Home | History | Annotate | Download | only in Analysis
      1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements routines for folding instructions into simpler forms
     11 // that do not require creating new instructions.  This does constant folding
     12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
     13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
     14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
     15 // simplified: This is usually true and assuming it simplifies the logic (if
     16 // they have not been simplified then results are correct but maybe suboptimal).
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/ADT/SetVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/Analysis/CaptureTracking.h"
     25 #include "llvm/Analysis/ConstantFolding.h"
     26 #include "llvm/Analysis/MemoryBuiltins.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/Analysis/VectorUtils.h"
     29 #include "llvm/IR/ConstantRange.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/Dominators.h"
     32 #include "llvm/IR/GetElementPtrTypeIterator.h"
     33 #include "llvm/IR/GlobalAlias.h"
     34 #include "llvm/IR/Operator.h"
     35 #include "llvm/IR/PatternMatch.h"
     36 #include "llvm/IR/ValueHandle.h"
     37 #include <algorithm>
     38 using namespace llvm;
     39 using namespace llvm::PatternMatch;
     40 
     41 #define DEBUG_TYPE "instsimplify"
     42 
     43 enum { RecursionLimit = 3 };
     44 
     45 STATISTIC(NumExpand,  "Number of expansions");
     46 STATISTIC(NumReassoc, "Number of reassociations");
     47 
     48 namespace {
     49 struct Query {
     50   const DataLayout &DL;
     51   const TargetLibraryInfo *TLI;
     52   const DominatorTree *DT;
     53   AssumptionCache *AC;
     54   const Instruction *CxtI;
     55 
     56   Query(const DataLayout &DL, const TargetLibraryInfo *tli,
     57         const DominatorTree *dt, AssumptionCache *ac = nullptr,
     58         const Instruction *cxti = nullptr)
     59       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
     60 };
     61 } // end anonymous namespace
     62 
     63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
     64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
     65                             unsigned);
     66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
     67                               const Query &, unsigned);
     68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
     69                               unsigned);
     70 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
     71 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
     72 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
     73 
     74 /// For a boolean type, or a vector of boolean type, return false, or
     75 /// a vector with every element false, as appropriate for the type.
     76 static Constant *getFalse(Type *Ty) {
     77   assert(Ty->getScalarType()->isIntegerTy(1) &&
     78          "Expected i1 type or a vector of i1!");
     79   return Constant::getNullValue(Ty);
     80 }
     81 
     82 /// For a boolean type, or a vector of boolean type, return true, or
     83 /// a vector with every element true, as appropriate for the type.
     84 static Constant *getTrue(Type *Ty) {
     85   assert(Ty->getScalarType()->isIntegerTy(1) &&
     86          "Expected i1 type or a vector of i1!");
     87   return Constant::getAllOnesValue(Ty);
     88 }
     89 
     90 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
     91 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
     92                           Value *RHS) {
     93   CmpInst *Cmp = dyn_cast<CmpInst>(V);
     94   if (!Cmp)
     95     return false;
     96   CmpInst::Predicate CPred = Cmp->getPredicate();
     97   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
     98   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
     99     return true;
    100   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
    101     CRHS == LHS;
    102 }
    103 
    104 /// Does the given value dominate the specified phi node?
    105 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
    106   Instruction *I = dyn_cast<Instruction>(V);
    107   if (!I)
    108     // Arguments and constants dominate all instructions.
    109     return true;
    110 
    111   // If we are processing instructions (and/or basic blocks) that have not been
    112   // fully added to a function, the parent nodes may still be null. Simply
    113   // return the conservative answer in these cases.
    114   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
    115     return false;
    116 
    117   // If we have a DominatorTree then do a precise test.
    118   if (DT) {
    119     if (!DT->isReachableFromEntry(P->getParent()))
    120       return true;
    121     if (!DT->isReachableFromEntry(I->getParent()))
    122       return false;
    123     return DT->dominates(I, P);
    124   }
    125 
    126   // Otherwise, if the instruction is in the entry block and is not an invoke,
    127   // then it obviously dominates all phi nodes.
    128   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
    129       !isa<InvokeInst>(I))
    130     return true;
    131 
    132   return false;
    133 }
    134 
    135 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
    136 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
    137 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
    138 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
    139 /// Returns the simplified value, or null if no simplification was performed.
    140 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
    141                           unsigned OpcToExpand, const Query &Q,
    142                           unsigned MaxRecurse) {
    143   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
    144   // Recursion is always used, so bail out at once if we already hit the limit.
    145   if (!MaxRecurse--)
    146     return nullptr;
    147 
    148   // Check whether the expression has the form "(A op' B) op C".
    149   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
    150     if (Op0->getOpcode() == OpcodeToExpand) {
    151       // It does!  Try turning it into "(A op C) op' (B op C)".
    152       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    153       // Do "A op C" and "B op C" both simplify?
    154       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
    155         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
    156           // They do! Return "L op' R" if it simplifies or is already available.
    157           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
    158           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
    159                                      && L == B && R == A)) {
    160             ++NumExpand;
    161             return LHS;
    162           }
    163           // Otherwise return "L op' R" if it simplifies.
    164           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
    165             ++NumExpand;
    166             return V;
    167           }
    168         }
    169     }
    170 
    171   // Check whether the expression has the form "A op (B op' C)".
    172   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
    173     if (Op1->getOpcode() == OpcodeToExpand) {
    174       // It does!  Try turning it into "(A op B) op' (A op C)".
    175       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    176       // Do "A op B" and "A op C" both simplify?
    177       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
    178         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
    179           // They do! Return "L op' R" if it simplifies or is already available.
    180           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
    181           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
    182                                      && L == C && R == B)) {
    183             ++NumExpand;
    184             return RHS;
    185           }
    186           // Otherwise return "L op' R" if it simplifies.
    187           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
    188             ++NumExpand;
    189             return V;
    190           }
    191         }
    192     }
    193 
    194   return nullptr;
    195 }
    196 
    197 /// Generic simplifications for associative binary operations.
    198 /// Returns the simpler value, or null if none was found.
    199 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
    200                                        const Query &Q, unsigned MaxRecurse) {
    201   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
    202   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
    203 
    204   // Recursion is always used, so bail out at once if we already hit the limit.
    205   if (!MaxRecurse--)
    206     return nullptr;
    207 
    208   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    209   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    210 
    211   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
    212   if (Op0 && Op0->getOpcode() == Opcode) {
    213     Value *A = Op0->getOperand(0);
    214     Value *B = Op0->getOperand(1);
    215     Value *C = RHS;
    216 
    217     // Does "B op C" simplify?
    218     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
    219       // It does!  Return "A op V" if it simplifies or is already available.
    220       // If V equals B then "A op V" is just the LHS.
    221       if (V == B) return LHS;
    222       // Otherwise return "A op V" if it simplifies.
    223       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
    224         ++NumReassoc;
    225         return W;
    226       }
    227     }
    228   }
    229 
    230   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
    231   if (Op1 && Op1->getOpcode() == Opcode) {
    232     Value *A = LHS;
    233     Value *B = Op1->getOperand(0);
    234     Value *C = Op1->getOperand(1);
    235 
    236     // Does "A op B" simplify?
    237     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
    238       // It does!  Return "V op C" if it simplifies or is already available.
    239       // If V equals B then "V op C" is just the RHS.
    240       if (V == B) return RHS;
    241       // Otherwise return "V op C" if it simplifies.
    242       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
    243         ++NumReassoc;
    244         return W;
    245       }
    246     }
    247   }
    248 
    249   // The remaining transforms require commutativity as well as associativity.
    250   if (!Instruction::isCommutative(Opcode))
    251     return nullptr;
    252 
    253   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
    254   if (Op0 && Op0->getOpcode() == Opcode) {
    255     Value *A = Op0->getOperand(0);
    256     Value *B = Op0->getOperand(1);
    257     Value *C = RHS;
    258 
    259     // Does "C op A" simplify?
    260     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
    261       // It does!  Return "V op B" if it simplifies or is already available.
    262       // If V equals A then "V op B" is just the LHS.
    263       if (V == A) return LHS;
    264       // Otherwise return "V op B" if it simplifies.
    265       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
    266         ++NumReassoc;
    267         return W;
    268       }
    269     }
    270   }
    271 
    272   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
    273   if (Op1 && Op1->getOpcode() == Opcode) {
    274     Value *A = LHS;
    275     Value *B = Op1->getOperand(0);
    276     Value *C = Op1->getOperand(1);
    277 
    278     // Does "C op A" simplify?
    279     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
    280       // It does!  Return "B op V" if it simplifies or is already available.
    281       // If V equals C then "B op V" is just the RHS.
    282       if (V == C) return RHS;
    283       // Otherwise return "B op V" if it simplifies.
    284       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
    285         ++NumReassoc;
    286         return W;
    287       }
    288     }
    289   }
    290 
    291   return nullptr;
    292 }
    293 
    294 /// In the case of a binary operation with a select instruction as an operand,
    295 /// try to simplify the binop by seeing whether evaluating it on both branches
    296 /// of the select results in the same value. Returns the common value if so,
    297 /// otherwise returns null.
    298 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
    299                                     const Query &Q, unsigned MaxRecurse) {
    300   // Recursion is always used, so bail out at once if we already hit the limit.
    301   if (!MaxRecurse--)
    302     return nullptr;
    303 
    304   SelectInst *SI;
    305   if (isa<SelectInst>(LHS)) {
    306     SI = cast<SelectInst>(LHS);
    307   } else {
    308     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
    309     SI = cast<SelectInst>(RHS);
    310   }
    311 
    312   // Evaluate the BinOp on the true and false branches of the select.
    313   Value *TV;
    314   Value *FV;
    315   if (SI == LHS) {
    316     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
    317     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
    318   } else {
    319     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
    320     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
    321   }
    322 
    323   // If they simplified to the same value, then return the common value.
    324   // If they both failed to simplify then return null.
    325   if (TV == FV)
    326     return TV;
    327 
    328   // If one branch simplified to undef, return the other one.
    329   if (TV && isa<UndefValue>(TV))
    330     return FV;
    331   if (FV && isa<UndefValue>(FV))
    332     return TV;
    333 
    334   // If applying the operation did not change the true and false select values,
    335   // then the result of the binop is the select itself.
    336   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
    337     return SI;
    338 
    339   // If one branch simplified and the other did not, and the simplified
    340   // value is equal to the unsimplified one, return the simplified value.
    341   // For example, select (cond, X, X & Z) & Z -> X & Z.
    342   if ((FV && !TV) || (TV && !FV)) {
    343     // Check that the simplified value has the form "X op Y" where "op" is the
    344     // same as the original operation.
    345     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
    346     if (Simplified && Simplified->getOpcode() == Opcode) {
    347       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
    348       // We already know that "op" is the same as for the simplified value.  See
    349       // if the operands match too.  If so, return the simplified value.
    350       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
    351       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
    352       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
    353       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
    354           Simplified->getOperand(1) == UnsimplifiedRHS)
    355         return Simplified;
    356       if (Simplified->isCommutative() &&
    357           Simplified->getOperand(1) == UnsimplifiedLHS &&
    358           Simplified->getOperand(0) == UnsimplifiedRHS)
    359         return Simplified;
    360     }
    361   }
    362 
    363   return nullptr;
    364 }
    365 
    366 /// In the case of a comparison with a select instruction, try to simplify the
    367 /// comparison by seeing whether both branches of the select result in the same
    368 /// value. Returns the common value if so, otherwise returns null.
    369 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
    370                                   Value *RHS, const Query &Q,
    371                                   unsigned MaxRecurse) {
    372   // Recursion is always used, so bail out at once if we already hit the limit.
    373   if (!MaxRecurse--)
    374     return nullptr;
    375 
    376   // Make sure the select is on the LHS.
    377   if (!isa<SelectInst>(LHS)) {
    378     std::swap(LHS, RHS);
    379     Pred = CmpInst::getSwappedPredicate(Pred);
    380   }
    381   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
    382   SelectInst *SI = cast<SelectInst>(LHS);
    383   Value *Cond = SI->getCondition();
    384   Value *TV = SI->getTrueValue();
    385   Value *FV = SI->getFalseValue();
    386 
    387   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
    388   // Does "cmp TV, RHS" simplify?
    389   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
    390   if (TCmp == Cond) {
    391     // It not only simplified, it simplified to the select condition.  Replace
    392     // it with 'true'.
    393     TCmp = getTrue(Cond->getType());
    394   } else if (!TCmp) {
    395     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
    396     // condition then we can replace it with 'true'.  Otherwise give up.
    397     if (!isSameCompare(Cond, Pred, TV, RHS))
    398       return nullptr;
    399     TCmp = getTrue(Cond->getType());
    400   }
    401 
    402   // Does "cmp FV, RHS" simplify?
    403   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
    404   if (FCmp == Cond) {
    405     // It not only simplified, it simplified to the select condition.  Replace
    406     // it with 'false'.
    407     FCmp = getFalse(Cond->getType());
    408   } else if (!FCmp) {
    409     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
    410     // condition then we can replace it with 'false'.  Otherwise give up.
    411     if (!isSameCompare(Cond, Pred, FV, RHS))
    412       return nullptr;
    413     FCmp = getFalse(Cond->getType());
    414   }
    415 
    416   // If both sides simplified to the same value, then use it as the result of
    417   // the original comparison.
    418   if (TCmp == FCmp)
    419     return TCmp;
    420 
    421   // The remaining cases only make sense if the select condition has the same
    422   // type as the result of the comparison, so bail out if this is not so.
    423   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
    424     return nullptr;
    425   // If the false value simplified to false, then the result of the compare
    426   // is equal to "Cond && TCmp".  This also catches the case when the false
    427   // value simplified to false and the true value to true, returning "Cond".
    428   if (match(FCmp, m_Zero()))
    429     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
    430       return V;
    431   // If the true value simplified to true, then the result of the compare
    432   // is equal to "Cond || FCmp".
    433   if (match(TCmp, m_One()))
    434     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
    435       return V;
    436   // Finally, if the false value simplified to true and the true value to
    437   // false, then the result of the compare is equal to "!Cond".
    438   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
    439     if (Value *V =
    440         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
    441                         Q, MaxRecurse))
    442       return V;
    443 
    444   return nullptr;
    445 }
    446 
    447 /// In the case of a binary operation with an operand that is a PHI instruction,
    448 /// try to simplify the binop by seeing whether evaluating it on the incoming
    449 /// phi values yields the same result for every value. If so returns the common
    450 /// value, otherwise returns null.
    451 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
    452                                  const Query &Q, unsigned MaxRecurse) {
    453   // Recursion is always used, so bail out at once if we already hit the limit.
    454   if (!MaxRecurse--)
    455     return nullptr;
    456 
    457   PHINode *PI;
    458   if (isa<PHINode>(LHS)) {
    459     PI = cast<PHINode>(LHS);
    460     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    461     if (!ValueDominatesPHI(RHS, PI, Q.DT))
    462       return nullptr;
    463   } else {
    464     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
    465     PI = cast<PHINode>(RHS);
    466     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
    467     if (!ValueDominatesPHI(LHS, PI, Q.DT))
    468       return nullptr;
    469   }
    470 
    471   // Evaluate the BinOp on the incoming phi values.
    472   Value *CommonValue = nullptr;
    473   for (Value *Incoming : PI->incoming_values()) {
    474     // If the incoming value is the phi node itself, it can safely be skipped.
    475     if (Incoming == PI) continue;
    476     Value *V = PI == LHS ?
    477       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
    478       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
    479     // If the operation failed to simplify, or simplified to a different value
    480     // to previously, then give up.
    481     if (!V || (CommonValue && V != CommonValue))
    482       return nullptr;
    483     CommonValue = V;
    484   }
    485 
    486   return CommonValue;
    487 }
    488 
    489 /// In the case of a comparison with a PHI instruction, try to simplify the
    490 /// comparison by seeing whether comparing with all of the incoming phi values
    491 /// yields the same result every time. If so returns the common result,
    492 /// otherwise returns null.
    493 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
    494                                const Query &Q, unsigned MaxRecurse) {
    495   // Recursion is always used, so bail out at once if we already hit the limit.
    496   if (!MaxRecurse--)
    497     return nullptr;
    498 
    499   // Make sure the phi is on the LHS.
    500   if (!isa<PHINode>(LHS)) {
    501     std::swap(LHS, RHS);
    502     Pred = CmpInst::getSwappedPredicate(Pred);
    503   }
    504   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
    505   PHINode *PI = cast<PHINode>(LHS);
    506 
    507   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
    508   if (!ValueDominatesPHI(RHS, PI, Q.DT))
    509     return nullptr;
    510 
    511   // Evaluate the BinOp on the incoming phi values.
    512   Value *CommonValue = nullptr;
    513   for (Value *Incoming : PI->incoming_values()) {
    514     // If the incoming value is the phi node itself, it can safely be skipped.
    515     if (Incoming == PI) continue;
    516     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
    517     // If the operation failed to simplify, or simplified to a different value
    518     // to previously, then give up.
    519     if (!V || (CommonValue && V != CommonValue))
    520       return nullptr;
    521     CommonValue = V;
    522   }
    523 
    524   return CommonValue;
    525 }
    526 
    527 /// Given operands for an Add, see if we can fold the result.
    528 /// If not, this returns null.
    529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    530                               const Query &Q, unsigned MaxRecurse) {
    531   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    532     if (Constant *CRHS = dyn_cast<Constant>(Op1))
    533       return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL);
    534 
    535     // Canonicalize the constant to the RHS.
    536     std::swap(Op0, Op1);
    537   }
    538 
    539   // X + undef -> undef
    540   if (match(Op1, m_Undef()))
    541     return Op1;
    542 
    543   // X + 0 -> X
    544   if (match(Op1, m_Zero()))
    545     return Op0;
    546 
    547   // X + (Y - X) -> Y
    548   // (Y - X) + X -> Y
    549   // Eg: X + -X -> 0
    550   Value *Y = nullptr;
    551   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
    552       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
    553     return Y;
    554 
    555   // X + ~X -> -1   since   ~X = -X-1
    556   if (match(Op0, m_Not(m_Specific(Op1))) ||
    557       match(Op1, m_Not(m_Specific(Op0))))
    558     return Constant::getAllOnesValue(Op0->getType());
    559 
    560   /// i1 add -> xor.
    561   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    562     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
    563       return V;
    564 
    565   // Try some generic simplifications for associative operations.
    566   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
    567                                           MaxRecurse))
    568     return V;
    569 
    570   // Threading Add over selects and phi nodes is pointless, so don't bother.
    571   // Threading over the select in "A + select(cond, B, C)" means evaluating
    572   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
    573   // only if B and C are equal.  If B and C are equal then (since we assume
    574   // that operands have already been simplified) "select(cond, B, C)" should
    575   // have been simplified to the common value of B and C already.  Analysing
    576   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
    577   // for threading over phi nodes.
    578 
    579   return nullptr;
    580 }
    581 
    582 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    583                              const DataLayout &DL, const TargetLibraryInfo *TLI,
    584                              const DominatorTree *DT, AssumptionCache *AC,
    585                              const Instruction *CxtI) {
    586   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
    587                            RecursionLimit);
    588 }
    589 
    590 /// \brief Compute the base pointer and cumulative constant offsets for V.
    591 ///
    592 /// This strips all constant offsets off of V, leaving it the base pointer, and
    593 /// accumulates the total constant offset applied in the returned constant. It
    594 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
    595 /// no constant offsets applied.
    596 ///
    597 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
    598 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
    599 /// folding.
    600 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
    601                                                 bool AllowNonInbounds = false) {
    602   assert(V->getType()->getScalarType()->isPointerTy());
    603 
    604   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
    605   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
    606 
    607   // Even though we don't look through PHI nodes, we could be called on an
    608   // instruction in an unreachable block, which may be on a cycle.
    609   SmallPtrSet<Value *, 4> Visited;
    610   Visited.insert(V);
    611   do {
    612     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    613       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
    614           !GEP->accumulateConstantOffset(DL, Offset))
    615         break;
    616       V = GEP->getPointerOperand();
    617     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    618       V = cast<Operator>(V)->getOperand(0);
    619     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    620       if (GA->isInterposable())
    621         break;
    622       V = GA->getAliasee();
    623     } else {
    624       if (auto CS = CallSite(V))
    625         if (Value *RV = CS.getReturnedArgOperand()) {
    626           V = RV;
    627           continue;
    628         }
    629       break;
    630     }
    631     assert(V->getType()->getScalarType()->isPointerTy() &&
    632            "Unexpected operand type!");
    633   } while (Visited.insert(V).second);
    634 
    635   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
    636   if (V->getType()->isVectorTy())
    637     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
    638                                     OffsetIntPtr);
    639   return OffsetIntPtr;
    640 }
    641 
    642 /// \brief Compute the constant difference between two pointer values.
    643 /// If the difference is not a constant, returns zero.
    644 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
    645                                           Value *RHS) {
    646   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
    647   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
    648 
    649   // If LHS and RHS are not related via constant offsets to the same base
    650   // value, there is nothing we can do here.
    651   if (LHS != RHS)
    652     return nullptr;
    653 
    654   // Otherwise, the difference of LHS - RHS can be computed as:
    655   //    LHS - RHS
    656   //  = (LHSOffset + Base) - (RHSOffset + Base)
    657   //  = LHSOffset - RHSOffset
    658   return ConstantExpr::getSub(LHSOffset, RHSOffset);
    659 }
    660 
    661 /// Given operands for a Sub, see if we can fold the result.
    662 /// If not, this returns null.
    663 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    664                               const Query &Q, unsigned MaxRecurse) {
    665   if (Constant *CLHS = dyn_cast<Constant>(Op0))
    666     if (Constant *CRHS = dyn_cast<Constant>(Op1))
    667       return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL);
    668 
    669   // X - undef -> undef
    670   // undef - X -> undef
    671   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
    672     return UndefValue::get(Op0->getType());
    673 
    674   // X - 0 -> X
    675   if (match(Op1, m_Zero()))
    676     return Op0;
    677 
    678   // X - X -> 0
    679   if (Op0 == Op1)
    680     return Constant::getNullValue(Op0->getType());
    681 
    682   // 0 - X -> 0 if the sub is NUW.
    683   if (isNUW && match(Op0, m_Zero()))
    684     return Op0;
    685 
    686   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
    687   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
    688   Value *X = nullptr, *Y = nullptr, *Z = Op1;
    689   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
    690     // See if "V === Y - Z" simplifies.
    691     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
    692       // It does!  Now see if "X + V" simplifies.
    693       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
    694         // It does, we successfully reassociated!
    695         ++NumReassoc;
    696         return W;
    697       }
    698     // See if "V === X - Z" simplifies.
    699     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
    700       // It does!  Now see if "Y + V" simplifies.
    701       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
    702         // It does, we successfully reassociated!
    703         ++NumReassoc;
    704         return W;
    705       }
    706   }
    707 
    708   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
    709   // For example, X - (X + 1) -> -1
    710   X = Op0;
    711   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
    712     // See if "V === X - Y" simplifies.
    713     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
    714       // It does!  Now see if "V - Z" simplifies.
    715       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
    716         // It does, we successfully reassociated!
    717         ++NumReassoc;
    718         return W;
    719       }
    720     // See if "V === X - Z" simplifies.
    721     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
    722       // It does!  Now see if "V - Y" simplifies.
    723       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
    724         // It does, we successfully reassociated!
    725         ++NumReassoc;
    726         return W;
    727       }
    728   }
    729 
    730   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
    731   // For example, X - (X - Y) -> Y.
    732   Z = Op0;
    733   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
    734     // See if "V === Z - X" simplifies.
    735     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
    736       // It does!  Now see if "V + Y" simplifies.
    737       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
    738         // It does, we successfully reassociated!
    739         ++NumReassoc;
    740         return W;
    741       }
    742 
    743   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
    744   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
    745       match(Op1, m_Trunc(m_Value(Y))))
    746     if (X->getType() == Y->getType())
    747       // See if "V === X - Y" simplifies.
    748       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
    749         // It does!  Now see if "trunc V" simplifies.
    750         if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
    751           // It does, return the simplified "trunc V".
    752           return W;
    753 
    754   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
    755   if (match(Op0, m_PtrToInt(m_Value(X))) &&
    756       match(Op1, m_PtrToInt(m_Value(Y))))
    757     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
    758       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
    759 
    760   // i1 sub -> xor.
    761   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    762     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
    763       return V;
    764 
    765   // Threading Sub over selects and phi nodes is pointless, so don't bother.
    766   // Threading over the select in "A - select(cond, B, C)" means evaluating
    767   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
    768   // only if B and C are equal.  If B and C are equal then (since we assume
    769   // that operands have already been simplified) "select(cond, B, C)" should
    770   // have been simplified to the common value of B and C already.  Analysing
    771   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
    772   // for threading over phi nodes.
    773 
    774   return nullptr;
    775 }
    776 
    777 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
    778                              const DataLayout &DL, const TargetLibraryInfo *TLI,
    779                              const DominatorTree *DT, AssumptionCache *AC,
    780                              const Instruction *CxtI) {
    781   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
    782                            RecursionLimit);
    783 }
    784 
    785 /// Given operands for an FAdd, see if we can fold the result.  If not, this
    786 /// returns null.
    787 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    788                               const Query &Q, unsigned MaxRecurse) {
    789   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    790     if (Constant *CRHS = dyn_cast<Constant>(Op1))
    791       return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL);
    792 
    793     // Canonicalize the constant to the RHS.
    794     std::swap(Op0, Op1);
    795   }
    796 
    797   // fadd X, -0 ==> X
    798   if (match(Op1, m_NegZero()))
    799     return Op0;
    800 
    801   // fadd X, 0 ==> X, when we know X is not -0
    802   if (match(Op1, m_Zero()) &&
    803       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
    804     return Op0;
    805 
    806   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
    807   //   where nnan and ninf have to occur at least once somewhere in this
    808   //   expression
    809   Value *SubOp = nullptr;
    810   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
    811     SubOp = Op1;
    812   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
    813     SubOp = Op0;
    814   if (SubOp) {
    815     Instruction *FSub = cast<Instruction>(SubOp);
    816     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
    817         (FMF.noInfs() || FSub->hasNoInfs()))
    818       return Constant::getNullValue(Op0->getType());
    819   }
    820 
    821   return nullptr;
    822 }
    823 
    824 /// Given operands for an FSub, see if we can fold the result.  If not, this
    825 /// returns null.
    826 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    827                               const Query &Q, unsigned MaxRecurse) {
    828   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    829     if (Constant *CRHS = dyn_cast<Constant>(Op1))
    830       return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL);
    831   }
    832 
    833   // fsub X, 0 ==> X
    834   if (match(Op1, m_Zero()))
    835     return Op0;
    836 
    837   // fsub X, -0 ==> X, when we know X is not -0
    838   if (match(Op1, m_NegZero()) &&
    839       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
    840     return Op0;
    841 
    842   // fsub -0.0, (fsub -0.0, X) ==> X
    843   Value *X;
    844   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
    845     return X;
    846 
    847   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
    848   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
    849       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
    850     return X;
    851 
    852   // fsub nnan x, x ==> 0.0
    853   if (FMF.noNaNs() && Op0 == Op1)
    854     return Constant::getNullValue(Op0->getType());
    855 
    856   return nullptr;
    857 }
    858 
    859 /// Given the operands for an FMul, see if we can fold the result
    860 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
    861                                FastMathFlags FMF,
    862                                const Query &Q,
    863                                unsigned MaxRecurse) {
    864  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    865     if (Constant *CRHS = dyn_cast<Constant>(Op1))
    866       return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL);
    867 
    868     // Canonicalize the constant to the RHS.
    869     std::swap(Op0, Op1);
    870  }
    871 
    872  // fmul X, 1.0 ==> X
    873  if (match(Op1, m_FPOne()))
    874    return Op0;
    875 
    876  // fmul nnan nsz X, 0 ==> 0
    877  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
    878    return Op1;
    879 
    880  return nullptr;
    881 }
    882 
    883 /// Given operands for a Mul, see if we can fold the result.
    884 /// If not, this returns null.
    885 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
    886                               unsigned MaxRecurse) {
    887   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
    888     if (Constant *CRHS = dyn_cast<Constant>(Op1))
    889       return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL);
    890 
    891     // Canonicalize the constant to the RHS.
    892     std::swap(Op0, Op1);
    893   }
    894 
    895   // X * undef -> 0
    896   if (match(Op1, m_Undef()))
    897     return Constant::getNullValue(Op0->getType());
    898 
    899   // X * 0 -> 0
    900   if (match(Op1, m_Zero()))
    901     return Op1;
    902 
    903   // X * 1 -> X
    904   if (match(Op1, m_One()))
    905     return Op0;
    906 
    907   // (X / Y) * Y -> X if the division is exact.
    908   Value *X = nullptr;
    909   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
    910       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
    911     return X;
    912 
    913   // i1 mul -> and.
    914   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
    915     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
    916       return V;
    917 
    918   // Try some generic simplifications for associative operations.
    919   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
    920                                           MaxRecurse))
    921     return V;
    922 
    923   // Mul distributes over Add.  Try some generic simplifications based on this.
    924   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
    925                              Q, MaxRecurse))
    926     return V;
    927 
    928   // If the operation is with the result of a select instruction, check whether
    929   // operating on either branch of the select always yields the same value.
    930   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
    931     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
    932                                          MaxRecurse))
    933       return V;
    934 
    935   // If the operation is with the result of a phi instruction, check whether
    936   // operating on all incoming values of the phi always yields the same value.
    937   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
    938     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
    939                                       MaxRecurse))
    940       return V;
    941 
    942   return nullptr;
    943 }
    944 
    945 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    946                               const DataLayout &DL,
    947                               const TargetLibraryInfo *TLI,
    948                               const DominatorTree *DT, AssumptionCache *AC,
    949                               const Instruction *CxtI) {
    950   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
    951                             RecursionLimit);
    952 }
    953 
    954 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    955                               const DataLayout &DL,
    956                               const TargetLibraryInfo *TLI,
    957                               const DominatorTree *DT, AssumptionCache *AC,
    958                               const Instruction *CxtI) {
    959   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
    960                             RecursionLimit);
    961 }
    962 
    963 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
    964                               const DataLayout &DL,
    965                               const TargetLibraryInfo *TLI,
    966                               const DominatorTree *DT, AssumptionCache *AC,
    967                               const Instruction *CxtI) {
    968   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
    969                             RecursionLimit);
    970 }
    971 
    972 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
    973                              const TargetLibraryInfo *TLI,
    974                              const DominatorTree *DT, AssumptionCache *AC,
    975                              const Instruction *CxtI) {
    976   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
    977                            RecursionLimit);
    978 }
    979 
    980 /// Given operands for an SDiv or UDiv, see if we can fold the result.
    981 /// If not, this returns null.
    982 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
    983                           const Query &Q, unsigned MaxRecurse) {
    984   if (Constant *C0 = dyn_cast<Constant>(Op0))
    985     if (Constant *C1 = dyn_cast<Constant>(Op1))
    986       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
    987 
    988   bool isSigned = Opcode == Instruction::SDiv;
    989 
    990   // X / undef -> undef
    991   if (match(Op1, m_Undef()))
    992     return Op1;
    993 
    994   // X / 0 -> undef, we don't need to preserve faults!
    995   if (match(Op1, m_Zero()))
    996     return UndefValue::get(Op1->getType());
    997 
    998   // undef / X -> 0
    999   if (match(Op0, m_Undef()))
   1000     return Constant::getNullValue(Op0->getType());
   1001 
   1002   // 0 / X -> 0, we don't need to preserve faults!
   1003   if (match(Op0, m_Zero()))
   1004     return Op0;
   1005 
   1006   // X / 1 -> X
   1007   if (match(Op1, m_One()))
   1008     return Op0;
   1009 
   1010   if (Op0->getType()->isIntegerTy(1))
   1011     // It can't be division by zero, hence it must be division by one.
   1012     return Op0;
   1013 
   1014   // X / X -> 1
   1015   if (Op0 == Op1)
   1016     return ConstantInt::get(Op0->getType(), 1);
   1017 
   1018   // (X * Y) / Y -> X if the multiplication does not overflow.
   1019   Value *X = nullptr, *Y = nullptr;
   1020   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
   1021     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
   1022     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
   1023     // If the Mul knows it does not overflow, then we are good to go.
   1024     if ((isSigned && Mul->hasNoSignedWrap()) ||
   1025         (!isSigned && Mul->hasNoUnsignedWrap()))
   1026       return X;
   1027     // If X has the form X = A / Y then X * Y cannot overflow.
   1028     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
   1029       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
   1030         return X;
   1031   }
   1032 
   1033   // (X rem Y) / Y -> 0
   1034   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
   1035       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
   1036     return Constant::getNullValue(Op0->getType());
   1037 
   1038   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
   1039   ConstantInt *C1, *C2;
   1040   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
   1041       match(Op1, m_ConstantInt(C2))) {
   1042     bool Overflow;
   1043     C1->getValue().umul_ov(C2->getValue(), Overflow);
   1044     if (Overflow)
   1045       return Constant::getNullValue(Op0->getType());
   1046   }
   1047 
   1048   // If the operation is with the result of a select instruction, check whether
   1049   // operating on either branch of the select always yields the same value.
   1050   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1051     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1052       return V;
   1053 
   1054   // If the operation is with the result of a phi instruction, check whether
   1055   // operating on all incoming values of the phi always yields the same value.
   1056   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1057     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1058       return V;
   1059 
   1060   return nullptr;
   1061 }
   1062 
   1063 /// Given operands for an SDiv, see if we can fold the result.
   1064 /// If not, this returns null.
   1065 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
   1066                                unsigned MaxRecurse) {
   1067   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
   1068     return V;
   1069 
   1070   return nullptr;
   1071 }
   1072 
   1073 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1074                               const TargetLibraryInfo *TLI,
   1075                               const DominatorTree *DT, AssumptionCache *AC,
   1076                               const Instruction *CxtI) {
   1077   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1078                             RecursionLimit);
   1079 }
   1080 
   1081 /// Given operands for a UDiv, see if we can fold the result.
   1082 /// If not, this returns null.
   1083 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
   1084                                unsigned MaxRecurse) {
   1085   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
   1086     return V;
   1087 
   1088   return nullptr;
   1089 }
   1090 
   1091 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1092                               const TargetLibraryInfo *TLI,
   1093                               const DominatorTree *DT, AssumptionCache *AC,
   1094                               const Instruction *CxtI) {
   1095   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1096                             RecursionLimit);
   1097 }
   1098 
   1099 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   1100                                const Query &Q, unsigned) {
   1101   // undef / X -> undef    (the undef could be a snan).
   1102   if (match(Op0, m_Undef()))
   1103     return Op0;
   1104 
   1105   // X / undef -> undef
   1106   if (match(Op1, m_Undef()))
   1107     return Op1;
   1108 
   1109   // 0 / X -> 0
   1110   // Requires that NaNs are off (X could be zero) and signed zeroes are
   1111   // ignored (X could be positive or negative, so the output sign is unknown).
   1112   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
   1113     return Op0;
   1114 
   1115   if (FMF.noNaNs()) {
   1116     // X / X -> 1.0 is legal when NaNs are ignored.
   1117     if (Op0 == Op1)
   1118       return ConstantFP::get(Op0->getType(), 1.0);
   1119 
   1120     // -X /  X -> -1.0 and
   1121     //  X / -X -> -1.0 are legal when NaNs are ignored.
   1122     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
   1123     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
   1124          BinaryOperator::getFNegArgument(Op0) == Op1) ||
   1125         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
   1126          BinaryOperator::getFNegArgument(Op1) == Op0))
   1127       return ConstantFP::get(Op0->getType(), -1.0);
   1128   }
   1129 
   1130   return nullptr;
   1131 }
   1132 
   1133 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   1134                               const DataLayout &DL,
   1135                               const TargetLibraryInfo *TLI,
   1136                               const DominatorTree *DT, AssumptionCache *AC,
   1137                               const Instruction *CxtI) {
   1138   return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
   1139                             RecursionLimit);
   1140 }
   1141 
   1142 /// Given operands for an SRem or URem, see if we can fold the result.
   1143 /// If not, this returns null.
   1144 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
   1145                           const Query &Q, unsigned MaxRecurse) {
   1146   if (Constant *C0 = dyn_cast<Constant>(Op0))
   1147     if (Constant *C1 = dyn_cast<Constant>(Op1))
   1148       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
   1149 
   1150   // X % undef -> undef
   1151   if (match(Op1, m_Undef()))
   1152     return Op1;
   1153 
   1154   // undef % X -> 0
   1155   if (match(Op0, m_Undef()))
   1156     return Constant::getNullValue(Op0->getType());
   1157 
   1158   // 0 % X -> 0, we don't need to preserve faults!
   1159   if (match(Op0, m_Zero()))
   1160     return Op0;
   1161 
   1162   // X % 0 -> undef, we don't need to preserve faults!
   1163   if (match(Op1, m_Zero()))
   1164     return UndefValue::get(Op0->getType());
   1165 
   1166   // X % 1 -> 0
   1167   if (match(Op1, m_One()))
   1168     return Constant::getNullValue(Op0->getType());
   1169 
   1170   if (Op0->getType()->isIntegerTy(1))
   1171     // It can't be remainder by zero, hence it must be remainder by one.
   1172     return Constant::getNullValue(Op0->getType());
   1173 
   1174   // X % X -> 0
   1175   if (Op0 == Op1)
   1176     return Constant::getNullValue(Op0->getType());
   1177 
   1178   // (X % Y) % Y -> X % Y
   1179   if ((Opcode == Instruction::SRem &&
   1180        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
   1181       (Opcode == Instruction::URem &&
   1182        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
   1183     return Op0;
   1184 
   1185   // If the operation is with the result of a select instruction, check whether
   1186   // operating on either branch of the select always yields the same value.
   1187   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1188     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1189       return V;
   1190 
   1191   // If the operation is with the result of a phi instruction, check whether
   1192   // operating on all incoming values of the phi always yields the same value.
   1193   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1194     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1195       return V;
   1196 
   1197   return nullptr;
   1198 }
   1199 
   1200 /// Given operands for an SRem, see if we can fold the result.
   1201 /// If not, this returns null.
   1202 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
   1203                                unsigned MaxRecurse) {
   1204   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
   1205     return V;
   1206 
   1207   return nullptr;
   1208 }
   1209 
   1210 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1211                               const TargetLibraryInfo *TLI,
   1212                               const DominatorTree *DT, AssumptionCache *AC,
   1213                               const Instruction *CxtI) {
   1214   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1215                             RecursionLimit);
   1216 }
   1217 
   1218 /// Given operands for a URem, see if we can fold the result.
   1219 /// If not, this returns null.
   1220 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
   1221                                unsigned MaxRecurse) {
   1222   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
   1223     return V;
   1224 
   1225   return nullptr;
   1226 }
   1227 
   1228 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1229                               const TargetLibraryInfo *TLI,
   1230                               const DominatorTree *DT, AssumptionCache *AC,
   1231                               const Instruction *CxtI) {
   1232   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1233                             RecursionLimit);
   1234 }
   1235 
   1236 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   1237                                const Query &, unsigned) {
   1238   // undef % X -> undef    (the undef could be a snan).
   1239   if (match(Op0, m_Undef()))
   1240     return Op0;
   1241 
   1242   // X % undef -> undef
   1243   if (match(Op1, m_Undef()))
   1244     return Op1;
   1245 
   1246   // 0 % X -> 0
   1247   // Requires that NaNs are off (X could be zero) and signed zeroes are
   1248   // ignored (X could be positive or negative, so the output sign is unknown).
   1249   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
   1250     return Op0;
   1251 
   1252   return nullptr;
   1253 }
   1254 
   1255 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
   1256                               const DataLayout &DL,
   1257                               const TargetLibraryInfo *TLI,
   1258                               const DominatorTree *DT, AssumptionCache *AC,
   1259                               const Instruction *CxtI) {
   1260   return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
   1261                             RecursionLimit);
   1262 }
   1263 
   1264 /// Returns true if a shift by \c Amount always yields undef.
   1265 static bool isUndefShift(Value *Amount) {
   1266   Constant *C = dyn_cast<Constant>(Amount);
   1267   if (!C)
   1268     return false;
   1269 
   1270   // X shift by undef -> undef because it may shift by the bitwidth.
   1271   if (isa<UndefValue>(C))
   1272     return true;
   1273 
   1274   // Shifting by the bitwidth or more is undefined.
   1275   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
   1276     if (CI->getValue().getLimitedValue() >=
   1277         CI->getType()->getScalarSizeInBits())
   1278       return true;
   1279 
   1280   // If all lanes of a vector shift are undefined the whole shift is.
   1281   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
   1282     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
   1283       if (!isUndefShift(C->getAggregateElement(I)))
   1284         return false;
   1285     return true;
   1286   }
   1287 
   1288   return false;
   1289 }
   1290 
   1291 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
   1292 /// If not, this returns null.
   1293 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
   1294                             const Query &Q, unsigned MaxRecurse) {
   1295   if (Constant *C0 = dyn_cast<Constant>(Op0))
   1296     if (Constant *C1 = dyn_cast<Constant>(Op1))
   1297       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
   1298 
   1299   // 0 shift by X -> 0
   1300   if (match(Op0, m_Zero()))
   1301     return Op0;
   1302 
   1303   // X shift by 0 -> X
   1304   if (match(Op1, m_Zero()))
   1305     return Op0;
   1306 
   1307   // Fold undefined shifts.
   1308   if (isUndefShift(Op1))
   1309     return UndefValue::get(Op0->getType());
   1310 
   1311   // If the operation is with the result of a select instruction, check whether
   1312   // operating on either branch of the select always yields the same value.
   1313   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1314     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
   1315       return V;
   1316 
   1317   // If the operation is with the result of a phi instruction, check whether
   1318   // operating on all incoming values of the phi always yields the same value.
   1319   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1320     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
   1321       return V;
   1322 
   1323   // If any bits in the shift amount make that value greater than or equal to
   1324   // the number of bits in the type, the shift is undefined.
   1325   unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
   1326   APInt KnownZero(BitWidth, 0);
   1327   APInt KnownOne(BitWidth, 0);
   1328   computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   1329   if (KnownOne.getLimitedValue() >= BitWidth)
   1330     return UndefValue::get(Op0->getType());
   1331 
   1332   // If all valid bits in the shift amount are known zero, the first operand is
   1333   // unchanged.
   1334   unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth);
   1335   APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits);
   1336   if ((KnownZero & ShiftAmountMask) == ShiftAmountMask)
   1337     return Op0;
   1338 
   1339   return nullptr;
   1340 }
   1341 
   1342 /// \brief Given operands for an Shl, LShr or AShr, see if we can
   1343 /// fold the result.  If not, this returns null.
   1344 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
   1345                                  bool isExact, const Query &Q,
   1346                                  unsigned MaxRecurse) {
   1347   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
   1348     return V;
   1349 
   1350   // X >> X -> 0
   1351   if (Op0 == Op1)
   1352     return Constant::getNullValue(Op0->getType());
   1353 
   1354   // undef >> X -> 0
   1355   // undef >> X -> undef (if it's exact)
   1356   if (match(Op0, m_Undef()))
   1357     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
   1358 
   1359   // The low bit cannot be shifted out of an exact shift if it is set.
   1360   if (isExact) {
   1361     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
   1362     APInt Op0KnownZero(BitWidth, 0);
   1363     APInt Op0KnownOne(BitWidth, 0);
   1364     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
   1365                      Q.CxtI, Q.DT);
   1366     if (Op0KnownOne[0])
   1367       return Op0;
   1368   }
   1369 
   1370   return nullptr;
   1371 }
   1372 
   1373 /// Given operands for an Shl, see if we can fold the result.
   1374 /// If not, this returns null.
   1375 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1376                               const Query &Q, unsigned MaxRecurse) {
   1377   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
   1378     return V;
   1379 
   1380   // undef << X -> 0
   1381   // undef << X -> undef if (if it's NSW/NUW)
   1382   if (match(Op0, m_Undef()))
   1383     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
   1384 
   1385   // (X >> A) << A -> X
   1386   Value *X;
   1387   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
   1388     return X;
   1389   return nullptr;
   1390 }
   1391 
   1392 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
   1393                              const DataLayout &DL, const TargetLibraryInfo *TLI,
   1394                              const DominatorTree *DT, AssumptionCache *AC,
   1395                              const Instruction *CxtI) {
   1396   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
   1397                            RecursionLimit);
   1398 }
   1399 
   1400 /// Given operands for an LShr, see if we can fold the result.
   1401 /// If not, this returns null.
   1402 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1403                                const Query &Q, unsigned MaxRecurse) {
   1404   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
   1405                                     MaxRecurse))
   1406       return V;
   1407 
   1408   // (X << A) >> A -> X
   1409   Value *X;
   1410   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
   1411     return X;
   1412 
   1413   return nullptr;
   1414 }
   1415 
   1416 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
   1417                               const DataLayout &DL,
   1418                               const TargetLibraryInfo *TLI,
   1419                               const DominatorTree *DT, AssumptionCache *AC,
   1420                               const Instruction *CxtI) {
   1421   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
   1422                             RecursionLimit);
   1423 }
   1424 
   1425 /// Given operands for an AShr, see if we can fold the result.
   1426 /// If not, this returns null.
   1427 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1428                                const Query &Q, unsigned MaxRecurse) {
   1429   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
   1430                                     MaxRecurse))
   1431     return V;
   1432 
   1433   // all ones >>a X -> all ones
   1434   if (match(Op0, m_AllOnes()))
   1435     return Op0;
   1436 
   1437   // (X << A) >> A -> X
   1438   Value *X;
   1439   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
   1440     return X;
   1441 
   1442   // Arithmetic shifting an all-sign-bit value is a no-op.
   1443   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
   1444   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
   1445     return Op0;
   1446 
   1447   return nullptr;
   1448 }
   1449 
   1450 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
   1451                               const DataLayout &DL,
   1452                               const TargetLibraryInfo *TLI,
   1453                               const DominatorTree *DT, AssumptionCache *AC,
   1454                               const Instruction *CxtI) {
   1455   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
   1456                             RecursionLimit);
   1457 }
   1458 
   1459 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
   1460                                          ICmpInst *UnsignedICmp, bool IsAnd) {
   1461   Value *X, *Y;
   1462 
   1463   ICmpInst::Predicate EqPred;
   1464   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
   1465       !ICmpInst::isEquality(EqPred))
   1466     return nullptr;
   1467 
   1468   ICmpInst::Predicate UnsignedPred;
   1469   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
   1470       ICmpInst::isUnsigned(UnsignedPred))
   1471     ;
   1472   else if (match(UnsignedICmp,
   1473                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
   1474            ICmpInst::isUnsigned(UnsignedPred))
   1475     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
   1476   else
   1477     return nullptr;
   1478 
   1479   // X < Y && Y != 0  -->  X < Y
   1480   // X < Y || Y != 0  -->  Y != 0
   1481   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
   1482     return IsAnd ? UnsignedICmp : ZeroICmp;
   1483 
   1484   // X >= Y || Y != 0  -->  true
   1485   // X >= Y || Y == 0  -->  X >= Y
   1486   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
   1487     if (EqPred == ICmpInst::ICMP_NE)
   1488       return getTrue(UnsignedICmp->getType());
   1489     return UnsignedICmp;
   1490   }
   1491 
   1492   // X < Y && Y == 0  -->  false
   1493   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
   1494       IsAnd)
   1495     return getFalse(UnsignedICmp->getType());
   1496 
   1497   return nullptr;
   1498 }
   1499 
   1500 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
   1501   Type *ITy = Op0->getType();
   1502   ICmpInst::Predicate Pred0, Pred1;
   1503   ConstantInt *CI1, *CI2;
   1504   Value *V;
   1505 
   1506   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
   1507     return X;
   1508 
   1509   // Look for this pattern: (icmp V, C0) & (icmp V, C1)).
   1510   const APInt *C0, *C1;
   1511   if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) &&
   1512       match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) {
   1513     // Make a constant range that's the intersection of the two icmp ranges.
   1514     // If the intersection is empty, we know that the result is false.
   1515     auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0);
   1516     auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1);
   1517     if (Range0.intersectWith(Range1).isEmptySet())
   1518       return getFalse(ITy);
   1519   }
   1520 
   1521   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
   1522                          m_ConstantInt(CI2))))
   1523     return nullptr;
   1524 
   1525   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
   1526     return nullptr;
   1527 
   1528   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
   1529   bool isNSW = AddInst->hasNoSignedWrap();
   1530   bool isNUW = AddInst->hasNoUnsignedWrap();
   1531 
   1532   const APInt &CI1V = CI1->getValue();
   1533   const APInt &CI2V = CI2->getValue();
   1534   const APInt Delta = CI2V - CI1V;
   1535   if (CI1V.isStrictlyPositive()) {
   1536     if (Delta == 2) {
   1537       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
   1538         return getFalse(ITy);
   1539       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
   1540         return getFalse(ITy);
   1541     }
   1542     if (Delta == 1) {
   1543       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
   1544         return getFalse(ITy);
   1545       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
   1546         return getFalse(ITy);
   1547     }
   1548   }
   1549   if (CI1V.getBoolValue() && isNUW) {
   1550     if (Delta == 2)
   1551       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
   1552         return getFalse(ITy);
   1553     if (Delta == 1)
   1554       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
   1555         return getFalse(ITy);
   1556   }
   1557 
   1558   return nullptr;
   1559 }
   1560 
   1561 /// Given operands for an And, see if we can fold the result.
   1562 /// If not, this returns null.
   1563 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
   1564                               unsigned MaxRecurse) {
   1565   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1566     if (Constant *CRHS = dyn_cast<Constant>(Op1))
   1567       return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL);
   1568 
   1569     // Canonicalize the constant to the RHS.
   1570     std::swap(Op0, Op1);
   1571   }
   1572 
   1573   // X & undef -> 0
   1574   if (match(Op1, m_Undef()))
   1575     return Constant::getNullValue(Op0->getType());
   1576 
   1577   // X & X = X
   1578   if (Op0 == Op1)
   1579     return Op0;
   1580 
   1581   // X & 0 = 0
   1582   if (match(Op1, m_Zero()))
   1583     return Op1;
   1584 
   1585   // X & -1 = X
   1586   if (match(Op1, m_AllOnes()))
   1587     return Op0;
   1588 
   1589   // A & ~A  =  ~A & A  =  0
   1590   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1591       match(Op1, m_Not(m_Specific(Op0))))
   1592     return Constant::getNullValue(Op0->getType());
   1593 
   1594   // (A | ?) & A = A
   1595   Value *A = nullptr, *B = nullptr;
   1596   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   1597       (A == Op1 || B == Op1))
   1598     return Op1;
   1599 
   1600   // A & (A | ?) = A
   1601   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
   1602       (A == Op0 || B == Op0))
   1603     return Op0;
   1604 
   1605   // A & (-A) = A if A is a power of two or zero.
   1606   if (match(Op0, m_Neg(m_Specific(Op1))) ||
   1607       match(Op1, m_Neg(m_Specific(Op0)))) {
   1608     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
   1609                                Q.DT))
   1610       return Op0;
   1611     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
   1612                                Q.DT))
   1613       return Op1;
   1614   }
   1615 
   1616   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
   1617     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
   1618       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
   1619         return V;
   1620       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
   1621         return V;
   1622     }
   1623   }
   1624 
   1625   // The compares may be hidden behind casts. Look through those and try the
   1626   // same folds as above.
   1627   auto *Cast0 = dyn_cast<CastInst>(Op0);
   1628   auto *Cast1 = dyn_cast<CastInst>(Op1);
   1629   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
   1630       Cast0->getSrcTy() == Cast1->getSrcTy()) {
   1631     auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0));
   1632     auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0));
   1633     if (Cmp0 && Cmp1) {
   1634       Instruction::CastOps CastOpc = Cast0->getOpcode();
   1635       Type *ResultType = Cast0->getType();
   1636       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1)))
   1637         return ConstantExpr::getCast(CastOpc, V, ResultType);
   1638       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0)))
   1639         return ConstantExpr::getCast(CastOpc, V, ResultType);
   1640     }
   1641   }
   1642 
   1643   // Try some generic simplifications for associative operations.
   1644   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
   1645                                           MaxRecurse))
   1646     return V;
   1647 
   1648   // And distributes over Or.  Try some generic simplifications based on this.
   1649   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
   1650                              Q, MaxRecurse))
   1651     return V;
   1652 
   1653   // And distributes over Xor.  Try some generic simplifications based on this.
   1654   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
   1655                              Q, MaxRecurse))
   1656     return V;
   1657 
   1658   // If the operation is with the result of a select instruction, check whether
   1659   // operating on either branch of the select always yields the same value.
   1660   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1661     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
   1662                                          MaxRecurse))
   1663       return V;
   1664 
   1665   // If the operation is with the result of a phi instruction, check whether
   1666   // operating on all incoming values of the phi always yields the same value.
   1667   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1668     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
   1669                                       MaxRecurse))
   1670       return V;
   1671 
   1672   return nullptr;
   1673 }
   1674 
   1675 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1676                              const TargetLibraryInfo *TLI,
   1677                              const DominatorTree *DT, AssumptionCache *AC,
   1678                              const Instruction *CxtI) {
   1679   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1680                            RecursionLimit);
   1681 }
   1682 
   1683 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
   1684 /// contains all possible values.
   1685 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
   1686   ICmpInst::Predicate Pred0, Pred1;
   1687   ConstantInt *CI1, *CI2;
   1688   Value *V;
   1689 
   1690   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
   1691     return X;
   1692 
   1693   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
   1694                          m_ConstantInt(CI2))))
   1695    return nullptr;
   1696 
   1697   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
   1698     return nullptr;
   1699 
   1700   Type *ITy = Op0->getType();
   1701 
   1702   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
   1703   bool isNSW = AddInst->hasNoSignedWrap();
   1704   bool isNUW = AddInst->hasNoUnsignedWrap();
   1705 
   1706   const APInt &CI1V = CI1->getValue();
   1707   const APInt &CI2V = CI2->getValue();
   1708   const APInt Delta = CI2V - CI1V;
   1709   if (CI1V.isStrictlyPositive()) {
   1710     if (Delta == 2) {
   1711       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
   1712         return getTrue(ITy);
   1713       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
   1714         return getTrue(ITy);
   1715     }
   1716     if (Delta == 1) {
   1717       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
   1718         return getTrue(ITy);
   1719       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
   1720         return getTrue(ITy);
   1721     }
   1722   }
   1723   if (CI1V.getBoolValue() && isNUW) {
   1724     if (Delta == 2)
   1725       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
   1726         return getTrue(ITy);
   1727     if (Delta == 1)
   1728       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
   1729         return getTrue(ITy);
   1730   }
   1731 
   1732   return nullptr;
   1733 }
   1734 
   1735 /// Given operands for an Or, see if we can fold the result.
   1736 /// If not, this returns null.
   1737 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
   1738                              unsigned MaxRecurse) {
   1739   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1740     if (Constant *CRHS = dyn_cast<Constant>(Op1))
   1741       return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL);
   1742 
   1743     // Canonicalize the constant to the RHS.
   1744     std::swap(Op0, Op1);
   1745   }
   1746 
   1747   // X | undef -> -1
   1748   if (match(Op1, m_Undef()))
   1749     return Constant::getAllOnesValue(Op0->getType());
   1750 
   1751   // X | X = X
   1752   if (Op0 == Op1)
   1753     return Op0;
   1754 
   1755   // X | 0 = X
   1756   if (match(Op1, m_Zero()))
   1757     return Op0;
   1758 
   1759   // X | -1 = -1
   1760   if (match(Op1, m_AllOnes()))
   1761     return Op1;
   1762 
   1763   // A | ~A  =  ~A | A  =  -1
   1764   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1765       match(Op1, m_Not(m_Specific(Op0))))
   1766     return Constant::getAllOnesValue(Op0->getType());
   1767 
   1768   // (A & ?) | A = A
   1769   Value *A = nullptr, *B = nullptr;
   1770   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   1771       (A == Op1 || B == Op1))
   1772     return Op1;
   1773 
   1774   // A | (A & ?) = A
   1775   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
   1776       (A == Op0 || B == Op0))
   1777     return Op0;
   1778 
   1779   // ~(A & ?) | A = -1
   1780   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
   1781       (A == Op1 || B == Op1))
   1782     return Constant::getAllOnesValue(Op1->getType());
   1783 
   1784   // A | ~(A & ?) = -1
   1785   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
   1786       (A == Op0 || B == Op0))
   1787     return Constant::getAllOnesValue(Op0->getType());
   1788 
   1789   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
   1790     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
   1791       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
   1792         return V;
   1793       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
   1794         return V;
   1795     }
   1796   }
   1797 
   1798   // Try some generic simplifications for associative operations.
   1799   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
   1800                                           MaxRecurse))
   1801     return V;
   1802 
   1803   // Or distributes over And.  Try some generic simplifications based on this.
   1804   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
   1805                              MaxRecurse))
   1806     return V;
   1807 
   1808   // If the operation is with the result of a select instruction, check whether
   1809   // operating on either branch of the select always yields the same value.
   1810   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
   1811     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
   1812                                          MaxRecurse))
   1813       return V;
   1814 
   1815   // (A & C)|(B & D)
   1816   Value *C = nullptr, *D = nullptr;
   1817   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   1818       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   1819     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
   1820     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
   1821     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
   1822       // (A & C1)|(B & C2)
   1823       // If we have: ((V + N) & C1) | (V & C2)
   1824       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
   1825       // replace with V+N.
   1826       Value *V1, *V2;
   1827       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
   1828           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
   1829         // Add commutes, try both ways.
   1830         if (V1 == B &&
   1831             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   1832           return A;
   1833         if (V2 == B &&
   1834             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   1835           return A;
   1836       }
   1837       // Or commutes, try both ways.
   1838       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
   1839           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
   1840         // Add commutes, try both ways.
   1841         if (V1 == A &&
   1842             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   1843           return B;
   1844         if (V2 == A &&
   1845             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   1846           return B;
   1847       }
   1848     }
   1849   }
   1850 
   1851   // If the operation is with the result of a phi instruction, check whether
   1852   // operating on all incoming values of the phi always yields the same value.
   1853   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
   1854     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
   1855       return V;
   1856 
   1857   return nullptr;
   1858 }
   1859 
   1860 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1861                             const TargetLibraryInfo *TLI,
   1862                             const DominatorTree *DT, AssumptionCache *AC,
   1863                             const Instruction *CxtI) {
   1864   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1865                           RecursionLimit);
   1866 }
   1867 
   1868 /// Given operands for a Xor, see if we can fold the result.
   1869 /// If not, this returns null.
   1870 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
   1871                               unsigned MaxRecurse) {
   1872   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
   1873     if (Constant *CRHS = dyn_cast<Constant>(Op1))
   1874       return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL);
   1875 
   1876     // Canonicalize the constant to the RHS.
   1877     std::swap(Op0, Op1);
   1878   }
   1879 
   1880   // A ^ undef -> undef
   1881   if (match(Op1, m_Undef()))
   1882     return Op1;
   1883 
   1884   // A ^ 0 = A
   1885   if (match(Op1, m_Zero()))
   1886     return Op0;
   1887 
   1888   // A ^ A = 0
   1889   if (Op0 == Op1)
   1890     return Constant::getNullValue(Op0->getType());
   1891 
   1892   // A ^ ~A  =  ~A ^ A  =  -1
   1893   if (match(Op0, m_Not(m_Specific(Op1))) ||
   1894       match(Op1, m_Not(m_Specific(Op0))))
   1895     return Constant::getAllOnesValue(Op0->getType());
   1896 
   1897   // Try some generic simplifications for associative operations.
   1898   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
   1899                                           MaxRecurse))
   1900     return V;
   1901 
   1902   // Threading Xor over selects and phi nodes is pointless, so don't bother.
   1903   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
   1904   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
   1905   // only if B and C are equal.  If B and C are equal then (since we assume
   1906   // that operands have already been simplified) "select(cond, B, C)" should
   1907   // have been simplified to the common value of B and C already.  Analysing
   1908   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
   1909   // for threading over phi nodes.
   1910 
   1911   return nullptr;
   1912 }
   1913 
   1914 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
   1915                              const TargetLibraryInfo *TLI,
   1916                              const DominatorTree *DT, AssumptionCache *AC,
   1917                              const Instruction *CxtI) {
   1918   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
   1919                            RecursionLimit);
   1920 }
   1921 
   1922 static Type *GetCompareTy(Value *Op) {
   1923   return CmpInst::makeCmpResultType(Op->getType());
   1924 }
   1925 
   1926 /// Rummage around inside V looking for something equivalent to the comparison
   1927 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
   1928 /// Helper function for analyzing max/min idioms.
   1929 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
   1930                                          Value *LHS, Value *RHS) {
   1931   SelectInst *SI = dyn_cast<SelectInst>(V);
   1932   if (!SI)
   1933     return nullptr;
   1934   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
   1935   if (!Cmp)
   1936     return nullptr;
   1937   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
   1938   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
   1939     return Cmp;
   1940   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
   1941       LHS == CmpRHS && RHS == CmpLHS)
   1942     return Cmp;
   1943   return nullptr;
   1944 }
   1945 
   1946 // A significant optimization not implemented here is assuming that alloca
   1947 // addresses are not equal to incoming argument values. They don't *alias*,
   1948 // as we say, but that doesn't mean they aren't equal, so we take a
   1949 // conservative approach.
   1950 //
   1951 // This is inspired in part by C++11 5.10p1:
   1952 //   "Two pointers of the same type compare equal if and only if they are both
   1953 //    null, both point to the same function, or both represent the same
   1954 //    address."
   1955 //
   1956 // This is pretty permissive.
   1957 //
   1958 // It's also partly due to C11 6.5.9p6:
   1959 //   "Two pointers compare equal if and only if both are null pointers, both are
   1960 //    pointers to the same object (including a pointer to an object and a
   1961 //    subobject at its beginning) or function, both are pointers to one past the
   1962 //    last element of the same array object, or one is a pointer to one past the
   1963 //    end of one array object and the other is a pointer to the start of a
   1964 //    different array object that happens to immediately follow the first array
   1965 //    object in the address space.)
   1966 //
   1967 // C11's version is more restrictive, however there's no reason why an argument
   1968 // couldn't be a one-past-the-end value for a stack object in the caller and be
   1969 // equal to the beginning of a stack object in the callee.
   1970 //
   1971 // If the C and C++ standards are ever made sufficiently restrictive in this
   1972 // area, it may be possible to update LLVM's semantics accordingly and reinstate
   1973 // this optimization.
   1974 static Constant *
   1975 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
   1976                    const DominatorTree *DT, CmpInst::Predicate Pred,
   1977                    const Instruction *CxtI, Value *LHS, Value *RHS) {
   1978   // First, skip past any trivial no-ops.
   1979   LHS = LHS->stripPointerCasts();
   1980   RHS = RHS->stripPointerCasts();
   1981 
   1982   // A non-null pointer is not equal to a null pointer.
   1983   if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
   1984       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
   1985     return ConstantInt::get(GetCompareTy(LHS),
   1986                             !CmpInst::isTrueWhenEqual(Pred));
   1987 
   1988   // We can only fold certain predicates on pointer comparisons.
   1989   switch (Pred) {
   1990   default:
   1991     return nullptr;
   1992 
   1993     // Equality comaprisons are easy to fold.
   1994   case CmpInst::ICMP_EQ:
   1995   case CmpInst::ICMP_NE:
   1996     break;
   1997 
   1998     // We can only handle unsigned relational comparisons because 'inbounds' on
   1999     // a GEP only protects against unsigned wrapping.
   2000   case CmpInst::ICMP_UGT:
   2001   case CmpInst::ICMP_UGE:
   2002   case CmpInst::ICMP_ULT:
   2003   case CmpInst::ICMP_ULE:
   2004     // However, we have to switch them to their signed variants to handle
   2005     // negative indices from the base pointer.
   2006     Pred = ICmpInst::getSignedPredicate(Pred);
   2007     break;
   2008   }
   2009 
   2010   // Strip off any constant offsets so that we can reason about them.
   2011   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
   2012   // here and compare base addresses like AliasAnalysis does, however there are
   2013   // numerous hazards. AliasAnalysis and its utilities rely on special rules
   2014   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
   2015   // doesn't need to guarantee pointer inequality when it says NoAlias.
   2016   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
   2017   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
   2018 
   2019   // If LHS and RHS are related via constant offsets to the same base
   2020   // value, we can replace it with an icmp which just compares the offsets.
   2021   if (LHS == RHS)
   2022     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
   2023 
   2024   // Various optimizations for (in)equality comparisons.
   2025   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
   2026     // Different non-empty allocations that exist at the same time have
   2027     // different addresses (if the program can tell). Global variables always
   2028     // exist, so they always exist during the lifetime of each other and all
   2029     // allocas. Two different allocas usually have different addresses...
   2030     //
   2031     // However, if there's an @llvm.stackrestore dynamically in between two
   2032     // allocas, they may have the same address. It's tempting to reduce the
   2033     // scope of the problem by only looking at *static* allocas here. That would
   2034     // cover the majority of allocas while significantly reducing the likelihood
   2035     // of having an @llvm.stackrestore pop up in the middle. However, it's not
   2036     // actually impossible for an @llvm.stackrestore to pop up in the middle of
   2037     // an entry block. Also, if we have a block that's not attached to a
   2038     // function, we can't tell if it's "static" under the current definition.
   2039     // Theoretically, this problem could be fixed by creating a new kind of
   2040     // instruction kind specifically for static allocas. Such a new instruction
   2041     // could be required to be at the top of the entry block, thus preventing it
   2042     // from being subject to a @llvm.stackrestore. Instcombine could even
   2043     // convert regular allocas into these special allocas. It'd be nifty.
   2044     // However, until then, this problem remains open.
   2045     //
   2046     // So, we'll assume that two non-empty allocas have different addresses
   2047     // for now.
   2048     //
   2049     // With all that, if the offsets are within the bounds of their allocations
   2050     // (and not one-past-the-end! so we can't use inbounds!), and their
   2051     // allocations aren't the same, the pointers are not equal.
   2052     //
   2053     // Note that it's not necessary to check for LHS being a global variable
   2054     // address, due to canonicalization and constant folding.
   2055     if (isa<AllocaInst>(LHS) &&
   2056         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
   2057       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
   2058       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
   2059       uint64_t LHSSize, RHSSize;
   2060       if (LHSOffsetCI && RHSOffsetCI &&
   2061           getObjectSize(LHS, LHSSize, DL, TLI) &&
   2062           getObjectSize(RHS, RHSSize, DL, TLI)) {
   2063         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
   2064         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
   2065         if (!LHSOffsetValue.isNegative() &&
   2066             !RHSOffsetValue.isNegative() &&
   2067             LHSOffsetValue.ult(LHSSize) &&
   2068             RHSOffsetValue.ult(RHSSize)) {
   2069           return ConstantInt::get(GetCompareTy(LHS),
   2070                                   !CmpInst::isTrueWhenEqual(Pred));
   2071         }
   2072       }
   2073 
   2074       // Repeat the above check but this time without depending on DataLayout
   2075       // or being able to compute a precise size.
   2076       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
   2077           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
   2078           LHSOffset->isNullValue() &&
   2079           RHSOffset->isNullValue())
   2080         return ConstantInt::get(GetCompareTy(LHS),
   2081                                 !CmpInst::isTrueWhenEqual(Pred));
   2082     }
   2083 
   2084     // Even if an non-inbounds GEP occurs along the path we can still optimize
   2085     // equality comparisons concerning the result. We avoid walking the whole
   2086     // chain again by starting where the last calls to
   2087     // stripAndComputeConstantOffsets left off and accumulate the offsets.
   2088     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
   2089     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
   2090     if (LHS == RHS)
   2091       return ConstantExpr::getICmp(Pred,
   2092                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
   2093                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
   2094 
   2095     // If one side of the equality comparison must come from a noalias call
   2096     // (meaning a system memory allocation function), and the other side must
   2097     // come from a pointer that cannot overlap with dynamically-allocated
   2098     // memory within the lifetime of the current function (allocas, byval
   2099     // arguments, globals), then determine the comparison result here.
   2100     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
   2101     GetUnderlyingObjects(LHS, LHSUObjs, DL);
   2102     GetUnderlyingObjects(RHS, RHSUObjs, DL);
   2103 
   2104     // Is the set of underlying objects all noalias calls?
   2105     auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
   2106       return std::all_of(Objects.begin(), Objects.end(), isNoAliasCall);
   2107     };
   2108 
   2109     // Is the set of underlying objects all things which must be disjoint from
   2110     // noalias calls. For allocas, we consider only static ones (dynamic
   2111     // allocas might be transformed into calls to malloc not simultaneously
   2112     // live with the compared-to allocation). For globals, we exclude symbols
   2113     // that might be resolve lazily to symbols in another dynamically-loaded
   2114     // library (and, thus, could be malloc'ed by the implementation).
   2115     auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
   2116       return std::all_of(Objects.begin(), Objects.end(), [](Value *V) {
   2117         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
   2118           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
   2119         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
   2120           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
   2121                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
   2122                  !GV->isThreadLocal();
   2123         if (const Argument *A = dyn_cast<Argument>(V))
   2124           return A->hasByValAttr();
   2125         return false;
   2126       });
   2127     };
   2128 
   2129     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
   2130         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
   2131         return ConstantInt::get(GetCompareTy(LHS),
   2132                                 !CmpInst::isTrueWhenEqual(Pred));
   2133 
   2134     // Fold comparisons for non-escaping pointer even if the allocation call
   2135     // cannot be elided. We cannot fold malloc comparison to null. Also, the
   2136     // dynamic allocation call could be either of the operands.
   2137     Value *MI = nullptr;
   2138     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT))
   2139       MI = LHS;
   2140     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT))
   2141       MI = RHS;
   2142     // FIXME: We should also fold the compare when the pointer escapes, but the
   2143     // compare dominates the pointer escape
   2144     if (MI && !PointerMayBeCaptured(MI, true, true))
   2145       return ConstantInt::get(GetCompareTy(LHS),
   2146                               CmpInst::isFalseWhenEqual(Pred));
   2147   }
   2148 
   2149   // Otherwise, fail.
   2150   return nullptr;
   2151 }
   2152 
   2153 /// Given operands for an ICmpInst, see if we can fold the result.
   2154 /// If not, this returns null.
   2155 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   2156                                const Query &Q, unsigned MaxRecurse) {
   2157   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   2158   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
   2159 
   2160   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   2161     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   2162       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
   2163 
   2164     // If we have a constant, make sure it is on the RHS.
   2165     std::swap(LHS, RHS);
   2166     Pred = CmpInst::getSwappedPredicate(Pred);
   2167   }
   2168 
   2169   Type *ITy = GetCompareTy(LHS); // The return type.
   2170   Type *OpTy = LHS->getType();   // The operand type.
   2171 
   2172   // icmp X, X -> true/false
   2173   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
   2174   // because X could be 0.
   2175   if (LHS == RHS || isa<UndefValue>(RHS))
   2176     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
   2177 
   2178   // Special case logic when the operands have i1 type.
   2179   if (OpTy->getScalarType()->isIntegerTy(1)) {
   2180     switch (Pred) {
   2181     default: break;
   2182     case ICmpInst::ICMP_EQ:
   2183       // X == 1 -> X
   2184       if (match(RHS, m_One()))
   2185         return LHS;
   2186       break;
   2187     case ICmpInst::ICMP_NE:
   2188       // X != 0 -> X
   2189       if (match(RHS, m_Zero()))
   2190         return LHS;
   2191       break;
   2192     case ICmpInst::ICMP_UGT:
   2193       // X >u 0 -> X
   2194       if (match(RHS, m_Zero()))
   2195         return LHS;
   2196       break;
   2197     case ICmpInst::ICMP_UGE: {
   2198       // X >=u 1 -> X
   2199       if (match(RHS, m_One()))
   2200         return LHS;
   2201       if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
   2202         return getTrue(ITy);
   2203       break;
   2204     }
   2205     case ICmpInst::ICMP_SGE: {
   2206       /// For signed comparison, the values for an i1 are 0 and -1
   2207       /// respectively. This maps into a truth table of:
   2208       /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
   2209       ///  0  |  0  |  1 (0 >= 0)   |  1
   2210       ///  0  |  1  |  1 (0 >= -1)  |  1
   2211       ///  1  |  0  |  0 (-1 >= 0)  |  0
   2212       ///  1  |  1  |  1 (-1 >= -1) |  1
   2213       if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
   2214         return getTrue(ITy);
   2215       break;
   2216     }
   2217     case ICmpInst::ICMP_SLT:
   2218       // X <s 0 -> X
   2219       if (match(RHS, m_Zero()))
   2220         return LHS;
   2221       break;
   2222     case ICmpInst::ICMP_SLE:
   2223       // X <=s -1 -> X
   2224       if (match(RHS, m_One()))
   2225         return LHS;
   2226       break;
   2227     case ICmpInst::ICMP_ULE: {
   2228       if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
   2229         return getTrue(ITy);
   2230       break;
   2231     }
   2232     }
   2233   }
   2234 
   2235   // If we are comparing with zero then try hard since this is a common case.
   2236   if (match(RHS, m_Zero())) {
   2237     bool LHSKnownNonNegative, LHSKnownNegative;
   2238     switch (Pred) {
   2239     default: llvm_unreachable("Unknown ICmp predicate!");
   2240     case ICmpInst::ICMP_ULT:
   2241       return getFalse(ITy);
   2242     case ICmpInst::ICMP_UGE:
   2243       return getTrue(ITy);
   2244     case ICmpInst::ICMP_EQ:
   2245     case ICmpInst::ICMP_ULE:
   2246       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2247         return getFalse(ITy);
   2248       break;
   2249     case ICmpInst::ICMP_NE:
   2250     case ICmpInst::ICMP_UGT:
   2251       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2252         return getTrue(ITy);
   2253       break;
   2254     case ICmpInst::ICMP_SLT:
   2255       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
   2256                      Q.CxtI, Q.DT);
   2257       if (LHSKnownNegative)
   2258         return getTrue(ITy);
   2259       if (LHSKnownNonNegative)
   2260         return getFalse(ITy);
   2261       break;
   2262     case ICmpInst::ICMP_SLE:
   2263       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
   2264                      Q.CxtI, Q.DT);
   2265       if (LHSKnownNegative)
   2266         return getTrue(ITy);
   2267       if (LHSKnownNonNegative &&
   2268           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2269         return getFalse(ITy);
   2270       break;
   2271     case ICmpInst::ICMP_SGE:
   2272       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
   2273                      Q.CxtI, Q.DT);
   2274       if (LHSKnownNegative)
   2275         return getFalse(ITy);
   2276       if (LHSKnownNonNegative)
   2277         return getTrue(ITy);
   2278       break;
   2279     case ICmpInst::ICMP_SGT:
   2280       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
   2281                      Q.CxtI, Q.DT);
   2282       if (LHSKnownNegative)
   2283         return getFalse(ITy);
   2284       if (LHSKnownNonNegative &&
   2285           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
   2286         return getTrue(ITy);
   2287       break;
   2288     }
   2289   }
   2290 
   2291   // See if we are doing a comparison with a constant integer.
   2292   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   2293     // Rule out tautological comparisons (eg., ult 0 or uge 0).
   2294     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
   2295     if (RHS_CR.isEmptySet())
   2296       return ConstantInt::getFalse(CI->getContext());
   2297     if (RHS_CR.isFullSet())
   2298       return ConstantInt::getTrue(CI->getContext());
   2299 
   2300     // Many binary operators with constant RHS have easy to compute constant
   2301     // range.  Use them to check whether the comparison is a tautology.
   2302     unsigned Width = CI->getBitWidth();
   2303     APInt Lower = APInt(Width, 0);
   2304     APInt Upper = APInt(Width, 0);
   2305     ConstantInt *CI2;
   2306     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
   2307       // 'urem x, CI2' produces [0, CI2).
   2308       Upper = CI2->getValue();
   2309     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
   2310       // 'srem x, CI2' produces (-|CI2|, |CI2|).
   2311       Upper = CI2->getValue().abs();
   2312       Lower = (-Upper) + 1;
   2313     } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
   2314       // 'udiv CI2, x' produces [0, CI2].
   2315       Upper = CI2->getValue() + 1;
   2316     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
   2317       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
   2318       APInt NegOne = APInt::getAllOnesValue(Width);
   2319       if (!CI2->isZero())
   2320         Upper = NegOne.udiv(CI2->getValue()) + 1;
   2321     } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
   2322       if (CI2->isMinSignedValue()) {
   2323         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
   2324         Lower = CI2->getValue();
   2325         Upper = Lower.lshr(1) + 1;
   2326       } else {
   2327         // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
   2328         Upper = CI2->getValue().abs() + 1;
   2329         Lower = (-Upper) + 1;
   2330       }
   2331     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
   2332       APInt IntMin = APInt::getSignedMinValue(Width);
   2333       APInt IntMax = APInt::getSignedMaxValue(Width);
   2334       const APInt &Val = CI2->getValue();
   2335       if (Val.isAllOnesValue()) {
   2336         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
   2337         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
   2338         Lower = IntMin + 1;
   2339         Upper = IntMax + 1;
   2340       } else if (Val.countLeadingZeros() < Width - 1) {
   2341         // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]
   2342         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
   2343         Lower = IntMin.sdiv(Val);
   2344         Upper = IntMax.sdiv(Val);
   2345         if (Lower.sgt(Upper))
   2346           std::swap(Lower, Upper);
   2347         Upper = Upper + 1;
   2348         assert(Upper != Lower && "Upper part of range has wrapped!");
   2349       }
   2350     } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
   2351       // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
   2352       Lower = CI2->getValue();
   2353       Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
   2354     } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
   2355       if (CI2->isNegative()) {
   2356         // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
   2357         unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
   2358         Lower = CI2->getValue().shl(ShiftAmount);
   2359         Upper = CI2->getValue() + 1;
   2360       } else {
   2361         // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
   2362         unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
   2363         Lower = CI2->getValue();
   2364         Upper = CI2->getValue().shl(ShiftAmount) + 1;
   2365       }
   2366     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
   2367       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
   2368       APInt NegOne = APInt::getAllOnesValue(Width);
   2369       if (CI2->getValue().ult(Width))
   2370         Upper = NegOne.lshr(CI2->getValue()) + 1;
   2371     } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
   2372       // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
   2373       unsigned ShiftAmount = Width - 1;
   2374       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
   2375         ShiftAmount = CI2->getValue().countTrailingZeros();
   2376       Lower = CI2->getValue().lshr(ShiftAmount);
   2377       Upper = CI2->getValue() + 1;
   2378     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
   2379       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
   2380       APInt IntMin = APInt::getSignedMinValue(Width);
   2381       APInt IntMax = APInt::getSignedMaxValue(Width);
   2382       if (CI2->getValue().ult(Width)) {
   2383         Lower = IntMin.ashr(CI2->getValue());
   2384         Upper = IntMax.ashr(CI2->getValue()) + 1;
   2385       }
   2386     } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
   2387       unsigned ShiftAmount = Width - 1;
   2388       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
   2389         ShiftAmount = CI2->getValue().countTrailingZeros();
   2390       if (CI2->isNegative()) {
   2391         // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
   2392         Lower = CI2->getValue();
   2393         Upper = CI2->getValue().ashr(ShiftAmount) + 1;
   2394       } else {
   2395         // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
   2396         Lower = CI2->getValue().ashr(ShiftAmount);
   2397         Upper = CI2->getValue() + 1;
   2398       }
   2399     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
   2400       // 'or x, CI2' produces [CI2, UINT_MAX].
   2401       Lower = CI2->getValue();
   2402     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
   2403       // 'and x, CI2' produces [0, CI2].
   2404       Upper = CI2->getValue() + 1;
   2405     } else if (match(LHS, m_NUWAdd(m_Value(), m_ConstantInt(CI2)))) {
   2406       // 'add nuw x, CI2' produces [CI2, UINT_MAX].
   2407       Lower = CI2->getValue();
   2408     }
   2409 
   2410     ConstantRange LHS_CR = Lower != Upper ? ConstantRange(Lower, Upper)
   2411                                           : ConstantRange(Width, true);
   2412 
   2413     if (auto *I = dyn_cast<Instruction>(LHS))
   2414       if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
   2415         LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
   2416 
   2417     if (!LHS_CR.isFullSet()) {
   2418       if (RHS_CR.contains(LHS_CR))
   2419         return ConstantInt::getTrue(RHS->getContext());
   2420       if (RHS_CR.inverse().contains(LHS_CR))
   2421         return ConstantInt::getFalse(RHS->getContext());
   2422     }
   2423   }
   2424 
   2425   // If both operands have range metadata, use the metadata
   2426   // to simplify the comparison.
   2427   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
   2428     auto RHS_Instr = dyn_cast<Instruction>(RHS);
   2429     auto LHS_Instr = dyn_cast<Instruction>(LHS);
   2430 
   2431     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
   2432         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
   2433       auto RHS_CR = getConstantRangeFromMetadata(
   2434           *RHS_Instr->getMetadata(LLVMContext::MD_range));
   2435       auto LHS_CR = getConstantRangeFromMetadata(
   2436           *LHS_Instr->getMetadata(LLVMContext::MD_range));
   2437 
   2438       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
   2439       if (Satisfied_CR.contains(LHS_CR))
   2440         return ConstantInt::getTrue(RHS->getContext());
   2441 
   2442       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
   2443                 CmpInst::getInversePredicate(Pred), RHS_CR);
   2444       if (InversedSatisfied_CR.contains(LHS_CR))
   2445         return ConstantInt::getFalse(RHS->getContext());
   2446     }
   2447   }
   2448 
   2449   // Compare of cast, for example (zext X) != 0 -> X != 0
   2450   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
   2451     Instruction *LI = cast<CastInst>(LHS);
   2452     Value *SrcOp = LI->getOperand(0);
   2453     Type *SrcTy = SrcOp->getType();
   2454     Type *DstTy = LI->getType();
   2455 
   2456     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
   2457     // if the integer type is the same size as the pointer type.
   2458     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
   2459         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
   2460       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
   2461         // Transfer the cast to the constant.
   2462         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
   2463                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
   2464                                         Q, MaxRecurse-1))
   2465           return V;
   2466       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
   2467         if (RI->getOperand(0)->getType() == SrcTy)
   2468           // Compare without the cast.
   2469           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   2470                                           Q, MaxRecurse-1))
   2471             return V;
   2472       }
   2473     }
   2474 
   2475     if (isa<ZExtInst>(LHS)) {
   2476       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
   2477       // same type.
   2478       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
   2479         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   2480           // Compare X and Y.  Note that signed predicates become unsigned.
   2481           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   2482                                           SrcOp, RI->getOperand(0), Q,
   2483                                           MaxRecurse-1))
   2484             return V;
   2485       }
   2486       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
   2487       // too.  If not, then try to deduce the result of the comparison.
   2488       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   2489         // Compute the constant that would happen if we truncated to SrcTy then
   2490         // reextended to DstTy.
   2491         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   2492         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
   2493 
   2494         // If the re-extended constant didn't change then this is effectively
   2495         // also a case of comparing two zero-extended values.
   2496         if (RExt == CI && MaxRecurse)
   2497           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
   2498                                         SrcOp, Trunc, Q, MaxRecurse-1))
   2499             return V;
   2500 
   2501         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
   2502         // there.  Use this to work out the result of the comparison.
   2503         if (RExt != CI) {
   2504           switch (Pred) {
   2505           default: llvm_unreachable("Unknown ICmp predicate!");
   2506           // LHS <u RHS.
   2507           case ICmpInst::ICMP_EQ:
   2508           case ICmpInst::ICMP_UGT:
   2509           case ICmpInst::ICMP_UGE:
   2510             return ConstantInt::getFalse(CI->getContext());
   2511 
   2512           case ICmpInst::ICMP_NE:
   2513           case ICmpInst::ICMP_ULT:
   2514           case ICmpInst::ICMP_ULE:
   2515             return ConstantInt::getTrue(CI->getContext());
   2516 
   2517           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
   2518           // is non-negative then LHS <s RHS.
   2519           case ICmpInst::ICMP_SGT:
   2520           case ICmpInst::ICMP_SGE:
   2521             return CI->getValue().isNegative() ?
   2522               ConstantInt::getTrue(CI->getContext()) :
   2523               ConstantInt::getFalse(CI->getContext());
   2524 
   2525           case ICmpInst::ICMP_SLT:
   2526           case ICmpInst::ICMP_SLE:
   2527             return CI->getValue().isNegative() ?
   2528               ConstantInt::getFalse(CI->getContext()) :
   2529               ConstantInt::getTrue(CI->getContext());
   2530           }
   2531         }
   2532       }
   2533     }
   2534 
   2535     if (isa<SExtInst>(LHS)) {
   2536       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
   2537       // same type.
   2538       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
   2539         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
   2540           // Compare X and Y.  Note that the predicate does not change.
   2541           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
   2542                                           Q, MaxRecurse-1))
   2543             return V;
   2544       }
   2545       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
   2546       // too.  If not, then try to deduce the result of the comparison.
   2547       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   2548         // Compute the constant that would happen if we truncated to SrcTy then
   2549         // reextended to DstTy.
   2550         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
   2551         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
   2552 
   2553         // If the re-extended constant didn't change then this is effectively
   2554         // also a case of comparing two sign-extended values.
   2555         if (RExt == CI && MaxRecurse)
   2556           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
   2557             return V;
   2558 
   2559         // Otherwise the upper bits of LHS are all equal, while RHS has varying
   2560         // bits there.  Use this to work out the result of the comparison.
   2561         if (RExt != CI) {
   2562           switch (Pred) {
   2563           default: llvm_unreachable("Unknown ICmp predicate!");
   2564           case ICmpInst::ICMP_EQ:
   2565             return ConstantInt::getFalse(CI->getContext());
   2566           case ICmpInst::ICMP_NE:
   2567             return ConstantInt::getTrue(CI->getContext());
   2568 
   2569           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
   2570           // LHS >s RHS.
   2571           case ICmpInst::ICMP_SGT:
   2572           case ICmpInst::ICMP_SGE:
   2573             return CI->getValue().isNegative() ?
   2574               ConstantInt::getTrue(CI->getContext()) :
   2575               ConstantInt::getFalse(CI->getContext());
   2576           case ICmpInst::ICMP_SLT:
   2577           case ICmpInst::ICMP_SLE:
   2578             return CI->getValue().isNegative() ?
   2579               ConstantInt::getFalse(CI->getContext()) :
   2580               ConstantInt::getTrue(CI->getContext());
   2581 
   2582           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
   2583           // LHS >u RHS.
   2584           case ICmpInst::ICMP_UGT:
   2585           case ICmpInst::ICMP_UGE:
   2586             // Comparison is true iff the LHS <s 0.
   2587             if (MaxRecurse)
   2588               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
   2589                                               Constant::getNullValue(SrcTy),
   2590                                               Q, MaxRecurse-1))
   2591                 return V;
   2592             break;
   2593           case ICmpInst::ICMP_ULT:
   2594           case ICmpInst::ICMP_ULE:
   2595             // Comparison is true iff the LHS >=s 0.
   2596             if (MaxRecurse)
   2597               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
   2598                                               Constant::getNullValue(SrcTy),
   2599                                               Q, MaxRecurse-1))
   2600                 return V;
   2601             break;
   2602           }
   2603         }
   2604       }
   2605     }
   2606   }
   2607 
   2608   // icmp eq|ne X, Y -> false|true if X != Y
   2609   if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
   2610       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
   2611     LLVMContext &Ctx = LHS->getType()->getContext();
   2612     return Pred == ICmpInst::ICMP_NE ?
   2613       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
   2614   }
   2615 
   2616   // Special logic for binary operators.
   2617   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
   2618   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
   2619   if (MaxRecurse && (LBO || RBO)) {
   2620     // Analyze the case when either LHS or RHS is an add instruction.
   2621     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
   2622     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
   2623     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
   2624     if (LBO && LBO->getOpcode() == Instruction::Add) {
   2625       A = LBO->getOperand(0); B = LBO->getOperand(1);
   2626       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
   2627         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
   2628         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
   2629     }
   2630     if (RBO && RBO->getOpcode() == Instruction::Add) {
   2631       C = RBO->getOperand(0); D = RBO->getOperand(1);
   2632       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
   2633         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
   2634         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
   2635     }
   2636 
   2637     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2638     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
   2639       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
   2640                                       Constant::getNullValue(RHS->getType()),
   2641                                       Q, MaxRecurse-1))
   2642         return V;
   2643 
   2644     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2645     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
   2646       if (Value *V = SimplifyICmpInst(Pred,
   2647                                       Constant::getNullValue(LHS->getType()),
   2648                                       C == LHS ? D : C, Q, MaxRecurse-1))
   2649         return V;
   2650 
   2651     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
   2652     if (A && C && (A == C || A == D || B == C || B == D) &&
   2653         NoLHSWrapProblem && NoRHSWrapProblem) {
   2654       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2655       Value *Y, *Z;
   2656       if (A == C) {
   2657         // C + B == C + D  ->  B == D
   2658         Y = B;
   2659         Z = D;
   2660       } else if (A == D) {
   2661         // D + B == C + D  ->  B == C
   2662         Y = B;
   2663         Z = C;
   2664       } else if (B == C) {
   2665         // A + C == C + D  ->  A == D
   2666         Y = A;
   2667         Z = D;
   2668       } else {
   2669         assert(B == D);
   2670         // A + D == C + D  ->  A == C
   2671         Y = A;
   2672         Z = C;
   2673       }
   2674       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
   2675         return V;
   2676     }
   2677   }
   2678 
   2679   {
   2680     Value *Y = nullptr;
   2681     // icmp pred (or X, Y), X
   2682     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
   2683       if (Pred == ICmpInst::ICMP_ULT)
   2684         return getFalse(ITy);
   2685       if (Pred == ICmpInst::ICMP_UGE)
   2686         return getTrue(ITy);
   2687 
   2688       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
   2689         bool RHSKnownNonNegative, RHSKnownNegative;
   2690         bool YKnownNonNegative, YKnownNegative;
   2691         ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0,
   2692                        Q.AC, Q.CxtI, Q.DT);
   2693         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
   2694                        Q.CxtI, Q.DT);
   2695         if (RHSKnownNonNegative && YKnownNegative)
   2696           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
   2697         if (RHSKnownNegative || YKnownNonNegative)
   2698           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
   2699       }
   2700     }
   2701     // icmp pred X, (or X, Y)
   2702     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
   2703       if (Pred == ICmpInst::ICMP_ULE)
   2704         return getTrue(ITy);
   2705       if (Pred == ICmpInst::ICMP_UGT)
   2706         return getFalse(ITy);
   2707 
   2708       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
   2709         bool LHSKnownNonNegative, LHSKnownNegative;
   2710         bool YKnownNonNegative, YKnownNegative;
   2711         ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0,
   2712                        Q.AC, Q.CxtI, Q.DT);
   2713         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
   2714                        Q.CxtI, Q.DT);
   2715         if (LHSKnownNonNegative && YKnownNegative)
   2716           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
   2717         if (LHSKnownNegative || YKnownNonNegative)
   2718           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
   2719       }
   2720     }
   2721   }
   2722 
   2723   // icmp pred (and X, Y), X
   2724   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
   2725                                     m_And(m_Specific(RHS), m_Value())))) {
   2726     if (Pred == ICmpInst::ICMP_UGT)
   2727       return getFalse(ITy);
   2728     if (Pred == ICmpInst::ICMP_ULE)
   2729       return getTrue(ITy);
   2730   }
   2731   // icmp pred X, (and X, Y)
   2732   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
   2733                                     m_And(m_Specific(LHS), m_Value())))) {
   2734     if (Pred == ICmpInst::ICMP_UGE)
   2735       return getTrue(ITy);
   2736     if (Pred == ICmpInst::ICMP_ULT)
   2737       return getFalse(ITy);
   2738   }
   2739 
   2740   // 0 - (zext X) pred C
   2741   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
   2742     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
   2743       if (RHSC->getValue().isStrictlyPositive()) {
   2744         if (Pred == ICmpInst::ICMP_SLT)
   2745           return ConstantInt::getTrue(RHSC->getContext());
   2746         if (Pred == ICmpInst::ICMP_SGE)
   2747           return ConstantInt::getFalse(RHSC->getContext());
   2748         if (Pred == ICmpInst::ICMP_EQ)
   2749           return ConstantInt::getFalse(RHSC->getContext());
   2750         if (Pred == ICmpInst::ICMP_NE)
   2751           return ConstantInt::getTrue(RHSC->getContext());
   2752       }
   2753       if (RHSC->getValue().isNonNegative()) {
   2754         if (Pred == ICmpInst::ICMP_SLE)
   2755           return ConstantInt::getTrue(RHSC->getContext());
   2756         if (Pred == ICmpInst::ICMP_SGT)
   2757           return ConstantInt::getFalse(RHSC->getContext());
   2758       }
   2759     }
   2760   }
   2761 
   2762   // icmp pred (urem X, Y), Y
   2763   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
   2764     bool KnownNonNegative, KnownNegative;
   2765     switch (Pred) {
   2766     default:
   2767       break;
   2768     case ICmpInst::ICMP_SGT:
   2769     case ICmpInst::ICMP_SGE:
   2770       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
   2771                      Q.CxtI, Q.DT);
   2772       if (!KnownNonNegative)
   2773         break;
   2774       // fall-through
   2775     case ICmpInst::ICMP_EQ:
   2776     case ICmpInst::ICMP_UGT:
   2777     case ICmpInst::ICMP_UGE:
   2778       return getFalse(ITy);
   2779     case ICmpInst::ICMP_SLT:
   2780     case ICmpInst::ICMP_SLE:
   2781       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
   2782                      Q.CxtI, Q.DT);
   2783       if (!KnownNonNegative)
   2784         break;
   2785       // fall-through
   2786     case ICmpInst::ICMP_NE:
   2787     case ICmpInst::ICMP_ULT:
   2788     case ICmpInst::ICMP_ULE:
   2789       return getTrue(ITy);
   2790     }
   2791   }
   2792 
   2793   // icmp pred X, (urem Y, X)
   2794   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
   2795     bool KnownNonNegative, KnownNegative;
   2796     switch (Pred) {
   2797     default:
   2798       break;
   2799     case ICmpInst::ICMP_SGT:
   2800     case ICmpInst::ICMP_SGE:
   2801       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
   2802                      Q.CxtI, Q.DT);
   2803       if (!KnownNonNegative)
   2804         break;
   2805       // fall-through
   2806     case ICmpInst::ICMP_NE:
   2807     case ICmpInst::ICMP_UGT:
   2808     case ICmpInst::ICMP_UGE:
   2809       return getTrue(ITy);
   2810     case ICmpInst::ICMP_SLT:
   2811     case ICmpInst::ICMP_SLE:
   2812       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
   2813                      Q.CxtI, Q.DT);
   2814       if (!KnownNonNegative)
   2815         break;
   2816       // fall-through
   2817     case ICmpInst::ICMP_EQ:
   2818     case ICmpInst::ICMP_ULT:
   2819     case ICmpInst::ICMP_ULE:
   2820       return getFalse(ITy);
   2821     }
   2822   }
   2823 
   2824   // x >> y <=u x
   2825   // x udiv y <=u x.
   2826   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
   2827               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
   2828     // icmp pred (X op Y), X
   2829     if (Pred == ICmpInst::ICMP_UGT)
   2830       return getFalse(ITy);
   2831     if (Pred == ICmpInst::ICMP_ULE)
   2832       return getTrue(ITy);
   2833   }
   2834 
   2835   // handle:
   2836   //   CI2 << X == CI
   2837   //   CI2 << X != CI
   2838   //
   2839   //   where CI2 is a power of 2 and CI isn't
   2840   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
   2841     const APInt *CI2Val, *CIVal = &CI->getValue();
   2842     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
   2843         CI2Val->isPowerOf2()) {
   2844       if (!CIVal->isPowerOf2()) {
   2845         // CI2 << X can equal zero in some circumstances,
   2846         // this simplification is unsafe if CI is zero.
   2847         //
   2848         // We know it is safe if:
   2849         // - The shift is nsw, we can't shift out the one bit.
   2850         // - The shift is nuw, we can't shift out the one bit.
   2851         // - CI2 is one
   2852         // - CI isn't zero
   2853         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
   2854             *CI2Val == 1 || !CI->isZero()) {
   2855           if (Pred == ICmpInst::ICMP_EQ)
   2856             return ConstantInt::getFalse(RHS->getContext());
   2857           if (Pred == ICmpInst::ICMP_NE)
   2858             return ConstantInt::getTrue(RHS->getContext());
   2859         }
   2860       }
   2861       if (CIVal->isSignBit() && *CI2Val == 1) {
   2862         if (Pred == ICmpInst::ICMP_UGT)
   2863           return ConstantInt::getFalse(RHS->getContext());
   2864         if (Pred == ICmpInst::ICMP_ULE)
   2865           return ConstantInt::getTrue(RHS->getContext());
   2866       }
   2867     }
   2868   }
   2869 
   2870   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
   2871       LBO->getOperand(1) == RBO->getOperand(1)) {
   2872     switch (LBO->getOpcode()) {
   2873     default: break;
   2874     case Instruction::UDiv:
   2875     case Instruction::LShr:
   2876       if (ICmpInst::isSigned(Pred))
   2877         break;
   2878       // fall-through
   2879     case Instruction::SDiv:
   2880     case Instruction::AShr:
   2881       if (!LBO->isExact() || !RBO->isExact())
   2882         break;
   2883       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2884                                       RBO->getOperand(0), Q, MaxRecurse-1))
   2885         return V;
   2886       break;
   2887     case Instruction::Shl: {
   2888       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
   2889       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
   2890       if (!NUW && !NSW)
   2891         break;
   2892       if (!NSW && ICmpInst::isSigned(Pred))
   2893         break;
   2894       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
   2895                                       RBO->getOperand(0), Q, MaxRecurse-1))
   2896         return V;
   2897       break;
   2898     }
   2899     }
   2900   }
   2901 
   2902   // Simplify comparisons involving max/min.
   2903   Value *A, *B;
   2904   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
   2905   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
   2906 
   2907   // Signed variants on "max(a,b)>=a -> true".
   2908   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   2909     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
   2910     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   2911     // We analyze this as smax(A, B) pred A.
   2912     P = Pred;
   2913   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
   2914              (A == LHS || B == LHS)) {
   2915     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
   2916     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
   2917     // We analyze this as smax(A, B) swapped-pred A.
   2918     P = CmpInst::getSwappedPredicate(Pred);
   2919   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   2920              (A == RHS || B == RHS)) {
   2921     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
   2922     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   2923     // We analyze this as smax(-A, -B) swapped-pred -A.
   2924     // Note that we do not need to actually form -A or -B thanks to EqP.
   2925     P = CmpInst::getSwappedPredicate(Pred);
   2926   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
   2927              (A == LHS || B == LHS)) {
   2928     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
   2929     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
   2930     // We analyze this as smax(-A, -B) pred -A.
   2931     // Note that we do not need to actually form -A or -B thanks to EqP.
   2932     P = Pred;
   2933   }
   2934   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   2935     // Cases correspond to "max(A, B) p A".
   2936     switch (P) {
   2937     default:
   2938       break;
   2939     case CmpInst::ICMP_EQ:
   2940     case CmpInst::ICMP_SLE:
   2941       // Equivalent to "A EqP B".  This may be the same as the condition tested
   2942       // in the max/min; if so, we can just return that.
   2943       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   2944         return V;
   2945       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   2946         return V;
   2947       // Otherwise, see if "A EqP B" simplifies.
   2948       if (MaxRecurse)
   2949         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
   2950           return V;
   2951       break;
   2952     case CmpInst::ICMP_NE:
   2953     case CmpInst::ICMP_SGT: {
   2954       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   2955       // Equivalent to "A InvEqP B".  This may be the same as the condition
   2956       // tested in the max/min; if so, we can just return that.
   2957       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   2958         return V;
   2959       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   2960         return V;
   2961       // Otherwise, see if "A InvEqP B" simplifies.
   2962       if (MaxRecurse)
   2963         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
   2964           return V;
   2965       break;
   2966     }
   2967     case CmpInst::ICMP_SGE:
   2968       // Always true.
   2969       return getTrue(ITy);
   2970     case CmpInst::ICMP_SLT:
   2971       // Always false.
   2972       return getFalse(ITy);
   2973     }
   2974   }
   2975 
   2976   // Unsigned variants on "max(a,b)>=a -> true".
   2977   P = CmpInst::BAD_ICMP_PREDICATE;
   2978   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
   2979     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
   2980     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   2981     // We analyze this as umax(A, B) pred A.
   2982     P = Pred;
   2983   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
   2984              (A == LHS || B == LHS)) {
   2985     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
   2986     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
   2987     // We analyze this as umax(A, B) swapped-pred A.
   2988     P = CmpInst::getSwappedPredicate(Pred);
   2989   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   2990              (A == RHS || B == RHS)) {
   2991     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
   2992     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   2993     // We analyze this as umax(-A, -B) swapped-pred -A.
   2994     // Note that we do not need to actually form -A or -B thanks to EqP.
   2995     P = CmpInst::getSwappedPredicate(Pred);
   2996   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
   2997              (A == LHS || B == LHS)) {
   2998     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
   2999     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
   3000     // We analyze this as umax(-A, -B) pred -A.
   3001     // Note that we do not need to actually form -A or -B thanks to EqP.
   3002     P = Pred;
   3003   }
   3004   if (P != CmpInst::BAD_ICMP_PREDICATE) {
   3005     // Cases correspond to "max(A, B) p A".
   3006     switch (P) {
   3007     default:
   3008       break;
   3009     case CmpInst::ICMP_EQ:
   3010     case CmpInst::ICMP_ULE:
   3011       // Equivalent to "A EqP B".  This may be the same as the condition tested
   3012       // in the max/min; if so, we can just return that.
   3013       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
   3014         return V;
   3015       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
   3016         return V;
   3017       // Otherwise, see if "A EqP B" simplifies.
   3018       if (MaxRecurse)
   3019         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
   3020           return V;
   3021       break;
   3022     case CmpInst::ICMP_NE:
   3023     case CmpInst::ICMP_UGT: {
   3024       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
   3025       // Equivalent to "A InvEqP B".  This may be the same as the condition
   3026       // tested in the max/min; if so, we can just return that.
   3027       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
   3028         return V;
   3029       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
   3030         return V;
   3031       // Otherwise, see if "A InvEqP B" simplifies.
   3032       if (MaxRecurse)
   3033         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
   3034           return V;
   3035       break;
   3036     }
   3037     case CmpInst::ICMP_UGE:
   3038       // Always true.
   3039       return getTrue(ITy);
   3040     case CmpInst::ICMP_ULT:
   3041       // Always false.
   3042       return getFalse(ITy);
   3043     }
   3044   }
   3045 
   3046   // Variants on "max(x,y) >= min(x,z)".
   3047   Value *C, *D;
   3048   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
   3049       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
   3050       (A == C || A == D || B == C || B == D)) {
   3051     // max(x, ?) pred min(x, ?).
   3052     if (Pred == CmpInst::ICMP_SGE)
   3053       // Always true.
   3054       return getTrue(ITy);
   3055     if (Pred == CmpInst::ICMP_SLT)
   3056       // Always false.
   3057       return getFalse(ITy);
   3058   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
   3059              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
   3060              (A == C || A == D || B == C || B == D)) {
   3061     // min(x, ?) pred max(x, ?).
   3062     if (Pred == CmpInst::ICMP_SLE)
   3063       // Always true.
   3064       return getTrue(ITy);
   3065     if (Pred == CmpInst::ICMP_SGT)
   3066       // Always false.
   3067       return getFalse(ITy);
   3068   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
   3069              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
   3070              (A == C || A == D || B == C || B == D)) {
   3071     // max(x, ?) pred min(x, ?).
   3072     if (Pred == CmpInst::ICMP_UGE)
   3073       // Always true.
   3074       return getTrue(ITy);
   3075     if (Pred == CmpInst::ICMP_ULT)
   3076       // Always false.
   3077       return getFalse(ITy);
   3078   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
   3079              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
   3080              (A == C || A == D || B == C || B == D)) {
   3081     // min(x, ?) pred max(x, ?).
   3082     if (Pred == CmpInst::ICMP_ULE)
   3083       // Always true.
   3084       return getTrue(ITy);
   3085     if (Pred == CmpInst::ICMP_UGT)
   3086       // Always false.
   3087       return getFalse(ITy);
   3088   }
   3089 
   3090   // Simplify comparisons of related pointers using a powerful, recursive
   3091   // GEP-walk when we have target data available..
   3092   if (LHS->getType()->isPointerTy())
   3093     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS))
   3094       return C;
   3095 
   3096   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
   3097     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
   3098       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
   3099           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
   3100           (ICmpInst::isEquality(Pred) ||
   3101            (GLHS->isInBounds() && GRHS->isInBounds() &&
   3102             Pred == ICmpInst::getSignedPredicate(Pred)))) {
   3103         // The bases are equal and the indices are constant.  Build a constant
   3104         // expression GEP with the same indices and a null base pointer to see
   3105         // what constant folding can make out of it.
   3106         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
   3107         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
   3108         Constant *NewLHS = ConstantExpr::getGetElementPtr(
   3109             GLHS->getSourceElementType(), Null, IndicesLHS);
   3110 
   3111         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
   3112         Constant *NewRHS = ConstantExpr::getGetElementPtr(
   3113             GLHS->getSourceElementType(), Null, IndicesRHS);
   3114         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
   3115       }
   3116     }
   3117   }
   3118 
   3119   // If a bit is known to be zero for A and known to be one for B,
   3120   // then A and B cannot be equal.
   3121   if (ICmpInst::isEquality(Pred)) {
   3122     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   3123       uint32_t BitWidth = CI->getBitWidth();
   3124       APInt LHSKnownZero(BitWidth, 0);
   3125       APInt LHSKnownOne(BitWidth, 0);
   3126       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
   3127                        Q.CxtI, Q.DT);
   3128       const APInt &RHSVal = CI->getValue();
   3129       if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
   3130         return Pred == ICmpInst::ICMP_EQ
   3131                    ? ConstantInt::getFalse(CI->getContext())
   3132                    : ConstantInt::getTrue(CI->getContext());
   3133     }
   3134   }
   3135 
   3136   // If the comparison is with the result of a select instruction, check whether
   3137   // comparing with either branch of the select always yields the same value.
   3138   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   3139     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
   3140       return V;
   3141 
   3142   // If the comparison is with the result of a phi instruction, check whether
   3143   // doing the compare with each incoming phi value yields a common result.
   3144   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   3145     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
   3146       return V;
   3147 
   3148   return nullptr;
   3149 }
   3150 
   3151 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3152                               const DataLayout &DL,
   3153                               const TargetLibraryInfo *TLI,
   3154                               const DominatorTree *DT, AssumptionCache *AC,
   3155                               const Instruction *CxtI) {
   3156   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
   3157                             RecursionLimit);
   3158 }
   3159 
   3160 /// Given operands for an FCmpInst, see if we can fold the result.
   3161 /// If not, this returns null.
   3162 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3163                                FastMathFlags FMF, const Query &Q,
   3164                                unsigned MaxRecurse) {
   3165   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
   3166   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
   3167 
   3168   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
   3169     if (Constant *CRHS = dyn_cast<Constant>(RHS))
   3170       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
   3171 
   3172     // If we have a constant, make sure it is on the RHS.
   3173     std::swap(LHS, RHS);
   3174     Pred = CmpInst::getSwappedPredicate(Pred);
   3175   }
   3176 
   3177   // Fold trivial predicates.
   3178   if (Pred == FCmpInst::FCMP_FALSE)
   3179     return ConstantInt::get(GetCompareTy(LHS), 0);
   3180   if (Pred == FCmpInst::FCMP_TRUE)
   3181     return ConstantInt::get(GetCompareTy(LHS), 1);
   3182 
   3183   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
   3184   if (FMF.noNaNs()) {
   3185     if (Pred == FCmpInst::FCMP_UNO)
   3186       return ConstantInt::get(GetCompareTy(LHS), 0);
   3187     if (Pred == FCmpInst::FCMP_ORD)
   3188       return ConstantInt::get(GetCompareTy(LHS), 1);
   3189   }
   3190 
   3191   // fcmp pred x, undef  and  fcmp pred undef, x
   3192   // fold to true if unordered, false if ordered
   3193   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
   3194     // Choosing NaN for the undef will always make unordered comparison succeed
   3195     // and ordered comparison fail.
   3196     return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred));
   3197   }
   3198 
   3199   // fcmp x,x -> true/false.  Not all compares are foldable.
   3200   if (LHS == RHS) {
   3201     if (CmpInst::isTrueWhenEqual(Pred))
   3202       return ConstantInt::get(GetCompareTy(LHS), 1);
   3203     if (CmpInst::isFalseWhenEqual(Pred))
   3204       return ConstantInt::get(GetCompareTy(LHS), 0);
   3205   }
   3206 
   3207   // Handle fcmp with constant RHS
   3208   const ConstantFP *CFP = nullptr;
   3209   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
   3210     if (RHS->getType()->isVectorTy())
   3211       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
   3212     else
   3213       CFP = dyn_cast<ConstantFP>(RHSC);
   3214   }
   3215   if (CFP) {
   3216     // If the constant is a nan, see if we can fold the comparison based on it.
   3217     if (CFP->getValueAPF().isNaN()) {
   3218       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
   3219         return ConstantInt::getFalse(CFP->getContext());
   3220       assert(FCmpInst::isUnordered(Pred) &&
   3221              "Comparison must be either ordered or unordered!");
   3222       // True if unordered.
   3223       return ConstantInt::get(GetCompareTy(LHS), 1);
   3224     }
   3225     // Check whether the constant is an infinity.
   3226     if (CFP->getValueAPF().isInfinity()) {
   3227       if (CFP->getValueAPF().isNegative()) {
   3228         switch (Pred) {
   3229         case FCmpInst::FCMP_OLT:
   3230           // No value is ordered and less than negative infinity.
   3231           return ConstantInt::get(GetCompareTy(LHS), 0);
   3232         case FCmpInst::FCMP_UGE:
   3233           // All values are unordered with or at least negative infinity.
   3234           return ConstantInt::get(GetCompareTy(LHS), 1);
   3235         default:
   3236           break;
   3237         }
   3238       } else {
   3239         switch (Pred) {
   3240         case FCmpInst::FCMP_OGT:
   3241           // No value is ordered and greater than infinity.
   3242           return ConstantInt::get(GetCompareTy(LHS), 0);
   3243         case FCmpInst::FCMP_ULE:
   3244           // All values are unordered with and at most infinity.
   3245           return ConstantInt::get(GetCompareTy(LHS), 1);
   3246         default:
   3247           break;
   3248         }
   3249       }
   3250     }
   3251     if (CFP->getValueAPF().isZero()) {
   3252       switch (Pred) {
   3253       case FCmpInst::FCMP_UGE:
   3254         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
   3255           return ConstantInt::get(GetCompareTy(LHS), 1);
   3256         break;
   3257       case FCmpInst::FCMP_OLT:
   3258         // X < 0
   3259         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
   3260           return ConstantInt::get(GetCompareTy(LHS), 0);
   3261         break;
   3262       default:
   3263         break;
   3264       }
   3265     }
   3266   }
   3267 
   3268   // If the comparison is with the result of a select instruction, check whether
   3269   // comparing with either branch of the select always yields the same value.
   3270   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   3271     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
   3272       return V;
   3273 
   3274   // If the comparison is with the result of a phi instruction, check whether
   3275   // doing the compare with each incoming phi value yields a common result.
   3276   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   3277     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
   3278       return V;
   3279 
   3280   return nullptr;
   3281 }
   3282 
   3283 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3284                               FastMathFlags FMF, const DataLayout &DL,
   3285                               const TargetLibraryInfo *TLI,
   3286                               const DominatorTree *DT, AssumptionCache *AC,
   3287                               const Instruction *CxtI) {
   3288   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
   3289                             Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
   3290 }
   3291 
   3292 /// See if V simplifies when its operand Op is replaced with RepOp.
   3293 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
   3294                                            const Query &Q,
   3295                                            unsigned MaxRecurse) {
   3296   // Trivial replacement.
   3297   if (V == Op)
   3298     return RepOp;
   3299 
   3300   auto *I = dyn_cast<Instruction>(V);
   3301   if (!I)
   3302     return nullptr;
   3303 
   3304   // If this is a binary operator, try to simplify it with the replaced op.
   3305   if (auto *B = dyn_cast<BinaryOperator>(I)) {
   3306     // Consider:
   3307     //   %cmp = icmp eq i32 %x, 2147483647
   3308     //   %add = add nsw i32 %x, 1
   3309     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
   3310     //
   3311     // We can't replace %sel with %add unless we strip away the flags.
   3312     if (isa<OverflowingBinaryOperator>(B))
   3313       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
   3314         return nullptr;
   3315     if (isa<PossiblyExactOperator>(B))
   3316       if (B->isExact())
   3317         return nullptr;
   3318 
   3319     if (MaxRecurse) {
   3320       if (B->getOperand(0) == Op)
   3321         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
   3322                              MaxRecurse - 1);
   3323       if (B->getOperand(1) == Op)
   3324         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
   3325                              MaxRecurse - 1);
   3326     }
   3327   }
   3328 
   3329   // Same for CmpInsts.
   3330   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
   3331     if (MaxRecurse) {
   3332       if (C->getOperand(0) == Op)
   3333         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
   3334                                MaxRecurse - 1);
   3335       if (C->getOperand(1) == Op)
   3336         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
   3337                                MaxRecurse - 1);
   3338     }
   3339   }
   3340 
   3341   // TODO: We could hand off more cases to instsimplify here.
   3342 
   3343   // If all operands are constant after substituting Op for RepOp then we can
   3344   // constant fold the instruction.
   3345   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
   3346     // Build a list of all constant operands.
   3347     SmallVector<Constant *, 8> ConstOps;
   3348     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   3349       if (I->getOperand(i) == Op)
   3350         ConstOps.push_back(CRepOp);
   3351       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
   3352         ConstOps.push_back(COp);
   3353       else
   3354         break;
   3355     }
   3356 
   3357     // All operands were constants, fold it.
   3358     if (ConstOps.size() == I->getNumOperands()) {
   3359       if (CmpInst *C = dyn_cast<CmpInst>(I))
   3360         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
   3361                                                ConstOps[1], Q.DL, Q.TLI);
   3362 
   3363       if (LoadInst *LI = dyn_cast<LoadInst>(I))
   3364         if (!LI->isVolatile())
   3365           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
   3366 
   3367       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
   3368     }
   3369   }
   3370 
   3371   return nullptr;
   3372 }
   3373 
   3374 /// Given operands for a SelectInst, see if we can fold the result.
   3375 /// If not, this returns null.
   3376 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
   3377                                  Value *FalseVal, const Query &Q,
   3378                                  unsigned MaxRecurse) {
   3379   // select true, X, Y  -> X
   3380   // select false, X, Y -> Y
   3381   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
   3382     if (CB->isAllOnesValue())
   3383       return TrueVal;
   3384     if (CB->isNullValue())
   3385       return FalseVal;
   3386   }
   3387 
   3388   // select C, X, X -> X
   3389   if (TrueVal == FalseVal)
   3390     return TrueVal;
   3391 
   3392   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
   3393     if (isa<Constant>(TrueVal))
   3394       return TrueVal;
   3395     return FalseVal;
   3396   }
   3397   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
   3398     return FalseVal;
   3399   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
   3400     return TrueVal;
   3401 
   3402   if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) {
   3403     unsigned BitWidth = Q.DL.getTypeSizeInBits(TrueVal->getType());
   3404     ICmpInst::Predicate Pred = ICI->getPredicate();
   3405     Value *CmpLHS = ICI->getOperand(0);
   3406     Value *CmpRHS = ICI->getOperand(1);
   3407     APInt MinSignedValue = APInt::getSignBit(BitWidth);
   3408     Value *X;
   3409     const APInt *Y;
   3410     bool TrueWhenUnset;
   3411     bool IsBitTest = false;
   3412     if (ICmpInst::isEquality(Pred) &&
   3413         match(CmpLHS, m_And(m_Value(X), m_APInt(Y))) &&
   3414         match(CmpRHS, m_Zero())) {
   3415       IsBitTest = true;
   3416       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
   3417     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
   3418       X = CmpLHS;
   3419       Y = &MinSignedValue;
   3420       IsBitTest = true;
   3421       TrueWhenUnset = false;
   3422     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
   3423       X = CmpLHS;
   3424       Y = &MinSignedValue;
   3425       IsBitTest = true;
   3426       TrueWhenUnset = true;
   3427     }
   3428     if (IsBitTest) {
   3429       const APInt *C;
   3430       // (X & Y) == 0 ? X & ~Y : X  --> X
   3431       // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
   3432       if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
   3433           *Y == ~*C)
   3434         return TrueWhenUnset ? FalseVal : TrueVal;
   3435       // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
   3436       // (X & Y) != 0 ? X : X & ~Y  --> X
   3437       if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
   3438           *Y == ~*C)
   3439         return TrueWhenUnset ? FalseVal : TrueVal;
   3440 
   3441       if (Y->isPowerOf2()) {
   3442         // (X & Y) == 0 ? X | Y : X  --> X | Y
   3443         // (X & Y) != 0 ? X | Y : X  --> X
   3444         if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
   3445             *Y == *C)
   3446           return TrueWhenUnset ? TrueVal : FalseVal;
   3447         // (X & Y) == 0 ? X : X | Y  --> X
   3448         // (X & Y) != 0 ? X : X | Y  --> X | Y
   3449         if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
   3450             *Y == *C)
   3451           return TrueWhenUnset ? TrueVal : FalseVal;
   3452       }
   3453     }
   3454     if (ICI->hasOneUse()) {
   3455       const APInt *C;
   3456       if (match(CmpRHS, m_APInt(C))) {
   3457         // X < MIN ? T : F  -->  F
   3458         if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
   3459           return FalseVal;
   3460         // X < MIN ? T : F  -->  F
   3461         if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
   3462           return FalseVal;
   3463         // X > MAX ? T : F  -->  F
   3464         if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
   3465           return FalseVal;
   3466         // X > MAX ? T : F  -->  F
   3467         if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
   3468           return FalseVal;
   3469       }
   3470     }
   3471 
   3472     // If we have an equality comparison then we know the value in one of the
   3473     // arms of the select. See if substituting this value into the arm and
   3474     // simplifying the result yields the same value as the other arm.
   3475     if (Pred == ICmpInst::ICMP_EQ) {
   3476       if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3477               TrueVal ||
   3478           SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3479               TrueVal)
   3480         return FalseVal;
   3481       if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3482               FalseVal ||
   3483           SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3484               FalseVal)
   3485         return FalseVal;
   3486     } else if (Pred == ICmpInst::ICMP_NE) {
   3487       if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3488               FalseVal ||
   3489           SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3490               FalseVal)
   3491         return TrueVal;
   3492       if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
   3493               TrueVal ||
   3494           SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
   3495               TrueVal)
   3496         return TrueVal;
   3497     }
   3498   }
   3499 
   3500   return nullptr;
   3501 }
   3502 
   3503 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
   3504                                 const DataLayout &DL,
   3505                                 const TargetLibraryInfo *TLI,
   3506                                 const DominatorTree *DT, AssumptionCache *AC,
   3507                                 const Instruction *CxtI) {
   3508   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
   3509                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
   3510 }
   3511 
   3512 /// Given operands for an GetElementPtrInst, see if we can fold the result.
   3513 /// If not, this returns null.
   3514 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
   3515                               const Query &Q, unsigned) {
   3516   // The type of the GEP pointer operand.
   3517   unsigned AS =
   3518       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
   3519 
   3520   // getelementptr P -> P.
   3521   if (Ops.size() == 1)
   3522     return Ops[0];
   3523 
   3524   // Compute the (pointer) type returned by the GEP instruction.
   3525   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
   3526   Type *GEPTy = PointerType::get(LastType, AS);
   3527   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
   3528     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
   3529 
   3530   if (isa<UndefValue>(Ops[0]))
   3531     return UndefValue::get(GEPTy);
   3532 
   3533   if (Ops.size() == 2) {
   3534     // getelementptr P, 0 -> P.
   3535     if (match(Ops[1], m_Zero()))
   3536       return Ops[0];
   3537 
   3538     Type *Ty = SrcTy;
   3539     if (Ty->isSized()) {
   3540       Value *P;
   3541       uint64_t C;
   3542       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
   3543       // getelementptr P, N -> P if P points to a type of zero size.
   3544       if (TyAllocSize == 0)
   3545         return Ops[0];
   3546 
   3547       // The following transforms are only safe if the ptrtoint cast
   3548       // doesn't truncate the pointers.
   3549       if (Ops[1]->getType()->getScalarSizeInBits() ==
   3550           Q.DL.getPointerSizeInBits(AS)) {
   3551         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
   3552           if (match(P, m_Zero()))
   3553             return Constant::getNullValue(GEPTy);
   3554           Value *Temp;
   3555           if (match(P, m_PtrToInt(m_Value(Temp))))
   3556             if (Temp->getType() == GEPTy)
   3557               return Temp;
   3558           return nullptr;
   3559         };
   3560 
   3561         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
   3562         if (TyAllocSize == 1 &&
   3563             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
   3564           if (Value *R = PtrToIntOrZero(P))
   3565             return R;
   3566 
   3567         // getelementptr V, (ashr (sub P, V), C) -> Q
   3568         // if P points to a type of size 1 << C.
   3569         if (match(Ops[1],
   3570                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
   3571                          m_ConstantInt(C))) &&
   3572             TyAllocSize == 1ULL << C)
   3573           if (Value *R = PtrToIntOrZero(P))
   3574             return R;
   3575 
   3576         // getelementptr V, (sdiv (sub P, V), C) -> Q
   3577         // if P points to a type of size C.
   3578         if (match(Ops[1],
   3579                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
   3580                          m_SpecificInt(TyAllocSize))))
   3581           if (Value *R = PtrToIntOrZero(P))
   3582             return R;
   3583       }
   3584     }
   3585   }
   3586 
   3587   // Check to see if this is constant foldable.
   3588   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   3589     if (!isa<Constant>(Ops[i]))
   3590       return nullptr;
   3591 
   3592   return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
   3593                                         Ops.slice(1));
   3594 }
   3595 
   3596 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
   3597                              const DataLayout &DL,
   3598                              const TargetLibraryInfo *TLI,
   3599                              const DominatorTree *DT, AssumptionCache *AC,
   3600                              const Instruction *CxtI) {
   3601   return ::SimplifyGEPInst(SrcTy, Ops,
   3602                            Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
   3603 }
   3604 
   3605 /// Given operands for an InsertValueInst, see if we can fold the result.
   3606 /// If not, this returns null.
   3607 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
   3608                                       ArrayRef<unsigned> Idxs, const Query &Q,
   3609                                       unsigned) {
   3610   if (Constant *CAgg = dyn_cast<Constant>(Agg))
   3611     if (Constant *CVal = dyn_cast<Constant>(Val))
   3612       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
   3613 
   3614   // insertvalue x, undef, n -> x
   3615   if (match(Val, m_Undef()))
   3616     return Agg;
   3617 
   3618   // insertvalue x, (extractvalue y, n), n
   3619   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
   3620     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
   3621         EV->getIndices() == Idxs) {
   3622       // insertvalue undef, (extractvalue y, n), n -> y
   3623       if (match(Agg, m_Undef()))
   3624         return EV->getAggregateOperand();
   3625 
   3626       // insertvalue y, (extractvalue y, n), n -> y
   3627       if (Agg == EV->getAggregateOperand())
   3628         return Agg;
   3629     }
   3630 
   3631   return nullptr;
   3632 }
   3633 
   3634 Value *llvm::SimplifyInsertValueInst(
   3635     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
   3636     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
   3637     const Instruction *CxtI) {
   3638   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
   3639                                    RecursionLimit);
   3640 }
   3641 
   3642 /// Given operands for an ExtractValueInst, see if we can fold the result.
   3643 /// If not, this returns null.
   3644 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
   3645                                        const Query &, unsigned) {
   3646   if (auto *CAgg = dyn_cast<Constant>(Agg))
   3647     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
   3648 
   3649   // extractvalue x, (insertvalue y, elt, n), n -> elt
   3650   unsigned NumIdxs = Idxs.size();
   3651   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
   3652        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
   3653     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
   3654     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
   3655     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
   3656     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
   3657         Idxs.slice(0, NumCommonIdxs)) {
   3658       if (NumIdxs == NumInsertValueIdxs)
   3659         return IVI->getInsertedValueOperand();
   3660       break;
   3661     }
   3662   }
   3663 
   3664   return nullptr;
   3665 }
   3666 
   3667 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
   3668                                       const DataLayout &DL,
   3669                                       const TargetLibraryInfo *TLI,
   3670                                       const DominatorTree *DT,
   3671                                       AssumptionCache *AC,
   3672                                       const Instruction *CxtI) {
   3673   return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
   3674                                     RecursionLimit);
   3675 }
   3676 
   3677 /// Given operands for an ExtractElementInst, see if we can fold the result.
   3678 /// If not, this returns null.
   3679 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
   3680                                          unsigned) {
   3681   if (auto *CVec = dyn_cast<Constant>(Vec)) {
   3682     if (auto *CIdx = dyn_cast<Constant>(Idx))
   3683       return ConstantFoldExtractElementInstruction(CVec, CIdx);
   3684 
   3685     // The index is not relevant if our vector is a splat.
   3686     if (auto *Splat = CVec->getSplatValue())
   3687       return Splat;
   3688 
   3689     if (isa<UndefValue>(Vec))
   3690       return UndefValue::get(Vec->getType()->getVectorElementType());
   3691   }
   3692 
   3693   // If extracting a specified index from the vector, see if we can recursively
   3694   // find a previously computed scalar that was inserted into the vector.
   3695   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
   3696     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
   3697       return Elt;
   3698 
   3699   return nullptr;
   3700 }
   3701 
   3702 Value *llvm::SimplifyExtractElementInst(
   3703     Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
   3704     const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
   3705   return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
   3706                                       RecursionLimit);
   3707 }
   3708 
   3709 /// See if we can fold the given phi. If not, returns null.
   3710 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
   3711   // If all of the PHI's incoming values are the same then replace the PHI node
   3712   // with the common value.
   3713   Value *CommonValue = nullptr;
   3714   bool HasUndefInput = false;
   3715   for (Value *Incoming : PN->incoming_values()) {
   3716     // If the incoming value is the phi node itself, it can safely be skipped.
   3717     if (Incoming == PN) continue;
   3718     if (isa<UndefValue>(Incoming)) {
   3719       // Remember that we saw an undef value, but otherwise ignore them.
   3720       HasUndefInput = true;
   3721       continue;
   3722     }
   3723     if (CommonValue && Incoming != CommonValue)
   3724       return nullptr;  // Not the same, bail out.
   3725     CommonValue = Incoming;
   3726   }
   3727 
   3728   // If CommonValue is null then all of the incoming values were either undef or
   3729   // equal to the phi node itself.
   3730   if (!CommonValue)
   3731     return UndefValue::get(PN->getType());
   3732 
   3733   // If we have a PHI node like phi(X, undef, X), where X is defined by some
   3734   // instruction, we cannot return X as the result of the PHI node unless it
   3735   // dominates the PHI block.
   3736   if (HasUndefInput)
   3737     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
   3738 
   3739   return CommonValue;
   3740 }
   3741 
   3742 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
   3743   if (Constant *C = dyn_cast<Constant>(Op))
   3744     return ConstantFoldCastOperand(Instruction::Trunc, C, Ty, Q.DL);
   3745 
   3746   return nullptr;
   3747 }
   3748 
   3749 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout &DL,
   3750                                const TargetLibraryInfo *TLI,
   3751                                const DominatorTree *DT, AssumptionCache *AC,
   3752                                const Instruction *CxtI) {
   3753   return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI),
   3754                              RecursionLimit);
   3755 }
   3756 
   3757 //=== Helper functions for higher up the class hierarchy.
   3758 
   3759 /// Given operands for a BinaryOperator, see if we can fold the result.
   3760 /// If not, this returns null.
   3761 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   3762                             const Query &Q, unsigned MaxRecurse) {
   3763   switch (Opcode) {
   3764   case Instruction::Add:
   3765     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   3766                            Q, MaxRecurse);
   3767   case Instruction::FAdd:
   3768     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3769 
   3770   case Instruction::Sub:
   3771     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   3772                            Q, MaxRecurse);
   3773   case Instruction::FSub:
   3774     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3775 
   3776   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
   3777   case Instruction::FMul:
   3778     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3779   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
   3780   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
   3781   case Instruction::FDiv:
   3782       return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3783   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
   3784   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
   3785   case Instruction::FRem:
   3786       return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3787   case Instruction::Shl:
   3788     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
   3789                            Q, MaxRecurse);
   3790   case Instruction::LShr:
   3791     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
   3792   case Instruction::AShr:
   3793     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
   3794   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
   3795   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
   3796   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
   3797   default:
   3798     if (Constant *CLHS = dyn_cast<Constant>(LHS))
   3799       if (Constant *CRHS = dyn_cast<Constant>(RHS))
   3800         return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
   3801 
   3802     // If the operation is associative, try some generic simplifications.
   3803     if (Instruction::isAssociative(Opcode))
   3804       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
   3805         return V;
   3806 
   3807     // If the operation is with the result of a select instruction check whether
   3808     // operating on either branch of the select always yields the same value.
   3809     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
   3810       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
   3811         return V;
   3812 
   3813     // If the operation is with the result of a phi instruction, check whether
   3814     // operating on all incoming values of the phi always yields the same value.
   3815     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
   3816       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
   3817         return V;
   3818 
   3819     return nullptr;
   3820   }
   3821 }
   3822 
   3823 /// Given operands for a BinaryOperator, see if we can fold the result.
   3824 /// If not, this returns null.
   3825 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
   3826 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
   3827 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   3828                               const FastMathFlags &FMF, const Query &Q,
   3829                               unsigned MaxRecurse) {
   3830   switch (Opcode) {
   3831   case Instruction::FAdd:
   3832     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
   3833   case Instruction::FSub:
   3834     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
   3835   case Instruction::FMul:
   3836     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
   3837   default:
   3838     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
   3839   }
   3840 }
   3841 
   3842 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   3843                            const DataLayout &DL, const TargetLibraryInfo *TLI,
   3844                            const DominatorTree *DT, AssumptionCache *AC,
   3845                            const Instruction *CxtI) {
   3846   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
   3847                          RecursionLimit);
   3848 }
   3849 
   3850 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
   3851                              const FastMathFlags &FMF, const DataLayout &DL,
   3852                              const TargetLibraryInfo *TLI,
   3853                              const DominatorTree *DT, AssumptionCache *AC,
   3854                              const Instruction *CxtI) {
   3855   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
   3856                            RecursionLimit);
   3857 }
   3858 
   3859 /// Given operands for a CmpInst, see if we can fold the result.
   3860 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3861                               const Query &Q, unsigned MaxRecurse) {
   3862   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
   3863     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
   3864   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
   3865 }
   3866 
   3867 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
   3868                              const DataLayout &DL, const TargetLibraryInfo *TLI,
   3869                              const DominatorTree *DT, AssumptionCache *AC,
   3870                              const Instruction *CxtI) {
   3871   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
   3872                            RecursionLimit);
   3873 }
   3874 
   3875 static bool IsIdempotent(Intrinsic::ID ID) {
   3876   switch (ID) {
   3877   default: return false;
   3878 
   3879   // Unary idempotent: f(f(x)) = f(x)
   3880   case Intrinsic::fabs:
   3881   case Intrinsic::floor:
   3882   case Intrinsic::ceil:
   3883   case Intrinsic::trunc:
   3884   case Intrinsic::rint:
   3885   case Intrinsic::nearbyint:
   3886   case Intrinsic::round:
   3887     return true;
   3888   }
   3889 }
   3890 
   3891 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
   3892                                    const DataLayout &DL) {
   3893   GlobalValue *PtrSym;
   3894   APInt PtrOffset;
   3895   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
   3896     return nullptr;
   3897 
   3898   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
   3899   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
   3900   Type *Int32PtrTy = Int32Ty->getPointerTo();
   3901   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
   3902 
   3903   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
   3904   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
   3905     return nullptr;
   3906 
   3907   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
   3908   if (OffsetInt % 4 != 0)
   3909     return nullptr;
   3910 
   3911   Constant *C = ConstantExpr::getGetElementPtr(
   3912       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
   3913       ConstantInt::get(Int64Ty, OffsetInt / 4));
   3914   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
   3915   if (!Loaded)
   3916     return nullptr;
   3917 
   3918   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
   3919   if (!LoadedCE)
   3920     return nullptr;
   3921 
   3922   if (LoadedCE->getOpcode() == Instruction::Trunc) {
   3923     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
   3924     if (!LoadedCE)
   3925       return nullptr;
   3926   }
   3927 
   3928   if (LoadedCE->getOpcode() != Instruction::Sub)
   3929     return nullptr;
   3930 
   3931   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
   3932   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
   3933     return nullptr;
   3934   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
   3935 
   3936   Constant *LoadedRHS = LoadedCE->getOperand(1);
   3937   GlobalValue *LoadedRHSSym;
   3938   APInt LoadedRHSOffset;
   3939   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
   3940                                   DL) ||
   3941       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
   3942     return nullptr;
   3943 
   3944   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
   3945 }
   3946 
   3947 static bool maskIsAllZeroOrUndef(Value *Mask) {
   3948   auto *ConstMask = dyn_cast<Constant>(Mask);
   3949   if (!ConstMask)
   3950     return false;
   3951   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
   3952     return true;
   3953   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
   3954        ++I) {
   3955     if (auto *MaskElt = ConstMask->getAggregateElement(I))
   3956       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
   3957         continue;
   3958     return false;
   3959   }
   3960   return true;
   3961 }
   3962 
   3963 template <typename IterTy>
   3964 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
   3965                                 const Query &Q, unsigned MaxRecurse) {
   3966   Intrinsic::ID IID = F->getIntrinsicID();
   3967   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
   3968   Type *ReturnType = F->getReturnType();
   3969 
   3970   // Binary Ops
   3971   if (NumOperands == 2) {
   3972     Value *LHS = *ArgBegin;
   3973     Value *RHS = *(ArgBegin + 1);
   3974     if (IID == Intrinsic::usub_with_overflow ||
   3975         IID == Intrinsic::ssub_with_overflow) {
   3976       // X - X -> { 0, false }
   3977       if (LHS == RHS)
   3978         return Constant::getNullValue(ReturnType);
   3979 
   3980       // X - undef -> undef
   3981       // undef - X -> undef
   3982       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
   3983         return UndefValue::get(ReturnType);
   3984     }
   3985 
   3986     if (IID == Intrinsic::uadd_with_overflow ||
   3987         IID == Intrinsic::sadd_with_overflow) {
   3988       // X + undef -> undef
   3989       if (isa<UndefValue>(RHS))
   3990         return UndefValue::get(ReturnType);
   3991     }
   3992 
   3993     if (IID == Intrinsic::umul_with_overflow ||
   3994         IID == Intrinsic::smul_with_overflow) {
   3995       // X * 0 -> { 0, false }
   3996       if (match(RHS, m_Zero()))
   3997         return Constant::getNullValue(ReturnType);
   3998 
   3999       // X * undef -> { 0, false }
   4000       if (match(RHS, m_Undef()))
   4001         return Constant::getNullValue(ReturnType);
   4002     }
   4003 
   4004     if (IID == Intrinsic::load_relative && isa<Constant>(LHS) &&
   4005         isa<Constant>(RHS))
   4006       return SimplifyRelativeLoad(cast<Constant>(LHS), cast<Constant>(RHS),
   4007                                   Q.DL);
   4008   }
   4009 
   4010   // Simplify calls to llvm.masked.load.*
   4011   if (IID == Intrinsic::masked_load) {
   4012     Value *MaskArg = ArgBegin[2];
   4013     Value *PassthruArg = ArgBegin[3];
   4014     // If the mask is all zeros or undef, the "passthru" argument is the result.
   4015     if (maskIsAllZeroOrUndef(MaskArg))
   4016       return PassthruArg;
   4017   }
   4018 
   4019   // Perform idempotent optimizations
   4020   if (!IsIdempotent(IID))
   4021     return nullptr;
   4022 
   4023   // Unary Ops
   4024   if (NumOperands == 1)
   4025     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
   4026       if (II->getIntrinsicID() == IID)
   4027         return II;
   4028 
   4029   return nullptr;
   4030 }
   4031 
   4032 template <typename IterTy>
   4033 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
   4034                            const Query &Q, unsigned MaxRecurse) {
   4035   Type *Ty = V->getType();
   4036   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
   4037     Ty = PTy->getElementType();
   4038   FunctionType *FTy = cast<FunctionType>(Ty);
   4039 
   4040   // call undef -> undef
   4041   // call null -> undef
   4042   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
   4043     return UndefValue::get(FTy->getReturnType());
   4044 
   4045   Function *F = dyn_cast<Function>(V);
   4046   if (!F)
   4047     return nullptr;
   4048 
   4049   if (F->isIntrinsic())
   4050     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
   4051       return Ret;
   4052 
   4053   if (!canConstantFoldCallTo(F))
   4054     return nullptr;
   4055 
   4056   SmallVector<Constant *, 4> ConstantArgs;
   4057   ConstantArgs.reserve(ArgEnd - ArgBegin);
   4058   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
   4059     Constant *C = dyn_cast<Constant>(*I);
   4060     if (!C)
   4061       return nullptr;
   4062     ConstantArgs.push_back(C);
   4063   }
   4064 
   4065   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
   4066 }
   4067 
   4068 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
   4069                           User::op_iterator ArgEnd, const DataLayout &DL,
   4070                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
   4071                           AssumptionCache *AC, const Instruction *CxtI) {
   4072   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
   4073                         RecursionLimit);
   4074 }
   4075 
   4076 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
   4077                           const DataLayout &DL, const TargetLibraryInfo *TLI,
   4078                           const DominatorTree *DT, AssumptionCache *AC,
   4079                           const Instruction *CxtI) {
   4080   return ::SimplifyCall(V, Args.begin(), Args.end(),
   4081                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
   4082 }
   4083 
   4084 /// See if we can compute a simplified version of this instruction.
   4085 /// If not, this returns null.
   4086 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
   4087                                  const TargetLibraryInfo *TLI,
   4088                                  const DominatorTree *DT, AssumptionCache *AC) {
   4089   Value *Result;
   4090 
   4091   switch (I->getOpcode()) {
   4092   default:
   4093     Result = ConstantFoldInstruction(I, DL, TLI);
   4094     break;
   4095   case Instruction::FAdd:
   4096     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
   4097                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   4098     break;
   4099   case Instruction::Add:
   4100     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
   4101                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   4102                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
   4103                              TLI, DT, AC, I);
   4104     break;
   4105   case Instruction::FSub:
   4106     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
   4107                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   4108     break;
   4109   case Instruction::Sub:
   4110     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
   4111                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   4112                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
   4113                              TLI, DT, AC, I);
   4114     break;
   4115   case Instruction::FMul:
   4116     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
   4117                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   4118     break;
   4119   case Instruction::Mul:
   4120     Result =
   4121         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
   4122     break;
   4123   case Instruction::SDiv:
   4124     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
   4125                               AC, I);
   4126     break;
   4127   case Instruction::UDiv:
   4128     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
   4129                               AC, I);
   4130     break;
   4131   case Instruction::FDiv:
   4132     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
   4133                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   4134     break;
   4135   case Instruction::SRem:
   4136     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
   4137                               AC, I);
   4138     break;
   4139   case Instruction::URem:
   4140     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
   4141                               AC, I);
   4142     break;
   4143   case Instruction::FRem:
   4144     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
   4145                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   4146     break;
   4147   case Instruction::Shl:
   4148     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
   4149                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
   4150                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
   4151                              TLI, DT, AC, I);
   4152     break;
   4153   case Instruction::LShr:
   4154     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
   4155                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
   4156                               AC, I);
   4157     break;
   4158   case Instruction::AShr:
   4159     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
   4160                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
   4161                               AC, I);
   4162     break;
   4163   case Instruction::And:
   4164     Result =
   4165         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
   4166     break;
   4167   case Instruction::Or:
   4168     Result =
   4169         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
   4170     break;
   4171   case Instruction::Xor:
   4172     Result =
   4173         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
   4174     break;
   4175   case Instruction::ICmp:
   4176     Result =
   4177         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
   4178                          I->getOperand(1), DL, TLI, DT, AC, I);
   4179     break;
   4180   case Instruction::FCmp:
   4181     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
   4182                               I->getOperand(0), I->getOperand(1),
   4183                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
   4184     break;
   4185   case Instruction::Select:
   4186     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
   4187                                 I->getOperand(2), DL, TLI, DT, AC, I);
   4188     break;
   4189   case Instruction::GetElementPtr: {
   4190     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   4191     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
   4192                              Ops, DL, TLI, DT, AC, I);
   4193     break;
   4194   }
   4195   case Instruction::InsertValue: {
   4196     InsertValueInst *IV = cast<InsertValueInst>(I);
   4197     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
   4198                                      IV->getInsertedValueOperand(),
   4199                                      IV->getIndices(), DL, TLI, DT, AC, I);
   4200     break;
   4201   }
   4202   case Instruction::ExtractValue: {
   4203     auto *EVI = cast<ExtractValueInst>(I);
   4204     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
   4205                                       EVI->getIndices(), DL, TLI, DT, AC, I);
   4206     break;
   4207   }
   4208   case Instruction::ExtractElement: {
   4209     auto *EEI = cast<ExtractElementInst>(I);
   4210     Result = SimplifyExtractElementInst(
   4211         EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
   4212     break;
   4213   }
   4214   case Instruction::PHI:
   4215     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
   4216     break;
   4217   case Instruction::Call: {
   4218     CallSite CS(cast<CallInst>(I));
   4219     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
   4220                           TLI, DT, AC, I);
   4221     break;
   4222   }
   4223   case Instruction::Trunc:
   4224     Result =
   4225         SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I);
   4226     break;
   4227   }
   4228 
   4229   // In general, it is possible for computeKnownBits to determine all bits in a
   4230   // value even when the operands are not all constants.
   4231   if (!Result && I->getType()->isIntegerTy()) {
   4232     unsigned BitWidth = I->getType()->getScalarSizeInBits();
   4233     APInt KnownZero(BitWidth, 0);
   4234     APInt KnownOne(BitWidth, 0);
   4235     computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT);
   4236     if ((KnownZero | KnownOne).isAllOnesValue())
   4237       Result = ConstantInt::get(I->getContext(), KnownOne);
   4238   }
   4239 
   4240   /// If called on unreachable code, the above logic may report that the
   4241   /// instruction simplified to itself.  Make life easier for users by
   4242   /// detecting that case here, returning a safe value instead.
   4243   return Result == I ? UndefValue::get(I->getType()) : Result;
   4244 }
   4245 
   4246 /// \brief Implementation of recursive simplification through an instruction's
   4247 /// uses.
   4248 ///
   4249 /// This is the common implementation of the recursive simplification routines.
   4250 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
   4251 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
   4252 /// instructions to process and attempt to simplify it using
   4253 /// InstructionSimplify.
   4254 ///
   4255 /// This routine returns 'true' only when *it* simplifies something. The passed
   4256 /// in simplified value does not count toward this.
   4257 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
   4258                                               const TargetLibraryInfo *TLI,
   4259                                               const DominatorTree *DT,
   4260                                               AssumptionCache *AC) {
   4261   bool Simplified = false;
   4262   SmallSetVector<Instruction *, 8> Worklist;
   4263   const DataLayout &DL = I->getModule()->getDataLayout();
   4264 
   4265   // If we have an explicit value to collapse to, do that round of the
   4266   // simplification loop by hand initially.
   4267   if (SimpleV) {
   4268     for (User *U : I->users())
   4269       if (U != I)
   4270         Worklist.insert(cast<Instruction>(U));
   4271 
   4272     // Replace the instruction with its simplified value.
   4273     I->replaceAllUsesWith(SimpleV);
   4274 
   4275     // Gracefully handle edge cases where the instruction is not wired into any
   4276     // parent block.
   4277     if (I->getParent())
   4278       I->eraseFromParent();
   4279   } else {
   4280     Worklist.insert(I);
   4281   }
   4282 
   4283   // Note that we must test the size on each iteration, the worklist can grow.
   4284   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
   4285     I = Worklist[Idx];
   4286 
   4287     // See if this instruction simplifies.
   4288     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
   4289     if (!SimpleV)
   4290       continue;
   4291 
   4292     Simplified = true;
   4293 
   4294     // Stash away all the uses of the old instruction so we can check them for
   4295     // recursive simplifications after a RAUW. This is cheaper than checking all
   4296     // uses of To on the recursive step in most cases.
   4297     for (User *U : I->users())
   4298       Worklist.insert(cast<Instruction>(U));
   4299 
   4300     // Replace the instruction with its simplified value.
   4301     I->replaceAllUsesWith(SimpleV);
   4302 
   4303     // Gracefully handle edge cases where the instruction is not wired into any
   4304     // parent block.
   4305     if (I->getParent())
   4306       I->eraseFromParent();
   4307   }
   4308   return Simplified;
   4309 }
   4310 
   4311 bool llvm::recursivelySimplifyInstruction(Instruction *I,
   4312                                           const TargetLibraryInfo *TLI,
   4313                                           const DominatorTree *DT,
   4314                                           AssumptionCache *AC) {
   4315   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
   4316 }
   4317 
   4318 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
   4319                                          const TargetLibraryInfo *TLI,
   4320                                          const DominatorTree *DT,
   4321                                          AssumptionCache *AC) {
   4322   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
   4323   assert(SimpleV && "Must provide a simplified value.");
   4324   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
   4325 }
   4326