Home | History | Annotate | Download | only in ARM
      1 //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines an instruction selector for the ARM target.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "arm-isel"
     15 #include "ARM.h"
     16 #include "ARMBaseInstrInfo.h"
     17 #include "ARMTargetMachine.h"
     18 #include "MCTargetDesc/ARMAddressingModes.h"
     19 #include "llvm/CallingConv.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/DerivedTypes.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/Intrinsics.h"
     24 #include "llvm/LLVMContext.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/SelectionDAG.h"
     29 #include "llvm/CodeGen/SelectionDAGISel.h"
     30 #include "llvm/Target/TargetLowering.h"
     31 #include "llvm/Target/TargetOptions.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Compiler.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 
     38 using namespace llvm;
     39 
     40 static cl::opt<bool>
     41 DisableShifterOp("disable-shifter-op", cl::Hidden,
     42   cl::desc("Disable isel of shifter-op"),
     43   cl::init(false));
     44 
     45 static cl::opt<bool>
     46 CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
     47   cl::desc("Check fp vmla / vmls hazard at isel time"),
     48   cl::init(true));
     49 
     50 static cl::opt<bool>
     51 DisableARMIntABS("disable-arm-int-abs", cl::Hidden,
     52   cl::desc("Enable / disable ARM integer abs transform"),
     53   cl::init(false));
     54 
     55 //===--------------------------------------------------------------------===//
     56 /// ARMDAGToDAGISel - ARM specific code to select ARM machine
     57 /// instructions for SelectionDAG operations.
     58 ///
     59 namespace {
     60 
     61 enum AddrMode2Type {
     62   AM2_BASE, // Simple AM2 (+-imm12)
     63   AM2_SHOP  // Shifter-op AM2
     64 };
     65 
     66 class ARMDAGToDAGISel : public SelectionDAGISel {
     67   ARMBaseTargetMachine &TM;
     68   const ARMBaseInstrInfo *TII;
     69 
     70   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
     71   /// make the right decision when generating code for different targets.
     72   const ARMSubtarget *Subtarget;
     73 
     74 public:
     75   explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
     76                            CodeGenOpt::Level OptLevel)
     77     : SelectionDAGISel(tm, OptLevel), TM(tm),
     78       TII(static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo())),
     79       Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
     80   }
     81 
     82   virtual const char *getPassName() const {
     83     return "ARM Instruction Selection";
     84   }
     85 
     86   /// getI32Imm - Return a target constant of type i32 with the specified
     87   /// value.
     88   inline SDValue getI32Imm(unsigned Imm) {
     89     return CurDAG->getTargetConstant(Imm, MVT::i32);
     90   }
     91 
     92   SDNode *Select(SDNode *N);
     93 
     94 
     95   bool hasNoVMLxHazardUse(SDNode *N) const;
     96   bool isShifterOpProfitable(const SDValue &Shift,
     97                              ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
     98   bool SelectRegShifterOperand(SDValue N, SDValue &A,
     99                                SDValue &B, SDValue &C,
    100                                bool CheckProfitability = true);
    101   bool SelectImmShifterOperand(SDValue N, SDValue &A,
    102                                SDValue &B, bool CheckProfitability = true);
    103   bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
    104                                     SDValue &B, SDValue &C) {
    105     // Don't apply the profitability check
    106     return SelectRegShifterOperand(N, A, B, C, false);
    107   }
    108   bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
    109                                     SDValue &B) {
    110     // Don't apply the profitability check
    111     return SelectImmShifterOperand(N, A, B, false);
    112   }
    113 
    114   bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
    115   bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
    116 
    117   AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
    118                                       SDValue &Offset, SDValue &Opc);
    119   bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
    120                            SDValue &Opc) {
    121     return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
    122   }
    123 
    124   bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
    125                            SDValue &Opc) {
    126     return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
    127   }
    128 
    129   bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
    130                        SDValue &Opc) {
    131     SelectAddrMode2Worker(N, Base, Offset, Opc);
    132 //    return SelectAddrMode2ShOp(N, Base, Offset, Opc);
    133     // This always matches one way or another.
    134     return true;
    135   }
    136 
    137   bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
    138                              SDValue &Offset, SDValue &Opc);
    139   bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
    140                              SDValue &Offset, SDValue &Opc);
    141   bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
    142                              SDValue &Offset, SDValue &Opc);
    143   bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
    144   bool SelectAddrMode3(SDValue N, SDValue &Base,
    145                        SDValue &Offset, SDValue &Opc);
    146   bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
    147                              SDValue &Offset, SDValue &Opc);
    148   bool SelectAddrMode5(SDValue N, SDValue &Base,
    149                        SDValue &Offset);
    150   bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
    151   bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
    152 
    153   bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
    154 
    155   // Thumb Addressing Modes:
    156   bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
    157   bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
    158                              unsigned Scale);
    159   bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
    160   bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
    161   bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
    162   bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
    163                                 SDValue &OffImm);
    164   bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
    165                                  SDValue &OffImm);
    166   bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
    167                                  SDValue &OffImm);
    168   bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
    169                                  SDValue &OffImm);
    170   bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
    171 
    172   // Thumb 2 Addressing Modes:
    173   bool SelectT2ShifterOperandReg(SDValue N,
    174                                  SDValue &BaseReg, SDValue &Opc);
    175   bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
    176   bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
    177                             SDValue &OffImm);
    178   bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
    179                                  SDValue &OffImm);
    180   bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
    181                              SDValue &OffReg, SDValue &ShImm);
    182 
    183   inline bool is_so_imm(unsigned Imm) const {
    184     return ARM_AM::getSOImmVal(Imm) != -1;
    185   }
    186 
    187   inline bool is_so_imm_not(unsigned Imm) const {
    188     return ARM_AM::getSOImmVal(~Imm) != -1;
    189   }
    190 
    191   inline bool is_t2_so_imm(unsigned Imm) const {
    192     return ARM_AM::getT2SOImmVal(Imm) != -1;
    193   }
    194 
    195   inline bool is_t2_so_imm_not(unsigned Imm) const {
    196     return ARM_AM::getT2SOImmVal(~Imm) != -1;
    197   }
    198 
    199   // Include the pieces autogenerated from the target description.
    200 #include "ARMGenDAGISel.inc"
    201 
    202 private:
    203   /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
    204   /// ARM.
    205   SDNode *SelectARMIndexedLoad(SDNode *N);
    206   SDNode *SelectT2IndexedLoad(SDNode *N);
    207 
    208   /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
    209   /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
    210   /// loads of D registers and even subregs and odd subregs of Q registers.
    211   /// For NumVecs <= 2, QOpcodes1 is not used.
    212   SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
    213                     unsigned *DOpcodes,
    214                     unsigned *QOpcodes0, unsigned *QOpcodes1);
    215 
    216   /// SelectVST - Select NEON store intrinsics.  NumVecs should
    217   /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
    218   /// stores of D registers and even subregs and odd subregs of Q registers.
    219   /// For NumVecs <= 2, QOpcodes1 is not used.
    220   SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
    221                     unsigned *DOpcodes,
    222                     unsigned *QOpcodes0, unsigned *QOpcodes1);
    223 
    224   /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
    225   /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
    226   /// load/store of D registers and Q registers.
    227   SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
    228                           bool isUpdating, unsigned NumVecs,
    229                           unsigned *DOpcodes, unsigned *QOpcodes);
    230 
    231   /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs
    232   /// should be 2, 3 or 4.  The opcode array specifies the instructions used
    233   /// for loading D registers.  (Q registers are not supported.)
    234   SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
    235                        unsigned *Opcodes);
    236 
    237   /// SelectVTBL - Select NEON VTBL and VTBX intrinsics.  NumVecs should be 2,
    238   /// 3 or 4.  These are custom-selected so that a REG_SEQUENCE can be
    239   /// generated to force the table registers to be consecutive.
    240   SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
    241 
    242   /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
    243   SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
    244 
    245   /// SelectCMOVOp - Select CMOV instructions for ARM.
    246   SDNode *SelectCMOVOp(SDNode *N);
    247   SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    248                               ARMCC::CondCodes CCVal, SDValue CCR,
    249                               SDValue InFlag);
    250   SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    251                                ARMCC::CondCodes CCVal, SDValue CCR,
    252                                SDValue InFlag);
    253   SDNode *SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    254                               ARMCC::CondCodes CCVal, SDValue CCR,
    255                               SDValue InFlag);
    256   SDNode *SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
    257                                ARMCC::CondCodes CCVal, SDValue CCR,
    258                                SDValue InFlag);
    259 
    260   // Select special operations if node forms integer ABS pattern
    261   SDNode *SelectABSOp(SDNode *N);
    262 
    263   SDNode *SelectConcatVector(SDNode *N);
    264 
    265   SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
    266 
    267   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
    268   /// inline asm expressions.
    269   virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
    270                                             char ConstraintCode,
    271                                             std::vector<SDValue> &OutOps);
    272 
    273   // Form pairs of consecutive S, D, or Q registers.
    274   SDNode *PairSRegs(EVT VT, SDValue V0, SDValue V1);
    275   SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1);
    276   SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1);
    277 
    278   // Form sequences of 4 consecutive S, D, or Q registers.
    279   SDNode *QuadSRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
    280   SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
    281   SDNode *QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
    282 
    283   // Get the alignment operand for a NEON VLD or VST instruction.
    284   SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
    285 };
    286 }
    287 
    288 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
    289 /// operand. If so Imm will receive the 32-bit value.
    290 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
    291   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
    292     Imm = cast<ConstantSDNode>(N)->getZExtValue();
    293     return true;
    294   }
    295   return false;
    296 }
    297 
    298 // isInt32Immediate - This method tests to see if a constant operand.
    299 // If so Imm will receive the 32 bit value.
    300 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
    301   return isInt32Immediate(N.getNode(), Imm);
    302 }
    303 
    304 // isOpcWithIntImmediate - This method tests to see if the node is a specific
    305 // opcode and that it has a immediate integer right operand.
    306 // If so Imm will receive the 32 bit value.
    307 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
    308   return N->getOpcode() == Opc &&
    309          isInt32Immediate(N->getOperand(1).getNode(), Imm);
    310 }
    311 
    312 /// \brief Check whether a particular node is a constant value representable as
    313 /// (N * Scale) where (N in [\arg RangeMin, \arg RangeMax).
    314 ///
    315 /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
    316 static bool isScaledConstantInRange(SDValue Node, int Scale,
    317                                     int RangeMin, int RangeMax,
    318                                     int &ScaledConstant) {
    319   assert(Scale > 0 && "Invalid scale!");
    320 
    321   // Check that this is a constant.
    322   const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
    323   if (!C)
    324     return false;
    325 
    326   ScaledConstant = (int) C->getZExtValue();
    327   if ((ScaledConstant % Scale) != 0)
    328     return false;
    329 
    330   ScaledConstant /= Scale;
    331   return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
    332 }
    333 
    334 /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
    335 /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
    336 /// least on current ARM implementations) which should be avoidded.
    337 bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
    338   if (OptLevel == CodeGenOpt::None)
    339     return true;
    340 
    341   if (!CheckVMLxHazard)
    342     return true;
    343 
    344   if (!Subtarget->isCortexA8() && !Subtarget->isCortexA9())
    345     return true;
    346 
    347   if (!N->hasOneUse())
    348     return false;
    349 
    350   SDNode *Use = *N->use_begin();
    351   if (Use->getOpcode() == ISD::CopyToReg)
    352     return true;
    353   if (Use->isMachineOpcode()) {
    354     const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
    355     if (MCID.mayStore())
    356       return true;
    357     unsigned Opcode = MCID.getOpcode();
    358     if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
    359       return true;
    360     // vmlx feeding into another vmlx. We actually want to unfold
    361     // the use later in the MLxExpansion pass. e.g.
    362     // vmla
    363     // vmla (stall 8 cycles)
    364     //
    365     // vmul (5 cycles)
    366     // vadd (5 cycles)
    367     // vmla
    368     // This adds up to about 18 - 19 cycles.
    369     //
    370     // vmla
    371     // vmul (stall 4 cycles)
    372     // vadd adds up to about 14 cycles.
    373     return TII->isFpMLxInstruction(Opcode);
    374   }
    375 
    376   return false;
    377 }
    378 
    379 bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
    380                                             ARM_AM::ShiftOpc ShOpcVal,
    381                                             unsigned ShAmt) {
    382   if (!Subtarget->isCortexA9())
    383     return true;
    384   if (Shift.hasOneUse())
    385     return true;
    386   // R << 2 is free.
    387   return ShOpcVal == ARM_AM::lsl && ShAmt == 2;
    388 }
    389 
    390 bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
    391                                               SDValue &BaseReg,
    392                                               SDValue &Opc,
    393                                               bool CheckProfitability) {
    394   if (DisableShifterOp)
    395     return false;
    396 
    397   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
    398 
    399   // Don't match base register only case. That is matched to a separate
    400   // lower complexity pattern with explicit register operand.
    401   if (ShOpcVal == ARM_AM::no_shift) return false;
    402 
    403   BaseReg = N.getOperand(0);
    404   unsigned ShImmVal = 0;
    405   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
    406   if (!RHS) return false;
    407   ShImmVal = RHS->getZExtValue() & 31;
    408   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
    409                                   MVT::i32);
    410   return true;
    411 }
    412 
    413 bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
    414                                               SDValue &BaseReg,
    415                                               SDValue &ShReg,
    416                                               SDValue &Opc,
    417                                               bool CheckProfitability) {
    418   if (DisableShifterOp)
    419     return false;
    420 
    421   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
    422 
    423   // Don't match base register only case. That is matched to a separate
    424   // lower complexity pattern with explicit register operand.
    425   if (ShOpcVal == ARM_AM::no_shift) return false;
    426 
    427   BaseReg = N.getOperand(0);
    428   unsigned ShImmVal = 0;
    429   ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
    430   if (RHS) return false;
    431 
    432   ShReg = N.getOperand(1);
    433   if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
    434     return false;
    435   Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
    436                                   MVT::i32);
    437   return true;
    438 }
    439 
    440 
    441 bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
    442                                           SDValue &Base,
    443                                           SDValue &OffImm) {
    444   // Match simple R + imm12 operands.
    445 
    446   // Base only.
    447   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
    448       !CurDAG->isBaseWithConstantOffset(N)) {
    449     if (N.getOpcode() == ISD::FrameIndex) {
    450       // Match frame index.
    451       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    452       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    453       OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
    454       return true;
    455     }
    456 
    457     if (N.getOpcode() == ARMISD::Wrapper &&
    458         !(Subtarget->useMovt() &&
    459                      N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
    460       Base = N.getOperand(0);
    461     } else
    462       Base = N;
    463     OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
    464     return true;
    465   }
    466 
    467   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    468     int RHSC = (int)RHS->getZExtValue();
    469     if (N.getOpcode() == ISD::SUB)
    470       RHSC = -RHSC;
    471 
    472     if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
    473       Base   = N.getOperand(0);
    474       if (Base.getOpcode() == ISD::FrameIndex) {
    475         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    476         Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    477       }
    478       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
    479       return true;
    480     }
    481   }
    482 
    483   // Base only.
    484   Base = N;
    485   OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
    486   return true;
    487 }
    488 
    489 
    490 
    491 bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
    492                                       SDValue &Opc) {
    493   if (N.getOpcode() == ISD::MUL &&
    494       (!Subtarget->isCortexA9() || N.hasOneUse())) {
    495     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    496       // X * [3,5,9] -> X + X * [2,4,8] etc.
    497       int RHSC = (int)RHS->getZExtValue();
    498       if (RHSC & 1) {
    499         RHSC = RHSC & ~1;
    500         ARM_AM::AddrOpc AddSub = ARM_AM::add;
    501         if (RHSC < 0) {
    502           AddSub = ARM_AM::sub;
    503           RHSC = - RHSC;
    504         }
    505         if (isPowerOf2_32(RHSC)) {
    506           unsigned ShAmt = Log2_32(RHSC);
    507           Base = Offset = N.getOperand(0);
    508           Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
    509                                                             ARM_AM::lsl),
    510                                           MVT::i32);
    511           return true;
    512         }
    513       }
    514     }
    515   }
    516 
    517   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
    518       // ISD::OR that is equivalent to an ISD::ADD.
    519       !CurDAG->isBaseWithConstantOffset(N))
    520     return false;
    521 
    522   // Leave simple R +/- imm12 operands for LDRi12
    523   if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
    524     int RHSC;
    525     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
    526                                 -0x1000+1, 0x1000, RHSC)) // 12 bits.
    527       return false;
    528   }
    529 
    530   // Otherwise this is R +/- [possibly shifted] R.
    531   ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
    532   ARM_AM::ShiftOpc ShOpcVal =
    533     ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
    534   unsigned ShAmt = 0;
    535 
    536   Base   = N.getOperand(0);
    537   Offset = N.getOperand(1);
    538 
    539   if (ShOpcVal != ARM_AM::no_shift) {
    540     // Check to see if the RHS of the shift is a constant, if not, we can't fold
    541     // it.
    542     if (ConstantSDNode *Sh =
    543            dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
    544       ShAmt = Sh->getZExtValue();
    545       if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
    546         Offset = N.getOperand(1).getOperand(0);
    547       else {
    548         ShAmt = 0;
    549         ShOpcVal = ARM_AM::no_shift;
    550       }
    551     } else {
    552       ShOpcVal = ARM_AM::no_shift;
    553     }
    554   }
    555 
    556   // Try matching (R shl C) + (R).
    557   if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
    558       !(Subtarget->isCortexA9() || N.getOperand(0).hasOneUse())) {
    559     ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
    560     if (ShOpcVal != ARM_AM::no_shift) {
    561       // Check to see if the RHS of the shift is a constant, if not, we can't
    562       // fold it.
    563       if (ConstantSDNode *Sh =
    564           dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
    565         ShAmt = Sh->getZExtValue();
    566         if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
    567           Offset = N.getOperand(0).getOperand(0);
    568           Base = N.getOperand(1);
    569         } else {
    570           ShAmt = 0;
    571           ShOpcVal = ARM_AM::no_shift;
    572         }
    573       } else {
    574         ShOpcVal = ARM_AM::no_shift;
    575       }
    576     }
    577   }
    578 
    579   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
    580                                   MVT::i32);
    581   return true;
    582 }
    583 
    584 
    585 
    586 
    587 //-----
    588 
    589 AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
    590                                                      SDValue &Base,
    591                                                      SDValue &Offset,
    592                                                      SDValue &Opc) {
    593   if (N.getOpcode() == ISD::MUL &&
    594       (!Subtarget->isCortexA9() || N.hasOneUse())) {
    595     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    596       // X * [3,5,9] -> X + X * [2,4,8] etc.
    597       int RHSC = (int)RHS->getZExtValue();
    598       if (RHSC & 1) {
    599         RHSC = RHSC & ~1;
    600         ARM_AM::AddrOpc AddSub = ARM_AM::add;
    601         if (RHSC < 0) {
    602           AddSub = ARM_AM::sub;
    603           RHSC = - RHSC;
    604         }
    605         if (isPowerOf2_32(RHSC)) {
    606           unsigned ShAmt = Log2_32(RHSC);
    607           Base = Offset = N.getOperand(0);
    608           Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
    609                                                             ARM_AM::lsl),
    610                                           MVT::i32);
    611           return AM2_SHOP;
    612         }
    613       }
    614     }
    615   }
    616 
    617   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
    618       // ISD::OR that is equivalent to an ADD.
    619       !CurDAG->isBaseWithConstantOffset(N)) {
    620     Base = N;
    621     if (N.getOpcode() == ISD::FrameIndex) {
    622       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    623       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    624     } else if (N.getOpcode() == ARMISD::Wrapper &&
    625                !(Subtarget->useMovt() &&
    626                  N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
    627       Base = N.getOperand(0);
    628     }
    629     Offset = CurDAG->getRegister(0, MVT::i32);
    630     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
    631                                                       ARM_AM::no_shift),
    632                                     MVT::i32);
    633     return AM2_BASE;
    634   }
    635 
    636   // Match simple R +/- imm12 operands.
    637   if (N.getOpcode() != ISD::SUB) {
    638     int RHSC;
    639     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
    640                                 -0x1000+1, 0x1000, RHSC)) { // 12 bits.
    641       Base = N.getOperand(0);
    642       if (Base.getOpcode() == ISD::FrameIndex) {
    643         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    644         Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    645       }
    646       Offset = CurDAG->getRegister(0, MVT::i32);
    647 
    648       ARM_AM::AddrOpc AddSub = ARM_AM::add;
    649       if (RHSC < 0) {
    650         AddSub = ARM_AM::sub;
    651         RHSC = - RHSC;
    652       }
    653       Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
    654                                                         ARM_AM::no_shift),
    655                                       MVT::i32);
    656       return AM2_BASE;
    657     }
    658   }
    659 
    660   if (Subtarget->isCortexA9() && !N.hasOneUse()) {
    661     // Compute R +/- (R << N) and reuse it.
    662     Base = N;
    663     Offset = CurDAG->getRegister(0, MVT::i32);
    664     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
    665                                                       ARM_AM::no_shift),
    666                                     MVT::i32);
    667     return AM2_BASE;
    668   }
    669 
    670   // Otherwise this is R +/- [possibly shifted] R.
    671   ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
    672   ARM_AM::ShiftOpc ShOpcVal =
    673     ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
    674   unsigned ShAmt = 0;
    675 
    676   Base   = N.getOperand(0);
    677   Offset = N.getOperand(1);
    678 
    679   if (ShOpcVal != ARM_AM::no_shift) {
    680     // Check to see if the RHS of the shift is a constant, if not, we can't fold
    681     // it.
    682     if (ConstantSDNode *Sh =
    683            dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
    684       ShAmt = Sh->getZExtValue();
    685       if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
    686         Offset = N.getOperand(1).getOperand(0);
    687       else {
    688         ShAmt = 0;
    689         ShOpcVal = ARM_AM::no_shift;
    690       }
    691     } else {
    692       ShOpcVal = ARM_AM::no_shift;
    693     }
    694   }
    695 
    696   // Try matching (R shl C) + (R).
    697   if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
    698       !(Subtarget->isCortexA9() || N.getOperand(0).hasOneUse())) {
    699     ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
    700     if (ShOpcVal != ARM_AM::no_shift) {
    701       // Check to see if the RHS of the shift is a constant, if not, we can't
    702       // fold it.
    703       if (ConstantSDNode *Sh =
    704           dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
    705         ShAmt = Sh->getZExtValue();
    706         if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
    707           Offset = N.getOperand(0).getOperand(0);
    708           Base = N.getOperand(1);
    709         } else {
    710           ShAmt = 0;
    711           ShOpcVal = ARM_AM::no_shift;
    712         }
    713       } else {
    714         ShOpcVal = ARM_AM::no_shift;
    715       }
    716     }
    717   }
    718 
    719   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
    720                                   MVT::i32);
    721   return AM2_SHOP;
    722 }
    723 
    724 bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
    725                                             SDValue &Offset, SDValue &Opc) {
    726   unsigned Opcode = Op->getOpcode();
    727   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    728     ? cast<LoadSDNode>(Op)->getAddressingMode()
    729     : cast<StoreSDNode>(Op)->getAddressingMode();
    730   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    731     ? ARM_AM::add : ARM_AM::sub;
    732   int Val;
    733   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
    734     return false;
    735 
    736   Offset = N;
    737   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
    738   unsigned ShAmt = 0;
    739   if (ShOpcVal != ARM_AM::no_shift) {
    740     // Check to see if the RHS of the shift is a constant, if not, we can't fold
    741     // it.
    742     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    743       ShAmt = Sh->getZExtValue();
    744       if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
    745         Offset = N.getOperand(0);
    746       else {
    747         ShAmt = 0;
    748         ShOpcVal = ARM_AM::no_shift;
    749       }
    750     } else {
    751       ShOpcVal = ARM_AM::no_shift;
    752     }
    753   }
    754 
    755   Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
    756                                   MVT::i32);
    757   return true;
    758 }
    759 
    760 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
    761                                             SDValue &Offset, SDValue &Opc) {
    762   unsigned Opcode = Op->getOpcode();
    763   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    764     ? cast<LoadSDNode>(Op)->getAddressingMode()
    765     : cast<StoreSDNode>(Op)->getAddressingMode();
    766   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    767     ? ARM_AM::add : ARM_AM::sub;
    768   int Val;
    769   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
    770     if (AddSub == ARM_AM::sub) Val *= -1;
    771     Offset = CurDAG->getRegister(0, MVT::i32);
    772     Opc = CurDAG->getTargetConstant(Val, MVT::i32);
    773     return true;
    774   }
    775 
    776   return false;
    777 }
    778 
    779 
    780 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
    781                                             SDValue &Offset, SDValue &Opc) {
    782   unsigned Opcode = Op->getOpcode();
    783   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    784     ? cast<LoadSDNode>(Op)->getAddressingMode()
    785     : cast<StoreSDNode>(Op)->getAddressingMode();
    786   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    787     ? ARM_AM::add : ARM_AM::sub;
    788   int Val;
    789   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
    790     Offset = CurDAG->getRegister(0, MVT::i32);
    791     Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
    792                                                       ARM_AM::no_shift),
    793                                     MVT::i32);
    794     return true;
    795   }
    796 
    797   return false;
    798 }
    799 
    800 bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
    801   Base = N;
    802   return true;
    803 }
    804 
    805 bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
    806                                       SDValue &Base, SDValue &Offset,
    807                                       SDValue &Opc) {
    808   if (N.getOpcode() == ISD::SUB) {
    809     // X - C  is canonicalize to X + -C, no need to handle it here.
    810     Base = N.getOperand(0);
    811     Offset = N.getOperand(1);
    812     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
    813     return true;
    814   }
    815 
    816   if (!CurDAG->isBaseWithConstantOffset(N)) {
    817     Base = N;
    818     if (N.getOpcode() == ISD::FrameIndex) {
    819       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    820       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    821     }
    822     Offset = CurDAG->getRegister(0, MVT::i32);
    823     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
    824     return true;
    825   }
    826 
    827   // If the RHS is +/- imm8, fold into addr mode.
    828   int RHSC;
    829   if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
    830                               -256 + 1, 256, RHSC)) { // 8 bits.
    831     Base = N.getOperand(0);
    832     if (Base.getOpcode() == ISD::FrameIndex) {
    833       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    834       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    835     }
    836     Offset = CurDAG->getRegister(0, MVT::i32);
    837 
    838     ARM_AM::AddrOpc AddSub = ARM_AM::add;
    839     if (RHSC < 0) {
    840       AddSub = ARM_AM::sub;
    841       RHSC = -RHSC;
    842     }
    843     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
    844     return true;
    845   }
    846 
    847   Base = N.getOperand(0);
    848   Offset = N.getOperand(1);
    849   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
    850   return true;
    851 }
    852 
    853 bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
    854                                             SDValue &Offset, SDValue &Opc) {
    855   unsigned Opcode = Op->getOpcode();
    856   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
    857     ? cast<LoadSDNode>(Op)->getAddressingMode()
    858     : cast<StoreSDNode>(Op)->getAddressingMode();
    859   ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
    860     ? ARM_AM::add : ARM_AM::sub;
    861   int Val;
    862   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
    863     Offset = CurDAG->getRegister(0, MVT::i32);
    864     Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
    865     return true;
    866   }
    867 
    868   Offset = N;
    869   Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
    870   return true;
    871 }
    872 
    873 bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
    874                                       SDValue &Base, SDValue &Offset) {
    875   if (!CurDAG->isBaseWithConstantOffset(N)) {
    876     Base = N;
    877     if (N.getOpcode() == ISD::FrameIndex) {
    878       int FI = cast<FrameIndexSDNode>(N)->getIndex();
    879       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    880     } else if (N.getOpcode() == ARMISD::Wrapper &&
    881                !(Subtarget->useMovt() &&
    882                  N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
    883       Base = N.getOperand(0);
    884     }
    885     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
    886                                        MVT::i32);
    887     return true;
    888   }
    889 
    890   // If the RHS is +/- imm8, fold into addr mode.
    891   int RHSC;
    892   if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
    893                               -256 + 1, 256, RHSC)) {
    894     Base = N.getOperand(0);
    895     if (Base.getOpcode() == ISD::FrameIndex) {
    896       int FI = cast<FrameIndexSDNode>(Base)->getIndex();
    897       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
    898     }
    899 
    900     ARM_AM::AddrOpc AddSub = ARM_AM::add;
    901     if (RHSC < 0) {
    902       AddSub = ARM_AM::sub;
    903       RHSC = -RHSC;
    904     }
    905     Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
    906                                        MVT::i32);
    907     return true;
    908   }
    909 
    910   Base = N;
    911   Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
    912                                      MVT::i32);
    913   return true;
    914 }
    915 
    916 bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
    917                                       SDValue &Align) {
    918   Addr = N;
    919 
    920   unsigned Alignment = 0;
    921   if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) {
    922     // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
    923     // The maximum alignment is equal to the memory size being referenced.
    924     unsigned LSNAlign = LSN->getAlignment();
    925     unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8;
    926     if (LSNAlign > MemSize && MemSize > 1)
    927       Alignment = MemSize;
    928   } else {
    929     // All other uses of addrmode6 are for intrinsics.  For now just record
    930     // the raw alignment value; it will be refined later based on the legal
    931     // alignment operands for the intrinsic.
    932     Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment();
    933   }
    934 
    935   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
    936   return true;
    937 }
    938 
    939 bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
    940                                             SDValue &Offset) {
    941   LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
    942   ISD::MemIndexedMode AM = LdSt->getAddressingMode();
    943   if (AM != ISD::POST_INC)
    944     return false;
    945   Offset = N;
    946   if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
    947     if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
    948       Offset = CurDAG->getRegister(0, MVT::i32);
    949   }
    950   return true;
    951 }
    952 
    953 bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
    954                                        SDValue &Offset, SDValue &Label) {
    955   if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
    956     Offset = N.getOperand(0);
    957     SDValue N1 = N.getOperand(1);
    958     Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
    959                                       MVT::i32);
    960     return true;
    961   }
    962 
    963   return false;
    964 }
    965 
    966 
    967 //===----------------------------------------------------------------------===//
    968 //                         Thumb Addressing Modes
    969 //===----------------------------------------------------------------------===//
    970 
    971 bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
    972                                             SDValue &Base, SDValue &Offset){
    973   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
    974     ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
    975     if (!NC || !NC->isNullValue())
    976       return false;
    977 
    978     Base = Offset = N;
    979     return true;
    980   }
    981 
    982   Base = N.getOperand(0);
    983   Offset = N.getOperand(1);
    984   return true;
    985 }
    986 
    987 bool
    988 ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
    989                                        SDValue &Offset, unsigned Scale) {
    990   if (Scale == 4) {
    991     SDValue TmpBase, TmpOffImm;
    992     if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
    993       return false;  // We want to select tLDRspi / tSTRspi instead.
    994 
    995     if (N.getOpcode() == ARMISD::Wrapper &&
    996         N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
    997       return false;  // We want to select tLDRpci instead.
    998   }
    999 
   1000   if (!CurDAG->isBaseWithConstantOffset(N))
   1001     return false;
   1002 
   1003   // Thumb does not have [sp, r] address mode.
   1004   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
   1005   RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
   1006   if ((LHSR && LHSR->getReg() == ARM::SP) ||
   1007       (RHSR && RHSR->getReg() == ARM::SP))
   1008     return false;
   1009 
   1010   // FIXME: Why do we explicitly check for a match here and then return false?
   1011   // Presumably to allow something else to match, but shouldn't this be
   1012   // documented?
   1013   int RHSC;
   1014   if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
   1015     return false;
   1016 
   1017   Base = N.getOperand(0);
   1018   Offset = N.getOperand(1);
   1019   return true;
   1020 }
   1021 
   1022 bool
   1023 ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
   1024                                           SDValue &Base,
   1025                                           SDValue &Offset) {
   1026   return SelectThumbAddrModeRI(N, Base, Offset, 1);
   1027 }
   1028 
   1029 bool
   1030 ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
   1031                                           SDValue &Base,
   1032                                           SDValue &Offset) {
   1033   return SelectThumbAddrModeRI(N, Base, Offset, 2);
   1034 }
   1035 
   1036 bool
   1037 ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
   1038                                           SDValue &Base,
   1039                                           SDValue &Offset) {
   1040   return SelectThumbAddrModeRI(N, Base, Offset, 4);
   1041 }
   1042 
   1043 bool
   1044 ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
   1045                                           SDValue &Base, SDValue &OffImm) {
   1046   if (Scale == 4) {
   1047     SDValue TmpBase, TmpOffImm;
   1048     if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
   1049       return false;  // We want to select tLDRspi / tSTRspi instead.
   1050 
   1051     if (N.getOpcode() == ARMISD::Wrapper &&
   1052         N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
   1053       return false;  // We want to select tLDRpci instead.
   1054   }
   1055 
   1056   if (!CurDAG->isBaseWithConstantOffset(N)) {
   1057     if (N.getOpcode() == ARMISD::Wrapper &&
   1058         !(Subtarget->useMovt() &&
   1059           N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
   1060       Base = N.getOperand(0);
   1061     } else {
   1062       Base = N;
   1063     }
   1064 
   1065     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1066     return true;
   1067   }
   1068 
   1069   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
   1070   RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
   1071   if ((LHSR && LHSR->getReg() == ARM::SP) ||
   1072       (RHSR && RHSR->getReg() == ARM::SP)) {
   1073     ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
   1074     ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
   1075     unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
   1076     unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
   1077 
   1078     // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
   1079     if (LHSC != 0 || RHSC != 0) return false;
   1080 
   1081     Base = N;
   1082     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1083     return true;
   1084   }
   1085 
   1086   // If the RHS is + imm5 * scale, fold into addr mode.
   1087   int RHSC;
   1088   if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
   1089     Base = N.getOperand(0);
   1090     OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1091     return true;
   1092   }
   1093 
   1094   Base = N.getOperand(0);
   1095   OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1096   return true;
   1097 }
   1098 
   1099 bool
   1100 ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
   1101                                            SDValue &OffImm) {
   1102   return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
   1103 }
   1104 
   1105 bool
   1106 ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
   1107                                            SDValue &OffImm) {
   1108   return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
   1109 }
   1110 
   1111 bool
   1112 ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
   1113                                            SDValue &OffImm) {
   1114   return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
   1115 }
   1116 
   1117 bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
   1118                                             SDValue &Base, SDValue &OffImm) {
   1119   if (N.getOpcode() == ISD::FrameIndex) {
   1120     int FI = cast<FrameIndexSDNode>(N)->getIndex();
   1121     Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   1122     OffImm = CurDAG->getTargetConstant(0, MVT::i32);
   1123     return true;
   1124   }
   1125 
   1126   if (!CurDAG->isBaseWithConstantOffset(N))
   1127     return false;
   1128 
   1129   RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
   1130   if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
   1131       (LHSR && LHSR->getReg() == ARM::SP)) {
   1132     // If the RHS is + imm8 * scale, fold into addr mode.
   1133     int RHSC;
   1134     if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
   1135       Base = N.getOperand(0);
   1136       if (Base.getOpcode() == ISD::FrameIndex) {
   1137         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
   1138         Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   1139       }
   1140       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1141       return true;
   1142     }
   1143   }
   1144 
   1145   return false;
   1146 }
   1147 
   1148 
   1149 //===----------------------------------------------------------------------===//
   1150 //                        Thumb 2 Addressing Modes
   1151 //===----------------------------------------------------------------------===//
   1152 
   1153 
   1154 bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
   1155                                                 SDValue &Opc) {
   1156   if (DisableShifterOp)
   1157     return false;
   1158 
   1159   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
   1160 
   1161   // Don't match base register only case. That is matched to a separate
   1162   // lower complexity pattern with explicit register operand.
   1163   if (ShOpcVal == ARM_AM::no_shift) return false;
   1164 
   1165   BaseReg = N.getOperand(0);
   1166   unsigned ShImmVal = 0;
   1167   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1168     ShImmVal = RHS->getZExtValue() & 31;
   1169     Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
   1170     return true;
   1171   }
   1172 
   1173   return false;
   1174 }
   1175 
   1176 bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
   1177                                             SDValue &Base, SDValue &OffImm) {
   1178   // Match simple R + imm12 operands.
   1179 
   1180   // Base only.
   1181   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
   1182       !CurDAG->isBaseWithConstantOffset(N)) {
   1183     if (N.getOpcode() == ISD::FrameIndex) {
   1184       // Match frame index.
   1185       int FI = cast<FrameIndexSDNode>(N)->getIndex();
   1186       Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   1187       OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
   1188       return true;
   1189     }
   1190 
   1191     if (N.getOpcode() == ARMISD::Wrapper &&
   1192                !(Subtarget->useMovt() &&
   1193                  N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
   1194       Base = N.getOperand(0);
   1195       if (Base.getOpcode() == ISD::TargetConstantPool)
   1196         return false;  // We want to select t2LDRpci instead.
   1197     } else
   1198       Base = N;
   1199     OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
   1200     return true;
   1201   }
   1202 
   1203   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1204     if (SelectT2AddrModeImm8(N, Base, OffImm))
   1205       // Let t2LDRi8 handle (R - imm8).
   1206       return false;
   1207 
   1208     int RHSC = (int)RHS->getZExtValue();
   1209     if (N.getOpcode() == ISD::SUB)
   1210       RHSC = -RHSC;
   1211 
   1212     if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
   1213       Base   = N.getOperand(0);
   1214       if (Base.getOpcode() == ISD::FrameIndex) {
   1215         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
   1216         Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   1217       }
   1218       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1219       return true;
   1220     }
   1221   }
   1222 
   1223   // Base only.
   1224   Base = N;
   1225   OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
   1226   return true;
   1227 }
   1228 
   1229 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
   1230                                            SDValue &Base, SDValue &OffImm) {
   1231   // Match simple R - imm8 operands.
   1232   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
   1233       !CurDAG->isBaseWithConstantOffset(N))
   1234     return false;
   1235 
   1236   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1237     int RHSC = (int)RHS->getSExtValue();
   1238     if (N.getOpcode() == ISD::SUB)
   1239       RHSC = -RHSC;
   1240 
   1241     if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
   1242       Base = N.getOperand(0);
   1243       if (Base.getOpcode() == ISD::FrameIndex) {
   1244         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
   1245         Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   1246       }
   1247       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
   1248       return true;
   1249     }
   1250   }
   1251 
   1252   return false;
   1253 }
   1254 
   1255 bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
   1256                                                  SDValue &OffImm){
   1257   unsigned Opcode = Op->getOpcode();
   1258   ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
   1259     ? cast<LoadSDNode>(Op)->getAddressingMode()
   1260     : cast<StoreSDNode>(Op)->getAddressingMode();
   1261   int RHSC;
   1262   if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
   1263     OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
   1264       ? CurDAG->getTargetConstant(RHSC, MVT::i32)
   1265       : CurDAG->getTargetConstant(-RHSC, MVT::i32);
   1266     return true;
   1267   }
   1268 
   1269   return false;
   1270 }
   1271 
   1272 bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
   1273                                             SDValue &Base,
   1274                                             SDValue &OffReg, SDValue &ShImm) {
   1275   // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
   1276   if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
   1277     return false;
   1278 
   1279   // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
   1280   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
   1281     int RHSC = (int)RHS->getZExtValue();
   1282     if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
   1283       return false;
   1284     else if (RHSC < 0 && RHSC >= -255) // 8 bits
   1285       return false;
   1286   }
   1287 
   1288   // Look for (R + R) or (R + (R << [1,2,3])).
   1289   unsigned ShAmt = 0;
   1290   Base   = N.getOperand(0);
   1291   OffReg = N.getOperand(1);
   1292 
   1293   // Swap if it is ((R << c) + R).
   1294   ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
   1295   if (ShOpcVal != ARM_AM::lsl) {
   1296     ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
   1297     if (ShOpcVal == ARM_AM::lsl)
   1298       std::swap(Base, OffReg);
   1299   }
   1300 
   1301   if (ShOpcVal == ARM_AM::lsl) {
   1302     // Check to see if the RHS of the shift is a constant, if not, we can't fold
   1303     // it.
   1304     if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
   1305       ShAmt = Sh->getZExtValue();
   1306       if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
   1307         OffReg = OffReg.getOperand(0);
   1308       else {
   1309         ShAmt = 0;
   1310         ShOpcVal = ARM_AM::no_shift;
   1311       }
   1312     } else {
   1313       ShOpcVal = ARM_AM::no_shift;
   1314     }
   1315   }
   1316 
   1317   ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
   1318 
   1319   return true;
   1320 }
   1321 
   1322 //===--------------------------------------------------------------------===//
   1323 
   1324 /// getAL - Returns a ARMCC::AL immediate node.
   1325 static inline SDValue getAL(SelectionDAG *CurDAG) {
   1326   return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
   1327 }
   1328 
   1329 SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
   1330   LoadSDNode *LD = cast<LoadSDNode>(N);
   1331   ISD::MemIndexedMode AM = LD->getAddressingMode();
   1332   if (AM == ISD::UNINDEXED)
   1333     return NULL;
   1334 
   1335   EVT LoadedVT = LD->getMemoryVT();
   1336   SDValue Offset, AMOpc;
   1337   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
   1338   unsigned Opcode = 0;
   1339   bool Match = false;
   1340   if (LoadedVT == MVT::i32 && isPre &&
   1341       SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
   1342     Opcode = ARM::LDR_PRE_IMM;
   1343     Match = true;
   1344   } else if (LoadedVT == MVT::i32 && !isPre &&
   1345       SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
   1346     Opcode = ARM::LDR_POST_IMM;
   1347     Match = true;
   1348   } else if (LoadedVT == MVT::i32 &&
   1349       SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
   1350     Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
   1351     Match = true;
   1352 
   1353   } else if (LoadedVT == MVT::i16 &&
   1354              SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
   1355     Match = true;
   1356     Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
   1357       ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
   1358       : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
   1359   } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
   1360     if (LD->getExtensionType() == ISD::SEXTLOAD) {
   1361       if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
   1362         Match = true;
   1363         Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
   1364       }
   1365     } else {
   1366       if (isPre &&
   1367           SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
   1368         Match = true;
   1369         Opcode = ARM::LDRB_PRE_IMM;
   1370       } else if (!isPre &&
   1371                   SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
   1372         Match = true;
   1373         Opcode = ARM::LDRB_POST_IMM;
   1374       } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
   1375         Match = true;
   1376         Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
   1377       }
   1378     }
   1379   }
   1380 
   1381   if (Match) {
   1382     if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
   1383       SDValue Chain = LD->getChain();
   1384       SDValue Base = LD->getBasePtr();
   1385       SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
   1386                        CurDAG->getRegister(0, MVT::i32), Chain };
   1387       return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32,
   1388                                     MVT::i32, MVT::Other, Ops, 5);
   1389     } else {
   1390       SDValue Chain = LD->getChain();
   1391       SDValue Base = LD->getBasePtr();
   1392       SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
   1393                        CurDAG->getRegister(0, MVT::i32), Chain };
   1394       return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32,
   1395                                     MVT::i32, MVT::Other, Ops, 6);
   1396     }
   1397   }
   1398 
   1399   return NULL;
   1400 }
   1401 
   1402 SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
   1403   LoadSDNode *LD = cast<LoadSDNode>(N);
   1404   ISD::MemIndexedMode AM = LD->getAddressingMode();
   1405   if (AM == ISD::UNINDEXED)
   1406     return NULL;
   1407 
   1408   EVT LoadedVT = LD->getMemoryVT();
   1409   bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
   1410   SDValue Offset;
   1411   bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
   1412   unsigned Opcode = 0;
   1413   bool Match = false;
   1414   if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
   1415     switch (LoadedVT.getSimpleVT().SimpleTy) {
   1416     case MVT::i32:
   1417       Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
   1418       break;
   1419     case MVT::i16:
   1420       if (isSExtLd)
   1421         Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
   1422       else
   1423         Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
   1424       break;
   1425     case MVT::i8:
   1426     case MVT::i1:
   1427       if (isSExtLd)
   1428         Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
   1429       else
   1430         Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
   1431       break;
   1432     default:
   1433       return NULL;
   1434     }
   1435     Match = true;
   1436   }
   1437 
   1438   if (Match) {
   1439     SDValue Chain = LD->getChain();
   1440     SDValue Base = LD->getBasePtr();
   1441     SDValue Ops[]= { Base, Offset, getAL(CurDAG),
   1442                      CurDAG->getRegister(0, MVT::i32), Chain };
   1443     return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
   1444                                   MVT::Other, Ops, 5);
   1445   }
   1446 
   1447   return NULL;
   1448 }
   1449 
   1450 /// PairSRegs - Form a D register from a pair of S registers.
   1451 ///
   1452 SDNode *ARMDAGToDAGISel::PairSRegs(EVT VT, SDValue V0, SDValue V1) {
   1453   DebugLoc dl = V0.getNode()->getDebugLoc();
   1454   SDValue RegClass =
   1455     CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
   1456   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
   1457   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
   1458   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
   1459   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
   1460 }
   1461 
   1462 /// PairDRegs - Form a quad register from a pair of D registers.
   1463 ///
   1464 SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) {
   1465   DebugLoc dl = V0.getNode()->getDebugLoc();
   1466   SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
   1467   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
   1468   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
   1469   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
   1470   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
   1471 }
   1472 
   1473 /// PairQRegs - Form 4 consecutive D registers from a pair of Q registers.
   1474 ///
   1475 SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) {
   1476   DebugLoc dl = V0.getNode()->getDebugLoc();
   1477   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
   1478   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
   1479   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
   1480   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
   1481   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
   1482 }
   1483 
   1484 /// QuadSRegs - Form 4 consecutive S registers.
   1485 ///
   1486 SDNode *ARMDAGToDAGISel::QuadSRegs(EVT VT, SDValue V0, SDValue V1,
   1487                                    SDValue V2, SDValue V3) {
   1488   DebugLoc dl = V0.getNode()->getDebugLoc();
   1489   SDValue RegClass =
   1490     CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
   1491   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
   1492   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
   1493   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
   1494   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
   1495   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
   1496                                     V2, SubReg2, V3, SubReg3 };
   1497   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
   1498 }
   1499 
   1500 /// QuadDRegs - Form 4 consecutive D registers.
   1501 ///
   1502 SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1,
   1503                                    SDValue V2, SDValue V3) {
   1504   DebugLoc dl = V0.getNode()->getDebugLoc();
   1505   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
   1506   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
   1507   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
   1508   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
   1509   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
   1510   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
   1511                                     V2, SubReg2, V3, SubReg3 };
   1512   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
   1513 }
   1514 
   1515 /// QuadQRegs - Form 4 consecutive Q registers.
   1516 ///
   1517 SDNode *ARMDAGToDAGISel::QuadQRegs(EVT VT, SDValue V0, SDValue V1,
   1518                                    SDValue V2, SDValue V3) {
   1519   DebugLoc dl = V0.getNode()->getDebugLoc();
   1520   SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
   1521   SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
   1522   SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
   1523   SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
   1524   SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
   1525   const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
   1526                                     V2, SubReg2, V3, SubReg3 };
   1527   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
   1528 }
   1529 
   1530 /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
   1531 /// of a NEON VLD or VST instruction.  The supported values depend on the
   1532 /// number of registers being loaded.
   1533 SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
   1534                                        bool is64BitVector) {
   1535   unsigned NumRegs = NumVecs;
   1536   if (!is64BitVector && NumVecs < 3)
   1537     NumRegs *= 2;
   1538 
   1539   unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
   1540   if (Alignment >= 32 && NumRegs == 4)
   1541     Alignment = 32;
   1542   else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
   1543     Alignment = 16;
   1544   else if (Alignment >= 8)
   1545     Alignment = 8;
   1546   else
   1547     Alignment = 0;
   1548 
   1549   return CurDAG->getTargetConstant(Alignment, MVT::i32);
   1550 }
   1551 
   1552 SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
   1553                                    unsigned *DOpcodes, unsigned *QOpcodes0,
   1554                                    unsigned *QOpcodes1) {
   1555   assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
   1556   DebugLoc dl = N->getDebugLoc();
   1557 
   1558   SDValue MemAddr, Align;
   1559   unsigned AddrOpIdx = isUpdating ? 1 : 2;
   1560   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
   1561     return NULL;
   1562 
   1563   SDValue Chain = N->getOperand(0);
   1564   EVT VT = N->getValueType(0);
   1565   bool is64BitVector = VT.is64BitVector();
   1566   Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
   1567 
   1568   unsigned OpcodeIndex;
   1569   switch (VT.getSimpleVT().SimpleTy) {
   1570   default: llvm_unreachable("unhandled vld type");
   1571     // Double-register operations:
   1572   case MVT::v8i8:  OpcodeIndex = 0; break;
   1573   case MVT::v4i16: OpcodeIndex = 1; break;
   1574   case MVT::v2f32:
   1575   case MVT::v2i32: OpcodeIndex = 2; break;
   1576   case MVT::v1i64: OpcodeIndex = 3; break;
   1577     // Quad-register operations:
   1578   case MVT::v16i8: OpcodeIndex = 0; break;
   1579   case MVT::v8i16: OpcodeIndex = 1; break;
   1580   case MVT::v4f32:
   1581   case MVT::v4i32: OpcodeIndex = 2; break;
   1582   case MVT::v2i64: OpcodeIndex = 3;
   1583     assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
   1584     break;
   1585   }
   1586 
   1587   EVT ResTy;
   1588   if (NumVecs == 1)
   1589     ResTy = VT;
   1590   else {
   1591     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
   1592     if (!is64BitVector)
   1593       ResTyElts *= 2;
   1594     ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
   1595   }
   1596   std::vector<EVT> ResTys;
   1597   ResTys.push_back(ResTy);
   1598   if (isUpdating)
   1599     ResTys.push_back(MVT::i32);
   1600   ResTys.push_back(MVT::Other);
   1601 
   1602   SDValue Pred = getAL(CurDAG);
   1603   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   1604   SDNode *VLd;
   1605   SmallVector<SDValue, 7> Ops;
   1606 
   1607   // Double registers and VLD1/VLD2 quad registers are directly supported.
   1608   if (is64BitVector || NumVecs <= 2) {
   1609     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
   1610                     QOpcodes0[OpcodeIndex]);
   1611     Ops.push_back(MemAddr);
   1612     Ops.push_back(Align);
   1613     if (isUpdating) {
   1614       SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1615       Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
   1616     }
   1617     Ops.push_back(Pred);
   1618     Ops.push_back(Reg0);
   1619     Ops.push_back(Chain);
   1620     VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
   1621 
   1622   } else {
   1623     // Otherwise, quad registers are loaded with two separate instructions,
   1624     // where one loads the even registers and the other loads the odd registers.
   1625     EVT AddrTy = MemAddr.getValueType();
   1626 
   1627     // Load the even subregs.  This is always an updating load, so that it
   1628     // provides the address to the second load for the odd subregs.
   1629     SDValue ImplDef =
   1630       SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
   1631     const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
   1632     SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
   1633                                           ResTy, AddrTy, MVT::Other, OpsA, 7);
   1634     Chain = SDValue(VLdA, 2);
   1635 
   1636     // Load the odd subregs.
   1637     Ops.push_back(SDValue(VLdA, 1));
   1638     Ops.push_back(Align);
   1639     if (isUpdating) {
   1640       SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1641       assert(isa<ConstantSDNode>(Inc.getNode()) &&
   1642              "only constant post-increment update allowed for VLD3/4");
   1643       (void)Inc;
   1644       Ops.push_back(Reg0);
   1645     }
   1646     Ops.push_back(SDValue(VLdA, 0));
   1647     Ops.push_back(Pred);
   1648     Ops.push_back(Reg0);
   1649     Ops.push_back(Chain);
   1650     VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
   1651                                  Ops.data(), Ops.size());
   1652   }
   1653 
   1654   // Transfer memoperands.
   1655   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1656   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   1657   cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
   1658 
   1659   if (NumVecs == 1)
   1660     return VLd;
   1661 
   1662   // Extract out the subregisters.
   1663   SDValue SuperReg = SDValue(VLd, 0);
   1664   assert(ARM::dsub_7 == ARM::dsub_0+7 &&
   1665          ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
   1666   unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
   1667   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
   1668     ReplaceUses(SDValue(N, Vec),
   1669                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
   1670   ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
   1671   if (isUpdating)
   1672     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
   1673   return NULL;
   1674 }
   1675 
   1676 SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
   1677                                    unsigned *DOpcodes, unsigned *QOpcodes0,
   1678                                    unsigned *QOpcodes1) {
   1679   assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
   1680   DebugLoc dl = N->getDebugLoc();
   1681 
   1682   SDValue MemAddr, Align;
   1683   unsigned AddrOpIdx = isUpdating ? 1 : 2;
   1684   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
   1685   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
   1686     return NULL;
   1687 
   1688   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1689   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   1690 
   1691   SDValue Chain = N->getOperand(0);
   1692   EVT VT = N->getOperand(Vec0Idx).getValueType();
   1693   bool is64BitVector = VT.is64BitVector();
   1694   Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
   1695 
   1696   unsigned OpcodeIndex;
   1697   switch (VT.getSimpleVT().SimpleTy) {
   1698   default: llvm_unreachable("unhandled vst type");
   1699     // Double-register operations:
   1700   case MVT::v8i8:  OpcodeIndex = 0; break;
   1701   case MVT::v4i16: OpcodeIndex = 1; break;
   1702   case MVT::v2f32:
   1703   case MVT::v2i32: OpcodeIndex = 2; break;
   1704   case MVT::v1i64: OpcodeIndex = 3; break;
   1705     // Quad-register operations:
   1706   case MVT::v16i8: OpcodeIndex = 0; break;
   1707   case MVT::v8i16: OpcodeIndex = 1; break;
   1708   case MVT::v4f32:
   1709   case MVT::v4i32: OpcodeIndex = 2; break;
   1710   case MVT::v2i64: OpcodeIndex = 3;
   1711     assert(NumVecs == 1 && "v2i64 type only supported for VST1");
   1712     break;
   1713   }
   1714 
   1715   std::vector<EVT> ResTys;
   1716   if (isUpdating)
   1717     ResTys.push_back(MVT::i32);
   1718   ResTys.push_back(MVT::Other);
   1719 
   1720   SDValue Pred = getAL(CurDAG);
   1721   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   1722   SmallVector<SDValue, 7> Ops;
   1723 
   1724   // Double registers and VST1/VST2 quad registers are directly supported.
   1725   if (is64BitVector || NumVecs <= 2) {
   1726     SDValue SrcReg;
   1727     if (NumVecs == 1) {
   1728       SrcReg = N->getOperand(Vec0Idx);
   1729     } else if (is64BitVector) {
   1730       // Form a REG_SEQUENCE to force register allocation.
   1731       SDValue V0 = N->getOperand(Vec0Idx + 0);
   1732       SDValue V1 = N->getOperand(Vec0Idx + 1);
   1733       if (NumVecs == 2)
   1734         SrcReg = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
   1735       else {
   1736         SDValue V2 = N->getOperand(Vec0Idx + 2);
   1737         // If it's a vst3, form a quad D-register and leave the last part as
   1738         // an undef.
   1739         SDValue V3 = (NumVecs == 3)
   1740           ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
   1741           : N->getOperand(Vec0Idx + 3);
   1742         SrcReg = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
   1743       }
   1744     } else {
   1745       // Form a QQ register.
   1746       SDValue Q0 = N->getOperand(Vec0Idx);
   1747       SDValue Q1 = N->getOperand(Vec0Idx + 1);
   1748       SrcReg = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0);
   1749     }
   1750 
   1751     unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
   1752                     QOpcodes0[OpcodeIndex]);
   1753     Ops.push_back(MemAddr);
   1754     Ops.push_back(Align);
   1755     if (isUpdating) {
   1756       SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1757       Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
   1758     }
   1759     Ops.push_back(SrcReg);
   1760     Ops.push_back(Pred);
   1761     Ops.push_back(Reg0);
   1762     Ops.push_back(Chain);
   1763     SDNode *VSt =
   1764       CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
   1765 
   1766     // Transfer memoperands.
   1767     cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
   1768 
   1769     return VSt;
   1770   }
   1771 
   1772   // Otherwise, quad registers are stored with two separate instructions,
   1773   // where one stores the even registers and the other stores the odd registers.
   1774 
   1775   // Form the QQQQ REG_SEQUENCE.
   1776   SDValue V0 = N->getOperand(Vec0Idx + 0);
   1777   SDValue V1 = N->getOperand(Vec0Idx + 1);
   1778   SDValue V2 = N->getOperand(Vec0Idx + 2);
   1779   SDValue V3 = (NumVecs == 3)
   1780     ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
   1781     : N->getOperand(Vec0Idx + 3);
   1782   SDValue RegSeq = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
   1783 
   1784   // Store the even D registers.  This is always an updating store, so that it
   1785   // provides the address to the second store for the odd subregs.
   1786   const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
   1787   SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
   1788                                         MemAddr.getValueType(),
   1789                                         MVT::Other, OpsA, 7);
   1790   cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
   1791   Chain = SDValue(VStA, 1);
   1792 
   1793   // Store the odd D registers.
   1794   Ops.push_back(SDValue(VStA, 0));
   1795   Ops.push_back(Align);
   1796   if (isUpdating) {
   1797     SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1798     assert(isa<ConstantSDNode>(Inc.getNode()) &&
   1799            "only constant post-increment update allowed for VST3/4");
   1800     (void)Inc;
   1801     Ops.push_back(Reg0);
   1802   }
   1803   Ops.push_back(RegSeq);
   1804   Ops.push_back(Pred);
   1805   Ops.push_back(Reg0);
   1806   Ops.push_back(Chain);
   1807   SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
   1808                                         Ops.data(), Ops.size());
   1809   cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
   1810   return VStB;
   1811 }
   1812 
   1813 SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
   1814                                          bool isUpdating, unsigned NumVecs,
   1815                                          unsigned *DOpcodes,
   1816                                          unsigned *QOpcodes) {
   1817   assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
   1818   DebugLoc dl = N->getDebugLoc();
   1819 
   1820   SDValue MemAddr, Align;
   1821   unsigned AddrOpIdx = isUpdating ? 1 : 2;
   1822   unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
   1823   if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
   1824     return NULL;
   1825 
   1826   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1827   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   1828 
   1829   SDValue Chain = N->getOperand(0);
   1830   unsigned Lane =
   1831     cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
   1832   EVT VT = N->getOperand(Vec0Idx).getValueType();
   1833   bool is64BitVector = VT.is64BitVector();
   1834 
   1835   unsigned Alignment = 0;
   1836   if (NumVecs != 3) {
   1837     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
   1838     unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
   1839     if (Alignment > NumBytes)
   1840       Alignment = NumBytes;
   1841     if (Alignment < 8 && Alignment < NumBytes)
   1842       Alignment = 0;
   1843     // Alignment must be a power of two; make sure of that.
   1844     Alignment = (Alignment & -Alignment);
   1845     if (Alignment == 1)
   1846       Alignment = 0;
   1847   }
   1848   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
   1849 
   1850   unsigned OpcodeIndex;
   1851   switch (VT.getSimpleVT().SimpleTy) {
   1852   default: llvm_unreachable("unhandled vld/vst lane type");
   1853     // Double-register operations:
   1854   case MVT::v8i8:  OpcodeIndex = 0; break;
   1855   case MVT::v4i16: OpcodeIndex = 1; break;
   1856   case MVT::v2f32:
   1857   case MVT::v2i32: OpcodeIndex = 2; break;
   1858     // Quad-register operations:
   1859   case MVT::v8i16: OpcodeIndex = 0; break;
   1860   case MVT::v4f32:
   1861   case MVT::v4i32: OpcodeIndex = 1; break;
   1862   }
   1863 
   1864   std::vector<EVT> ResTys;
   1865   if (IsLoad) {
   1866     unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
   1867     if (!is64BitVector)
   1868       ResTyElts *= 2;
   1869     ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
   1870                                       MVT::i64, ResTyElts));
   1871   }
   1872   if (isUpdating)
   1873     ResTys.push_back(MVT::i32);
   1874   ResTys.push_back(MVT::Other);
   1875 
   1876   SDValue Pred = getAL(CurDAG);
   1877   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   1878 
   1879   SmallVector<SDValue, 8> Ops;
   1880   Ops.push_back(MemAddr);
   1881   Ops.push_back(Align);
   1882   if (isUpdating) {
   1883     SDValue Inc = N->getOperand(AddrOpIdx + 1);
   1884     Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
   1885   }
   1886 
   1887   SDValue SuperReg;
   1888   SDValue V0 = N->getOperand(Vec0Idx + 0);
   1889   SDValue V1 = N->getOperand(Vec0Idx + 1);
   1890   if (NumVecs == 2) {
   1891     if (is64BitVector)
   1892       SuperReg = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
   1893     else
   1894       SuperReg = SDValue(PairQRegs(MVT::v4i64, V0, V1), 0);
   1895   } else {
   1896     SDValue V2 = N->getOperand(Vec0Idx + 2);
   1897     SDValue V3 = (NumVecs == 3)
   1898       ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
   1899       : N->getOperand(Vec0Idx + 3);
   1900     if (is64BitVector)
   1901       SuperReg = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
   1902     else
   1903       SuperReg = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
   1904   }
   1905   Ops.push_back(SuperReg);
   1906   Ops.push_back(getI32Imm(Lane));
   1907   Ops.push_back(Pred);
   1908   Ops.push_back(Reg0);
   1909   Ops.push_back(Chain);
   1910 
   1911   unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
   1912                                   QOpcodes[OpcodeIndex]);
   1913   SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys,
   1914                                          Ops.data(), Ops.size());
   1915   cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
   1916   if (!IsLoad)
   1917     return VLdLn;
   1918 
   1919   // Extract the subregisters.
   1920   SuperReg = SDValue(VLdLn, 0);
   1921   assert(ARM::dsub_7 == ARM::dsub_0+7 &&
   1922          ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
   1923   unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
   1924   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
   1925     ReplaceUses(SDValue(N, Vec),
   1926                 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
   1927   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
   1928   if (isUpdating)
   1929     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
   1930   return NULL;
   1931 }
   1932 
   1933 SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
   1934                                       unsigned NumVecs, unsigned *Opcodes) {
   1935   assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
   1936   DebugLoc dl = N->getDebugLoc();
   1937 
   1938   SDValue MemAddr, Align;
   1939   if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
   1940     return NULL;
   1941 
   1942   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   1943   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   1944 
   1945   SDValue Chain = N->getOperand(0);
   1946   EVT VT = N->getValueType(0);
   1947 
   1948   unsigned Alignment = 0;
   1949   if (NumVecs != 3) {
   1950     Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
   1951     unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
   1952     if (Alignment > NumBytes)
   1953       Alignment = NumBytes;
   1954     if (Alignment < 8 && Alignment < NumBytes)
   1955       Alignment = 0;
   1956     // Alignment must be a power of two; make sure of that.
   1957     Alignment = (Alignment & -Alignment);
   1958     if (Alignment == 1)
   1959       Alignment = 0;
   1960   }
   1961   Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
   1962 
   1963   unsigned OpcodeIndex;
   1964   switch (VT.getSimpleVT().SimpleTy) {
   1965   default: llvm_unreachable("unhandled vld-dup type");
   1966   case MVT::v8i8:  OpcodeIndex = 0; break;
   1967   case MVT::v4i16: OpcodeIndex = 1; break;
   1968   case MVT::v2f32:
   1969   case MVT::v2i32: OpcodeIndex = 2; break;
   1970   }
   1971 
   1972   SDValue Pred = getAL(CurDAG);
   1973   SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   1974   SDValue SuperReg;
   1975   unsigned Opc = Opcodes[OpcodeIndex];
   1976   SmallVector<SDValue, 6> Ops;
   1977   Ops.push_back(MemAddr);
   1978   Ops.push_back(Align);
   1979   if (isUpdating) {
   1980     SDValue Inc = N->getOperand(2);
   1981     Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
   1982   }
   1983   Ops.push_back(Pred);
   1984   Ops.push_back(Reg0);
   1985   Ops.push_back(Chain);
   1986 
   1987   unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
   1988   std::vector<EVT> ResTys;
   1989   ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
   1990   if (isUpdating)
   1991     ResTys.push_back(MVT::i32);
   1992   ResTys.push_back(MVT::Other);
   1993   SDNode *VLdDup =
   1994     CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
   1995   cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
   1996   SuperReg = SDValue(VLdDup, 0);
   1997 
   1998   // Extract the subregisters.
   1999   assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
   2000   unsigned SubIdx = ARM::dsub_0;
   2001   for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
   2002     ReplaceUses(SDValue(N, Vec),
   2003                 CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
   2004   ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
   2005   if (isUpdating)
   2006     ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
   2007   return NULL;
   2008 }
   2009 
   2010 SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
   2011                                     unsigned Opc) {
   2012   assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
   2013   DebugLoc dl = N->getDebugLoc();
   2014   EVT VT = N->getValueType(0);
   2015   unsigned FirstTblReg = IsExt ? 2 : 1;
   2016 
   2017   // Form a REG_SEQUENCE to force register allocation.
   2018   SDValue RegSeq;
   2019   SDValue V0 = N->getOperand(FirstTblReg + 0);
   2020   SDValue V1 = N->getOperand(FirstTblReg + 1);
   2021   if (NumVecs == 2)
   2022     RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0);
   2023   else {
   2024     SDValue V2 = N->getOperand(FirstTblReg + 2);
   2025     // If it's a vtbl3, form a quad D-register and leave the last part as
   2026     // an undef.
   2027     SDValue V3 = (NumVecs == 3)
   2028       ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
   2029       : N->getOperand(FirstTblReg + 3);
   2030     RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
   2031   }
   2032 
   2033   SmallVector<SDValue, 6> Ops;
   2034   if (IsExt)
   2035     Ops.push_back(N->getOperand(1));
   2036   Ops.push_back(RegSeq);
   2037   Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
   2038   Ops.push_back(getAL(CurDAG)); // predicate
   2039   Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
   2040   return CurDAG->getMachineNode(Opc, dl, VT, Ops.data(), Ops.size());
   2041 }
   2042 
   2043 SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
   2044                                                      bool isSigned) {
   2045   if (!Subtarget->hasV6T2Ops())
   2046     return NULL;
   2047 
   2048   unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
   2049     : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
   2050 
   2051 
   2052   // For unsigned extracts, check for a shift right and mask
   2053   unsigned And_imm = 0;
   2054   if (N->getOpcode() == ISD::AND) {
   2055     if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
   2056 
   2057       // The immediate is a mask of the low bits iff imm & (imm+1) == 0
   2058       if (And_imm & (And_imm + 1))
   2059         return NULL;
   2060 
   2061       unsigned Srl_imm = 0;
   2062       if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
   2063                                 Srl_imm)) {
   2064         assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
   2065 
   2066         // Note: The width operand is encoded as width-1.
   2067         unsigned Width = CountTrailingOnes_32(And_imm) - 1;
   2068         unsigned LSB = Srl_imm;
   2069         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2070         SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2071                           CurDAG->getTargetConstant(LSB, MVT::i32),
   2072                           CurDAG->getTargetConstant(Width, MVT::i32),
   2073           getAL(CurDAG), Reg0 };
   2074         return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2075       }
   2076     }
   2077     return NULL;
   2078   }
   2079 
   2080   // Otherwise, we're looking for a shift of a shift
   2081   unsigned Shl_imm = 0;
   2082   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
   2083     assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
   2084     unsigned Srl_imm = 0;
   2085     if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
   2086       assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
   2087       // Note: The width operand is encoded as width-1.
   2088       unsigned Width = 32 - Srl_imm - 1;
   2089       int LSB = Srl_imm - Shl_imm;
   2090       if (LSB < 0)
   2091         return NULL;
   2092       SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2093       SDValue Ops[] = { N->getOperand(0).getOperand(0),
   2094                         CurDAG->getTargetConstant(LSB, MVT::i32),
   2095                         CurDAG->getTargetConstant(Width, MVT::i32),
   2096                         getAL(CurDAG), Reg0 };
   2097       return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2098     }
   2099   }
   2100   return NULL;
   2101 }
   2102 
   2103 SDNode *ARMDAGToDAGISel::
   2104 SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2105                     ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2106   SDValue CPTmp0;
   2107   SDValue CPTmp1;
   2108   if (SelectT2ShifterOperandReg(TrueVal, CPTmp0, CPTmp1)) {
   2109     unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
   2110     unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
   2111     unsigned Opc = 0;
   2112     switch (SOShOp) {
   2113     case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
   2114     case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
   2115     case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
   2116     case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
   2117     default:
   2118       llvm_unreachable("Unknown so_reg opcode!");
   2119       break;
   2120     }
   2121     SDValue SOShImm =
   2122       CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
   2123     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2124     SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
   2125     return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
   2126   }
   2127   return 0;
   2128 }
   2129 
   2130 SDNode *ARMDAGToDAGISel::
   2131 SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2132                      ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2133   SDValue CPTmp0;
   2134   SDValue CPTmp1;
   2135   SDValue CPTmp2;
   2136   if (SelectImmShifterOperand(TrueVal, CPTmp0, CPTmp2)) {
   2137     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2138     SDValue Ops[] = { FalseVal, CPTmp0, CPTmp2, CC, CCR, InFlag };
   2139     return CurDAG->SelectNodeTo(N, ARM::MOVCCsi, MVT::i32, Ops, 6);
   2140   }
   2141 
   2142   if (SelectRegShifterOperand(TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
   2143     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2144     SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
   2145     return CurDAG->SelectNodeTo(N, ARM::MOVCCsr, MVT::i32, Ops, 7);
   2146   }
   2147   return 0;
   2148 }
   2149 
   2150 SDNode *ARMDAGToDAGISel::
   2151 SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2152                   ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2153   ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
   2154   if (!T)
   2155     return 0;
   2156 
   2157   unsigned Opc = 0;
   2158   unsigned TrueImm = T->getZExtValue();
   2159   if (is_t2_so_imm(TrueImm)) {
   2160     Opc = ARM::t2MOVCCi;
   2161   } else if (TrueImm <= 0xffff) {
   2162     Opc = ARM::t2MOVCCi16;
   2163   } else if (is_t2_so_imm_not(TrueImm)) {
   2164     TrueImm = ~TrueImm;
   2165     Opc = ARM::t2MVNCCi;
   2166   } else if (TrueVal.getNode()->hasOneUse() && Subtarget->hasV6T2Ops()) {
   2167     // Large immediate.
   2168     Opc = ARM::t2MOVCCi32imm;
   2169   }
   2170 
   2171   if (Opc) {
   2172     SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
   2173     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2174     SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
   2175     return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2176   }
   2177 
   2178   return 0;
   2179 }
   2180 
   2181 SDNode *ARMDAGToDAGISel::
   2182 SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
   2183                    ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
   2184   ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
   2185   if (!T)
   2186     return 0;
   2187 
   2188   unsigned Opc = 0;
   2189   unsigned TrueImm = T->getZExtValue();
   2190   bool isSoImm = is_so_imm(TrueImm);
   2191   if (isSoImm) {
   2192     Opc = ARM::MOVCCi;
   2193   } else if (Subtarget->hasV6T2Ops() && TrueImm <= 0xffff) {
   2194     Opc = ARM::MOVCCi16;
   2195   } else if (is_so_imm_not(TrueImm)) {
   2196     TrueImm = ~TrueImm;
   2197     Opc = ARM::MVNCCi;
   2198   } else if (TrueVal.getNode()->hasOneUse() &&
   2199              (Subtarget->hasV6T2Ops() || ARM_AM::isSOImmTwoPartVal(TrueImm))) {
   2200     // Large immediate.
   2201     Opc = ARM::MOVCCi32imm;
   2202   }
   2203 
   2204   if (Opc) {
   2205     SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
   2206     SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2207     SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
   2208     return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2209   }
   2210 
   2211   return 0;
   2212 }
   2213 
   2214 SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
   2215   EVT VT = N->getValueType(0);
   2216   SDValue FalseVal = N->getOperand(0);
   2217   SDValue TrueVal  = N->getOperand(1);
   2218   SDValue CC = N->getOperand(2);
   2219   SDValue CCR = N->getOperand(3);
   2220   SDValue InFlag = N->getOperand(4);
   2221   assert(CC.getOpcode() == ISD::Constant);
   2222   assert(CCR.getOpcode() == ISD::Register);
   2223   ARMCC::CondCodes CCVal =
   2224     (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue();
   2225 
   2226   if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
   2227     // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
   2228     // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
   2229     // Pattern complexity = 18  cost = 1  size = 0
   2230     SDValue CPTmp0;
   2231     SDValue CPTmp1;
   2232     SDValue CPTmp2;
   2233     if (Subtarget->isThumb()) {
   2234       SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
   2235                                         CCVal, CCR, InFlag);
   2236       if (!Res)
   2237         Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
   2238                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2239       if (Res)
   2240         return Res;
   2241     } else {
   2242       SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
   2243                                          CCVal, CCR, InFlag);
   2244       if (!Res)
   2245         Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
   2246                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2247       if (Res)
   2248         return Res;
   2249     }
   2250 
   2251     // Pattern: (ARMcmov:i32 GPR:i32:$false,
   2252     //             (imm:i32)<<P:Pred_so_imm>>:$true,
   2253     //             (imm:i32):$cc)
   2254     // Emits: (MOVCCi:i32 GPR:i32:$false,
   2255     //           (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
   2256     // Pattern complexity = 10  cost = 1  size = 0
   2257     if (Subtarget->isThumb()) {
   2258       SDNode *Res = SelectT2CMOVImmOp(N, FalseVal, TrueVal,
   2259                                         CCVal, CCR, InFlag);
   2260       if (!Res)
   2261         Res = SelectT2CMOVImmOp(N, TrueVal, FalseVal,
   2262                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2263       if (Res)
   2264         return Res;
   2265     } else {
   2266       SDNode *Res = SelectARMCMOVImmOp(N, FalseVal, TrueVal,
   2267                                          CCVal, CCR, InFlag);
   2268       if (!Res)
   2269         Res = SelectARMCMOVImmOp(N, TrueVal, FalseVal,
   2270                                ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
   2271       if (Res)
   2272         return Res;
   2273     }
   2274   }
   2275 
   2276   // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2277   // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2278   // Pattern complexity = 6  cost = 1  size = 0
   2279   //
   2280   // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2281   // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
   2282   // Pattern complexity = 6  cost = 11  size = 0
   2283   //
   2284   // Also VMOVScc and VMOVDcc.
   2285   SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32);
   2286   SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag };
   2287   unsigned Opc = 0;
   2288   switch (VT.getSimpleVT().SimpleTy) {
   2289   default: assert(false && "Illegal conditional move type!");
   2290     break;
   2291   case MVT::i32:
   2292     Opc = Subtarget->isThumb()
   2293       ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
   2294       : ARM::MOVCCr;
   2295     break;
   2296   case MVT::f32:
   2297     Opc = ARM::VMOVScc;
   2298     break;
   2299   case MVT::f64:
   2300     Opc = ARM::VMOVDcc;
   2301     break;
   2302   }
   2303   return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
   2304 }
   2305 
   2306 /// Target-specific DAG combining for ISD::XOR.
   2307 /// Target-independent combining lowers SELECT_CC nodes of the form
   2308 /// select_cc setg[ge] X,  0,  X, -X
   2309 /// select_cc setgt    X, -1,  X, -X
   2310 /// select_cc setl[te] X,  0, -X,  X
   2311 /// select_cc setlt    X,  1, -X,  X
   2312 /// which represent Integer ABS into:
   2313 /// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
   2314 /// ARM instruction selection detects the latter and matches it to
   2315 /// ARM::ABS or ARM::t2ABS machine node.
   2316 SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){
   2317   SDValue XORSrc0 = N->getOperand(0);
   2318   SDValue XORSrc1 = N->getOperand(1);
   2319   DebugLoc DL = N->getDebugLoc();
   2320   EVT VT = N->getValueType(0);
   2321 
   2322   if (DisableARMIntABS)
   2323     return NULL;
   2324 
   2325   if (Subtarget->isThumb1Only())
   2326     return NULL;
   2327 
   2328   if (XORSrc0.getOpcode() != ISD::ADD ||
   2329     XORSrc1.getOpcode() != ISD::SRA)
   2330     return NULL;
   2331 
   2332   SDValue ADDSrc0 = XORSrc0.getOperand(0);
   2333   SDValue ADDSrc1 = XORSrc0.getOperand(1);
   2334   SDValue SRASrc0 = XORSrc1.getOperand(0);
   2335   SDValue SRASrc1 = XORSrc1.getOperand(1);
   2336   ConstantSDNode *SRAConstant =  dyn_cast<ConstantSDNode>(SRASrc1);
   2337   EVT XType = SRASrc0.getValueType();
   2338   unsigned Size = XType.getSizeInBits() - 1;
   2339 
   2340   if (ADDSrc1 == XORSrc1  &&
   2341       ADDSrc0 == SRASrc0 &&
   2342       XType.isInteger() &&
   2343       SRAConstant != NULL &&
   2344       Size == SRAConstant->getZExtValue()) {
   2345 
   2346     unsigned Opcode = ARM::ABS;
   2347     if (Subtarget->isThumb2())
   2348       Opcode = ARM::t2ABS;
   2349 
   2350     return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
   2351   }
   2352 
   2353   return NULL;
   2354 }
   2355 
   2356 SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
   2357   // The only time a CONCAT_VECTORS operation can have legal types is when
   2358   // two 64-bit vectors are concatenated to a 128-bit vector.
   2359   EVT VT = N->getValueType(0);
   2360   if (!VT.is128BitVector() || N->getNumOperands() != 2)
   2361     llvm_unreachable("unexpected CONCAT_VECTORS");
   2362   return PairDRegs(VT, N->getOperand(0), N->getOperand(1));
   2363 }
   2364 
   2365 SDNode *ARMDAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
   2366   SmallVector<SDValue, 6> Ops;
   2367   Ops.push_back(Node->getOperand(1)); // Ptr
   2368   Ops.push_back(Node->getOperand(2)); // Low part of Val1
   2369   Ops.push_back(Node->getOperand(3)); // High part of Val1
   2370   if (Opc == ARM::ATOMCMPXCHG6432) {
   2371     Ops.push_back(Node->getOperand(4)); // Low part of Val2
   2372     Ops.push_back(Node->getOperand(5)); // High part of Val2
   2373   }
   2374   Ops.push_back(Node->getOperand(0)); // Chain
   2375   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2376   MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
   2377   SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
   2378                                            MVT::i32, MVT::i32, MVT::Other,
   2379                                            Ops.data() ,Ops.size());
   2380   cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
   2381   return ResNode;
   2382 }
   2383 
   2384 SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
   2385   DebugLoc dl = N->getDebugLoc();
   2386 
   2387   if (N->isMachineOpcode())
   2388     return NULL;   // Already selected.
   2389 
   2390   switch (N->getOpcode()) {
   2391   default: break;
   2392   case ISD::XOR: {
   2393     // Select special operations if XOR node forms integer ABS pattern
   2394     SDNode *ResNode = SelectABSOp(N);
   2395     if (ResNode)
   2396       return ResNode;
   2397     // Other cases are autogenerated.
   2398     break;
   2399   }
   2400   case ISD::Constant: {
   2401     unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
   2402     bool UseCP = true;
   2403     if (Subtarget->hasThumb2())
   2404       // Thumb2-aware targets have the MOVT instruction, so all immediates can
   2405       // be done with MOV + MOVT, at worst.
   2406       UseCP = 0;
   2407     else {
   2408       if (Subtarget->isThumb()) {
   2409         UseCP = (Val > 255 &&                          // MOV
   2410                  ~Val > 255 &&                         // MOV + MVN
   2411                  !ARM_AM::isThumbImmShiftedVal(Val));  // MOV + LSL
   2412       } else
   2413         UseCP = (ARM_AM::getSOImmVal(Val) == -1 &&     // MOV
   2414                  ARM_AM::getSOImmVal(~Val) == -1 &&    // MVN
   2415                  !ARM_AM::isSOImmTwoPartVal(Val));     // two instrs.
   2416     }
   2417 
   2418     if (UseCP) {
   2419       SDValue CPIdx =
   2420         CurDAG->getTargetConstantPool(ConstantInt::get(
   2421                                   Type::getInt32Ty(*CurDAG->getContext()), Val),
   2422                                       TLI.getPointerTy());
   2423 
   2424       SDNode *ResNode;
   2425       if (Subtarget->isThumb1Only()) {
   2426         SDValue Pred = getAL(CurDAG);
   2427         SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2428         SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
   2429         ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
   2430                                          Ops, 4);
   2431       } else {
   2432         SDValue Ops[] = {
   2433           CPIdx,
   2434           CurDAG->getTargetConstant(0, MVT::i32),
   2435           getAL(CurDAG),
   2436           CurDAG->getRegister(0, MVT::i32),
   2437           CurDAG->getEntryNode()
   2438         };
   2439         ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
   2440                                        Ops, 5);
   2441       }
   2442       ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
   2443       return NULL;
   2444     }
   2445 
   2446     // Other cases are autogenerated.
   2447     break;
   2448   }
   2449   case ISD::FrameIndex: {
   2450     // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
   2451     int FI = cast<FrameIndexSDNode>(N)->getIndex();
   2452     SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
   2453     if (Subtarget->isThumb1Only()) {
   2454       SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
   2455                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
   2456       return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops, 4);
   2457     } else {
   2458       unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
   2459                       ARM::t2ADDri : ARM::ADDri);
   2460       SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
   2461                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
   2462                         CurDAG->getRegister(0, MVT::i32) };
   2463       return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
   2464     }
   2465   }
   2466   case ISD::SRL:
   2467     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
   2468       return I;
   2469     break;
   2470   case ISD::SRA:
   2471     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
   2472       return I;
   2473     break;
   2474   case ISD::MUL:
   2475     if (Subtarget->isThumb1Only())
   2476       break;
   2477     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
   2478       unsigned RHSV = C->getZExtValue();
   2479       if (!RHSV) break;
   2480       if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
   2481         unsigned ShImm = Log2_32(RHSV-1);
   2482         if (ShImm >= 32)
   2483           break;
   2484         SDValue V = N->getOperand(0);
   2485         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
   2486         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
   2487         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2488         if (Subtarget->isThumb()) {
   2489           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2490           return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
   2491         } else {
   2492           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2493           return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops, 7);
   2494         }
   2495       }
   2496       if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
   2497         unsigned ShImm = Log2_32(RHSV+1);
   2498         if (ShImm >= 32)
   2499           break;
   2500         SDValue V = N->getOperand(0);
   2501         ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
   2502         SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
   2503         SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
   2504         if (Subtarget->isThumb()) {
   2505           SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2506           return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6);
   2507         } else {
   2508           SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
   2509           return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops, 7);
   2510         }
   2511       }
   2512     }
   2513     break;
   2514   case ISD::AND: {
   2515     // Check for unsigned bitfield extract
   2516     if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
   2517       return I;
   2518 
   2519     // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
   2520     // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
   2521     // are entirely contributed by c2 and lower 16-bits are entirely contributed
   2522     // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
   2523     // Select it to: "movt x, ((c1 & 0xffff) >> 16)
   2524     EVT VT = N->getValueType(0);
   2525     if (VT != MVT::i32)
   2526       break;
   2527     unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
   2528       ? ARM::t2MOVTi16
   2529       : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
   2530     if (!Opc)
   2531       break;
   2532     SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
   2533     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   2534     if (!N1C)
   2535       break;
   2536     if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
   2537       SDValue N2 = N0.getOperand(1);
   2538       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
   2539       if (!N2C)
   2540         break;
   2541       unsigned N1CVal = N1C->getZExtValue();
   2542       unsigned N2CVal = N2C->getZExtValue();
   2543       if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
   2544           (N1CVal & 0xffffU) == 0xffffU &&
   2545           (N2CVal & 0xffffU) == 0x0U) {
   2546         SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
   2547                                                   MVT::i32);
   2548         SDValue Ops[] = { N0.getOperand(0), Imm16,
   2549                           getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
   2550         return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4);
   2551       }
   2552     }
   2553     break;
   2554   }
   2555   case ARMISD::VMOVRRD:
   2556     return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
   2557                                   N->getOperand(0), getAL(CurDAG),
   2558                                   CurDAG->getRegister(0, MVT::i32));
   2559   case ISD::UMUL_LOHI: {
   2560     if (Subtarget->isThumb1Only())
   2561       break;
   2562     if (Subtarget->isThumb()) {
   2563       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2564                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
   2565                         CurDAG->getRegister(0, MVT::i32) };
   2566       return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32,Ops,4);
   2567     } else {
   2568       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2569                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
   2570                         CurDAG->getRegister(0, MVT::i32) };
   2571       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
   2572                                     ARM::UMULL : ARM::UMULLv5,
   2573                                     dl, MVT::i32, MVT::i32, Ops, 5);
   2574     }
   2575   }
   2576   case ISD::SMUL_LOHI: {
   2577     if (Subtarget->isThumb1Only())
   2578       break;
   2579     if (Subtarget->isThumb()) {
   2580       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2581                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
   2582       return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32,Ops,4);
   2583     } else {
   2584       SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
   2585                         getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
   2586                         CurDAG->getRegister(0, MVT::i32) };
   2587       return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
   2588                                     ARM::SMULL : ARM::SMULLv5,
   2589                                     dl, MVT::i32, MVT::i32, Ops, 5);
   2590     }
   2591   }
   2592   case ISD::LOAD: {
   2593     SDNode *ResNode = 0;
   2594     if (Subtarget->isThumb() && Subtarget->hasThumb2())
   2595       ResNode = SelectT2IndexedLoad(N);
   2596     else
   2597       ResNode = SelectARMIndexedLoad(N);
   2598     if (ResNode)
   2599       return ResNode;
   2600     // Other cases are autogenerated.
   2601     break;
   2602   }
   2603   case ARMISD::BRCOND: {
   2604     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
   2605     // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
   2606     // Pattern complexity = 6  cost = 1  size = 0
   2607 
   2608     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
   2609     // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
   2610     // Pattern complexity = 6  cost = 1  size = 0
   2611 
   2612     // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
   2613     // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
   2614     // Pattern complexity = 6  cost = 1  size = 0
   2615 
   2616     unsigned Opc = Subtarget->isThumb() ?
   2617       ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
   2618     SDValue Chain = N->getOperand(0);
   2619     SDValue N1 = N->getOperand(1);
   2620     SDValue N2 = N->getOperand(2);
   2621     SDValue N3 = N->getOperand(3);
   2622     SDValue InFlag = N->getOperand(4);
   2623     assert(N1.getOpcode() == ISD::BasicBlock);
   2624     assert(N2.getOpcode() == ISD::Constant);
   2625     assert(N3.getOpcode() == ISD::Register);
   2626 
   2627     SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
   2628                                cast<ConstantSDNode>(N2)->getZExtValue()),
   2629                                MVT::i32);
   2630     SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
   2631     SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
   2632                                              MVT::Glue, Ops, 5);
   2633     Chain = SDValue(ResNode, 0);
   2634     if (N->getNumValues() == 2) {
   2635       InFlag = SDValue(ResNode, 1);
   2636       ReplaceUses(SDValue(N, 1), InFlag);
   2637     }
   2638     ReplaceUses(SDValue(N, 0),
   2639                 SDValue(Chain.getNode(), Chain.getResNo()));
   2640     return NULL;
   2641   }
   2642   case ARMISD::CMOV:
   2643     return SelectCMOVOp(N);
   2644   case ARMISD::VZIP: {
   2645     unsigned Opc = 0;
   2646     EVT VT = N->getValueType(0);
   2647     switch (VT.getSimpleVT().SimpleTy) {
   2648     default: return NULL;
   2649     case MVT::v8i8:  Opc = ARM::VZIPd8; break;
   2650     case MVT::v4i16: Opc = ARM::VZIPd16; break;
   2651     case MVT::v2f32:
   2652     case MVT::v2i32: Opc = ARM::VZIPd32; break;
   2653     case MVT::v16i8: Opc = ARM::VZIPq8; break;
   2654     case MVT::v8i16: Opc = ARM::VZIPq16; break;
   2655     case MVT::v4f32:
   2656     case MVT::v4i32: Opc = ARM::VZIPq32; break;
   2657     }
   2658     SDValue Pred = getAL(CurDAG);
   2659     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2660     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
   2661     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
   2662   }
   2663   case ARMISD::VUZP: {
   2664     unsigned Opc = 0;
   2665     EVT VT = N->getValueType(0);
   2666     switch (VT.getSimpleVT().SimpleTy) {
   2667     default: return NULL;
   2668     case MVT::v8i8:  Opc = ARM::VUZPd8; break;
   2669     case MVT::v4i16: Opc = ARM::VUZPd16; break;
   2670     case MVT::v2f32:
   2671     case MVT::v2i32: Opc = ARM::VUZPd32; break;
   2672     case MVT::v16i8: Opc = ARM::VUZPq8; break;
   2673     case MVT::v8i16: Opc = ARM::VUZPq16; break;
   2674     case MVT::v4f32:
   2675     case MVT::v4i32: Opc = ARM::VUZPq32; break;
   2676     }
   2677     SDValue Pred = getAL(CurDAG);
   2678     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2679     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
   2680     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
   2681   }
   2682   case ARMISD::VTRN: {
   2683     unsigned Opc = 0;
   2684     EVT VT = N->getValueType(0);
   2685     switch (VT.getSimpleVT().SimpleTy) {
   2686     default: return NULL;
   2687     case MVT::v8i8:  Opc = ARM::VTRNd8; break;
   2688     case MVT::v4i16: Opc = ARM::VTRNd16; break;
   2689     case MVT::v2f32:
   2690     case MVT::v2i32: Opc = ARM::VTRNd32; break;
   2691     case MVT::v16i8: Opc = ARM::VTRNq8; break;
   2692     case MVT::v8i16: Opc = ARM::VTRNq16; break;
   2693     case MVT::v4f32:
   2694     case MVT::v4i32: Opc = ARM::VTRNq32; break;
   2695     }
   2696     SDValue Pred = getAL(CurDAG);
   2697     SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
   2698     SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
   2699     return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
   2700   }
   2701   case ARMISD::BUILD_VECTOR: {
   2702     EVT VecVT = N->getValueType(0);
   2703     EVT EltVT = VecVT.getVectorElementType();
   2704     unsigned NumElts = VecVT.getVectorNumElements();
   2705     if (EltVT == MVT::f64) {
   2706       assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
   2707       return PairDRegs(VecVT, N->getOperand(0), N->getOperand(1));
   2708     }
   2709     assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
   2710     if (NumElts == 2)
   2711       return PairSRegs(VecVT, N->getOperand(0), N->getOperand(1));
   2712     assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
   2713     return QuadSRegs(VecVT, N->getOperand(0), N->getOperand(1),
   2714                      N->getOperand(2), N->getOperand(3));
   2715   }
   2716 
   2717   case ARMISD::VLD2DUP: {
   2718     unsigned Opcodes[] = { ARM::VLD2DUPd8Pseudo, ARM::VLD2DUPd16Pseudo,
   2719                            ARM::VLD2DUPd32Pseudo };
   2720     return SelectVLDDup(N, false, 2, Opcodes);
   2721   }
   2722 
   2723   case ARMISD::VLD3DUP: {
   2724     unsigned Opcodes[] = { ARM::VLD3DUPd8Pseudo, ARM::VLD3DUPd16Pseudo,
   2725                            ARM::VLD3DUPd32Pseudo };
   2726     return SelectVLDDup(N, false, 3, Opcodes);
   2727   }
   2728 
   2729   case ARMISD::VLD4DUP: {
   2730     unsigned Opcodes[] = { ARM::VLD4DUPd8Pseudo, ARM::VLD4DUPd16Pseudo,
   2731                            ARM::VLD4DUPd32Pseudo };
   2732     return SelectVLDDup(N, false, 4, Opcodes);
   2733   }
   2734 
   2735   case ARMISD::VLD2DUP_UPD: {
   2736     unsigned Opcodes[] = { ARM::VLD2DUPd8Pseudo_UPD, ARM::VLD2DUPd16Pseudo_UPD,
   2737                            ARM::VLD2DUPd32Pseudo_UPD };
   2738     return SelectVLDDup(N, true, 2, Opcodes);
   2739   }
   2740 
   2741   case ARMISD::VLD3DUP_UPD: {
   2742     unsigned Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD, ARM::VLD3DUPd16Pseudo_UPD,
   2743                            ARM::VLD3DUPd32Pseudo_UPD };
   2744     return SelectVLDDup(N, true, 3, Opcodes);
   2745   }
   2746 
   2747   case ARMISD::VLD4DUP_UPD: {
   2748     unsigned Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD, ARM::VLD4DUPd16Pseudo_UPD,
   2749                            ARM::VLD4DUPd32Pseudo_UPD };
   2750     return SelectVLDDup(N, true, 4, Opcodes);
   2751   }
   2752 
   2753   case ARMISD::VLD1_UPD: {
   2754     unsigned DOpcodes[] = { ARM::VLD1d8_UPD, ARM::VLD1d16_UPD,
   2755                             ARM::VLD1d32_UPD, ARM::VLD1d64_UPD };
   2756     unsigned QOpcodes[] = { ARM::VLD1q8Pseudo_UPD, ARM::VLD1q16Pseudo_UPD,
   2757                             ARM::VLD1q32Pseudo_UPD, ARM::VLD1q64Pseudo_UPD };
   2758     return SelectVLD(N, true, 1, DOpcodes, QOpcodes, 0);
   2759   }
   2760 
   2761   case ARMISD::VLD2_UPD: {
   2762     unsigned DOpcodes[] = { ARM::VLD2d8Pseudo_UPD, ARM::VLD2d16Pseudo_UPD,
   2763                             ARM::VLD2d32Pseudo_UPD, ARM::VLD1q64Pseudo_UPD };
   2764     unsigned QOpcodes[] = { ARM::VLD2q8Pseudo_UPD, ARM::VLD2q16Pseudo_UPD,
   2765                             ARM::VLD2q32Pseudo_UPD };
   2766     return SelectVLD(N, true, 2, DOpcodes, QOpcodes, 0);
   2767   }
   2768 
   2769   case ARMISD::VLD3_UPD: {
   2770     unsigned DOpcodes[] = { ARM::VLD3d8Pseudo_UPD, ARM::VLD3d16Pseudo_UPD,
   2771                             ARM::VLD3d32Pseudo_UPD, ARM::VLD1d64TPseudo_UPD };
   2772     unsigned QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
   2773                              ARM::VLD3q16Pseudo_UPD,
   2774                              ARM::VLD3q32Pseudo_UPD };
   2775     unsigned QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
   2776                              ARM::VLD3q16oddPseudo_UPD,
   2777                              ARM::VLD3q32oddPseudo_UPD };
   2778     return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
   2779   }
   2780 
   2781   case ARMISD::VLD4_UPD: {
   2782     unsigned DOpcodes[] = { ARM::VLD4d8Pseudo_UPD, ARM::VLD4d16Pseudo_UPD,
   2783                             ARM::VLD4d32Pseudo_UPD, ARM::VLD1d64QPseudo_UPD };
   2784     unsigned QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
   2785                              ARM::VLD4q16Pseudo_UPD,
   2786                              ARM::VLD4q32Pseudo_UPD };
   2787     unsigned QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
   2788                              ARM::VLD4q16oddPseudo_UPD,
   2789                              ARM::VLD4q32oddPseudo_UPD };
   2790     return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
   2791   }
   2792 
   2793   case ARMISD::VLD2LN_UPD: {
   2794     unsigned DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD, ARM::VLD2LNd16Pseudo_UPD,
   2795                             ARM::VLD2LNd32Pseudo_UPD };
   2796     unsigned QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
   2797                             ARM::VLD2LNq32Pseudo_UPD };
   2798     return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
   2799   }
   2800 
   2801   case ARMISD::VLD3LN_UPD: {
   2802     unsigned DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD, ARM::VLD3LNd16Pseudo_UPD,
   2803                             ARM::VLD3LNd32Pseudo_UPD };
   2804     unsigned QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
   2805                             ARM::VLD3LNq32Pseudo_UPD };
   2806     return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
   2807   }
   2808 
   2809   case ARMISD::VLD4LN_UPD: {
   2810     unsigned DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD, ARM::VLD4LNd16Pseudo_UPD,
   2811                             ARM::VLD4LNd32Pseudo_UPD };
   2812     unsigned QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
   2813                             ARM::VLD4LNq32Pseudo_UPD };
   2814     return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
   2815   }
   2816 
   2817   case ARMISD::VST1_UPD: {
   2818     unsigned DOpcodes[] = { ARM::VST1d8_UPD, ARM::VST1d16_UPD,
   2819                             ARM::VST1d32_UPD, ARM::VST1d64_UPD };
   2820     unsigned QOpcodes[] = { ARM::VST1q8Pseudo_UPD, ARM::VST1q16Pseudo_UPD,
   2821                             ARM::VST1q32Pseudo_UPD, ARM::VST1q64Pseudo_UPD };
   2822     return SelectVST(N, true, 1, DOpcodes, QOpcodes, 0);
   2823   }
   2824 
   2825   case ARMISD::VST2_UPD: {
   2826     unsigned DOpcodes[] = { ARM::VST2d8Pseudo_UPD, ARM::VST2d16Pseudo_UPD,
   2827                             ARM::VST2d32Pseudo_UPD, ARM::VST1q64Pseudo_UPD };
   2828     unsigned QOpcodes[] = { ARM::VST2q8Pseudo_UPD, ARM::VST2q16Pseudo_UPD,
   2829                             ARM::VST2q32Pseudo_UPD };
   2830     return SelectVST(N, true, 2, DOpcodes, QOpcodes, 0);
   2831   }
   2832 
   2833   case ARMISD::VST3_UPD: {
   2834     unsigned DOpcodes[] = { ARM::VST3d8Pseudo_UPD, ARM::VST3d16Pseudo_UPD,
   2835                             ARM::VST3d32Pseudo_UPD, ARM::VST1d64TPseudo_UPD };
   2836     unsigned QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
   2837                              ARM::VST3q16Pseudo_UPD,
   2838                              ARM::VST3q32Pseudo_UPD };
   2839     unsigned QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
   2840                              ARM::VST3q16oddPseudo_UPD,
   2841                              ARM::VST3q32oddPseudo_UPD };
   2842     return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
   2843   }
   2844 
   2845   case ARMISD::VST4_UPD: {
   2846     unsigned DOpcodes[] = { ARM::VST4d8Pseudo_UPD, ARM::VST4d16Pseudo_UPD,
   2847                             ARM::VST4d32Pseudo_UPD, ARM::VST1d64QPseudo_UPD };
   2848     unsigned QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
   2849                              ARM::VST4q16Pseudo_UPD,
   2850                              ARM::VST4q32Pseudo_UPD };
   2851     unsigned QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
   2852                              ARM::VST4q16oddPseudo_UPD,
   2853                              ARM::VST4q32oddPseudo_UPD };
   2854     return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
   2855   }
   2856 
   2857   case ARMISD::VST2LN_UPD: {
   2858     unsigned DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD, ARM::VST2LNd16Pseudo_UPD,
   2859                             ARM::VST2LNd32Pseudo_UPD };
   2860     unsigned QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
   2861                             ARM::VST2LNq32Pseudo_UPD };
   2862     return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
   2863   }
   2864 
   2865   case ARMISD::VST3LN_UPD: {
   2866     unsigned DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD, ARM::VST3LNd16Pseudo_UPD,
   2867                             ARM::VST3LNd32Pseudo_UPD };
   2868     unsigned QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
   2869                             ARM::VST3LNq32Pseudo_UPD };
   2870     return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
   2871   }
   2872 
   2873   case ARMISD::VST4LN_UPD: {
   2874     unsigned DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD, ARM::VST4LNd16Pseudo_UPD,
   2875                             ARM::VST4LNd32Pseudo_UPD };
   2876     unsigned QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
   2877                             ARM::VST4LNq32Pseudo_UPD };
   2878     return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
   2879   }
   2880 
   2881   case ISD::INTRINSIC_VOID:
   2882   case ISD::INTRINSIC_W_CHAIN: {
   2883     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   2884     switch (IntNo) {
   2885     default:
   2886       break;
   2887 
   2888     case Intrinsic::arm_ldrexd: {
   2889       SDValue MemAddr = N->getOperand(2);
   2890       DebugLoc dl = N->getDebugLoc();
   2891       SDValue Chain = N->getOperand(0);
   2892 
   2893       unsigned NewOpc = ARM::LDREXD;
   2894       if (Subtarget->isThumb() && Subtarget->hasThumb2())
   2895         NewOpc = ARM::t2LDREXD;
   2896 
   2897       // arm_ldrexd returns a i64 value in {i32, i32}
   2898       std::vector<EVT> ResTys;
   2899       ResTys.push_back(MVT::i32);
   2900       ResTys.push_back(MVT::i32);
   2901       ResTys.push_back(MVT::Other);
   2902 
   2903       // place arguments in the right order
   2904       SmallVector<SDValue, 7> Ops;
   2905       Ops.push_back(MemAddr);
   2906       Ops.push_back(getAL(CurDAG));
   2907       Ops.push_back(CurDAG->getRegister(0, MVT::i32));
   2908       Ops.push_back(Chain);
   2909       SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(),
   2910                                           Ops.size());
   2911       // Transfer memoperands.
   2912       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2913       MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   2914       cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
   2915 
   2916       // Until there's support for specifing explicit register constraints
   2917       // like the use of even/odd register pair, hardcode ldrexd to always
   2918       // use the pair [R0, R1] to hold the load result.
   2919       Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ARM::R0,
   2920                                    SDValue(Ld, 0), SDValue(0,0));
   2921       Chain = CurDAG->getCopyToReg(Chain, dl, ARM::R1,
   2922                                    SDValue(Ld, 1), Chain.getValue(1));
   2923 
   2924       // Remap uses.
   2925       SDValue Glue = Chain.getValue(1);
   2926       if (!SDValue(N, 0).use_empty()) {
   2927         SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2928                                                 ARM::R0, MVT::i32, Glue);
   2929         Glue = Result.getValue(2);
   2930         ReplaceUses(SDValue(N, 0), Result);
   2931       }
   2932       if (!SDValue(N, 1).use_empty()) {
   2933         SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2934                                                 ARM::R1, MVT::i32, Glue);
   2935         Glue = Result.getValue(2);
   2936         ReplaceUses(SDValue(N, 1), Result);
   2937       }
   2938 
   2939       ReplaceUses(SDValue(N, 2), SDValue(Ld, 2));
   2940       return NULL;
   2941     }
   2942 
   2943     case Intrinsic::arm_strexd: {
   2944       DebugLoc dl = N->getDebugLoc();
   2945       SDValue Chain = N->getOperand(0);
   2946       SDValue Val0 = N->getOperand(2);
   2947       SDValue Val1 = N->getOperand(3);
   2948       SDValue MemAddr = N->getOperand(4);
   2949 
   2950       // Until there's support for specifing explicit register constraints
   2951       // like the use of even/odd register pair, hardcode strexd to always
   2952       // use the pair [R2, R3] to hold the i64 (i32, i32) value to be stored.
   2953       Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ARM::R2, Val0,
   2954                                    SDValue(0, 0));
   2955       Chain = CurDAG->getCopyToReg(Chain, dl, ARM::R3, Val1, Chain.getValue(1));
   2956 
   2957       SDValue Glue = Chain.getValue(1);
   2958       Val0 = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2959                                     ARM::R2, MVT::i32, Glue);
   2960       Glue = Val0.getValue(1);
   2961       Val1 = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
   2962                                     ARM::R3, MVT::i32, Glue);
   2963 
   2964       // Store exclusive double return a i32 value which is the return status
   2965       // of the issued store.
   2966       std::vector<EVT> ResTys;
   2967       ResTys.push_back(MVT::i32);
   2968       ResTys.push_back(MVT::Other);
   2969 
   2970       // place arguments in the right order
   2971       SmallVector<SDValue, 7> Ops;
   2972       Ops.push_back(Val0);
   2973       Ops.push_back(Val1);
   2974       Ops.push_back(MemAddr);
   2975       Ops.push_back(getAL(CurDAG));
   2976       Ops.push_back(CurDAG->getRegister(0, MVT::i32));
   2977       Ops.push_back(Chain);
   2978 
   2979       unsigned NewOpc = ARM::STREXD;
   2980       if (Subtarget->isThumb() && Subtarget->hasThumb2())
   2981         NewOpc = ARM::t2STREXD;
   2982 
   2983       SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(),
   2984                                           Ops.size());
   2985       // Transfer memoperands.
   2986       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
   2987       MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
   2988       cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
   2989 
   2990       return St;
   2991     }
   2992 
   2993     case Intrinsic::arm_neon_vld1: {
   2994       unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
   2995                               ARM::VLD1d32, ARM::VLD1d64 };
   2996       unsigned QOpcodes[] = { ARM::VLD1q8Pseudo, ARM::VLD1q16Pseudo,
   2997                               ARM::VLD1q32Pseudo, ARM::VLD1q64Pseudo };
   2998       return SelectVLD(N, false, 1, DOpcodes, QOpcodes, 0);
   2999     }
   3000 
   3001     case Intrinsic::arm_neon_vld2: {
   3002       unsigned DOpcodes[] = { ARM::VLD2d8Pseudo, ARM::VLD2d16Pseudo,
   3003                               ARM::VLD2d32Pseudo, ARM::VLD1q64Pseudo };
   3004       unsigned QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
   3005                               ARM::VLD2q32Pseudo };
   3006       return SelectVLD(N, false, 2, DOpcodes, QOpcodes, 0);
   3007     }
   3008 
   3009     case Intrinsic::arm_neon_vld3: {
   3010       unsigned DOpcodes[] = { ARM::VLD3d8Pseudo, ARM::VLD3d16Pseudo,
   3011                               ARM::VLD3d32Pseudo, ARM::VLD1d64TPseudo };
   3012       unsigned QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
   3013                                ARM::VLD3q16Pseudo_UPD,
   3014                                ARM::VLD3q32Pseudo_UPD };
   3015       unsigned QOpcodes1[] = { ARM::VLD3q8oddPseudo,
   3016                                ARM::VLD3q16oddPseudo,
   3017                                ARM::VLD3q32oddPseudo };
   3018       return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
   3019     }
   3020 
   3021     case Intrinsic::arm_neon_vld4: {
   3022       unsigned DOpcodes[] = { ARM::VLD4d8Pseudo, ARM::VLD4d16Pseudo,
   3023                               ARM::VLD4d32Pseudo, ARM::VLD1d64QPseudo };
   3024       unsigned QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
   3025                                ARM::VLD4q16Pseudo_UPD,
   3026                                ARM::VLD4q32Pseudo_UPD };
   3027       unsigned QOpcodes1[] = { ARM::VLD4q8oddPseudo,
   3028                                ARM::VLD4q16oddPseudo,
   3029                                ARM::VLD4q32oddPseudo };
   3030       return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
   3031     }
   3032 
   3033     case Intrinsic::arm_neon_vld2lane: {
   3034       unsigned DOpcodes[] = { ARM::VLD2LNd8Pseudo, ARM::VLD2LNd16Pseudo,
   3035                               ARM::VLD2LNd32Pseudo };
   3036       unsigned QOpcodes[] = { ARM::VLD2LNq16Pseudo, ARM::VLD2LNq32Pseudo };
   3037       return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
   3038     }
   3039 
   3040     case Intrinsic::arm_neon_vld3lane: {
   3041       unsigned DOpcodes[] = { ARM::VLD3LNd8Pseudo, ARM::VLD3LNd16Pseudo,
   3042                               ARM::VLD3LNd32Pseudo };
   3043       unsigned QOpcodes[] = { ARM::VLD3LNq16Pseudo, ARM::VLD3LNq32Pseudo };
   3044       return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
   3045     }
   3046 
   3047     case Intrinsic::arm_neon_vld4lane: {
   3048       unsigned DOpcodes[] = { ARM::VLD4LNd8Pseudo, ARM::VLD4LNd16Pseudo,
   3049                               ARM::VLD4LNd32Pseudo };
   3050       unsigned QOpcodes[] = { ARM::VLD4LNq16Pseudo, ARM::VLD4LNq32Pseudo };
   3051       return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
   3052     }
   3053 
   3054     case Intrinsic::arm_neon_vst1: {
   3055       unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
   3056                               ARM::VST1d32, ARM::VST1d64 };
   3057       unsigned QOpcodes[] = { ARM::VST1q8Pseudo, ARM::VST1q16Pseudo,
   3058                               ARM::VST1q32Pseudo, ARM::VST1q64Pseudo };
   3059       return SelectVST(N, false, 1, DOpcodes, QOpcodes, 0);
   3060     }
   3061 
   3062     case Intrinsic::arm_neon_vst2: {
   3063       unsigned DOpcodes[] = { ARM::VST2d8Pseudo, ARM::VST2d16Pseudo,
   3064                               ARM::VST2d32Pseudo, ARM::VST1q64Pseudo };
   3065       unsigned QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
   3066                               ARM::VST2q32Pseudo };
   3067       return SelectVST(N, false, 2, DOpcodes, QOpcodes, 0);
   3068     }
   3069 
   3070     case Intrinsic::arm_neon_vst3: {
   3071       unsigned DOpcodes[] = { ARM::VST3d8Pseudo, ARM::VST3d16Pseudo,
   3072                               ARM::VST3d32Pseudo, ARM::VST1d64TPseudo };
   3073       unsigned QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
   3074                                ARM::VST3q16Pseudo_UPD,
   3075                                ARM::VST3q32Pseudo_UPD };
   3076       unsigned QOpcodes1[] = { ARM::VST3q8oddPseudo,
   3077                                ARM::VST3q16oddPseudo,
   3078                                ARM::VST3q32oddPseudo };
   3079       return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
   3080     }
   3081 
   3082     case Intrinsic::arm_neon_vst4: {
   3083       unsigned DOpcodes[] = { ARM::VST4d8Pseudo, ARM::VST4d16Pseudo,
   3084                               ARM::VST4d32Pseudo, ARM::VST1d64QPseudo };
   3085       unsigned QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
   3086                                ARM::VST4q16Pseudo_UPD,
   3087                                ARM::VST4q32Pseudo_UPD };
   3088       unsigned QOpcodes1[] = { ARM::VST4q8oddPseudo,
   3089                                ARM::VST4q16oddPseudo,
   3090                                ARM::VST4q32oddPseudo };
   3091       return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
   3092     }
   3093 
   3094     case Intrinsic::arm_neon_vst2lane: {
   3095       unsigned DOpcodes[] = { ARM::VST2LNd8Pseudo, ARM::VST2LNd16Pseudo,
   3096                               ARM::VST2LNd32Pseudo };
   3097       unsigned QOpcodes[] = { ARM::VST2LNq16Pseudo, ARM::VST2LNq32Pseudo };
   3098       return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
   3099     }
   3100 
   3101     case Intrinsic::arm_neon_vst3lane: {
   3102       unsigned DOpcodes[] = { ARM::VST3LNd8Pseudo, ARM::VST3LNd16Pseudo,
   3103                               ARM::VST3LNd32Pseudo };
   3104       unsigned QOpcodes[] = { ARM::VST3LNq16Pseudo, ARM::VST3LNq32Pseudo };
   3105       return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
   3106     }
   3107 
   3108     case Intrinsic::arm_neon_vst4lane: {
   3109       unsigned DOpcodes[] = { ARM::VST4LNd8Pseudo, ARM::VST4LNd16Pseudo,
   3110                               ARM::VST4LNd32Pseudo };
   3111       unsigned QOpcodes[] = { ARM::VST4LNq16Pseudo, ARM::VST4LNq32Pseudo };
   3112       return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
   3113     }
   3114     }
   3115     break;
   3116   }
   3117 
   3118   case ISD::INTRINSIC_WO_CHAIN: {
   3119     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   3120     switch (IntNo) {
   3121     default:
   3122       break;
   3123 
   3124     case Intrinsic::arm_neon_vtbl2:
   3125       return SelectVTBL(N, false, 2, ARM::VTBL2Pseudo);
   3126     case Intrinsic::arm_neon_vtbl3:
   3127       return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
   3128     case Intrinsic::arm_neon_vtbl4:
   3129       return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
   3130 
   3131     case Intrinsic::arm_neon_vtbx2:
   3132       return SelectVTBL(N, true, 2, ARM::VTBX2Pseudo);
   3133     case Intrinsic::arm_neon_vtbx3:
   3134       return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
   3135     case Intrinsic::arm_neon_vtbx4:
   3136       return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
   3137     }
   3138     break;
   3139   }
   3140 
   3141   case ARMISD::VTBL1: {
   3142     DebugLoc dl = N->getDebugLoc();
   3143     EVT VT = N->getValueType(0);
   3144     SmallVector<SDValue, 6> Ops;
   3145 
   3146     Ops.push_back(N->getOperand(0));
   3147     Ops.push_back(N->getOperand(1));
   3148     Ops.push_back(getAL(CurDAG));                    // Predicate
   3149     Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
   3150     return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops.data(), Ops.size());
   3151   }
   3152   case ARMISD::VTBL2: {
   3153     DebugLoc dl = N->getDebugLoc();
   3154     EVT VT = N->getValueType(0);
   3155 
   3156     // Form a REG_SEQUENCE to force register allocation.
   3157     SDValue V0 = N->getOperand(0);
   3158     SDValue V1 = N->getOperand(1);
   3159     SDValue RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0);
   3160 
   3161     SmallVector<SDValue, 6> Ops;
   3162     Ops.push_back(RegSeq);
   3163     Ops.push_back(N->getOperand(2));
   3164     Ops.push_back(getAL(CurDAG));                    // Predicate
   3165     Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
   3166     return CurDAG->getMachineNode(ARM::VTBL2Pseudo, dl, VT,
   3167                                   Ops.data(), Ops.size());
   3168   }
   3169 
   3170   case ISD::CONCAT_VECTORS:
   3171     return SelectConcatVector(N);
   3172 
   3173   case ARMISD::ATOMOR64_DAG:
   3174     return SelectAtomic64(N, ARM::ATOMOR6432);
   3175   case ARMISD::ATOMXOR64_DAG:
   3176     return SelectAtomic64(N, ARM::ATOMXOR6432);
   3177   case ARMISD::ATOMADD64_DAG:
   3178     return SelectAtomic64(N, ARM::ATOMADD6432);
   3179   case ARMISD::ATOMSUB64_DAG:
   3180     return SelectAtomic64(N, ARM::ATOMSUB6432);
   3181   case ARMISD::ATOMNAND64_DAG:
   3182     return SelectAtomic64(N, ARM::ATOMNAND6432);
   3183   case ARMISD::ATOMAND64_DAG:
   3184     return SelectAtomic64(N, ARM::ATOMAND6432);
   3185   case ARMISD::ATOMSWAP64_DAG:
   3186     return SelectAtomic64(N, ARM::ATOMSWAP6432);
   3187   case ARMISD::ATOMCMPXCHG64_DAG:
   3188     return SelectAtomic64(N, ARM::ATOMCMPXCHG6432);
   3189   }
   3190 
   3191   return SelectCode(N);
   3192 }
   3193 
   3194 bool ARMDAGToDAGISel::
   3195 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
   3196                              std::vector<SDValue> &OutOps) {
   3197   assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
   3198   // Require the address to be in a register.  That is safe for all ARM
   3199   // variants and it is hard to do anything much smarter without knowing
   3200   // how the operand is used.
   3201   OutOps.push_back(Op);
   3202   return false;
   3203 }
   3204 
   3205 /// createARMISelDag - This pass converts a legalized DAG into a
   3206 /// ARM-specific DAG, ready for instruction scheduling.
   3207 ///
   3208 FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
   3209                                      CodeGenOpt::Level OptLevel) {
   3210   return new ARMDAGToDAGISel(TM, OptLevel);
   3211 }
   3212