Home | History | Annotate | Download | only in arm
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM_CONSTANTS_ARM_H_
      6 #define V8_ARM_CONSTANTS_ARM_H_
      7 
      8 #include <stdint.h>
      9 
     10 #include "src/base/logging.h"
     11 #include "src/base/macros.h"
     12 #include "src/globals.h"
     13 
     14 // ARM EABI is required.
     15 #if defined(__arm__) && !defined(__ARM_EABI__)
     16 #error ARM EABI support is required.
     17 #endif
     18 
     19 namespace v8 {
     20 namespace internal {
     21 
     22 // Constant pool marker.
     23 // Use UDF, the permanently undefined instruction.
     24 const int kConstantPoolMarkerMask = 0xfff000f0;
     25 const int kConstantPoolMarker = 0xe7f000f0;
     26 const int kConstantPoolLengthMaxMask = 0xffff;
     27 inline int EncodeConstantPoolLength(int length) {
     28   DCHECK((length & kConstantPoolLengthMaxMask) == length);
     29   return ((length & 0xfff0) << 4) | (length & 0xf);
     30 }
     31 inline int DecodeConstantPoolLength(int instr) {
     32   DCHECK((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
     33   return ((instr >> 4) & 0xfff0) | (instr & 0xf);
     34 }
     35 
     36 // Used in code age prologue - ldr(pc, MemOperand(pc, -4))
     37 const int kCodeAgeJumpInstruction = 0xe51ff004;
     38 
     39 // Number of registers in normal ARM mode.
     40 const int kNumRegisters = 16;
     41 
     42 // VFP support.
     43 const int kNumVFPSingleRegisters = 32;
     44 const int kNumVFPDoubleRegisters = 32;
     45 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
     46 
     47 // PC is register 15.
     48 const int kPCRegister = 15;
     49 const int kNoRegister = -1;
     50 
     51 // Used in embedded constant pool builder - max reach in bits for
     52 // various load instructions (unsigned)
     53 const int kLdrMaxReachBits = 12;
     54 const int kVldrMaxReachBits = 10;
     55 
     56 // -----------------------------------------------------------------------------
     57 // Conditions.
     58 
     59 // Defines constants and accessor classes to assemble, disassemble and
     60 // simulate ARM instructions.
     61 //
     62 // Section references in the code refer to the "ARM Architecture Reference
     63 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
     64 //
     65 // Constants for specific fields are defined in their respective named enums.
     66 // General constants are in an anonymous enum in class Instr.
     67 
     68 // Values for the condition field as defined in section A3.2
     69 enum Condition {
     70   kNoCondition = -1,
     71 
     72   eq =  0 << 28,                 // Z set            Equal.
     73   ne =  1 << 28,                 // Z clear          Not equal.
     74   cs =  2 << 28,                 // C set            Unsigned higher or same.
     75   cc =  3 << 28,                 // C clear          Unsigned lower.
     76   mi =  4 << 28,                 // N set            Negative.
     77   pl =  5 << 28,                 // N clear          Positive or zero.
     78   vs =  6 << 28,                 // V set            Overflow.
     79   vc =  7 << 28,                 // V clear          No overflow.
     80   hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
     81   ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
     82   ge = 10 << 28,                 // N == V           Greater or equal.
     83   lt = 11 << 28,                 // N != V           Less than.
     84   gt = 12 << 28,                 // Z clear, N == V  Greater than.
     85   le = 13 << 28,                 // Z set or N != V  Less then or equal
     86   al = 14 << 28,                 //                  Always.
     87 
     88   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
     89   kNumberOfConditions = 16,
     90 
     91   // Aliases.
     92   hs = cs,                       // C set            Unsigned higher or same.
     93   lo = cc                        // C clear          Unsigned lower.
     94 };
     95 
     96 
     97 inline Condition NegateCondition(Condition cond) {
     98   DCHECK(cond != al);
     99   return static_cast<Condition>(cond ^ ne);
    100 }
    101 
    102 
    103 // Commute a condition such that {a cond b == b cond' a}.
    104 inline Condition CommuteCondition(Condition cond) {
    105   switch (cond) {
    106     case lo:
    107       return hi;
    108     case hi:
    109       return lo;
    110     case hs:
    111       return ls;
    112     case ls:
    113       return hs;
    114     case lt:
    115       return gt;
    116     case gt:
    117       return lt;
    118     case ge:
    119       return le;
    120     case le:
    121       return ge;
    122     default:
    123       return cond;
    124   }
    125 }
    126 
    127 
    128 // -----------------------------------------------------------------------------
    129 // Instructions encoding.
    130 
    131 // Instr is merely used by the Assembler to distinguish 32bit integers
    132 // representing instructions from usual 32 bit values.
    133 // Instruction objects are pointers to 32bit values, and provide methods to
    134 // access the various ISA fields.
    135 typedef int32_t Instr;
    136 
    137 
    138 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
    139 // as defined in section A3.4
    140 enum Opcode {
    141   AND =  0 << 21,  // Logical AND.
    142   EOR =  1 << 21,  // Logical Exclusive OR.
    143   SUB =  2 << 21,  // Subtract.
    144   RSB =  3 << 21,  // Reverse Subtract.
    145   ADD =  4 << 21,  // Add.
    146   ADC =  5 << 21,  // Add with Carry.
    147   SBC =  6 << 21,  // Subtract with Carry.
    148   RSC =  7 << 21,  // Reverse Subtract with Carry.
    149   TST =  8 << 21,  // Test.
    150   TEQ =  9 << 21,  // Test Equivalence.
    151   CMP = 10 << 21,  // Compare.
    152   CMN = 11 << 21,  // Compare Negated.
    153   ORR = 12 << 21,  // Logical (inclusive) OR.
    154   MOV = 13 << 21,  // Move.
    155   BIC = 14 << 21,  // Bit Clear.
    156   MVN = 15 << 21   // Move Not.
    157 };
    158 
    159 
    160 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
    161 enum MiscInstructionsBits74 {
    162   // With bits 22-21 01.
    163   BX   =  1 << 4,
    164   BXJ  =  2 << 4,
    165   BLX  =  3 << 4,
    166   BKPT =  7 << 4,
    167 
    168   // With bits 22-21 11.
    169   CLZ  =  1 << 4
    170 };
    171 
    172 
    173 // Instruction encoding bits and masks.
    174 enum {
    175   H = 1 << 5,   // Halfword (or byte).
    176   S6 = 1 << 6,  // Signed (or unsigned).
    177   L = 1 << 20,  // Load (or store).
    178   S = 1 << 20,  // Set condition code (or leave unchanged).
    179   W = 1 << 21,  // Writeback base register (or leave unchanged).
    180   A = 1 << 21,  // Accumulate in multiply instruction (or not).
    181   B = 1 << 22,  // Unsigned byte (or word).
    182   N = 1 << 22,  // Long (or short).
    183   U = 1 << 23,  // Positive (or negative) offset/index.
    184   P = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
    185   I = 1 << 25,  // Immediate shifter operand (or not).
    186   B0 = 1 << 0,
    187   B4 = 1 << 4,
    188   B5 = 1 << 5,
    189   B6 = 1 << 6,
    190   B7 = 1 << 7,
    191   B8 = 1 << 8,
    192   B9 = 1 << 9,
    193   B10 = 1 << 10,
    194   B12 = 1 << 12,
    195   B16 = 1 << 16,
    196   B17 = 1 << 17,
    197   B18 = 1 << 18,
    198   B19 = 1 << 19,
    199   B20 = 1 << 20,
    200   B21 = 1 << 21,
    201   B22 = 1 << 22,
    202   B23 = 1 << 23,
    203   B24 = 1 << 24,
    204   B25 = 1 << 25,
    205   B26 = 1 << 26,
    206   B27 = 1 << 27,
    207   B28 = 1 << 28,
    208 
    209   // Instruction bit masks.
    210   kCondMask = 15 << 28,
    211   kALUMask = 0x6f << 21,
    212   kRdMask = 15 << 12,  // In str instruction.
    213   kCoprocessorMask = 15 << 8,
    214   kOpCodeMask = 15 << 21,  // In data-processing instructions.
    215   kImm24Mask = (1 << 24) - 1,
    216   kImm16Mask = (1 << 16) - 1,
    217   kImm8Mask = (1 << 8) - 1,
    218   kOff12Mask = (1 << 12) - 1,
    219   kOff8Mask = (1 << 8) - 1
    220 };
    221 
    222 enum BarrierOption {
    223   OSHLD = 0x1,
    224   OSHST = 0x2,
    225   OSH = 0x3,
    226   NSHLD = 0x5,
    227   NSHST = 0x6,
    228   NSH = 0x7,
    229   ISHLD = 0x9,
    230   ISHST = 0xa,
    231   ISH = 0xb,
    232   LD = 0xd,
    233   ST = 0xe,
    234   SY = 0xf,
    235 };
    236 
    237 
    238 // -----------------------------------------------------------------------------
    239 // Addressing modes and instruction variants.
    240 
    241 // Condition code updating mode.
    242 enum SBit {
    243   SetCC   = 1 << 20,  // Set condition code.
    244   LeaveCC = 0 << 20   // Leave condition code unchanged.
    245 };
    246 
    247 
    248 // Status register selection.
    249 enum SRegister {
    250   CPSR = 0 << 22,
    251   SPSR = 1 << 22
    252 };
    253 
    254 
    255 // Shifter types for Data-processing operands as defined in section A5.1.2.
    256 enum ShiftOp {
    257   LSL = 0 << 5,   // Logical shift left.
    258   LSR = 1 << 5,   // Logical shift right.
    259   ASR = 2 << 5,   // Arithmetic shift right.
    260   ROR = 3 << 5,   // Rotate right.
    261 
    262   // RRX is encoded as ROR with shift_imm == 0.
    263   // Use a special code to make the distinction. The RRX ShiftOp is only used
    264   // as an argument, and will never actually be encoded. The Assembler will
    265   // detect it and emit the correct ROR shift operand with shift_imm == 0.
    266   RRX = -1,
    267   kNumberOfShifts = 4
    268 };
    269 
    270 
    271 // Status register fields.
    272 enum SRegisterField {
    273   CPSR_c = CPSR | 1 << 16,
    274   CPSR_x = CPSR | 1 << 17,
    275   CPSR_s = CPSR | 1 << 18,
    276   CPSR_f = CPSR | 1 << 19,
    277   SPSR_c = SPSR | 1 << 16,
    278   SPSR_x = SPSR | 1 << 17,
    279   SPSR_s = SPSR | 1 << 18,
    280   SPSR_f = SPSR | 1 << 19
    281 };
    282 
    283 // Status register field mask (or'ed SRegisterField enum values).
    284 typedef uint32_t SRegisterFieldMask;
    285 
    286 
    287 // Memory operand addressing mode.
    288 enum AddrMode {
    289   // Bit encoding P U W.
    290   Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
    291   PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
    292   PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
    293   NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
    294   NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
    295   NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
    296 };
    297 
    298 
    299 // Load/store multiple addressing mode.
    300 enum BlockAddrMode {
    301   // Bit encoding P U W .
    302   da           = (0|0|0) << 21,  // Decrement after.
    303   ia           = (0|4|0) << 21,  // Increment after.
    304   db           = (8|0|0) << 21,  // Decrement before.
    305   ib           = (8|4|0) << 21,  // Increment before.
    306   da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
    307   ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
    308   db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
    309   ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.
    310 
    311   // Alias modes for comparison when writeback does not matter.
    312   da_x         = (0|0|0) << 21,  // Decrement after.
    313   ia_x         = (0|4|0) << 21,  // Increment after.
    314   db_x         = (8|0|0) << 21,  // Decrement before.
    315   ib_x         = (8|4|0) << 21,  // Increment before.
    316 
    317   kBlockAddrModeMask = (8|4|1) << 21
    318 };
    319 
    320 
    321 // Coprocessor load/store operand size.
    322 enum LFlag {
    323   Long  = 1 << 22,  // Long load/store coprocessor.
    324   Short = 0 << 22   // Short load/store coprocessor.
    325 };
    326 
    327 
    328 // NEON data type
    329 enum NeonDataType {
    330   NeonS8 = 0,
    331   NeonS16 = 1,
    332   NeonS32 = 2,
    333   // Gap to make it easier to extract U and size.
    334   NeonU8 = 4,
    335   NeonU16 = 5,
    336   NeonU32 = 6
    337 };
    338 
    339 inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; }
    340 inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; }
    341 
    342 enum NeonListType {
    343   nlt_1 = 0x7,
    344   nlt_2 = 0xA,
    345   nlt_3 = 0x6,
    346   nlt_4 = 0x2
    347 };
    348 
    349 enum NeonSize {
    350   Neon8 = 0x0,
    351   Neon16 = 0x1,
    352   Neon32 = 0x2,
    353   Neon64 = 0x3
    354 };
    355 
    356 // -----------------------------------------------------------------------------
    357 // Supervisor Call (svc) specific support.
    358 
    359 // Special Software Interrupt codes when used in the presence of the ARM
    360 // simulator.
    361 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
    362 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
    363 enum SoftwareInterruptCodes {
    364   // transition to C code
    365   kCallRtRedirected = 0x10,
    366   // break point
    367   kBreakpoint = 0x20,
    368   // stop
    369   kStopCode = 1 << 23
    370 };
    371 const uint32_t kStopCodeMask = kStopCode - 1;
    372 const uint32_t kMaxStopCode = kStopCode - 1;
    373 const int32_t  kDefaultStopCode = -1;
    374 
    375 
    376 // Type of VFP register. Determines register encoding.
    377 enum VFPRegPrecision {
    378   kSinglePrecision = 0,
    379   kDoublePrecision = 1,
    380   kSimd128Precision = 2
    381 };
    382 
    383 // VFP FPSCR constants.
    384 enum VFPConversionMode {
    385   kFPSCRRounding = 0,
    386   kDefaultRoundToZero = 1
    387 };
    388 
    389 // This mask does not include the "inexact" or "input denormal" cumulative
    390 // exceptions flags, because we usually don't want to check for it.
    391 const uint32_t kVFPExceptionMask = 0xf;
    392 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
    393 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
    394 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
    395 const uint32_t kVFPInexactExceptionBit = 1 << 4;
    396 const uint32_t kVFPFlushToZeroMask = 1 << 24;
    397 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
    398 
    399 const uint32_t kVFPNConditionFlagBit = 1 << 31;
    400 const uint32_t kVFPZConditionFlagBit = 1 << 30;
    401 const uint32_t kVFPCConditionFlagBit = 1 << 29;
    402 const uint32_t kVFPVConditionFlagBit = 1 << 28;
    403 
    404 
    405 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
    406 enum VFPRoundingMode {
    407   RN = 0 << 22,   // Round to Nearest.
    408   RP = 1 << 22,   // Round towards Plus Infinity.
    409   RM = 2 << 22,   // Round towards Minus Infinity.
    410   RZ = 3 << 22,   // Round towards zero.
    411 
    412   // Aliases.
    413   kRoundToNearest = RN,
    414   kRoundToPlusInf = RP,
    415   kRoundToMinusInf = RM,
    416   kRoundToZero = RZ
    417 };
    418 
    419 const uint32_t kVFPRoundingModeMask = 3 << 22;
    420 
    421 enum CheckForInexactConversion {
    422   kCheckForInexactConversion,
    423   kDontCheckForInexactConversion
    424 };
    425 
    426 // -----------------------------------------------------------------------------
    427 // Hints.
    428 
    429 // Branch hints are not used on the ARM.  They are defined so that they can
    430 // appear in shared function signatures, but will be ignored in ARM
    431 // implementations.
    432 enum Hint { no_hint };
    433 
    434 // Hints are not used on the arm.  Negating is trivial.
    435 inline Hint NegateHint(Hint ignored) { return no_hint; }
    436 
    437 
    438 // -----------------------------------------------------------------------------
    439 // Instruction abstraction.
    440 
    441 // The class Instruction enables access to individual fields defined in the ARM
    442 // architecture instruction set encoding as described in figure A3-1.
    443 // Note that the Assembler uses typedef int32_t Instr.
    444 //
    445 // Example: Test whether the instruction at ptr does set the condition code
    446 // bits.
    447 //
    448 // bool InstructionSetsConditionCodes(byte* ptr) {
    449 //   Instruction* instr = Instruction::At(ptr);
    450 //   int type = instr->TypeValue();
    451 //   return ((type == 0) || (type == 1)) && instr->HasS();
    452 // }
    453 //
    454 class Instruction {
    455  public:
    456   enum {
    457     kInstrSize = 4,
    458     kInstrSizeLog2 = 2,
    459     kPCReadOffset = 8
    460   };
    461 
    462   // Helper macro to define static accessors.
    463   // We use the cast to char* trick to bypass the strict anti-aliasing rules.
    464   #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name)                     \
    465     static inline return_type Name(Instr instr) {                              \
    466       char* temp = reinterpret_cast<char*>(&instr);                            \
    467       return reinterpret_cast<Instruction*>(temp)->Name();                     \
    468     }
    469 
    470   #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
    471 
    472   // Get the raw instruction bits.
    473   inline Instr InstructionBits() const {
    474     return *reinterpret_cast<const Instr*>(this);
    475   }
    476 
    477   // Set the raw instruction bits to value.
    478   inline void SetInstructionBits(Instr value) {
    479     *reinterpret_cast<Instr*>(this) = value;
    480   }
    481 
    482   // Extract a single bit from the instruction bits and return it as bit 0 in
    483   // the result.
    484   inline int Bit(int nr) const {
    485     return (InstructionBits() >> nr) & 1;
    486   }
    487 
    488   // Extract a bit field <hi:lo> from the instruction bits and return it in the
    489   // least-significant bits of the result.
    490   inline int Bits(int hi, int lo) const {
    491     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
    492   }
    493 
    494   // Read a bit field <hi:lo>, leaving its position unchanged in the result.
    495   inline int BitField(int hi, int lo) const {
    496     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
    497   }
    498 
    499   // Static support.
    500 
    501   // Extract a single bit from the instruction bits and return it as bit 0 in
    502   // the result.
    503   static inline int Bit(Instr instr, int nr) {
    504     return (instr >> nr) & 1;
    505   }
    506 
    507   // Extract a bit field <hi:lo> from the instruction bits and return it in the
    508   // least-significant bits of the result.
    509   static inline int Bits(Instr instr, int hi, int lo) {
    510     return (instr >> lo) & ((2 << (hi - lo)) - 1);
    511   }
    512 
    513   // Read a bit field <hi:lo>, leaving its position unchanged in the result.
    514   static inline int BitField(Instr instr, int hi, int lo) {
    515     return instr & (((2 << (hi - lo)) - 1) << lo);
    516   }
    517 
    518   // Accessors for the different named fields used in the ARM encoding.
    519   // The naming of these accessor corresponds to figure A3-1.
    520   //
    521   // Two kind of accessors are declared:
    522   // - <Name>Field() will return the raw field, i.e. the field's bits at their
    523   //   original place in the instruction encoding.
    524   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    525   //   0xC0810002 ConditionField(instr) will return 0xC0000000.
    526   // - <Name>Value() will return the field value, shifted back to bit 0.
    527   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    528   //   0xC0810002 ConditionField(instr) will return 0xC.
    529 
    530 
    531   // Generally applicable fields
    532   inline int ConditionValue() const { return Bits(31, 28); }
    533   inline Condition ConditionField() const {
    534     return static_cast<Condition>(BitField(31, 28));
    535   }
    536   DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue);
    537   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
    538 
    539   inline int TypeValue() const { return Bits(27, 25); }
    540   inline int SpecialValue() const { return Bits(27, 23); }
    541 
    542   inline int RnValue() const { return Bits(19, 16); }
    543   DECLARE_STATIC_ACCESSOR(RnValue);
    544   inline int RdValue() const { return Bits(15, 12); }
    545   DECLARE_STATIC_ACCESSOR(RdValue);
    546 
    547   inline int CoprocessorValue() const { return Bits(11, 8); }
    548   // Support for VFP.
    549   // Vn(19-16) | Vd(15-12) |  Vm(3-0)
    550   inline int VnValue() const { return Bits(19, 16); }
    551   inline int VmValue() const { return Bits(3, 0); }
    552   inline int VdValue() const { return Bits(15, 12); }
    553   inline int NValue() const { return Bit(7); }
    554   inline int MValue() const { return Bit(5); }
    555   inline int DValue() const { return Bit(22); }
    556   inline int RtValue() const { return Bits(15, 12); }
    557   inline int PValue() const { return Bit(24); }
    558   inline int UValue() const { return Bit(23); }
    559   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
    560   inline int Opc2Value() const { return Bits(19, 16); }
    561   inline int Opc3Value() const { return Bits(7, 6); }
    562   inline int SzValue() const { return Bit(8); }
    563   inline int VLValue() const { return Bit(20); }
    564   inline int VCValue() const { return Bit(8); }
    565   inline int VAValue() const { return Bits(23, 21); }
    566   inline int VBValue() const { return Bits(6, 5); }
    567   inline int VFPNRegValue(VFPRegPrecision pre) {
    568     return VFPGlueRegValue(pre, 16, 7);
    569   }
    570   inline int VFPMRegValue(VFPRegPrecision pre) {
    571     return VFPGlueRegValue(pre, 0, 5);
    572   }
    573   inline int VFPDRegValue(VFPRegPrecision pre) {
    574     return VFPGlueRegValue(pre, 12, 22);
    575   }
    576 
    577   // Fields used in Data processing instructions
    578   inline int OpcodeValue() const {
    579     return static_cast<Opcode>(Bits(24, 21));
    580   }
    581   inline Opcode OpcodeField() const {
    582     return static_cast<Opcode>(BitField(24, 21));
    583   }
    584   inline int SValue() const { return Bit(20); }
    585     // with register
    586   inline int RmValue() const { return Bits(3, 0); }
    587   DECLARE_STATIC_ACCESSOR(RmValue);
    588   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
    589   inline ShiftOp ShiftField() const {
    590     return static_cast<ShiftOp>(BitField(6, 5));
    591   }
    592   inline int RegShiftValue() const { return Bit(4); }
    593   inline int RsValue() const { return Bits(11, 8); }
    594   inline int ShiftAmountValue() const { return Bits(11, 7); }
    595     // with immediate
    596   inline int RotateValue() const { return Bits(11, 8); }
    597   DECLARE_STATIC_ACCESSOR(RotateValue);
    598   inline int Immed8Value() const { return Bits(7, 0); }
    599   DECLARE_STATIC_ACCESSOR(Immed8Value);
    600   inline int Immed4Value() const { return Bits(19, 16); }
    601   inline int ImmedMovwMovtValue() const {
    602       return Immed4Value() << 12 | Offset12Value(); }
    603   DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
    604 
    605   // Fields used in Load/Store instructions
    606   inline int PUValue() const { return Bits(24, 23); }
    607   inline int PUField() const { return BitField(24, 23); }
    608   inline int  BValue() const { return Bit(22); }
    609   inline int  WValue() const { return Bit(21); }
    610   inline int  LValue() const { return Bit(20); }
    611     // with register uses same fields as Data processing instructions above
    612     // with immediate
    613   inline int Offset12Value() const { return Bits(11, 0); }
    614     // multiple
    615   inline int RlistValue() const { return Bits(15, 0); }
    616     // extra loads and stores
    617   inline int SignValue() const { return Bit(6); }
    618   inline int HValue() const { return Bit(5); }
    619   inline int ImmedHValue() const { return Bits(11, 8); }
    620   inline int ImmedLValue() const { return Bits(3, 0); }
    621 
    622   // Fields used in Branch instructions
    623   inline int LinkValue() const { return Bit(24); }
    624   inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
    625 
    626   // Fields used in Software interrupt instructions
    627   inline SoftwareInterruptCodes SvcValue() const {
    628     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
    629   }
    630 
    631   // Test for special encodings of type 0 instructions (extra loads and stores,
    632   // as well as multiplications).
    633   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
    634 
    635   // Test for miscellaneous instructions encodings of type 0 instructions.
    636   inline bool IsMiscType0() const { return (Bit(24) == 1)
    637                                            && (Bit(23) == 0)
    638                                            && (Bit(20) == 0)
    639                                            && ((Bit(7) == 0)); }
    640 
    641   // Test for a nop instruction, which falls under type 1.
    642   inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }
    643 
    644   // Test for a stop instruction.
    645   inline bool IsStop() const {
    646     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
    647   }
    648 
    649   // Special accessors that test for existence of a value.
    650   inline bool HasS()    const { return SValue() == 1; }
    651   inline bool HasB()    const { return BValue() == 1; }
    652   inline bool HasW()    const { return WValue() == 1; }
    653   inline bool HasL()    const { return LValue() == 1; }
    654   inline bool HasU()    const { return UValue() == 1; }
    655   inline bool HasSign() const { return SignValue() == 1; }
    656   inline bool HasH()    const { return HValue() == 1; }
    657   inline bool HasLink() const { return LinkValue() == 1; }
    658 
    659   // Decode the double immediate from a vmov instruction.
    660   double DoubleImmedVmov() const;
    661 
    662   // Instructions are read of out a code stream. The only way to get a
    663   // reference to an instruction is to convert a pointer. There is no way
    664   // to allocate or create instances of class Instruction.
    665   // Use the At(pc) function to create references to Instruction.
    666   static Instruction* At(byte* pc) {
    667     return reinterpret_cast<Instruction*>(pc);
    668   }
    669 
    670 
    671  private:
    672   // Join split register codes, depending on register precision.
    673   // four_bit is the position of the least-significant bit of the four
    674   // bit specifier. one_bit is the position of the additional single bit
    675   // specifier.
    676   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
    677     if (pre == kSinglePrecision) {
    678       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
    679     } else {
    680       int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
    681       if (pre == kDoublePrecision) {
    682         return reg_num;
    683       }
    684       DCHECK_EQ(kSimd128Precision, pre);
    685       DCHECK_EQ(reg_num & 1, 0);
    686       return reg_num / 2;
    687     }
    688   }
    689 
    690   // We need to prevent the creation of instances of class Instruction.
    691   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
    692 };
    693 
    694 
    695 // Helper functions for converting between register numbers and names.
    696 class Registers {
    697  public:
    698   // Return the name of the register.
    699   static const char* Name(int reg);
    700 
    701   // Lookup the register number for the name provided.
    702   static int Number(const char* name);
    703 
    704   struct RegisterAlias {
    705     int reg;
    706     const char* name;
    707   };
    708 
    709  private:
    710   static const char* names_[kNumRegisters];
    711   static const RegisterAlias aliases_[];
    712 };
    713 
    714 // Helper functions for converting between VFP register numbers and names.
    715 class VFPRegisters {
    716  public:
    717   // Return the name of the register.
    718   static const char* Name(int reg, bool is_double);
    719 
    720   // Lookup the register number for the name provided.
    721   // Set flag pointed by is_double to true if register
    722   // is double-precision.
    723   static int Number(const char* name, bool* is_double);
    724 
    725  private:
    726   static const char* names_[kNumVFPRegisters];
    727 };
    728 
    729 
    730 }  // namespace internal
    731 }  // namespace v8
    732 
    733 #endif  // V8_ARM_CONSTANTS_ARM_H_
    734