1 //===-- MBlazeISelLowering.cpp - MBlaze DAG Lowering Implementation -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interfaces that MBlaze uses to lower LLVM code into a 11 // selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "mblaze-lower" 16 #include "MBlazeISelLowering.h" 17 #include "MBlazeMachineFunction.h" 18 #include "MBlazeTargetMachine.h" 19 #include "MBlazeTargetObjectFile.h" 20 #include "MBlazeSubtarget.h" 21 #include "llvm/DerivedTypes.h" 22 #include "llvm/Function.h" 23 #include "llvm/GlobalVariable.h" 24 #include "llvm/Intrinsics.h" 25 #include "llvm/CallingConv.h" 26 #include "llvm/CodeGen/CallingConvLower.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/SelectionDAGISel.h" 32 #include "llvm/CodeGen/ValueTypes.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 39 CCValAssign::LocInfo &LocInfo, 40 ISD::ArgFlagsTy &ArgFlags, 41 CCState &State); 42 43 const char *MBlazeTargetLowering::getTargetNodeName(unsigned Opcode) const { 44 switch (Opcode) { 45 case MBlazeISD::JmpLink : return "MBlazeISD::JmpLink"; 46 case MBlazeISD::GPRel : return "MBlazeISD::GPRel"; 47 case MBlazeISD::Wrap : return "MBlazeISD::Wrap"; 48 case MBlazeISD::ICmp : return "MBlazeISD::ICmp"; 49 case MBlazeISD::Ret : return "MBlazeISD::Ret"; 50 case MBlazeISD::Select_CC : return "MBlazeISD::Select_CC"; 51 default : return NULL; 52 } 53 } 54 55 MBlazeTargetLowering::MBlazeTargetLowering(MBlazeTargetMachine &TM) 56 : TargetLowering(TM, new MBlazeTargetObjectFile()) { 57 Subtarget = &TM.getSubtarget<MBlazeSubtarget>(); 58 59 // MBlaze does not have i1 type, so use i32 for 60 // setcc operations results (slt, sgt, ...). 61 setBooleanContents(ZeroOrOneBooleanContent); 62 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 63 64 // Set up the register classes 65 addRegisterClass(MVT::i32, MBlaze::GPRRegisterClass); 66 if (Subtarget->hasFPU()) { 67 addRegisterClass(MVT::f32, MBlaze::GPRRegisterClass); 68 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 69 } 70 71 // Floating point operations which are not supported 72 setOperationAction(ISD::FREM, MVT::f32, Expand); 73 setOperationAction(ISD::FMA, MVT::f32, Expand); 74 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Expand); 75 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Expand); 76 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 77 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 78 setOperationAction(ISD::FP_ROUND, MVT::f32, Expand); 79 setOperationAction(ISD::FP_ROUND, MVT::f64, Expand); 80 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 81 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 82 setOperationAction(ISD::FSIN, MVT::f32, Expand); 83 setOperationAction(ISD::FCOS, MVT::f32, Expand); 84 setOperationAction(ISD::FPOWI, MVT::f32, Expand); 85 setOperationAction(ISD::FPOW, MVT::f32, Expand); 86 setOperationAction(ISD::FLOG, MVT::f32, Expand); 87 setOperationAction(ISD::FLOG2, MVT::f32, Expand); 88 setOperationAction(ISD::FLOG10, MVT::f32, Expand); 89 setOperationAction(ISD::FEXP, MVT::f32, Expand); 90 91 // Load extented operations for i1 types must be promoted 92 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); 93 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); 94 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 95 96 // Sign extended loads must be expanded 97 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 98 setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Expand); 99 100 // MBlaze has no REM or DIVREM operations. 101 setOperationAction(ISD::UREM, MVT::i32, Expand); 102 setOperationAction(ISD::SREM, MVT::i32, Expand); 103 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 104 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 105 106 // If the processor doesn't support multiply then expand it 107 if (!Subtarget->hasMul()) { 108 setOperationAction(ISD::MUL, MVT::i32, Expand); 109 } 110 111 // If the processor doesn't support 64-bit multiply then expand 112 if (!Subtarget->hasMul() || !Subtarget->hasMul64()) { 113 setOperationAction(ISD::MULHS, MVT::i32, Expand); 114 setOperationAction(ISD::MULHS, MVT::i64, Expand); 115 setOperationAction(ISD::MULHU, MVT::i32, Expand); 116 setOperationAction(ISD::MULHU, MVT::i64, Expand); 117 } 118 119 // If the processor doesn't support division then expand 120 if (!Subtarget->hasDiv()) { 121 setOperationAction(ISD::UDIV, MVT::i32, Expand); 122 setOperationAction(ISD::SDIV, MVT::i32, Expand); 123 } 124 125 // Expand unsupported conversions 126 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 127 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 128 129 // Expand SELECT_CC 130 setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); 131 132 // MBlaze doesn't have MUL_LOHI 133 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 134 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 135 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 136 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 137 138 // Used by legalize types to correctly generate the setcc result. 139 // Without this, every float setcc comes with a AND/OR with the result, 140 // we don't want this, since the fpcmp result goes to a flag register, 141 // which is used implicitly by brcond and select operations. 142 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 143 AddPromotedToType(ISD::SELECT, MVT::i1, MVT::i32); 144 AddPromotedToType(ISD::SELECT_CC, MVT::i1, MVT::i32); 145 146 // MBlaze Custom Operations 147 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 148 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 149 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 150 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 151 152 // Variable Argument support 153 setOperationAction(ISD::VASTART, MVT::Other, Custom); 154 setOperationAction(ISD::VAEND, MVT::Other, Expand); 155 setOperationAction(ISD::VAARG, MVT::Other, Expand); 156 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 157 158 159 // Operations not directly supported by MBlaze. 160 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 161 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 162 setOperationAction(ISD::BR_CC, MVT::Other, Expand); 163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 164 setOperationAction(ISD::ROTL, MVT::i32, Expand); 165 setOperationAction(ISD::ROTR, MVT::i32, Expand); 166 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 167 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 168 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 169 setOperationAction(ISD::CTLZ, MVT::i32, Expand); 170 setOperationAction(ISD::CTTZ, MVT::i32, Expand); 171 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 172 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 173 174 // We don't have line number support yet. 175 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); 176 177 // Use the default for now 178 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 179 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 180 181 // MBlaze doesn't have extending float->double load/store 182 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); 183 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 184 185 setMinFunctionAlignment(2); 186 187 setStackPointerRegisterToSaveRestore(MBlaze::R1); 188 computeRegisterProperties(); 189 } 190 191 EVT MBlazeTargetLowering::getSetCCResultType(EVT VT) const { 192 return MVT::i32; 193 } 194 195 SDValue MBlazeTargetLowering::LowerOperation(SDValue Op, 196 SelectionDAG &DAG) const { 197 switch (Op.getOpcode()) 198 { 199 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 200 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 201 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 202 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 203 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 204 case ISD::VASTART: return LowerVASTART(Op, DAG); 205 } 206 return SDValue(); 207 } 208 209 //===----------------------------------------------------------------------===// 210 // Lower helper functions 211 //===----------------------------------------------------------------------===// 212 MachineBasicBlock* 213 MBlazeTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 214 MachineBasicBlock *MBB) 215 const { 216 switch (MI->getOpcode()) { 217 default: assert(false && "Unexpected instr type to insert"); 218 219 case MBlaze::ShiftRL: 220 case MBlaze::ShiftRA: 221 case MBlaze::ShiftL: 222 return EmitCustomShift(MI, MBB); 223 224 case MBlaze::Select_FCC: 225 case MBlaze::Select_CC: 226 return EmitCustomSelect(MI, MBB); 227 228 case MBlaze::CAS32: 229 case MBlaze::SWP32: 230 case MBlaze::LAA32: 231 case MBlaze::LAS32: 232 case MBlaze::LAD32: 233 case MBlaze::LAO32: 234 case MBlaze::LAX32: 235 case MBlaze::LAN32: 236 return EmitCustomAtomic(MI, MBB); 237 238 case MBlaze::MEMBARRIER: 239 // The Microblaze does not need memory barriers. Just delete the pseudo 240 // instruction and finish. 241 MI->eraseFromParent(); 242 return MBB; 243 } 244 } 245 246 MachineBasicBlock* 247 MBlazeTargetLowering::EmitCustomShift(MachineInstr *MI, 248 MachineBasicBlock *MBB) const { 249 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 250 DebugLoc dl = MI->getDebugLoc(); 251 252 // To "insert" a shift left instruction, we actually have to insert a 253 // simple loop. The incoming instruction knows the destination vreg to 254 // set, the source vreg to operate over and the shift amount. 255 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 256 MachineFunction::iterator It = MBB; 257 ++It; 258 259 // start: 260 // andi samt, samt, 31 261 // beqid samt, finish 262 // add dst, src, r0 263 // loop: 264 // addik samt, samt, -1 265 // sra dst, dst 266 // bneid samt, loop 267 // nop 268 // finish: 269 MachineFunction *F = MBB->getParent(); 270 MachineRegisterInfo &R = F->getRegInfo(); 271 MachineBasicBlock *loop = F->CreateMachineBasicBlock(LLVM_BB); 272 MachineBasicBlock *finish = F->CreateMachineBasicBlock(LLVM_BB); 273 F->insert(It, loop); 274 F->insert(It, finish); 275 276 // Update machine-CFG edges by transferring adding all successors and 277 // remaining instructions from the current block to the new block which 278 // will contain the Phi node for the select. 279 finish->splice(finish->begin(), MBB, 280 llvm::next(MachineBasicBlock::iterator(MI)), 281 MBB->end()); 282 finish->transferSuccessorsAndUpdatePHIs(MBB); 283 284 // Add the true and fallthrough blocks as its successors. 285 MBB->addSuccessor(loop); 286 MBB->addSuccessor(finish); 287 288 // Next, add the finish block as a successor of the loop block 289 loop->addSuccessor(finish); 290 loop->addSuccessor(loop); 291 292 unsigned IAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass); 293 BuildMI(MBB, dl, TII->get(MBlaze::ANDI), IAMT) 294 .addReg(MI->getOperand(2).getReg()) 295 .addImm(31); 296 297 unsigned IVAL = R.createVirtualRegister(MBlaze::GPRRegisterClass); 298 BuildMI(MBB, dl, TII->get(MBlaze::ADDIK), IVAL) 299 .addReg(MI->getOperand(1).getReg()) 300 .addImm(0); 301 302 BuildMI(MBB, dl, TII->get(MBlaze::BEQID)) 303 .addReg(IAMT) 304 .addMBB(finish); 305 306 unsigned DST = R.createVirtualRegister(MBlaze::GPRRegisterClass); 307 unsigned NDST = R.createVirtualRegister(MBlaze::GPRRegisterClass); 308 BuildMI(loop, dl, TII->get(MBlaze::PHI), DST) 309 .addReg(IVAL).addMBB(MBB) 310 .addReg(NDST).addMBB(loop); 311 312 unsigned SAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass); 313 unsigned NAMT = R.createVirtualRegister(MBlaze::GPRRegisterClass); 314 BuildMI(loop, dl, TII->get(MBlaze::PHI), SAMT) 315 .addReg(IAMT).addMBB(MBB) 316 .addReg(NAMT).addMBB(loop); 317 318 if (MI->getOpcode() == MBlaze::ShiftL) 319 BuildMI(loop, dl, TII->get(MBlaze::ADD), NDST).addReg(DST).addReg(DST); 320 else if (MI->getOpcode() == MBlaze::ShiftRA) 321 BuildMI(loop, dl, TII->get(MBlaze::SRA), NDST).addReg(DST); 322 else if (MI->getOpcode() == MBlaze::ShiftRL) 323 BuildMI(loop, dl, TII->get(MBlaze::SRL), NDST).addReg(DST); 324 else 325 llvm_unreachable("Cannot lower unknown shift instruction"); 326 327 BuildMI(loop, dl, TII->get(MBlaze::ADDIK), NAMT) 328 .addReg(SAMT) 329 .addImm(-1); 330 331 BuildMI(loop, dl, TII->get(MBlaze::BNEID)) 332 .addReg(NAMT) 333 .addMBB(loop); 334 335 BuildMI(*finish, finish->begin(), dl, 336 TII->get(MBlaze::PHI), MI->getOperand(0).getReg()) 337 .addReg(IVAL).addMBB(MBB) 338 .addReg(NDST).addMBB(loop); 339 340 // The pseudo instruction is no longer needed so remove it 341 MI->eraseFromParent(); 342 return finish; 343 } 344 345 MachineBasicBlock* 346 MBlazeTargetLowering::EmitCustomSelect(MachineInstr *MI, 347 MachineBasicBlock *MBB) const { 348 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 349 DebugLoc dl = MI->getDebugLoc(); 350 351 // To "insert" a SELECT_CC instruction, we actually have to insert the 352 // diamond control-flow pattern. The incoming instruction knows the 353 // destination vreg to set, the condition code register to branch on, the 354 // true/false values to select between, and a branch opcode to use. 355 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 356 MachineFunction::iterator It = MBB; 357 ++It; 358 359 // thisMBB: 360 // ... 361 // TrueVal = ... 362 // setcc r1, r2, r3 363 // bNE r1, r0, copy1MBB 364 // fallthrough --> copy0MBB 365 MachineFunction *F = MBB->getParent(); 366 MachineBasicBlock *flsBB = F->CreateMachineBasicBlock(LLVM_BB); 367 MachineBasicBlock *dneBB = F->CreateMachineBasicBlock(LLVM_BB); 368 369 unsigned Opc; 370 switch (MI->getOperand(4).getImm()) { 371 default: llvm_unreachable("Unknown branch condition"); 372 case MBlazeCC::EQ: Opc = MBlaze::BEQID; break; 373 case MBlazeCC::NE: Opc = MBlaze::BNEID; break; 374 case MBlazeCC::GT: Opc = MBlaze::BGTID; break; 375 case MBlazeCC::LT: Opc = MBlaze::BLTID; break; 376 case MBlazeCC::GE: Opc = MBlaze::BGEID; break; 377 case MBlazeCC::LE: Opc = MBlaze::BLEID; break; 378 } 379 380 F->insert(It, flsBB); 381 F->insert(It, dneBB); 382 383 // Transfer the remainder of MBB and its successor edges to dneBB. 384 dneBB->splice(dneBB->begin(), MBB, 385 llvm::next(MachineBasicBlock::iterator(MI)), 386 MBB->end()); 387 dneBB->transferSuccessorsAndUpdatePHIs(MBB); 388 389 MBB->addSuccessor(flsBB); 390 MBB->addSuccessor(dneBB); 391 flsBB->addSuccessor(dneBB); 392 393 BuildMI(MBB, dl, TII->get(Opc)) 394 .addReg(MI->getOperand(3).getReg()) 395 .addMBB(dneBB); 396 397 // sinkMBB: 398 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 399 // ... 400 //BuildMI(dneBB, dl, TII->get(MBlaze::PHI), MI->getOperand(0).getReg()) 401 // .addReg(MI->getOperand(1).getReg()).addMBB(flsBB) 402 // .addReg(MI->getOperand(2).getReg()).addMBB(BB); 403 404 BuildMI(*dneBB, dneBB->begin(), dl, 405 TII->get(MBlaze::PHI), MI->getOperand(0).getReg()) 406 .addReg(MI->getOperand(2).getReg()).addMBB(flsBB) 407 .addReg(MI->getOperand(1).getReg()).addMBB(MBB); 408 409 MI->eraseFromParent(); // The pseudo instruction is gone now. 410 return dneBB; 411 } 412 413 MachineBasicBlock* 414 MBlazeTargetLowering::EmitCustomAtomic(MachineInstr *MI, 415 MachineBasicBlock *MBB) const { 416 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 417 DebugLoc dl = MI->getDebugLoc(); 418 419 // All atomic instructions on the Microblaze are implemented using the 420 // load-linked / store-conditional style atomic instruction sequences. 421 // Thus, all operations will look something like the following: 422 // 423 // start: 424 // lwx RV, RP, 0 425 // <do stuff> 426 // swx RV, RP, 0 427 // addic RC, R0, 0 428 // bneid RC, start 429 // 430 // exit: 431 // 432 // To "insert" a shift left instruction, we actually have to insert a 433 // simple loop. The incoming instruction knows the destination vreg to 434 // set, the source vreg to operate over and the shift amount. 435 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 436 MachineFunction::iterator It = MBB; 437 ++It; 438 439 // start: 440 // andi samt, samt, 31 441 // beqid samt, finish 442 // add dst, src, r0 443 // loop: 444 // addik samt, samt, -1 445 // sra dst, dst 446 // bneid samt, loop 447 // nop 448 // finish: 449 MachineFunction *F = MBB->getParent(); 450 MachineRegisterInfo &R = F->getRegInfo(); 451 452 // Create the start and exit basic blocks for the atomic operation 453 MachineBasicBlock *start = F->CreateMachineBasicBlock(LLVM_BB); 454 MachineBasicBlock *exit = F->CreateMachineBasicBlock(LLVM_BB); 455 F->insert(It, start); 456 F->insert(It, exit); 457 458 // Update machine-CFG edges by transferring adding all successors and 459 // remaining instructions from the current block to the new block which 460 // will contain the Phi node for the select. 461 exit->splice(exit->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), 462 MBB->end()); 463 exit->transferSuccessorsAndUpdatePHIs(MBB); 464 465 // Add the fallthrough block as its successors. 466 MBB->addSuccessor(start); 467 468 BuildMI(start, dl, TII->get(MBlaze::LWX), MI->getOperand(0).getReg()) 469 .addReg(MI->getOperand(1).getReg()) 470 .addReg(MBlaze::R0); 471 472 MachineBasicBlock *final = start; 473 unsigned finalReg = 0; 474 475 switch (MI->getOpcode()) { 476 default: llvm_unreachable("Cannot lower unknown atomic instruction!"); 477 478 case MBlaze::SWP32: 479 finalReg = MI->getOperand(2).getReg(); 480 start->addSuccessor(exit); 481 start->addSuccessor(start); 482 break; 483 484 case MBlaze::LAN32: 485 case MBlaze::LAX32: 486 case MBlaze::LAO32: 487 case MBlaze::LAD32: 488 case MBlaze::LAS32: 489 case MBlaze::LAA32: { 490 unsigned opcode = 0; 491 switch (MI->getOpcode()) { 492 default: llvm_unreachable("Cannot lower unknown atomic load!"); 493 case MBlaze::LAA32: opcode = MBlaze::ADDIK; break; 494 case MBlaze::LAS32: opcode = MBlaze::RSUBIK; break; 495 case MBlaze::LAD32: opcode = MBlaze::AND; break; 496 case MBlaze::LAO32: opcode = MBlaze::OR; break; 497 case MBlaze::LAX32: opcode = MBlaze::XOR; break; 498 case MBlaze::LAN32: opcode = MBlaze::AND; break; 499 } 500 501 finalReg = R.createVirtualRegister(MBlaze::GPRRegisterClass); 502 start->addSuccessor(exit); 503 start->addSuccessor(start); 504 505 BuildMI(start, dl, TII->get(opcode), finalReg) 506 .addReg(MI->getOperand(0).getReg()) 507 .addReg(MI->getOperand(2).getReg()); 508 509 if (MI->getOpcode() == MBlaze::LAN32) { 510 unsigned tmp = finalReg; 511 finalReg = R.createVirtualRegister(MBlaze::GPRRegisterClass); 512 BuildMI(start, dl, TII->get(MBlaze::XORI), finalReg) 513 .addReg(tmp) 514 .addImm(-1); 515 } 516 break; 517 } 518 519 case MBlaze::CAS32: { 520 finalReg = MI->getOperand(3).getReg(); 521 final = F->CreateMachineBasicBlock(LLVM_BB); 522 523 F->insert(It, final); 524 start->addSuccessor(exit); 525 start->addSuccessor(final); 526 final->addSuccessor(exit); 527 final->addSuccessor(start); 528 529 unsigned CMP = R.createVirtualRegister(MBlaze::GPRRegisterClass); 530 BuildMI(start, dl, TII->get(MBlaze::CMP), CMP) 531 .addReg(MI->getOperand(0).getReg()) 532 .addReg(MI->getOperand(2).getReg()); 533 534 BuildMI(start, dl, TII->get(MBlaze::BNEID)) 535 .addReg(CMP) 536 .addMBB(exit); 537 538 final->moveAfter(start); 539 exit->moveAfter(final); 540 break; 541 } 542 } 543 544 unsigned CHK = R.createVirtualRegister(MBlaze::GPRRegisterClass); 545 BuildMI(final, dl, TII->get(MBlaze::SWX)) 546 .addReg(finalReg) 547 .addReg(MI->getOperand(1).getReg()) 548 .addReg(MBlaze::R0); 549 550 BuildMI(final, dl, TII->get(MBlaze::ADDIC), CHK) 551 .addReg(MBlaze::R0) 552 .addImm(0); 553 554 BuildMI(final, dl, TII->get(MBlaze::BNEID)) 555 .addReg(CHK) 556 .addMBB(start); 557 558 // The pseudo instruction is no longer needed so remove it 559 MI->eraseFromParent(); 560 return exit; 561 } 562 563 //===----------------------------------------------------------------------===// 564 // Misc Lower Operation implementation 565 //===----------------------------------------------------------------------===// 566 // 567 568 SDValue MBlazeTargetLowering::LowerSELECT_CC(SDValue Op, 569 SelectionDAG &DAG) const { 570 SDValue LHS = Op.getOperand(0); 571 SDValue RHS = Op.getOperand(1); 572 SDValue TrueVal = Op.getOperand(2); 573 SDValue FalseVal = Op.getOperand(3); 574 DebugLoc dl = Op.getDebugLoc(); 575 unsigned Opc; 576 577 SDValue CompareFlag; 578 if (LHS.getValueType() == MVT::i32) { 579 Opc = MBlazeISD::Select_CC; 580 CompareFlag = DAG.getNode(MBlazeISD::ICmp, dl, MVT::i32, LHS, RHS) 581 .getValue(1); 582 } else { 583 llvm_unreachable("Cannot lower select_cc with unknown type"); 584 } 585 586 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, 587 CompareFlag); 588 } 589 590 SDValue MBlazeTargetLowering:: 591 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { 592 // FIXME there isn't actually debug info here 593 DebugLoc dl = Op.getDebugLoc(); 594 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 595 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32); 596 597 return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, GA); 598 } 599 600 SDValue MBlazeTargetLowering:: 601 LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { 602 llvm_unreachable("TLS not implemented for MicroBlaze."); 603 return SDValue(); // Not reached 604 } 605 606 SDValue MBlazeTargetLowering:: 607 LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 608 SDValue ResNode; 609 SDValue HiPart; 610 // FIXME there isn't actually debug info here 611 DebugLoc dl = Op.getDebugLoc(); 612 613 EVT PtrVT = Op.getValueType(); 614 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 615 616 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 0); 617 return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, JTI); 618 } 619 620 SDValue MBlazeTargetLowering:: 621 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { 622 SDValue ResNode; 623 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 624 const Constant *C = N->getConstVal(); 625 DebugLoc dl = Op.getDebugLoc(); 626 627 SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), 628 N->getOffset(), 0); 629 return DAG.getNode(MBlazeISD::Wrap, dl, MVT::i32, CP); 630 } 631 632 SDValue MBlazeTargetLowering::LowerVASTART(SDValue Op, 633 SelectionDAG &DAG) const { 634 MachineFunction &MF = DAG.getMachineFunction(); 635 MBlazeFunctionInfo *FuncInfo = MF.getInfo<MBlazeFunctionInfo>(); 636 637 DebugLoc dl = Op.getDebugLoc(); 638 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 639 getPointerTy()); 640 641 // vastart just stores the address of the VarArgsFrameIndex slot into the 642 // memory location argument. 643 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 644 return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1), 645 MachinePointerInfo(SV), 646 false, false, 0); 647 } 648 649 //===----------------------------------------------------------------------===// 650 // Calling Convention Implementation 651 //===----------------------------------------------------------------------===// 652 653 #include "MBlazeGenCallingConv.inc" 654 655 static bool CC_MBlaze_AssignReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 656 CCValAssign::LocInfo &LocInfo, 657 ISD::ArgFlagsTy &ArgFlags, 658 CCState &State) { 659 static const unsigned ArgRegs[] = { 660 MBlaze::R5, MBlaze::R6, MBlaze::R7, 661 MBlaze::R8, MBlaze::R9, MBlaze::R10 662 }; 663 664 const unsigned NumArgRegs = array_lengthof(ArgRegs); 665 unsigned Reg = State.AllocateReg(ArgRegs, NumArgRegs); 666 if (!Reg) return false; 667 668 unsigned SizeInBytes = ValVT.getSizeInBits() >> 3; 669 State.AllocateStack(SizeInBytes, SizeInBytes); 670 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 671 672 return true; 673 } 674 675 //===----------------------------------------------------------------------===// 676 // Call Calling Convention Implementation 677 //===----------------------------------------------------------------------===// 678 679 /// LowerCall - functions arguments are copied from virtual regs to 680 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 681 /// TODO: isVarArg, isTailCall. 682 SDValue MBlazeTargetLowering:: 683 LowerCall(SDValue Chain, SDValue Callee, CallingConv::ID CallConv, 684 bool isVarArg, bool &isTailCall, 685 const SmallVectorImpl<ISD::OutputArg> &Outs, 686 const SmallVectorImpl<SDValue> &OutVals, 687 const SmallVectorImpl<ISD::InputArg> &Ins, 688 DebugLoc dl, SelectionDAG &DAG, 689 SmallVectorImpl<SDValue> &InVals) const { 690 // MBlaze does not yet support tail call optimization 691 isTailCall = false; 692 693 // The MBlaze requires stack slots for arguments passed to var arg 694 // functions even if they are passed in registers. 695 bool needsRegArgSlots = isVarArg; 696 697 MachineFunction &MF = DAG.getMachineFunction(); 698 MachineFrameInfo *MFI = MF.getFrameInfo(); 699 const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering(); 700 701 // Analyze operands of the call, assigning locations to each operand. 702 SmallVector<CCValAssign, 16> ArgLocs; 703 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 704 getTargetMachine(), ArgLocs, *DAG.getContext()); 705 CCInfo.AnalyzeCallOperands(Outs, CC_MBlaze); 706 707 // Get a count of how many bytes are to be pushed on the stack. 708 unsigned NumBytes = CCInfo.getNextStackOffset(); 709 710 // Variable argument function calls require a minimum of 24-bytes of stack 711 if (isVarArg && NumBytes < 24) NumBytes = 24; 712 713 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 714 715 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 716 SmallVector<SDValue, 8> MemOpChains; 717 718 // Walk the register/memloc assignments, inserting copies/loads. 719 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 720 CCValAssign &VA = ArgLocs[i]; 721 MVT RegVT = VA.getLocVT(); 722 SDValue Arg = OutVals[i]; 723 724 // Promote the value if needed. 725 switch (VA.getLocInfo()) { 726 default: llvm_unreachable("Unknown loc info!"); 727 case CCValAssign::Full: break; 728 case CCValAssign::SExt: 729 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); 730 break; 731 case CCValAssign::ZExt: 732 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); 733 break; 734 case CCValAssign::AExt: 735 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); 736 break; 737 } 738 739 // Arguments that can be passed on register must be kept at 740 // RegsToPass vector 741 if (VA.isRegLoc()) { 742 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 743 } else { 744 // Register can't get to this point... 745 assert(VA.isMemLoc()); 746 747 // Since we are alread passing values on the stack we don't 748 // need to worry about creating additional slots for the 749 // values passed via registers. 750 needsRegArgSlots = false; 751 752 // Create the frame index object for this incoming parameter 753 unsigned ArgSize = VA.getValVT().getSizeInBits()/8; 754 unsigned StackLoc = VA.getLocMemOffset() + 4; 755 int FI = MFI->CreateFixedObject(ArgSize, StackLoc, true); 756 757 SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy()); 758 759 // emit ISD::STORE whichs stores the 760 // parameter value to a stack Location 761 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, 762 MachinePointerInfo(), 763 false, false, 0)); 764 } 765 } 766 767 // If we need to reserve stack space for the arguments passed via registers 768 // then create a fixed stack object at the beginning of the stack. 769 if (needsRegArgSlots && TFI.hasReservedCallFrame(MF)) 770 MFI->CreateFixedObject(28,0,true); 771 772 // Transform all store nodes into one single node because all store 773 // nodes are independent of each other. 774 if (!MemOpChains.empty()) 775 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 776 &MemOpChains[0], MemOpChains.size()); 777 778 // Build a sequence of copy-to-reg nodes chained together with token 779 // chain and flag operands which copy the outgoing args into registers. 780 // The InFlag in necessary since all emitted instructions must be 781 // stuck together. 782 SDValue InFlag; 783 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 784 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 785 RegsToPass[i].second, InFlag); 786 InFlag = Chain.getValue(1); 787 } 788 789 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 790 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 791 // node so that legalize doesn't hack it. 792 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 793 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, 794 getPointerTy(), 0, 0); 795 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) 796 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), 797 getPointerTy(), 0); 798 799 // MBlazeJmpLink = #chain, #target_address, #opt_in_flags... 800 // = Chain, Callee, Reg#1, Reg#2, ... 801 // 802 // Returns a chain & a flag for retval copy to use. 803 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 804 SmallVector<SDValue, 8> Ops; 805 Ops.push_back(Chain); 806 Ops.push_back(Callee); 807 808 // Add argument registers to the end of the list so that they are 809 // known live into the call. 810 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 811 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 812 RegsToPass[i].second.getValueType())); 813 } 814 815 if (InFlag.getNode()) 816 Ops.push_back(InFlag); 817 818 Chain = DAG.getNode(MBlazeISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size()); 819 InFlag = Chain.getValue(1); 820 821 // Create the CALLSEQ_END node. 822 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 823 DAG.getIntPtrConstant(0, true), InFlag); 824 if (!Ins.empty()) 825 InFlag = Chain.getValue(1); 826 827 // Handle result values, copying them out of physregs into vregs that we 828 // return. 829 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 830 Ins, dl, DAG, InVals); 831 } 832 833 /// LowerCallResult - Lower the result values of a call into the 834 /// appropriate copies out of appropriate physical registers. 835 SDValue MBlazeTargetLowering:: 836 LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, 837 bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, 838 DebugLoc dl, SelectionDAG &DAG, 839 SmallVectorImpl<SDValue> &InVals) const { 840 // Assign locations to each value returned by this call. 841 SmallVector<CCValAssign, 16> RVLocs; 842 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 843 getTargetMachine(), RVLocs, *DAG.getContext()); 844 845 CCInfo.AnalyzeCallResult(Ins, RetCC_MBlaze); 846 847 // Copy all of the result registers out of their specified physreg. 848 for (unsigned i = 0; i != RVLocs.size(); ++i) { 849 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 850 RVLocs[i].getValVT(), InFlag).getValue(1); 851 InFlag = Chain.getValue(2); 852 InVals.push_back(Chain.getValue(0)); 853 } 854 855 return Chain; 856 } 857 858 //===----------------------------------------------------------------------===// 859 // Formal Arguments Calling Convention Implementation 860 //===----------------------------------------------------------------------===// 861 862 /// LowerFormalArguments - transform physical registers into 863 /// virtual registers and generate load operations for 864 /// arguments places on the stack. 865 SDValue MBlazeTargetLowering:: 866 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 867 const SmallVectorImpl<ISD::InputArg> &Ins, 868 DebugLoc dl, SelectionDAG &DAG, 869 SmallVectorImpl<SDValue> &InVals) const { 870 MachineFunction &MF = DAG.getMachineFunction(); 871 MachineFrameInfo *MFI = MF.getFrameInfo(); 872 MBlazeFunctionInfo *MBlazeFI = MF.getInfo<MBlazeFunctionInfo>(); 873 874 unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF); 875 MBlazeFI->setVarArgsFrameIndex(0); 876 877 // Used with vargs to acumulate store chains. 878 std::vector<SDValue> OutChains; 879 880 // Keep track of the last register used for arguments 881 unsigned ArgRegEnd = 0; 882 883 // Assign locations to all of the incoming arguments. 884 SmallVector<CCValAssign, 16> ArgLocs; 885 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 886 getTargetMachine(), ArgLocs, *DAG.getContext()); 887 888 CCInfo.AnalyzeFormalArguments(Ins, CC_MBlaze); 889 SDValue StackPtr; 890 891 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 892 CCValAssign &VA = ArgLocs[i]; 893 894 // Arguments stored on registers 895 if (VA.isRegLoc()) { 896 MVT RegVT = VA.getLocVT(); 897 ArgRegEnd = VA.getLocReg(); 898 TargetRegisterClass *RC = 0; 899 900 if (RegVT == MVT::i32) 901 RC = MBlaze::GPRRegisterClass; 902 else if (RegVT == MVT::f32) 903 RC = MBlaze::GPRRegisterClass; 904 else 905 llvm_unreachable("RegVT not supported by LowerFormalArguments"); 906 907 // Transform the arguments stored on 908 // physical registers into virtual ones 909 unsigned Reg = MF.addLiveIn(ArgRegEnd, RC); 910 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); 911 912 // If this is an 8 or 16-bit value, it has been passed promoted 913 // to 32 bits. Insert an assert[sz]ext to capture this, then 914 // truncate to the right size. If if is a floating point value 915 // then convert to the correct type. 916 if (VA.getLocInfo() != CCValAssign::Full) { 917 unsigned Opcode = 0; 918 if (VA.getLocInfo() == CCValAssign::SExt) 919 Opcode = ISD::AssertSext; 920 else if (VA.getLocInfo() == CCValAssign::ZExt) 921 Opcode = ISD::AssertZext; 922 if (Opcode) 923 ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue, 924 DAG.getValueType(VA.getValVT())); 925 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 926 } 927 928 InVals.push_back(ArgValue); 929 } else { // VA.isRegLoc() 930 // sanity check 931 assert(VA.isMemLoc()); 932 933 // The last argument is not a register 934 ArgRegEnd = 0; 935 936 // The stack pointer offset is relative to the caller stack frame. 937 // Since the real stack size is unknown here, a negative SPOffset 938 // is used so there's a way to adjust these offsets when the stack 939 // size get known (on EliminateFrameIndex). A dummy SPOffset is 940 // used instead of a direct negative address (which is recorded to 941 // be used on emitPrologue) to avoid mis-calc of the first stack 942 // offset on PEI::calculateFrameObjectOffsets. 943 // Arguments are always 32-bit. 944 unsigned ArgSize = VA.getLocVT().getSizeInBits()/8; 945 unsigned StackLoc = VA.getLocMemOffset() + 4; 946 int FI = MFI->CreateFixedObject(ArgSize, 0, true); 947 MBlazeFI->recordLoadArgsFI(FI, -StackLoc); 948 MBlazeFI->recordLiveIn(FI); 949 950 // Create load nodes to retrieve arguments from the stack 951 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 952 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 953 MachinePointerInfo::getFixedStack(FI), 954 false, false, 0)); 955 } 956 } 957 958 // To meet ABI, when VARARGS are passed on registers, the registers 959 // must have their values written to the caller stack frame. If the last 960 // argument was placed in the stack, there's no need to save any register. 961 if ((isVarArg) && ArgRegEnd) { 962 if (StackPtr.getNode() == 0) 963 StackPtr = DAG.getRegister(StackReg, getPointerTy()); 964 965 // The last register argument that must be saved is MBlaze::R10 966 TargetRegisterClass *RC = MBlaze::GPRRegisterClass; 967 968 unsigned Begin = getMBlazeRegisterNumbering(MBlaze::R5); 969 unsigned Start = getMBlazeRegisterNumbering(ArgRegEnd+1); 970 unsigned End = getMBlazeRegisterNumbering(MBlaze::R10); 971 unsigned StackLoc = Start - Begin + 1; 972 973 for (; Start <= End; ++Start, ++StackLoc) { 974 unsigned Reg = getMBlazeRegisterFromNumbering(Start); 975 unsigned LiveReg = MF.addLiveIn(Reg, RC); 976 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, LiveReg, MVT::i32); 977 978 int FI = MFI->CreateFixedObject(4, 0, true); 979 MBlazeFI->recordStoreVarArgsFI(FI, -(StackLoc*4)); 980 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy()); 981 OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff, 982 MachinePointerInfo(), 983 false, false, 0)); 984 985 // Record the frame index of the first variable argument 986 // which is a value necessary to VASTART. 987 if (!MBlazeFI->getVarArgsFrameIndex()) 988 MBlazeFI->setVarArgsFrameIndex(FI); 989 } 990 } 991 992 // All stores are grouped in one node to allow the matching between 993 // the size of Ins and InVals. This only happens when on varg functions 994 if (!OutChains.empty()) { 995 OutChains.push_back(Chain); 996 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 997 &OutChains[0], OutChains.size()); 998 } 999 1000 return Chain; 1001 } 1002 1003 //===----------------------------------------------------------------------===// 1004 // Return Value Calling Convention Implementation 1005 //===----------------------------------------------------------------------===// 1006 1007 SDValue MBlazeTargetLowering:: 1008 LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 1009 const SmallVectorImpl<ISD::OutputArg> &Outs, 1010 const SmallVectorImpl<SDValue> &OutVals, 1011 DebugLoc dl, SelectionDAG &DAG) const { 1012 // CCValAssign - represent the assignment of 1013 // the return value to a location 1014 SmallVector<CCValAssign, 16> RVLocs; 1015 1016 // CCState - Info about the registers and stack slot. 1017 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1018 getTargetMachine(), RVLocs, *DAG.getContext()); 1019 1020 // Analize return values. 1021 CCInfo.AnalyzeReturn(Outs, RetCC_MBlaze); 1022 1023 // If this is the first return lowered for this function, add 1024 // the regs to the liveout set for the function. 1025 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 1026 for (unsigned i = 0; i != RVLocs.size(); ++i) 1027 if (RVLocs[i].isRegLoc()) 1028 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 1029 } 1030 1031 SDValue Flag; 1032 1033 // Copy the result values into the output registers. 1034 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1035 CCValAssign &VA = RVLocs[i]; 1036 assert(VA.isRegLoc() && "Can only return in registers!"); 1037 1038 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 1039 OutVals[i], Flag); 1040 1041 // guarantee that all emitted copies are 1042 // stuck together, avoiding something bad 1043 Flag = Chain.getValue(1); 1044 } 1045 1046 // If this function is using the interrupt_handler calling convention 1047 // then use "rtid r14, 0" otherwise use "rtsd r15, 8" 1048 unsigned Ret = (CallConv == llvm::CallingConv::MBLAZE_INTR) ? MBlazeISD::IRet 1049 : MBlazeISD::Ret; 1050 unsigned Reg = (CallConv == llvm::CallingConv::MBLAZE_INTR) ? MBlaze::R14 1051 : MBlaze::R15; 1052 SDValue DReg = DAG.getRegister(Reg, MVT::i32); 1053 1054 if (Flag.getNode()) 1055 return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg, Flag); 1056 1057 return DAG.getNode(Ret, dl, MVT::Other, Chain, DReg); 1058 } 1059 1060 //===----------------------------------------------------------------------===// 1061 // MBlaze Inline Assembly Support 1062 //===----------------------------------------------------------------------===// 1063 1064 /// getConstraintType - Given a constraint letter, return the type of 1065 /// constraint it is for this target. 1066 MBlazeTargetLowering::ConstraintType MBlazeTargetLowering:: 1067 getConstraintType(const std::string &Constraint) const 1068 { 1069 // MBlaze specific constrainy 1070 // 1071 // 'd' : An address register. Equivalent to r. 1072 // 'y' : Equivalent to r; retained for 1073 // backwards compatibility. 1074 // 'f' : Floating Point registers. 1075 if (Constraint.size() == 1) { 1076 switch (Constraint[0]) { 1077 default : break; 1078 case 'd': 1079 case 'y': 1080 case 'f': 1081 return C_RegisterClass; 1082 break; 1083 } 1084 } 1085 return TargetLowering::getConstraintType(Constraint); 1086 } 1087 1088 /// Examine constraint type and operand type and determine a weight value. 1089 /// This object must already have been set up with the operand type 1090 /// and the current alternative constraint selected. 1091 TargetLowering::ConstraintWeight 1092 MBlazeTargetLowering::getSingleConstraintMatchWeight( 1093 AsmOperandInfo &info, const char *constraint) const { 1094 ConstraintWeight weight = CW_Invalid; 1095 Value *CallOperandVal = info.CallOperandVal; 1096 // If we don't have a value, we can't do a match, 1097 // but allow it at the lowest weight. 1098 if (CallOperandVal == NULL) 1099 return CW_Default; 1100 Type *type = CallOperandVal->getType(); 1101 // Look at the constraint type. 1102 switch (*constraint) { 1103 default: 1104 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1105 break; 1106 case 'd': 1107 case 'y': 1108 if (type->isIntegerTy()) 1109 weight = CW_Register; 1110 break; 1111 case 'f': 1112 if (type->isFloatTy()) 1113 weight = CW_Register; 1114 break; 1115 } 1116 return weight; 1117 } 1118 1119 /// Given a register class constraint, like 'r', if this corresponds directly 1120 /// to an LLVM register class, return a register of 0 and the register class 1121 /// pointer. 1122 std::pair<unsigned, const TargetRegisterClass*> MBlazeTargetLowering:: 1123 getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { 1124 if (Constraint.size() == 1) { 1125 switch (Constraint[0]) { 1126 case 'r': 1127 return std::make_pair(0U, MBlaze::GPRRegisterClass); 1128 // TODO: These can't possibly be right, but match what was in 1129 // getRegClassForInlineAsmConstraint. 1130 case 'd': 1131 case 'y': 1132 case 'f': 1133 if (VT == MVT::f32) 1134 return std::make_pair(0U, MBlaze::GPRRegisterClass); 1135 } 1136 } 1137 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 1138 } 1139 1140 bool MBlazeTargetLowering:: 1141 isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 1142 // The MBlaze target isn't yet aware of offsets. 1143 return false; 1144 } 1145 1146 bool MBlazeTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 1147 return VT != MVT::f32; 1148 } 1149