recursively inline children nodes.
   1185     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
   1186       TreePatternNode *Child = getChild(i);
   1187       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
   1188 
   1189       assert((Child->getPredicateFns().empty() ||
   1190               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
   1191              "Non-empty child predicate clobbered!");
   1192 
   1193       setChild(i, NewChild);
   1194     }
   1195     return this;
   1196   }
   1197 
   1198   // Otherwise, we found a reference to a fragment.  First, look up its
   1199   // TreePattern record.
   1200   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
   1201 
   1202   // Verify that we are passing the right number of operands.
   1203   if (Frag->getNumArgs() != Children.size())
   1204     TP.error("'" + Op->getName() + "' fragment requires " +
   1205              utostr(Frag->getNumArgs()) + " operands!");
   1206 
   1207   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
   1208 
   1209   TreePredicateFn PredFn(Frag);
   1210   if (!PredFn.isAlwaysTrue())
   1211     FragTree->addPredicateFn(PredFn);
   1212 
   1213   // Resolve formal arguments to their actual value.
   1214   if (Frag->getNumArgs()) {
   1215     // Compute the map of formal to actual arguments.
   1216     std::map<std::string, TreePatternNode*> ArgMap;
   1217     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
   1218       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
   1219 
   1220     FragTree->SubstituteFormalArguments(ArgMap);
   1221   }
   1222 
   1223   FragTree->setName(getName());
   1224   for (unsigned i = 0, e = Types.size(); i != e; ++i)
   1225     FragTree->UpdateNodeType(i, getExtType(i), TP);
   1226 
   1227   // Transfer in the old predicates.
   1228   for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
   1229     FragTree->addPredicateFn(getPredicateFns()[i]);
   1230 
   1231   // Get a new copy of this fragment to stitch into here.
   1232   //delete this;    // FIXME: implement refcounting!
   1233 
   1234   // The fragment we inlined could have recursive inlining that is needed.  See
   1235   // if there are any pattern fragments in it and inline them as needed.
   1236   return FragTree->InlinePatternFragments(TP);
   1237 }
   1238 
   1239 /// getImplicitType - Check to see if the specified record has an implicit
   1240 /// type which should be applied to it.  This will infer the type of register
   1241 /// references from the register file information, for example.
   1242 ///
   1243 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
   1244                                      bool NotRegisters, TreePattern &TP) {
   1245   // Check to see if this is a register operand.
   1246   if (R->isSubClassOf("RegisterOperand")) {
   1247     assert(ResNo == 0 && "Regoperand ref only has one result!");
   1248     if (NotRegisters)
   1249       return EEVT::TypeSet(); // Unknown.
   1250     Record *RegClass = R->getValueAsDef("RegClass");
   1251     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
   1252     return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
   1253   }
   1254 
   1255   // Check to see if this is a register or a register class.
   1256   if (R->isSubClassOf("RegisterClass")) {
   1257     assert(ResNo == 0 && "Regclass ref only has one result!");
   1258     if (NotRegisters)
   1259       return EEVT::TypeSet(); // Unknown.
   1260     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
   1261     return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
   1262   }
   1263 
   1264   if (R->isSubClassOf("PatFrag")) {
   1265     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
   1266     // Pattern fragment types will be resolved when they are inlined.
   1267     return EEVT::TypeSet(); // Unknown.
   1268   }
   1269 
   1270   if (R->isSubClassOf("Register")) {
   1271     assert(ResNo == 0 && "Registers only produce one result!");
   1272     if (NotRegisters)
   1273       return EEVT::TypeSet(); // Unknown.
   1274     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
   1275     return EEVT::TypeSet(T.getRegisterVTs(R));
   1276   }
   1277 
   1278   if (R->isSubClassOf("SubRegIndex")) {
   1279     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
   1280     return EEVT::TypeSet();
   1281   }
   1282 
   1283   if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
   1284     assert(ResNo == 0 && "This node only has one result!");
   1285     // Using a VTSDNode or CondCodeSDNode.
   1286     return EEVT::TypeSet(MVT::Other, TP);
   1287   }
   1288 
   1289   if (R->isSubClassOf("ComplexPattern")) {
   1290     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
   1291     if (NotRegisters)
   1292       return EEVT::TypeSet(); // Unknown.
   1293    return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
   1294                          TP);
   1295   }
   1296   if (R->isSubClassOf("PointerLikeRegClass")) {
   1297     assert(ResNo == 0 && "Regclass can only have one result!");
   1298     return EEVT::TypeSet(MVT::iPTR, TP);
   1299   }
   1300 
   1301   if (R->getName() == "node" || R->getName() == "srcvalue" ||
   1302       R->getName() == "zero_reg") {
   1303     // Placeholder.
   1304     return EEVT::TypeSet(); // Unknown.
   1305   }
   1306 
   1307   TP.error("Unknown node flavor used in pattern: " + R->getName());
   1308   return EEVT::TypeSet(MVT::Other, TP);
   1309 }
   1310 
   1311 
   1312 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
   1313 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
   1314 const CodeGenIntrinsic *TreePatternNode::
   1315 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
   1316   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
   1317       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
   1318       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
   1319     return 0;
   1320 
   1321   unsigned IID =
   1322     dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
   1323   return &CDP.getIntrinsicInfo(IID);
   1324 }
   1325 
   1326 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
   1327 /// return the ComplexPattern information, otherwise return null.
   1328 const ComplexPattern *
   1329 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
   1330   if (!isLeaf()) return 0;
   1331 
   1332   DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
   1333   if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
   1334     return &CGP.getComplexPattern(DI->getDef());
   1335   return 0;
   1336 }
   1337 
   1338 /// NodeHasProperty - Return true if this node has the specified property.
   1339 bool TreePatternNode::NodeHasProperty(SDNP Property,
   1340                                       const CodeGenDAGPatterns &CGP) const {
   1341   if (isLeaf()) {
   1342     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
   1343       return CP->hasProperty(Property);
   1344     return false;
   1345   }
   1346 
   1347   Record *Operator = getOperator();
   1348   if (!Operator->isSubClassOf("SDNode")) return false;
   1349 
   1350   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
   1351 }
   1352 
   1353 
   1354 
   1355 
   1356 /// TreeHasProperty - Return true if any node in this tree has the specified
   1357 /// property.
   1358 bool TreePatternNode::TreeHasProperty(SDNP Property,
   1359                                       const CodeGenDAGPatterns &CGP) const {
   1360   if (NodeHasProperty(Property, CGP))
   1361     return true;
   1362   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1363     if (getChild(i)->TreeHasProperty(Property, CGP))
   1364       return true;
   1365   return false;
   1366 }
   1367 
   1368 /// isCommutativeIntrinsic - Return true if the node corresponds to a
   1369 /// commutative intrinsic.
   1370 bool
   1371 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
   1372   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
   1373     return Int->isCommutative;
   1374   return false;
   1375 }
   1376 
   1377 
   1378 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
   1379 /// this node and its children in the tree.  This returns true if it makes a
   1380 /// change, false otherwise.  If a type contradiction is found, throw an
   1381 /// exception.
   1382 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
   1383   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
   1384   if (isLeaf()) {
   1385     if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
   1386       // If it's a regclass or something else known, include the type.
   1387       bool MadeChange = false;
   1388       for (unsigned i = 0, e = Types.size(); i != e; ++i)
   1389         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
   1390                                                         NotRegisters, TP), TP);
   1391       return MadeChange;
   1392     }
   1393 
   1394     if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
   1395       assert(Types.size() == 1 && "Invalid IntInit");
   1396 
   1397       // Int inits are always integers. :)
   1398       bool MadeChange = Types[0].EnforceInteger(TP);
   1399 
   1400       if (!Types[0].isConcrete())
   1401         return MadeChange;
   1402 
   1403       MVT::SimpleValueType VT = getType(0);
   1404       if (VT == MVT::iPTR || VT == MVT::iPTRAny)
   1405         return MadeChange;
   1406 
   1407       unsigned Size = EVT(VT).getSizeInBits();
   1408       // Make sure that the value is representable for this type.
   1409       if (Size >= 32) return MadeChange;
   1410 
   1411       int Val = (II->getValue() << (32-Size)) >> (32-Size);
   1412       if (Val == II->getValue()) return MadeChange;
   1413 
   1414       // If sign-extended doesn't fit, does it fit as unsigned?
   1415       unsigned ValueMask;
   1416       unsigned UnsignedVal;
   1417       ValueMask = unsigned(~uint32_t(0UL) >> (32-Size));
   1418       UnsignedVal = unsigned(II->getValue());
   1419 
   1420       if ((ValueMask & UnsignedVal) == UnsignedVal)
   1421         return MadeChange;
   1422 
   1423       TP.error("Integer value '" + itostr(II->getValue())+
   1424                "' is out of range for type '" + getEnumName(getType(0)) + "'!");
   1425       return MadeChange;
   1426     }
   1427     return false;
   1428   }
   1429 
   1430   // special handling for set, which isn't really an SDNode.
   1431   if (getOperator()->getName() == "set") {
   1432     assert(getNumTypes() == 0 && "Set doesn't produce a value");
   1433     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
   1434     unsigned NC = getNumChildren();
   1435 
   1436     TreePatternNode *SetVal = getChild(NC-1);
   1437     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
   1438 
   1439     for (unsigned i = 0; i < NC-1; ++i) {
   1440       TreePatternNode *Child = getChild(i);
   1441       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
   1442 
   1443       // Types of operands must match.
   1444       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
   1445       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
   1446     }
   1447     return MadeChange;
   1448   }
   1449 
   1450   if (getOperator()->getName() == "implicit") {
   1451     assert(getNumTypes() == 0 && "Node doesn't produce a value");
   1452 
   1453     bool MadeChange = false;
   1454     for (unsigned i = 0; i < getNumChildren(); ++i)
   1455       MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
   1456     return MadeChange;
   1457   }
   1458 
   1459   if (getOperator()->getName() == "COPY_TO_REGCLASS") {
   1460     bool MadeChange = false;
   1461     MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
   1462     MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
   1463 
   1464     assert(getChild(0)->getNumTypes() == 1 &&
   1465            getChild(1)->getNumTypes() == 1 && "Unhandled case");
   1466 
   1467     // child #1 of COPY_TO_REGCLASS should be a register class.  We don't care
   1468     // what type it gets, so if it didn't get a concrete type just give it the
   1469     // first viable type from the reg class.
   1470     if (!getChild(1)->hasTypeSet(0) &&
   1471         !getChild(1)->getExtType(0).isCompletelyUnknown()) {
   1472       MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
   1473       MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
   1474     }
   1475     return MadeChange;
   1476   }
   1477 
   1478   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
   1479     bool MadeChange = false;
   1480 
   1481     // Apply the result type to the node.
   1482     unsigned NumRetVTs = Int->IS.RetVTs.size();
   1483     unsigned NumParamVTs = Int->IS.ParamVTs.size();
   1484 
   1485     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
   1486       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
   1487 
   1488     if (getNumChildren() != NumParamVTs + 1)
   1489       TP.error("Intrinsic '" + Int->Name + "' expects " +
   1490                utostr(NumParamVTs) + " operands, not " +
   1491                utostr(getNumChildren() - 1) + " operands!");
   1492 
   1493     // Apply type info to the intrinsic ID.
   1494     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
   1495 
   1496     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
   1497       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
   1498 
   1499       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
   1500       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
   1501       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
   1502     }
   1503     return MadeChange;
   1504   }
   1505 
   1506   if (getOperator()->isSubClassOf("SDNode")) {
   1507     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
   1508 
   1509     // Check that the number of operands is sane.  Negative operands -> varargs.
   1510     if (NI.getNumOperands() >= 0 &&
   1511         getNumChildren() != (unsigned)NI.getNumOperands())
   1512       TP.error(getOperator()->getName() + " node requires exactly " +
   1513                itostr(NI.getNumOperands()) + " operands!");
   1514 
   1515     bool MadeChange = NI.ApplyTypeConstraints(this, TP);
   1516     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1517       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
   1518     return MadeChange;
   1519   }
   1520 
   1521   if (getOperator()->isSubClassOf("Instruction")) {
   1522     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
   1523     CodeGenInstruction &InstInfo =
   1524       CDP.getTargetInfo().getInstruction(getOperator());
   1525 
   1526     bool MadeChange = false;
   1527 
   1528     // Apply the result types to the node, these come from the things in the
   1529     // (outs) list of the instruction.
   1530     // FIXME: Cap at one result so far.
   1531     unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
   1532     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
   1533       Record *ResultNode = Inst.getResult(ResNo);
   1534 
   1535       if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
   1536         MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
   1537       } else if (ResultNode->isSubClassOf("RegisterOperand")) {
   1538         Record *RegClass = ResultNode->getValueAsDef("RegClass");
   1539         const CodeGenRegisterClass &RC =
   1540           CDP.getTargetInfo().getRegisterClass(RegClass);
   1541         MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
   1542       } else if (ResultNode->getName() == "unknown") {
   1543         // Nothing to do.
   1544       } else {
   1545         assert(ResultNode->isSubClassOf("RegisterClass") &&
   1546                "Operands should be register classes!");
   1547         const CodeGenRegisterClass &RC =
   1548           CDP.getTargetInfo().getRegisterClass(ResultNode);
   1549         MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
   1550       }
   1551     }
   1552 
   1553     // If the instruction has implicit defs, we apply the first one as a result.
   1554     // FIXME: This sucks, it should apply all implicit defs.
   1555     if (!InstInfo.ImplicitDefs.empty()) {
   1556       unsigned ResNo = NumResultsToAdd;
   1557 
   1558       // FIXME: Generalize to multiple possible types and multiple possible
   1559       // ImplicitDefs.
   1560       MVT::SimpleValueType VT =
   1561         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
   1562 
   1563       if (VT != MVT::Other)
   1564         MadeChange |= UpdateNodeType(ResNo, VT, TP);
   1565     }
   1566 
   1567     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
   1568     // be the same.
   1569     if (getOperator()->getName() == "INSERT_SUBREG") {
   1570       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
   1571       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
   1572       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
   1573     }
   1574 
   1575     unsigned ChildNo = 0;
   1576     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
   1577       Record *OperandNode = Inst.getOperand(i);
   1578 
   1579       // If the instruction expects a predicate or optional def operand, we
   1580       // codegen this by setting the operand to it's default value if it has a
   1581       // non-empty DefaultOps field.
   1582       if ((OperandNode->isSubClassOf("PredicateOperand") ||
   1583            OperandNode->isSubClassOf("OptionalDefOperand")) &&
   1584           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
   1585         continue;
   1586 
   1587       // Verify that we didn't run out of provided operands.
   1588       if (ChildNo >= getNumChildren())
   1589         TP.error("Instruction '" + getOperator()->getName() +
   1590                  "' expects more operands than were provided.");
   1591 
   1592       MVT::SimpleValueType VT;
   1593       TreePatternNode *Child = getChild(ChildNo++);
   1594       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
   1595 
   1596       if (OperandNode->isSubClassOf("RegisterClass")) {
   1597         const CodeGenRegisterClass &RC =
   1598           CDP.getTargetInfo().getRegisterClass(OperandNode);
   1599         MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
   1600       } else if (OperandNode->isSubClassOf("RegisterOperand")) {
   1601         Record *RegClass = OperandNode->getValueAsDef("RegClass");
   1602         const CodeGenRegisterClass &RC =
   1603           CDP.getTargetInfo().getRegisterClass(RegClass);
   1604         MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
   1605       } else if (OperandNode->isSubClassOf("Operand")) {
   1606         VT = getValueType(OperandNode->getValueAsDef("Type"));
   1607         MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
   1608       } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
   1609         MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
   1610       } else if (OperandNode->getName() == "unknown") {
   1611         // Nothing to do.
   1612       } else {
   1613         assert(0 && "Unknown operand type!");
   1614         abort();
   1615       }
   1616       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
   1617     }
   1618 
   1619     if (ChildNo != getNumChildren())
   1620       TP.error("Instruction '" + getOperator()->getName() +
   1621                "' was provided too many operands!");
   1622 
   1623     return MadeChange;
   1624   }
   1625 
   1626   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
   1627 
   1628   // Node transforms always take one operand.
   1629   if (getNumChildren() != 1)
   1630     TP.error("Node transform '" + getOperator()->getName() +
   1631              "' requires one operand!");
   1632 
   1633   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
   1634 
   1635 
   1636   // If either the output or input of the xform does not have exact
   1637   // type info. We assume they must be the same. Otherwise, it is perfectly
   1638   // legal to transform from one type to a completely different type.
   1639 #if 0
   1640   if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
   1641     bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
   1642     MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
   1643     return MadeChange;
   1644   }
   1645 #endif
   1646   return MadeChange;
   1647 }
   1648 
   1649 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
   1650 /// RHS of a commutative operation, not the on LHS.
   1651 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
   1652   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
   1653     return true;
   1654   if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
   1655     return true;
   1656   return false;
   1657 }
   1658 
   1659 
   1660 /// canPatternMatch - If it is impossible for this pattern to match on this
   1661 /// target, fill in Reason and return false.  Otherwise, return true.  This is
   1662 /// used as a sanity check for .td files (to prevent people from writing stuff
   1663 /// that can never possibly work), and to prevent the pattern permuter from
   1664 /// generating stuff that is useless.
   1665 bool TreePatternNode::canPatternMatch(std::string &Reason,
   1666                                       const CodeGenDAGPatterns &CDP) {
   1667   if (isLeaf()) return true;
   1668 
   1669   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1670     if (!getChild(i)->canPatternMatch(Reason, CDP))
   1671       return false;
   1672 
   1673   // If this is an intrinsic, handle cases that would make it not match.  For
   1674   // example, if an operand is required to be an immediate.
   1675   if (getOperator()->isSubClassOf("Intrinsic")) {
   1676     // TODO:
   1677     return true;
   1678   }
   1679 
   1680   // If this node is a commutative operator, check that the LHS isn't an
   1681   // immediate.
   1682   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
   1683   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
   1684   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
   1685     // Scan all of the operands of the node and make sure that only the last one
   1686     // is a constant node, unless the RHS also is.
   1687     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
   1688       bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
   1689       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
   1690         if (OnlyOnRHSOfCommutative(getChild(i))) {
   1691           Reason="Immediate value must be on the RHS of commutative operators!";
   1692           return false;
   1693         }
   1694     }
   1695   }
   1696 
   1697   return true;
   1698 }
   1699 
   1700 //===----------------------------------------------------------------------===//
   1701 // TreePattern implementation
   1702 //
   1703 
   1704 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
   1705                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
   1706   isInputPattern = isInput;
   1707   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
   1708     Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
   1709 }
   1710 
   1711 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
   1712                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
   1713   isInputPattern = isInput;
   1714   Trees.push_back(ParseTreePattern(Pat, ""));
   1715 }
   1716 
   1717 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
   1718                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
   1719   isInputPattern = isInput;
   1720   Trees.push_back(Pat);
   1721 }
   1722 
   1723 void TreePattern::error(const std::string &Msg) const {
   1724   dump();
   1725   throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
   1726 }
   1727 
   1728 void TreePattern::ComputeNamedNodes() {
   1729   for (unsigned i = 0, e = Trees.size(); i != e; ++i)
   1730     ComputeNamedNodes(Trees[i]);
   1731 }
   1732 
   1733 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
   1734   if (!N->getName().empty())
   1735     NamedNodes[N->getName()].push_back(N);
   1736 
   1737   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
   1738     ComputeNamedNodes(N->getChild(i));
   1739 }
   1740 
   1741 
   1742 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
   1743   if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
   1744     Record *R = DI->getDef();
   1745 
   1746     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
   1747     // TreePatternNode of its own.  For example:
   1748     ///   (foo GPR, imm) -> (foo GPR, (imm))
   1749     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
   1750       return ParseTreePattern(
   1751         DagInit::get(DI, "",
   1752                      std::vector<std::pair<Init*, std::string> >()),
   1753         OpName);
   1754 
   1755     // Input argument?
   1756     TreePatternNode *Res = new TreePatternNode(DI, 1);
   1757     if (R->getName() == "node" && !OpName.empty()) {
   1758       if (OpName.empty())
   1759         error("'node' argument requires a name to match with operand list");
   1760       Args.push_back(OpName);
   1761     }
   1762 
   1763     Res->setName(OpName);
   1764     return Res;
   1765   }
   1766 
   1767   if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
   1768     if (!OpName.empty())
   1769       error("Constant int argument should not have a name!");
   1770     return new TreePatternNode(II, 1);
   1771   }
   1772 
   1773   if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
   1774     // Turn this into an IntInit.
   1775     Init *II = BI->convertInitializerTo(IntRecTy::get());
   1776     if (II == 0 || !dynamic_cast<IntInit*>(II))
   1777       error("Bits value must be constants!");
   1778     return ParseTreePattern(II, OpName);
   1779   }
   1780 
   1781   DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
   1782   if (!Dag) {
   1783     TheInit->dump();
   1784     error("Pattern has unexpected init kind!");
   1785   }
   1786   DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
   1787   if (!OpDef) error("Pattern has unexpected operator type!");
   1788   Record *Operator = OpDef->getDef();
   1789 
   1790   if (Operator->isSubClassOf("ValueType")) {
   1791     // If the operator is a ValueType, then this must be "type cast" of a leaf
   1792     // node.
   1793     if (Dag->getNumArgs() != 1)
   1794       error("Type cast only takes one operand!");
   1795 
   1796     TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
   1797 
   1798     // Apply the type cast.
   1799     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
   1800     New->UpdateNodeType(0, getValueType(Operator), *this);
   1801 
   1802     if (!OpName.empty())
   1803       error("ValueType cast should not have a name!");
   1804     return New;
   1805   }
   1806 
   1807   // Verify that this is something that makes sense for an operator.
   1808   if (!Operator->isSubClassOf("PatFrag") &&
   1809       !Operator->isSubClassOf("SDNode") &&
   1810       !Operator->isSubClassOf("Instruction") &&
   1811       !Operator->isSubClassOf("SDNodeXForm") &&
   1812       !Operator->isSubClassOf("Intrinsic") &&
   1813       Operator->getName() != "set" &&
   1814       Operator->getName() != "implicit")
   1815     error("Unrecognized node '" + Operator->getName() + "'!");
   1816 
   1817   //  Check to see if this is something that is illegal in an input pattern.
   1818   if (isInputPattern) {
   1819     if (Operator->isSubClassOf("Instruction") ||
   1820         Operator->isSubClassOf("SDNodeXForm"))
   1821       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
   1822   } else {
   1823     if (Operator->isSubClassOf("Intrinsic"))
   1824       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
   1825 
   1826     if (Operator->isSubClassOf("SDNode") &&
   1827         Operator->getName() != "imm" &&
   1828         Operator->getName() != "fpimm" &&
   1829         Operator->getName() != "tglobaltlsaddr" &&
   1830         Operator->getName() != "tconstpool" &&
   1831         Operator->getName() != "tjumptable" &&
   1832         Operator->getName() != "tframeindex" &&
   1833         Operator->getName() != "texternalsym" &&
   1834         Operator->getName() != "tblockaddress" &&
   1835         Operator->getName() != "tglobaladdr" &&
   1836         Operator->getName() != "bb" &&
   1837         Operator->getName() != "vt")
   1838       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
   1839   }
   1840 
   1841   std::vector<TreePatternNode*> Children;
   1842 
   1843   // Parse all the operands.
   1844   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
   1845     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
   1846 
   1847   // If the operator is an intrinsic, then this is just syntactic sugar for for
   1848   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
   1849   // convert the intrinsic name to a number.
   1850   if (Operator->isSubClassOf("Intrinsic")) {
   1851     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
   1852     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
   1853 
   1854     // If this intrinsic returns void, it must have side-effects and thus a
   1855     // chain.
   1856     if (Int.IS.RetVTs.empty())
   1857       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
   1858     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
   1859       // Has side-effects, requires chain.
   1860       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
   1861     else // Otherwise, no chain.
   1862       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
   1863 
   1864     TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
   1865     Children.insert(Children.begin(), IIDNode);
   1866   }
   1867 
   1868   unsigned NumResults = GetNumNodeResults(Operator, CDP);
   1869   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
   1870   Result->setName(OpName);
   1871 
   1872   if (!Dag->getName().empty()) {
   1873     assert(Result->getName().empty());
   1874     Result->setName(Dag->getName());
   1875   }
   1876   return Result;
   1877 }
   1878 
   1879 /// SimplifyTree - See if we can simplify this tree to eliminate something that
   1880 /// will never match in favor of something obvious that will.  This is here
   1881 /// strictly as a convenience to target authors because it allows them to write
   1882 /// more type generic things and have useless type casts fold away.
   1883 ///
   1884 /// This returns true if any change is made.
   1885 static bool SimplifyTree(TreePatternNode *&N) {
   1886   if (N->isLeaf())
   1887     return false;
   1888 
   1889   // If we have a bitconvert with a resolved type and if the source and
   1890   // destination types are the same, then the bitconvert is useless, remove it.
   1891   if (N->getOperator()->getName() == "bitconvert" &&
   1892       N->getExtType(0).isConcrete() &&
   1893       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
   1894       N->getName().empty()) {
   1895     N = N->getChild(0);
   1896     SimplifyTree(N);
   1897     return true;
   1898   }
   1899 
   1900   // Walk all children.
   1901   bool MadeChange = false;
   1902   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
   1903     TreePatternNode *Child = N->getChild(i);
   1904     MadeChange |= SimplifyTree(Child);
   1905     N->setChild(i, Child);
   1906   }
   1907   return MadeChange;
   1908 }
   1909 
   1910 
   1911 
   1912 /// InferAllTypes - Infer/propagate as many types throughout the expression
   1913 /// patterns as possible.  Return true if all types are inferred, false
   1914 /// otherwise.  Throw an exception if a type contradiction is found.
   1915 bool TreePattern::
   1916 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
   1917   if (NamedNodes.empty())
   1918     ComputeNamedNodes();
   1919 
   1920   bool MadeChange = true;
   1921   while (MadeChange) {
   1922     MadeChange = false;
   1923     for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
   1924       MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
   1925       MadeChange |= SimplifyTree(Trees[i]);
   1926     }
   1927 
   1928     // If there are constraints on our named nodes, apply them.
   1929     for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
   1930          I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
   1931       SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
   1932 
   1933       // If we have input named node types, propagate their types to the named
   1934       // values here.
   1935       if (InNamedTypes) {
   1936         // FIXME: Should be error?
   1937         assert(InNamedTypes->count(I->getKey()) &&
   1938                "Named node in output pattern but not input pattern?");
   1939 
   1940         const SmallVectorImpl<TreePatternNode*> &InNodes =
   1941           InNamedTypes->find(I->getKey())->second;
   1942 
   1943         // The input types should be fully resolved by now.
   1944         for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
   1945           // If this node is a register class, and it is the root of the pattern
   1946           // then we're mapping something onto an input register.  We allow
   1947           // changing the type of the input register in this case.  This allows
   1948           // us to match things like:
   1949           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
   1950           if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
   1951             DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
   1952             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
   1953                        DI->getDef()->isSubClassOf("RegisterOperand")))
   1954               continue;
   1955           }
   1956 
   1957           assert(Nodes[i]->getNumTypes() == 1 &&
   1958                  InNodes[0]->getNumTypes() == 1 &&
   1959                  "FIXME: cannot name multiple result nodes yet");
   1960           MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
   1961                                                  *this);
   1962         }
   1963       }
   1964 
   1965       // If there are multiple nodes with the same name, they must all have the
   1966       // same type.
   1967       if (I->second.size() > 1) {
   1968         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
   1969           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
   1970           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
   1971                  "FIXME: cannot name multiple result nodes yet");
   1972 
   1973           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
   1974           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
   1975         }
   1976       }
   1977     }
   1978   }
   1979 
   1980   bool HasUnresolvedTypes = false;
   1981   for (unsigned i = 0, e = Trees.size(); i != e; ++i)
   1982     HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
   1983   return !HasUnresolvedTypes;
   1984 }
   1985 
   1986 void TreePattern::print(raw_ostream &OS) const {
   1987   OS << getRecord()->getName();
   1988   if (!Args.empty()) {
   1989     OS << "(" << Args[0];
   1990     for (unsigned i = 1, e = Args.size(); i != e; ++i)
   1991       OS << ", " << Args[i];
   1992     OS << ")";
   1993   }
   1994   OS << ": ";
   1995 
   1996   if (Trees.size() > 1)
   1997     OS << "[\n";
   1998   for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
   1999     OS << "\t";
   2000     Trees[i]->print(OS);
   2001     OS << "\n";
   2002   }
   2003 
   2004   if (Trees.size() > 1)
   2005     OS << "]\n";
   2006 }
   2007 
   2008 void TreePattern::dump() const { print(errs()); }
   2009 
   2010 //===----------------------------------------------------------------------===//
   2011 // CodeGenDAGPatterns implementation
   2012 //
   2013 
   2014 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
   2015   Records(R), Target(R) {
   2016 
   2017   Intrinsics = LoadIntrinsics(Records, false);
   2018   TgtIntrinsics = LoadIntrinsics(Records, true);
   2019   ParseNodeInfo();
   2020   ParseNodeTransforms();
   2021   ParseComplexPatterns();
   2022   ParsePatternFragments();
   2023   ParseDefaultOperands();
   2024   ParseInstructions();
   2025   ParsePatterns();
   2026 
   2027   // Generate variants.  For example, commutative patterns can match
   2028   // multiple ways.  Add them to PatternsToMatch as well.
   2029   GenerateVariants();
   2030 
   2031   // Infer instruction flags.  For example, we can detect loads,
   2032   // stores, and side effects in many cases by examining an
   2033   // instruction's pattern.
   2034   InferInstructionFlags();
   2035 }
   2036 
   2037 CodeGenDAGPatterns::~CodeGenDAGPatterns() {
   2038   for (pf_iterator I = PatternFragments.begin(),
   2039        E = PatternFragments.end(); I != E; ++I)
   2040     delete I->second;
   2041 }
   2042 
   2043 
   2044 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
   2045   Record *N = Records.getDef(Name);
   2046   if (!N || !N->isSubClassOf("SDNode")) {
   2047     errs() << "Error getting SDNode '" << Name << "'!\n";
   2048     exit(1);
   2049   }
   2050   return N;
   2051 }
   2052 
   2053 // Parse all of the SDNode definitions for the target, populating SDNodes.
   2054 void CodeGenDAGPatterns::ParseNodeInfo() {
   2055   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
   2056   while (!Nodes.empty()) {
   2057     SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
   2058     Nodes.pop_back();
   2059   }
   2060 
   2061   // Get the builtin intrinsic nodes.
   2062   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
   2063   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
   2064   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
   2065 }
   2066 
   2067 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
   2068 /// map, and emit them to the file as functions.
   2069 void CodeGenDAGPatterns::ParseNodeTransforms() {
   2070   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
   2071   while (!Xforms.empty()) {
   2072     Record *XFormNode = Xforms.back();
   2073     Record *SDNode = XFormNode->getValueAsDef("Opcode");
   2074     std::string Code = XFormNode->getValueAsCode("XFormFunction");
   2075     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
   2076 
   2077     Xforms.pop_back();
   2078   }
   2079 }
   2080 
   2081 void CodeGenDAGPatterns::ParseComplexPatterns() {
   2082   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
   2083   while (!AMs.empty()) {
   2084     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
   2085     AMs.pop_back();
   2086   }
   2087 }
   2088 
   2089 
   2090 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
   2091 /// file, building up the PatternFragments map.  After we've collected them all,
   2092 /// inline fragments together as necessary, so that there are no references left
   2093 /// inside a pattern fragment to a pattern fragment.
   2094 ///
   2095 void CodeGenDAGPatterns::ParsePatternFragments() {
   2096   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
   2097 
   2098   // First step, parse all of the fragments.
   2099   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
   2100     DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
   2101     TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
   2102     PatternFragments[Fragments[i]] = P;
   2103 
   2104     // Validate the argument list, converting it to set, to discard duplicates.
   2105     std::vector<std::string> &Args = P->getArgList();
   2106     std::set<std::string> OperandsSet(Args.begin(), Args.end());
   2107 
   2108     if (OperandsSet.count(""))
   2109       P->error("Cannot have unnamed 'node' values in pattern fragment!");
   2110 
   2111     // Parse the operands list.
   2112     DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
   2113     DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
   2114     // Special cases: ops == outs == ins. Different names are used to
   2115     // improve readability.
   2116     if (!OpsOp ||
   2117         (OpsOp->getDef()->getName() != "ops" &&
   2118          OpsOp->getDef()->getName() != "outs" &&
   2119          OpsOp->getDef()->getName() != "ins"))
   2120       P->error("Operands list should start with '(ops ... '!");
   2121 
   2122     // Copy over the arguments.
   2123     Args.clear();
   2124     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
   2125       if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
   2126           static_cast<DefInit*>(OpsList->getArg(j))->
   2127           getDef()->getName() != "node")
   2128         P->error("Operands list should all be 'node' values.");
   2129       if (OpsList->getArgName(j).empty())
   2130         P->error("Operands list should have names for each operand!");
   2131       if (!OperandsSet.count(OpsList->getArgName(j)))
   2132         P->error("'" + OpsList->getArgName(j) +
   2133                  "' does not occur in pattern or was multiply specified!");
   2134       OperandsSet.erase(OpsList->getArgName(j));
   2135       Args.push_back(OpsList->getArgName(j));
   2136     }
   2137 
   2138     if (!OperandsSet.empty())
   2139       P->error("Operands list does not contain an entry for operand '" +
   2140                *OperandsSet.begin() + "'!");
   2141 
   2142     // If there is a code init for this fragment, keep track of the fact that
   2143     // this fragment uses it.
   2144     TreePredicateFn PredFn(P);
   2145     if (!PredFn.isAlwaysTrue())
   2146       P->getOnlyTree()->addPredicateFn(PredFn);
   2147 
   2148     // If there is a node transformation corresponding to this, keep track of
   2149     // it.
   2150     Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
   2151     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
   2152       P->getOnlyTree()->setTransformFn(Transform);
   2153   }
   2154 
   2155   // Now that we've parsed all of the tree fragments, do a closure on them so
   2156   // that there are not references to PatFrags left inside of them.
   2157   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
   2158     TreePattern *ThePat = PatternFragments[Fragments[i]];
   2159     ThePat->InlinePatternFragments();
   2160 
   2161     // Infer as many types as possible.  Don't worry about it if we don't infer
   2162     // all of them, some may depend on the inputs of the pattern.
   2163     try {
   2164       ThePat->InferAllTypes();
   2165     } catch (...) {
   2166       // If this pattern fragment is not supported by this target (no types can
   2167       // satisfy its constraints), just ignore it.  If the bogus pattern is
   2168       // actually used by instructions, the type consistency error will be
   2169       // reported there.
   2170     }
   2171 
   2172     // If debugging, print out the pattern fragment result.
   2173     DEBUG(ThePat->dump());
   2174   }
   2175 }
   2176 
   2177 void CodeGenDAGPatterns::ParseDefaultOperands() {
   2178   std::vector<Record*> DefaultOps[2];
   2179   DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
   2180   DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
   2181 
   2182   // Find some SDNode.
   2183   assert(!SDNodes.empty() && "No SDNodes parsed?");
   2184   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
   2185 
   2186   for (unsigned iter = 0; iter != 2; ++iter) {
   2187     for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
   2188       DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
   2189 
   2190       // Clone the DefaultInfo dag node, changing the operator from 'ops' to
   2191       // SomeSDnode so that we can parse this.
   2192       std::vector<std::pair<Init*, std::string> > Ops;
   2193       for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
   2194         Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
   2195                                      DefaultInfo->getArgName(op)));
   2196       DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
   2197 
   2198       // Create a TreePattern to parse this.
   2199       TreePattern P(DefaultOps[iter][i], DI, false, *this);
   2200       assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
   2201 
   2202       // Copy the operands over into a DAGDefaultOperand.
   2203       DAGDefaultOperand DefaultOpInfo;
   2204 
   2205       TreePatternNode *T = P.getTree(0);
   2206       for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
   2207         TreePatternNode *TPN = T->getChild(op);
   2208         while (TPN->ApplyTypeConstraints(P, false))
   2209           /* Resolve all types */;
   2210 
   2211         if (TPN->ContainsUnresolvedType()) {
   2212           if (iter == 0)
   2213             throw "Value #" + utostr(i) + " of PredicateOperand '" +
   2214               DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
   2215           else
   2216             throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
   2217               DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!";
   2218         }
   2219         DefaultOpInfo.DefaultOps.push_back(TPN);
   2220       }
   2221 
   2222       // Insert it into the DefaultOperands map so we can find it later.
   2223       DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
   2224     }
   2225   }
   2226 }
   2227 
   2228 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
   2229 /// instruction input.  Return true if this is a real use.
   2230 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
   2231                       std::map<std::string, TreePatternNode*> &InstInputs) {
   2232   // No name -> not interesting.
   2233   if (Pat->getName().empty()) {
   2234     if (Pat->isLeaf()) {
   2235       DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
   2236       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
   2237                  DI->getDef()->isSubClassOf("RegisterOperand")))
   2238         I->error("Input " + DI->getDef()->getName() + " must be named!");
   2239     }
   2240     return false;
   2241   }
   2242 
   2243   Record *Rec;
   2244   if (Pat->isLeaf()) {
   2245     DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
   2246     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
   2247     Rec = DI->getDef();
   2248   } else {
   2249     Rec = Pat->getOperator();
   2250   }
   2251 
   2252   // SRCVALUE nodes are ignored.
   2253   if (Rec->getName() == "srcvalue")
   2254     return false;
   2255 
   2256   TreePatternNode *&Slot = InstInputs[Pat->getName()];
   2257   if (!Slot) {
   2258     Slot = Pat;
   2259     return true;
   2260   }
   2261   Record *SlotRec;
   2262   if (Slot->isLeaf()) {
   2263     SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
   2264   } else {
   2265     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
   2266     SlotRec = Slot->getOperator();
   2267   }
   2268 
   2269   // Ensure that the inputs agree if we've already seen this input.
   2270   if (Rec != SlotRec)
   2271     I->error("All $" + Pat->getName() + " inputs must agree with each other");
   2272   if (Slot->getExtTypes() != Pat->getExtTypes())
   2273     I->error("All $" + Pat->getName() + " inputs must agree with each other");
   2274   return true;
   2275 }
   2276 
   2277 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
   2278 /// part of "I", the instruction), computing the set of inputs and outputs of
   2279 /// the pattern.  Report errors if we see anything naughty.
   2280 void CodeGenDAGPatterns::
   2281 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
   2282                             std::map<std::string, TreePatternNode*> &InstInputs,
   2283                             std::map<std::string, TreePatternNode*>&InstResults,
   2284                             std::vector<Record*> &InstImpResults) {
   2285   if (Pat->isLeaf()) {
   2286     bool isUse = HandleUse(I, Pat, InstInputs);
   2287     if (!isUse && Pat->getTransformFn())
   2288       I->error("Cannot specify a transform function for a non-input value!");
   2289     return;
   2290   }
   2291 
   2292   if (Pat->getOperator()->getName() == "implicit") {
   2293     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
   2294       TreePatternNode *Dest = Pat->getChild(i);
   2295       if (!Dest->isLeaf())
   2296         I->error("implicitly defined value should be a register!");
   2297 
   2298       DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
   2299       if (!Val || !Val->getDef()->isSubClassOf("Register"))
   2300         I->error("implicitly defined value should be a register!");
   2301       InstImpResults.push_back(Val->getDef());
   2302     }
   2303     return;
   2304   }
   2305 
   2306   if (Pat->getOperator()->getName() != "set") {
   2307     // If this is not a set, verify that the children nodes are not void typed,
   2308     // and recurse.
   2309     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
   2310       if (Pat->getChild(i)->getNumTypes() == 0)
   2311         I->error("Cannot have void nodes inside of patterns!");
   2312       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
   2313                                   InstImpResults);
   2314     }
   2315 
   2316     // If this is a non-leaf node with no children, treat it basically as if
   2317     // it were a leaf.  This handles nodes like (imm).
   2318     bool isUse = HandleUse(I, Pat, InstInputs);
   2319 
   2320     if (!isUse && Pat->getTransformFn())
   2321       I->error("Cannot specify a transform function for a non-input value!");
   2322     return;
   2323   }
   2324 
   2325   // Otherwise, this is a set, validate and collect instruction results.
   2326   if (Pat->getNumChildren() == 0)
   2327     I->error("set requires operands!");
   2328 
   2329   if (Pat->getTransformFn())
   2330     I->error("Cannot specify a transform function on a set node!");
   2331 
   2332   // Check the set destinations.
   2333   unsigned NumDests = Pat->getNumChildren()-1;
   2334   for (unsigned i = 0; i != NumDests; ++i) {
   2335     TreePatternNode *Dest = Pat->getChild(i);
   2336     if (!Dest->isLeaf())
   2337       I->error("set destination should be a register!");
   2338 
   2339     DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
   2340     if (!Val)
   2341       I->error("set destination should be a register!");
   2342 
   2343     if (Val->getDef()->isSubClassOf("RegisterClass") ||
   2344         Val->getDef()->isSubClassOf("RegisterOperand") ||
   2345         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
   2346       if (Dest->getName().empty())
   2347         I->error("set destination must have a name!");
   2348       if (InstResults.count(Dest->getName()))
   2349         I->error("cannot set '" + Dest->getName() +"' multiple times");
   2350       InstResults[Dest->getName()] = Dest;
   2351     } else if (Val->getDef()->isSubClassOf("Register")) {
   2352       InstImpResults.push_back(Val->getDef());
   2353     } else {
   2354       I->error("set destination should be a register!");
   2355     }
   2356   }
   2357 
   2358   // Verify and collect info from the computation.
   2359   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
   2360                               InstInputs, InstResults, InstImpResults);
   2361 }
   2362 
   2363 //===----------------------------------------------------------------------===//
   2364 // Instruction Analysis
   2365 //===----------------------------------------------------------------------===//
   2366 
   2367 class InstAnalyzer {
   2368   const CodeGenDAGPatterns &CDP;
   2369   bool &mayStore;
   2370   bool &mayLoad;
   2371   bool &IsBitcast;
   2372   bool &HasSideEffects;
   2373   bool &IsVariadic;
   2374 public:
   2375   InstAnalyzer(const CodeGenDAGPatterns &cdp,
   2376                bool &maystore, bool &mayload, bool &isbc, bool &hse, bool &isv)
   2377     : CDP(cdp), mayStore(maystore), mayLoad(mayload), IsBitcast(isbc),
   2378       HasSideEffects(hse), IsVariadic(isv) {
   2379   }
   2380 
   2381   /// Analyze - Analyze the specified instruction, returning true if the
   2382   /// instruction had a pattern.
   2383   bool Analyze(Record *InstRecord) {
   2384     const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
   2385     if (Pattern == 0) {
   2386       HasSideEffects = 1;
   2387       return false;  // No pattern.
   2388     }
   2389 
   2390     // FIXME: Assume only the first tree is the pattern. The others are clobber
   2391     // nodes.
   2392     AnalyzeNode(Pattern->getTree(0));
   2393     return true;
   2394   }
   2395 
   2396 private:
   2397   bool IsNodeBitcast(const TreePatternNode *N) const {
   2398     if (HasSideEffects || mayLoad || mayStore || IsVariadic)
   2399       return false;
   2400 
   2401     if (N->getNumChildren() != 2)
   2402       return false;
   2403 
   2404     const TreePatternNode *N0 = N->getChild(0);
   2405     if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue()))
   2406       return false;
   2407 
   2408     const TreePatternNode *N1 = N->getChild(1);
   2409     if (N1->isLeaf())
   2410       return false;
   2411     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
   2412       return false;
   2413 
   2414     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
   2415     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
   2416       return false;
   2417     return OpInfo.getEnumName() == "ISD::BITCAST";
   2418   }
   2419 
   2420   void AnalyzeNode(const TreePatternNode *N) {
   2421     if (N->isLeaf()) {
   2422       if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
   2423         Record *LeafRec = DI->getDef();
   2424         // Handle ComplexPattern leaves.
   2425         if (LeafRec->isSubClassOf("ComplexPattern")) {
   2426           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
   2427           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
   2428           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
   2429           if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
   2430         }
   2431       }
   2432       return;
   2433     }
   2434 
   2435     // Analyze children.
   2436     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
   2437       AnalyzeNode(N->getChild(i));
   2438 
   2439     // Ignore set nodes, which are not SDNodes.
   2440     if (N->getOperator()->getName() == "set") {
   2441       IsBitcast = IsNodeBitcast(N);
   2442       return;
   2443     }
   2444 
   2445     // Get information about the SDNode for the operator.
   2446     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
   2447 
   2448     // Notice properties of the node.
   2449     if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
   2450     if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
   2451     if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
   2452     if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true;
   2453 
   2454     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
   2455       // If this is an intrinsic, analyze it.
   2456       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
   2457         mayLoad = true;// These may load memory.
   2458 
   2459       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
   2460         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
   2461 
   2462       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
   2463         // WriteMem intrinsics can have other strange effects.
   2464         HasSideEffects = true;
   2465     }
   2466   }
   2467 
   2468 };
   2469 
   2470 static void InferFromPattern(const CodeGenInstruction &Inst,
   2471                              bool &MayStore, bool &MayLoad,
   2472                              bool &IsBitcast,
   2473                              bool &HasSideEffects, bool &IsVariadic,
   2474                              const CodeGenDAGPatterns &CDP) {
   2475   MayStore = MayLoad = IsBitcast = HasSideEffects = IsVariadic = false;
   2476 
   2477   bool HadPattern =
   2478     InstAnalyzer(CDP, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic)
   2479     .Analyze(Inst.TheDef);
   2480 
   2481   // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
   2482   if (Inst.mayStore) {  // If the .td file explicitly sets mayStore, use it.
   2483     // If we decided that this is a store from the pattern, then the .td file
   2484     // entry is redundant.
   2485     if (MayStore)
   2486       fprintf(stderr,
   2487               "Warning: mayStore flag explicitly set on instruction '%s'"
   2488               " but flag already inferred from pattern.\n",
   2489               Inst.TheDef->getName().c_str());
   2490     MayStore = true;
   2491   }
   2492 
   2493   if (Inst.mayLoad) {  // If the .td file explicitly sets mayLoad, use it.
   2494     // If we decided that this is a load from the pattern, then the .td file
   2495     // entry is redundant.
   2496     if (MayLoad)
   2497       fprintf(stderr,
   2498               "Warning: mayLoad flag explicitly set on instruction '%s'"
   2499               " but flag already inferred from pattern.\n",
   2500               Inst.TheDef->getName().c_str());
   2501     MayLoad = true;
   2502   }
   2503 
   2504   if (Inst.neverHasSideEffects) {
   2505     if (HadPattern)
   2506       fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
   2507               "which already has a pattern\n", Inst.TheDef->getName().c_str());
   2508     HasSideEffects = false;
   2509   }
   2510 
   2511   if (Inst.hasSideEffects) {
   2512     if (HasSideEffects)
   2513       fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
   2514               "which already inferred this.\n", Inst.TheDef->getName().c_str());
   2515     HasSideEffects = true;
   2516   }
   2517 
   2518   if (Inst.Operands.isVariadic)
   2519     IsVariadic = true;  // Can warn if we want.
   2520 }
   2521 
   2522 /// ParseInstructions - Parse all of the instructions, inlining and resolving
   2523 /// any fragments involved.  This populates the Instructions list with fully
   2524 /// resolved instructions.
   2525 void CodeGenDAGPatterns::ParseInstructions() {
   2526   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
   2527 
   2528   for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
   2529     ListInit *LI = 0;
   2530 
   2531     if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
   2532       LI = Instrs[i]->getValueAsListInit("Pattern");
   2533 
   2534     // If there is no pattern, only collect minimal information about the
   2535     // instruction for its operand list.  We have to assume that there is one
   2536     // result, as we have no detailed info.
   2537     if (!LI || LI->getSize() == 0) {
   2538       std::vector<Record*> Results;
   2539       std::vector<Record*> Operands;
   2540 
   2541       CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
   2542 
   2543       if (InstInfo.Operands.size() != 0) {
   2544         if (InstInfo.Operands.NumDefs == 0) {
   2545           // These produce no results
   2546           for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
   2547             Operands.push_back(InstInfo.Operands[j].Rec);
   2548         } else {
   2549           // Assume the first operand is the result.
   2550           Results.push_back(InstInfo.Operands[0].Rec);
   2551 
   2552           // The rest are inputs.
   2553           for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
   2554             Operands.push_back(InstInfo.Operands[j].Rec);
   2555         }
   2556       }
   2557 
   2558       // Create and insert the instruction.
   2559       std::vector<Record*> ImpResults;
   2560       Instructions.insert(std::make_pair(Instrs[i],
   2561                           DAGInstruction(0, Results, Operands, ImpResults)));
   2562       continue;  // no pattern.
   2563     }
   2564 
   2565     // Parse the instruction.
   2566     TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
   2567     // Inline pattern fragments into it.
   2568     I->InlinePatternFragments();
   2569 
   2570     // Infer as many types as possible.  If we cannot infer all of them, we can
   2571     // never do anything with this instruction pattern: report it to the user.
   2572     if (!I->InferAllTypes())
   2573       I->error("Could not infer all types in pattern!");
   2574 
   2575     // InstInputs - Keep track of all of the inputs of the instruction, along
   2576     // with the record they are declared as.
   2577     std::map<std::string, TreePatternNode*> InstInputs;
   2578 
   2579     // InstResults - Keep track of all the virtual registers that are 'set'
   2580     // in the instruction, including what reg class they are.
   2581     std::map<std::string, TreePatternNode*> InstResults;
   2582 
   2583     std::vector<Record*> InstImpResults;
   2584 
   2585     // Verify that the top-level forms in the instruction are of void type, and
   2586     // fill in the InstResults map.
   2587     for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
   2588       TreePatternNode *Pat = I->getTree(j);
   2589       if (Pat->getNumTypes() != 0)
   2590         I->error("Top-level forms in instruction pattern should have"
   2591                  " void types");
   2592 
   2593       // Find inputs and outputs, and verify the structure of the uses/defs.
   2594       FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
   2595                                   InstImpResults);
   2596     }
   2597 
   2598     // Now that we have inputs and outputs of the pattern, inspect the operands
   2599     // list for the instruction.  This determines the order that operands are
   2600     // added to the machine instruction the node corresponds to.
   2601     unsigned NumResults = InstResults.size();
   2602 
   2603     // Parse the operands list from the (ops) list, validating it.
   2604     assert(I->getArgList().empty() && "Args list should still be empty here!");
   2605     CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
   2606 
   2607     // Check that all of the results occur first in the list.
   2608     std::vector<Record*> Results;
   2609     TreePatternNode *Res0Node = 0;
   2610     for (unsigned i = 0; i != NumResults; ++i) {
   2611       if (i == CGI.Operands.size())
   2612         I->error("'" + InstResults.begin()->first +
   2613                  "' set but does not appear in operand list!");
   2614       const std::string &OpName = CGI.Operands[i].Name;
   2615 
   2616       // Check that it exists in InstResults.
   2617       TreePatternNode *RNode = InstResults[OpName];
   2618       if (RNode == 0)
   2619         I->error("Operand $" + OpName + " does not exist in operand list!");
   2620 
   2621       if (i == 0)
   2622         Res0Node = RNode;
   2623       Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
   2624       if (R == 0)
   2625         I->error("Operand $" + OpName + " should be a set destination: all "
   2626                  "outputs must occur before inputs in operand list!");
   2627 
   2628       if (CGI.Operands[i].Rec != R)
   2629         I->error("Operand $" + OpName + " class mismatch!");
   2630 
   2631       // Remember the return type.
   2632       Results.push_back(CGI.Operands[i].Rec);
   2633 
   2634       // Okay, this one checks out.
   2635       InstResults.erase(OpName);
   2636     }
   2637 
   2638     // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
   2639     // the copy while we're checking the inputs.
   2640     std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
   2641 
   2642     std::vector<TreePatternNode*> ResultNodeOperands;
   2643     std::vector<Record*> Operands;
   2644     for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
   2645       CGIOperandList::OperandInfo &Op = CGI.Operands[i];
   2646       const std::string &OpName = Op.Name;
   2647       if (OpName.empty())
   2648         I->error("Operand #" + utostr(i) + " in operands list has no name!");
   2649 
   2650       if (!InstInputsCheck.count(OpName)) {
   2651         // If this is an predicate operand or optional def operand with an
   2652         // DefaultOps set filled in, we can ignore this.  When we codegen it,
   2653         // we will do so as always executed.
   2654         if (Op.Rec->isSubClassOf("PredicateOperand") ||
   2655             Op.Rec->isSubClassOf("OptionalDefOperand")) {
   2656           // Does it have a non-empty DefaultOps field?  If so, ignore this
   2657           // operand.
   2658           if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
   2659             continue;
   2660         }
   2661         I->error("Operand $" + OpName +
   2662                  " does not appear in the instruction pattern");
   2663       }
   2664       TreePatternNode *InVal = InstInputsCheck[OpName];
   2665       InstInputsCheck.erase(OpName);   // It occurred, remove from map.
   2666 
   2667       if (InVal->isLeaf() &&
   2668           dynamic_cast<DefInit*>(InVal->getLeafValue())) {
   2669         Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
   2670         if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
   2671           I->error("Operand $" + OpName + "'s register class disagrees"
   2672                    " between the operand and pattern");
   2673       }
   2674       Operands.push_back(Op.Rec);
   2675 
   2676       // Construct the result for the dest-pattern operand list.
   2677       TreePatternNode *OpNode = InVal->clone();
   2678 
   2679       // No predicate is useful on the result.
   2680       OpNode->clearPredicateFns();
   2681 
   2682       // Promote the xform function to be an explicit node if set.
   2683       if (Record *Xform = OpNode->getTransformFn()) {
   2684         OpNode->setTransformFn(0);
   2685         std::vector<TreePatternNode*> Children;
   2686         Children.push_back(OpNode);
   2687         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
   2688       }
   2689 
   2690       ResultNodeOperands.push_back(OpNode);
   2691     }
   2692 
   2693     if (!InstInputsCheck.empty())
   2694       I->error("Input operand $" + InstInputsCheck.begin()->first +
   2695                " occurs in pattern but not in operands list!");
   2696 
   2697     TreePatternNode *ResultPattern =
   2698       new TreePatternNode(I->getRecord(), ResultNodeOperands,
   2699                           GetNumNodeResults(I->getRecord(), *this));
   2700     // Copy fully inferred output node type to instruction result pattern.
   2701     for (unsigned i = 0; i != NumResults; ++i)
   2702       ResultPattern->setType(i, Res0Node->getExtType(i));
   2703 
   2704     // Create and insert the instruction.
   2705     // FIXME: InstImpResults should not be part of DAGInstruction.
   2706     DAGInstruction TheInst(I, Results, Operands, InstImpResults);
   2707     Instructions.insert(std::make_pair(I->getRecord(), TheInst));
   2708 
   2709     // Use a temporary tree pattern to infer all types and make sure that the
   2710     // constructed result is correct.  This depends on the instruction already
   2711     // being inserted into the Instructions map.
   2712     TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
   2713     Temp.InferAllTypes(&I->getNamedNodesMap());
   2714 
   2715     DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
   2716     TheInsertedInst.setResultPattern(Temp.getOnlyTree());
   2717 
   2718     DEBUG(I->dump());
   2719   }
   2720 
   2721   // If we can, convert the instructions to be patterns that are matched!
   2722   for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II =
   2723         Instructions.begin(),
   2724        E = Instructions.end(); II != E; ++II) {
   2725     DAGInstruction &TheInst = II->second;
   2726     const TreePattern *I = TheInst.getPattern();
   2727     if (I == 0) continue;  // No pattern.
   2728 
   2729     // FIXME: Assume only the first tree is the pattern. The others are clobber
   2730     // nodes.
   2731     TreePatternNode *Pattern = I->getTree(0);
   2732     TreePatternNode *SrcPattern;
   2733     if (Pattern->getOperator()->getName() == "set") {
   2734       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
   2735     } else{
   2736       // Not a set (store or something?)
   2737       SrcPattern = Pattern;
   2738     }
   2739 
   2740     Record *Instr = II->first;
   2741     AddPatternToMatch(I,
   2742                       PatternToMatch(Instr,
   2743                                      Instr->getValueAsListInit("Predicates"),
   2744                                      SrcPattern,
   2745                                      TheInst.getResultPattern(),
   2746                                      TheInst.getImpResults(),
   2747                                      Instr->getValueAsInt("AddedComplexity"),
   2748                                      Instr->getID()));
   2749   }
   2750 }
   2751 
   2752 
   2753 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
   2754 
   2755 static void FindNames(const TreePatternNode *P,
   2756                       std::map<std::string, NameRecord> &Names,
   2757                       const TreePattern *PatternTop) {
   2758   if (!P->getName().empty()) {
   2759     NameRecord &Rec = Names[P->getName()];
   2760     // If this is the first instance of the name, remember the node.
   2761     if (Rec.second++ == 0)
   2762       Rec.first = P;
   2763     else if (Rec.first->getExtTypes() != P->getExtTypes())
   2764       PatternTop->error("repetition of value: $" + P->getName() +
   2765                         " where different uses have different types!");
   2766   }
   2767 
   2768   if (!P->isLeaf()) {
   2769     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
   2770       FindNames(P->getChild(i), Names, PatternTop);
   2771   }
   2772 }
   2773 
   2774 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
   2775                                            const PatternToMatch &PTM) {
   2776   // Do some sanity checking on the pattern we're about to match.
   2777   std::string Reason;
   2778   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this))
   2779     Pattern->error("Pattern can never match: " + Reason);
   2780 
   2781   // If the source pattern's root is a complex pattern, that complex pattern
   2782   // must specify the nodes it can potentially match.
   2783   if (const ComplexPattern *CP =
   2784         PTM.getSrcPattern()->getComplexPatternInfo(*this))
   2785     if (CP->getRootNodes().empty())
   2786       Pattern->error("ComplexPattern at root must specify list of opcodes it"
   2787                      " could match");
   2788 
   2789 
   2790   // Find all of the named values in the input and output, ensure they have the
   2791   // same type.
   2792   std::map<std::string, NameRecord> SrcNames, DstNames;
   2793   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
   2794   FindNames(PTM.getDstPattern(), DstNames, Pattern);
   2795 
   2796   // Scan all of the named values in the destination pattern, rejecting them if
   2797   // they don't exist in the input pattern.
   2798   for (std::map<std::string, NameRecord>::iterator
   2799        I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
   2800     if (SrcNames[I->first].first == 0)
   2801       Pattern->error("Pattern has input without matching name in output: $" +
   2802                      I->first);
   2803   }
   2804 
   2805   // Scan all of the named values in the source pattern, rejecting them if the
   2806   // name isn't used in the dest, and isn't used to tie two values together.
   2807   for (std::map<std::string, NameRecord>::iterator
   2808        I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
   2809     if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
   2810       Pattern->error("Pattern has dead named input: $" + I->first);
   2811 
   2812   PatternsToMatch.push_back(PTM);
   2813 }
   2814 
   2815 
   2816 
   2817 void CodeGenDAGPatterns::InferInstructionFlags() {
   2818   const std::vector<const CodeGenInstruction*> &Instructions =
   2819     Target.getInstructionsByEnumValue();
   2820   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
   2821     CodeGenInstruction &InstInfo =
   2822       const_cast<CodeGenInstruction &>(*Instructions[i]);
   2823     // Determine properties of the instruction from its pattern.
   2824     bool MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic;
   2825     InferFromPattern(InstInfo, MayStore, MayLoad, IsBitcast,
   2826                      HasSideEffects, IsVariadic, *this);
   2827     InstInfo.mayStore = MayStore;
   2828     InstInfo.mayLoad = MayLoad;
   2829     InstInfo.isBitcast = IsBitcast;
   2830     InstInfo.hasSideEffects = HasSideEffects;
   2831     InstInfo.Operands.isVariadic = IsVariadic;
   2832 
   2833     // Sanity checks.
   2834     if (InstInfo.isReMaterializable && InstInfo.hasSideEffects)
   2835       throw TGError(InstInfo.TheDef->getLoc(), "The instruction " +
   2836                     InstInfo.TheDef->getName() +
   2837                     " is rematerializable AND has unmodeled side effects?");
   2838   }
   2839 }
   2840 
   2841 /// Given a pattern result with an unresolved type, see if we can find one
   2842 /// instruction with an unresolved result type.  Force this result type to an
   2843 /// arbitrary element if it's possible types to converge results.
   2844 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
   2845   if (N->isLeaf())
   2846     return false;
   2847 
   2848   // Analyze children.
   2849   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
   2850     if (ForceArbitraryInstResultType(N->getChild(i), TP))
   2851       return true;
   2852 
   2853   if (!N->getOperator()->isSubClassOf("Instruction"))
   2854     return false;
   2855 
   2856   // If this type is already concrete or completely unknown we can't do
   2857   // anything.
   2858   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
   2859     if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
   2860       continue;
   2861 
   2862     // Otherwise, force its type to the first possibility (an arbitrary choice).
   2863     if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
   2864       return true;
   2865   }
   2866 
   2867   return false;
   2868 }
   2869 
   2870 void CodeGenDAGPatterns::ParsePatterns() {
   2871   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
   2872 
   2873   for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
   2874     Record *CurPattern = Patterns[i];
   2875     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
   2876     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
   2877 
   2878     // Inline pattern fragments into it.
   2879     Pattern->InlinePatternFragments();
   2880 
   2881     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
   2882     if (LI->getSize() == 0) continue;  // no pattern.
   2883 
   2884     // Parse the instruction.
   2885     TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
   2886 
   2887     // Inline pattern fragments into it.
   2888     Result->InlinePatternFragments();
   2889 
   2890     if (Result->getNumTrees() != 1)
   2891       Result->error("Cannot handle instructions producing instructions "
   2892                     "with temporaries yet!");
   2893 
   2894     bool IterateInference;
   2895     bool InferredAllPatternTypes, InferredAllResultTypes;
   2896     do {
   2897       // Infer as many types as possible.  If we cannot infer all of them, we
   2898       // can never do anything with this pattern: report it to the user.
   2899       InferredAllPatternTypes =
   2900         Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
   2901 
   2902       // Infer as many types as possible.  If we cannot infer all of them, we
   2903       // can never do anything with this pattern: report it to the user.
   2904       InferredAllResultTypes =
   2905         Result->InferAllTypes(&Pattern->getNamedNodesMap());
   2906 
   2907       IterateInference = false;
   2908 
   2909       // Apply the type of the result to the source pattern.  This helps us
   2910       // resolve cases where the input type is known to be a pointer type (which
   2911       // is considered resolved), but the result knows it needs to be 32- or
   2912       // 64-bits.  Infer the other way for good measure.
   2913       for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
   2914                                         Pattern->getTree(0)->getNumTypes());
   2915            i != e; ++i) {
   2916         IterateInference = Pattern->getTree(0)->
   2917           UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
   2918         IterateInference |= Result->getTree(0)->
   2919           UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
   2920       }
   2921 
   2922       // If our iteration has converged and the input pattern's types are fully
   2923       // resolved but the result pattern is not fully resolved, we may have a
   2924       // situation where we have two instructions in the result pattern and
   2925       // the instructions require a common register class, but don't care about
   2926       // what actual MVT is used.  This is actually a bug in our modelling:
   2927       // output patterns should have register classes, not MVTs.
   2928       //
   2929       // In any case, to handle this, we just go through and disambiguate some
   2930       // arbitrary types to the result pattern's nodes.
   2931       if (!IterateInference && InferredAllPatternTypes &&
   2932           !InferredAllResultTypes)
   2933         IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
   2934                                                         *Result);
   2935     } while (IterateInference);
   2936 
   2937     // Verify that we inferred enough types that we can do something with the
   2938     // pattern and result.  If these fire the user has to add type casts.
   2939     if (!InferredAllPatternTypes)
   2940       Pattern->error("Could not infer all types in pattern!");
   2941     if (!InferredAllResultTypes) {
   2942       Pattern->dump();
   2943       Result->error("Could not infer all types in pattern result!");
   2944     }
   2945 
   2946     // Validate that the input pattern is correct.
   2947     std::map<std::string, TreePatternNode*> InstInputs;
   2948     std::map<std::string, TreePatternNode*> InstResults;
   2949     std::vector<Record*> InstImpResults;
   2950     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
   2951       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
   2952                                   InstInputs, InstResults,
   2953                                   InstImpResults);
   2954 
   2955     // Promote the xform function to be an explicit node if set.
   2956     TreePatternNode *DstPattern = Result->getOnlyTree();
   2957     std::vector<TreePatternNode*> ResultNodeOperands;
   2958     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
   2959       TreePatternNode *OpNode = DstPattern->getChild(ii);
   2960       if (Record *Xform = OpNode->getTransformFn()) {
   2961         OpNode->setTransformFn(0);
   2962         std::vector<TreePatternNode*> Children;
   2963         Children.push_back(OpNode);
   2964         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
   2965       }
   2966       ResultNodeOperands.push_back(OpNode);
   2967     }
   2968     DstPattern = Result->getOnlyTree();
   2969     if (!DstPattern->isLeaf())
   2970       DstPattern = new TreePatternNode(DstPattern->getOperator(),
   2971                                        ResultNodeOperands,
   2972                                        DstPattern->getNumTypes());
   2973 
   2974     for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
   2975       DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
   2976 
   2977     TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
   2978     Temp.InferAllTypes();
   2979 
   2980 
   2981     AddPatternToMatch(Pattern,
   2982                     PatternToMatch(CurPattern,
   2983                                    CurPattern->getValueAsListInit("Predicates"),
   2984                                    Pattern->getTree(0),
   2985                                    Temp.getOnlyTree(), InstImpResults,
   2986                                    CurPattern->getValueAsInt("AddedComplexity"),
   2987                                    CurPattern->getID()));
   2988   }
   2989 }
   2990 
   2991 /// CombineChildVariants - Given a bunch of permutations of each child of the
   2992 /// 'operator' node, put them together in all possible ways.
   2993 static void CombineChildVariants(TreePatternNode *Orig,
   2994                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
   2995                                  std::vector<TreePatternNode*> &OutVariants,
   2996                                  CodeGenDAGPatterns &CDP,
   2997                                  const MultipleUseVarSet &DepVars) {
   2998   // Make sure that each operand has at least one variant to choose from.
   2999   for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
   3000     if (ChildVariants[i].empty())
   3001       return;
   3002 
   3003   // The end result is an all-pairs construction of the resultant pattern.
   3004   std::vector<unsigned> Idxs;
   3005   Idxs.resize(ChildVariants.size());
   3006   bool NotDone;
   3007   do {
   3008 #ifndef NDEBUG
   3009     DEBUG(if (!Idxs.empty()) {
   3010             errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
   3011               for (unsigned i = 0; i < Idxs.size(); ++i) {
   3012                 errs() << Idxs[i] << " ";
   3013             }
   3014             errs() << "]\n";
   3015           });
   3016 #endif
   3017     // Create the variant and add it to the output list.
   3018     std::vector<TreePatternNode*> NewChildren;
   3019     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
   3020       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
   3021     TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
   3022                                              Orig->getNumTypes());
   3023 
   3024     // Copy over properties.
   3025     R->setName(Orig->getName());
   3026     R->setPredicateFns(Orig->getPredicateFns());
   3027     R->setTransformFn(Orig->getTransformFn());
   3028     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
   3029       R->setType(i, Orig->getExtType(i));
   3030 
   3031     // If this pattern cannot match, do not include it as a variant.
   3032     std::string ErrString;
   3033     if (!R->canPatternMatch(ErrString, CDP)) {
   3034       delete R;
   3035     } else {
   3036       bool AlreadyExists = false;
   3037 
   3038       // Scan to see if this pattern has already been emitted.  We can get
   3039       // duplication due to things like commuting:
   3040       //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
   3041       // which are the same pattern.  Ignore the dups.
   3042       for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
   3043         if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
   3044           AlreadyExists = true;
   3045           break;
   3046         }
   3047 
   3048       if (AlreadyExists)
   3049         delete R;
   3050       else
   3051         OutVariants.push_back(R);
   3052     }
   3053 
   3054     // Increment indices to the next permutation by incrementing the
   3055     // indicies from last index backward, e.g., generate the sequence
   3056     // [0, 0], [0, 1], [1, 0], [1, 1].
   3057     int IdxsIdx;
   3058     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
   3059       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
   3060         Idxs[IdxsIdx] = 0;
   3061       else
   3062         break;
   3063     }
   3064     NotDone = (IdxsIdx >= 0);
   3065   } while (NotDone);
   3066 }
   3067 
   3068 /// CombineChildVariants - A helper function for binary operators.
   3069 ///
   3070 static void CombineChildVariants(TreePatternNode *Orig,
   3071                                  const std::vector<TreePatternNode*> &LHS,
   3072                                  const std::vector<TreePatternNode*> &RHS,
   3073                                  std::vector<TreePatternNode*> &OutVariants,
   3074                                  CodeGenDAGPatterns &CDP,
   3075                                  const MultipleUseVarSet &DepVars) {
   3076   std::vector<std::vector<TreePatternNode*> > ChildVariants;
   3077   ChildVariants.push_back(LHS);
   3078   ChildVariants.push_back(RHS);
   3079   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
   3080 }
   3081 
   3082 
   3083 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
   3084                                      std::vector<TreePatternNode *> &Children) {
   3085   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
   3086   Record *Operator = N->getOperator();
   3087 
   3088   // Only permit raw nodes.
   3089   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
   3090       N->getTransformFn()) {
   3091     Children.push_back(N);
   3092     return;
   3093   }
   3094 
   3095   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
   3096     Children.push_back(N->getChild(0));
   3097   else
   3098     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
   3099 
   3100   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
   3101     Children.push_back(N->getChild(1));
   3102   else
   3103     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
   3104 }
   3105 
   3106 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
   3107 /// the (potentially recursive) pattern by using algebraic laws.
   3108 ///
   3109 static void GenerateVariantsOf(TreePatternNode *N,
   3110                                std::vector<TreePatternNode*> &OutVariants,
   3111                                CodeGenDAGPatterns &CDP,
   3112                                const MultipleUseVarSet &DepVars) {
   3113   // We cannot permute leaves.
   3114   if (N->isLeaf()) {
   3115     OutVariants.push_back(N);
   3116     return;
   3117   }
   3118 
   3119   // Look up interesting info about the node.
   3120   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
   3121 
   3122   // If this node is associative, re-associate.
   3123   if (NodeInfo.hasProperty(SDNPAssociative)) {
   3124     // Re-associate by pulling together all of the linked operators
   3125     std::vector<TreePatternNode*> MaximalChildren;
   3126     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
   3127 
   3128     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
   3129     // permutations.
   3130     if (MaximalChildren.size() == 3) {
   3131       // Find the variants of all of our maximal children.
   3132       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
   3133       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
   3134       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
   3135       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
   3136 
   3137       // There are only two ways we can permute the tree:
   3138       //   (A op B) op C    and    A op (B op C)
   3139       // Within these forms, we can also permute A/B/C.
   3140 
   3141       // Generate legal pair permutations of A/B/C.
   3142       std::vector<TreePatternNode*> ABVariants;
   3143       std::vector<TreePatternNode*> BAVariants;
   3144       std::vector<TreePatternNode*> ACVariants;
   3145       std::vector<TreePatternNode*> CAVariants;
   3146       std::vector<TreePatternNode*> BCVariants;
   3147       std::vector<TreePatternNode*> CBVariants;
   3148       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
   3149       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
   3150       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
   3151       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
   3152       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
   3153       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
   3154 
   3155       // Combine those into the result: (x op x) op x
   3156       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
   3157       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
   3158       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
   3159       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
   3160       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
   3161       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
   3162 
   3163       // Combine those into the result: x op (x op x)
   3164       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
   3165       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
   3166       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
   3167       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
   3168       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
   3169       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
   3170       return;
   3171     }
   3172   }
   3173 
   3174   // Compute permutations of all children.
   3175   std::vector<std::vector<TreePatternNode*> > ChildVariants;
   3176   ChildVariants.resize(N->getNumChildren());
   3177   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
   3178     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
   3179 
   3180   // Build all permutations based on how the children were formed.
   3181   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
   3182 
   3183   // If this node is commutative, consider the commuted order.
   3184   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
   3185   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
   3186     assert((N->getNumChildren()==2 || isCommIntrinsic) &&
   3187            "Commutative but doesn't have 2 children!");
   3188     // Don't count children which are actually register references.
   3189     unsigned NC = 0;
   3190     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
   3191       TreePatternNode *Child = N->getChild(i);
   3192       if (Child->isLeaf())
   3193         if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
   3194           Record *RR = DI->getDef();
   3195           if (RR->isSubClassOf("Register"))
   3196             continue;
   3197         }
   3198       NC++;
   3199     }
   3200     // Consider the commuted order.
   3201     if (isCommIntrinsic) {
   3202       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
   3203       // operands are the commutative operands, and there might be more operands
   3204       // after those.
   3205       assert(NC >= 3 &&
   3206              "Commutative intrinsic should have at least 3 childrean!");
   3207       std::vector<std::vector<TreePatternNode*> > Variants;
   3208       Variants.push_back(ChildVariants[0]); // Intrinsic id.
   3209       Variants.push_back(ChildVariants[2]);
   3210       Variants.push_back(ChildVariants[1]);
   3211       for (unsigned i = 3; i != NC; ++i)
   3212         Variants.push_back(ChildVariants[i]);
   3213       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
   3214     } else if (NC == 2)
   3215       CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
   3216                            OutVariants, CDP, DepVars);
   3217   }
   3218 }
   3219 
   3220 
   3221 // GenerateVariants - Generate variants.  For example, commutative patterns can
   3222 // match multiple ways.  Add them to PatternsToMatch as well.
   3223 void CodeGenDAGPatterns::GenerateVariants() {
   3224   DEBUG(errs() << "Generating instruction variants.\n");
   3225 
   3226   // Loop over all of the patterns we've collected, checking to see if we can
   3227   // generate variants of the instruction, through the exploitation of
   3228   // identities.  This permits the target to provide aggressive matching without
   3229   // the .td file having to contain tons of variants of instructions.
   3230   //
   3231   // Note that this loop adds new patterns to the PatternsToMatch list, but we
   3232   // intentionally do not reconsider these.  Any variants of added patterns have
   3233   // already been added.
   3234   //
   3235   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
   3236     MultipleUseVarSet             DepVars;
   3237     std::vector<TreePatternNode*> Variants;
   3238     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
   3239     DEBUG(errs() << "Dependent/multiply used variables: ");
   3240     DEBUG(DumpDepVars(DepVars));
   3241     DEBUG(errs() << "\n");
   3242     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
   3243                        DepVars);
   3244 
   3245     assert(!Variants.empty() && "Must create at least original variant!");
   3246     Variants.erase(Variants.begin());  // Remove the original pattern.
   3247 
   3248     if (Variants.empty())  // No variants for this pattern.
   3249       continue;
   3250 
   3251     DEBUG(errs() << "FOUND VARIANTS OF: ";
   3252           PatternsToMatch[i].getSrcPattern()->dump();
   3253           errs() << "\n");
   3254 
   3255     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
   3256       TreePatternNode *Variant = Variants[v];
   3257 
   3258       DEBUG(errs() << "  VAR#" << v <<  ": ";
   3259             Variant->dump();
   3260             errs() << "\n");
   3261 
   3262       // Scan to see if an instruction or explicit pattern already matches this.
   3263       bool AlreadyExists = false;
   3264       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
   3265         // Skip if the top level predicates do not match.
   3266         if (PatternsToMatch[i].getPredicates() !=
   3267             PatternsToMatch[p].getPredicates())
   3268           continue;
   3269         // Check to see if this variant already exists.
   3270         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
   3271                                     DepVars)) {
   3272           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
   3273           AlreadyExists = true;
   3274           break;
   3275         }
   3276       }
   3277       // If we already have it, ignore the variant.
   3278       if (AlreadyExists) continue;
   3279 
   3280       // Otherwise, add it to the list of patterns we have.
   3281       PatternsToMatch.
   3282         push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
   3283                                  PatternsToMatch[i].getPredicates(),
   3284                                  Variant, PatternsToMatch[i].getDstPattern(),
   3285                                  PatternsToMatch[i].getDstRegs(),
   3286                                  PatternsToMatch[i].getAddedComplexity(),
   3287                                  Record::getNewUID()));
   3288     }
   3289 
   3290     DEBUG(errs() << "\n");
   3291   }
   3292 }
   3293 
   3294