Home | History | Annotate | Download | only in hwui
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
     18 #define CASTER_Z_CAP_RATIO 0.95f
     19 
     20 // When there is no umbra, then just fake the umbra using
     21 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
     22 #define FAKE_UMBRA_SIZE_RATIO 0.05f
     23 
     24 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
     25 // That is consider pretty fine tessllated polygon so far.
     26 // This is just to prevent using too much some memory when edge slicing is not
     27 // needed any more.
     28 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
     29 /**
     30  * Extra vertices for the corner for smoother corner.
     31  * Only for outer loop.
     32  * Note that we use such extra memory to avoid an extra loop.
     33  */
     34 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
     35 // Set to 1 if we don't want to have any.
     36 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
     37 
     38 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
     39 // therefore, the maximum number of extra vertices will be twice bigger.
     40 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER  (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
     41 
     42 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
     43 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
     44 
     45 #define PENUMBRA_ALPHA 0.0f
     46 #define UMBRA_ALPHA 1.0f
     47 
     48 #include "SpotShadow.h"
     49 
     50 #include "ShadowTessellator.h"
     51 #include "Vertex.h"
     52 #include "VertexBuffer.h"
     53 #include "utils/MathUtils.h"
     54 
     55 #include <algorithm>
     56 #include <math.h>
     57 #include <stdlib.h>
     58 #include <utils/Log.h>
     59 
     60 // TODO: After we settle down the new algorithm, we can remove the old one and
     61 // its utility functions.
     62 // Right now, we still need to keep it for comparison purpose and future expansion.
     63 namespace android {
     64 namespace uirenderer {
     65 
     66 static const float EPSILON = 1e-7;
     67 
     68 /**
     69  * For each polygon's vertex, the light center will project it to the receiver
     70  * as one of the outline vertex.
     71  * For each outline vertex, we need to store the position and normal.
     72  * Normal here is defined against the edge by the current vertex and the next vertex.
     73  */
     74 struct OutlineData {
     75     Vector2 position;
     76     Vector2 normal;
     77     float radius;
     78 };
     79 
     80 /**
     81  * For each vertex, we need to keep track of its angle, whether it is penumbra or
     82  * umbra, and its corresponding vertex index.
     83  */
     84 struct SpotShadow::VertexAngleData {
     85     // The angle to the vertex from the centroid.
     86     float mAngle;
     87     // True is the vertex comes from penumbra, otherwise it comes from umbra.
     88     bool mIsPenumbra;
     89     // The index of the vertex described by this data.
     90     int mVertexIndex;
     91     void set(float angle, bool isPenumbra, int index) {
     92         mAngle = angle;
     93         mIsPenumbra = isPenumbra;
     94         mVertexIndex = index;
     95     }
     96 };
     97 
     98 /**
     99  * Calculate the angle between and x and a y coordinate.
    100  * The atan2 range from -PI to PI.
    101  */
    102 static float angle(const Vector2& point, const Vector2& center) {
    103     return atan2(point.y - center.y, point.x - center.x);
    104 }
    105 
    106 /**
    107  * Calculate the intersection of a ray with the line segment defined by two points.
    108  *
    109  * Returns a negative value in error conditions.
    110 
    111  * @param rayOrigin The start of the ray
    112  * @param dx The x vector of the ray
    113  * @param dy The y vector of the ray
    114  * @param p1 The first point defining the line segment
    115  * @param p2 The second point defining the line segment
    116  * @return The distance along the ray if it intersects with the line segment, negative if otherwise
    117  */
    118 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
    119         const Vector2& p1, const Vector2& p2) {
    120     // The math below is derived from solving this formula, basically the
    121     // intersection point should stay on both the ray and the edge of (p1, p2).
    122     // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
    123 
    124     float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
    125     if (divisor == 0) return -1.0f; // error, invalid divisor
    126 
    127 #if DEBUG_SHADOW
    128     float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
    129     if (interpVal < 0 || interpVal > 1) {
    130         ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
    131     }
    132 #endif
    133 
    134     float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
    135             rayOrigin.x * (p2.y - p1.y)) / divisor;
    136 
    137     return distance; // may be negative in error cases
    138 }
    139 
    140 /**
    141  * Sort points by their X coordinates
    142  *
    143  * @param points the points as a Vector2 array.
    144  * @param pointsLength the number of vertices of the polygon.
    145  */
    146 void SpotShadow::xsort(Vector2* points, int pointsLength) {
    147     auto cmp = [](const Vector2& a, const Vector2& b) -> bool {
    148         return a.x < b.x;
    149     };
    150     std::sort(points, points + pointsLength, cmp);
    151 }
    152 
    153 /**
    154  * compute the convex hull of a collection of Points
    155  *
    156  * @param points the points as a Vector2 array.
    157  * @param pointsLength the number of vertices of the polygon.
    158  * @param retPoly pre allocated array of floats to put the vertices
    159  * @return the number of points in the polygon 0 if no intersection
    160  */
    161 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
    162     xsort(points, pointsLength);
    163     int n = pointsLength;
    164     Vector2 lUpper[n];
    165     lUpper[0] = points[0];
    166     lUpper[1] = points[1];
    167 
    168     int lUpperSize = 2;
    169 
    170     for (int i = 2; i < n; i++) {
    171         lUpper[lUpperSize] = points[i];
    172         lUpperSize++;
    173 
    174         while (lUpperSize > 2 && !ccw(
    175                 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
    176                 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
    177                 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
    178             // Remove the middle point of the three last
    179             lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
    180             lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
    181             lUpperSize--;
    182         }
    183     }
    184 
    185     Vector2 lLower[n];
    186     lLower[0] = points[n - 1];
    187     lLower[1] = points[n - 2];
    188 
    189     int lLowerSize = 2;
    190 
    191     for (int i = n - 3; i >= 0; i--) {
    192         lLower[lLowerSize] = points[i];
    193         lLowerSize++;
    194 
    195         while (lLowerSize > 2 && !ccw(
    196                 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
    197                 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
    198                 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
    199             // Remove the middle point of the three last
    200             lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
    201             lLowerSize--;
    202         }
    203     }
    204 
    205     // output points in CW ordering
    206     const int total = lUpperSize + lLowerSize - 2;
    207     int outIndex = total - 1;
    208     for (int i = 0; i < lUpperSize; i++) {
    209         retPoly[outIndex] = lUpper[i];
    210         outIndex--;
    211     }
    212 
    213     for (int i = 1; i < lLowerSize - 1; i++) {
    214         retPoly[outIndex] = lLower[i];
    215         outIndex--;
    216     }
    217     // TODO: Add test harness which verify that all the points are inside the hull.
    218     return total;
    219 }
    220 
    221 /**
    222  * Test whether the 3 points form a counter clockwise turn.
    223  *
    224  * @return true if a right hand turn
    225  */
    226 bool SpotShadow::ccw(float ax, float ay, float bx, float by,
    227         float cx, float cy) {
    228     return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
    229 }
    230 
    231 /**
    232  * Sort points about a center point
    233  *
    234  * @param poly The in and out polyogon as a Vector2 array.
    235  * @param polyLength The number of vertices of the polygon.
    236  * @param center the center ctr[0] = x , ctr[1] = y to sort around.
    237  */
    238 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
    239     quicksortCirc(poly, 0, polyLength - 1, center);
    240 }
    241 
    242 /**
    243  * Swap points pointed to by i and j
    244  */
    245 void SpotShadow::swap(Vector2* points, int i, int j) {
    246     Vector2 temp = points[i];
    247     points[i] = points[j];
    248     points[j] = temp;
    249 }
    250 
    251 /**
    252  * quick sort implementation about the center.
    253  */
    254 void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
    255         const Vector2& center) {
    256     int i = low, j = high;
    257     int p = low + (high - low) / 2;
    258     float pivot = angle(points[p], center);
    259     while (i <= j) {
    260         while (angle(points[i], center) > pivot) {
    261             i++;
    262         }
    263         while (angle(points[j], center) < pivot) {
    264             j--;
    265         }
    266 
    267         if (i <= j) {
    268             swap(points, i, j);
    269             i++;
    270             j--;
    271         }
    272     }
    273     if (low < j) quicksortCirc(points, low, j, center);
    274     if (i < high) quicksortCirc(points, i, high, center);
    275 }
    276 
    277 /**
    278  * Test whether a point is inside the polygon.
    279  *
    280  * @param testPoint the point to test
    281  * @param poly the polygon
    282  * @return true if the testPoint is inside the poly.
    283  */
    284 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
    285         const Vector2* poly, int len) {
    286     bool c = false;
    287     float testx = testPoint.x;
    288     float testy = testPoint.y;
    289     for (int i = 0, j = len - 1; i < len; j = i++) {
    290         float startX = poly[j].x;
    291         float startY = poly[j].y;
    292         float endX = poly[i].x;
    293         float endY = poly[i].y;
    294 
    295         if (((endY > testy) != (startY > testy))
    296             && (testx < (startX - endX) * (testy - endY)
    297              / (startY - endY) + endX)) {
    298             c = !c;
    299         }
    300     }
    301     return c;
    302 }
    303 
    304 /**
    305  * Reverse the polygon
    306  *
    307  * @param polygon the polygon as a Vector2 array
    308  * @param len the number of points of the polygon
    309  */
    310 void SpotShadow::reverse(Vector2* polygon, int len) {
    311     int n = len / 2;
    312     for (int i = 0; i < n; i++) {
    313         Vector2 tmp = polygon[i];
    314         int k = len - 1 - i;
    315         polygon[i] = polygon[k];
    316         polygon[k] = tmp;
    317     }
    318 }
    319 
    320 /**
    321  * Compute a horizontal circular polygon about point (x , y , height) of radius
    322  * (size)
    323  *
    324  * @param points number of the points of the output polygon.
    325  * @param lightCenter the center of the light.
    326  * @param size the light size.
    327  * @param ret result polygon.
    328  */
    329 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
    330         float size, Vector3* ret) {
    331     // TODO: Caching all the sin / cos values and store them in a look up table.
    332     for (int i = 0; i < points; i++) {
    333         float angle = 2 * i * M_PI / points;
    334         ret[i].x = cosf(angle) * size + lightCenter.x;
    335         ret[i].y = sinf(angle) * size + lightCenter.y;
    336         ret[i].z = lightCenter.z;
    337     }
    338 }
    339 
    340 /**
    341  * From light center, project one vertex to the z=0 surface and get the outline.
    342  *
    343  * @param outline The result which is the outline position.
    344  * @param lightCenter The center of light.
    345  * @param polyVertex The input polygon's vertex.
    346  *
    347  * @return float The ratio of (polygon.z / light.z - polygon.z)
    348  */
    349 float SpotShadow::projectCasterToOutline(Vector2& outline,
    350         const Vector3& lightCenter, const Vector3& polyVertex) {
    351     float lightToPolyZ = lightCenter.z - polyVertex.z;
    352     float ratioZ = CASTER_Z_CAP_RATIO;
    353     if (lightToPolyZ != 0) {
    354         // If any caster's vertex is almost above the light, we just keep it as 95%
    355         // of the height of the light.
    356         ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
    357     }
    358 
    359     outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
    360     outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
    361     return ratioZ;
    362 }
    363 
    364 /**
    365  * Generate the shadow spot light of shape lightPoly and a object poly
    366  *
    367  * @param isCasterOpaque whether the caster is opaque
    368  * @param lightCenter the center of the light
    369  * @param lightSize the radius of the light
    370  * @param poly x,y,z vertexes of a convex polygon that occludes the light source
    371  * @param polyLength number of vertexes of the occluding polygon
    372  * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
    373  *                            empty strip if error.
    374  */
    375 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
    376         float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
    377         VertexBuffer& shadowTriangleStrip) {
    378     if (CC_UNLIKELY(lightCenter.z <= 0)) {
    379         ALOGW("Relative Light Z is not positive. No spot shadow!");
    380         return;
    381     }
    382     if (CC_UNLIKELY(polyLength < 3)) {
    383 #if DEBUG_SHADOW
    384         ALOGW("Invalid polygon length. No spot shadow!");
    385 #endif
    386         return;
    387     }
    388     OutlineData outlineData[polyLength];
    389     Vector2 outlineCentroid;
    390     // Calculate the projected outline for each polygon's vertices from the light center.
    391     //
    392     //                       O     Light
    393     //                      /
    394     //                    /
    395     //                   .     Polygon vertex
    396     //                 /
    397     //               /
    398     //              O     Outline vertices
    399     //
    400     // Ratio = (Poly - Outline) / (Light - Poly)
    401     // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
    402     // Outline's radius / Light's radius = Ratio
    403 
    404     // Compute the last outline vertex to make sure we can get the normal and outline
    405     // in one single loop.
    406     projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
    407             poly[polyLength - 1]);
    408 
    409     // Take the outline's polygon, calculate the normal for each outline edge.
    410     int currentNormalIndex = polyLength - 1;
    411     int nextNormalIndex = 0;
    412 
    413     for (int i = 0; i < polyLength; i++) {
    414         float ratioZ = projectCasterToOutline(outlineData[i].position,
    415                 lightCenter, poly[i]);
    416         outlineData[i].radius = ratioZ * lightSize;
    417 
    418         outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
    419                 outlineData[currentNormalIndex].position,
    420                 outlineData[nextNormalIndex].position);
    421         currentNormalIndex = (currentNormalIndex + 1) % polyLength;
    422         nextNormalIndex++;
    423     }
    424 
    425     projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
    426 
    427     int penumbraIndex = 0;
    428     // Then each polygon's vertex produce at minmal 2 penumbra vertices.
    429     // Since the size can be dynamic here, we keep track of the size and update
    430     // the real size at the end.
    431     int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
    432     Vector2 penumbra[allocatedPenumbraLength];
    433     int totalExtraCornerSliceNumber = 0;
    434 
    435     Vector2 umbra[polyLength];
    436 
    437     // When centroid is covered by all circles from outline, then we consider
    438     // the umbra is invalid, and we will tune down the shadow strength.
    439     bool hasValidUmbra = true;
    440     // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
    441     float minRaitoVI = FLT_MAX;
    442 
    443     for (int i = 0; i < polyLength; i++) {
    444         // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
    445         // There is no guarantee that the penumbra is still convex, but for
    446         // each outline vertex, it will connect to all its corresponding penumbra vertices as
    447         // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
    448         //
    449         // Penumbra Vertices marked as Pi
    450         // Outline Vertices marked as Vi
    451         //                                            (P3)
    452         //          (P2)                               |     ' (P4)
    453         //   (P1)'   |                                 |   '
    454         //         ' |                                 | '
    455         // (P0)  ------------------------------------------------(P5)
    456         //           | (V0)                            |(V1)
    457         //           |                                 |
    458         //           |                                 |
    459         //           |                                 |
    460         //           |                                 |
    461         //           |                                 |
    462         //           |                                 |
    463         //           |                                 |
    464         //           |                                 |
    465         //       (V3)-----------------------------------(V2)
    466         int preNormalIndex = (i + polyLength - 1) % polyLength;
    467 
    468         const Vector2& previousNormal = outlineData[preNormalIndex].normal;
    469         const Vector2& currentNormal = outlineData[i].normal;
    470 
    471         // Depending on how roundness we want for each corner, we can subdivide
    472         // further here and/or introduce some heuristic to decide how much the
    473         // subdivision should be.
    474         int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
    475                 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
    476 
    477         int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
    478         totalExtraCornerSliceNumber += currentExtraSliceNumber;
    479 #if DEBUG_SHADOW
    480         ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
    481         ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
    482         ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
    483 #endif
    484         if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
    485             currentCornerSliceNumber = 1;
    486         }
    487         for (int k = 0; k <= currentCornerSliceNumber; k++) {
    488             Vector2 avgNormal =
    489                     (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
    490                     currentCornerSliceNumber;
    491             avgNormal.normalize();
    492             penumbra[penumbraIndex++] = outlineData[i].position +
    493                     avgNormal * outlineData[i].radius;
    494         }
    495 
    496 
    497         // Compute the umbra by the intersection from the outline's centroid!
    498         //
    499         //       (V) ------------------------------------
    500         //           |          '                       |
    501         //           |         '                        |
    502         //           |       ' (I)                      |
    503         //           |    '                             |
    504         //           | '             (C)                |
    505         //           |                                  |
    506         //           |                                  |
    507         //           |                                  |
    508         //           |                                  |
    509         //           ------------------------------------
    510         //
    511         // Connect a line b/t the outline vertex (V) and the centroid (C), it will
    512         // intersect with the outline vertex's circle at point (I).
    513         // Now, ratioVI = VI / VC, ratioIC = IC / VC
    514         // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
    515         //
    516         // When all of the outline circles cover the the outline centroid, (like I is
    517         // on the other side of C), there is no real umbra any more, so we just fake
    518         // a small area around the centroid as the umbra, and tune down the spot
    519         // shadow's umbra strength to simulate the effect the whole shadow will
    520         // become lighter in this case.
    521         // The ratio can be simulated by using the inverse of maximum of ratioVI for
    522         // all (V).
    523         float distOutline = (outlineData[i].position - outlineCentroid).length();
    524         if (CC_UNLIKELY(distOutline == 0)) {
    525             // If the outline has 0 area, then there is no spot shadow anyway.
    526             ALOGW("Outline has 0 area, no spot shadow!");
    527             return;
    528         }
    529 
    530         float ratioVI = outlineData[i].radius / distOutline;
    531         minRaitoVI = std::min(minRaitoVI, ratioVI);
    532         if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
    533             ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
    534         }
    535         // When we know we don't have valid umbra, don't bother to compute the
    536         // values below. But we can't skip the loop yet since we want to know the
    537         // maximum ratio.
    538         float ratioIC = 1 - ratioVI;
    539         umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
    540     }
    541 
    542     hasValidUmbra = (minRaitoVI <= 1.0);
    543     float shadowStrengthScale = 1.0;
    544     if (!hasValidUmbra) {
    545 #if DEBUG_SHADOW
    546         ALOGW("The object is too close to the light or too small, no real umbra!");
    547 #endif
    548         for (int i = 0; i < polyLength; i++) {
    549             umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
    550                     outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
    551         }
    552         shadowStrengthScale = 1.0 / minRaitoVI;
    553     }
    554 
    555     int penumbraLength = penumbraIndex;
    556     int umbraLength = polyLength;
    557 
    558 #if DEBUG_SHADOW
    559     ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
    560     dumpPolygon(poly, polyLength, "input poly");
    561     dumpPolygon(penumbra, penumbraLength, "penumbra");
    562     dumpPolygon(umbra, umbraLength, "umbra");
    563     ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
    564 #endif
    565 
    566     // The penumbra and umbra needs to be in convex shape to keep consistency
    567     // and quality.
    568     // Since we are still shooting rays to penumbra, it needs to be convex.
    569     // Umbra can be represented as a fan from the centroid, but visually umbra
    570     // looks nicer when it is convex.
    571     Vector2 finalUmbra[umbraLength];
    572     Vector2 finalPenumbra[penumbraLength];
    573     int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
    574     int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
    575 
    576     generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
    577             finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
    578             shadowTriangleStrip, outlineCentroid);
    579 
    580 }
    581 
    582 /**
    583  * This is only for experimental purpose.
    584  * After intersections are calculated, we could smooth the polygon if needed.
    585  * So far, we don't think it is more appealing yet.
    586  *
    587  * @param level The level of smoothness.
    588  * @param rays The total number of rays.
    589  * @param rayDist (In and Out) The distance for each ray.
    590  *
    591  */
    592 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
    593     for (int k = 0; k < level; k++) {
    594         for (int i = 0; i < rays; i++) {
    595             float p1 = rayDist[(rays - 1 + i) % rays];
    596             float p2 = rayDist[i];
    597             float p3 = rayDist[(i + 1) % rays];
    598             rayDist[i] = (p1 + p2 * 2 + p3) / 4;
    599         }
    600     }
    601 }
    602 
    603 // Index pair is meant for storing the tessellation information for the penumbra
    604 // area. One index must come from exterior tangent of the circles, the other one
    605 // must come from the interior tangent of the circles.
    606 struct IndexPair {
    607     int outerIndex;
    608     int innerIndex;
    609 };
    610 
    611 // For one penumbra vertex, find the cloest umbra vertex and return its index.
    612 inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
    613     float minLengthSquared = FLT_MAX;
    614     int resultIndex = -1;
    615     bool hasDecreased = false;
    616     // Starting with some negative offset, assuming both umbra and penumbra are starting
    617     // at the same angle, this can help to find the result faster.
    618     // Normally, loop 3 times, we can find the closest point.
    619     int offset = polygonLength - 2;
    620     for (int i = 0; i < polygonLength; i++) {
    621         int currentIndex = (i + offset) % polygonLength;
    622         float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
    623         if (currentLengthSquared < minLengthSquared) {
    624             if (minLengthSquared != FLT_MAX) {
    625                 hasDecreased = true;
    626             }
    627             minLengthSquared = currentLengthSquared;
    628             resultIndex = currentIndex;
    629         } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
    630             // Early break b/c we have found the closet one and now the length
    631             // is increasing again.
    632             break;
    633         }
    634     }
    635     if(resultIndex == -1) {
    636         ALOGE("resultIndex is -1, the polygon must be invalid!");
    637         resultIndex = 0;
    638     }
    639     return resultIndex;
    640 }
    641 
    642 // Allow some epsilon here since the later ray intersection did allow for some small
    643 // floating point error, when the intersection point is slightly outside the segment.
    644 inline bool sameDirections(bool isPositiveCross, float a, float b) {
    645     if (isPositiveCross) {
    646         return a >= -EPSILON && b >= -EPSILON;
    647     } else {
    648         return a <= EPSILON && b <= EPSILON;
    649     }
    650 }
    651 
    652 // Find the right polygon edge to shoot the ray at.
    653 inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
    654         const Vector2* polyToCentroid, int polyLength) {
    655     // Make sure we loop with a bound.
    656     for (int i = 0; i < polyLength; i++) {
    657         int currentIndex = (i + startPolyIndex) % polyLength;
    658         const Vector2& currentToCentroid = polyToCentroid[currentIndex];
    659         const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
    660 
    661         float currentCrossUmbra = currentToCentroid.cross(umbraDir);
    662         float umbraCrossNext = umbraDir.cross(nextToCentroid);
    663         if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
    664 #if DEBUG_SHADOW
    665             ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex );
    666 #endif
    667             return currentIndex;
    668         }
    669     }
    670     LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
    671     return -1;
    672 }
    673 
    674 // Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
    675 // if needed.
    676 inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
    677         const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex,
    678         IndexPair* verticesPair, int& verticesPairIndex) {
    679     // In order to keep everything in just one loop, we need to pre-compute the
    680     // closest umbra vertex for the last penumbra vertex.
    681     int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1],
    682             umbra, umbraLength);
    683     for (int i = 0; i < penumbraLength; i++) {
    684         const Vector2& currentPenumbraVertex = penumbra[i];
    685         // For current penumbra vertex, starting from previousClosestUmbraIndex,
    686         // then check the next one until the distance increase.
    687         // The last one before the increase is the umbra vertex we need to pair with.
    688         float currentLengthSquared =
    689                 (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
    690         int currentClosestUmbraIndex = previousClosestUmbraIndex;
    691         int indexDelta = 0;
    692         for (int j = 1; j < umbraLength; j++) {
    693             int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
    694             float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
    695             if (newLengthSquared > currentLengthSquared) {
    696                 // currentClosestUmbraIndex is the umbra vertex's index which has
    697                 // currently found smallest distance, so we can simply break here.
    698                 break;
    699             } else {
    700                 currentLengthSquared = newLengthSquared;
    701                 indexDelta++;
    702                 currentClosestUmbraIndex = newUmbraIndex;
    703             }
    704         }
    705 
    706         if (indexDelta > 1) {
    707             // For those umbra don't have  penumbra, generate new penumbra vertices by interpolation.
    708             //
    709             // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
    710             // In the case like below P1 paired with U1 and P2 paired with  U5.
    711             // U2 to U4 are unpaired umbra vertices.
    712             //
    713             // P1                                        P2
    714             // |                                          |
    715             // U1     U2                   U3     U4     U5
    716             //
    717             // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
    718             // to pair with U2 to U4.
    719             //
    720             // P1     P1.1                P1.2   P1.3    P2
    721             // |       |                   |      |      |
    722             // U1     U2                   U3     U4     U5
    723             //
    724             // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
    725             // vertex's location.
    726             int newPenumbraNumber = indexDelta - 1;
    727 
    728             float accumulatedDeltaLength[indexDelta];
    729             float totalDeltaLength = 0;
    730 
    731             // To save time, cache the previous umbra vertex info outside the loop
    732             // and update each loop.
    733             Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
    734             Vector2 skippedUmbra;
    735             // Use umbra data to precompute the length b/t unpaired umbra vertices,
    736             // and its ratio against the total length.
    737             for (int k = 0; k < indexDelta; k++) {
    738                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
    739                 skippedUmbra = umbra[skippedUmbraIndex];
    740                 float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
    741 
    742                 totalDeltaLength += currentDeltaLength;
    743                 accumulatedDeltaLength[k] = totalDeltaLength;
    744 
    745                 previousClosestUmbra = skippedUmbra;
    746             }
    747 
    748             const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
    749             // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
    750             // and pair them togehter.
    751             for (int k = 0; k < newPenumbraNumber; k++) {
    752                 float weightForCurrentPenumbra = 1.0f;
    753                 if (totalDeltaLength != 0.0f) {
    754                     weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
    755                 }
    756                 float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
    757 
    758                 Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
    759                     previousPenumbra * weightForPreviousPenumbra;
    760 
    761                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
    762                 verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
    763                 verticesPair[verticesPairIndex].innerIndex = skippedUmbraIndex;
    764                 verticesPairIndex++;
    765                 newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
    766             }
    767         }
    768         verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
    769         verticesPair[verticesPairIndex].innerIndex = currentClosestUmbraIndex;
    770         verticesPairIndex++;
    771         newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
    772 
    773         previousClosestUmbraIndex = currentClosestUmbraIndex;
    774     }
    775 }
    776 
    777 // Precompute all the polygon's vector, return true if the reference cross product is positive.
    778 inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength,
    779         const Vector2& centroid, Vector2* polyToCentroid) {
    780     for (int j = 0; j < polyLength; j++) {
    781         polyToCentroid[j] = poly2d[j] - centroid;
    782         // Normalize these vectors such that we can use epsilon comparison after
    783         // computing their cross products with another normalized vector.
    784         polyToCentroid[j].normalize();
    785     }
    786     float refCrossProduct = 0;
    787     for (int j = 0; j < polyLength; j++) {
    788         refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
    789         if (refCrossProduct != 0) {
    790             break;
    791         }
    792     }
    793 
    794     return refCrossProduct > 0;
    795 }
    796 
    797 // For one umbra vertex, shoot an ray from centroid to it.
    798 // If the ray hit the polygon first, then return the intersection point as the
    799 // closer vertex.
    800 inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
    801         const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
    802         bool isPositiveCross, int& previousPolyIndex) {
    803     Vector2 umbraToCentroid = umbraVertex - centroid;
    804     float distanceToUmbra = umbraToCentroid.length();
    805     umbraToCentroid = umbraToCentroid / distanceToUmbra;
    806 
    807     // previousPolyIndex is updated for each item such that we can minimize the
    808     // looping inside findPolyIndex();
    809     previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex,
    810             umbraToCentroid, polyToCentroid, polyLength);
    811 
    812     float dx = umbraToCentroid.x;
    813     float dy = umbraToCentroid.y;
    814     float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
    815             poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]);
    816     if (distanceToIntersectPoly < 0) {
    817         distanceToIntersectPoly = 0;
    818     }
    819 
    820     // Pick the closer one as the occluded area vertex.
    821     Vector2 closerVertex;
    822     if (distanceToIntersectPoly < distanceToUmbra) {
    823         closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
    824         closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
    825     } else {
    826         closerVertex = umbraVertex;
    827     }
    828 
    829     return closerVertex;
    830 }
    831 
    832 /**
    833  * Generate a triangle strip given two convex polygon
    834 **/
    835 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
    836         Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
    837         const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
    838         const Vector2& centroid) {
    839     bool hasOccludedUmbraArea = false;
    840     Vector2 poly2d[polyLength];
    841 
    842     if (isCasterOpaque) {
    843         for (int i = 0; i < polyLength; i++) {
    844             poly2d[i].x = poly[i].x;
    845             poly2d[i].y = poly[i].y;
    846         }
    847         // Make sure the centroid is inside the umbra, otherwise, fall back to the
    848         // approach as if there is no occluded umbra area.
    849         if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
    850             hasOccludedUmbraArea = true;
    851         }
    852     }
    853 
    854     // For each penumbra vertex, find its corresponding closest umbra vertex index.
    855     //
    856     // Penumbra Vertices marked as Pi
    857     // Umbra Vertices marked as Ui
    858     //                                            (P3)
    859     //          (P2)                               |     ' (P4)
    860     //   (P1)'   |                                 |   '
    861     //         ' |                                 | '
    862     // (P0)  ------------------------------------------------(P5)
    863     //           | (U0)                            |(U1)
    864     //           |                                 |
    865     //           |                                 |(U2)     (P5.1)
    866     //           |                                 |
    867     //           |                                 |
    868     //           |                                 |
    869     //           |                                 |
    870     //           |                                 |
    871     //           |                                 |
    872     //       (U4)-----------------------------------(U3)      (P6)
    873     //
    874     // At least, like P0, P1, P2, they will find the matching umbra as U0.
    875     // If we jump over some umbra vertex without matching penumbra vertex, then
    876     // we will generate some new penumbra vertex by interpolation. Like P6 is
    877     // matching U3, but U2 is not matched with any penumbra vertex.
    878     // So interpolate P5.1 out and match U2.
    879     // In this way, every umbra vertex will have a matching penumbra vertex.
    880     //
    881     // The total pair number can be as high as umbraLength + penumbraLength.
    882     const int maxNewPenumbraLength = umbraLength + penumbraLength;
    883     IndexPair verticesPair[maxNewPenumbraLength];
    884     int verticesPairIndex = 0;
    885 
    886     // Cache all the existing penumbra vertices and newly interpolated vertices into a
    887     // a new array.
    888     Vector2 newPenumbra[maxNewPenumbraLength];
    889     int newPenumbraIndex = 0;
    890 
    891     // For each penumbra vertex, find its closet umbra vertex by comparing the
    892     // neighbor umbra vertices.
    893     genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
    894             newPenumbraIndex, verticesPair, verticesPairIndex);
    895     ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
    896     ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
    897 #if DEBUG_SHADOW
    898     for (int i = 0; i < umbraLength; i++) {
    899         ALOGD("umbra i %d,  [%f, %f]", i, umbra[i].x, umbra[i].y);
    900     }
    901     for (int i = 0; i < newPenumbraIndex; i++) {
    902         ALOGD("new penumbra i %d,  [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
    903     }
    904     for (int i = 0; i < verticesPairIndex; i++) {
    905         ALOGD("index i %d,  [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
    906     }
    907 #endif
    908 
    909     // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
    910     // one has umbraLength, the last one has at most umbraLength.
    911     //
    912     // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
    913     // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
    914     // And 2 more for jumping between penumbra to umbra.
    915     const int newPenumbraLength = newPenumbraIndex;
    916     const int totalVertexCount = newPenumbraLength + umbraLength * 2;
    917     const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
    918     AlphaVertex* shadowVertices =
    919             shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
    920     uint16_t* indexBuffer =
    921             shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
    922     int vertexBufferIndex = 0;
    923     int indexBufferIndex = 0;
    924 
    925     // Fill the IB and VB for the penumbra area.
    926     for (int i = 0; i < newPenumbraLength; i++) {
    927         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x,
    928                 newPenumbra[i].y, PENUMBRA_ALPHA);
    929     }
    930     // Since the umbra can be a faked one when the occluder is too high, the umbra should be lighter
    931     // in this case.
    932     float scaledUmbraAlpha = UMBRA_ALPHA * shadowStrengthScale;
    933 
    934     for (int i = 0; i < umbraLength; i++) {
    935         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
    936                 scaledUmbraAlpha);
    937     }
    938 
    939     for (int i = 0; i < verticesPairIndex; i++) {
    940         indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
    941         // All umbra index need to be offseted by newPenumbraSize.
    942         indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
    943     }
    944     indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
    945     indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
    946 
    947     // Now fill the IB and VB for the umbra area.
    948     // First duplicated the index from previous strip and the first one for the
    949     // degenerated triangles.
    950     indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
    951     indexBufferIndex++;
    952     indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
    953     // Save the first VB index for umbra area in order to close the loop.
    954     int savedStartIndex = vertexBufferIndex;
    955 
    956     if (hasOccludedUmbraArea) {
    957         // Precompute all the polygon's vector, and the reference cross product,
    958         // in order to find the right polygon edge for the ray to intersect.
    959         Vector2 polyToCentroid[polyLength];
    960         bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
    961 
    962         // Because both the umbra and polygon are going in the same direction,
    963         // we can save the previous polygon index to make sure we have less polygon
    964         // vertex to compute for each ray.
    965         int previousPolyIndex = 0;
    966         for (int i = 0; i < umbraLength; i++) {
    967             // Shoot a ray from centroid to each umbra vertices and pick the one with
    968             // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
    969             Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength,
    970                     polyToCentroid, isPositiveCross, previousPolyIndex);
    971 
    972             // We already stored the umbra vertices, just need to add the occlued umbra's ones.
    973             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
    974             indexBuffer[indexBufferIndex++] = vertexBufferIndex;
    975             AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
    976                     closerVertex.x, closerVertex.y, scaledUmbraAlpha);
    977         }
    978     } else {
    979         // If there is no occluded umbra at all, then draw the triangle fan
    980         // starting from the centroid to all umbra vertices.
    981         int lastCentroidIndex = vertexBufferIndex;
    982         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
    983                 centroid.y, scaledUmbraAlpha);
    984         for (int i = 0; i < umbraLength; i++) {
    985             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
    986             indexBuffer[indexBufferIndex++] = lastCentroidIndex;
    987         }
    988     }
    989     // Closing the umbra area triangle's loop here.
    990     indexBuffer[indexBufferIndex++] = newPenumbraLength;
    991     indexBuffer[indexBufferIndex++] = savedStartIndex;
    992 
    993     // At the end, update the real index and vertex buffer size.
    994     shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
    995     shadowTriangleStrip.updateIndexCount(indexBufferIndex);
    996     ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
    997     ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
    998 
    999     shadowTriangleStrip.setMeshFeatureFlags(VertexBuffer::kAlpha | VertexBuffer::kIndices);
   1000     shadowTriangleStrip.computeBounds<AlphaVertex>();
   1001 }
   1002 
   1003 #if DEBUG_SHADOW
   1004 
   1005 #define TEST_POINT_NUMBER 128
   1006 /**
   1007  * Calculate the bounds for generating random test points.
   1008  */
   1009 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
   1010         Vector2& upperBound) {
   1011     if (inVector.x < lowerBound.x) {
   1012         lowerBound.x = inVector.x;
   1013     }
   1014 
   1015     if (inVector.y < lowerBound.y) {
   1016         lowerBound.y = inVector.y;
   1017     }
   1018 
   1019     if (inVector.x > upperBound.x) {
   1020         upperBound.x = inVector.x;
   1021     }
   1022 
   1023     if (inVector.y > upperBound.y) {
   1024         upperBound.y = inVector.y;
   1025     }
   1026 }
   1027 
   1028 /**
   1029  * For debug purpose, when things go wrong, dump the whole polygon data.
   1030  */
   1031 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
   1032     for (int i = 0; i < polyLength; i++) {
   1033         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
   1034     }
   1035 }
   1036 
   1037 /**
   1038  * For debug purpose, when things go wrong, dump the whole polygon data.
   1039  */
   1040 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
   1041     for (int i = 0; i < polyLength; i++) {
   1042         ALOGD("polygon %s i %d x %f y %f z %f", polyName, i, poly[i].x, poly[i].y, poly[i].z);
   1043     }
   1044 }
   1045 
   1046 /**
   1047  * Test whether the polygon is convex.
   1048  */
   1049 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
   1050         const char* name) {
   1051     bool isConvex = true;
   1052     for (int i = 0; i < polygonLength; i++) {
   1053         Vector2 start = polygon[i];
   1054         Vector2 middle = polygon[(i + 1) % polygonLength];
   1055         Vector2 end = polygon[(i + 2) % polygonLength];
   1056 
   1057         float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
   1058                 (float(middle.y) - start.y) * (float(end.x) - start.x);
   1059         bool isCCWOrCoLinear = (delta >= EPSILON);
   1060 
   1061         if (isCCWOrCoLinear) {
   1062             ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
   1063                     "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
   1064                     name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
   1065             isConvex = false;
   1066             break;
   1067         }
   1068     }
   1069     return isConvex;
   1070 }
   1071 
   1072 /**
   1073  * Test whether or not the polygon (intersection) is within the 2 input polygons.
   1074  * Using Marte Carlo method, we generate a random point, and if it is inside the
   1075  * intersection, then it must be inside both source polygons.
   1076  */
   1077 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
   1078         const Vector2* poly2, int poly2Length,
   1079         const Vector2* intersection, int intersectionLength) {
   1080     // Find the min and max of x and y.
   1081     Vector2 lowerBound = {FLT_MAX, FLT_MAX};
   1082     Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
   1083     for (int i = 0; i < poly1Length; i++) {
   1084         updateBound(poly1[i], lowerBound, upperBound);
   1085     }
   1086     for (int i = 0; i < poly2Length; i++) {
   1087         updateBound(poly2[i], lowerBound, upperBound);
   1088     }
   1089 
   1090     bool dumpPoly = false;
   1091     for (int k = 0; k < TEST_POINT_NUMBER; k++) {
   1092         // Generate a random point between minX, minY and maxX, maxY.
   1093         float randomX = rand() / float(RAND_MAX);
   1094         float randomY = rand() / float(RAND_MAX);
   1095 
   1096         Vector2 testPoint;
   1097         testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
   1098         testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
   1099 
   1100         // If the random point is in both poly 1 and 2, then it must be intersection.
   1101         if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
   1102             if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
   1103                 dumpPoly = true;
   1104                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
   1105                         " not in the poly1",
   1106                         testPoint.x, testPoint.y);
   1107             }
   1108 
   1109             if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
   1110                 dumpPoly = true;
   1111                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
   1112                         " not in the poly2",
   1113                         testPoint.x, testPoint.y);
   1114             }
   1115         }
   1116     }
   1117 
   1118     if (dumpPoly) {
   1119         dumpPolygon(intersection, intersectionLength, "intersection");
   1120         for (int i = 1; i < intersectionLength; i++) {
   1121             Vector2 delta = intersection[i] - intersection[i - 1];
   1122             ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
   1123         }
   1124 
   1125         dumpPolygon(poly1, poly1Length, "poly 1");
   1126         dumpPolygon(poly2, poly2Length, "poly 2");
   1127     }
   1128 }
   1129 #endif
   1130 
   1131 }; // namespace uirenderer
   1132 }; // namespace android
   1133