Home | History | Annotate | Download | only in mips64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_MIPS64
      6 
      7 #include "src/code-stubs.h"
      8 #include "src/api-arguments.h"
      9 #include "src/bootstrapper.h"
     10 #include "src/codegen.h"
     11 #include "src/ic/handler-compiler.h"
     12 #include "src/ic/ic.h"
     13 #include "src/ic/stub-cache.h"
     14 #include "src/isolate.h"
     15 #include "src/mips64/code-stubs-mips64.h"
     16 #include "src/regexp/jsregexp.h"
     17 #include "src/regexp/regexp-macro-assembler.h"
     18 #include "src/runtime/runtime.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 
     23 #define __ ACCESS_MASM(masm)
     24 
     25 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
     26   __ dsll(t9, a0, kPointerSizeLog2);
     27   __ Daddu(t9, sp, t9);
     28   __ sd(a1, MemOperand(t9, 0));
     29   __ Push(a1);
     30   __ Push(a2);
     31   __ Daddu(a0, a0, 3);
     32   __ TailCallRuntime(Runtime::kNewArray);
     33 }
     34 
     35 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
     36                                           Condition cc);
     37 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
     38                                     Register lhs,
     39                                     Register rhs,
     40                                     Label* rhs_not_nan,
     41                                     Label* slow,
     42                                     bool strict);
     43 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
     44                                            Register lhs,
     45                                            Register rhs);
     46 
     47 
     48 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
     49                                                ExternalReference miss) {
     50   // Update the static counter each time a new code stub is generated.
     51   isolate()->counters()->code_stubs()->Increment();
     52 
     53   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
     54   int param_count = descriptor.GetRegisterParameterCount();
     55   {
     56     // Call the runtime system in a fresh internal frame.
     57     FrameScope scope(masm, StackFrame::INTERNAL);
     58     DCHECK((param_count == 0) ||
     59            a0.is(descriptor.GetRegisterParameter(param_count - 1)));
     60     // Push arguments, adjust sp.
     61     __ Dsubu(sp, sp, Operand(param_count * kPointerSize));
     62     for (int i = 0; i < param_count; ++i) {
     63       // Store argument to stack.
     64       __ sd(descriptor.GetRegisterParameter(i),
     65             MemOperand(sp, (param_count - 1 - i) * kPointerSize));
     66     }
     67     __ CallExternalReference(miss, param_count);
     68   }
     69 
     70   __ Ret();
     71 }
     72 
     73 
     74 void DoubleToIStub::Generate(MacroAssembler* masm) {
     75   Label out_of_range, only_low, negate, done;
     76   Register input_reg = source();
     77   Register result_reg = destination();
     78 
     79   int double_offset = offset();
     80   // Account for saved regs if input is sp.
     81   if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
     82 
     83   Register scratch =
     84       GetRegisterThatIsNotOneOf(input_reg, result_reg);
     85   Register scratch2 =
     86       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
     87   Register scratch3 =
     88       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
     89   DoubleRegister double_scratch = kLithiumScratchDouble;
     90 
     91   __ Push(scratch, scratch2, scratch3);
     92   if (!skip_fastpath()) {
     93     // Load double input.
     94     __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
     95 
     96     // Clear cumulative exception flags and save the FCSR.
     97     __ cfc1(scratch2, FCSR);
     98     __ ctc1(zero_reg, FCSR);
     99 
    100     // Try a conversion to a signed integer.
    101     __ Trunc_w_d(double_scratch, double_scratch);
    102     // Move the converted value into the result register.
    103     __ mfc1(scratch3, double_scratch);
    104 
    105     // Retrieve and restore the FCSR.
    106     __ cfc1(scratch, FCSR);
    107     __ ctc1(scratch2, FCSR);
    108 
    109     // Check for overflow and NaNs.
    110     __ And(
    111         scratch, scratch,
    112         kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
    113            | kFCSRInvalidOpFlagMask);
    114     // If we had no exceptions then set result_reg and we are done.
    115     Label error;
    116     __ Branch(&error, ne, scratch, Operand(zero_reg));
    117     __ Move(result_reg, scratch3);
    118     __ Branch(&done);
    119     __ bind(&error);
    120   }
    121 
    122   // Load the double value and perform a manual truncation.
    123   Register input_high = scratch2;
    124   Register input_low = scratch3;
    125 
    126   __ lw(input_low,
    127         MemOperand(input_reg, double_offset + Register::kMantissaOffset));
    128   __ lw(input_high,
    129         MemOperand(input_reg, double_offset + Register::kExponentOffset));
    130 
    131   Label normal_exponent, restore_sign;
    132   // Extract the biased exponent in result.
    133   __ Ext(result_reg,
    134          input_high,
    135          HeapNumber::kExponentShift,
    136          HeapNumber::kExponentBits);
    137 
    138   // Check for Infinity and NaNs, which should return 0.
    139   __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
    140   __ Movz(result_reg, zero_reg, scratch);
    141   __ Branch(&done, eq, scratch, Operand(zero_reg));
    142 
    143   // Express exponent as delta to (number of mantissa bits + 31).
    144   __ Subu(result_reg,
    145           result_reg,
    146           Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
    147 
    148   // If the delta is strictly positive, all bits would be shifted away,
    149   // which means that we can return 0.
    150   __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
    151   __ mov(result_reg, zero_reg);
    152   __ Branch(&done);
    153 
    154   __ bind(&normal_exponent);
    155   const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
    156   // Calculate shift.
    157   __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
    158 
    159   // Save the sign.
    160   Register sign = result_reg;
    161   result_reg = no_reg;
    162   __ And(sign, input_high, Operand(HeapNumber::kSignMask));
    163 
    164   // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
    165   // to check for this specific case.
    166   Label high_shift_needed, high_shift_done;
    167   __ Branch(&high_shift_needed, lt, scratch, Operand(32));
    168   __ mov(input_high, zero_reg);
    169   __ Branch(&high_shift_done);
    170   __ bind(&high_shift_needed);
    171 
    172   // Set the implicit 1 before the mantissa part in input_high.
    173   __ Or(input_high,
    174         input_high,
    175         Operand(1 << HeapNumber::kMantissaBitsInTopWord));
    176   // Shift the mantissa bits to the correct position.
    177   // We don't need to clear non-mantissa bits as they will be shifted away.
    178   // If they weren't, it would mean that the answer is in the 32bit range.
    179   __ sllv(input_high, input_high, scratch);
    180 
    181   __ bind(&high_shift_done);
    182 
    183   // Replace the shifted bits with bits from the lower mantissa word.
    184   Label pos_shift, shift_done;
    185   __ li(at, 32);
    186   __ subu(scratch, at, scratch);
    187   __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
    188 
    189   // Negate scratch.
    190   __ Subu(scratch, zero_reg, scratch);
    191   __ sllv(input_low, input_low, scratch);
    192   __ Branch(&shift_done);
    193 
    194   __ bind(&pos_shift);
    195   __ srlv(input_low, input_low, scratch);
    196 
    197   __ bind(&shift_done);
    198   __ Or(input_high, input_high, Operand(input_low));
    199   // Restore sign if necessary.
    200   __ mov(scratch, sign);
    201   result_reg = sign;
    202   sign = no_reg;
    203   __ Subu(result_reg, zero_reg, input_high);
    204   __ Movz(result_reg, input_high, scratch);
    205 
    206   __ bind(&done);
    207 
    208   __ Pop(scratch, scratch2, scratch3);
    209   __ Ret();
    210 }
    211 
    212 
    213 // Handle the case where the lhs and rhs are the same object.
    214 // Equality is almost reflexive (everything but NaN), so this is a test
    215 // for "identity and not NaN".
    216 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
    217                                           Condition cc) {
    218   Label not_identical;
    219   Label heap_number, return_equal;
    220   Register exp_mask_reg = t1;
    221 
    222   __ Branch(&not_identical, ne, a0, Operand(a1));
    223 
    224   __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
    225 
    226   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
    227   // so we do the second best thing - test it ourselves.
    228   // They are both equal and they are not both Smis so both of them are not
    229   // Smis. If it's not a heap number, then return equal.
    230   __ GetObjectType(a0, t0, t0);
    231   if (cc == less || cc == greater) {
    232     // Call runtime on identical JSObjects.
    233     __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
    234     // Call runtime on identical symbols since we need to throw a TypeError.
    235     __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
    236   } else {
    237     __ Branch(&heap_number, eq, t0, Operand(HEAP_NUMBER_TYPE));
    238     // Comparing JS objects with <=, >= is complicated.
    239     if (cc != eq) {
    240       __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
    241       // Call runtime on identical symbols since we need to throw a TypeError.
    242       __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
    243       // Normally here we fall through to return_equal, but undefined is
    244       // special: (undefined == undefined) == true, but
    245       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
    246       if (cc == less_equal || cc == greater_equal) {
    247         __ Branch(&return_equal, ne, t0, Operand(ODDBALL_TYPE));
    248         __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
    249         __ Branch(&return_equal, ne, a0, Operand(a6));
    250         DCHECK(is_int16(GREATER) && is_int16(LESS));
    251         __ Ret(USE_DELAY_SLOT);
    252         if (cc == le) {
    253           // undefined <= undefined should fail.
    254           __ li(v0, Operand(GREATER));
    255         } else  {
    256           // undefined >= undefined should fail.
    257           __ li(v0, Operand(LESS));
    258         }
    259       }
    260     }
    261   }
    262 
    263   __ bind(&return_equal);
    264   DCHECK(is_int16(GREATER) && is_int16(LESS));
    265   __ Ret(USE_DELAY_SLOT);
    266   if (cc == less) {
    267     __ li(v0, Operand(GREATER));  // Things aren't less than themselves.
    268   } else if (cc == greater) {
    269     __ li(v0, Operand(LESS));     // Things aren't greater than themselves.
    270   } else {
    271     __ mov(v0, zero_reg);         // Things are <=, >=, ==, === themselves.
    272   }
    273   // For less and greater we don't have to check for NaN since the result of
    274   // x < x is false regardless.  For the others here is some code to check
    275   // for NaN.
    276   if (cc != lt && cc != gt) {
    277     __ bind(&heap_number);
    278     // It is a heap number, so return non-equal if it's NaN and equal if it's
    279     // not NaN.
    280 
    281     // The representation of NaN values has all exponent bits (52..62) set,
    282     // and not all mantissa bits (0..51) clear.
    283     // Read top bits of double representation (second word of value).
    284     __ lwu(a6, FieldMemOperand(a0, HeapNumber::kExponentOffset));
    285     // Test that exponent bits are all set.
    286     __ And(a7, a6, Operand(exp_mask_reg));
    287     // If all bits not set (ne cond), then not a NaN, objects are equal.
    288     __ Branch(&return_equal, ne, a7, Operand(exp_mask_reg));
    289 
    290     // Shift out flag and all exponent bits, retaining only mantissa.
    291     __ sll(a6, a6, HeapNumber::kNonMantissaBitsInTopWord);
    292     // Or with all low-bits of mantissa.
    293     __ lwu(a7, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
    294     __ Or(v0, a7, Operand(a6));
    295     // For equal we already have the right value in v0:  Return zero (equal)
    296     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
    297     // not (it's a NaN).  For <= and >= we need to load v0 with the failing
    298     // value if it's a NaN.
    299     if (cc != eq) {
    300       // All-zero means Infinity means equal.
    301       __ Ret(eq, v0, Operand(zero_reg));
    302       DCHECK(is_int16(GREATER) && is_int16(LESS));
    303       __ Ret(USE_DELAY_SLOT);
    304       if (cc == le) {
    305         __ li(v0, Operand(GREATER));  // NaN <= NaN should fail.
    306       } else {
    307         __ li(v0, Operand(LESS));     // NaN >= NaN should fail.
    308       }
    309     }
    310   }
    311   // No fall through here.
    312 
    313   __ bind(&not_identical);
    314 }
    315 
    316 
    317 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
    318                                     Register lhs,
    319                                     Register rhs,
    320                                     Label* both_loaded_as_doubles,
    321                                     Label* slow,
    322                                     bool strict) {
    323   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
    324          (lhs.is(a1) && rhs.is(a0)));
    325 
    326   Label lhs_is_smi;
    327   __ JumpIfSmi(lhs, &lhs_is_smi);
    328   // Rhs is a Smi.
    329   // Check whether the non-smi is a heap number.
    330   __ GetObjectType(lhs, t0, t0);
    331   if (strict) {
    332     // If lhs was not a number and rhs was a Smi then strict equality cannot
    333     // succeed. Return non-equal (lhs is already not zero).
    334     __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
    335     __ mov(v0, lhs);
    336   } else {
    337     // Smi compared non-strictly with a non-Smi non-heap-number. Call
    338     // the runtime.
    339     __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
    340   }
    341   // Rhs is a smi, lhs is a number.
    342   // Convert smi rhs to double.
    343   __ SmiUntag(at, rhs);
    344   __ mtc1(at, f14);
    345   __ cvt_d_w(f14, f14);
    346   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
    347 
    348   // We now have both loaded as doubles.
    349   __ jmp(both_loaded_as_doubles);
    350 
    351   __ bind(&lhs_is_smi);
    352   // Lhs is a Smi.  Check whether the non-smi is a heap number.
    353   __ GetObjectType(rhs, t0, t0);
    354   if (strict) {
    355     // If lhs was not a number and rhs was a Smi then strict equality cannot
    356     // succeed. Return non-equal.
    357     __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
    358     __ li(v0, Operand(1));
    359   } else {
    360     // Smi compared non-strictly with a non-Smi non-heap-number. Call
    361     // the runtime.
    362     __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
    363   }
    364 
    365   // Lhs is a smi, rhs is a number.
    366   // Convert smi lhs to double.
    367   __ SmiUntag(at, lhs);
    368   __ mtc1(at, f12);
    369   __ cvt_d_w(f12, f12);
    370   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
    371   // Fall through to both_loaded_as_doubles.
    372 }
    373 
    374 
    375 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
    376                                            Register lhs,
    377                                            Register rhs) {
    378     // If either operand is a JS object or an oddball value, then they are
    379     // not equal since their pointers are different.
    380     // There is no test for undetectability in strict equality.
    381     STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
    382     Label first_non_object;
    383     // Get the type of the first operand into a2 and compare it with
    384     // FIRST_JS_RECEIVER_TYPE.
    385     __ GetObjectType(lhs, a2, a2);
    386     __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_RECEIVER_TYPE));
    387 
    388     // Return non-zero.
    389     Label return_not_equal;
    390     __ bind(&return_not_equal);
    391     __ Ret(USE_DELAY_SLOT);
    392     __ li(v0, Operand(1));
    393 
    394     __ bind(&first_non_object);
    395     // Check for oddballs: true, false, null, undefined.
    396     __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
    397 
    398     __ GetObjectType(rhs, a3, a3);
    399     __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_RECEIVER_TYPE));
    400 
    401     // Check for oddballs: true, false, null, undefined.
    402     __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
    403 
    404     // Now that we have the types we might as well check for
    405     // internalized-internalized.
    406     STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    407     __ Or(a2, a2, Operand(a3));
    408     __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
    409     __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
    410 }
    411 
    412 
    413 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
    414                                        Register lhs,
    415                                        Register rhs,
    416                                        Label* both_loaded_as_doubles,
    417                                        Label* not_heap_numbers,
    418                                        Label* slow) {
    419   __ GetObjectType(lhs, a3, a2);
    420   __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
    421   __ ld(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
    422   // If first was a heap number & second wasn't, go to slow case.
    423   __ Branch(slow, ne, a3, Operand(a2));
    424 
    425   // Both are heap numbers. Load them up then jump to the code we have
    426   // for that.
    427   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
    428   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
    429 
    430   __ jmp(both_loaded_as_doubles);
    431 }
    432 
    433 
    434 // Fast negative check for internalized-to-internalized equality.
    435 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
    436                                                      Register lhs, Register rhs,
    437                                                      Label* possible_strings,
    438                                                      Label* runtime_call) {
    439   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
    440          (lhs.is(a1) && rhs.is(a0)));
    441 
    442   // a2 is object type of rhs.
    443   Label object_test, return_equal, return_unequal, undetectable;
    444   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    445   __ And(at, a2, Operand(kIsNotStringMask));
    446   __ Branch(&object_test, ne, at, Operand(zero_reg));
    447   __ And(at, a2, Operand(kIsNotInternalizedMask));
    448   __ Branch(possible_strings, ne, at, Operand(zero_reg));
    449   __ GetObjectType(rhs, a3, a3);
    450   __ Branch(runtime_call, ge, a3, Operand(FIRST_NONSTRING_TYPE));
    451   __ And(at, a3, Operand(kIsNotInternalizedMask));
    452   __ Branch(possible_strings, ne, at, Operand(zero_reg));
    453 
    454   // Both are internalized. We already checked they weren't the same pointer so
    455   // they are not equal. Return non-equal by returning the non-zero object
    456   // pointer in v0.
    457   __ Ret(USE_DELAY_SLOT);
    458   __ mov(v0, a0);  // In delay slot.
    459 
    460   __ bind(&object_test);
    461   __ ld(a2, FieldMemOperand(lhs, HeapObject::kMapOffset));
    462   __ ld(a3, FieldMemOperand(rhs, HeapObject::kMapOffset));
    463   __ lbu(t0, FieldMemOperand(a2, Map::kBitFieldOffset));
    464   __ lbu(t1, FieldMemOperand(a3, Map::kBitFieldOffset));
    465   __ And(at, t0, Operand(1 << Map::kIsUndetectable));
    466   __ Branch(&undetectable, ne, at, Operand(zero_reg));
    467   __ And(at, t1, Operand(1 << Map::kIsUndetectable));
    468   __ Branch(&return_unequal, ne, at, Operand(zero_reg));
    469 
    470   __ GetInstanceType(a2, a2);
    471   __ Branch(runtime_call, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
    472   __ GetInstanceType(a3, a3);
    473   __ Branch(runtime_call, lt, a3, Operand(FIRST_JS_RECEIVER_TYPE));
    474 
    475   __ bind(&return_unequal);
    476   // Return non-equal by returning the non-zero object pointer in v0.
    477   __ Ret(USE_DELAY_SLOT);
    478   __ mov(v0, a0);  // In delay slot.
    479 
    480   __ bind(&undetectable);
    481   __ And(at, t1, Operand(1 << Map::kIsUndetectable));
    482   __ Branch(&return_unequal, eq, at, Operand(zero_reg));
    483 
    484   // If both sides are JSReceivers, then the result is false according to
    485   // the HTML specification, which says that only comparisons with null or
    486   // undefined are affected by special casing for document.all.
    487   __ GetInstanceType(a2, a2);
    488   __ Branch(&return_equal, eq, a2, Operand(ODDBALL_TYPE));
    489   __ GetInstanceType(a3, a3);
    490   __ Branch(&return_unequal, ne, a3, Operand(ODDBALL_TYPE));
    491 
    492   __ bind(&return_equal);
    493   __ Ret(USE_DELAY_SLOT);
    494   __ li(v0, Operand(EQUAL));  // In delay slot.
    495 }
    496 
    497 
    498 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
    499                                          Register scratch,
    500                                          CompareICState::State expected,
    501                                          Label* fail) {
    502   Label ok;
    503   if (expected == CompareICState::SMI) {
    504     __ JumpIfNotSmi(input, fail);
    505   } else if (expected == CompareICState::NUMBER) {
    506     __ JumpIfSmi(input, &ok);
    507     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
    508                 DONT_DO_SMI_CHECK);
    509   }
    510   // We could be strict about internalized/string here, but as long as
    511   // hydrogen doesn't care, the stub doesn't have to care either.
    512   __ bind(&ok);
    513 }
    514 
    515 
    516 // On entry a1 and a2 are the values to be compared.
    517 // On exit a0 is 0, positive or negative to indicate the result of
    518 // the comparison.
    519 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
    520   Register lhs = a1;
    521   Register rhs = a0;
    522   Condition cc = GetCondition();
    523 
    524   Label miss;
    525   CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
    526   CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
    527 
    528   Label slow;  // Call builtin.
    529   Label not_smis, both_loaded_as_doubles;
    530 
    531   Label not_two_smis, smi_done;
    532   __ Or(a2, a1, a0);
    533   __ JumpIfNotSmi(a2, &not_two_smis);
    534   __ SmiUntag(a1);
    535   __ SmiUntag(a0);
    536 
    537   __ Ret(USE_DELAY_SLOT);
    538   __ dsubu(v0, a1, a0);
    539   __ bind(&not_two_smis);
    540 
    541   // NOTICE! This code is only reached after a smi-fast-case check, so
    542   // it is certain that at least one operand isn't a smi.
    543 
    544   // Handle the case where the objects are identical.  Either returns the answer
    545   // or goes to slow.  Only falls through if the objects were not identical.
    546   EmitIdenticalObjectComparison(masm, &slow, cc);
    547 
    548   // If either is a Smi (we know that not both are), then they can only
    549   // be strictly equal if the other is a HeapNumber.
    550   STATIC_ASSERT(kSmiTag == 0);
    551   DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
    552   __ And(a6, lhs, Operand(rhs));
    553   __ JumpIfNotSmi(a6, &not_smis, a4);
    554   // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
    555   // 1) Return the answer.
    556   // 2) Go to slow.
    557   // 3) Fall through to both_loaded_as_doubles.
    558   // 4) Jump to rhs_not_nan.
    559   // In cases 3 and 4 we have found out we were dealing with a number-number
    560   // comparison and the numbers have been loaded into f12 and f14 as doubles,
    561   // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
    562   EmitSmiNonsmiComparison(masm, lhs, rhs,
    563                           &both_loaded_as_doubles, &slow, strict());
    564 
    565   __ bind(&both_loaded_as_doubles);
    566   // f12, f14 are the double representations of the left hand side
    567   // and the right hand side if we have FPU. Otherwise a2, a3 represent
    568   // left hand side and a0, a1 represent right hand side.
    569 
    570   Label nan;
    571   __ li(a4, Operand(LESS));
    572   __ li(a5, Operand(GREATER));
    573   __ li(a6, Operand(EQUAL));
    574 
    575   // Check if either rhs or lhs is NaN.
    576   __ BranchF(NULL, &nan, eq, f12, f14);
    577 
    578   // Check if LESS condition is satisfied. If true, move conditionally
    579   // result to v0.
    580   if (kArchVariant != kMips64r6) {
    581     __ c(OLT, D, f12, f14);
    582     __ Movt(v0, a4);
    583     // Use previous check to store conditionally to v0 oposite condition
    584     // (GREATER). If rhs is equal to lhs, this will be corrected in next
    585     // check.
    586     __ Movf(v0, a5);
    587     // Check if EQUAL condition is satisfied. If true, move conditionally
    588     // result to v0.
    589     __ c(EQ, D, f12, f14);
    590     __ Movt(v0, a6);
    591   } else {
    592     Label skip;
    593     __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
    594     __ mov(v0, a4);  // Return LESS as result.
    595 
    596     __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
    597     __ mov(v0, a6);  // Return EQUAL as result.
    598 
    599     __ mov(v0, a5);  // Return GREATER as result.
    600     __ bind(&skip);
    601   }
    602   __ Ret();
    603 
    604   __ bind(&nan);
    605   // NaN comparisons always fail.
    606   // Load whatever we need in v0 to make the comparison fail.
    607   DCHECK(is_int16(GREATER) && is_int16(LESS));
    608   __ Ret(USE_DELAY_SLOT);
    609   if (cc == lt || cc == le) {
    610     __ li(v0, Operand(GREATER));
    611   } else {
    612     __ li(v0, Operand(LESS));
    613   }
    614 
    615 
    616   __ bind(&not_smis);
    617   // At this point we know we are dealing with two different objects,
    618   // and neither of them is a Smi. The objects are in lhs_ and rhs_.
    619   if (strict()) {
    620     // This returns non-equal for some object types, or falls through if it
    621     // was not lucky.
    622     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
    623   }
    624 
    625   Label check_for_internalized_strings;
    626   Label flat_string_check;
    627   // Check for heap-number-heap-number comparison. Can jump to slow case,
    628   // or load both doubles and jump to the code that handles
    629   // that case. If the inputs are not doubles then jumps to
    630   // check_for_internalized_strings.
    631   // In this case a2 will contain the type of lhs_.
    632   EmitCheckForTwoHeapNumbers(masm,
    633                              lhs,
    634                              rhs,
    635                              &both_loaded_as_doubles,
    636                              &check_for_internalized_strings,
    637                              &flat_string_check);
    638 
    639   __ bind(&check_for_internalized_strings);
    640   if (cc == eq && !strict()) {
    641     // Returns an answer for two internalized strings or two
    642     // detectable objects.
    643     // Otherwise jumps to string case or not both strings case.
    644     // Assumes that a2 is the type of lhs_ on entry.
    645     EmitCheckForInternalizedStringsOrObjects(
    646         masm, lhs, rhs, &flat_string_check, &slow);
    647   }
    648 
    649   // Check for both being sequential one-byte strings,
    650   // and inline if that is the case.
    651   __ bind(&flat_string_check);
    652 
    653   __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
    654 
    655   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
    656                       a3);
    657   if (cc == eq) {
    658     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, a4);
    659   } else {
    660     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, a4,
    661                                                     a5);
    662   }
    663   // Never falls through to here.
    664 
    665   __ bind(&slow);
    666   if (cc == eq) {
    667     {
    668       FrameScope scope(masm, StackFrame::INTERNAL);
    669       __ Push(cp);
    670       __ Call(strict() ? isolate()->builtins()->StrictEqual()
    671                        : isolate()->builtins()->Equal(),
    672               RelocInfo::CODE_TARGET);
    673       __ Pop(cp);
    674     }
    675     // Turn true into 0 and false into some non-zero value.
    676     STATIC_ASSERT(EQUAL == 0);
    677     __ LoadRoot(a0, Heap::kTrueValueRootIndex);
    678     __ Ret(USE_DELAY_SLOT);
    679     __ subu(v0, v0, a0);  // In delay slot.
    680   } else {
    681     // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
    682     // a1 (rhs) second.
    683     __ Push(lhs, rhs);
    684     int ncr;  // NaN compare result.
    685     if (cc == lt || cc == le) {
    686       ncr = GREATER;
    687     } else {
    688       DCHECK(cc == gt || cc == ge);  // Remaining cases.
    689       ncr = LESS;
    690     }
    691     __ li(a0, Operand(Smi::FromInt(ncr)));
    692     __ push(a0);
    693 
    694     // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
    695     // tagged as a small integer.
    696     __ TailCallRuntime(Runtime::kCompare);
    697   }
    698 
    699   __ bind(&miss);
    700   GenerateMiss(masm);
    701 }
    702 
    703 
    704 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
    705   __ mov(t9, ra);
    706   __ pop(ra);
    707   __ PushSafepointRegisters();
    708   __ Jump(t9);
    709 }
    710 
    711 
    712 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
    713   __ mov(t9, ra);
    714   __ pop(ra);
    715   __ PopSafepointRegisters();
    716   __ Jump(t9);
    717 }
    718 
    719 
    720 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
    721   // We don't allow a GC during a store buffer overflow so there is no need to
    722   // store the registers in any particular way, but we do have to store and
    723   // restore them.
    724   __ MultiPush(kJSCallerSaved | ra.bit());
    725   if (save_doubles()) {
    726     __ MultiPushFPU(kCallerSavedFPU);
    727   }
    728   const int argument_count = 1;
    729   const int fp_argument_count = 0;
    730   const Register scratch = a1;
    731 
    732   AllowExternalCallThatCantCauseGC scope(masm);
    733   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
    734   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
    735   __ CallCFunction(
    736       ExternalReference::store_buffer_overflow_function(isolate()),
    737       argument_count);
    738   if (save_doubles()) {
    739     __ MultiPopFPU(kCallerSavedFPU);
    740   }
    741 
    742   __ MultiPop(kJSCallerSaved | ra.bit());
    743   __ Ret();
    744 }
    745 
    746 
    747 void MathPowStub::Generate(MacroAssembler* masm) {
    748   const Register exponent = MathPowTaggedDescriptor::exponent();
    749   DCHECK(exponent.is(a2));
    750   const DoubleRegister double_base = f2;
    751   const DoubleRegister double_exponent = f4;
    752   const DoubleRegister double_result = f0;
    753   const DoubleRegister double_scratch = f6;
    754   const FPURegister single_scratch = f8;
    755   const Register scratch = t1;
    756   const Register scratch2 = a7;
    757 
    758   Label call_runtime, done, int_exponent;
    759   if (exponent_type() == TAGGED) {
    760     // Base is already in double_base.
    761     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
    762 
    763     __ ldc1(double_exponent,
    764             FieldMemOperand(exponent, HeapNumber::kValueOffset));
    765   }
    766 
    767   if (exponent_type() != INTEGER) {
    768     Label int_exponent_convert;
    769     // Detect integer exponents stored as double.
    770     __ EmitFPUTruncate(kRoundToMinusInf,
    771                        scratch,
    772                        double_exponent,
    773                        at,
    774                        double_scratch,
    775                        scratch2,
    776                        kCheckForInexactConversion);
    777     // scratch2 == 0 means there was no conversion error.
    778     __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
    779 
    780     __ push(ra);
    781     {
    782       AllowExternalCallThatCantCauseGC scope(masm);
    783       __ PrepareCallCFunction(0, 2, scratch2);
    784       __ MovToFloatParameters(double_base, double_exponent);
    785       __ CallCFunction(
    786           ExternalReference::power_double_double_function(isolate()),
    787           0, 2);
    788     }
    789     __ pop(ra);
    790     __ MovFromFloatResult(double_result);
    791     __ jmp(&done);
    792 
    793     __ bind(&int_exponent_convert);
    794   }
    795 
    796   // Calculate power with integer exponent.
    797   __ bind(&int_exponent);
    798 
    799   // Get two copies of exponent in the registers scratch and exponent.
    800   if (exponent_type() == INTEGER) {
    801     __ mov(scratch, exponent);
    802   } else {
    803     // Exponent has previously been stored into scratch as untagged integer.
    804     __ mov(exponent, scratch);
    805   }
    806 
    807   __ mov_d(double_scratch, double_base);  // Back up base.
    808   __ Move(double_result, 1.0);
    809 
    810   // Get absolute value of exponent.
    811   Label positive_exponent, bail_out;
    812   __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
    813   __ Dsubu(scratch, zero_reg, scratch);
    814   // Check when Dsubu overflows and we get negative result
    815   // (happens only when input is MIN_INT).
    816   __ Branch(&bail_out, gt, zero_reg, Operand(scratch));
    817   __ bind(&positive_exponent);
    818   __ Assert(ge, kUnexpectedNegativeValue, scratch, Operand(zero_reg));
    819 
    820   Label while_true, no_carry, loop_end;
    821   __ bind(&while_true);
    822 
    823   __ And(scratch2, scratch, 1);
    824 
    825   __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
    826   __ mul_d(double_result, double_result, double_scratch);
    827   __ bind(&no_carry);
    828 
    829   __ dsra(scratch, scratch, 1);
    830 
    831   __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
    832   __ mul_d(double_scratch, double_scratch, double_scratch);
    833 
    834   __ Branch(&while_true);
    835 
    836   __ bind(&loop_end);
    837 
    838   __ Branch(&done, ge, exponent, Operand(zero_reg));
    839   __ Move(double_scratch, 1.0);
    840   __ div_d(double_result, double_scratch, double_result);
    841   // Test whether result is zero.  Bail out to check for subnormal result.
    842   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
    843   __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
    844 
    845   // double_exponent may not contain the exponent value if the input was a
    846   // smi.  We set it with exponent value before bailing out.
    847   __ bind(&bail_out);
    848   __ mtc1(exponent, single_scratch);
    849   __ cvt_d_w(double_exponent, single_scratch);
    850 
    851   // Returning or bailing out.
    852   __ push(ra);
    853   {
    854     AllowExternalCallThatCantCauseGC scope(masm);
    855     __ PrepareCallCFunction(0, 2, scratch);
    856     __ MovToFloatParameters(double_base, double_exponent);
    857     __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
    858                      0, 2);
    859   }
    860   __ pop(ra);
    861   __ MovFromFloatResult(double_result);
    862 
    863   __ bind(&done);
    864   __ Ret();
    865 }
    866 
    867 bool CEntryStub::NeedsImmovableCode() {
    868   return true;
    869 }
    870 
    871 
    872 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
    873   CEntryStub::GenerateAheadOfTime(isolate);
    874   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
    875   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
    876   CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
    877   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
    878   CreateWeakCellStub::GenerateAheadOfTime(isolate);
    879   BinaryOpICStub::GenerateAheadOfTime(isolate);
    880   StoreRegistersStateStub::GenerateAheadOfTime(isolate);
    881   RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
    882   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
    883   StoreFastElementStub::GenerateAheadOfTime(isolate);
    884 }
    885 
    886 
    887 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
    888   StoreRegistersStateStub stub(isolate);
    889   stub.GetCode();
    890 }
    891 
    892 
    893 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
    894   RestoreRegistersStateStub stub(isolate);
    895   stub.GetCode();
    896 }
    897 
    898 
    899 void CodeStub::GenerateFPStubs(Isolate* isolate) {
    900   // Generate if not already in cache.
    901   SaveFPRegsMode mode = kSaveFPRegs;
    902   CEntryStub(isolate, 1, mode).GetCode();
    903   StoreBufferOverflowStub(isolate, mode).GetCode();
    904 }
    905 
    906 
    907 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
    908   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
    909   stub.GetCode();
    910 }
    911 
    912 
    913 void CEntryStub::Generate(MacroAssembler* masm) {
    914   // Called from JavaScript; parameters are on stack as if calling JS function
    915   // a0: number of arguments including receiver
    916   // a1: pointer to builtin function
    917   // fp: frame pointer    (restored after C call)
    918   // sp: stack pointer    (restored as callee's sp after C call)
    919   // cp: current context  (C callee-saved)
    920   //
    921   // If argv_in_register():
    922   // a2: pointer to the first argument
    923 
    924   ProfileEntryHookStub::MaybeCallEntryHook(masm);
    925 
    926   if (argv_in_register()) {
    927     // Move argv into the correct register.
    928     __ mov(s1, a2);
    929   } else {
    930     // Compute the argv pointer in a callee-saved register.
    931     __ Dlsa(s1, sp, a0, kPointerSizeLog2);
    932     __ Dsubu(s1, s1, kPointerSize);
    933   }
    934 
    935   // Enter the exit frame that transitions from JavaScript to C++.
    936   FrameScope scope(masm, StackFrame::MANUAL);
    937   __ EnterExitFrame(save_doubles(), 0, is_builtin_exit()
    938                                            ? StackFrame::BUILTIN_EXIT
    939                                            : StackFrame::EXIT);
    940 
    941   // s0: number of arguments  including receiver (C callee-saved)
    942   // s1: pointer to first argument (C callee-saved)
    943   // s2: pointer to builtin function (C callee-saved)
    944 
    945   // Prepare arguments for C routine.
    946   // a0 = argc
    947   __ mov(s0, a0);
    948   __ mov(s2, a1);
    949 
    950   // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
    951   // also need to reserve the 4 argument slots on the stack.
    952 
    953   __ AssertStackIsAligned();
    954 
    955   int frame_alignment = MacroAssembler::ActivationFrameAlignment();
    956   int frame_alignment_mask = frame_alignment - 1;
    957   int result_stack_size;
    958   if (result_size() <= 2) {
    959     // a0 = argc, a1 = argv, a2 = isolate
    960     __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
    961     __ mov(a1, s1);
    962     result_stack_size = 0;
    963   } else {
    964     DCHECK_EQ(3, result_size());
    965     // Allocate additional space for the result.
    966     result_stack_size =
    967         ((result_size() * kPointerSize) + frame_alignment_mask) &
    968         ~frame_alignment_mask;
    969     __ Dsubu(sp, sp, Operand(result_stack_size));
    970 
    971     // a0 = hidden result argument, a1 = argc, a2 = argv, a3 = isolate.
    972     __ li(a3, Operand(ExternalReference::isolate_address(isolate())));
    973     __ mov(a2, s1);
    974     __ mov(a1, a0);
    975     __ mov(a0, sp);
    976   }
    977 
    978   // To let the GC traverse the return address of the exit frames, we need to
    979   // know where the return address is. The CEntryStub is unmovable, so
    980   // we can store the address on the stack to be able to find it again and
    981   // we never have to restore it, because it will not change.
    982   { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
    983     int kNumInstructionsToJump = 4;
    984     Label find_ra;
    985     // Adjust the value in ra to point to the correct return location, 2nd
    986     // instruction past the real call into C code (the jalr(t9)), and push it.
    987     // This is the return address of the exit frame.
    988     if (kArchVariant >= kMips64r6) {
    989       __ addiupc(ra, kNumInstructionsToJump + 1);
    990     } else {
    991       // This branch-and-link sequence is needed to find the current PC on mips
    992       // before r6, saved to the ra register.
    993       __ bal(&find_ra);  // bal exposes branch delay slot.
    994       __ Daddu(ra, ra, kNumInstructionsToJump * Instruction::kInstrSize);
    995     }
    996     __ bind(&find_ra);
    997 
    998     // This spot was reserved in EnterExitFrame.
    999     __ sd(ra, MemOperand(sp, result_stack_size));
   1000     // Stack space reservation moved to the branch delay slot below.
   1001     // Stack is still aligned.
   1002 
   1003     // Call the C routine.
   1004     __ mov(t9, s2);  // Function pointer to t9 to conform to ABI for PIC.
   1005     __ jalr(t9);
   1006     // Set up sp in the delay slot.
   1007     __ daddiu(sp, sp, -kCArgsSlotsSize);
   1008     // Make sure the stored 'ra' points to this position.
   1009     DCHECK_EQ(kNumInstructionsToJump,
   1010               masm->InstructionsGeneratedSince(&find_ra));
   1011   }
   1012   if (result_size() > 2) {
   1013     DCHECK_EQ(3, result_size());
   1014     // Read result values stored on stack.
   1015     __ ld(a0, MemOperand(v0, 2 * kPointerSize));
   1016     __ ld(v1, MemOperand(v0, 1 * kPointerSize));
   1017     __ ld(v0, MemOperand(v0, 0 * kPointerSize));
   1018   }
   1019   // Result returned in v0, v1:v0 or a0:v1:v0 - do not destroy these registers!
   1020 
   1021   // Check result for exception sentinel.
   1022   Label exception_returned;
   1023   __ LoadRoot(a4, Heap::kExceptionRootIndex);
   1024   __ Branch(&exception_returned, eq, a4, Operand(v0));
   1025 
   1026   // Check that there is no pending exception, otherwise we
   1027   // should have returned the exception sentinel.
   1028   if (FLAG_debug_code) {
   1029     Label okay;
   1030     ExternalReference pending_exception_address(
   1031         Isolate::kPendingExceptionAddress, isolate());
   1032     __ li(a2, Operand(pending_exception_address));
   1033     __ ld(a2, MemOperand(a2));
   1034     __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
   1035     // Cannot use check here as it attempts to generate call into runtime.
   1036     __ Branch(&okay, eq, a4, Operand(a2));
   1037     __ stop("Unexpected pending exception");
   1038     __ bind(&okay);
   1039   }
   1040 
   1041   // Exit C frame and return.
   1042   // v0:v1: result
   1043   // sp: stack pointer
   1044   // fp: frame pointer
   1045   Register argc;
   1046   if (argv_in_register()) {
   1047     // We don't want to pop arguments so set argc to no_reg.
   1048     argc = no_reg;
   1049   } else {
   1050     // s0: still holds argc (callee-saved).
   1051     argc = s0;
   1052   }
   1053   __ LeaveExitFrame(save_doubles(), argc, true, EMIT_RETURN);
   1054 
   1055   // Handling of exception.
   1056   __ bind(&exception_returned);
   1057 
   1058   ExternalReference pending_handler_context_address(
   1059       Isolate::kPendingHandlerContextAddress, isolate());
   1060   ExternalReference pending_handler_code_address(
   1061       Isolate::kPendingHandlerCodeAddress, isolate());
   1062   ExternalReference pending_handler_offset_address(
   1063       Isolate::kPendingHandlerOffsetAddress, isolate());
   1064   ExternalReference pending_handler_fp_address(
   1065       Isolate::kPendingHandlerFPAddress, isolate());
   1066   ExternalReference pending_handler_sp_address(
   1067       Isolate::kPendingHandlerSPAddress, isolate());
   1068 
   1069   // Ask the runtime for help to determine the handler. This will set v0 to
   1070   // contain the current pending exception, don't clobber it.
   1071   ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
   1072                                  isolate());
   1073   {
   1074     FrameScope scope(masm, StackFrame::MANUAL);
   1075     __ PrepareCallCFunction(3, 0, a0);
   1076     __ mov(a0, zero_reg);
   1077     __ mov(a1, zero_reg);
   1078     __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   1079     __ CallCFunction(find_handler, 3);
   1080   }
   1081 
   1082   // Retrieve the handler context, SP and FP.
   1083   __ li(cp, Operand(pending_handler_context_address));
   1084   __ ld(cp, MemOperand(cp));
   1085   __ li(sp, Operand(pending_handler_sp_address));
   1086   __ ld(sp, MemOperand(sp));
   1087   __ li(fp, Operand(pending_handler_fp_address));
   1088   __ ld(fp, MemOperand(fp));
   1089 
   1090   // If the handler is a JS frame, restore the context to the frame. Note that
   1091   // the context will be set to (cp == 0) for non-JS frames.
   1092   Label zero;
   1093   __ Branch(&zero, eq, cp, Operand(zero_reg));
   1094   __ sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   1095   __ bind(&zero);
   1096 
   1097   // Compute the handler entry address and jump to it.
   1098   __ li(a1, Operand(pending_handler_code_address));
   1099   __ ld(a1, MemOperand(a1));
   1100   __ li(a2, Operand(pending_handler_offset_address));
   1101   __ ld(a2, MemOperand(a2));
   1102   __ Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));
   1103   __ Daddu(t9, a1, a2);
   1104   __ Jump(t9);
   1105 }
   1106 
   1107 
   1108 void JSEntryStub::Generate(MacroAssembler* masm) {
   1109   Label invoke, handler_entry, exit;
   1110   Isolate* isolate = masm->isolate();
   1111 
   1112   // TODO(plind): unify the ABI description here.
   1113   // Registers:
   1114   // a0: entry address
   1115   // a1: function
   1116   // a2: receiver
   1117   // a3: argc
   1118   // a4 (a4): on mips64
   1119 
   1120   // Stack:
   1121   // 0 arg slots on mips64 (4 args slots on mips)
   1122   // args -- in a4/a4 on mips64, on stack on mips
   1123 
   1124   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1125 
   1126   // Save callee saved registers on the stack.
   1127   __ MultiPush(kCalleeSaved | ra.bit());
   1128 
   1129   // Save callee-saved FPU registers.
   1130   __ MultiPushFPU(kCalleeSavedFPU);
   1131   // Set up the reserved register for 0.0.
   1132   __ Move(kDoubleRegZero, 0.0);
   1133 
   1134   // Load argv in s0 register.
   1135   __ mov(s0, a4);  // 5th parameter in mips64 a4 (a4) register.
   1136 
   1137   __ InitializeRootRegister();
   1138 
   1139   // We build an EntryFrame.
   1140   __ li(a7, Operand(-1));  // Push a bad frame pointer to fail if it is used.
   1141   StackFrame::Type marker = type();
   1142   __ li(a6, Operand(StackFrame::TypeToMarker(marker)));
   1143   __ li(a5, Operand(StackFrame::TypeToMarker(marker)));
   1144   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
   1145   __ li(a4, Operand(c_entry_fp));
   1146   __ ld(a4, MemOperand(a4));
   1147   __ Push(a7, a6, a5, a4);
   1148   // Set up frame pointer for the frame to be pushed.
   1149   __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
   1150 
   1151   // Registers:
   1152   // a0: entry_address
   1153   // a1: function
   1154   // a2: receiver_pointer
   1155   // a3: argc
   1156   // s0: argv
   1157   //
   1158   // Stack:
   1159   // caller fp          |
   1160   // function slot      | entry frame
   1161   // context slot       |
   1162   // bad fp (0xff...f)  |
   1163   // callee saved registers + ra
   1164   // [ O32: 4 args slots]
   1165   // args
   1166 
   1167   // If this is the outermost JS call, set js_entry_sp value.
   1168   Label non_outermost_js;
   1169   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
   1170   __ li(a5, Operand(ExternalReference(js_entry_sp)));
   1171   __ ld(a6, MemOperand(a5));
   1172   __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg));
   1173   __ sd(fp, MemOperand(a5));
   1174   __ li(a4, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
   1175   Label cont;
   1176   __ b(&cont);
   1177   __ nop();   // Branch delay slot nop.
   1178   __ bind(&non_outermost_js);
   1179   __ li(a4, Operand(StackFrame::INNER_JSENTRY_FRAME));
   1180   __ bind(&cont);
   1181   __ push(a4);
   1182 
   1183   // Jump to a faked try block that does the invoke, with a faked catch
   1184   // block that sets the pending exception.
   1185   __ jmp(&invoke);
   1186   __ bind(&handler_entry);
   1187   handler_offset_ = handler_entry.pos();
   1188   // Caught exception: Store result (exception) in the pending exception
   1189   // field in the JSEnv and return a failure sentinel.  Coming in here the
   1190   // fp will be invalid because the PushStackHandler below sets it to 0 to
   1191   // signal the existence of the JSEntry frame.
   1192   __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1193                                       isolate)));
   1194   __ sd(v0, MemOperand(a4));  // We come back from 'invoke'. result is in v0.
   1195   __ LoadRoot(v0, Heap::kExceptionRootIndex);
   1196   __ b(&exit);  // b exposes branch delay slot.
   1197   __ nop();   // Branch delay slot nop.
   1198 
   1199   // Invoke: Link this frame into the handler chain.
   1200   __ bind(&invoke);
   1201   __ PushStackHandler();
   1202   // If an exception not caught by another handler occurs, this handler
   1203   // returns control to the code after the bal(&invoke) above, which
   1204   // restores all kCalleeSaved registers (including cp and fp) to their
   1205   // saved values before returning a failure to C.
   1206 
   1207   // Invoke the function by calling through JS entry trampoline builtin.
   1208   // Notice that we cannot store a reference to the trampoline code directly in
   1209   // this stub, because runtime stubs are not traversed when doing GC.
   1210 
   1211   // Registers:
   1212   // a0: entry_address
   1213   // a1: function
   1214   // a2: receiver_pointer
   1215   // a3: argc
   1216   // s0: argv
   1217   //
   1218   // Stack:
   1219   // handler frame
   1220   // entry frame
   1221   // callee saved registers + ra
   1222   // [ O32: 4 args slots]
   1223   // args
   1224 
   1225   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   1226     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   1227                                       isolate);
   1228     __ li(a4, Operand(construct_entry));
   1229   } else {
   1230     ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
   1231     __ li(a4, Operand(entry));
   1232   }
   1233   __ ld(t9, MemOperand(a4));  // Deref address.
   1234   // Call JSEntryTrampoline.
   1235   __ daddiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
   1236   __ Call(t9);
   1237 
   1238   // Unlink this frame from the handler chain.
   1239   __ PopStackHandler();
   1240 
   1241   __ bind(&exit);  // v0 holds result
   1242   // Check if the current stack frame is marked as the outermost JS frame.
   1243   Label non_outermost_js_2;
   1244   __ pop(a5);
   1245   __ Branch(&non_outermost_js_2, ne, a5,
   1246             Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
   1247   __ li(a5, Operand(ExternalReference(js_entry_sp)));
   1248   __ sd(zero_reg, MemOperand(a5));
   1249   __ bind(&non_outermost_js_2);
   1250 
   1251   // Restore the top frame descriptors from the stack.
   1252   __ pop(a5);
   1253   __ li(a4, Operand(ExternalReference(Isolate::kCEntryFPAddress,
   1254                                       isolate)));
   1255   __ sd(a5, MemOperand(a4));
   1256 
   1257   // Reset the stack to the callee saved registers.
   1258   __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
   1259 
   1260   // Restore callee-saved fpu registers.
   1261   __ MultiPopFPU(kCalleeSavedFPU);
   1262 
   1263   // Restore callee saved registers from the stack.
   1264   __ MultiPop(kCalleeSaved | ra.bit());
   1265   // Return.
   1266   __ Jump(ra);
   1267 }
   1268 
   1269 void RegExpExecStub::Generate(MacroAssembler* masm) {
   1270   // Just jump directly to runtime if native RegExp is not selected at compile
   1271   // time or if regexp entry in generated code is turned off runtime switch or
   1272   // at compilation.
   1273 #ifdef V8_INTERPRETED_REGEXP
   1274   __ TailCallRuntime(Runtime::kRegExpExec);
   1275 #else  // V8_INTERPRETED_REGEXP
   1276 
   1277   // Stack frame on entry.
   1278   //  sp[0]: last_match_info (expected JSArray)
   1279   //  sp[4]: previous index
   1280   //  sp[8]: subject string
   1281   //  sp[12]: JSRegExp object
   1282 
   1283   const int kLastMatchInfoOffset = 0 * kPointerSize;
   1284   const int kPreviousIndexOffset = 1 * kPointerSize;
   1285   const int kSubjectOffset = 2 * kPointerSize;
   1286   const int kJSRegExpOffset = 3 * kPointerSize;
   1287 
   1288   Label runtime;
   1289   // Allocation of registers for this function. These are in callee save
   1290   // registers and will be preserved by the call to the native RegExp code, as
   1291   // this code is called using the normal C calling convention. When calling
   1292   // directly from generated code the native RegExp code will not do a GC and
   1293   // therefore the content of these registers are safe to use after the call.
   1294   // MIPS - using s0..s2, since we are not using CEntry Stub.
   1295   Register subject = s0;
   1296   Register regexp_data = s1;
   1297   Register last_match_info_elements = s2;
   1298 
   1299   // Ensure that a RegExp stack is allocated.
   1300   ExternalReference address_of_regexp_stack_memory_address =
   1301       ExternalReference::address_of_regexp_stack_memory_address(
   1302           isolate());
   1303   ExternalReference address_of_regexp_stack_memory_size =
   1304       ExternalReference::address_of_regexp_stack_memory_size(isolate());
   1305   __ li(a0, Operand(address_of_regexp_stack_memory_size));
   1306   __ ld(a0, MemOperand(a0, 0));
   1307   __ Branch(&runtime, eq, a0, Operand(zero_reg));
   1308 
   1309   // Check that the first argument is a JSRegExp object.
   1310   __ ld(a0, MemOperand(sp, kJSRegExpOffset));
   1311   STATIC_ASSERT(kSmiTag == 0);
   1312   __ JumpIfSmi(a0, &runtime);
   1313   __ GetObjectType(a0, a1, a1);
   1314   __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
   1315 
   1316   // Check that the RegExp has been compiled (data contains a fixed array).
   1317   __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
   1318   if (FLAG_debug_code) {
   1319     __ SmiTst(regexp_data, a4);
   1320     __ Check(nz,
   1321              kUnexpectedTypeForRegExpDataFixedArrayExpected,
   1322              a4,
   1323              Operand(zero_reg));
   1324     __ GetObjectType(regexp_data, a0, a0);
   1325     __ Check(eq,
   1326              kUnexpectedTypeForRegExpDataFixedArrayExpected,
   1327              a0,
   1328              Operand(FIXED_ARRAY_TYPE));
   1329   }
   1330 
   1331   // regexp_data: RegExp data (FixedArray)
   1332   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
   1333   __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
   1334   __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
   1335 
   1336   // regexp_data: RegExp data (FixedArray)
   1337   // Check that the number of captures fit in the static offsets vector buffer.
   1338   __ ld(a2,
   1339          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   1340   // Check (number_of_captures + 1) * 2 <= offsets vector size
   1341   // Or          number_of_captures * 2 <= offsets vector size - 2
   1342   // Or          number_of_captures     <= offsets vector size / 2 - 1
   1343   // Multiplying by 2 comes for free since a2 is smi-tagged.
   1344   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
   1345   int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1;
   1346   __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp)));
   1347 
   1348   // Reset offset for possibly sliced string.
   1349   __ mov(t0, zero_reg);
   1350   __ ld(subject, MemOperand(sp, kSubjectOffset));
   1351   __ JumpIfSmi(subject, &runtime);
   1352   __ mov(a3, subject);  // Make a copy of the original subject string.
   1353 
   1354   // subject: subject string
   1355   // a3: subject string
   1356   // regexp_data: RegExp data (FixedArray)
   1357   // Handle subject string according to its encoding and representation:
   1358   // (1) Sequential string?  If yes, go to (4).
   1359   // (2) Sequential or cons?  If not, go to (5).
   1360   // (3) Cons string.  If the string is flat, replace subject with first string
   1361   //     and go to (1). Otherwise bail out to runtime.
   1362   // (4) Sequential string.  Load regexp code according to encoding.
   1363   // (E) Carry on.
   1364   /// [...]
   1365 
   1366   // Deferred code at the end of the stub:
   1367   // (5) Long external string?  If not, go to (7).
   1368   // (6) External string.  Make it, offset-wise, look like a sequential string.
   1369   //     Go to (4).
   1370   // (7) Short external string or not a string?  If yes, bail out to runtime.
   1371   // (8) Sliced or thin string.  Replace subject with parent.  Go to (1).
   1372 
   1373   Label check_underlying;   // (1)
   1374   Label seq_string;         // (4)
   1375   Label not_seq_nor_cons;   // (5)
   1376   Label external_string;    // (6)
   1377   Label not_long_external;  // (7)
   1378 
   1379   __ bind(&check_underlying);
   1380   __ ld(a2, FieldMemOperand(subject, HeapObject::kMapOffset));
   1381   __ lbu(a0, FieldMemOperand(a2, Map::kInstanceTypeOffset));
   1382 
   1383   // (1) Sequential string?  If yes, go to (4).
   1384   __ And(a1,
   1385          a0,
   1386          Operand(kIsNotStringMask |
   1387                  kStringRepresentationMask |
   1388                  kShortExternalStringMask));
   1389   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
   1390   __ Branch(&seq_string, eq, a1, Operand(zero_reg));  // Go to (4).
   1391 
   1392   // (2) Sequential or cons?  If not, go to (5).
   1393   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
   1394   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
   1395   STATIC_ASSERT(kThinStringTag > kExternalStringTag);
   1396   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
   1397   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
   1398   // Go to (5).
   1399   __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
   1400 
   1401   // (3) Cons string.  Check that it's flat.
   1402   // Replace subject with first string and reload instance type.
   1403   __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
   1404   __ LoadRoot(a1, Heap::kempty_stringRootIndex);
   1405   __ Branch(&runtime, ne, a0, Operand(a1));
   1406   __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
   1407   __ jmp(&check_underlying);
   1408 
   1409   // (4) Sequential string.  Load regexp code according to encoding.
   1410   __ bind(&seq_string);
   1411   // subject: sequential subject string (or look-alike, external string)
   1412   // a3: original subject string
   1413   // Load previous index and check range before a3 is overwritten.  We have to
   1414   // use a3 instead of subject here because subject might have been only made
   1415   // to look like a sequential string when it actually is an external string.
   1416   __ ld(a1, MemOperand(sp, kPreviousIndexOffset));
   1417   __ JumpIfNotSmi(a1, &runtime);
   1418   __ ld(a3, FieldMemOperand(a3, String::kLengthOffset));
   1419   __ Branch(&runtime, ls, a3, Operand(a1));
   1420   __ SmiUntag(a1);
   1421 
   1422   STATIC_ASSERT(kStringEncodingMask == 8);
   1423   STATIC_ASSERT(kOneByteStringTag == 8);
   1424   STATIC_ASSERT(kTwoByteStringTag == 0);
   1425   __ And(a0, a0, Operand(kStringEncodingMask));  // Non-zero for one_byte.
   1426   __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
   1427   __ dsra(a3, a0, 3);  // a3 is 1 for one_byte, 0 for UC16 (used below).
   1428   __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
   1429   __ Movz(t9, a5, a0);  // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
   1430 
   1431   // (E) Carry on.  String handling is done.
   1432   // t9: irregexp code
   1433   // Check that the irregexp code has been generated for the actual string
   1434   // encoding. If it has, the field contains a code object otherwise it contains
   1435   // a smi (code flushing support).
   1436   __ JumpIfSmi(t9, &runtime);
   1437 
   1438   // a1: previous index
   1439   // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
   1440   // t9: code
   1441   // subject: Subject string
   1442   // regexp_data: RegExp data (FixedArray)
   1443   // All checks done. Now push arguments for native regexp code.
   1444   __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
   1445                       1, a0, a2);
   1446 
   1447   // Isolates: note we add an additional parameter here (isolate pointer).
   1448   const int kRegExpExecuteArguments = 9;
   1449   const int kParameterRegisters = 8;
   1450   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
   1451 
   1452   // Stack pointer now points to cell where return address is to be written.
   1453   // Arguments are before that on the stack or in registers, meaning we
   1454   // treat the return address as argument 5. Thus every argument after that
   1455   // needs to be shifted back by 1. Since DirectCEntryStub will handle
   1456   // allocating space for the c argument slots, we don't need to calculate
   1457   // that into the argument positions on the stack. This is how the stack will
   1458   // look (sp meaning the value of sp at this moment):
   1459   // Abi n64:
   1460   //   [sp + 1] - Argument 9
   1461   //   [sp + 0] - saved ra
   1462   // Abi O32:
   1463   //   [sp + 5] - Argument 9
   1464   //   [sp + 4] - Argument 8
   1465   //   [sp + 3] - Argument 7
   1466   //   [sp + 2] - Argument 6
   1467   //   [sp + 1] - Argument 5
   1468   //   [sp + 0] - saved ra
   1469 
   1470   // Argument 9: Pass current isolate address.
   1471   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
   1472   __ sd(a0, MemOperand(sp, 1 * kPointerSize));
   1473 
   1474   // Argument 8: Indicate that this is a direct call from JavaScript.
   1475   __ li(a7, Operand(1));
   1476 
   1477   // Argument 7: Start (high end) of backtracking stack memory area.
   1478   __ li(a0, Operand(address_of_regexp_stack_memory_address));
   1479   __ ld(a0, MemOperand(a0, 0));
   1480   __ li(a2, Operand(address_of_regexp_stack_memory_size));
   1481   __ ld(a2, MemOperand(a2, 0));
   1482   __ daddu(a6, a0, a2);
   1483 
   1484   // Argument 6: Set the number of capture registers to zero to force global
   1485   // regexps to behave as non-global. This does not affect non-global regexps.
   1486   __ mov(a5, zero_reg);
   1487 
   1488   // Argument 5: static offsets vector buffer.
   1489   __ li(
   1490       a4,
   1491       Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
   1492 
   1493   // For arguments 4 and 3 get string length, calculate start of string data
   1494   // and calculate the shift of the index (0 for one_byte and 1 for two byte).
   1495   __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
   1496   __ Xor(a3, a3, Operand(1));  // 1 for 2-byte str, 0 for 1-byte.
   1497   // Load the length from the original subject string from the previous stack
   1498   // frame. Therefore we have to use fp, which points exactly to two pointer
   1499   // sizes below the previous sp. (Because creating a new stack frame pushes
   1500   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
   1501   __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
   1502   // If slice offset is not 0, load the length from the original sliced string.
   1503   // Argument 4, a3: End of string data
   1504   // Argument 3, a2: Start of string data
   1505   // Prepare start and end index of the input.
   1506   __ dsllv(t1, t0, a3);
   1507   __ daddu(t0, t2, t1);
   1508   __ dsllv(t1, a1, a3);
   1509   __ daddu(a2, t0, t1);
   1510 
   1511   __ ld(t2, FieldMemOperand(subject, String::kLengthOffset));
   1512 
   1513   __ SmiUntag(t2);
   1514   __ dsllv(t1, t2, a3);
   1515   __ daddu(a3, t0, t1);
   1516   // Argument 2 (a1): Previous index.
   1517   // Already there
   1518 
   1519   // Argument 1 (a0): Subject string.
   1520   __ mov(a0, subject);
   1521 
   1522   // Locate the code entry and call it.
   1523   __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
   1524   DirectCEntryStub stub(isolate());
   1525   stub.GenerateCall(masm, t9);
   1526 
   1527   __ LeaveExitFrame(false, no_reg, true);
   1528 
   1529   // v0: result
   1530   // subject: subject string (callee saved)
   1531   // regexp_data: RegExp data (callee saved)
   1532   // last_match_info_elements: Last match info elements (callee saved)
   1533   // Check the result.
   1534   Label success;
   1535   __ Branch(&success, eq, v0, Operand(1));
   1536   // We expect exactly one result since we force the called regexp to behave
   1537   // as non-global.
   1538   Label failure;
   1539   __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
   1540   // If not exception it can only be retry. Handle that in the runtime system.
   1541   __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
   1542   // Result must now be exception. If there is no pending exception already a
   1543   // stack overflow (on the backtrack stack) was detected in RegExp code but
   1544   // haven't created the exception yet. Handle that in the runtime system.
   1545   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
   1546   __ li(a1, Operand(isolate()->factory()->the_hole_value()));
   1547   __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1548                                       isolate())));
   1549   __ ld(v0, MemOperand(a2, 0));
   1550   __ Branch(&runtime, eq, v0, Operand(a1));
   1551 
   1552   // For exception, throw the exception again.
   1553   __ TailCallRuntime(Runtime::kRegExpExecReThrow);
   1554 
   1555   __ bind(&failure);
   1556   // For failure and exception return null.
   1557   __ li(v0, Operand(isolate()->factory()->null_value()));
   1558   __ DropAndRet(4);
   1559 
   1560   // Process the result from the native regexp code.
   1561   __ bind(&success);
   1562 
   1563   __ lw(a1, UntagSmiFieldMemOperand(
   1564       regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   1565   // Calculate number of capture registers (number_of_captures + 1) * 2.
   1566   __ Daddu(a1, a1, Operand(1));
   1567   __ dsll(a1, a1, 1);  // Multiply by 2.
   1568 
   1569   // Check that the last match info is a FixedArray.
   1570   __ ld(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset));
   1571   __ JumpIfSmi(last_match_info_elements, &runtime);
   1572   // Check that the object has fast elements.
   1573   __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
   1574   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   1575   __ Branch(&runtime, ne, a0, Operand(at));
   1576   // Check that the last match info has space for the capture registers and the
   1577   // additional information.
   1578   __ ld(a0,
   1579         FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
   1580   __ Daddu(a2, a1, Operand(RegExpMatchInfo::kLastMatchOverhead));
   1581 
   1582   __ SmiUntag(at, a0);
   1583   __ Branch(&runtime, gt, a2, Operand(at));
   1584 
   1585   // a1: number of capture registers
   1586   // subject: subject string
   1587   // Store the capture count.
   1588   __ SmiTag(a2, a1);  // To smi.
   1589   __ sd(a2, FieldMemOperand(last_match_info_elements,
   1590                             RegExpMatchInfo::kNumberOfCapturesOffset));
   1591   // Store last subject and last input.
   1592   __ sd(subject, FieldMemOperand(last_match_info_elements,
   1593                                  RegExpMatchInfo::kLastSubjectOffset));
   1594   __ mov(a2, subject);
   1595   __ RecordWriteField(last_match_info_elements,
   1596                       RegExpMatchInfo::kLastSubjectOffset, subject, a7,
   1597                       kRAHasNotBeenSaved, kDontSaveFPRegs);
   1598   __ mov(subject, a2);
   1599   __ sd(subject, FieldMemOperand(last_match_info_elements,
   1600                                  RegExpMatchInfo::kLastInputOffset));
   1601   __ RecordWriteField(last_match_info_elements,
   1602                       RegExpMatchInfo::kLastInputOffset, subject, a7,
   1603                       kRAHasNotBeenSaved, kDontSaveFPRegs);
   1604 
   1605   // Get the static offsets vector filled by the native regexp code.
   1606   ExternalReference address_of_static_offsets_vector =
   1607       ExternalReference::address_of_static_offsets_vector(isolate());
   1608   __ li(a2, Operand(address_of_static_offsets_vector));
   1609 
   1610   // a1: number of capture registers
   1611   // a2: offsets vector
   1612   Label next_capture, done;
   1613   // Capture register counter starts from number of capture registers and
   1614   // counts down until wrapping after zero.
   1615   __ Daddu(a0, last_match_info_elements,
   1616            Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag));
   1617   __ bind(&next_capture);
   1618   __ Dsubu(a1, a1, Operand(1));
   1619   __ Branch(&done, lt, a1, Operand(zero_reg));
   1620   // Read the value from the static offsets vector buffer.
   1621   __ lw(a3, MemOperand(a2, 0));
   1622   __ daddiu(a2, a2, kIntSize);
   1623   // Store the smi value in the last match info.
   1624   __ SmiTag(a3);
   1625   __ sd(a3, MemOperand(a0, 0));
   1626   __ Branch(&next_capture, USE_DELAY_SLOT);
   1627   __ daddiu(a0, a0, kPointerSize);  // In branch delay slot.
   1628 
   1629   __ bind(&done);
   1630 
   1631   // Return last match info.
   1632   __ mov(v0, last_match_info_elements);
   1633   __ DropAndRet(4);
   1634 
   1635   // Do the runtime call to execute the regexp.
   1636   __ bind(&runtime);
   1637   __ TailCallRuntime(Runtime::kRegExpExec);
   1638 
   1639   // Deferred code for string handling.
   1640   // (5) Long external string?  If not, go to (7).
   1641   __ bind(&not_seq_nor_cons);
   1642   // Go to (7).
   1643   __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
   1644 
   1645   // (6) External string.  Make it, offset-wise, look like a sequential string.
   1646   __ bind(&external_string);
   1647   __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
   1648   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
   1649   if (FLAG_debug_code) {
   1650     // Assert that we do not have a cons or slice (indirect strings) here.
   1651     // Sequential strings have already been ruled out.
   1652     __ And(at, a0, Operand(kIsIndirectStringMask));
   1653     __ Assert(eq,
   1654               kExternalStringExpectedButNotFound,
   1655               at,
   1656               Operand(zero_reg));
   1657   }
   1658   __ ld(subject,
   1659         FieldMemOperand(subject, ExternalString::kResourceDataOffset));
   1660   // Move the pointer so that offset-wise, it looks like a sequential string.
   1661   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   1662   __ Dsubu(subject,
   1663           subject,
   1664           SeqTwoByteString::kHeaderSize - kHeapObjectTag);
   1665   __ jmp(&seq_string);  // Go to (4).
   1666 
   1667   // (7) Short external string or not a string?  If yes, bail out to runtime.
   1668   __ bind(&not_long_external);
   1669   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
   1670   __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
   1671   __ Branch(&runtime, ne, at, Operand(zero_reg));
   1672 
   1673   // (8) Sliced or thin string.  Replace subject with parent.  Go to (4).
   1674   Label thin_string;
   1675   __ Branch(&thin_string, eq, a1, Operand(kThinStringTag));
   1676   // Load offset into t0 and replace subject string with parent.
   1677   __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
   1678   __ SmiUntag(t0);
   1679   __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
   1680   __ jmp(&check_underlying);  // Go to (1).
   1681 
   1682   __ bind(&thin_string);
   1683   __ ld(subject, FieldMemOperand(subject, ThinString::kActualOffset));
   1684   __ jmp(&check_underlying);  // Go to (1).
   1685 #endif  // V8_INTERPRETED_REGEXP
   1686 }
   1687 
   1688 
   1689 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
   1690   // a0 : number of arguments to the construct function
   1691   // a2 : feedback vector
   1692   // a3 : slot in feedback vector (Smi)
   1693   // a1 : the function to call
   1694   FrameScope scope(masm, StackFrame::INTERNAL);
   1695   const RegList kSavedRegs = 1 << 4 |  // a0
   1696                              1 << 5 |  // a1
   1697                              1 << 6 |  // a2
   1698                              1 << 7 |  // a3
   1699                              1 << cp.code();
   1700 
   1701   // Number-of-arguments register must be smi-tagged to call out.
   1702   __ SmiTag(a0);
   1703   __ MultiPush(kSavedRegs);
   1704 
   1705   __ CallStub(stub);
   1706 
   1707   __ MultiPop(kSavedRegs);
   1708   __ SmiUntag(a0);
   1709 }
   1710 
   1711 
   1712 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   1713   // Cache the called function in a feedback vector slot.  Cache states
   1714   // are uninitialized, monomorphic (indicated by a JSFunction), and
   1715   // megamorphic.
   1716   // a0 : number of arguments to the construct function
   1717   // a1 : the function to call
   1718   // a2 : feedback vector
   1719   // a3 : slot in feedback vector (Smi)
   1720   Label initialize, done, miss, megamorphic, not_array_function;
   1721 
   1722   DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()),
   1723             masm->isolate()->heap()->megamorphic_symbol());
   1724   DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()),
   1725             masm->isolate()->heap()->uninitialized_symbol());
   1726 
   1727   // Load the cache state into a5.
   1728   __ dsrl(a5, a3, 32 - kPointerSizeLog2);
   1729   __ Daddu(a5, a2, Operand(a5));
   1730   __ ld(a5, FieldMemOperand(a5, FixedArray::kHeaderSize));
   1731 
   1732   // A monomorphic cache hit or an already megamorphic state: invoke the
   1733   // function without changing the state.
   1734   // We don't know if a5 is a WeakCell or a Symbol, but it's harmless to read at
   1735   // this position in a symbol (see static asserts in feedback-vector.h).
   1736   Label check_allocation_site;
   1737   Register feedback_map = a6;
   1738   Register weak_value = t0;
   1739   __ ld(weak_value, FieldMemOperand(a5, WeakCell::kValueOffset));
   1740   __ Branch(&done, eq, a1, Operand(weak_value));
   1741   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   1742   __ Branch(&done, eq, a5, Operand(at));
   1743   __ ld(feedback_map, FieldMemOperand(a5, HeapObject::kMapOffset));
   1744   __ LoadRoot(at, Heap::kWeakCellMapRootIndex);
   1745   __ Branch(&check_allocation_site, ne, feedback_map, Operand(at));
   1746 
   1747   // If the weak cell is cleared, we have a new chance to become monomorphic.
   1748   __ JumpIfSmi(weak_value, &initialize);
   1749   __ jmp(&megamorphic);
   1750 
   1751   __ bind(&check_allocation_site);
   1752   // If we came here, we need to see if we are the array function.
   1753   // If we didn't have a matching function, and we didn't find the megamorph
   1754   // sentinel, then we have in the slot either some other function or an
   1755   // AllocationSite.
   1756   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   1757   __ Branch(&miss, ne, feedback_map, Operand(at));
   1758 
   1759   // Make sure the function is the Array() function
   1760   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
   1761   __ Branch(&megamorphic, ne, a1, Operand(a5));
   1762   __ jmp(&done);
   1763 
   1764   __ bind(&miss);
   1765 
   1766   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   1767   // megamorphic.
   1768   __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
   1769   __ Branch(&initialize, eq, a5, Operand(at));
   1770   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   1771   // write-barrier is needed.
   1772   __ bind(&megamorphic);
   1773   __ dsrl(a5, a3, 32 - kPointerSizeLog2);
   1774   __ Daddu(a5, a2, Operand(a5));
   1775   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   1776   __ sd(at, FieldMemOperand(a5, FixedArray::kHeaderSize));
   1777   __ jmp(&done);
   1778 
   1779   // An uninitialized cache is patched with the function.
   1780   __ bind(&initialize);
   1781   // Make sure the function is the Array() function.
   1782   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
   1783   __ Branch(&not_array_function, ne, a1, Operand(a5));
   1784 
   1785   // The target function is the Array constructor,
   1786   // Create an AllocationSite if we don't already have it, store it in the
   1787   // slot.
   1788   CreateAllocationSiteStub create_stub(masm->isolate());
   1789   CallStubInRecordCallTarget(masm, &create_stub);
   1790   __ Branch(&done);
   1791 
   1792   __ bind(&not_array_function);
   1793 
   1794   CreateWeakCellStub weak_cell_stub(masm->isolate());
   1795   CallStubInRecordCallTarget(masm, &weak_cell_stub);
   1796 
   1797   __ bind(&done);
   1798 
   1799   // Increment the call count for all function calls.
   1800   __ SmiScale(a4, a3, kPointerSizeLog2);
   1801   __ Daddu(a5, a2, Operand(a4));
   1802   __ ld(a4, FieldMemOperand(a5, FixedArray::kHeaderSize + kPointerSize));
   1803   __ Daddu(a4, a4, Operand(Smi::FromInt(1)));
   1804   __ sd(a4, FieldMemOperand(a5, FixedArray::kHeaderSize + kPointerSize));
   1805 }
   1806 
   1807 
   1808 void CallConstructStub::Generate(MacroAssembler* masm) {
   1809   // a0 : number of arguments
   1810   // a1 : the function to call
   1811   // a2 : feedback vector
   1812   // a3 : slot in feedback vector (Smi, for RecordCallTarget)
   1813 
   1814   Label non_function;
   1815   // Check that the function is not a smi.
   1816   __ JumpIfSmi(a1, &non_function);
   1817   // Check that the function is a JSFunction.
   1818   __ GetObjectType(a1, a5, a5);
   1819   __ Branch(&non_function, ne, a5, Operand(JS_FUNCTION_TYPE));
   1820 
   1821   GenerateRecordCallTarget(masm);
   1822 
   1823   __ dsrl(at, a3, 32 - kPointerSizeLog2);
   1824   __ Daddu(a5, a2, at);
   1825   Label feedback_register_initialized;
   1826   // Put the AllocationSite from the feedback vector into a2, or undefined.
   1827   __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize));
   1828   __ ld(a5, FieldMemOperand(a2, AllocationSite::kMapOffset));
   1829   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   1830   __ Branch(&feedback_register_initialized, eq, a5, Operand(at));
   1831   __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
   1832   __ bind(&feedback_register_initialized);
   1833 
   1834   __ AssertUndefinedOrAllocationSite(a2, a5);
   1835 
   1836   // Pass function as new target.
   1837   __ mov(a3, a1);
   1838 
   1839   // Tail call to the function-specific construct stub (still in the caller
   1840   // context at this point).
   1841   __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   1842   __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset));
   1843   __ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
   1844   __ Jump(at);
   1845 
   1846   __ bind(&non_function);
   1847   __ mov(a3, a1);
   1848   __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
   1849 }
   1850 
   1851 
   1852 // StringCharCodeAtGenerator.
   1853 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   1854   DCHECK(!a4.is(index_));
   1855   DCHECK(!a4.is(result_));
   1856   DCHECK(!a4.is(object_));
   1857 
   1858   // If the receiver is a smi trigger the non-string case.
   1859   if (check_mode_ == RECEIVER_IS_UNKNOWN) {
   1860     __ JumpIfSmi(object_, receiver_not_string_);
   1861 
   1862     // Fetch the instance type of the receiver into result register.
   1863     __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   1864     __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   1865     // If the receiver is not a string trigger the non-string case.
   1866     __ And(a4, result_, Operand(kIsNotStringMask));
   1867     __ Branch(receiver_not_string_, ne, a4, Operand(zero_reg));
   1868   }
   1869 
   1870   // If the index is non-smi trigger the non-smi case.
   1871   __ JumpIfNotSmi(index_, &index_not_smi_);
   1872 
   1873   __ bind(&got_smi_index_);
   1874 
   1875   // Check for index out of range.
   1876   __ ld(a4, FieldMemOperand(object_, String::kLengthOffset));
   1877   __ Branch(index_out_of_range_, ls, a4, Operand(index_));
   1878 
   1879   __ SmiUntag(index_);
   1880 
   1881   StringCharLoadGenerator::Generate(masm,
   1882                                     object_,
   1883                                     index_,
   1884                                     result_,
   1885                                     &call_runtime_);
   1886 
   1887   __ SmiTag(result_);
   1888   __ bind(&exit_);
   1889 }
   1890 
   1891 void StringCharCodeAtGenerator::GenerateSlow(
   1892     MacroAssembler* masm, EmbedMode embed_mode,
   1893     const RuntimeCallHelper& call_helper) {
   1894   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   1895 
   1896   // Index is not a smi.
   1897   __ bind(&index_not_smi_);
   1898   // If index is a heap number, try converting it to an integer.
   1899   __ CheckMap(index_,
   1900               result_,
   1901               Heap::kHeapNumberMapRootIndex,
   1902               index_not_number_,
   1903               DONT_DO_SMI_CHECK);
   1904   call_helper.BeforeCall(masm);
   1905   // Consumed by runtime conversion function:
   1906   if (embed_mode == PART_OF_IC_HANDLER) {
   1907     __ Push(LoadWithVectorDescriptor::VectorRegister(),
   1908             LoadWithVectorDescriptor::SlotRegister(), object_, index_);
   1909   } else {
   1910     __ Push(object_, index_);
   1911   }
   1912   __ CallRuntime(Runtime::kNumberToSmi);
   1913 
   1914   // Save the conversion result before the pop instructions below
   1915   // have a chance to overwrite it.
   1916 
   1917   __ Move(index_, v0);
   1918   if (embed_mode == PART_OF_IC_HANDLER) {
   1919     __ Pop(LoadWithVectorDescriptor::VectorRegister(),
   1920            LoadWithVectorDescriptor::SlotRegister(), object_);
   1921   } else {
   1922     __ pop(object_);
   1923   }
   1924   // Reload the instance type.
   1925   __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   1926   __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   1927   call_helper.AfterCall(masm);
   1928   // If index is still not a smi, it must be out of range.
   1929   __ JumpIfNotSmi(index_, index_out_of_range_);
   1930   // Otherwise, return to the fast path.
   1931   __ Branch(&got_smi_index_);
   1932 
   1933   // Call runtime. We get here when the receiver is a string and the
   1934   // index is a number, but the code of getting the actual character
   1935   // is too complex (e.g., when the string needs to be flattened).
   1936   __ bind(&call_runtime_);
   1937   call_helper.BeforeCall(masm);
   1938   __ SmiTag(index_);
   1939   __ Push(object_, index_);
   1940   __ CallRuntime(Runtime::kStringCharCodeAtRT);
   1941 
   1942   __ Move(result_, v0);
   1943 
   1944   call_helper.AfterCall(masm);
   1945   __ jmp(&exit_);
   1946 
   1947   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   1948 }
   1949 
   1950 void StringHelper::GenerateFlatOneByteStringEquals(
   1951     MacroAssembler* masm, Register left, Register right, Register scratch1,
   1952     Register scratch2, Register scratch3) {
   1953   Register length = scratch1;
   1954 
   1955   // Compare lengths.
   1956   Label strings_not_equal, check_zero_length;
   1957   __ ld(length, FieldMemOperand(left, String::kLengthOffset));
   1958   __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
   1959   __ Branch(&check_zero_length, eq, length, Operand(scratch2));
   1960   __ bind(&strings_not_equal);
   1961   // Can not put li in delayslot, it has multi instructions.
   1962   __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
   1963   __ Ret();
   1964 
   1965   // Check if the length is zero.
   1966   Label compare_chars;
   1967   __ bind(&check_zero_length);
   1968   STATIC_ASSERT(kSmiTag == 0);
   1969   __ Branch(&compare_chars, ne, length, Operand(zero_reg));
   1970   DCHECK(is_int16((intptr_t)Smi::FromInt(EQUAL)));
   1971   __ Ret(USE_DELAY_SLOT);
   1972   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   1973 
   1974   // Compare characters.
   1975   __ bind(&compare_chars);
   1976 
   1977   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
   1978                                   v0, &strings_not_equal);
   1979 
   1980   // Characters are equal.
   1981   __ Ret(USE_DELAY_SLOT);
   1982   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   1983 }
   1984 
   1985 
   1986 void StringHelper::GenerateCompareFlatOneByteStrings(
   1987     MacroAssembler* masm, Register left, Register right, Register scratch1,
   1988     Register scratch2, Register scratch3, Register scratch4) {
   1989   Label result_not_equal, compare_lengths;
   1990   // Find minimum length and length difference.
   1991   __ ld(scratch1, FieldMemOperand(left, String::kLengthOffset));
   1992   __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
   1993   __ Dsubu(scratch3, scratch1, Operand(scratch2));
   1994   Register length_delta = scratch3;
   1995   __ slt(scratch4, scratch2, scratch1);
   1996   __ Movn(scratch1, scratch2, scratch4);
   1997   Register min_length = scratch1;
   1998   STATIC_ASSERT(kSmiTag == 0);
   1999   __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
   2000 
   2001   // Compare loop.
   2002   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
   2003                                   scratch4, v0, &result_not_equal);
   2004 
   2005   // Compare lengths - strings up to min-length are equal.
   2006   __ bind(&compare_lengths);
   2007   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
   2008   // Use length_delta as result if it's zero.
   2009   __ mov(scratch2, length_delta);
   2010   __ mov(scratch4, zero_reg);
   2011   __ mov(v0, zero_reg);
   2012 
   2013   __ bind(&result_not_equal);
   2014   // Conditionally update the result based either on length_delta or
   2015   // the last comparion performed in the loop above.
   2016   Label ret;
   2017   __ Branch(&ret, eq, scratch2, Operand(scratch4));
   2018   __ li(v0, Operand(Smi::FromInt(GREATER)));
   2019   __ Branch(&ret, gt, scratch2, Operand(scratch4));
   2020   __ li(v0, Operand(Smi::FromInt(LESS)));
   2021   __ bind(&ret);
   2022   __ Ret();
   2023 }
   2024 
   2025 
   2026 void StringHelper::GenerateOneByteCharsCompareLoop(
   2027     MacroAssembler* masm, Register left, Register right, Register length,
   2028     Register scratch1, Register scratch2, Register scratch3,
   2029     Label* chars_not_equal) {
   2030   // Change index to run from -length to -1 by adding length to string
   2031   // start. This means that loop ends when index reaches zero, which
   2032   // doesn't need an additional compare.
   2033   __ SmiUntag(length);
   2034   __ Daddu(scratch1, length,
   2035           Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   2036   __ Daddu(left, left, Operand(scratch1));
   2037   __ Daddu(right, right, Operand(scratch1));
   2038   __ Dsubu(length, zero_reg, length);
   2039   Register index = length;  // index = -length;
   2040 
   2041 
   2042   // Compare loop.
   2043   Label loop;
   2044   __ bind(&loop);
   2045   __ Daddu(scratch3, left, index);
   2046   __ lbu(scratch1, MemOperand(scratch3));
   2047   __ Daddu(scratch3, right, index);
   2048   __ lbu(scratch2, MemOperand(scratch3));
   2049   __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
   2050   __ Daddu(index, index, 1);
   2051   __ Branch(&loop, ne, index, Operand(zero_reg));
   2052 }
   2053 
   2054 
   2055 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   2056   // ----------- S t a t e -------------
   2057   //  -- a1    : left
   2058   //  -- a0    : right
   2059   //  -- ra    : return address
   2060   // -----------------------------------
   2061 
   2062   // Load a2 with the allocation site. We stick an undefined dummy value here
   2063   // and replace it with the real allocation site later when we instantiate this
   2064   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   2065   __ li(a2, isolate()->factory()->undefined_value());
   2066 
   2067   // Make sure that we actually patched the allocation site.
   2068   if (FLAG_debug_code) {
   2069     __ And(at, a2, Operand(kSmiTagMask));
   2070     __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
   2071     __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
   2072     __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   2073     __ Assert(eq, kExpectedAllocationSite, a4, Operand(at));
   2074   }
   2075 
   2076   // Tail call into the stub that handles binary operations with allocation
   2077   // sites.
   2078   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   2079   __ TailCallStub(&stub);
   2080 }
   2081 
   2082 
   2083 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
   2084   DCHECK_EQ(CompareICState::BOOLEAN, state());
   2085   Label miss;
   2086 
   2087   __ CheckMap(a1, a2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
   2088   __ CheckMap(a0, a3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
   2089   if (!Token::IsEqualityOp(op())) {
   2090     __ ld(a1, FieldMemOperand(a1, Oddball::kToNumberOffset));
   2091     __ AssertSmi(a1);
   2092     __ ld(a0, FieldMemOperand(a0, Oddball::kToNumberOffset));
   2093     __ AssertSmi(a0);
   2094   }
   2095   __ Ret(USE_DELAY_SLOT);
   2096   __ Dsubu(v0, a1, a0);
   2097 
   2098   __ bind(&miss);
   2099   GenerateMiss(masm);
   2100 }
   2101 
   2102 
   2103 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   2104   DCHECK(state() == CompareICState::SMI);
   2105   Label miss;
   2106   __ Or(a2, a1, a0);
   2107   __ JumpIfNotSmi(a2, &miss);
   2108 
   2109   if (GetCondition() == eq) {
   2110     // For equality we do not care about the sign of the result.
   2111     __ Ret(USE_DELAY_SLOT);
   2112     __ Dsubu(v0, a0, a1);
   2113   } else {
   2114     // Untag before subtracting to avoid handling overflow.
   2115     __ SmiUntag(a1);
   2116     __ SmiUntag(a0);
   2117     __ Ret(USE_DELAY_SLOT);
   2118     __ Dsubu(v0, a1, a0);
   2119   }
   2120 
   2121   __ bind(&miss);
   2122   GenerateMiss(masm);
   2123 }
   2124 
   2125 
   2126 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   2127   DCHECK(state() == CompareICState::NUMBER);
   2128 
   2129   Label generic_stub;
   2130   Label unordered, maybe_undefined1, maybe_undefined2;
   2131   Label miss;
   2132 
   2133   if (left() == CompareICState::SMI) {
   2134     __ JumpIfNotSmi(a1, &miss);
   2135   }
   2136   if (right() == CompareICState::SMI) {
   2137     __ JumpIfNotSmi(a0, &miss);
   2138   }
   2139 
   2140   // Inlining the double comparison and falling back to the general compare
   2141   // stub if NaN is involved.
   2142   // Load left and right operand.
   2143   Label done, left, left_smi, right_smi;
   2144   __ JumpIfSmi(a0, &right_smi);
   2145   __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
   2146               DONT_DO_SMI_CHECK);
   2147   __ Dsubu(a2, a0, Operand(kHeapObjectTag));
   2148   __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
   2149   __ Branch(&left);
   2150   __ bind(&right_smi);
   2151   __ SmiUntag(a2, a0);  // Can't clobber a0 yet.
   2152   FPURegister single_scratch = f6;
   2153   __ mtc1(a2, single_scratch);
   2154   __ cvt_d_w(f2, single_scratch);
   2155 
   2156   __ bind(&left);
   2157   __ JumpIfSmi(a1, &left_smi);
   2158   __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
   2159               DONT_DO_SMI_CHECK);
   2160   __ Dsubu(a2, a1, Operand(kHeapObjectTag));
   2161   __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
   2162   __ Branch(&done);
   2163   __ bind(&left_smi);
   2164   __ SmiUntag(a2, a1);  // Can't clobber a1 yet.
   2165   single_scratch = f8;
   2166   __ mtc1(a2, single_scratch);
   2167   __ cvt_d_w(f0, single_scratch);
   2168 
   2169   __ bind(&done);
   2170 
   2171   // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
   2172   Label fpu_eq, fpu_lt;
   2173   // Test if equal, and also handle the unordered/NaN case.
   2174   __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
   2175 
   2176   // Test if less (unordered case is already handled).
   2177   __ BranchF(&fpu_lt, NULL, lt, f0, f2);
   2178 
   2179   // Otherwise it's greater, so just fall thru, and return.
   2180   DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
   2181   __ Ret(USE_DELAY_SLOT);
   2182   __ li(v0, Operand(GREATER));
   2183 
   2184   __ bind(&fpu_eq);
   2185   __ Ret(USE_DELAY_SLOT);
   2186   __ li(v0, Operand(EQUAL));
   2187 
   2188   __ bind(&fpu_lt);
   2189   __ Ret(USE_DELAY_SLOT);
   2190   __ li(v0, Operand(LESS));
   2191 
   2192   __ bind(&unordered);
   2193   __ bind(&generic_stub);
   2194   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
   2195                      CompareICState::GENERIC, CompareICState::GENERIC);
   2196   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   2197 
   2198   __ bind(&maybe_undefined1);
   2199   if (Token::IsOrderedRelationalCompareOp(op())) {
   2200     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   2201     __ Branch(&miss, ne, a0, Operand(at));
   2202     __ JumpIfSmi(a1, &unordered);
   2203     __ GetObjectType(a1, a2, a2);
   2204     __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
   2205     __ jmp(&unordered);
   2206   }
   2207 
   2208   __ bind(&maybe_undefined2);
   2209   if (Token::IsOrderedRelationalCompareOp(op())) {
   2210     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   2211     __ Branch(&unordered, eq, a1, Operand(at));
   2212   }
   2213 
   2214   __ bind(&miss);
   2215   GenerateMiss(masm);
   2216 }
   2217 
   2218 
   2219 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   2220   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   2221   Label miss;
   2222 
   2223   // Registers containing left and right operands respectively.
   2224   Register left = a1;
   2225   Register right = a0;
   2226   Register tmp1 = a2;
   2227   Register tmp2 = a3;
   2228 
   2229   // Check that both operands are heap objects.
   2230   __ JumpIfEitherSmi(left, right, &miss);
   2231 
   2232   // Check that both operands are internalized strings.
   2233   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   2234   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   2235   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   2236   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   2237   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   2238   __ Or(tmp1, tmp1, Operand(tmp2));
   2239   __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
   2240   __ Branch(&miss, ne, at, Operand(zero_reg));
   2241 
   2242   // Make sure a0 is non-zero. At this point input operands are
   2243   // guaranteed to be non-zero.
   2244   DCHECK(right.is(a0));
   2245   STATIC_ASSERT(EQUAL == 0);
   2246   STATIC_ASSERT(kSmiTag == 0);
   2247   __ mov(v0, right);
   2248   // Internalized strings are compared by identity.
   2249   __ Ret(ne, left, Operand(right));
   2250   DCHECK(is_int16(EQUAL));
   2251   __ Ret(USE_DELAY_SLOT);
   2252   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   2253 
   2254   __ bind(&miss);
   2255   GenerateMiss(masm);
   2256 }
   2257 
   2258 
   2259 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   2260   DCHECK(state() == CompareICState::UNIQUE_NAME);
   2261   DCHECK(GetCondition() == eq);
   2262   Label miss;
   2263 
   2264   // Registers containing left and right operands respectively.
   2265   Register left = a1;
   2266   Register right = a0;
   2267   Register tmp1 = a2;
   2268   Register tmp2 = a3;
   2269 
   2270   // Check that both operands are heap objects.
   2271   __ JumpIfEitherSmi(left, right, &miss);
   2272 
   2273   // Check that both operands are unique names. This leaves the instance
   2274   // types loaded in tmp1 and tmp2.
   2275   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   2276   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   2277   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   2278   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   2279 
   2280   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
   2281   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
   2282 
   2283   // Use a0 as result
   2284   __ mov(v0, a0);
   2285 
   2286   // Unique names are compared by identity.
   2287   Label done;
   2288   __ Branch(&done, ne, left, Operand(right));
   2289   // Make sure a0 is non-zero. At this point input operands are
   2290   // guaranteed to be non-zero.
   2291   DCHECK(right.is(a0));
   2292   STATIC_ASSERT(EQUAL == 0);
   2293   STATIC_ASSERT(kSmiTag == 0);
   2294   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   2295   __ bind(&done);
   2296   __ Ret();
   2297 
   2298   __ bind(&miss);
   2299   GenerateMiss(masm);
   2300 }
   2301 
   2302 
   2303 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   2304   DCHECK(state() == CompareICState::STRING);
   2305   Label miss;
   2306 
   2307   bool equality = Token::IsEqualityOp(op());
   2308 
   2309   // Registers containing left and right operands respectively.
   2310   Register left = a1;
   2311   Register right = a0;
   2312   Register tmp1 = a2;
   2313   Register tmp2 = a3;
   2314   Register tmp3 = a4;
   2315   Register tmp4 = a5;
   2316   Register tmp5 = a6;
   2317 
   2318   // Check that both operands are heap objects.
   2319   __ JumpIfEitherSmi(left, right, &miss);
   2320 
   2321   // Check that both operands are strings. This leaves the instance
   2322   // types loaded in tmp1 and tmp2.
   2323   __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   2324   __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   2325   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   2326   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   2327   STATIC_ASSERT(kNotStringTag != 0);
   2328   __ Or(tmp3, tmp1, tmp2);
   2329   __ And(tmp5, tmp3, Operand(kIsNotStringMask));
   2330   __ Branch(&miss, ne, tmp5, Operand(zero_reg));
   2331 
   2332   // Fast check for identical strings.
   2333   Label left_ne_right;
   2334   STATIC_ASSERT(EQUAL == 0);
   2335   STATIC_ASSERT(kSmiTag == 0);
   2336   __ Branch(&left_ne_right, ne, left, Operand(right));
   2337   __ Ret(USE_DELAY_SLOT);
   2338   __ mov(v0, zero_reg);  // In the delay slot.
   2339   __ bind(&left_ne_right);
   2340 
   2341   // Handle not identical strings.
   2342 
   2343   // Check that both strings are internalized strings. If they are, we're done
   2344   // because we already know they are not identical. We know they are both
   2345   // strings.
   2346   if (equality) {
   2347     DCHECK(GetCondition() == eq);
   2348     STATIC_ASSERT(kInternalizedTag == 0);
   2349     __ Or(tmp3, tmp1, Operand(tmp2));
   2350     __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
   2351     Label is_symbol;
   2352     __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
   2353     // Make sure a0 is non-zero. At this point input operands are
   2354     // guaranteed to be non-zero.
   2355     DCHECK(right.is(a0));
   2356     __ Ret(USE_DELAY_SLOT);
   2357     __ mov(v0, a0);  // In the delay slot.
   2358     __ bind(&is_symbol);
   2359   }
   2360 
   2361   // Check that both strings are sequential one_byte.
   2362   Label runtime;
   2363   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
   2364                                                     &runtime);
   2365 
   2366   // Compare flat one_byte strings. Returns when done.
   2367   if (equality) {
   2368     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
   2369                                                   tmp3);
   2370   } else {
   2371     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
   2372                                                     tmp2, tmp3, tmp4);
   2373   }
   2374 
   2375   // Handle more complex cases in runtime.
   2376   __ bind(&runtime);
   2377   if (equality) {
   2378     {
   2379       FrameScope scope(masm, StackFrame::INTERNAL);
   2380       __ Push(left, right);
   2381       __ CallRuntime(Runtime::kStringEqual);
   2382     }
   2383     __ LoadRoot(a0, Heap::kTrueValueRootIndex);
   2384     __ Ret(USE_DELAY_SLOT);
   2385     __ Subu(v0, v0, a0);  // In delay slot.
   2386   } else {
   2387     __ Push(left, right);
   2388     __ TailCallRuntime(Runtime::kStringCompare);
   2389   }
   2390 
   2391   __ bind(&miss);
   2392   GenerateMiss(masm);
   2393 }
   2394 
   2395 
   2396 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
   2397   DCHECK_EQ(CompareICState::RECEIVER, state());
   2398   Label miss;
   2399   __ And(a2, a1, Operand(a0));
   2400   __ JumpIfSmi(a2, &miss);
   2401 
   2402   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   2403   __ GetObjectType(a0, a2, a2);
   2404   __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
   2405   __ GetObjectType(a1, a2, a2);
   2406   __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
   2407 
   2408   DCHECK_EQ(eq, GetCondition());
   2409   __ Ret(USE_DELAY_SLOT);
   2410   __ dsubu(v0, a0, a1);
   2411 
   2412   __ bind(&miss);
   2413   GenerateMiss(masm);
   2414 }
   2415 
   2416 
   2417 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
   2418   Label miss;
   2419   Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
   2420   __ And(a2, a1, a0);
   2421   __ JumpIfSmi(a2, &miss);
   2422   __ GetWeakValue(a4, cell);
   2423   __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
   2424   __ ld(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
   2425   __ Branch(&miss, ne, a2, Operand(a4));
   2426   __ Branch(&miss, ne, a3, Operand(a4));
   2427 
   2428   if (Token::IsEqualityOp(op())) {
   2429     __ Ret(USE_DELAY_SLOT);
   2430     __ dsubu(v0, a0, a1);
   2431   } else {
   2432     if (op() == Token::LT || op() == Token::LTE) {
   2433       __ li(a2, Operand(Smi::FromInt(GREATER)));
   2434     } else {
   2435       __ li(a2, Operand(Smi::FromInt(LESS)));
   2436     }
   2437     __ Push(a1, a0, a2);
   2438     __ TailCallRuntime(Runtime::kCompare);
   2439   }
   2440 
   2441   __ bind(&miss);
   2442   GenerateMiss(masm);
   2443 }
   2444 
   2445 
   2446 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   2447   {
   2448     // Call the runtime system in a fresh internal frame.
   2449     FrameScope scope(masm, StackFrame::INTERNAL);
   2450     __ Push(a1, a0);
   2451     __ Push(ra, a1, a0);
   2452     __ li(a4, Operand(Smi::FromInt(op())));
   2453     __ daddiu(sp, sp, -kPointerSize);
   2454     __ CallRuntime(Runtime::kCompareIC_Miss, 3, kDontSaveFPRegs,
   2455                    USE_DELAY_SLOT);
   2456     __ sd(a4, MemOperand(sp));  // In the delay slot.
   2457     // Compute the entry point of the rewritten stub.
   2458     __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
   2459     // Restore registers.
   2460     __ Pop(a1, a0, ra);
   2461   }
   2462   __ Jump(a2);
   2463 }
   2464 
   2465 
   2466 void DirectCEntryStub::Generate(MacroAssembler* masm) {
   2467   // Make place for arguments to fit C calling convention. Most of the callers
   2468   // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
   2469   // so they handle stack restoring and we don't have to do that here.
   2470   // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
   2471   // kCArgsSlotsSize stack space after the call.
   2472   __ daddiu(sp, sp, -kCArgsSlotsSize);
   2473   // Place the return address on the stack, making the call
   2474   // GC safe. The RegExp backend also relies on this.
   2475   __ sd(ra, MemOperand(sp, kCArgsSlotsSize));
   2476   __ Call(t9);  // Call the C++ function.
   2477   __ ld(t9, MemOperand(sp, kCArgsSlotsSize));
   2478 
   2479   if (FLAG_debug_code && FLAG_enable_slow_asserts) {
   2480     // In case of an error the return address may point to a memory area
   2481     // filled with kZapValue by the GC.
   2482     // Dereference the address and check for this.
   2483     __ Uld(a4, MemOperand(t9));
   2484     __ Assert(ne, kReceivedInvalidReturnAddress, a4,
   2485         Operand(reinterpret_cast<uint64_t>(kZapValue)));
   2486   }
   2487   __ Jump(t9);
   2488 }
   2489 
   2490 
   2491 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
   2492                                     Register target) {
   2493   intptr_t loc =
   2494       reinterpret_cast<intptr_t>(GetCode().location());
   2495   __ Move(t9, target);
   2496   __ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
   2497   __ Call(at);
   2498 }
   2499 
   2500 
   2501 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   2502                                                       Label* miss,
   2503                                                       Label* done,
   2504                                                       Register receiver,
   2505                                                       Register properties,
   2506                                                       Handle<Name> name,
   2507                                                       Register scratch0) {
   2508   DCHECK(name->IsUniqueName());
   2509   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   2510   // not equal to the name and kProbes-th slot is not used (its name is the
   2511   // undefined value), it guarantees the hash table doesn't contain the
   2512   // property. It's true even if some slots represent deleted properties
   2513   // (their names are the hole value).
   2514   for (int i = 0; i < kInlinedProbes; i++) {
   2515     // scratch0 points to properties hash.
   2516     // Compute the masked index: (hash + i + i * i) & mask.
   2517     Register index = scratch0;
   2518     // Capacity is smi 2^n.
   2519     __ SmiLoadUntag(index, FieldMemOperand(properties, kCapacityOffset));
   2520     __ Dsubu(index, index, Operand(1));
   2521     __ And(index, index,
   2522            Operand(name->Hash() + NameDictionary::GetProbeOffset(i)));
   2523 
   2524     // Scale the index by multiplying by the entry size.
   2525     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   2526     __ Dlsa(index, index, index, 1);  // index *= 3.
   2527 
   2528     Register entity_name = scratch0;
   2529     // Having undefined at this place means the name is not contained.
   2530     STATIC_ASSERT(kSmiTagSize == 1);
   2531     Register tmp = properties;
   2532 
   2533     __ Dlsa(tmp, properties, index, kPointerSizeLog2);
   2534     __ ld(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
   2535 
   2536     DCHECK(!tmp.is(entity_name));
   2537     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
   2538     __ Branch(done, eq, entity_name, Operand(tmp));
   2539 
   2540     // Load the hole ready for use below:
   2541     __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
   2542 
   2543     // Stop if found the property.
   2544     __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
   2545 
   2546     Label good;
   2547     __ Branch(&good, eq, entity_name, Operand(tmp));
   2548 
   2549     // Check if the entry name is not a unique name.
   2550     __ ld(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
   2551     __ lbu(entity_name,
   2552            FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
   2553     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
   2554     __ bind(&good);
   2555 
   2556     // Restore the properties.
   2557     __ ld(properties,
   2558           FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   2559   }
   2560 
   2561   const int spill_mask =
   2562       (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() |
   2563        a2.bit() | a1.bit() | a0.bit() | v0.bit());
   2564 
   2565   __ MultiPush(spill_mask);
   2566   __ ld(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   2567   __ li(a1, Operand(Handle<Name>(name)));
   2568   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
   2569   __ CallStub(&stub);
   2570   __ mov(at, v0);
   2571   __ MultiPop(spill_mask);
   2572 
   2573   __ Branch(done, eq, at, Operand(zero_reg));
   2574   __ Branch(miss, ne, at, Operand(zero_reg));
   2575 }
   2576 
   2577 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   2578   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   2579   // we cannot call anything that could cause a GC from this stub.
   2580   // Registers:
   2581   //  result: NameDictionary to probe
   2582   //  a1: key
   2583   //  dictionary: NameDictionary to probe.
   2584   //  index: will hold an index of entry if lookup is successful.
   2585   //         might alias with result_.
   2586   // Returns:
   2587   //  result_ is zero if lookup failed, non zero otherwise.
   2588 
   2589   Register result = v0;
   2590   Register dictionary = a0;
   2591   Register key = a1;
   2592   Register index = a2;
   2593   Register mask = a3;
   2594   Register hash = a4;
   2595   Register undefined = a5;
   2596   Register entry_key = a6;
   2597 
   2598   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   2599 
   2600   __ ld(mask, FieldMemOperand(dictionary, kCapacityOffset));
   2601   __ SmiUntag(mask);
   2602   __ Dsubu(mask, mask, Operand(1));
   2603 
   2604   __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
   2605 
   2606   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
   2607 
   2608   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   2609     // Compute the masked index: (hash + i + i * i) & mask.
   2610     // Capacity is smi 2^n.
   2611     if (i > 0) {
   2612       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   2613       // the hash in a separate instruction. The value hash + i + i * i is right
   2614       // shifted in the following and instruction.
   2615       DCHECK(NameDictionary::GetProbeOffset(i) <
   2616              1 << (32 - Name::kHashFieldOffset));
   2617       __ Daddu(index, hash, Operand(
   2618           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
   2619     } else {
   2620       __ mov(index, hash);
   2621     }
   2622     __ dsrl(index, index, Name::kHashShift);
   2623     __ And(index, mask, index);
   2624 
   2625     // Scale the index by multiplying by the entry size.
   2626     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   2627     // index *= 3.
   2628     __ Dlsa(index, index, index, 1);
   2629 
   2630     STATIC_ASSERT(kSmiTagSize == 1);
   2631     __ Dlsa(index, dictionary, index, kPointerSizeLog2);
   2632     __ ld(entry_key, FieldMemOperand(index, kElementsStartOffset));
   2633 
   2634     // Having undefined at this place means the name is not contained.
   2635     __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
   2636 
   2637     // Stop if found the property.
   2638     __ Branch(&in_dictionary, eq, entry_key, Operand(key));
   2639 
   2640     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   2641       // Check if the entry name is not a unique name.
   2642       __ ld(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
   2643       __ lbu(entry_key,
   2644              FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
   2645       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
   2646     }
   2647   }
   2648 
   2649   __ bind(&maybe_in_dictionary);
   2650   // If we are doing negative lookup then probing failure should be
   2651   // treated as a lookup success. For positive lookup probing failure
   2652   // should be treated as lookup failure.
   2653   if (mode() == POSITIVE_LOOKUP) {
   2654     __ Ret(USE_DELAY_SLOT);
   2655     __ mov(result, zero_reg);
   2656   }
   2657 
   2658   __ bind(&in_dictionary);
   2659   __ Ret(USE_DELAY_SLOT);
   2660   __ li(result, 1);
   2661 
   2662   __ bind(&not_in_dictionary);
   2663   __ Ret(USE_DELAY_SLOT);
   2664   __ mov(result, zero_reg);
   2665 }
   2666 
   2667 
   2668 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   2669     Isolate* isolate) {
   2670   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
   2671   stub1.GetCode();
   2672   // Hydrogen code stubs need stub2 at snapshot time.
   2673   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   2674   stub2.GetCode();
   2675 }
   2676 
   2677 
   2678 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   2679 // the value has just been written into the object, now this stub makes sure
   2680 // we keep the GC informed.  The word in the object where the value has been
   2681 // written is in the address register.
   2682 void RecordWriteStub::Generate(MacroAssembler* masm) {
   2683   Label skip_to_incremental_noncompacting;
   2684   Label skip_to_incremental_compacting;
   2685 
   2686   // The first two branch+nop instructions are generated with labels so as to
   2687   // get the offset fixed up correctly by the bind(Label*) call.  We patch it
   2688   // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
   2689   // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
   2690   // incremental heap marking.
   2691   // See RecordWriteStub::Patch for details.
   2692   __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
   2693   __ nop();
   2694   __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
   2695   __ nop();
   2696 
   2697   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   2698     __ RememberedSetHelper(object(),
   2699                            address(),
   2700                            value(),
   2701                            save_fp_regs_mode(),
   2702                            MacroAssembler::kReturnAtEnd);
   2703   }
   2704   __ Ret();
   2705 
   2706   __ bind(&skip_to_incremental_noncompacting);
   2707   GenerateIncremental(masm, INCREMENTAL);
   2708 
   2709   __ bind(&skip_to_incremental_compacting);
   2710   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   2711 
   2712   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   2713   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   2714 
   2715   PatchBranchIntoNop(masm, 0);
   2716   PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
   2717 }
   2718 
   2719 
   2720 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   2721   regs_.Save(masm);
   2722 
   2723   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   2724     Label dont_need_remembered_set;
   2725 
   2726     __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
   2727     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   2728                            regs_.scratch0(),
   2729                            &dont_need_remembered_set);
   2730 
   2731     __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
   2732                         &dont_need_remembered_set);
   2733 
   2734     // First notify the incremental marker if necessary, then update the
   2735     // remembered set.
   2736     CheckNeedsToInformIncrementalMarker(
   2737         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
   2738     InformIncrementalMarker(masm);
   2739     regs_.Restore(masm);
   2740     __ RememberedSetHelper(object(),
   2741                            address(),
   2742                            value(),
   2743                            save_fp_regs_mode(),
   2744                            MacroAssembler::kReturnAtEnd);
   2745 
   2746     __ bind(&dont_need_remembered_set);
   2747   }
   2748 
   2749   CheckNeedsToInformIncrementalMarker(
   2750       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
   2751   InformIncrementalMarker(masm);
   2752   regs_.Restore(masm);
   2753   __ Ret();
   2754 }
   2755 
   2756 
   2757 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   2758   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   2759   int argument_count = 3;
   2760   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   2761   Register address =
   2762       a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
   2763   DCHECK(!address.is(regs_.object()));
   2764   DCHECK(!address.is(a0));
   2765   __ Move(address, regs_.address());
   2766   __ Move(a0, regs_.object());
   2767   __ Move(a1, address);
   2768   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   2769 
   2770   AllowExternalCallThatCantCauseGC scope(masm);
   2771   __ CallCFunction(
   2772       ExternalReference::incremental_marking_record_write_function(isolate()),
   2773       argument_count);
   2774   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   2775 }
   2776 
   2777 
   2778 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   2779     MacroAssembler* masm,
   2780     OnNoNeedToInformIncrementalMarker on_no_need,
   2781     Mode mode) {
   2782   Label on_black;
   2783   Label need_incremental;
   2784   Label need_incremental_pop_scratch;
   2785 
   2786   // Let's look at the color of the object:  If it is not black we don't have
   2787   // to inform the incremental marker.
   2788   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
   2789 
   2790   regs_.Restore(masm);
   2791   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   2792     __ RememberedSetHelper(object(),
   2793                            address(),
   2794                            value(),
   2795                            save_fp_regs_mode(),
   2796                            MacroAssembler::kReturnAtEnd);
   2797   } else {
   2798     __ Ret();
   2799   }
   2800 
   2801   __ bind(&on_black);
   2802 
   2803   // Get the value from the slot.
   2804   __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
   2805 
   2806   if (mode == INCREMENTAL_COMPACTION) {
   2807     Label ensure_not_white;
   2808 
   2809     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   2810                      regs_.scratch1(),  // Scratch.
   2811                      MemoryChunk::kEvacuationCandidateMask,
   2812                      eq,
   2813                      &ensure_not_white);
   2814 
   2815     __ CheckPageFlag(regs_.object(),
   2816                      regs_.scratch1(),  // Scratch.
   2817                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   2818                      eq,
   2819                      &need_incremental);
   2820 
   2821     __ bind(&ensure_not_white);
   2822   }
   2823 
   2824   // We need extra registers for this, so we push the object and the address
   2825   // register temporarily.
   2826   __ Push(regs_.object(), regs_.address());
   2827   __ JumpIfWhite(regs_.scratch0(),  // The value.
   2828                  regs_.scratch1(),  // Scratch.
   2829                  regs_.object(),    // Scratch.
   2830                  regs_.address(),   // Scratch.
   2831                  &need_incremental_pop_scratch);
   2832   __ Pop(regs_.object(), regs_.address());
   2833 
   2834   regs_.Restore(masm);
   2835   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   2836     __ RememberedSetHelper(object(),
   2837                            address(),
   2838                            value(),
   2839                            save_fp_regs_mode(),
   2840                            MacroAssembler::kReturnAtEnd);
   2841   } else {
   2842     __ Ret();
   2843   }
   2844 
   2845   __ bind(&need_incremental_pop_scratch);
   2846   __ Pop(regs_.object(), regs_.address());
   2847 
   2848   __ bind(&need_incremental);
   2849 
   2850   // Fall through when we need to inform the incremental marker.
   2851 }
   2852 
   2853 
   2854 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   2855   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   2856   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
   2857   int parameter_count_offset =
   2858       StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
   2859   __ ld(a1, MemOperand(fp, parameter_count_offset));
   2860   if (function_mode() == JS_FUNCTION_STUB_MODE) {
   2861     __ Daddu(a1, a1, Operand(1));
   2862   }
   2863   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   2864   __ dsll(a1, a1, kPointerSizeLog2);
   2865   __ Ret(USE_DELAY_SLOT);
   2866   __ Daddu(sp, sp, a1);
   2867 }
   2868 
   2869 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   2870   if (masm->isolate()->function_entry_hook() != NULL) {
   2871     ProfileEntryHookStub stub(masm->isolate());
   2872     __ push(ra);
   2873     __ CallStub(&stub);
   2874     __ pop(ra);
   2875   }
   2876 }
   2877 
   2878 
   2879 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   2880   // The entry hook is a "push ra" instruction, followed by a call.
   2881   // Note: on MIPS "push" is 2 instruction
   2882   const int32_t kReturnAddressDistanceFromFunctionStart =
   2883       Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
   2884 
   2885   // This should contain all kJSCallerSaved registers.
   2886   const RegList kSavedRegs =
   2887      kJSCallerSaved |  // Caller saved registers.
   2888      s5.bit();         // Saved stack pointer.
   2889 
   2890   // We also save ra, so the count here is one higher than the mask indicates.
   2891   const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
   2892 
   2893   // Save all caller-save registers as this may be called from anywhere.
   2894   __ MultiPush(kSavedRegs | ra.bit());
   2895 
   2896   // Compute the function's address for the first argument.
   2897   __ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
   2898 
   2899   // The caller's return address is above the saved temporaries.
   2900   // Grab that for the second argument to the hook.
   2901   __ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
   2902 
   2903   // Align the stack if necessary.
   2904   int frame_alignment = masm->ActivationFrameAlignment();
   2905   if (frame_alignment > kPointerSize) {
   2906     __ mov(s5, sp);
   2907     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   2908     __ And(sp, sp, Operand(-frame_alignment));
   2909   }
   2910 
   2911   __ Dsubu(sp, sp, kCArgsSlotsSize);
   2912 #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
   2913   int64_t entry_hook =
   2914       reinterpret_cast<int64_t>(isolate()->function_entry_hook());
   2915   __ li(t9, Operand(entry_hook));
   2916 #else
   2917   // Under the simulator we need to indirect the entry hook through a
   2918   // trampoline function at a known address.
   2919   // It additionally takes an isolate as a third parameter.
   2920   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   2921 
   2922   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
   2923   __ li(t9, Operand(ExternalReference(&dispatcher,
   2924                                       ExternalReference::BUILTIN_CALL,
   2925                                       isolate())));
   2926 #endif
   2927   // Call C function through t9 to conform ABI for PIC.
   2928   __ Call(t9);
   2929 
   2930   // Restore the stack pointer if needed.
   2931   if (frame_alignment > kPointerSize) {
   2932     __ mov(sp, s5);
   2933   } else {
   2934     __ Daddu(sp, sp, kCArgsSlotsSize);
   2935   }
   2936 
   2937   // Also pop ra to get Ret(0).
   2938   __ MultiPop(kSavedRegs | ra.bit());
   2939   __ Ret();
   2940 }
   2941 
   2942 
   2943 template<class T>
   2944 static void CreateArrayDispatch(MacroAssembler* masm,
   2945                                 AllocationSiteOverrideMode mode) {
   2946   if (mode == DISABLE_ALLOCATION_SITES) {
   2947     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
   2948     __ TailCallStub(&stub);
   2949   } else if (mode == DONT_OVERRIDE) {
   2950     int last_index = GetSequenceIndexFromFastElementsKind(
   2951         TERMINAL_FAST_ELEMENTS_KIND);
   2952     for (int i = 0; i <= last_index; ++i) {
   2953       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   2954       T stub(masm->isolate(), kind);
   2955       __ TailCallStub(&stub, eq, a3, Operand(kind));
   2956     }
   2957 
   2958     // If we reached this point there is a problem.
   2959     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   2960   } else {
   2961     UNREACHABLE();
   2962   }
   2963 }
   2964 
   2965 
   2966 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   2967                                            AllocationSiteOverrideMode mode) {
   2968   // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   2969   // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
   2970   // a0 - number of arguments
   2971   // a1 - constructor?
   2972   // sp[0] - last argument
   2973   Label normal_sequence;
   2974   if (mode == DONT_OVERRIDE) {
   2975     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   2976     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   2977     STATIC_ASSERT(FAST_ELEMENTS == 2);
   2978     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
   2979     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
   2980     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   2981 
   2982     // is the low bit set? If so, we are holey and that is good.
   2983     __ And(at, a3, Operand(1));
   2984     __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
   2985   }
   2986   // look at the first argument
   2987   __ ld(a5, MemOperand(sp, 0));
   2988   __ Branch(&normal_sequence, eq, a5, Operand(zero_reg));
   2989 
   2990   if (mode == DISABLE_ALLOCATION_SITES) {
   2991     ElementsKind initial = GetInitialFastElementsKind();
   2992     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   2993 
   2994     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   2995                                                   holey_initial,
   2996                                                   DISABLE_ALLOCATION_SITES);
   2997     __ TailCallStub(&stub_holey);
   2998 
   2999     __ bind(&normal_sequence);
   3000     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   3001                                             initial,
   3002                                             DISABLE_ALLOCATION_SITES);
   3003     __ TailCallStub(&stub);
   3004   } else if (mode == DONT_OVERRIDE) {
   3005     // We are going to create a holey array, but our kind is non-holey.
   3006     // Fix kind and retry (only if we have an allocation site in the slot).
   3007     __ Daddu(a3, a3, Operand(1));
   3008 
   3009     if (FLAG_debug_code) {
   3010       __ ld(a5, FieldMemOperand(a2, 0));
   3011       __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   3012       __ Assert(eq, kExpectedAllocationSite, a5, Operand(at));
   3013     }
   3014 
   3015     // Save the resulting elements kind in type info. We can't just store a3
   3016     // in the AllocationSite::transition_info field because elements kind is
   3017     // restricted to a portion of the field...upper bits need to be left alone.
   3018     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   3019     __ ld(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   3020     __ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
   3021     __ sd(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   3022 
   3023 
   3024     __ bind(&normal_sequence);
   3025     int last_index = GetSequenceIndexFromFastElementsKind(
   3026         TERMINAL_FAST_ELEMENTS_KIND);
   3027     for (int i = 0; i <= last_index; ++i) {
   3028       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   3029       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   3030       __ TailCallStub(&stub, eq, a3, Operand(kind));
   3031     }
   3032 
   3033     // If we reached this point there is a problem.
   3034     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   3035   } else {
   3036     UNREACHABLE();
   3037   }
   3038 }
   3039 
   3040 
   3041 template<class T>
   3042 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   3043   int to_index = GetSequenceIndexFromFastElementsKind(
   3044       TERMINAL_FAST_ELEMENTS_KIND);
   3045   for (int i = 0; i <= to_index; ++i) {
   3046     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   3047     T stub(isolate, kind);
   3048     stub.GetCode();
   3049     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   3050       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   3051       stub1.GetCode();
   3052     }
   3053   }
   3054 }
   3055 
   3056 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   3057   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   3058       isolate);
   3059   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   3060       isolate);
   3061   ArrayNArgumentsConstructorStub stub(isolate);
   3062   stub.GetCode();
   3063   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   3064   for (int i = 0; i < 2; i++) {
   3065     // For internal arrays we only need a few things.
   3066     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   3067     stubh1.GetCode();
   3068     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   3069     stubh2.GetCode();
   3070   }
   3071 }
   3072 
   3073 
   3074 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   3075     MacroAssembler* masm,
   3076     AllocationSiteOverrideMode mode) {
   3077   Label not_zero_case, not_one_case;
   3078   __ And(at, a0, a0);
   3079   __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
   3080   CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   3081 
   3082   __ bind(&not_zero_case);
   3083   __ Branch(&not_one_case, gt, a0, Operand(1));
   3084   CreateArrayDispatchOneArgument(masm, mode);
   3085 
   3086   __ bind(&not_one_case);
   3087   ArrayNArgumentsConstructorStub stub(masm->isolate());
   3088   __ TailCallStub(&stub);
   3089 }
   3090 
   3091 
   3092 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   3093   // ----------- S t a t e -------------
   3094   //  -- a0 : argc (only if argument_count() == ANY)
   3095   //  -- a1 : constructor
   3096   //  -- a2 : AllocationSite or undefined
   3097   //  -- a3 : new target
   3098   //  -- sp[0] : last argument
   3099   // -----------------------------------
   3100 
   3101   if (FLAG_debug_code) {
   3102     // The array construct code is only set for the global and natives
   3103     // builtin Array functions which always have maps.
   3104 
   3105     // Initial map for the builtin Array function should be a map.
   3106     __ ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   3107     // Will both indicate a NULL and a Smi.
   3108     __ SmiTst(a4, at);
   3109     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
   3110         at, Operand(zero_reg));
   3111     __ GetObjectType(a4, a4, a5);
   3112     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
   3113         a5, Operand(MAP_TYPE));
   3114 
   3115     // We should either have undefined in a2 or a valid AllocationSite
   3116     __ AssertUndefinedOrAllocationSite(a2, a4);
   3117   }
   3118 
   3119   // Enter the context of the Array function.
   3120   __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
   3121 
   3122   Label subclassing;
   3123   __ Branch(&subclassing, ne, a1, Operand(a3));
   3124 
   3125   Label no_info;
   3126   // Get the elements kind and case on that.
   3127   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   3128   __ Branch(&no_info, eq, a2, Operand(at));
   3129 
   3130   __ ld(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   3131   __ SmiUntag(a3);
   3132   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   3133   __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
   3134   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   3135 
   3136   __ bind(&no_info);
   3137   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   3138 
   3139   // Subclassing.
   3140   __ bind(&subclassing);
   3141   __ Dlsa(at, sp, a0, kPointerSizeLog2);
   3142   __ sd(a1, MemOperand(at));
   3143   __ li(at, Operand(3));
   3144   __ Daddu(a0, a0, at);
   3145   __ Push(a3, a2);
   3146   __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
   3147 }
   3148 
   3149 
   3150 void InternalArrayConstructorStub::GenerateCase(
   3151     MacroAssembler* masm, ElementsKind kind) {
   3152 
   3153   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   3154   __ TailCallStub(&stub0, lo, a0, Operand(1));
   3155 
   3156   ArrayNArgumentsConstructorStub stubN(isolate());
   3157   __ TailCallStub(&stubN, hi, a0, Operand(1));
   3158 
   3159   if (IsFastPackedElementsKind(kind)) {
   3160     // We might need to create a holey array
   3161     // look at the first argument.
   3162     __ ld(at, MemOperand(sp, 0));
   3163 
   3164     InternalArraySingleArgumentConstructorStub
   3165         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   3166     __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
   3167   }
   3168 
   3169   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   3170   __ TailCallStub(&stub1);
   3171 }
   3172 
   3173 
   3174 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   3175   // ----------- S t a t e -------------
   3176   //  -- a0 : argc
   3177   //  -- a1 : constructor
   3178   //  -- sp[0] : return address
   3179   //  -- sp[4] : last argument
   3180   // -----------------------------------
   3181 
   3182   if (FLAG_debug_code) {
   3183     // The array construct code is only set for the global and natives
   3184     // builtin Array functions which always have maps.
   3185 
   3186     // Initial map for the builtin Array function should be a map.
   3187     __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   3188     // Will both indicate a NULL and a Smi.
   3189     __ SmiTst(a3, at);
   3190     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
   3191         at, Operand(zero_reg));
   3192     __ GetObjectType(a3, a3, a4);
   3193     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
   3194         a4, Operand(MAP_TYPE));
   3195   }
   3196 
   3197   // Figure out the right elements kind.
   3198   __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   3199 
   3200   // Load the map's "bit field 2" into a3. We only need the first byte,
   3201   // but the following bit field extraction takes care of that anyway.
   3202   __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
   3203   // Retrieve elements_kind from bit field 2.
   3204   __ DecodeField<Map::ElementsKindBits>(a3);
   3205 
   3206   if (FLAG_debug_code) {
   3207     Label done;
   3208     __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
   3209     __ Assert(
   3210         eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
   3211         a3, Operand(FAST_HOLEY_ELEMENTS));
   3212     __ bind(&done);
   3213   }
   3214 
   3215   Label fast_elements_case;
   3216   __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
   3217   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   3218 
   3219   __ bind(&fast_elements_case);
   3220   GenerateCase(masm, FAST_ELEMENTS);
   3221 }
   3222 
   3223 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
   3224   int64_t offset = (ref0.address() - ref1.address());
   3225   DCHECK(static_cast<int>(offset) == offset);
   3226   return static_cast<int>(offset);
   3227 }
   3228 
   3229 
   3230 // Calls an API function.  Allocates HandleScope, extracts returned value
   3231 // from handle and propagates exceptions.  Restores context.  stack_space
   3232 // - space to be unwound on exit (includes the call JS arguments space and
   3233 // the additional space allocated for the fast call).
   3234 static void CallApiFunctionAndReturn(
   3235     MacroAssembler* masm, Register function_address,
   3236     ExternalReference thunk_ref, int stack_space, int32_t stack_space_offset,
   3237     MemOperand return_value_operand, MemOperand* context_restore_operand) {
   3238   Isolate* isolate = masm->isolate();
   3239   ExternalReference next_address =
   3240       ExternalReference::handle_scope_next_address(isolate);
   3241   const int kNextOffset = 0;
   3242   const int kLimitOffset = AddressOffset(
   3243       ExternalReference::handle_scope_limit_address(isolate), next_address);
   3244   const int kLevelOffset = AddressOffset(
   3245       ExternalReference::handle_scope_level_address(isolate), next_address);
   3246 
   3247   DCHECK(function_address.is(a1) || function_address.is(a2));
   3248 
   3249   Label profiler_disabled;
   3250   Label end_profiler_check;
   3251   __ li(t9, Operand(ExternalReference::is_profiling_address(isolate)));
   3252   __ lb(t9, MemOperand(t9, 0));
   3253   __ Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
   3254 
   3255   // Additional parameter is the address of the actual callback.
   3256   __ li(t9, Operand(thunk_ref));
   3257   __ jmp(&end_profiler_check);
   3258 
   3259   __ bind(&profiler_disabled);
   3260   __ mov(t9, function_address);
   3261   __ bind(&end_profiler_check);
   3262 
   3263   // Allocate HandleScope in callee-save registers.
   3264   __ li(s3, Operand(next_address));
   3265   __ ld(s0, MemOperand(s3, kNextOffset));
   3266   __ ld(s1, MemOperand(s3, kLimitOffset));
   3267   __ lw(s2, MemOperand(s3, kLevelOffset));
   3268   __ Addu(s2, s2, Operand(1));
   3269   __ sw(s2, MemOperand(s3, kLevelOffset));
   3270 
   3271   if (FLAG_log_timer_events) {
   3272     FrameScope frame(masm, StackFrame::MANUAL);
   3273     __ PushSafepointRegisters();
   3274     __ PrepareCallCFunction(1, a0);
   3275     __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
   3276     __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
   3277                      1);
   3278     __ PopSafepointRegisters();
   3279   }
   3280 
   3281   // Native call returns to the DirectCEntry stub which redirects to the
   3282   // return address pushed on stack (could have moved after GC).
   3283   // DirectCEntry stub itself is generated early and never moves.
   3284   DirectCEntryStub stub(isolate);
   3285   stub.GenerateCall(masm, t9);
   3286 
   3287   if (FLAG_log_timer_events) {
   3288     FrameScope frame(masm, StackFrame::MANUAL);
   3289     __ PushSafepointRegisters();
   3290     __ PrepareCallCFunction(1, a0);
   3291     __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
   3292     __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
   3293                      1);
   3294     __ PopSafepointRegisters();
   3295   }
   3296 
   3297   Label promote_scheduled_exception;
   3298   Label delete_allocated_handles;
   3299   Label leave_exit_frame;
   3300   Label return_value_loaded;
   3301 
   3302   // Load value from ReturnValue.
   3303   __ ld(v0, return_value_operand);
   3304   __ bind(&return_value_loaded);
   3305 
   3306   // No more valid handles (the result handle was the last one). Restore
   3307   // previous handle scope.
   3308   __ sd(s0, MemOperand(s3, kNextOffset));
   3309   if (__ emit_debug_code()) {
   3310     __ lw(a1, MemOperand(s3, kLevelOffset));
   3311     __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
   3312   }
   3313   __ Subu(s2, s2, Operand(1));
   3314   __ sw(s2, MemOperand(s3, kLevelOffset));
   3315   __ ld(at, MemOperand(s3, kLimitOffset));
   3316   __ Branch(&delete_allocated_handles, ne, s1, Operand(at));
   3317 
   3318   // Leave the API exit frame.
   3319   __ bind(&leave_exit_frame);
   3320 
   3321   bool restore_context = context_restore_operand != NULL;
   3322   if (restore_context) {
   3323     __ ld(cp, *context_restore_operand);
   3324   }
   3325   if (stack_space_offset != kInvalidStackOffset) {
   3326     DCHECK(kCArgsSlotsSize == 0);
   3327     __ ld(s0, MemOperand(sp, stack_space_offset));
   3328   } else {
   3329     __ li(s0, Operand(stack_space));
   3330   }
   3331   __ LeaveExitFrame(false, s0, !restore_context, NO_EMIT_RETURN,
   3332                     stack_space_offset != kInvalidStackOffset);
   3333 
   3334   // Check if the function scheduled an exception.
   3335   __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
   3336   __ li(at, Operand(ExternalReference::scheduled_exception_address(isolate)));
   3337   __ ld(a5, MemOperand(at));
   3338   __ Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
   3339 
   3340   __ Ret();
   3341 
   3342   // Re-throw by promoting a scheduled exception.
   3343   __ bind(&promote_scheduled_exception);
   3344   __ TailCallRuntime(Runtime::kPromoteScheduledException);
   3345 
   3346   // HandleScope limit has changed. Delete allocated extensions.
   3347   __ bind(&delete_allocated_handles);
   3348   __ sd(s1, MemOperand(s3, kLimitOffset));
   3349   __ mov(s0, v0);
   3350   __ mov(a0, v0);
   3351   __ PrepareCallCFunction(1, s1);
   3352   __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
   3353   __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
   3354                    1);
   3355   __ mov(v0, s0);
   3356   __ jmp(&leave_exit_frame);
   3357 }
   3358 
   3359 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
   3360   // ----------- S t a t e -------------
   3361   //  -- a0                  : callee
   3362   //  -- a4                  : call_data
   3363   //  -- a2                  : holder
   3364   //  -- a1                  : api_function_address
   3365   //  -- cp                  : context
   3366   //  --
   3367   //  -- sp[0]               : last argument
   3368   //  -- ...
   3369   //  -- sp[(argc - 1)* 8]   : first argument
   3370   //  -- sp[argc * 8]        : receiver
   3371   // -----------------------------------
   3372 
   3373   Register callee = a0;
   3374   Register call_data = a4;
   3375   Register holder = a2;
   3376   Register api_function_address = a1;
   3377   Register context = cp;
   3378 
   3379   typedef FunctionCallbackArguments FCA;
   3380 
   3381   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   3382   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   3383   STATIC_ASSERT(FCA::kDataIndex == 4);
   3384   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   3385   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   3386   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   3387   STATIC_ASSERT(FCA::kHolderIndex == 0);
   3388   STATIC_ASSERT(FCA::kNewTargetIndex == 7);
   3389   STATIC_ASSERT(FCA::kArgsLength == 8);
   3390 
   3391   // new target
   3392   __ PushRoot(Heap::kUndefinedValueRootIndex);
   3393 
   3394   // Save context, callee and call data.
   3395   __ Push(context, callee, call_data);
   3396   if (!is_lazy()) {
   3397     // Load context from callee.
   3398     __ ld(context, FieldMemOperand(callee, JSFunction::kContextOffset));
   3399   }
   3400 
   3401   Register scratch = call_data;
   3402   if (!call_data_undefined()) {
   3403     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   3404   }
   3405   // Push return value and default return value.
   3406   __ Push(scratch, scratch);
   3407   __ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
   3408   // Push isolate and holder.
   3409   __ Push(scratch, holder);
   3410 
   3411   // Prepare arguments.
   3412   __ mov(scratch, sp);
   3413 
   3414   // Allocate the v8::Arguments structure in the arguments' space since
   3415   // it's not controlled by GC.
   3416   const int kApiStackSpace = 3;
   3417 
   3418   FrameScope frame_scope(masm, StackFrame::MANUAL);
   3419   __ EnterExitFrame(false, kApiStackSpace);
   3420 
   3421   DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
   3422   // a0 = FunctionCallbackInfo&
   3423   // Arguments is after the return address.
   3424   __ Daddu(a0, sp, Operand(1 * kPointerSize));
   3425   // FunctionCallbackInfo::implicit_args_
   3426   __ sd(scratch, MemOperand(a0, 0 * kPointerSize));
   3427   // FunctionCallbackInfo::values_
   3428   __ Daddu(at, scratch,
   3429            Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
   3430   __ sd(at, MemOperand(a0, 1 * kPointerSize));
   3431   // FunctionCallbackInfo::length_ = argc
   3432   // Stored as int field, 32-bit integers within struct on stack always left
   3433   // justified by n64 ABI.
   3434   __ li(at, Operand(argc()));
   3435   __ sw(at, MemOperand(a0, 2 * kPointerSize));
   3436 
   3437   ExternalReference thunk_ref =
   3438       ExternalReference::invoke_function_callback(masm->isolate());
   3439 
   3440   AllowExternalCallThatCantCauseGC scope(masm);
   3441   MemOperand context_restore_operand(
   3442       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
   3443   // Stores return the first js argument.
   3444   int return_value_offset = 0;
   3445   if (is_store()) {
   3446     return_value_offset = 2 + FCA::kArgsLength;
   3447   } else {
   3448     return_value_offset = 2 + FCA::kReturnValueOffset;
   3449   }
   3450   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
   3451   int stack_space = 0;
   3452   int32_t stack_space_offset = 3 * kPointerSize;
   3453   stack_space = argc() + FCA::kArgsLength + 1;
   3454   // TODO(adamk): Why are we clobbering this immediately?
   3455   stack_space_offset = kInvalidStackOffset;
   3456   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
   3457                            stack_space_offset, return_value_operand,
   3458                            &context_restore_operand);
   3459 }
   3460 
   3461 
   3462 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   3463   // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
   3464   // name below the exit frame to make GC aware of them.
   3465   STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
   3466   STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
   3467   STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
   3468   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
   3469   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
   3470   STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
   3471   STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
   3472   STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
   3473 
   3474   Register receiver = ApiGetterDescriptor::ReceiverRegister();
   3475   Register holder = ApiGetterDescriptor::HolderRegister();
   3476   Register callback = ApiGetterDescriptor::CallbackRegister();
   3477   Register scratch = a4;
   3478   DCHECK(!AreAliased(receiver, holder, callback, scratch));
   3479 
   3480   Register api_function_address = a2;
   3481 
   3482   // Here and below +1 is for name() pushed after the args_ array.
   3483   typedef PropertyCallbackArguments PCA;
   3484   __ Dsubu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize);
   3485   __ sd(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize));
   3486   __ ld(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
   3487   __ sd(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize));
   3488   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   3489   __ sd(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize));
   3490   __ sd(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) *
   3491                                     kPointerSize));
   3492   __ li(scratch, Operand(ExternalReference::isolate_address(isolate())));
   3493   __ sd(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize));
   3494   __ sd(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize));
   3495   // should_throw_on_error -> false
   3496   DCHECK(Smi::kZero == nullptr);
   3497   __ sd(zero_reg,
   3498         MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize));
   3499   __ ld(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
   3500   __ sd(scratch, MemOperand(sp, 0 * kPointerSize));
   3501 
   3502   // v8::PropertyCallbackInfo::args_ array and name handle.
   3503   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
   3504 
   3505   // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
   3506   __ mov(a0, sp);                               // a0 = Handle<Name>
   3507   __ Daddu(a1, a0, Operand(1 * kPointerSize));  // a1 = v8::PCI::args_
   3508 
   3509   const int kApiStackSpace = 1;
   3510   FrameScope frame_scope(masm, StackFrame::MANUAL);
   3511   __ EnterExitFrame(false, kApiStackSpace);
   3512 
   3513   // Create v8::PropertyCallbackInfo object on the stack and initialize
   3514   // it's args_ field.
   3515   __ sd(a1, MemOperand(sp, 1 * kPointerSize));
   3516   __ Daddu(a1, sp, Operand(1 * kPointerSize));
   3517   // a1 = v8::PropertyCallbackInfo&
   3518 
   3519   ExternalReference thunk_ref =
   3520       ExternalReference::invoke_accessor_getter_callback(isolate());
   3521 
   3522   __ ld(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
   3523   __ ld(api_function_address,
   3524         FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
   3525 
   3526   // +3 is to skip prolog, return address and name handle.
   3527   MemOperand return_value_operand(
   3528       fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
   3529   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
   3530                            kStackUnwindSpace, kInvalidStackOffset,
   3531                            return_value_operand, NULL);
   3532 }
   3533 
   3534 #undef __
   3535 
   3536 }  // namespace internal
   3537 }  // namespace v8
   3538 
   3539 #endif  // V8_TARGET_ARCH_MIPS64
   3540