Home | History | Annotate | Download | only in bfd
      1 /* ELF linking support for BFD.
      2    Copyright (C) 1995-2016 Free Software Foundation, Inc.
      3 
      4    This file is part of BFD, the Binary File Descriptor library.
      5 
      6    This program is free software; you can redistribute it and/or modify
      7    it under the terms of the GNU General Public License as published by
      8    the Free Software Foundation; either version 3 of the License, or
      9    (at your option) any later version.
     10 
     11    This program is distributed in the hope that it will be useful,
     12    but WITHOUT ANY WARRANTY; without even the implied warranty of
     13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14    GNU General Public License for more details.
     15 
     16    You should have received a copy of the GNU General Public License
     17    along with this program; if not, write to the Free Software
     18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     19    MA 02110-1301, USA.  */
     20 
     21 #include "sysdep.h"
     22 #include "bfd.h"
     23 #include "bfd_stdint.h"
     24 #include "bfdlink.h"
     25 #include "libbfd.h"
     26 #define ARCH_SIZE 0
     27 #include "elf-bfd.h"
     28 #include "safe-ctype.h"
     29 #include "libiberty.h"
     30 #include "objalloc.h"
     31 #if BFD_SUPPORTS_PLUGINS
     32 #include "plugin.h"
     33 #endif
     34 
     35 /* This struct is used to pass information to routines called via
     36    elf_link_hash_traverse which must return failure.  */
     37 
     38 struct elf_info_failed
     39 {
     40   struct bfd_link_info *info;
     41   bfd_boolean failed;
     42 };
     43 
     44 /* This structure is used to pass information to
     45    _bfd_elf_link_find_version_dependencies.  */
     46 
     47 struct elf_find_verdep_info
     48 {
     49   /* General link information.  */
     50   struct bfd_link_info *info;
     51   /* The number of dependencies.  */
     52   unsigned int vers;
     53   /* Whether we had a failure.  */
     54   bfd_boolean failed;
     55 };
     56 
     57 static bfd_boolean _bfd_elf_fix_symbol_flags
     58   (struct elf_link_hash_entry *, struct elf_info_failed *);
     59 
     60 asection *
     61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
     62 			     unsigned long r_symndx,
     63 			     bfd_boolean discard)
     64 {
     65   if (r_symndx >= cookie->locsymcount
     66       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
     67     {
     68       struct elf_link_hash_entry *h;
     69 
     70       h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
     71 
     72       while (h->root.type == bfd_link_hash_indirect
     73 	     || h->root.type == bfd_link_hash_warning)
     74 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
     75 
     76       if ((h->root.type == bfd_link_hash_defined
     77 	   || h->root.type == bfd_link_hash_defweak)
     78 	   && discarded_section (h->root.u.def.section))
     79         return h->root.u.def.section;
     80       else
     81 	return NULL;
     82     }
     83   else
     84     {
     85       /* It's not a relocation against a global symbol,
     86 	 but it could be a relocation against a local
     87 	 symbol for a discarded section.  */
     88       asection *isec;
     89       Elf_Internal_Sym *isym;
     90 
     91       /* Need to: get the symbol; get the section.  */
     92       isym = &cookie->locsyms[r_symndx];
     93       isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
     94       if (isec != NULL
     95 	  && discard ? discarded_section (isec) : 1)
     96 	return isec;
     97      }
     98   return NULL;
     99 }
    100 
    101 /* Define a symbol in a dynamic linkage section.  */
    102 
    103 struct elf_link_hash_entry *
    104 _bfd_elf_define_linkage_sym (bfd *abfd,
    105 			     struct bfd_link_info *info,
    106 			     asection *sec,
    107 			     const char *name)
    108 {
    109   struct elf_link_hash_entry *h;
    110   struct bfd_link_hash_entry *bh;
    111   const struct elf_backend_data *bed;
    112 
    113   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
    114   if (h != NULL)
    115     {
    116       /* Zap symbol defined in an as-needed lib that wasn't linked.
    117 	 This is a symptom of a larger problem:  Absolute symbols
    118 	 defined in shared libraries can't be overridden, because we
    119 	 lose the link to the bfd which is via the symbol section.  */
    120       h->root.type = bfd_link_hash_new;
    121     }
    122 
    123   bh = &h->root;
    124   bed = get_elf_backend_data (abfd);
    125   if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
    126 					 sec, 0, NULL, FALSE, bed->collect,
    127 					 &bh))
    128     return NULL;
    129   h = (struct elf_link_hash_entry *) bh;
    130   h->def_regular = 1;
    131   h->non_elf = 0;
    132   h->root.linker_def = 1;
    133   h->type = STT_OBJECT;
    134   if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
    135     h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
    136 
    137   (*bed->elf_backend_hide_symbol) (info, h, TRUE);
    138   return h;
    139 }
    140 
    141 bfd_boolean
    142 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
    143 {
    144   flagword flags;
    145   asection *s;
    146   struct elf_link_hash_entry *h;
    147   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
    148   struct elf_link_hash_table *htab = elf_hash_table (info);
    149 
    150   /* This function may be called more than once.  */
    151   s = bfd_get_linker_section (abfd, ".got");
    152   if (s != NULL)
    153     return TRUE;
    154 
    155   flags = bed->dynamic_sec_flags;
    156 
    157   s = bfd_make_section_anyway_with_flags (abfd,
    158 					  (bed->rela_plts_and_copies_p
    159 					   ? ".rela.got" : ".rel.got"),
    160 					  (bed->dynamic_sec_flags
    161 					   | SEC_READONLY));
    162   if (s == NULL
    163       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
    164     return FALSE;
    165   htab->srelgot = s;
    166 
    167   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
    168   if (s == NULL
    169       || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
    170     return FALSE;
    171   htab->sgot = s;
    172 
    173   if (bed->want_got_plt)
    174     {
    175       s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
    176       if (s == NULL
    177 	  || !bfd_set_section_alignment (abfd, s,
    178 					 bed->s->log_file_align))
    179 	return FALSE;
    180       htab->sgotplt = s;
    181     }
    182 
    183   /* The first bit of the global offset table is the header.  */
    184   s->size += bed->got_header_size;
    185 
    186   if (bed->want_got_sym)
    187     {
    188       /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
    189 	 (or .got.plt) section.  We don't do this in the linker script
    190 	 because we don't want to define the symbol if we are not creating
    191 	 a global offset table.  */
    192       h = _bfd_elf_define_linkage_sym (abfd, info, s,
    193 				       "_GLOBAL_OFFSET_TABLE_");
    194       elf_hash_table (info)->hgot = h;
    195       if (h == NULL)
    196 	return FALSE;
    197     }
    198 
    199   return TRUE;
    200 }
    201 
    202 /* Create a strtab to hold the dynamic symbol names.  */
    204 static bfd_boolean
    205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
    206 {
    207   struct elf_link_hash_table *hash_table;
    208 
    209   hash_table = elf_hash_table (info);
    210   if (hash_table->dynobj == NULL)
    211     {
    212       /* We may not set dynobj, an input file holding linker created
    213 	 dynamic sections to abfd, which may be a dynamic object with
    214 	 its own dynamic sections.  We need to find a normal input file
    215 	 to hold linker created sections if possible.  */
    216       if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
    217 	{
    218 	  bfd *ibfd;
    219 	  for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
    220 	    if ((ibfd->flags
    221 		 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
    222 	      {
    223 		abfd = ibfd;
    224 		break;
    225 	      }
    226 	}
    227       hash_table->dynobj = abfd;
    228     }
    229 
    230   if (hash_table->dynstr == NULL)
    231     {
    232       hash_table->dynstr = _bfd_elf_strtab_init ();
    233       if (hash_table->dynstr == NULL)
    234 	return FALSE;
    235     }
    236   return TRUE;
    237 }
    238 
    239 /* Create some sections which will be filled in with dynamic linking
    240    information.  ABFD is an input file which requires dynamic sections
    241    to be created.  The dynamic sections take up virtual memory space
    242    when the final executable is run, so we need to create them before
    243    addresses are assigned to the output sections.  We work out the
    244    actual contents and size of these sections later.  */
    245 
    246 bfd_boolean
    247 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
    248 {
    249   flagword flags;
    250   asection *s;
    251   const struct elf_backend_data *bed;
    252   struct elf_link_hash_entry *h;
    253 
    254   if (! is_elf_hash_table (info->hash))
    255     return FALSE;
    256 
    257   if (elf_hash_table (info)->dynamic_sections_created)
    258     return TRUE;
    259 
    260   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
    261     return FALSE;
    262 
    263   abfd = elf_hash_table (info)->dynobj;
    264   bed = get_elf_backend_data (abfd);
    265 
    266   flags = bed->dynamic_sec_flags;
    267 
    268   /* A dynamically linked executable has a .interp section, but a
    269      shared library does not.  */
    270   if (bfd_link_executable (info) && !info->nointerp)
    271     {
    272       s = bfd_make_section_anyway_with_flags (abfd, ".interp",
    273 					      flags | SEC_READONLY);
    274       if (s == NULL)
    275 	return FALSE;
    276     }
    277 
    278   /* Create sections to hold version informations.  These are removed
    279      if they are not needed.  */
    280   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
    281 					  flags | SEC_READONLY);
    282   if (s == NULL
    283       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
    284     return FALSE;
    285 
    286   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
    287 					  flags | SEC_READONLY);
    288   if (s == NULL
    289       || ! bfd_set_section_alignment (abfd, s, 1))
    290     return FALSE;
    291 
    292   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
    293 					  flags | SEC_READONLY);
    294   if (s == NULL
    295       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
    296     return FALSE;
    297 
    298   s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
    299 					  flags | SEC_READONLY);
    300   if (s == NULL
    301       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
    302     return FALSE;
    303   elf_hash_table (info)->dynsym = s;
    304 
    305   s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
    306 					  flags | SEC_READONLY);
    307   if (s == NULL)
    308     return FALSE;
    309 
    310   s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
    311   if (s == NULL
    312       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
    313     return FALSE;
    314 
    315   /* The special symbol _DYNAMIC is always set to the start of the
    316      .dynamic section.  We could set _DYNAMIC in a linker script, but we
    317      only want to define it if we are, in fact, creating a .dynamic
    318      section.  We don't want to define it if there is no .dynamic
    319      section, since on some ELF platforms the start up code examines it
    320      to decide how to initialize the process.  */
    321   h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
    322   elf_hash_table (info)->hdynamic = h;
    323   if (h == NULL)
    324     return FALSE;
    325 
    326   if (info->emit_hash)
    327     {
    328       s = bfd_make_section_anyway_with_flags (abfd, ".hash",
    329 					      flags | SEC_READONLY);
    330       if (s == NULL
    331 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
    332 	return FALSE;
    333       elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
    334     }
    335 
    336   if (info->emit_gnu_hash)
    337     {
    338       s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
    339 					      flags | SEC_READONLY);
    340       if (s == NULL
    341 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
    342 	return FALSE;
    343       /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
    344 	 4 32-bit words followed by variable count of 64-bit words, then
    345 	 variable count of 32-bit words.  */
    346       if (bed->s->arch_size == 64)
    347 	elf_section_data (s)->this_hdr.sh_entsize = 0;
    348       else
    349 	elf_section_data (s)->this_hdr.sh_entsize = 4;
    350     }
    351 
    352   /* Let the backend create the rest of the sections.  This lets the
    353      backend set the right flags.  The backend will normally create
    354      the .got and .plt sections.  */
    355   if (bed->elf_backend_create_dynamic_sections == NULL
    356       || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
    357     return FALSE;
    358 
    359   elf_hash_table (info)->dynamic_sections_created = TRUE;
    360 
    361   return TRUE;
    362 }
    363 
    364 /* Create dynamic sections when linking against a dynamic object.  */
    365 
    366 bfd_boolean
    367 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
    368 {
    369   flagword flags, pltflags;
    370   struct elf_link_hash_entry *h;
    371   asection *s;
    372   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
    373   struct elf_link_hash_table *htab = elf_hash_table (info);
    374 
    375   /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
    376      .rel[a].bss sections.  */
    377   flags = bed->dynamic_sec_flags;
    378 
    379   pltflags = flags;
    380   if (bed->plt_not_loaded)
    381     /* We do not clear SEC_ALLOC here because we still want the OS to
    382        allocate space for the section; it's just that there's nothing
    383        to read in from the object file.  */
    384     pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
    385   else
    386     pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
    387   if (bed->plt_readonly)
    388     pltflags |= SEC_READONLY;
    389 
    390   s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
    391   if (s == NULL
    392       || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
    393     return FALSE;
    394   htab->splt = s;
    395 
    396   /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
    397      .plt section.  */
    398   if (bed->want_plt_sym)
    399     {
    400       h = _bfd_elf_define_linkage_sym (abfd, info, s,
    401 				       "_PROCEDURE_LINKAGE_TABLE_");
    402       elf_hash_table (info)->hplt = h;
    403       if (h == NULL)
    404 	return FALSE;
    405     }
    406 
    407   s = bfd_make_section_anyway_with_flags (abfd,
    408 					  (bed->rela_plts_and_copies_p
    409 					   ? ".rela.plt" : ".rel.plt"),
    410 					  flags | SEC_READONLY);
    411   if (s == NULL
    412       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
    413     return FALSE;
    414   htab->srelplt = s;
    415 
    416   if (! _bfd_elf_create_got_section (abfd, info))
    417     return FALSE;
    418 
    419   if (bed->want_dynbss)
    420     {
    421       /* The .dynbss section is a place to put symbols which are defined
    422 	 by dynamic objects, are referenced by regular objects, and are
    423 	 not functions.  We must allocate space for them in the process
    424 	 image and use a R_*_COPY reloc to tell the dynamic linker to
    425 	 initialize them at run time.  The linker script puts the .dynbss
    426 	 section into the .bss section of the final image.  */
    427       s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
    428 					      (SEC_ALLOC | SEC_LINKER_CREATED));
    429       if (s == NULL)
    430 	return FALSE;
    431 
    432       /* The .rel[a].bss section holds copy relocs.  This section is not
    433 	 normally needed.  We need to create it here, though, so that the
    434 	 linker will map it to an output section.  We can't just create it
    435 	 only if we need it, because we will not know whether we need it
    436 	 until we have seen all the input files, and the first time the
    437 	 main linker code calls BFD after examining all the input files
    438 	 (size_dynamic_sections) the input sections have already been
    439 	 mapped to the output sections.  If the section turns out not to
    440 	 be needed, we can discard it later.  We will never need this
    441 	 section when generating a shared object, since they do not use
    442 	 copy relocs.  */
    443       if (! bfd_link_pic (info))
    444 	{
    445 	  s = bfd_make_section_anyway_with_flags (abfd,
    446 						  (bed->rela_plts_and_copies_p
    447 						   ? ".rela.bss" : ".rel.bss"),
    448 						  flags | SEC_READONLY);
    449 	  if (s == NULL
    450 	      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
    451 	    return FALSE;
    452 	}
    453     }
    454 
    455   return TRUE;
    456 }
    457 
    458 /* Record a new dynamic symbol.  We record the dynamic symbols as we
    460    read the input files, since we need to have a list of all of them
    461    before we can determine the final sizes of the output sections.
    462    Note that we may actually call this function even though we are not
    463    going to output any dynamic symbols; in some cases we know that a
    464    symbol should be in the dynamic symbol table, but only if there is
    465    one.  */
    466 
    467 bfd_boolean
    468 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
    469 				    struct elf_link_hash_entry *h)
    470 {
    471   if (h->dynindx == -1)
    472     {
    473       struct elf_strtab_hash *dynstr;
    474       char *p;
    475       const char *name;
    476       size_t indx;
    477 
    478       /* XXX: The ABI draft says the linker must turn hidden and
    479 	 internal symbols into STB_LOCAL symbols when producing the
    480 	 DSO. However, if ld.so honors st_other in the dynamic table,
    481 	 this would not be necessary.  */
    482       switch (ELF_ST_VISIBILITY (h->other))
    483 	{
    484 	case STV_INTERNAL:
    485 	case STV_HIDDEN:
    486 	  if (h->root.type != bfd_link_hash_undefined
    487 	      && h->root.type != bfd_link_hash_undefweak)
    488 	    {
    489 	      h->forced_local = 1;
    490 	      if (!elf_hash_table (info)->is_relocatable_executable)
    491 		return TRUE;
    492 	    }
    493 
    494 	default:
    495 	  break;
    496 	}
    497 
    498       h->dynindx = elf_hash_table (info)->dynsymcount;
    499       ++elf_hash_table (info)->dynsymcount;
    500 
    501       dynstr = elf_hash_table (info)->dynstr;
    502       if (dynstr == NULL)
    503 	{
    504 	  /* Create a strtab to hold the dynamic symbol names.  */
    505 	  elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
    506 	  if (dynstr == NULL)
    507 	    return FALSE;
    508 	}
    509 
    510       /* We don't put any version information in the dynamic string
    511 	 table.  */
    512       name = h->root.root.string;
    513       p = strchr (name, ELF_VER_CHR);
    514       if (p != NULL)
    515 	/* We know that the p points into writable memory.  In fact,
    516 	   there are only a few symbols that have read-only names, being
    517 	   those like _GLOBAL_OFFSET_TABLE_ that are created specially
    518 	   by the backends.  Most symbols will have names pointing into
    519 	   an ELF string table read from a file, or to objalloc memory.  */
    520 	*p = 0;
    521 
    522       indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
    523 
    524       if (p != NULL)
    525 	*p = ELF_VER_CHR;
    526 
    527       if (indx == (size_t) -1)
    528 	return FALSE;
    529       h->dynstr_index = indx;
    530     }
    531 
    532   return TRUE;
    533 }
    534 
    535 /* Mark a symbol dynamic.  */
    537 
    538 static void
    539 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
    540 				  struct elf_link_hash_entry *h,
    541 				  Elf_Internal_Sym *sym)
    542 {
    543   struct bfd_elf_dynamic_list *d = info->dynamic_list;
    544 
    545   /* It may be called more than once on the same H.  */
    546   if(h->dynamic || bfd_link_relocatable (info))
    547     return;
    548 
    549   if ((info->dynamic_data
    550        && (h->type == STT_OBJECT
    551 	   || h->type == STT_COMMON
    552 	   || (sym != NULL
    553 	       && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
    554 		   || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
    555       || (d != NULL
    556 	  && h->root.type == bfd_link_hash_new
    557 	  && (*d->match) (&d->head, NULL, h->root.root.string)))
    558     h->dynamic = 1;
    559 }
    560 
    561 /* Record an assignment to a symbol made by a linker script.  We need
    562    this in case some dynamic object refers to this symbol.  */
    563 
    564 bfd_boolean
    565 bfd_elf_record_link_assignment (bfd *output_bfd,
    566 				struct bfd_link_info *info,
    567 				const char *name,
    568 				bfd_boolean provide,
    569 				bfd_boolean hidden)
    570 {
    571   struct elf_link_hash_entry *h, *hv;
    572   struct elf_link_hash_table *htab;
    573   const struct elf_backend_data *bed;
    574 
    575   if (!is_elf_hash_table (info->hash))
    576     return TRUE;
    577 
    578   htab = elf_hash_table (info);
    579   h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
    580   if (h == NULL)
    581     return provide;
    582 
    583   if (h->versioned == unknown)
    584     {
    585       /* Set versioned if symbol version is unknown.  */
    586       char *version = strrchr (name, ELF_VER_CHR);
    587       if (version)
    588 	{
    589 	  if (version > name && version[-1] != ELF_VER_CHR)
    590 	    h->versioned = versioned_hidden;
    591 	  else
    592 	    h->versioned = versioned;
    593 	}
    594     }
    595 
    596   switch (h->root.type)
    597     {
    598     case bfd_link_hash_defined:
    599     case bfd_link_hash_defweak:
    600     case bfd_link_hash_common:
    601       break;
    602     case bfd_link_hash_undefweak:
    603     case bfd_link_hash_undefined:
    604       /* Since we're defining the symbol, don't let it seem to have not
    605 	 been defined.  record_dynamic_symbol and size_dynamic_sections
    606 	 may depend on this.  */
    607       h->root.type = bfd_link_hash_new;
    608       if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
    609 	bfd_link_repair_undef_list (&htab->root);
    610       break;
    611     case bfd_link_hash_new:
    612       bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
    613       h->non_elf = 0;
    614       break;
    615     case bfd_link_hash_indirect:
    616       /* We had a versioned symbol in a dynamic library.  We make the
    617 	 the versioned symbol point to this one.  */
    618       bed = get_elf_backend_data (output_bfd);
    619       hv = h;
    620       while (hv->root.type == bfd_link_hash_indirect
    621 	     || hv->root.type == bfd_link_hash_warning)
    622 	hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
    623       /* We don't need to update h->root.u since linker will set them
    624 	 later.  */
    625       h->root.type = bfd_link_hash_undefined;
    626       hv->root.type = bfd_link_hash_indirect;
    627       hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
    628       (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
    629       break;
    630     case bfd_link_hash_warning:
    631       abort ();
    632       break;
    633     }
    634 
    635   /* If this symbol is being provided by the linker script, and it is
    636      currently defined by a dynamic object, but not by a regular
    637      object, then mark it as undefined so that the generic linker will
    638      force the correct value.  */
    639   if (provide
    640       && h->def_dynamic
    641       && !h->def_regular)
    642     h->root.type = bfd_link_hash_undefined;
    643 
    644   /* If this symbol is not being provided by the linker script, and it is
    645      currently defined by a dynamic object, but not by a regular object,
    646      then clear out any version information because the symbol will not be
    647      associated with the dynamic object any more.  */
    648   if (!provide
    649       && h->def_dynamic
    650       && !h->def_regular)
    651     h->verinfo.verdef = NULL;
    652 
    653   h->def_regular = 1;
    654 
    655   if (hidden)
    656     {
    657       bed = get_elf_backend_data (output_bfd);
    658       if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
    659 	h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
    660       (*bed->elf_backend_hide_symbol) (info, h, TRUE);
    661     }
    662 
    663   /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
    664      and executables.  */
    665   if (!bfd_link_relocatable (info)
    666       && h->dynindx != -1
    667       && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
    668 	  || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
    669     h->forced_local = 1;
    670 
    671   if ((h->def_dynamic
    672        || h->ref_dynamic
    673        || bfd_link_dll (info)
    674        || elf_hash_table (info)->is_relocatable_executable)
    675       && h->dynindx == -1)
    676     {
    677       if (! bfd_elf_link_record_dynamic_symbol (info, h))
    678 	return FALSE;
    679 
    680       /* If this is a weak defined symbol, and we know a corresponding
    681 	 real symbol from the same dynamic object, make sure the real
    682 	 symbol is also made into a dynamic symbol.  */
    683       if (h->u.weakdef != NULL
    684 	  && h->u.weakdef->dynindx == -1)
    685 	{
    686 	  if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
    687 	    return FALSE;
    688 	}
    689     }
    690 
    691   return TRUE;
    692 }
    693 
    694 /* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
    695    success, and 2 on a failure caused by attempting to record a symbol
    696    in a discarded section, eg. a discarded link-once section symbol.  */
    697 
    698 int
    699 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
    700 					  bfd *input_bfd,
    701 					  long input_indx)
    702 {
    703   bfd_size_type amt;
    704   struct elf_link_local_dynamic_entry *entry;
    705   struct elf_link_hash_table *eht;
    706   struct elf_strtab_hash *dynstr;
    707   size_t dynstr_index;
    708   char *name;
    709   Elf_External_Sym_Shndx eshndx;
    710   char esym[sizeof (Elf64_External_Sym)];
    711 
    712   if (! is_elf_hash_table (info->hash))
    713     return 0;
    714 
    715   /* See if the entry exists already.  */
    716   for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
    717     if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
    718       return 1;
    719 
    720   amt = sizeof (*entry);
    721   entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
    722   if (entry == NULL)
    723     return 0;
    724 
    725   /* Go find the symbol, so that we can find it's name.  */
    726   if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
    727 			     1, input_indx, &entry->isym, esym, &eshndx))
    728     {
    729       bfd_release (input_bfd, entry);
    730       return 0;
    731     }
    732 
    733   if (entry->isym.st_shndx != SHN_UNDEF
    734       && entry->isym.st_shndx < SHN_LORESERVE)
    735     {
    736       asection *s;
    737 
    738       s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
    739       if (s == NULL || bfd_is_abs_section (s->output_section))
    740 	{
    741 	  /* We can still bfd_release here as nothing has done another
    742 	     bfd_alloc.  We can't do this later in this function.  */
    743 	  bfd_release (input_bfd, entry);
    744 	  return 2;
    745 	}
    746     }
    747 
    748   name = (bfd_elf_string_from_elf_section
    749 	  (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
    750 	   entry->isym.st_name));
    751 
    752   dynstr = elf_hash_table (info)->dynstr;
    753   if (dynstr == NULL)
    754     {
    755       /* Create a strtab to hold the dynamic symbol names.  */
    756       elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
    757       if (dynstr == NULL)
    758 	return 0;
    759     }
    760 
    761   dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
    762   if (dynstr_index == (size_t) -1)
    763     return 0;
    764   entry->isym.st_name = dynstr_index;
    765 
    766   eht = elf_hash_table (info);
    767 
    768   entry->next = eht->dynlocal;
    769   eht->dynlocal = entry;
    770   entry->input_bfd = input_bfd;
    771   entry->input_indx = input_indx;
    772   eht->dynsymcount++;
    773 
    774   /* Whatever binding the symbol had before, it's now local.  */
    775   entry->isym.st_info
    776     = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
    777 
    778   /* The dynindx will be set at the end of size_dynamic_sections.  */
    779 
    780   return 1;
    781 }
    782 
    783 /* Return the dynindex of a local dynamic symbol.  */
    784 
    785 long
    786 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
    787 				    bfd *input_bfd,
    788 				    long input_indx)
    789 {
    790   struct elf_link_local_dynamic_entry *e;
    791 
    792   for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
    793     if (e->input_bfd == input_bfd && e->input_indx == input_indx)
    794       return e->dynindx;
    795   return -1;
    796 }
    797 
    798 /* This function is used to renumber the dynamic symbols, if some of
    799    them are removed because they are marked as local.  This is called
    800    via elf_link_hash_traverse.  */
    801 
    802 static bfd_boolean
    803 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
    804 				      void *data)
    805 {
    806   size_t *count = (size_t *) data;
    807 
    808   if (h->forced_local)
    809     return TRUE;
    810 
    811   if (h->dynindx != -1)
    812     h->dynindx = ++(*count);
    813 
    814   return TRUE;
    815 }
    816 
    817 
    818 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
    819    STB_LOCAL binding.  */
    820 
    821 static bfd_boolean
    822 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
    823 					    void *data)
    824 {
    825   size_t *count = (size_t *) data;
    826 
    827   if (!h->forced_local)
    828     return TRUE;
    829 
    830   if (h->dynindx != -1)
    831     h->dynindx = ++(*count);
    832 
    833   return TRUE;
    834 }
    835 
    836 /* Return true if the dynamic symbol for a given section should be
    837    omitted when creating a shared library.  */
    838 bfd_boolean
    839 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
    840 				   struct bfd_link_info *info,
    841 				   asection *p)
    842 {
    843   struct elf_link_hash_table *htab;
    844   asection *ip;
    845 
    846   switch (elf_section_data (p)->this_hdr.sh_type)
    847     {
    848     case SHT_PROGBITS:
    849     case SHT_NOBITS:
    850       /* If sh_type is yet undecided, assume it could be
    851 	 SHT_PROGBITS/SHT_NOBITS.  */
    852     case SHT_NULL:
    853       htab = elf_hash_table (info);
    854       if (p == htab->tls_sec)
    855 	return FALSE;
    856 
    857       if (htab->text_index_section != NULL)
    858 	return p != htab->text_index_section && p != htab->data_index_section;
    859 
    860       return (htab->dynobj != NULL
    861 	      && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
    862 	      && ip->output_section == p);
    863 
    864       /* There shouldn't be section relative relocations
    865 	 against any other section.  */
    866     default:
    867       return TRUE;
    868     }
    869 }
    870 
    871 /* Assign dynsym indices.  In a shared library we generate a section
    872    symbol for each output section, which come first.  Next come symbols
    873    which have been forced to local binding.  Then all of the back-end
    874    allocated local dynamic syms, followed by the rest of the global
    875    symbols.  */
    876 
    877 static unsigned long
    878 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
    879 				struct bfd_link_info *info,
    880 				unsigned long *section_sym_count)
    881 {
    882   unsigned long dynsymcount = 0;
    883 
    884   if (bfd_link_pic (info)
    885       || elf_hash_table (info)->is_relocatable_executable)
    886     {
    887       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
    888       asection *p;
    889       for (p = output_bfd->sections; p ; p = p->next)
    890 	if ((p->flags & SEC_EXCLUDE) == 0
    891 	    && (p->flags & SEC_ALLOC) != 0
    892 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
    893 	  elf_section_data (p)->dynindx = ++dynsymcount;
    894 	else
    895 	  elf_section_data (p)->dynindx = 0;
    896     }
    897   *section_sym_count = dynsymcount;
    898 
    899   elf_link_hash_traverse (elf_hash_table (info),
    900 			  elf_link_renumber_local_hash_table_dynsyms,
    901 			  &dynsymcount);
    902 
    903   if (elf_hash_table (info)->dynlocal)
    904     {
    905       struct elf_link_local_dynamic_entry *p;
    906       for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
    907 	p->dynindx = ++dynsymcount;
    908     }
    909 
    910   elf_link_hash_traverse (elf_hash_table (info),
    911 			  elf_link_renumber_hash_table_dynsyms,
    912 			  &dynsymcount);
    913 
    914   /* There is an unused NULL entry at the head of the table which we
    915      must account for in our count even if the table is empty since it
    916      is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
    917      .dynamic section.  */
    918   dynsymcount++;
    919 
    920   elf_hash_table (info)->dynsymcount = dynsymcount;
    921   return dynsymcount;
    922 }
    923 
    924 /* Merge st_other field.  */
    925 
    926 static void
    927 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
    928 		    const Elf_Internal_Sym *isym, asection *sec,
    929 		    bfd_boolean definition, bfd_boolean dynamic)
    930 {
    931   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
    932 
    933   /* If st_other has a processor-specific meaning, specific
    934      code might be needed here.  */
    935   if (bed->elf_backend_merge_symbol_attribute)
    936     (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
    937 						dynamic);
    938 
    939   if (!dynamic)
    940     {
    941       unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
    942       unsigned hvis = ELF_ST_VISIBILITY (h->other);
    943 
    944       /* Keep the most constraining visibility.  Leave the remainder
    945 	 of the st_other field to elf_backend_merge_symbol_attribute.  */
    946       if (symvis - 1 < hvis - 1)
    947 	h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
    948     }
    949   else if (definition
    950 	   && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
    951 	   && (sec->flags & SEC_READONLY) == 0)
    952     h->protected_def = 1;
    953 }
    954 
    955 /* This function is called when we want to merge a new symbol with an
    956    existing symbol.  It handles the various cases which arise when we
    957    find a definition in a dynamic object, or when there is already a
    958    definition in a dynamic object.  The new symbol is described by
    959    NAME, SYM, PSEC, and PVALUE.  We set SYM_HASH to the hash table
    960    entry.  We set POLDBFD to the old symbol's BFD.  We set POLD_WEAK
    961    if the old symbol was weak.  We set POLD_ALIGNMENT to the alignment
    962    of an old common symbol.  We set OVERRIDE if the old symbol is
    963    overriding a new definition.  We set TYPE_CHANGE_OK if it is OK for
    964    the type to change.  We set SIZE_CHANGE_OK if it is OK for the size
    965    to change.  By OK to change, we mean that we shouldn't warn if the
    966    type or size does change.  */
    967 
    968 static bfd_boolean
    969 _bfd_elf_merge_symbol (bfd *abfd,
    970 		       struct bfd_link_info *info,
    971 		       const char *name,
    972 		       Elf_Internal_Sym *sym,
    973 		       asection **psec,
    974 		       bfd_vma *pvalue,
    975 		       struct elf_link_hash_entry **sym_hash,
    976 		       bfd **poldbfd,
    977 		       bfd_boolean *pold_weak,
    978 		       unsigned int *pold_alignment,
    979 		       bfd_boolean *skip,
    980 		       bfd_boolean *override,
    981 		       bfd_boolean *type_change_ok,
    982 		       bfd_boolean *size_change_ok,
    983 		       bfd_boolean *matched)
    984 {
    985   asection *sec, *oldsec;
    986   struct elf_link_hash_entry *h;
    987   struct elf_link_hash_entry *hi;
    988   struct elf_link_hash_entry *flip;
    989   int bind;
    990   bfd *oldbfd;
    991   bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
    992   bfd_boolean newweak, oldweak, newfunc, oldfunc;
    993   const struct elf_backend_data *bed;
    994   char *new_version;
    995 
    996   *skip = FALSE;
    997   *override = FALSE;
    998 
    999   sec = *psec;
   1000   bind = ELF_ST_BIND (sym->st_info);
   1001 
   1002   if (! bfd_is_und_section (sec))
   1003     h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
   1004   else
   1005     h = ((struct elf_link_hash_entry *)
   1006 	 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
   1007   if (h == NULL)
   1008     return FALSE;
   1009   *sym_hash = h;
   1010 
   1011   bed = get_elf_backend_data (abfd);
   1012 
   1013   /* NEW_VERSION is the symbol version of the new symbol.  */
   1014   if (h->versioned != unversioned)
   1015     {
   1016       /* Symbol version is unknown or versioned.  */
   1017       new_version = strrchr (name, ELF_VER_CHR);
   1018       if (new_version)
   1019 	{
   1020 	  if (h->versioned == unknown)
   1021 	    {
   1022 	      if (new_version > name && new_version[-1] != ELF_VER_CHR)
   1023 		h->versioned = versioned_hidden;
   1024 	      else
   1025 		h->versioned = versioned;
   1026 	    }
   1027 	  new_version += 1;
   1028 	  if (new_version[0] == '\0')
   1029 	    new_version = NULL;
   1030 	}
   1031       else
   1032 	h->versioned = unversioned;
   1033     }
   1034   else
   1035     new_version = NULL;
   1036 
   1037   /* For merging, we only care about real symbols.  But we need to make
   1038      sure that indirect symbol dynamic flags are updated.  */
   1039   hi = h;
   1040   while (h->root.type == bfd_link_hash_indirect
   1041 	 || h->root.type == bfd_link_hash_warning)
   1042     h = (struct elf_link_hash_entry *) h->root.u.i.link;
   1043 
   1044   if (!*matched)
   1045     {
   1046       if (hi == h || h->root.type == bfd_link_hash_new)
   1047 	*matched = TRUE;
   1048       else
   1049 	{
   1050 	  /* OLD_HIDDEN is true if the existing symbol is only visible
   1051 	     to the symbol with the same symbol version.  NEW_HIDDEN is
   1052 	     true if the new symbol is only visible to the symbol with
   1053 	     the same symbol version.  */
   1054 	  bfd_boolean old_hidden = h->versioned == versioned_hidden;
   1055 	  bfd_boolean new_hidden = hi->versioned == versioned_hidden;
   1056 	  if (!old_hidden && !new_hidden)
   1057 	    /* The new symbol matches the existing symbol if both
   1058 	       aren't hidden.  */
   1059 	    *matched = TRUE;
   1060 	  else
   1061 	    {
   1062 	      /* OLD_VERSION is the symbol version of the existing
   1063 		 symbol. */
   1064 	      char *old_version;
   1065 
   1066 	      if (h->versioned >= versioned)
   1067 		old_version = strrchr (h->root.root.string,
   1068 				       ELF_VER_CHR) + 1;
   1069 	      else
   1070 		 old_version = NULL;
   1071 
   1072 	      /* The new symbol matches the existing symbol if they
   1073 		 have the same symbol version.  */
   1074 	      *matched = (old_version == new_version
   1075 			  || (old_version != NULL
   1076 			      && new_version != NULL
   1077 			      && strcmp (old_version, new_version) == 0));
   1078 	    }
   1079 	}
   1080     }
   1081 
   1082   /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
   1083      existing symbol.  */
   1084 
   1085   oldbfd = NULL;
   1086   oldsec = NULL;
   1087   switch (h->root.type)
   1088     {
   1089     default:
   1090       break;
   1091 
   1092     case bfd_link_hash_undefined:
   1093     case bfd_link_hash_undefweak:
   1094       oldbfd = h->root.u.undef.abfd;
   1095       break;
   1096 
   1097     case bfd_link_hash_defined:
   1098     case bfd_link_hash_defweak:
   1099       oldbfd = h->root.u.def.section->owner;
   1100       oldsec = h->root.u.def.section;
   1101       break;
   1102 
   1103     case bfd_link_hash_common:
   1104       oldbfd = h->root.u.c.p->section->owner;
   1105       oldsec = h->root.u.c.p->section;
   1106       if (pold_alignment)
   1107 	*pold_alignment = h->root.u.c.p->alignment_power;
   1108       break;
   1109     }
   1110   if (poldbfd && *poldbfd == NULL)
   1111     *poldbfd = oldbfd;
   1112 
   1113   /* Differentiate strong and weak symbols.  */
   1114   newweak = bind == STB_WEAK;
   1115   oldweak = (h->root.type == bfd_link_hash_defweak
   1116 	     || h->root.type == bfd_link_hash_undefweak);
   1117   if (pold_weak)
   1118     *pold_weak = oldweak;
   1119 
   1120   /* This code is for coping with dynamic objects, and is only useful
   1121      if we are doing an ELF link.  */
   1122   if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
   1123     return TRUE;
   1124 
   1125   /* We have to check it for every instance since the first few may be
   1126      references and not all compilers emit symbol type for undefined
   1127      symbols.  */
   1128   bfd_elf_link_mark_dynamic_symbol (info, h, sym);
   1129 
   1130   /* NEWDYN and OLDDYN indicate whether the new or old symbol,
   1131      respectively, is from a dynamic object.  */
   1132 
   1133   newdyn = (abfd->flags & DYNAMIC) != 0;
   1134 
   1135   /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
   1136      syms and defined syms in dynamic libraries respectively.
   1137      ref_dynamic on the other hand can be set for a symbol defined in
   1138      a dynamic library, and def_dynamic may not be set;  When the
   1139      definition in a dynamic lib is overridden by a definition in the
   1140      executable use of the symbol in the dynamic lib becomes a
   1141      reference to the executable symbol.  */
   1142   if (newdyn)
   1143     {
   1144       if (bfd_is_und_section (sec))
   1145 	{
   1146 	  if (bind != STB_WEAK)
   1147 	    {
   1148 	      h->ref_dynamic_nonweak = 1;
   1149 	      hi->ref_dynamic_nonweak = 1;
   1150 	    }
   1151 	}
   1152       else
   1153 	{
   1154 	  /* Update the existing symbol only if they match. */
   1155 	  if (*matched)
   1156 	    h->dynamic_def = 1;
   1157 	  hi->dynamic_def = 1;
   1158 	}
   1159     }
   1160 
   1161   /* If we just created the symbol, mark it as being an ELF symbol.
   1162      Other than that, there is nothing to do--there is no merge issue
   1163      with a newly defined symbol--so we just return.  */
   1164 
   1165   if (h->root.type == bfd_link_hash_new)
   1166     {
   1167       h->non_elf = 0;
   1168       return TRUE;
   1169     }
   1170 
   1171   /* In cases involving weak versioned symbols, we may wind up trying
   1172      to merge a symbol with itself.  Catch that here, to avoid the
   1173      confusion that results if we try to override a symbol with
   1174      itself.  The additional tests catch cases like
   1175      _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
   1176      dynamic object, which we do want to handle here.  */
   1177   if (abfd == oldbfd
   1178       && (newweak || oldweak)
   1179       && ((abfd->flags & DYNAMIC) == 0
   1180 	  || !h->def_regular))
   1181     return TRUE;
   1182 
   1183   olddyn = FALSE;
   1184   if (oldbfd != NULL)
   1185     olddyn = (oldbfd->flags & DYNAMIC) != 0;
   1186   else if (oldsec != NULL)
   1187     {
   1188       /* This handles the special SHN_MIPS_{TEXT,DATA} section
   1189 	 indices used by MIPS ELF.  */
   1190       olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
   1191     }
   1192 
   1193   /* NEWDEF and OLDDEF indicate whether the new or old symbol,
   1194      respectively, appear to be a definition rather than reference.  */
   1195 
   1196   newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
   1197 
   1198   olddef = (h->root.type != bfd_link_hash_undefined
   1199 	    && h->root.type != bfd_link_hash_undefweak
   1200 	    && h->root.type != bfd_link_hash_common);
   1201 
   1202   /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
   1203      respectively, appear to be a function.  */
   1204 
   1205   newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
   1206 	     && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
   1207 
   1208   oldfunc = (h->type != STT_NOTYPE
   1209 	     && bed->is_function_type (h->type));
   1210 
   1211   /* If creating a default indirect symbol ("foo" or "foo@") from a
   1212      dynamic versioned definition ("foo@@") skip doing so if there is
   1213      an existing regular definition with a different type.  We don't
   1214      want, for example, a "time" variable in the executable overriding
   1215      a "time" function in a shared library.  */
   1216   if (pold_alignment == NULL
   1217       && newdyn
   1218       && newdef
   1219       && !olddyn
   1220       && (olddef || h->root.type == bfd_link_hash_common)
   1221       && ELF_ST_TYPE (sym->st_info) != h->type
   1222       && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
   1223       && h->type != STT_NOTYPE
   1224       && !(newfunc && oldfunc))
   1225     {
   1226       *skip = TRUE;
   1227       return TRUE;
   1228     }
   1229 
   1230   /* Check TLS symbols.  We don't check undefined symbols introduced
   1231      by "ld -u" which have no type (and oldbfd NULL), and we don't
   1232      check symbols from plugins because they also have no type.  */
   1233   if (oldbfd != NULL
   1234       && (oldbfd->flags & BFD_PLUGIN) == 0
   1235       && (abfd->flags & BFD_PLUGIN) == 0
   1236       && ELF_ST_TYPE (sym->st_info) != h->type
   1237       && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
   1238     {
   1239       bfd *ntbfd, *tbfd;
   1240       bfd_boolean ntdef, tdef;
   1241       asection *ntsec, *tsec;
   1242 
   1243       if (h->type == STT_TLS)
   1244 	{
   1245 	  ntbfd = abfd;
   1246 	  ntsec = sec;
   1247 	  ntdef = newdef;
   1248 	  tbfd = oldbfd;
   1249 	  tsec = oldsec;
   1250 	  tdef = olddef;
   1251 	}
   1252       else
   1253 	{
   1254 	  ntbfd = oldbfd;
   1255 	  ntsec = oldsec;
   1256 	  ntdef = olddef;
   1257 	  tbfd = abfd;
   1258 	  tsec = sec;
   1259 	  tdef = newdef;
   1260 	}
   1261 
   1262       if (tdef && ntdef)
   1263 	(*_bfd_error_handler)
   1264 	  (_("%s: TLS definition in %B section %A "
   1265 	     "mismatches non-TLS definition in %B section %A"),
   1266 	   tbfd, tsec, ntbfd, ntsec, h->root.root.string);
   1267       else if (!tdef && !ntdef)
   1268 	(*_bfd_error_handler)
   1269 	  (_("%s: TLS reference in %B "
   1270 	     "mismatches non-TLS reference in %B"),
   1271 	   tbfd, ntbfd, h->root.root.string);
   1272       else if (tdef)
   1273 	(*_bfd_error_handler)
   1274 	  (_("%s: TLS definition in %B section %A "
   1275 	     "mismatches non-TLS reference in %B"),
   1276 	   tbfd, tsec, ntbfd, h->root.root.string);
   1277       else
   1278 	(*_bfd_error_handler)
   1279 	  (_("%s: TLS reference in %B "
   1280 	     "mismatches non-TLS definition in %B section %A"),
   1281 	   tbfd, ntbfd, ntsec, h->root.root.string);
   1282 
   1283       bfd_set_error (bfd_error_bad_value);
   1284       return FALSE;
   1285     }
   1286 
   1287   /* If the old symbol has non-default visibility, we ignore the new
   1288      definition from a dynamic object.  */
   1289   if (newdyn
   1290       && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
   1291       && !bfd_is_und_section (sec))
   1292     {
   1293       *skip = TRUE;
   1294       /* Make sure this symbol is dynamic.  */
   1295       h->ref_dynamic = 1;
   1296       hi->ref_dynamic = 1;
   1297       /* A protected symbol has external availability. Make sure it is
   1298 	 recorded as dynamic.
   1299 
   1300 	 FIXME: Should we check type and size for protected symbol?  */
   1301       if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
   1302 	return bfd_elf_link_record_dynamic_symbol (info, h);
   1303       else
   1304 	return TRUE;
   1305     }
   1306   else if (!newdyn
   1307 	   && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
   1308 	   && h->def_dynamic)
   1309     {
   1310       /* If the new symbol with non-default visibility comes from a
   1311 	 relocatable file and the old definition comes from a dynamic
   1312 	 object, we remove the old definition.  */
   1313       if (hi->root.type == bfd_link_hash_indirect)
   1314 	{
   1315 	  /* Handle the case where the old dynamic definition is
   1316 	     default versioned.  We need to copy the symbol info from
   1317 	     the symbol with default version to the normal one if it
   1318 	     was referenced before.  */
   1319 	  if (h->ref_regular)
   1320 	    {
   1321 	      hi->root.type = h->root.type;
   1322 	      h->root.type = bfd_link_hash_indirect;
   1323 	      (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
   1324 
   1325 	      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
   1326 	      if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
   1327 		{
   1328 		  /* If the new symbol is hidden or internal, completely undo
   1329 		     any dynamic link state.  */
   1330 		  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
   1331 		  h->forced_local = 0;
   1332 		  h->ref_dynamic = 0;
   1333 		}
   1334 	      else
   1335 		h->ref_dynamic = 1;
   1336 
   1337 	      h->def_dynamic = 0;
   1338 	      /* FIXME: Should we check type and size for protected symbol?  */
   1339 	      h->size = 0;
   1340 	      h->type = 0;
   1341 
   1342 	      h = hi;
   1343 	    }
   1344 	  else
   1345 	    h = hi;
   1346 	}
   1347 
   1348       /* If the old symbol was undefined before, then it will still be
   1349 	 on the undefs list.  If the new symbol is undefined or
   1350 	 common, we can't make it bfd_link_hash_new here, because new
   1351 	 undefined or common symbols will be added to the undefs list
   1352 	 by _bfd_generic_link_add_one_symbol.  Symbols may not be
   1353 	 added twice to the undefs list.  Also, if the new symbol is
   1354 	 undefweak then we don't want to lose the strong undef.  */
   1355       if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
   1356 	{
   1357 	  h->root.type = bfd_link_hash_undefined;
   1358 	  h->root.u.undef.abfd = abfd;
   1359 	}
   1360       else
   1361 	{
   1362 	  h->root.type = bfd_link_hash_new;
   1363 	  h->root.u.undef.abfd = NULL;
   1364 	}
   1365 
   1366       if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
   1367 	{
   1368 	  /* If the new symbol is hidden or internal, completely undo
   1369 	     any dynamic link state.  */
   1370 	  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
   1371 	  h->forced_local = 0;
   1372 	  h->ref_dynamic = 0;
   1373 	}
   1374       else
   1375 	h->ref_dynamic = 1;
   1376       h->def_dynamic = 0;
   1377       /* FIXME: Should we check type and size for protected symbol?  */
   1378       h->size = 0;
   1379       h->type = 0;
   1380       return TRUE;
   1381     }
   1382 
   1383   /* If a new weak symbol definition comes from a regular file and the
   1384      old symbol comes from a dynamic library, we treat the new one as
   1385      strong.  Similarly, an old weak symbol definition from a regular
   1386      file is treated as strong when the new symbol comes from a dynamic
   1387      library.  Further, an old weak symbol from a dynamic library is
   1388      treated as strong if the new symbol is from a dynamic library.
   1389      This reflects the way glibc's ld.so works.
   1390 
   1391      Do this before setting *type_change_ok or *size_change_ok so that
   1392      we warn properly when dynamic library symbols are overridden.  */
   1393 
   1394   if (newdef && !newdyn && olddyn)
   1395     newweak = FALSE;
   1396   if (olddef && newdyn)
   1397     oldweak = FALSE;
   1398 
   1399   /* Allow changes between different types of function symbol.  */
   1400   if (newfunc && oldfunc)
   1401     *type_change_ok = TRUE;
   1402 
   1403   /* It's OK to change the type if either the existing symbol or the
   1404      new symbol is weak.  A type change is also OK if the old symbol
   1405      is undefined and the new symbol is defined.  */
   1406 
   1407   if (oldweak
   1408       || newweak
   1409       || (newdef
   1410 	  && h->root.type == bfd_link_hash_undefined))
   1411     *type_change_ok = TRUE;
   1412 
   1413   /* It's OK to change the size if either the existing symbol or the
   1414      new symbol is weak, or if the old symbol is undefined.  */
   1415 
   1416   if (*type_change_ok
   1417       || h->root.type == bfd_link_hash_undefined)
   1418     *size_change_ok = TRUE;
   1419 
   1420   /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
   1421      symbol, respectively, appears to be a common symbol in a dynamic
   1422      object.  If a symbol appears in an uninitialized section, and is
   1423      not weak, and is not a function, then it may be a common symbol
   1424      which was resolved when the dynamic object was created.  We want
   1425      to treat such symbols specially, because they raise special
   1426      considerations when setting the symbol size: if the symbol
   1427      appears as a common symbol in a regular object, and the size in
   1428      the regular object is larger, we must make sure that we use the
   1429      larger size.  This problematic case can always be avoided in C,
   1430      but it must be handled correctly when using Fortran shared
   1431      libraries.
   1432 
   1433      Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
   1434      likewise for OLDDYNCOMMON and OLDDEF.
   1435 
   1436      Note that this test is just a heuristic, and that it is quite
   1437      possible to have an uninitialized symbol in a shared object which
   1438      is really a definition, rather than a common symbol.  This could
   1439      lead to some minor confusion when the symbol really is a common
   1440      symbol in some regular object.  However, I think it will be
   1441      harmless.  */
   1442 
   1443   if (newdyn
   1444       && newdef
   1445       && !newweak
   1446       && (sec->flags & SEC_ALLOC) != 0
   1447       && (sec->flags & SEC_LOAD) == 0
   1448       && sym->st_size > 0
   1449       && !newfunc)
   1450     newdyncommon = TRUE;
   1451   else
   1452     newdyncommon = FALSE;
   1453 
   1454   if (olddyn
   1455       && olddef
   1456       && h->root.type == bfd_link_hash_defined
   1457       && h->def_dynamic
   1458       && (h->root.u.def.section->flags & SEC_ALLOC) != 0
   1459       && (h->root.u.def.section->flags & SEC_LOAD) == 0
   1460       && h->size > 0
   1461       && !oldfunc)
   1462     olddyncommon = TRUE;
   1463   else
   1464     olddyncommon = FALSE;
   1465 
   1466   /* We now know everything about the old and new symbols.  We ask the
   1467      backend to check if we can merge them.  */
   1468   if (bed->merge_symbol != NULL)
   1469     {
   1470       if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
   1471 	return FALSE;
   1472       sec = *psec;
   1473     }
   1474 
   1475   /* If both the old and the new symbols look like common symbols in a
   1476      dynamic object, set the size of the symbol to the larger of the
   1477      two.  */
   1478 
   1479   if (olddyncommon
   1480       && newdyncommon
   1481       && sym->st_size != h->size)
   1482     {
   1483       /* Since we think we have two common symbols, issue a multiple
   1484 	 common warning if desired.  Note that we only warn if the
   1485 	 size is different.  If the size is the same, we simply let
   1486 	 the old symbol override the new one as normally happens with
   1487 	 symbols defined in dynamic objects.  */
   1488 
   1489       (*info->callbacks->multiple_common) (info, &h->root, abfd,
   1490 					   bfd_link_hash_common, sym->st_size);
   1491       if (sym->st_size > h->size)
   1492 	h->size = sym->st_size;
   1493 
   1494       *size_change_ok = TRUE;
   1495     }
   1496 
   1497   /* If we are looking at a dynamic object, and we have found a
   1498      definition, we need to see if the symbol was already defined by
   1499      some other object.  If so, we want to use the existing
   1500      definition, and we do not want to report a multiple symbol
   1501      definition error; we do this by clobbering *PSEC to be
   1502      bfd_und_section_ptr.
   1503 
   1504      We treat a common symbol as a definition if the symbol in the
   1505      shared library is a function, since common symbols always
   1506      represent variables; this can cause confusion in principle, but
   1507      any such confusion would seem to indicate an erroneous program or
   1508      shared library.  We also permit a common symbol in a regular
   1509      object to override a weak symbol in a shared object.  A common
   1510      symbol in executable also overrides a symbol in a shared object.  */
   1511 
   1512   if (newdyn
   1513       && newdef
   1514       && (olddef
   1515 	  || (h->root.type == bfd_link_hash_common
   1516 	      && (newweak
   1517 		  || newfunc
   1518 		  || (!olddyn && bfd_link_executable (info))))))
   1519     {
   1520       *override = TRUE;
   1521       newdef = FALSE;
   1522       newdyncommon = FALSE;
   1523 
   1524       *psec = sec = bfd_und_section_ptr;
   1525       *size_change_ok = TRUE;
   1526 
   1527       /* If we get here when the old symbol is a common symbol, then
   1528 	 we are explicitly letting it override a weak symbol or
   1529 	 function in a dynamic object, and we don't want to warn about
   1530 	 a type change.  If the old symbol is a defined symbol, a type
   1531 	 change warning may still be appropriate.  */
   1532 
   1533       if (h->root.type == bfd_link_hash_common)
   1534 	*type_change_ok = TRUE;
   1535     }
   1536 
   1537   /* Handle the special case of an old common symbol merging with a
   1538      new symbol which looks like a common symbol in a shared object.
   1539      We change *PSEC and *PVALUE to make the new symbol look like a
   1540      common symbol, and let _bfd_generic_link_add_one_symbol do the
   1541      right thing.  */
   1542 
   1543   if (newdyncommon
   1544       && h->root.type == bfd_link_hash_common)
   1545     {
   1546       *override = TRUE;
   1547       newdef = FALSE;
   1548       newdyncommon = FALSE;
   1549       *pvalue = sym->st_size;
   1550       *psec = sec = bed->common_section (oldsec);
   1551       *size_change_ok = TRUE;
   1552     }
   1553 
   1554   /* Skip weak definitions of symbols that are already defined.  */
   1555   if (newdef && olddef && newweak)
   1556     {
   1557       /* Don't skip new non-IR weak syms.  */
   1558       if (!(oldbfd != NULL
   1559 	    && (oldbfd->flags & BFD_PLUGIN) != 0
   1560 	    && (abfd->flags & BFD_PLUGIN) == 0))
   1561 	{
   1562 	  newdef = FALSE;
   1563 	  *skip = TRUE;
   1564 	}
   1565 
   1566       /* Merge st_other.  If the symbol already has a dynamic index,
   1567 	 but visibility says it should not be visible, turn it into a
   1568 	 local symbol.  */
   1569       elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
   1570       if (h->dynindx != -1)
   1571 	switch (ELF_ST_VISIBILITY (h->other))
   1572 	  {
   1573 	  case STV_INTERNAL:
   1574 	  case STV_HIDDEN:
   1575 	    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
   1576 	    break;
   1577 	  }
   1578     }
   1579 
   1580   /* If the old symbol is from a dynamic object, and the new symbol is
   1581      a definition which is not from a dynamic object, then the new
   1582      symbol overrides the old symbol.  Symbols from regular files
   1583      always take precedence over symbols from dynamic objects, even if
   1584      they are defined after the dynamic object in the link.
   1585 
   1586      As above, we again permit a common symbol in a regular object to
   1587      override a definition in a shared object if the shared object
   1588      symbol is a function or is weak.  */
   1589 
   1590   flip = NULL;
   1591   if (!newdyn
   1592       && (newdef
   1593 	  || (bfd_is_com_section (sec)
   1594 	      && (oldweak || oldfunc)))
   1595       && olddyn
   1596       && olddef
   1597       && h->def_dynamic)
   1598     {
   1599       /* Change the hash table entry to undefined, and let
   1600 	 _bfd_generic_link_add_one_symbol do the right thing with the
   1601 	 new definition.  */
   1602 
   1603       h->root.type = bfd_link_hash_undefined;
   1604       h->root.u.undef.abfd = h->root.u.def.section->owner;
   1605       *size_change_ok = TRUE;
   1606 
   1607       olddef = FALSE;
   1608       olddyncommon = FALSE;
   1609 
   1610       /* We again permit a type change when a common symbol may be
   1611 	 overriding a function.  */
   1612 
   1613       if (bfd_is_com_section (sec))
   1614 	{
   1615 	  if (oldfunc)
   1616 	    {
   1617 	      /* If a common symbol overrides a function, make sure
   1618 		 that it isn't defined dynamically nor has type
   1619 		 function.  */
   1620 	      h->def_dynamic = 0;
   1621 	      h->type = STT_NOTYPE;
   1622 	    }
   1623 	  *type_change_ok = TRUE;
   1624 	}
   1625 
   1626       if (hi->root.type == bfd_link_hash_indirect)
   1627 	flip = hi;
   1628       else
   1629 	/* This union may have been set to be non-NULL when this symbol
   1630 	   was seen in a dynamic object.  We must force the union to be
   1631 	   NULL, so that it is correct for a regular symbol.  */
   1632 	h->verinfo.vertree = NULL;
   1633     }
   1634 
   1635   /* Handle the special case of a new common symbol merging with an
   1636      old symbol that looks like it might be a common symbol defined in
   1637      a shared object.  Note that we have already handled the case in
   1638      which a new common symbol should simply override the definition
   1639      in the shared library.  */
   1640 
   1641   if (! newdyn
   1642       && bfd_is_com_section (sec)
   1643       && olddyncommon)
   1644     {
   1645       /* It would be best if we could set the hash table entry to a
   1646 	 common symbol, but we don't know what to use for the section
   1647 	 or the alignment.  */
   1648       (*info->callbacks->multiple_common) (info, &h->root, abfd,
   1649 					   bfd_link_hash_common, sym->st_size);
   1650 
   1651       /* If the presumed common symbol in the dynamic object is
   1652 	 larger, pretend that the new symbol has its size.  */
   1653 
   1654       if (h->size > *pvalue)
   1655 	*pvalue = h->size;
   1656 
   1657       /* We need to remember the alignment required by the symbol
   1658 	 in the dynamic object.  */
   1659       BFD_ASSERT (pold_alignment);
   1660       *pold_alignment = h->root.u.def.section->alignment_power;
   1661 
   1662       olddef = FALSE;
   1663       olddyncommon = FALSE;
   1664 
   1665       h->root.type = bfd_link_hash_undefined;
   1666       h->root.u.undef.abfd = h->root.u.def.section->owner;
   1667 
   1668       *size_change_ok = TRUE;
   1669       *type_change_ok = TRUE;
   1670 
   1671       if (hi->root.type == bfd_link_hash_indirect)
   1672 	flip = hi;
   1673       else
   1674 	h->verinfo.vertree = NULL;
   1675     }
   1676 
   1677   if (flip != NULL)
   1678     {
   1679       /* Handle the case where we had a versioned symbol in a dynamic
   1680 	 library and now find a definition in a normal object.  In this
   1681 	 case, we make the versioned symbol point to the normal one.  */
   1682       flip->root.type = h->root.type;
   1683       flip->root.u.undef.abfd = h->root.u.undef.abfd;
   1684       h->root.type = bfd_link_hash_indirect;
   1685       h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
   1686       (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
   1687       if (h->def_dynamic)
   1688 	{
   1689 	  h->def_dynamic = 0;
   1690 	  flip->ref_dynamic = 1;
   1691 	}
   1692     }
   1693 
   1694   return TRUE;
   1695 }
   1696 
   1697 /* This function is called to create an indirect symbol from the
   1698    default for the symbol with the default version if needed. The
   1699    symbol is described by H, NAME, SYM, SEC, and VALUE.  We
   1700    set DYNSYM if the new indirect symbol is dynamic.  */
   1701 
   1702 static bfd_boolean
   1703 _bfd_elf_add_default_symbol (bfd *abfd,
   1704 			     struct bfd_link_info *info,
   1705 			     struct elf_link_hash_entry *h,
   1706 			     const char *name,
   1707 			     Elf_Internal_Sym *sym,
   1708 			     asection *sec,
   1709 			     bfd_vma value,
   1710 			     bfd **poldbfd,
   1711 			     bfd_boolean *dynsym)
   1712 {
   1713   bfd_boolean type_change_ok;
   1714   bfd_boolean size_change_ok;
   1715   bfd_boolean skip;
   1716   char *shortname;
   1717   struct elf_link_hash_entry *hi;
   1718   struct bfd_link_hash_entry *bh;
   1719   const struct elf_backend_data *bed;
   1720   bfd_boolean collect;
   1721   bfd_boolean dynamic;
   1722   bfd_boolean override;
   1723   char *p;
   1724   size_t len, shortlen;
   1725   asection *tmp_sec;
   1726   bfd_boolean matched;
   1727 
   1728   if (h->versioned == unversioned || h->versioned == versioned_hidden)
   1729     return TRUE;
   1730 
   1731   /* If this symbol has a version, and it is the default version, we
   1732      create an indirect symbol from the default name to the fully
   1733      decorated name.  This will cause external references which do not
   1734      specify a version to be bound to this version of the symbol.  */
   1735   p = strchr (name, ELF_VER_CHR);
   1736   if (h->versioned == unknown)
   1737     {
   1738       if (p == NULL)
   1739 	{
   1740 	  h->versioned = unversioned;
   1741 	  return TRUE;
   1742 	}
   1743       else
   1744 	{
   1745 	  if (p[1] != ELF_VER_CHR)
   1746 	    {
   1747 	      h->versioned = versioned_hidden;
   1748 	      return TRUE;
   1749 	    }
   1750 	  else
   1751 	    h->versioned = versioned;
   1752 	}
   1753     }
   1754   else
   1755     {
   1756       /* PR ld/19073: We may see an unversioned definition after the
   1757 	 default version.  */
   1758       if (p == NULL)
   1759 	return TRUE;
   1760     }
   1761 
   1762   bed = get_elf_backend_data (abfd);
   1763   collect = bed->collect;
   1764   dynamic = (abfd->flags & DYNAMIC) != 0;
   1765 
   1766   shortlen = p - name;
   1767   shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
   1768   if (shortname == NULL)
   1769     return FALSE;
   1770   memcpy (shortname, name, shortlen);
   1771   shortname[shortlen] = '\0';
   1772 
   1773   /* We are going to create a new symbol.  Merge it with any existing
   1774      symbol with this name.  For the purposes of the merge, act as
   1775      though we were defining the symbol we just defined, although we
   1776      actually going to define an indirect symbol.  */
   1777   type_change_ok = FALSE;
   1778   size_change_ok = FALSE;
   1779   matched = TRUE;
   1780   tmp_sec = sec;
   1781   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
   1782 			      &hi, poldbfd, NULL, NULL, &skip, &override,
   1783 			      &type_change_ok, &size_change_ok, &matched))
   1784     return FALSE;
   1785 
   1786   if (skip)
   1787     goto nondefault;
   1788 
   1789   if (hi->def_regular)
   1790     {
   1791       /* If the undecorated symbol will have a version added by a
   1792 	 script different to H, then don't indirect to/from the
   1793 	 undecorated symbol.  This isn't ideal because we may not yet
   1794 	 have seen symbol versions, if given by a script on the
   1795 	 command line rather than via --version-script.  */
   1796       if (hi->verinfo.vertree == NULL && info->version_info != NULL)
   1797 	{
   1798 	  bfd_boolean hide;
   1799 
   1800 	  hi->verinfo.vertree
   1801 	    = bfd_find_version_for_sym (info->version_info,
   1802 					hi->root.root.string, &hide);
   1803 	  if (hi->verinfo.vertree != NULL && hide)
   1804 	    {
   1805 	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
   1806 	      goto nondefault;
   1807 	    }
   1808 	}
   1809       if (hi->verinfo.vertree != NULL
   1810 	  && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
   1811 	goto nondefault;
   1812     }
   1813 
   1814   if (! override)
   1815     {
   1816       /* Add the default symbol if not performing a relocatable link.  */
   1817       if (! bfd_link_relocatable (info))
   1818 	{
   1819 	  bh = &hi->root;
   1820 	  if (! (_bfd_generic_link_add_one_symbol
   1821 		 (info, abfd, shortname, BSF_INDIRECT,
   1822 		  bfd_ind_section_ptr,
   1823 		  0, name, FALSE, collect, &bh)))
   1824 	    return FALSE;
   1825 	  hi = (struct elf_link_hash_entry *) bh;
   1826 	}
   1827     }
   1828   else
   1829     {
   1830       /* In this case the symbol named SHORTNAME is overriding the
   1831 	 indirect symbol we want to add.  We were planning on making
   1832 	 SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
   1833 	 is the name without a version.  NAME is the fully versioned
   1834 	 name, and it is the default version.
   1835 
   1836 	 Overriding means that we already saw a definition for the
   1837 	 symbol SHORTNAME in a regular object, and it is overriding
   1838 	 the symbol defined in the dynamic object.
   1839 
   1840 	 When this happens, we actually want to change NAME, the
   1841 	 symbol we just added, to refer to SHORTNAME.  This will cause
   1842 	 references to NAME in the shared object to become references
   1843 	 to SHORTNAME in the regular object.  This is what we expect
   1844 	 when we override a function in a shared object: that the
   1845 	 references in the shared object will be mapped to the
   1846 	 definition in the regular object.  */
   1847 
   1848       while (hi->root.type == bfd_link_hash_indirect
   1849 	     || hi->root.type == bfd_link_hash_warning)
   1850 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
   1851 
   1852       h->root.type = bfd_link_hash_indirect;
   1853       h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
   1854       if (h->def_dynamic)
   1855 	{
   1856 	  h->def_dynamic = 0;
   1857 	  hi->ref_dynamic = 1;
   1858 	  if (hi->ref_regular
   1859 	      || hi->def_regular)
   1860 	    {
   1861 	      if (! bfd_elf_link_record_dynamic_symbol (info, hi))
   1862 		return FALSE;
   1863 	    }
   1864 	}
   1865 
   1866       /* Now set HI to H, so that the following code will set the
   1867 	 other fields correctly.  */
   1868       hi = h;
   1869     }
   1870 
   1871   /* Check if HI is a warning symbol.  */
   1872   if (hi->root.type == bfd_link_hash_warning)
   1873     hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
   1874 
   1875   /* If there is a duplicate definition somewhere, then HI may not
   1876      point to an indirect symbol.  We will have reported an error to
   1877      the user in that case.  */
   1878 
   1879   if (hi->root.type == bfd_link_hash_indirect)
   1880     {
   1881       struct elf_link_hash_entry *ht;
   1882 
   1883       ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
   1884       (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
   1885 
   1886       /* A reference to the SHORTNAME symbol from a dynamic library
   1887 	 will be satisfied by the versioned symbol at runtime.  In
   1888 	 effect, we have a reference to the versioned symbol.  */
   1889       ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
   1890       hi->dynamic_def |= ht->dynamic_def;
   1891 
   1892       /* See if the new flags lead us to realize that the symbol must
   1893 	 be dynamic.  */
   1894       if (! *dynsym)
   1895 	{
   1896 	  if (! dynamic)
   1897 	    {
   1898 	      if (! bfd_link_executable (info)
   1899 		  || hi->def_dynamic
   1900 		  || hi->ref_dynamic)
   1901 		*dynsym = TRUE;
   1902 	    }
   1903 	  else
   1904 	    {
   1905 	      if (hi->ref_regular)
   1906 		*dynsym = TRUE;
   1907 	    }
   1908 	}
   1909     }
   1910 
   1911   /* We also need to define an indirection from the nondefault version
   1912      of the symbol.  */
   1913 
   1914 nondefault:
   1915   len = strlen (name);
   1916   shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
   1917   if (shortname == NULL)
   1918     return FALSE;
   1919   memcpy (shortname, name, shortlen);
   1920   memcpy (shortname + shortlen, p + 1, len - shortlen);
   1921 
   1922   /* Once again, merge with any existing symbol.  */
   1923   type_change_ok = FALSE;
   1924   size_change_ok = FALSE;
   1925   tmp_sec = sec;
   1926   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
   1927 			      &hi, poldbfd, NULL, NULL, &skip, &override,
   1928 			      &type_change_ok, &size_change_ok, &matched))
   1929     return FALSE;
   1930 
   1931   if (skip)
   1932     return TRUE;
   1933 
   1934   if (override)
   1935     {
   1936       /* Here SHORTNAME is a versioned name, so we don't expect to see
   1937 	 the type of override we do in the case above unless it is
   1938 	 overridden by a versioned definition.  */
   1939       if (hi->root.type != bfd_link_hash_defined
   1940 	  && hi->root.type != bfd_link_hash_defweak)
   1941 	(*_bfd_error_handler)
   1942 	  (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
   1943 	   abfd, shortname);
   1944     }
   1945   else
   1946     {
   1947       bh = &hi->root;
   1948       if (! (_bfd_generic_link_add_one_symbol
   1949 	     (info, abfd, shortname, BSF_INDIRECT,
   1950 	      bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
   1951 	return FALSE;
   1952       hi = (struct elf_link_hash_entry *) bh;
   1953 
   1954       /* If there is a duplicate definition somewhere, then HI may not
   1955 	 point to an indirect symbol.  We will have reported an error
   1956 	 to the user in that case.  */
   1957 
   1958       if (hi->root.type == bfd_link_hash_indirect)
   1959 	{
   1960 	  (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
   1961 	  h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
   1962 	  hi->dynamic_def |= h->dynamic_def;
   1963 
   1964 	  /* See if the new flags lead us to realize that the symbol
   1965 	     must be dynamic.  */
   1966 	  if (! *dynsym)
   1967 	    {
   1968 	      if (! dynamic)
   1969 		{
   1970 		  if (! bfd_link_executable (info)
   1971 		      || hi->ref_dynamic)
   1972 		    *dynsym = TRUE;
   1973 		}
   1974 	      else
   1975 		{
   1976 		  if (hi->ref_regular)
   1977 		    *dynsym = TRUE;
   1978 		}
   1979 	    }
   1980 	}
   1981     }
   1982 
   1983   return TRUE;
   1984 }
   1985 
   1986 /* This routine is used to export all defined symbols into the dynamic
   1988    symbol table.  It is called via elf_link_hash_traverse.  */
   1989 
   1990 static bfd_boolean
   1991 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
   1992 {
   1993   struct elf_info_failed *eif = (struct elf_info_failed *) data;
   1994 
   1995   /* Ignore indirect symbols.  These are added by the versioning code.  */
   1996   if (h->root.type == bfd_link_hash_indirect)
   1997     return TRUE;
   1998 
   1999   /* Ignore this if we won't export it.  */
   2000   if (!eif->info->export_dynamic && !h->dynamic)
   2001     return TRUE;
   2002 
   2003   if (h->dynindx == -1
   2004       && (h->def_regular || h->ref_regular)
   2005       && ! bfd_hide_sym_by_version (eif->info->version_info,
   2006 				    h->root.root.string))
   2007     {
   2008       if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
   2009 	{
   2010 	  eif->failed = TRUE;
   2011 	  return FALSE;
   2012 	}
   2013     }
   2014 
   2015   return TRUE;
   2016 }
   2017 
   2018 /* Look through the symbols which are defined in other shared
   2020    libraries and referenced here.  Update the list of version
   2021    dependencies.  This will be put into the .gnu.version_r section.
   2022    This function is called via elf_link_hash_traverse.  */
   2023 
   2024 static bfd_boolean
   2025 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
   2026 					 void *data)
   2027 {
   2028   struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
   2029   Elf_Internal_Verneed *t;
   2030   Elf_Internal_Vernaux *a;
   2031   bfd_size_type amt;
   2032 
   2033   /* We only care about symbols defined in shared objects with version
   2034      information.  */
   2035   if (!h->def_dynamic
   2036       || h->def_regular
   2037       || h->dynindx == -1
   2038       || h->verinfo.verdef == NULL
   2039       || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
   2040 	  & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
   2041     return TRUE;
   2042 
   2043   /* See if we already know about this version.  */
   2044   for (t = elf_tdata (rinfo->info->output_bfd)->verref;
   2045        t != NULL;
   2046        t = t->vn_nextref)
   2047     {
   2048       if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
   2049 	continue;
   2050 
   2051       for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
   2052 	if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
   2053 	  return TRUE;
   2054 
   2055       break;
   2056     }
   2057 
   2058   /* This is a new version.  Add it to tree we are building.  */
   2059 
   2060   if (t == NULL)
   2061     {
   2062       amt = sizeof *t;
   2063       t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
   2064       if (t == NULL)
   2065 	{
   2066 	  rinfo->failed = TRUE;
   2067 	  return FALSE;
   2068 	}
   2069 
   2070       t->vn_bfd = h->verinfo.verdef->vd_bfd;
   2071       t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
   2072       elf_tdata (rinfo->info->output_bfd)->verref = t;
   2073     }
   2074 
   2075   amt = sizeof *a;
   2076   a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
   2077   if (a == NULL)
   2078     {
   2079       rinfo->failed = TRUE;
   2080       return FALSE;
   2081     }
   2082 
   2083   /* Note that we are copying a string pointer here, and testing it
   2084      above.  If bfd_elf_string_from_elf_section is ever changed to
   2085      discard the string data when low in memory, this will have to be
   2086      fixed.  */
   2087   a->vna_nodename = h->verinfo.verdef->vd_nodename;
   2088 
   2089   a->vna_flags = h->verinfo.verdef->vd_flags;
   2090   a->vna_nextptr = t->vn_auxptr;
   2091 
   2092   h->verinfo.verdef->vd_exp_refno = rinfo->vers;
   2093   ++rinfo->vers;
   2094 
   2095   a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
   2096 
   2097   t->vn_auxptr = a;
   2098 
   2099   return TRUE;
   2100 }
   2101 
   2102 /* Figure out appropriate versions for all the symbols.  We may not
   2103    have the version number script until we have read all of the input
   2104    files, so until that point we don't know which symbols should be
   2105    local.  This function is called via elf_link_hash_traverse.  */
   2106 
   2107 static bfd_boolean
   2108 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
   2109 {
   2110   struct elf_info_failed *sinfo;
   2111   struct bfd_link_info *info;
   2112   const struct elf_backend_data *bed;
   2113   struct elf_info_failed eif;
   2114   char *p;
   2115 
   2116   sinfo = (struct elf_info_failed *) data;
   2117   info = sinfo->info;
   2118 
   2119   /* Fix the symbol flags.  */
   2120   eif.failed = FALSE;
   2121   eif.info = info;
   2122   if (! _bfd_elf_fix_symbol_flags (h, &eif))
   2123     {
   2124       if (eif.failed)
   2125 	sinfo->failed = TRUE;
   2126       return FALSE;
   2127     }
   2128 
   2129   /* We only need version numbers for symbols defined in regular
   2130      objects.  */
   2131   if (!h->def_regular)
   2132     return TRUE;
   2133 
   2134   bed = get_elf_backend_data (info->output_bfd);
   2135   p = strchr (h->root.root.string, ELF_VER_CHR);
   2136   if (p != NULL && h->verinfo.vertree == NULL)
   2137     {
   2138       struct bfd_elf_version_tree *t;
   2139 
   2140       ++p;
   2141       if (*p == ELF_VER_CHR)
   2142 	++p;
   2143 
   2144       /* If there is no version string, we can just return out.  */
   2145       if (*p == '\0')
   2146 	return TRUE;
   2147 
   2148       /* Look for the version.  If we find it, it is no longer weak.  */
   2149       for (t = sinfo->info->version_info; t != NULL; t = t->next)
   2150 	{
   2151 	  if (strcmp (t->name, p) == 0)
   2152 	    {
   2153 	      size_t len;
   2154 	      char *alc;
   2155 	      struct bfd_elf_version_expr *d;
   2156 
   2157 	      len = p - h->root.root.string;
   2158 	      alc = (char *) bfd_malloc (len);
   2159 	      if (alc == NULL)
   2160 		{
   2161 		  sinfo->failed = TRUE;
   2162 		  return FALSE;
   2163 		}
   2164 	      memcpy (alc, h->root.root.string, len - 1);
   2165 	      alc[len - 1] = '\0';
   2166 	      if (alc[len - 2] == ELF_VER_CHR)
   2167 		alc[len - 2] = '\0';
   2168 
   2169 	      h->verinfo.vertree = t;
   2170 	      t->used = TRUE;
   2171 	      d = NULL;
   2172 
   2173 	      if (t->globals.list != NULL)
   2174 		d = (*t->match) (&t->globals, NULL, alc);
   2175 
   2176 	      /* See if there is anything to force this symbol to
   2177 		 local scope.  */
   2178 	      if (d == NULL && t->locals.list != NULL)
   2179 		{
   2180 		  d = (*t->match) (&t->locals, NULL, alc);
   2181 		  if (d != NULL
   2182 		      && h->dynindx != -1
   2183 		      && ! info->export_dynamic)
   2184 		    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
   2185 		}
   2186 
   2187 	      free (alc);
   2188 	      break;
   2189 	    }
   2190 	}
   2191 
   2192       /* If we are building an application, we need to create a
   2193 	 version node for this version.  */
   2194       if (t == NULL && bfd_link_executable (info))
   2195 	{
   2196 	  struct bfd_elf_version_tree **pp;
   2197 	  int version_index;
   2198 
   2199 	  /* If we aren't going to export this symbol, we don't need
   2200 	     to worry about it.  */
   2201 	  if (h->dynindx == -1)
   2202 	    return TRUE;
   2203 
   2204 	  t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
   2205 							  sizeof *t);
   2206 	  if (t == NULL)
   2207 	    {
   2208 	      sinfo->failed = TRUE;
   2209 	      return FALSE;
   2210 	    }
   2211 
   2212 	  t->name = p;
   2213 	  t->name_indx = (unsigned int) -1;
   2214 	  t->used = TRUE;
   2215 
   2216 	  version_index = 1;
   2217 	  /* Don't count anonymous version tag.  */
   2218 	  if (sinfo->info->version_info != NULL
   2219 	      && sinfo->info->version_info->vernum == 0)
   2220 	    version_index = 0;
   2221 	  for (pp = &sinfo->info->version_info;
   2222 	       *pp != NULL;
   2223 	       pp = &(*pp)->next)
   2224 	    ++version_index;
   2225 	  t->vernum = version_index;
   2226 
   2227 	  *pp = t;
   2228 
   2229 	  h->verinfo.vertree = t;
   2230 	}
   2231       else if (t == NULL)
   2232 	{
   2233 	  /* We could not find the version for a symbol when
   2234 	     generating a shared archive.  Return an error.  */
   2235 	  (*_bfd_error_handler)
   2236 	    (_("%B: version node not found for symbol %s"),
   2237 	     info->output_bfd, h->root.root.string);
   2238 	  bfd_set_error (bfd_error_bad_value);
   2239 	  sinfo->failed = TRUE;
   2240 	  return FALSE;
   2241 	}
   2242     }
   2243 
   2244   /* If we don't have a version for this symbol, see if we can find
   2245      something.  */
   2246   if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
   2247     {
   2248       bfd_boolean hide;
   2249 
   2250       h->verinfo.vertree
   2251 	= bfd_find_version_for_sym (sinfo->info->version_info,
   2252 				    h->root.root.string, &hide);
   2253       if (h->verinfo.vertree != NULL && hide)
   2254 	(*bed->elf_backend_hide_symbol) (info, h, TRUE);
   2255     }
   2256 
   2257   return TRUE;
   2258 }
   2259 
   2260 /* Read and swap the relocs from the section indicated by SHDR.  This
   2262    may be either a REL or a RELA section.  The relocations are
   2263    translated into RELA relocations and stored in INTERNAL_RELOCS,
   2264    which should have already been allocated to contain enough space.
   2265    The EXTERNAL_RELOCS are a buffer where the external form of the
   2266    relocations should be stored.
   2267 
   2268    Returns FALSE if something goes wrong.  */
   2269 
   2270 static bfd_boolean
   2271 elf_link_read_relocs_from_section (bfd *abfd,
   2272 				   asection *sec,
   2273 				   Elf_Internal_Shdr *shdr,
   2274 				   void *external_relocs,
   2275 				   Elf_Internal_Rela *internal_relocs)
   2276 {
   2277   const struct elf_backend_data *bed;
   2278   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
   2279   const bfd_byte *erela;
   2280   const bfd_byte *erelaend;
   2281   Elf_Internal_Rela *irela;
   2282   Elf_Internal_Shdr *symtab_hdr;
   2283   size_t nsyms;
   2284 
   2285   /* Position ourselves at the start of the section.  */
   2286   if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
   2287     return FALSE;
   2288 
   2289   /* Read the relocations.  */
   2290   if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
   2291     return FALSE;
   2292 
   2293   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
   2294   nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
   2295 
   2296   bed = get_elf_backend_data (abfd);
   2297 
   2298   /* Convert the external relocations to the internal format.  */
   2299   if (shdr->sh_entsize == bed->s->sizeof_rel)
   2300     swap_in = bed->s->swap_reloc_in;
   2301   else if (shdr->sh_entsize == bed->s->sizeof_rela)
   2302     swap_in = bed->s->swap_reloca_in;
   2303   else
   2304     {
   2305       bfd_set_error (bfd_error_wrong_format);
   2306       return FALSE;
   2307     }
   2308 
   2309   erela = (const bfd_byte *) external_relocs;
   2310   erelaend = erela + shdr->sh_size;
   2311   irela = internal_relocs;
   2312   while (erela < erelaend)
   2313     {
   2314       bfd_vma r_symndx;
   2315 
   2316       (*swap_in) (abfd, erela, irela);
   2317       r_symndx = ELF32_R_SYM (irela->r_info);
   2318       if (bed->s->arch_size == 64)
   2319 	r_symndx >>= 24;
   2320       if (nsyms > 0)
   2321 	{
   2322 	  if ((size_t) r_symndx >= nsyms)
   2323 	    {
   2324 	      (*_bfd_error_handler)
   2325 		(_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
   2326 		   " for offset 0x%lx in section `%A'"),
   2327 		 abfd, sec,
   2328 		 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
   2329 	      bfd_set_error (bfd_error_bad_value);
   2330 	      return FALSE;
   2331 	    }
   2332 	}
   2333       else if (r_symndx != STN_UNDEF)
   2334 	{
   2335 	  (*_bfd_error_handler)
   2336 	    (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
   2337 	       " when the object file has no symbol table"),
   2338 	     abfd, sec,
   2339 	     (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
   2340 	  bfd_set_error (bfd_error_bad_value);
   2341 	  return FALSE;
   2342 	}
   2343       irela += bed->s->int_rels_per_ext_rel;
   2344       erela += shdr->sh_entsize;
   2345     }
   2346 
   2347   return TRUE;
   2348 }
   2349 
   2350 /* Read and swap the relocs for a section O.  They may have been
   2351    cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
   2352    not NULL, they are used as buffers to read into.  They are known to
   2353    be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
   2354    the return value is allocated using either malloc or bfd_alloc,
   2355    according to the KEEP_MEMORY argument.  If O has two relocation
   2356    sections (both REL and RELA relocations), then the REL_HDR
   2357    relocations will appear first in INTERNAL_RELOCS, followed by the
   2358    RELA_HDR relocations.  */
   2359 
   2360 Elf_Internal_Rela *
   2361 _bfd_elf_link_read_relocs (bfd *abfd,
   2362 			   asection *o,
   2363 			   void *external_relocs,
   2364 			   Elf_Internal_Rela *internal_relocs,
   2365 			   bfd_boolean keep_memory)
   2366 {
   2367   void *alloc1 = NULL;
   2368   Elf_Internal_Rela *alloc2 = NULL;
   2369   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   2370   struct bfd_elf_section_data *esdo = elf_section_data (o);
   2371   Elf_Internal_Rela *internal_rela_relocs;
   2372 
   2373   if (esdo->relocs != NULL)
   2374     return esdo->relocs;
   2375 
   2376   if (o->reloc_count == 0)
   2377     return NULL;
   2378 
   2379   if (internal_relocs == NULL)
   2380     {
   2381       bfd_size_type size;
   2382 
   2383       size = o->reloc_count;
   2384       size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
   2385       if (keep_memory)
   2386 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
   2387       else
   2388 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
   2389       if (internal_relocs == NULL)
   2390 	goto error_return;
   2391     }
   2392 
   2393   if (external_relocs == NULL)
   2394     {
   2395       bfd_size_type size = 0;
   2396 
   2397       if (esdo->rel.hdr)
   2398 	size += esdo->rel.hdr->sh_size;
   2399       if (esdo->rela.hdr)
   2400 	size += esdo->rela.hdr->sh_size;
   2401 
   2402       alloc1 = bfd_malloc (size);
   2403       if (alloc1 == NULL)
   2404 	goto error_return;
   2405       external_relocs = alloc1;
   2406     }
   2407 
   2408   internal_rela_relocs = internal_relocs;
   2409   if (esdo->rel.hdr)
   2410     {
   2411       if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
   2412 					      external_relocs,
   2413 					      internal_relocs))
   2414 	goto error_return;
   2415       external_relocs = (((bfd_byte *) external_relocs)
   2416 			 + esdo->rel.hdr->sh_size);
   2417       internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
   2418 			       * bed->s->int_rels_per_ext_rel);
   2419     }
   2420 
   2421   if (esdo->rela.hdr
   2422       && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
   2423 					      external_relocs,
   2424 					      internal_rela_relocs)))
   2425     goto error_return;
   2426 
   2427   /* Cache the results for next time, if we can.  */
   2428   if (keep_memory)
   2429     esdo->relocs = internal_relocs;
   2430 
   2431   if (alloc1 != NULL)
   2432     free (alloc1);
   2433 
   2434   /* Don't free alloc2, since if it was allocated we are passing it
   2435      back (under the name of internal_relocs).  */
   2436 
   2437   return internal_relocs;
   2438 
   2439  error_return:
   2440   if (alloc1 != NULL)
   2441     free (alloc1);
   2442   if (alloc2 != NULL)
   2443     {
   2444       if (keep_memory)
   2445 	bfd_release (abfd, alloc2);
   2446       else
   2447 	free (alloc2);
   2448     }
   2449   return NULL;
   2450 }
   2451 
   2452 /* Compute the size of, and allocate space for, REL_HDR which is the
   2453    section header for a section containing relocations for O.  */
   2454 
   2455 static bfd_boolean
   2456 _bfd_elf_link_size_reloc_section (bfd *abfd,
   2457 				  struct bfd_elf_section_reloc_data *reldata)
   2458 {
   2459   Elf_Internal_Shdr *rel_hdr = reldata->hdr;
   2460 
   2461   /* That allows us to calculate the size of the section.  */
   2462   rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
   2463 
   2464   /* The contents field must last into write_object_contents, so we
   2465      allocate it with bfd_alloc rather than malloc.  Also since we
   2466      cannot be sure that the contents will actually be filled in,
   2467      we zero the allocated space.  */
   2468   rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
   2469   if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
   2470     return FALSE;
   2471 
   2472   if (reldata->hashes == NULL && reldata->count)
   2473     {
   2474       struct elf_link_hash_entry **p;
   2475 
   2476       p = ((struct elf_link_hash_entry **)
   2477 	   bfd_zmalloc (reldata->count * sizeof (*p)));
   2478       if (p == NULL)
   2479 	return FALSE;
   2480 
   2481       reldata->hashes = p;
   2482     }
   2483 
   2484   return TRUE;
   2485 }
   2486 
   2487 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
   2488    originated from the section given by INPUT_REL_HDR) to the
   2489    OUTPUT_BFD.  */
   2490 
   2491 bfd_boolean
   2492 _bfd_elf_link_output_relocs (bfd *output_bfd,
   2493 			     asection *input_section,
   2494 			     Elf_Internal_Shdr *input_rel_hdr,
   2495 			     Elf_Internal_Rela *internal_relocs,
   2496 			     struct elf_link_hash_entry **rel_hash
   2497 			       ATTRIBUTE_UNUSED)
   2498 {
   2499   Elf_Internal_Rela *irela;
   2500   Elf_Internal_Rela *irelaend;
   2501   bfd_byte *erel;
   2502   struct bfd_elf_section_reloc_data *output_reldata;
   2503   asection *output_section;
   2504   const struct elf_backend_data *bed;
   2505   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
   2506   struct bfd_elf_section_data *esdo;
   2507 
   2508   output_section = input_section->output_section;
   2509 
   2510   bed = get_elf_backend_data (output_bfd);
   2511   esdo = elf_section_data (output_section);
   2512   if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
   2513     {
   2514       output_reldata = &esdo->rel;
   2515       swap_out = bed->s->swap_reloc_out;
   2516     }
   2517   else if (esdo->rela.hdr
   2518 	   && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
   2519     {
   2520       output_reldata = &esdo->rela;
   2521       swap_out = bed->s->swap_reloca_out;
   2522     }
   2523   else
   2524     {
   2525       (*_bfd_error_handler)
   2526 	(_("%B: relocation size mismatch in %B section %A"),
   2527 	 output_bfd, input_section->owner, input_section);
   2528       bfd_set_error (bfd_error_wrong_format);
   2529       return FALSE;
   2530     }
   2531 
   2532   erel = output_reldata->hdr->contents;
   2533   erel += output_reldata->count * input_rel_hdr->sh_entsize;
   2534   irela = internal_relocs;
   2535   irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
   2536 		      * bed->s->int_rels_per_ext_rel);
   2537   while (irela < irelaend)
   2538     {
   2539       (*swap_out) (output_bfd, irela, erel);
   2540       irela += bed->s->int_rels_per_ext_rel;
   2541       erel += input_rel_hdr->sh_entsize;
   2542     }
   2543 
   2544   /* Bump the counter, so that we know where to add the next set of
   2545      relocations.  */
   2546   output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
   2547 
   2548   return TRUE;
   2549 }
   2550 
   2551 /* Make weak undefined symbols in PIE dynamic.  */
   2553 
   2554 bfd_boolean
   2555 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
   2556 				 struct elf_link_hash_entry *h)
   2557 {
   2558   if (bfd_link_pie (info)
   2559       && h->dynindx == -1
   2560       && h->root.type == bfd_link_hash_undefweak)
   2561     return bfd_elf_link_record_dynamic_symbol (info, h);
   2562 
   2563   return TRUE;
   2564 }
   2565 
   2566 /* Fix up the flags for a symbol.  This handles various cases which
   2567    can only be fixed after all the input files are seen.  This is
   2568    currently called by both adjust_dynamic_symbol and
   2569    assign_sym_version, which is unnecessary but perhaps more robust in
   2570    the face of future changes.  */
   2571 
   2572 static bfd_boolean
   2573 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
   2574 			   struct elf_info_failed *eif)
   2575 {
   2576   const struct elf_backend_data *bed;
   2577 
   2578   /* If this symbol was mentioned in a non-ELF file, try to set
   2579      DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
   2580      permit a non-ELF file to correctly refer to a symbol defined in
   2581      an ELF dynamic object.  */
   2582   if (h->non_elf)
   2583     {
   2584       while (h->root.type == bfd_link_hash_indirect)
   2585 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
   2586 
   2587       if (h->root.type != bfd_link_hash_defined
   2588 	  && h->root.type != bfd_link_hash_defweak)
   2589 	{
   2590 	  h->ref_regular = 1;
   2591 	  h->ref_regular_nonweak = 1;
   2592 	}
   2593       else
   2594 	{
   2595 	  if (h->root.u.def.section->owner != NULL
   2596 	      && (bfd_get_flavour (h->root.u.def.section->owner)
   2597 		  == bfd_target_elf_flavour))
   2598 	    {
   2599 	      h->ref_regular = 1;
   2600 	      h->ref_regular_nonweak = 1;
   2601 	    }
   2602 	  else
   2603 	    h->def_regular = 1;
   2604 	}
   2605 
   2606       if (h->dynindx == -1
   2607 	  && (h->def_dynamic
   2608 	      || h->ref_dynamic))
   2609 	{
   2610 	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
   2611 	    {
   2612 	      eif->failed = TRUE;
   2613 	      return FALSE;
   2614 	    }
   2615 	}
   2616     }
   2617   else
   2618     {
   2619       /* Unfortunately, NON_ELF is only correct if the symbol
   2620 	 was first seen in a non-ELF file.  Fortunately, if the symbol
   2621 	 was first seen in an ELF file, we're probably OK unless the
   2622 	 symbol was defined in a non-ELF file.  Catch that case here.
   2623 	 FIXME: We're still in trouble if the symbol was first seen in
   2624 	 a dynamic object, and then later in a non-ELF regular object.  */
   2625       if ((h->root.type == bfd_link_hash_defined
   2626 	   || h->root.type == bfd_link_hash_defweak)
   2627 	  && !h->def_regular
   2628 	  && (h->root.u.def.section->owner != NULL
   2629 	      ? (bfd_get_flavour (h->root.u.def.section->owner)
   2630 		 != bfd_target_elf_flavour)
   2631 	      : (bfd_is_abs_section (h->root.u.def.section)
   2632 		 && !h->def_dynamic)))
   2633 	h->def_regular = 1;
   2634     }
   2635 
   2636   /* Backend specific symbol fixup.  */
   2637   bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
   2638   if (bed->elf_backend_fixup_symbol
   2639       && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
   2640     return FALSE;
   2641 
   2642   /* If this is a final link, and the symbol was defined as a common
   2643      symbol in a regular object file, and there was no definition in
   2644      any dynamic object, then the linker will have allocated space for
   2645      the symbol in a common section but the DEF_REGULAR
   2646      flag will not have been set.  */
   2647   if (h->root.type == bfd_link_hash_defined
   2648       && !h->def_regular
   2649       && h->ref_regular
   2650       && !h->def_dynamic
   2651       && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
   2652     h->def_regular = 1;
   2653 
   2654   /* If -Bsymbolic was used (which means to bind references to global
   2655      symbols to the definition within the shared object), and this
   2656      symbol was defined in a regular object, then it actually doesn't
   2657      need a PLT entry.  Likewise, if the symbol has non-default
   2658      visibility.  If the symbol has hidden or internal visibility, we
   2659      will force it local.  */
   2660   if (h->needs_plt
   2661       && bfd_link_pic (eif->info)
   2662       && is_elf_hash_table (eif->info->hash)
   2663       && (SYMBOLIC_BIND (eif->info, h)
   2664 	  || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
   2665       && h->def_regular)
   2666     {
   2667       bfd_boolean force_local;
   2668 
   2669       force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
   2670 		     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
   2671       (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
   2672     }
   2673 
   2674   /* If a weak undefined symbol has non-default visibility, we also
   2675      hide it from the dynamic linker.  */
   2676   if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
   2677       && h->root.type == bfd_link_hash_undefweak)
   2678     (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
   2679 
   2680   /* If this is a weak defined symbol in a dynamic object, and we know
   2681      the real definition in the dynamic object, copy interesting flags
   2682      over to the real definition.  */
   2683   if (h->u.weakdef != NULL)
   2684     {
   2685       /* If the real definition is defined by a regular object file,
   2686 	 don't do anything special.  See the longer description in
   2687 	 _bfd_elf_adjust_dynamic_symbol, below.  */
   2688       if (h->u.weakdef->def_regular)
   2689 	h->u.weakdef = NULL;
   2690       else
   2691 	{
   2692 	  struct elf_link_hash_entry *weakdef = h->u.weakdef;
   2693 
   2694 	  while (h->root.type == bfd_link_hash_indirect)
   2695 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
   2696 
   2697 	  BFD_ASSERT (h->root.type == bfd_link_hash_defined
   2698 		      || h->root.type == bfd_link_hash_defweak);
   2699 	  BFD_ASSERT (weakdef->def_dynamic);
   2700 	  BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
   2701 		      || weakdef->root.type == bfd_link_hash_defweak);
   2702 	  (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
   2703 	}
   2704     }
   2705 
   2706   return TRUE;
   2707 }
   2708 
   2709 /* Make the backend pick a good value for a dynamic symbol.  This is
   2710    called via elf_link_hash_traverse, and also calls itself
   2711    recursively.  */
   2712 
   2713 static bfd_boolean
   2714 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
   2715 {
   2716   struct elf_info_failed *eif = (struct elf_info_failed *) data;
   2717   bfd *dynobj;
   2718   const struct elf_backend_data *bed;
   2719 
   2720   if (! is_elf_hash_table (eif->info->hash))
   2721     return FALSE;
   2722 
   2723   /* Ignore indirect symbols.  These are added by the versioning code.  */
   2724   if (h->root.type == bfd_link_hash_indirect)
   2725     return TRUE;
   2726 
   2727   /* Fix the symbol flags.  */
   2728   if (! _bfd_elf_fix_symbol_flags (h, eif))
   2729     return FALSE;
   2730 
   2731   /* If this symbol does not require a PLT entry, and it is not
   2732      defined by a dynamic object, or is not referenced by a regular
   2733      object, ignore it.  We do have to handle a weak defined symbol,
   2734      even if no regular object refers to it, if we decided to add it
   2735      to the dynamic symbol table.  FIXME: Do we normally need to worry
   2736      about symbols which are defined by one dynamic object and
   2737      referenced by another one?  */
   2738   if (!h->needs_plt
   2739       && h->type != STT_GNU_IFUNC
   2740       && (h->def_regular
   2741 	  || !h->def_dynamic
   2742 	  || (!h->ref_regular
   2743 	      && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
   2744     {
   2745       h->plt = elf_hash_table (eif->info)->init_plt_offset;
   2746       return TRUE;
   2747     }
   2748 
   2749   /* If we've already adjusted this symbol, don't do it again.  This
   2750      can happen via a recursive call.  */
   2751   if (h->dynamic_adjusted)
   2752     return TRUE;
   2753 
   2754   /* Don't look at this symbol again.  Note that we must set this
   2755      after checking the above conditions, because we may look at a
   2756      symbol once, decide not to do anything, and then get called
   2757      recursively later after REF_REGULAR is set below.  */
   2758   h->dynamic_adjusted = 1;
   2759 
   2760   /* If this is a weak definition, and we know a real definition, and
   2761      the real symbol is not itself defined by a regular object file,
   2762      then get a good value for the real definition.  We handle the
   2763      real symbol first, for the convenience of the backend routine.
   2764 
   2765      Note that there is a confusing case here.  If the real definition
   2766      is defined by a regular object file, we don't get the real symbol
   2767      from the dynamic object, but we do get the weak symbol.  If the
   2768      processor backend uses a COPY reloc, then if some routine in the
   2769      dynamic object changes the real symbol, we will not see that
   2770      change in the corresponding weak symbol.  This is the way other
   2771      ELF linkers work as well, and seems to be a result of the shared
   2772      library model.
   2773 
   2774      I will clarify this issue.  Most SVR4 shared libraries define the
   2775      variable _timezone and define timezone as a weak synonym.  The
   2776      tzset call changes _timezone.  If you write
   2777        extern int timezone;
   2778        int _timezone = 5;
   2779        int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
   2780      you might expect that, since timezone is a synonym for _timezone,
   2781      the same number will print both times.  However, if the processor
   2782      backend uses a COPY reloc, then actually timezone will be copied
   2783      into your process image, and, since you define _timezone
   2784      yourself, _timezone will not.  Thus timezone and _timezone will
   2785      wind up at different memory locations.  The tzset call will set
   2786      _timezone, leaving timezone unchanged.  */
   2787 
   2788   if (h->u.weakdef != NULL)
   2789     {
   2790       /* If we get to this point, there is an implicit reference to
   2791 	 H->U.WEAKDEF by a regular object file via the weak symbol H.  */
   2792       h->u.weakdef->ref_regular = 1;
   2793 
   2794       /* Ensure that the backend adjust_dynamic_symbol function sees
   2795 	 H->U.WEAKDEF before H by recursively calling ourselves.  */
   2796       if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
   2797 	return FALSE;
   2798     }
   2799 
   2800   /* If a symbol has no type and no size and does not require a PLT
   2801      entry, then we are probably about to do the wrong thing here: we
   2802      are probably going to create a COPY reloc for an empty object.
   2803      This case can arise when a shared object is built with assembly
   2804      code, and the assembly code fails to set the symbol type.  */
   2805   if (h->size == 0
   2806       && h->type == STT_NOTYPE
   2807       && !h->needs_plt)
   2808     (*_bfd_error_handler)
   2809       (_("warning: type and size of dynamic symbol `%s' are not defined"),
   2810        h->root.root.string);
   2811 
   2812   dynobj = elf_hash_table (eif->info)->dynobj;
   2813   bed = get_elf_backend_data (dynobj);
   2814 
   2815   if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
   2816     {
   2817       eif->failed = TRUE;
   2818       return FALSE;
   2819     }
   2820 
   2821   return TRUE;
   2822 }
   2823 
   2824 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
   2825    DYNBSS.  */
   2826 
   2827 bfd_boolean
   2828 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
   2829 			      struct elf_link_hash_entry *h,
   2830 			      asection *dynbss)
   2831 {
   2832   unsigned int power_of_two;
   2833   bfd_vma mask;
   2834   asection *sec = h->root.u.def.section;
   2835 
   2836   /* The section aligment of definition is the maximum alignment
   2837      requirement of symbols defined in the section.  Since we don't
   2838      know the symbol alignment requirement, we start with the
   2839      maximum alignment and check low bits of the symbol address
   2840      for the minimum alignment.  */
   2841   power_of_two = bfd_get_section_alignment (sec->owner, sec);
   2842   mask = ((bfd_vma) 1 << power_of_two) - 1;
   2843   while ((h->root.u.def.value & mask) != 0)
   2844     {
   2845        mask >>= 1;
   2846        --power_of_two;
   2847     }
   2848 
   2849   if (power_of_two > bfd_get_section_alignment (dynbss->owner,
   2850 						dynbss))
   2851     {
   2852       /* Adjust the section alignment if needed.  */
   2853       if (! bfd_set_section_alignment (dynbss->owner, dynbss,
   2854 				       power_of_two))
   2855 	return FALSE;
   2856     }
   2857 
   2858   /* We make sure that the symbol will be aligned properly.  */
   2859   dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
   2860 
   2861   /* Define the symbol as being at this point in DYNBSS.  */
   2862   h->root.u.def.section = dynbss;
   2863   h->root.u.def.value = dynbss->size;
   2864 
   2865   /* Increment the size of DYNBSS to make room for the symbol.  */
   2866   dynbss->size += h->size;
   2867 
   2868   /* No error if extern_protected_data is true.  */
   2869   if (h->protected_def
   2870       && (!info->extern_protected_data
   2871 	  || (info->extern_protected_data < 0
   2872 	      && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
   2873     info->callbacks->einfo
   2874       (_("%P: copy reloc against protected `%T' is dangerous\n"),
   2875        h->root.root.string);
   2876 
   2877   return TRUE;
   2878 }
   2879 
   2880 /* Adjust all external symbols pointing into SEC_MERGE sections
   2881    to reflect the object merging within the sections.  */
   2882 
   2883 static bfd_boolean
   2884 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
   2885 {
   2886   asection *sec;
   2887 
   2888   if ((h->root.type == bfd_link_hash_defined
   2889        || h->root.type == bfd_link_hash_defweak)
   2890       && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
   2891       && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
   2892     {
   2893       bfd *output_bfd = (bfd *) data;
   2894 
   2895       h->root.u.def.value =
   2896 	_bfd_merged_section_offset (output_bfd,
   2897 				    &h->root.u.def.section,
   2898 				    elf_section_data (sec)->sec_info,
   2899 				    h->root.u.def.value);
   2900     }
   2901 
   2902   return TRUE;
   2903 }
   2904 
   2905 /* Returns false if the symbol referred to by H should be considered
   2906    to resolve local to the current module, and true if it should be
   2907    considered to bind dynamically.  */
   2908 
   2909 bfd_boolean
   2910 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
   2911 			   struct bfd_link_info *info,
   2912 			   bfd_boolean not_local_protected)
   2913 {
   2914   bfd_boolean binding_stays_local_p;
   2915   const struct elf_backend_data *bed;
   2916   struct elf_link_hash_table *hash_table;
   2917 
   2918   if (h == NULL)
   2919     return FALSE;
   2920 
   2921   while (h->root.type == bfd_link_hash_indirect
   2922 	 || h->root.type == bfd_link_hash_warning)
   2923     h = (struct elf_link_hash_entry *) h->root.u.i.link;
   2924 
   2925   /* If it was forced local, then clearly it's not dynamic.  */
   2926   if (h->dynindx == -1)
   2927     return FALSE;
   2928   if (h->forced_local)
   2929     return FALSE;
   2930 
   2931   /* Identify the cases where name binding rules say that a
   2932      visible symbol resolves locally.  */
   2933   binding_stays_local_p = (bfd_link_executable (info)
   2934 			   || SYMBOLIC_BIND (info, h));
   2935 
   2936   switch (ELF_ST_VISIBILITY (h->other))
   2937     {
   2938     case STV_INTERNAL:
   2939     case STV_HIDDEN:
   2940       return FALSE;
   2941 
   2942     case STV_PROTECTED:
   2943       hash_table = elf_hash_table (info);
   2944       if (!is_elf_hash_table (hash_table))
   2945 	return FALSE;
   2946 
   2947       bed = get_elf_backend_data (hash_table->dynobj);
   2948 
   2949       /* Proper resolution for function pointer equality may require
   2950 	 that these symbols perhaps be resolved dynamically, even though
   2951 	 we should be resolving them to the current module.  */
   2952       if (!not_local_protected || !bed->is_function_type (h->type))
   2953 	binding_stays_local_p = TRUE;
   2954       break;
   2955 
   2956     default:
   2957       break;
   2958     }
   2959 
   2960   /* If it isn't defined locally, then clearly it's dynamic.  */
   2961   if (!h->def_regular && !ELF_COMMON_DEF_P (h))
   2962     return TRUE;
   2963 
   2964   /* Otherwise, the symbol is dynamic if binding rules don't tell
   2965      us that it remains local.  */
   2966   return !binding_stays_local_p;
   2967 }
   2968 
   2969 /* Return true if the symbol referred to by H should be considered
   2970    to resolve local to the current module, and false otherwise.  Differs
   2971    from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
   2972    undefined symbols.  The two functions are virtually identical except
   2973    for the place where forced_local and dynindx == -1 are tested.  If
   2974    either of those tests are true, _bfd_elf_dynamic_symbol_p will say
   2975    the symbol is local, while _bfd_elf_symbol_refs_local_p will say
   2976    the symbol is local only for defined symbols.
   2977    It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
   2978    !_bfd_elf_symbol_refs_local_p, except that targets differ in their
   2979    treatment of undefined weak symbols.  For those that do not make
   2980    undefined weak symbols dynamic, both functions may return false.  */
   2981 
   2982 bfd_boolean
   2983 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
   2984 			      struct bfd_link_info *info,
   2985 			      bfd_boolean local_protected)
   2986 {
   2987   const struct elf_backend_data *bed;
   2988   struct elf_link_hash_table *hash_table;
   2989 
   2990   /* If it's a local sym, of course we resolve locally.  */
   2991   if (h == NULL)
   2992     return TRUE;
   2993 
   2994   /* STV_HIDDEN or STV_INTERNAL ones must be local.  */
   2995   if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
   2996       || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
   2997     return TRUE;
   2998 
   2999   /* Common symbols that become definitions don't get the DEF_REGULAR
   3000      flag set, so test it first, and don't bail out.  */
   3001   if (ELF_COMMON_DEF_P (h))
   3002     /* Do nothing.  */;
   3003   /* If we don't have a definition in a regular file, then we can't
   3004      resolve locally.  The sym is either undefined or dynamic.  */
   3005   else if (!h->def_regular)
   3006     return FALSE;
   3007 
   3008   /* Forced local symbols resolve locally.  */
   3009   if (h->forced_local)
   3010     return TRUE;
   3011 
   3012   /* As do non-dynamic symbols.  */
   3013   if (h->dynindx == -1)
   3014     return TRUE;
   3015 
   3016   /* At this point, we know the symbol is defined and dynamic.  In an
   3017      executable it must resolve locally, likewise when building symbolic
   3018      shared libraries.  */
   3019   if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
   3020     return TRUE;
   3021 
   3022   /* Now deal with defined dynamic symbols in shared libraries.  Ones
   3023      with default visibility might not resolve locally.  */
   3024   if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
   3025     return FALSE;
   3026 
   3027   hash_table = elf_hash_table (info);
   3028   if (!is_elf_hash_table (hash_table))
   3029     return TRUE;
   3030 
   3031   bed = get_elf_backend_data (hash_table->dynobj);
   3032 
   3033   /* If extern_protected_data is false, STV_PROTECTED non-function
   3034      symbols are local.  */
   3035   if ((!info->extern_protected_data
   3036        || (info->extern_protected_data < 0
   3037 	   && !bed->extern_protected_data))
   3038       && !bed->is_function_type (h->type))
   3039     return TRUE;
   3040 
   3041   /* Function pointer equality tests may require that STV_PROTECTED
   3042      symbols be treated as dynamic symbols.  If the address of a
   3043      function not defined in an executable is set to that function's
   3044      plt entry in the executable, then the address of the function in
   3045      a shared library must also be the plt entry in the executable.  */
   3046   return local_protected;
   3047 }
   3048 
   3049 /* Caches some TLS segment info, and ensures that the TLS segment vma is
   3050    aligned.  Returns the first TLS output section.  */
   3051 
   3052 struct bfd_section *
   3053 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
   3054 {
   3055   struct bfd_section *sec, *tls;
   3056   unsigned int align = 0;
   3057 
   3058   for (sec = obfd->sections; sec != NULL; sec = sec->next)
   3059     if ((sec->flags & SEC_THREAD_LOCAL) != 0)
   3060       break;
   3061   tls = sec;
   3062 
   3063   for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
   3064     if (sec->alignment_power > align)
   3065       align = sec->alignment_power;
   3066 
   3067   elf_hash_table (info)->tls_sec = tls;
   3068 
   3069   /* Ensure the alignment of the first section is the largest alignment,
   3070      so that the tls segment starts aligned.  */
   3071   if (tls != NULL)
   3072     tls->alignment_power = align;
   3073 
   3074   return tls;
   3075 }
   3076 
   3077 /* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
   3078 static bfd_boolean
   3079 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
   3080 				  Elf_Internal_Sym *sym)
   3081 {
   3082   const struct elf_backend_data *bed;
   3083 
   3084   /* Local symbols do not count, but target specific ones might.  */
   3085   if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
   3086       && ELF_ST_BIND (sym->st_info) < STB_LOOS)
   3087     return FALSE;
   3088 
   3089   bed = get_elf_backend_data (abfd);
   3090   /* Function symbols do not count.  */
   3091   if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
   3092     return FALSE;
   3093 
   3094   /* If the section is undefined, then so is the symbol.  */
   3095   if (sym->st_shndx == SHN_UNDEF)
   3096     return FALSE;
   3097 
   3098   /* If the symbol is defined in the common section, then
   3099      it is a common definition and so does not count.  */
   3100   if (bed->common_definition (sym))
   3101     return FALSE;
   3102 
   3103   /* If the symbol is in a target specific section then we
   3104      must rely upon the backend to tell us what it is.  */
   3105   if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
   3106     /* FIXME - this function is not coded yet:
   3107 
   3108        return _bfd_is_global_symbol_definition (abfd, sym);
   3109 
   3110        Instead for now assume that the definition is not global,
   3111        Even if this is wrong, at least the linker will behave
   3112        in the same way that it used to do.  */
   3113     return FALSE;
   3114 
   3115   return TRUE;
   3116 }
   3117 
   3118 /* Search the symbol table of the archive element of the archive ABFD
   3119    whose archive map contains a mention of SYMDEF, and determine if
   3120    the symbol is defined in this element.  */
   3121 static bfd_boolean
   3122 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
   3123 {
   3124   Elf_Internal_Shdr * hdr;
   3125   size_t symcount;
   3126   size_t extsymcount;
   3127   size_t extsymoff;
   3128   Elf_Internal_Sym *isymbuf;
   3129   Elf_Internal_Sym *isym;
   3130   Elf_Internal_Sym *isymend;
   3131   bfd_boolean result;
   3132 
   3133   abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
   3134   if (abfd == NULL)
   3135     return FALSE;
   3136 
   3137   if (! bfd_check_format (abfd, bfd_object))
   3138     return FALSE;
   3139 
   3140   /* Select the appropriate symbol table.  If we don't know if the
   3141      object file is an IR object, give linker LTO plugin a chance to
   3142      get the correct symbol table.  */
   3143   if (abfd->plugin_format == bfd_plugin_yes
   3144 #if BFD_SUPPORTS_PLUGINS
   3145       || (abfd->plugin_format == bfd_plugin_unknown
   3146 	  && bfd_link_plugin_object_p (abfd))
   3147 #endif
   3148       )
   3149     {
   3150       /* Use the IR symbol table if the object has been claimed by
   3151 	 plugin.  */
   3152       abfd = abfd->plugin_dummy_bfd;
   3153       hdr = &elf_tdata (abfd)->symtab_hdr;
   3154     }
   3155   else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
   3156     hdr = &elf_tdata (abfd)->symtab_hdr;
   3157   else
   3158     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
   3159 
   3160   symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
   3161 
   3162   /* The sh_info field of the symtab header tells us where the
   3163      external symbols start.  We don't care about the local symbols.  */
   3164   if (elf_bad_symtab (abfd))
   3165     {
   3166       extsymcount = symcount;
   3167       extsymoff = 0;
   3168     }
   3169   else
   3170     {
   3171       extsymcount = symcount - hdr->sh_info;
   3172       extsymoff = hdr->sh_info;
   3173     }
   3174 
   3175   if (extsymcount == 0)
   3176     return FALSE;
   3177 
   3178   /* Read in the symbol table.  */
   3179   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
   3180 				  NULL, NULL, NULL);
   3181   if (isymbuf == NULL)
   3182     return FALSE;
   3183 
   3184   /* Scan the symbol table looking for SYMDEF.  */
   3185   result = FALSE;
   3186   for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
   3187     {
   3188       const char *name;
   3189 
   3190       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
   3191 					      isym->st_name);
   3192       if (name == NULL)
   3193 	break;
   3194 
   3195       if (strcmp (name, symdef->name) == 0)
   3196 	{
   3197 	  result = is_global_data_symbol_definition (abfd, isym);
   3198 	  break;
   3199 	}
   3200     }
   3201 
   3202   free (isymbuf);
   3203 
   3204   return result;
   3205 }
   3206 
   3207 /* Add an entry to the .dynamic table.  */
   3209 
   3210 bfd_boolean
   3211 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
   3212 			    bfd_vma tag,
   3213 			    bfd_vma val)
   3214 {
   3215   struct elf_link_hash_table *hash_table;
   3216   const struct elf_backend_data *bed;
   3217   asection *s;
   3218   bfd_size_type newsize;
   3219   bfd_byte *newcontents;
   3220   Elf_Internal_Dyn dyn;
   3221 
   3222   hash_table = elf_hash_table (info);
   3223   if (! is_elf_hash_table (hash_table))
   3224     return FALSE;
   3225 
   3226   bed = get_elf_backend_data (hash_table->dynobj);
   3227   s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
   3228   BFD_ASSERT (s != NULL);
   3229 
   3230   newsize = s->size + bed->s->sizeof_dyn;
   3231   newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
   3232   if (newcontents == NULL)
   3233     return FALSE;
   3234 
   3235   dyn.d_tag = tag;
   3236   dyn.d_un.d_val = val;
   3237   bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
   3238 
   3239   s->size = newsize;
   3240   s->contents = newcontents;
   3241 
   3242   return TRUE;
   3243 }
   3244 
   3245 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
   3246    otherwise just check whether one already exists.  Returns -1 on error,
   3247    1 if a DT_NEEDED tag already exists, and 0 on success.  */
   3248 
   3249 static int
   3250 elf_add_dt_needed_tag (bfd *abfd,
   3251 		       struct bfd_link_info *info,
   3252 		       const char *soname,
   3253 		       bfd_boolean do_it)
   3254 {
   3255   struct elf_link_hash_table *hash_table;
   3256   size_t strindex;
   3257 
   3258   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
   3259     return -1;
   3260 
   3261   hash_table = elf_hash_table (info);
   3262   strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
   3263   if (strindex == (size_t) -1)
   3264     return -1;
   3265 
   3266   if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
   3267     {
   3268       asection *sdyn;
   3269       const struct elf_backend_data *bed;
   3270       bfd_byte *extdyn;
   3271 
   3272       bed = get_elf_backend_data (hash_table->dynobj);
   3273       sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
   3274       if (sdyn != NULL)
   3275 	for (extdyn = sdyn->contents;
   3276 	     extdyn < sdyn->contents + sdyn->size;
   3277 	     extdyn += bed->s->sizeof_dyn)
   3278 	  {
   3279 	    Elf_Internal_Dyn dyn;
   3280 
   3281 	    bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
   3282 	    if (dyn.d_tag == DT_NEEDED
   3283 		&& dyn.d_un.d_val == strindex)
   3284 	      {
   3285 		_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
   3286 		return 1;
   3287 	      }
   3288 	  }
   3289     }
   3290 
   3291   if (do_it)
   3292     {
   3293       if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
   3294 	return -1;
   3295 
   3296       if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
   3297 	return -1;
   3298     }
   3299   else
   3300     /* We were just checking for existence of the tag.  */
   3301     _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
   3302 
   3303   return 0;
   3304 }
   3305 
   3306 /* Return true if SONAME is on the needed list between NEEDED and STOP
   3307    (or the end of list if STOP is NULL), and needed by a library that
   3308    will be loaded.  */
   3309 
   3310 static bfd_boolean
   3311 on_needed_list (const char *soname,
   3312 		struct bfd_link_needed_list *needed,
   3313 		struct bfd_link_needed_list *stop)
   3314 {
   3315   struct bfd_link_needed_list *look;
   3316   for (look = needed; look != stop; look = look->next)
   3317     if (strcmp (soname, look->name) == 0
   3318 	&& ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
   3319 	    /* If needed by a library that itself is not directly
   3320 	       needed, recursively check whether that library is
   3321 	       indirectly needed.  Since we add DT_NEEDED entries to
   3322 	       the end of the list, library dependencies appear after
   3323 	       the library.  Therefore search prior to the current
   3324 	       LOOK, preventing possible infinite recursion.  */
   3325 	    || on_needed_list (elf_dt_name (look->by), needed, look)))
   3326       return TRUE;
   3327 
   3328   return FALSE;
   3329 }
   3330 
   3331 /* Sort symbol by value, section, and size.  */
   3332 static int
   3333 elf_sort_symbol (const void *arg1, const void *arg2)
   3334 {
   3335   const struct elf_link_hash_entry *h1;
   3336   const struct elf_link_hash_entry *h2;
   3337   bfd_signed_vma vdiff;
   3338 
   3339   h1 = *(const struct elf_link_hash_entry **) arg1;
   3340   h2 = *(const struct elf_link_hash_entry **) arg2;
   3341   vdiff = h1->root.u.def.value - h2->root.u.def.value;
   3342   if (vdiff != 0)
   3343     return vdiff > 0 ? 1 : -1;
   3344   else
   3345     {
   3346       int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
   3347       if (sdiff != 0)
   3348 	return sdiff > 0 ? 1 : -1;
   3349     }
   3350   vdiff = h1->size - h2->size;
   3351   return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
   3352 }
   3353 
   3354 /* This function is used to adjust offsets into .dynstr for
   3355    dynamic symbols.  This is called via elf_link_hash_traverse.  */
   3356 
   3357 static bfd_boolean
   3358 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
   3359 {
   3360   struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
   3361 
   3362   if (h->dynindx != -1)
   3363     h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
   3364   return TRUE;
   3365 }
   3366 
   3367 /* Assign string offsets in .dynstr, update all structures referencing
   3368    them.  */
   3369 
   3370 static bfd_boolean
   3371 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
   3372 {
   3373   struct elf_link_hash_table *hash_table = elf_hash_table (info);
   3374   struct elf_link_local_dynamic_entry *entry;
   3375   struct elf_strtab_hash *dynstr = hash_table->dynstr;
   3376   bfd *dynobj = hash_table->dynobj;
   3377   asection *sdyn;
   3378   bfd_size_type size;
   3379   const struct elf_backend_data *bed;
   3380   bfd_byte *extdyn;
   3381 
   3382   _bfd_elf_strtab_finalize (dynstr);
   3383   size = _bfd_elf_strtab_size (dynstr);
   3384 
   3385   bed = get_elf_backend_data (dynobj);
   3386   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
   3387   BFD_ASSERT (sdyn != NULL);
   3388 
   3389   /* Update all .dynamic entries referencing .dynstr strings.  */
   3390   for (extdyn = sdyn->contents;
   3391        extdyn < sdyn->contents + sdyn->size;
   3392        extdyn += bed->s->sizeof_dyn)
   3393     {
   3394       Elf_Internal_Dyn dyn;
   3395 
   3396       bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
   3397       switch (dyn.d_tag)
   3398 	{
   3399 	case DT_STRSZ:
   3400 	  dyn.d_un.d_val = size;
   3401 	  break;
   3402 	case DT_NEEDED:
   3403 	case DT_SONAME:
   3404 	case DT_RPATH:
   3405 	case DT_RUNPATH:
   3406 	case DT_FILTER:
   3407 	case DT_AUXILIARY:
   3408 	case DT_AUDIT:
   3409 	case DT_DEPAUDIT:
   3410 	  dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
   3411 	  break;
   3412 	default:
   3413 	  continue;
   3414 	}
   3415       bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
   3416     }
   3417 
   3418   /* Now update local dynamic symbols.  */
   3419   for (entry = hash_table->dynlocal; entry ; entry = entry->next)
   3420     entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
   3421 						  entry->isym.st_name);
   3422 
   3423   /* And the rest of dynamic symbols.  */
   3424   elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
   3425 
   3426   /* Adjust version definitions.  */
   3427   if (elf_tdata (output_bfd)->cverdefs)
   3428     {
   3429       asection *s;
   3430       bfd_byte *p;
   3431       size_t i;
   3432       Elf_Internal_Verdef def;
   3433       Elf_Internal_Verdaux defaux;
   3434 
   3435       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
   3436       p = s->contents;
   3437       do
   3438 	{
   3439 	  _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
   3440 				   &def);
   3441 	  p += sizeof (Elf_External_Verdef);
   3442 	  if (def.vd_aux != sizeof (Elf_External_Verdef))
   3443 	    continue;
   3444 	  for (i = 0; i < def.vd_cnt; ++i)
   3445 	    {
   3446 	      _bfd_elf_swap_verdaux_in (output_bfd,
   3447 					(Elf_External_Verdaux *) p, &defaux);
   3448 	      defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
   3449 							defaux.vda_name);
   3450 	      _bfd_elf_swap_verdaux_out (output_bfd,
   3451 					 &defaux, (Elf_External_Verdaux *) p);
   3452 	      p += sizeof (Elf_External_Verdaux);
   3453 	    }
   3454 	}
   3455       while (def.vd_next);
   3456     }
   3457 
   3458   /* Adjust version references.  */
   3459   if (elf_tdata (output_bfd)->verref)
   3460     {
   3461       asection *s;
   3462       bfd_byte *p;
   3463       size_t i;
   3464       Elf_Internal_Verneed need;
   3465       Elf_Internal_Vernaux needaux;
   3466 
   3467       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
   3468       p = s->contents;
   3469       do
   3470 	{
   3471 	  _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
   3472 				    &need);
   3473 	  need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
   3474 	  _bfd_elf_swap_verneed_out (output_bfd, &need,
   3475 				     (Elf_External_Verneed *) p);
   3476 	  p += sizeof (Elf_External_Verneed);
   3477 	  for (i = 0; i < need.vn_cnt; ++i)
   3478 	    {
   3479 	      _bfd_elf_swap_vernaux_in (output_bfd,
   3480 					(Elf_External_Vernaux *) p, &needaux);
   3481 	      needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
   3482 							 needaux.vna_name);
   3483 	      _bfd_elf_swap_vernaux_out (output_bfd,
   3484 					 &needaux,
   3485 					 (Elf_External_Vernaux *) p);
   3486 	      p += sizeof (Elf_External_Vernaux);
   3487 	    }
   3488 	}
   3489       while (need.vn_next);
   3490     }
   3491 
   3492   return TRUE;
   3493 }
   3494 
   3495 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
   3497    The default is to only match when the INPUT and OUTPUT are exactly
   3498    the same target.  */
   3499 
   3500 bfd_boolean
   3501 _bfd_elf_default_relocs_compatible (const bfd_target *input,
   3502 				    const bfd_target *output)
   3503 {
   3504   return input == output;
   3505 }
   3506 
   3507 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
   3508    This version is used when different targets for the same architecture
   3509    are virtually identical.  */
   3510 
   3511 bfd_boolean
   3512 _bfd_elf_relocs_compatible (const bfd_target *input,
   3513 			    const bfd_target *output)
   3514 {
   3515   const struct elf_backend_data *obed, *ibed;
   3516 
   3517   if (input == output)
   3518     return TRUE;
   3519 
   3520   ibed = xvec_get_elf_backend_data (input);
   3521   obed = xvec_get_elf_backend_data (output);
   3522 
   3523   if (ibed->arch != obed->arch)
   3524     return FALSE;
   3525 
   3526   /* If both backends are using this function, deem them compatible.  */
   3527   return ibed->relocs_compatible == obed->relocs_compatible;
   3528 }
   3529 
   3530 /* Make a special call to the linker "notice" function to tell it that
   3531    we are about to handle an as-needed lib, or have finished
   3532    processing the lib.  */
   3533 
   3534 bfd_boolean
   3535 _bfd_elf_notice_as_needed (bfd *ibfd,
   3536 			   struct bfd_link_info *info,
   3537 			   enum notice_asneeded_action act)
   3538 {
   3539   return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
   3540 }
   3541 
   3542 /* Check relocations an ELF object file.  */
   3543 
   3544 bfd_boolean
   3545 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
   3546 {
   3547   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   3548   struct elf_link_hash_table *htab = elf_hash_table (info);
   3549 
   3550   /* If this object is the same format as the output object, and it is
   3551      not a shared library, then let the backend look through the
   3552      relocs.
   3553 
   3554      This is required to build global offset table entries and to
   3555      arrange for dynamic relocs.  It is not required for the
   3556      particular common case of linking non PIC code, even when linking
   3557      against shared libraries, but unfortunately there is no way of
   3558      knowing whether an object file has been compiled PIC or not.
   3559      Looking through the relocs is not particularly time consuming.
   3560      The problem is that we must either (1) keep the relocs in memory,
   3561      which causes the linker to require additional runtime memory or
   3562      (2) read the relocs twice from the input file, which wastes time.
   3563      This would be a good case for using mmap.
   3564 
   3565      I have no idea how to handle linking PIC code into a file of a
   3566      different format.  It probably can't be done.  */
   3567   if ((abfd->flags & DYNAMIC) == 0
   3568       && is_elf_hash_table (htab)
   3569       && bed->check_relocs != NULL
   3570       && elf_object_id (abfd) == elf_hash_table_id (htab)
   3571       && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
   3572     {
   3573       asection *o;
   3574 
   3575       for (o = abfd->sections; o != NULL; o = o->next)
   3576 	{
   3577 	  Elf_Internal_Rela *internal_relocs;
   3578 	  bfd_boolean ok;
   3579 
   3580 	  /* Don't check relocations in excluded sections.  */
   3581 	  if ((o->flags & SEC_RELOC) == 0
   3582 	      || (o->flags & SEC_EXCLUDE) != 0
   3583 	      || o->reloc_count == 0
   3584 	      || ((info->strip == strip_all || info->strip == strip_debugger)
   3585 		  && (o->flags & SEC_DEBUGGING) != 0)
   3586 	      || bfd_is_abs_section (o->output_section))
   3587 	    continue;
   3588 
   3589 	  internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
   3590 						       info->keep_memory);
   3591 	  if (internal_relocs == NULL)
   3592 	    return FALSE;
   3593 
   3594 	  ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
   3595 
   3596 	  if (elf_section_data (o)->relocs != internal_relocs)
   3597 	    free (internal_relocs);
   3598 
   3599 	  if (! ok)
   3600 	    return FALSE;
   3601 	}
   3602     }
   3603 
   3604   return TRUE;
   3605 }
   3606 
   3607 /* Add symbols from an ELF object file to the linker hash table.  */
   3608 
   3609 static bfd_boolean
   3610 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
   3611 {
   3612   Elf_Internal_Ehdr *ehdr;
   3613   Elf_Internal_Shdr *hdr;
   3614   size_t symcount;
   3615   size_t extsymcount;
   3616   size_t extsymoff;
   3617   struct elf_link_hash_entry **sym_hash;
   3618   bfd_boolean dynamic;
   3619   Elf_External_Versym *extversym = NULL;
   3620   Elf_External_Versym *ever;
   3621   struct elf_link_hash_entry *weaks;
   3622   struct elf_link_hash_entry **nondeflt_vers = NULL;
   3623   size_t nondeflt_vers_cnt = 0;
   3624   Elf_Internal_Sym *isymbuf = NULL;
   3625   Elf_Internal_Sym *isym;
   3626   Elf_Internal_Sym *isymend;
   3627   const struct elf_backend_data *bed;
   3628   bfd_boolean add_needed;
   3629   struct elf_link_hash_table *htab;
   3630   bfd_size_type amt;
   3631   void *alloc_mark = NULL;
   3632   struct bfd_hash_entry **old_table = NULL;
   3633   unsigned int old_size = 0;
   3634   unsigned int old_count = 0;
   3635   void *old_tab = NULL;
   3636   void *old_ent;
   3637   struct bfd_link_hash_entry *old_undefs = NULL;
   3638   struct bfd_link_hash_entry *old_undefs_tail = NULL;
   3639   void *old_strtab = NULL;
   3640   size_t tabsize = 0;
   3641   asection *s;
   3642   bfd_boolean just_syms;
   3643 
   3644   htab = elf_hash_table (info);
   3645   bed = get_elf_backend_data (abfd);
   3646 
   3647   if ((abfd->flags & DYNAMIC) == 0)
   3648     dynamic = FALSE;
   3649   else
   3650     {
   3651       dynamic = TRUE;
   3652 
   3653       /* You can't use -r against a dynamic object.  Also, there's no
   3654 	 hope of using a dynamic object which does not exactly match
   3655 	 the format of the output file.  */
   3656       if (bfd_link_relocatable (info)
   3657 	  || !is_elf_hash_table (htab)
   3658 	  || info->output_bfd->xvec != abfd->xvec)
   3659 	{
   3660 	  if (bfd_link_relocatable (info))
   3661 	    bfd_set_error (bfd_error_invalid_operation);
   3662 	  else
   3663 	    bfd_set_error (bfd_error_wrong_format);
   3664 	  goto error_return;
   3665 	}
   3666     }
   3667 
   3668   ehdr = elf_elfheader (abfd);
   3669   if (info->warn_alternate_em
   3670       && bed->elf_machine_code != ehdr->e_machine
   3671       && ((bed->elf_machine_alt1 != 0
   3672 	   && ehdr->e_machine == bed->elf_machine_alt1)
   3673 	  || (bed->elf_machine_alt2 != 0
   3674 	      && ehdr->e_machine == bed->elf_machine_alt2)))
   3675     info->callbacks->einfo
   3676       (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
   3677        ehdr->e_machine, abfd, bed->elf_machine_code);
   3678 
   3679   /* As a GNU extension, any input sections which are named
   3680      .gnu.warning.SYMBOL are treated as warning symbols for the given
   3681      symbol.  This differs from .gnu.warning sections, which generate
   3682      warnings when they are included in an output file.  */
   3683   /* PR 12761: Also generate this warning when building shared libraries.  */
   3684   for (s = abfd->sections; s != NULL; s = s->next)
   3685     {
   3686       const char *name;
   3687 
   3688       name = bfd_get_section_name (abfd, s);
   3689       if (CONST_STRNEQ (name, ".gnu.warning."))
   3690 	{
   3691 	  char *msg;
   3692 	  bfd_size_type sz;
   3693 
   3694 	  name += sizeof ".gnu.warning." - 1;
   3695 
   3696 	  /* If this is a shared object, then look up the symbol
   3697 	     in the hash table.  If it is there, and it is already
   3698 	     been defined, then we will not be using the entry
   3699 	     from this shared object, so we don't need to warn.
   3700 	     FIXME: If we see the definition in a regular object
   3701 	     later on, we will warn, but we shouldn't.  The only
   3702 	     fix is to keep track of what warnings we are supposed
   3703 	     to emit, and then handle them all at the end of the
   3704 	     link.  */
   3705 	  if (dynamic)
   3706 	    {
   3707 	      struct elf_link_hash_entry *h;
   3708 
   3709 	      h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
   3710 
   3711 	      /* FIXME: What about bfd_link_hash_common?  */
   3712 	      if (h != NULL
   3713 		  && (h->root.type == bfd_link_hash_defined
   3714 		      || h->root.type == bfd_link_hash_defweak))
   3715 		continue;
   3716 	    }
   3717 
   3718 	  sz = s->size;
   3719 	  msg = (char *) bfd_alloc (abfd, sz + 1);
   3720 	  if (msg == NULL)
   3721 	    goto error_return;
   3722 
   3723 	  if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
   3724 	    goto error_return;
   3725 
   3726 	  msg[sz] = '\0';
   3727 
   3728 	  if (! (_bfd_generic_link_add_one_symbol
   3729 		 (info, abfd, name, BSF_WARNING, s, 0, msg,
   3730 		  FALSE, bed->collect, NULL)))
   3731 	    goto error_return;
   3732 
   3733 	  if (bfd_link_executable (info))
   3734 	    {
   3735 	      /* Clobber the section size so that the warning does
   3736 		 not get copied into the output file.  */
   3737 	      s->size = 0;
   3738 
   3739 	      /* Also set SEC_EXCLUDE, so that symbols defined in
   3740 		 the warning section don't get copied to the output.  */
   3741 	      s->flags |= SEC_EXCLUDE;
   3742 	    }
   3743 	}
   3744     }
   3745 
   3746   just_syms = ((s = abfd->sections) != NULL
   3747 	       && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
   3748 
   3749   add_needed = TRUE;
   3750   if (! dynamic)
   3751     {
   3752       /* If we are creating a shared library, create all the dynamic
   3753 	 sections immediately.  We need to attach them to something,
   3754 	 so we attach them to this BFD, provided it is the right
   3755 	 format and is not from ld --just-symbols.  Always create the
   3756 	 dynamic sections for -E/--dynamic-list.  FIXME: If there
   3757 	 are no input BFD's of the same format as the output, we can't
   3758 	 make a shared library.  */
   3759       if (!just_syms
   3760 	  && (bfd_link_pic (info)
   3761 	      || (!bfd_link_relocatable (info)
   3762 		  && (info->export_dynamic || info->dynamic)))
   3763 	  && is_elf_hash_table (htab)
   3764 	  && info->output_bfd->xvec == abfd->xvec
   3765 	  && !htab->dynamic_sections_created)
   3766 	{
   3767 	  if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
   3768 	    goto error_return;
   3769 	}
   3770     }
   3771   else if (!is_elf_hash_table (htab))
   3772     goto error_return;
   3773   else
   3774     {
   3775       const char *soname = NULL;
   3776       char *audit = NULL;
   3777       struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
   3778       int ret;
   3779 
   3780       /* ld --just-symbols and dynamic objects don't mix very well.
   3781 	 ld shouldn't allow it.  */
   3782       if (just_syms)
   3783 	abort ();
   3784 
   3785       /* If this dynamic lib was specified on the command line with
   3786 	 --as-needed in effect, then we don't want to add a DT_NEEDED
   3787 	 tag unless the lib is actually used.  Similary for libs brought
   3788 	 in by another lib's DT_NEEDED.  When --no-add-needed is used
   3789 	 on a dynamic lib, we don't want to add a DT_NEEDED entry for
   3790 	 any dynamic library in DT_NEEDED tags in the dynamic lib at
   3791 	 all.  */
   3792       add_needed = (elf_dyn_lib_class (abfd)
   3793 		    & (DYN_AS_NEEDED | DYN_DT_NEEDED
   3794 		       | DYN_NO_NEEDED)) == 0;
   3795 
   3796       s = bfd_get_section_by_name (abfd, ".dynamic");
   3797       if (s != NULL)
   3798 	{
   3799 	  bfd_byte *dynbuf;
   3800 	  bfd_byte *extdyn;
   3801 	  unsigned int elfsec;
   3802 	  unsigned long shlink;
   3803 
   3804 	  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
   3805 	    {
   3806 error_free_dyn:
   3807 	      free (dynbuf);
   3808 	      goto error_return;
   3809 	    }
   3810 
   3811 	  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
   3812 	  if (elfsec == SHN_BAD)
   3813 	    goto error_free_dyn;
   3814 	  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
   3815 
   3816 	  for (extdyn = dynbuf;
   3817 	       extdyn < dynbuf + s->size;
   3818 	       extdyn += bed->s->sizeof_dyn)
   3819 	    {
   3820 	      Elf_Internal_Dyn dyn;
   3821 
   3822 	      bed->s->swap_dyn_in (abfd, extdyn, &dyn);
   3823 	      if (dyn.d_tag == DT_SONAME)
   3824 		{
   3825 		  unsigned int tagv = dyn.d_un.d_val;
   3826 		  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
   3827 		  if (soname == NULL)
   3828 		    goto error_free_dyn;
   3829 		}
   3830 	      if (dyn.d_tag == DT_NEEDED)
   3831 		{
   3832 		  struct bfd_link_needed_list *n, **pn;
   3833 		  char *fnm, *anm;
   3834 		  unsigned int tagv = dyn.d_un.d_val;
   3835 
   3836 		  amt = sizeof (struct bfd_link_needed_list);
   3837 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
   3838 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
   3839 		  if (n == NULL || fnm == NULL)
   3840 		    goto error_free_dyn;
   3841 		  amt = strlen (fnm) + 1;
   3842 		  anm = (char *) bfd_alloc (abfd, amt);
   3843 		  if (anm == NULL)
   3844 		    goto error_free_dyn;
   3845 		  memcpy (anm, fnm, amt);
   3846 		  n->name = anm;
   3847 		  n->by = abfd;
   3848 		  n->next = NULL;
   3849 		  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
   3850 		    ;
   3851 		  *pn = n;
   3852 		}
   3853 	      if (dyn.d_tag == DT_RUNPATH)
   3854 		{
   3855 		  struct bfd_link_needed_list *n, **pn;
   3856 		  char *fnm, *anm;
   3857 		  unsigned int tagv = dyn.d_un.d_val;
   3858 
   3859 		  amt = sizeof (struct bfd_link_needed_list);
   3860 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
   3861 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
   3862 		  if (n == NULL || fnm == NULL)
   3863 		    goto error_free_dyn;
   3864 		  amt = strlen (fnm) + 1;
   3865 		  anm = (char *) bfd_alloc (abfd, amt);
   3866 		  if (anm == NULL)
   3867 		    goto error_free_dyn;
   3868 		  memcpy (anm, fnm, amt);
   3869 		  n->name = anm;
   3870 		  n->by = abfd;
   3871 		  n->next = NULL;
   3872 		  for (pn = & runpath;
   3873 		       *pn != NULL;
   3874 		       pn = &(*pn)->next)
   3875 		    ;
   3876 		  *pn = n;
   3877 		}
   3878 	      /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
   3879 	      if (!runpath && dyn.d_tag == DT_RPATH)
   3880 		{
   3881 		  struct bfd_link_needed_list *n, **pn;
   3882 		  char *fnm, *anm;
   3883 		  unsigned int tagv = dyn.d_un.d_val;
   3884 
   3885 		  amt = sizeof (struct bfd_link_needed_list);
   3886 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
   3887 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
   3888 		  if (n == NULL || fnm == NULL)
   3889 		    goto error_free_dyn;
   3890 		  amt = strlen (fnm) + 1;
   3891 		  anm = (char *) bfd_alloc (abfd, amt);
   3892 		  if (anm == NULL)
   3893 		    goto error_free_dyn;
   3894 		  memcpy (anm, fnm, amt);
   3895 		  n->name = anm;
   3896 		  n->by = abfd;
   3897 		  n->next = NULL;
   3898 		  for (pn = & rpath;
   3899 		       *pn != NULL;
   3900 		       pn = &(*pn)->next)
   3901 		    ;
   3902 		  *pn = n;
   3903 		}
   3904 	      if (dyn.d_tag == DT_AUDIT)
   3905 		{
   3906 		  unsigned int tagv = dyn.d_un.d_val;
   3907 		  audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
   3908 		}
   3909 	    }
   3910 
   3911 	  free (dynbuf);
   3912 	}
   3913 
   3914       /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
   3915 	 frees all more recently bfd_alloc'd blocks as well.  */
   3916       if (runpath)
   3917 	rpath = runpath;
   3918 
   3919       if (rpath)
   3920 	{
   3921 	  struct bfd_link_needed_list **pn;
   3922 	  for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
   3923 	    ;
   3924 	  *pn = rpath;
   3925 	}
   3926 
   3927       /* We do not want to include any of the sections in a dynamic
   3928 	 object in the output file.  We hack by simply clobbering the
   3929 	 list of sections in the BFD.  This could be handled more
   3930 	 cleanly by, say, a new section flag; the existing
   3931 	 SEC_NEVER_LOAD flag is not the one we want, because that one
   3932 	 still implies that the section takes up space in the output
   3933 	 file.  */
   3934       bfd_section_list_clear (abfd);
   3935 
   3936       /* Find the name to use in a DT_NEEDED entry that refers to this
   3937 	 object.  If the object has a DT_SONAME entry, we use it.
   3938 	 Otherwise, if the generic linker stuck something in
   3939 	 elf_dt_name, we use that.  Otherwise, we just use the file
   3940 	 name.  */
   3941       if (soname == NULL || *soname == '\0')
   3942 	{
   3943 	  soname = elf_dt_name (abfd);
   3944 	  if (soname == NULL || *soname == '\0')
   3945 	    soname = bfd_get_filename (abfd);
   3946 	}
   3947 
   3948       /* Save the SONAME because sometimes the linker emulation code
   3949 	 will need to know it.  */
   3950       elf_dt_name (abfd) = soname;
   3951 
   3952       ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
   3953       if (ret < 0)
   3954 	goto error_return;
   3955 
   3956       /* If we have already included this dynamic object in the
   3957 	 link, just ignore it.  There is no reason to include a
   3958 	 particular dynamic object more than once.  */
   3959       if (ret > 0)
   3960 	return TRUE;
   3961 
   3962       /* Save the DT_AUDIT entry for the linker emulation code. */
   3963       elf_dt_audit (abfd) = audit;
   3964     }
   3965 
   3966   /* If this is a dynamic object, we always link against the .dynsym
   3967      symbol table, not the .symtab symbol table.  The dynamic linker
   3968      will only see the .dynsym symbol table, so there is no reason to
   3969      look at .symtab for a dynamic object.  */
   3970 
   3971   if (! dynamic || elf_dynsymtab (abfd) == 0)
   3972     hdr = &elf_tdata (abfd)->symtab_hdr;
   3973   else
   3974     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
   3975 
   3976   symcount = hdr->sh_size / bed->s->sizeof_sym;
   3977 
   3978   /* The sh_info field of the symtab header tells us where the
   3979      external symbols start.  We don't care about the local symbols at
   3980      this point.  */
   3981   if (elf_bad_symtab (abfd))
   3982     {
   3983       extsymcount = symcount;
   3984       extsymoff = 0;
   3985     }
   3986   else
   3987     {
   3988       extsymcount = symcount - hdr->sh_info;
   3989       extsymoff = hdr->sh_info;
   3990     }
   3991 
   3992   sym_hash = elf_sym_hashes (abfd);
   3993   if (extsymcount != 0)
   3994     {
   3995       isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
   3996 				      NULL, NULL, NULL);
   3997       if (isymbuf == NULL)
   3998 	goto error_return;
   3999 
   4000       if (sym_hash == NULL)
   4001 	{
   4002 	  /* We store a pointer to the hash table entry for each
   4003 	     external symbol.  */
   4004 	  amt = extsymcount;
   4005 	  amt *= sizeof (struct elf_link_hash_entry *);
   4006 	  sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
   4007 	  if (sym_hash == NULL)
   4008 	    goto error_free_sym;
   4009 	  elf_sym_hashes (abfd) = sym_hash;
   4010 	}
   4011     }
   4012 
   4013   if (dynamic)
   4014     {
   4015       /* Read in any version definitions.  */
   4016       if (!_bfd_elf_slurp_version_tables (abfd,
   4017 					  info->default_imported_symver))
   4018 	goto error_free_sym;
   4019 
   4020       /* Read in the symbol versions, but don't bother to convert them
   4021 	 to internal format.  */
   4022       if (elf_dynversym (abfd) != 0)
   4023 	{
   4024 	  Elf_Internal_Shdr *versymhdr;
   4025 
   4026 	  versymhdr = &elf_tdata (abfd)->dynversym_hdr;
   4027 	  extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
   4028 	  if (extversym == NULL)
   4029 	    goto error_free_sym;
   4030 	  amt = versymhdr->sh_size;
   4031 	  if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
   4032 	      || bfd_bread (extversym, amt, abfd) != amt)
   4033 	    goto error_free_vers;
   4034 	}
   4035     }
   4036 
   4037   /* If we are loading an as-needed shared lib, save the symbol table
   4038      state before we start adding symbols.  If the lib turns out
   4039      to be unneeded, restore the state.  */
   4040   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
   4041     {
   4042       unsigned int i;
   4043       size_t entsize;
   4044 
   4045       for (entsize = 0, i = 0; i < htab->root.table.size; i++)
   4046 	{
   4047 	  struct bfd_hash_entry *p;
   4048 	  struct elf_link_hash_entry *h;
   4049 
   4050 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
   4051 	    {
   4052 	      h = (struct elf_link_hash_entry *) p;
   4053 	      entsize += htab->root.table.entsize;
   4054 	      if (h->root.type == bfd_link_hash_warning)
   4055 		entsize += htab->root.table.entsize;
   4056 	    }
   4057 	}
   4058 
   4059       tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
   4060       old_tab = bfd_malloc (tabsize + entsize);
   4061       if (old_tab == NULL)
   4062 	goto error_free_vers;
   4063 
   4064       /* Remember the current objalloc pointer, so that all mem for
   4065 	 symbols added can later be reclaimed.  */
   4066       alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
   4067       if (alloc_mark == NULL)
   4068 	goto error_free_vers;
   4069 
   4070       /* Make a special call to the linker "notice" function to
   4071 	 tell it that we are about to handle an as-needed lib.  */
   4072       if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
   4073 	goto error_free_vers;
   4074 
   4075       /* Clone the symbol table.  Remember some pointers into the
   4076 	 symbol table, and dynamic symbol count.  */
   4077       old_ent = (char *) old_tab + tabsize;
   4078       memcpy (old_tab, htab->root.table.table, tabsize);
   4079       old_undefs = htab->root.undefs;
   4080       old_undefs_tail = htab->root.undefs_tail;
   4081       old_table = htab->root.table.table;
   4082       old_size = htab->root.table.size;
   4083       old_count = htab->root.table.count;
   4084       old_strtab = _bfd_elf_strtab_save (htab->dynstr);
   4085       if (old_strtab == NULL)
   4086 	goto error_free_vers;
   4087 
   4088       for (i = 0; i < htab->root.table.size; i++)
   4089 	{
   4090 	  struct bfd_hash_entry *p;
   4091 	  struct elf_link_hash_entry *h;
   4092 
   4093 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
   4094 	    {
   4095 	      memcpy (old_ent, p, htab->root.table.entsize);
   4096 	      old_ent = (char *) old_ent + htab->root.table.entsize;
   4097 	      h = (struct elf_link_hash_entry *) p;
   4098 	      if (h->root.type == bfd_link_hash_warning)
   4099 		{
   4100 		  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
   4101 		  old_ent = (char *) old_ent + htab->root.table.entsize;
   4102 		}
   4103 	    }
   4104 	}
   4105     }
   4106 
   4107   weaks = NULL;
   4108   ever = extversym != NULL ? extversym + extsymoff : NULL;
   4109   for (isym = isymbuf, isymend = isymbuf + extsymcount;
   4110        isym < isymend;
   4111        isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
   4112     {
   4113       int bind;
   4114       bfd_vma value;
   4115       asection *sec, *new_sec;
   4116       flagword flags;
   4117       const char *name;
   4118       struct elf_link_hash_entry *h;
   4119       struct elf_link_hash_entry *hi;
   4120       bfd_boolean definition;
   4121       bfd_boolean size_change_ok;
   4122       bfd_boolean type_change_ok;
   4123       bfd_boolean new_weakdef;
   4124       bfd_boolean new_weak;
   4125       bfd_boolean old_weak;
   4126       bfd_boolean override;
   4127       bfd_boolean common;
   4128       bfd_boolean discarded;
   4129       unsigned int old_alignment;
   4130       bfd *old_bfd;
   4131       bfd_boolean matched;
   4132 
   4133       override = FALSE;
   4134 
   4135       flags = BSF_NO_FLAGS;
   4136       sec = NULL;
   4137       value = isym->st_value;
   4138       common = bed->common_definition (isym);
   4139       discarded = FALSE;
   4140 
   4141       bind = ELF_ST_BIND (isym->st_info);
   4142       switch (bind)
   4143 	{
   4144 	case STB_LOCAL:
   4145 	  /* This should be impossible, since ELF requires that all
   4146 	     global symbols follow all local symbols, and that sh_info
   4147 	     point to the first global symbol.  Unfortunately, Irix 5
   4148 	     screws this up.  */
   4149 	  continue;
   4150 
   4151 	case STB_GLOBAL:
   4152 	  if (isym->st_shndx != SHN_UNDEF && !common)
   4153 	    flags = BSF_GLOBAL;
   4154 	  break;
   4155 
   4156 	case STB_WEAK:
   4157 	  flags = BSF_WEAK;
   4158 	  break;
   4159 
   4160 	case STB_GNU_UNIQUE:
   4161 	  flags = BSF_GNU_UNIQUE;
   4162 	  break;
   4163 
   4164 	default:
   4165 	  /* Leave it up to the processor backend.  */
   4166 	  break;
   4167 	}
   4168 
   4169       if (isym->st_shndx == SHN_UNDEF)
   4170 	sec = bfd_und_section_ptr;
   4171       else if (isym->st_shndx == SHN_ABS)
   4172 	sec = bfd_abs_section_ptr;
   4173       else if (isym->st_shndx == SHN_COMMON)
   4174 	{
   4175 	  sec = bfd_com_section_ptr;
   4176 	  /* What ELF calls the size we call the value.  What ELF
   4177 	     calls the value we call the alignment.  */
   4178 	  value = isym->st_size;
   4179 	}
   4180       else
   4181 	{
   4182 	  sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
   4183 	  if (sec == NULL)
   4184 	    sec = bfd_abs_section_ptr;
   4185 	  else if (discarded_section (sec))
   4186 	    {
   4187 	      /* Symbols from discarded section are undefined.  We keep
   4188 		 its visibility.  */
   4189 	      sec = bfd_und_section_ptr;
   4190 	      discarded = TRUE;
   4191 	      isym->st_shndx = SHN_UNDEF;
   4192 	    }
   4193 	  else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
   4194 	    value -= sec->vma;
   4195 	}
   4196 
   4197       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
   4198 					      isym->st_name);
   4199       if (name == NULL)
   4200 	goto error_free_vers;
   4201 
   4202       if (isym->st_shndx == SHN_COMMON
   4203 	  && (abfd->flags & BFD_PLUGIN) != 0)
   4204 	{
   4205 	  asection *xc = bfd_get_section_by_name (abfd, "COMMON");
   4206 
   4207 	  if (xc == NULL)
   4208 	    {
   4209 	      flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
   4210 				 | SEC_EXCLUDE);
   4211 	      xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
   4212 	      if (xc == NULL)
   4213 		goto error_free_vers;
   4214 	    }
   4215 	  sec = xc;
   4216 	}
   4217       else if (isym->st_shndx == SHN_COMMON
   4218 	       && ELF_ST_TYPE (isym->st_info) == STT_TLS
   4219 	       && !bfd_link_relocatable (info))
   4220 	{
   4221 	  asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
   4222 
   4223 	  if (tcomm == NULL)
   4224 	    {
   4225 	      flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
   4226 				 | SEC_LINKER_CREATED);
   4227 	      tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
   4228 	      if (tcomm == NULL)
   4229 		goto error_free_vers;
   4230 	    }
   4231 	  sec = tcomm;
   4232 	}
   4233       else if (bed->elf_add_symbol_hook)
   4234 	{
   4235 	  if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
   4236 					     &sec, &value))
   4237 	    goto error_free_vers;
   4238 
   4239 	  /* The hook function sets the name to NULL if this symbol
   4240 	     should be skipped for some reason.  */
   4241 	  if (name == NULL)
   4242 	    continue;
   4243 	}
   4244 
   4245       /* Sanity check that all possibilities were handled.  */
   4246       if (sec == NULL)
   4247 	{
   4248 	  bfd_set_error (bfd_error_bad_value);
   4249 	  goto error_free_vers;
   4250 	}
   4251 
   4252       /* Silently discard TLS symbols from --just-syms.  There's
   4253 	 no way to combine a static TLS block with a new TLS block
   4254 	 for this executable.  */
   4255       if (ELF_ST_TYPE (isym->st_info) == STT_TLS
   4256 	  && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
   4257 	continue;
   4258 
   4259       if (bfd_is_und_section (sec)
   4260 	  || bfd_is_com_section (sec))
   4261 	definition = FALSE;
   4262       else
   4263 	definition = TRUE;
   4264 
   4265       size_change_ok = FALSE;
   4266       type_change_ok = bed->type_change_ok;
   4267       old_weak = FALSE;
   4268       matched = FALSE;
   4269       old_alignment = 0;
   4270       old_bfd = NULL;
   4271       new_sec = sec;
   4272 
   4273       if (is_elf_hash_table (htab))
   4274 	{
   4275 	  Elf_Internal_Versym iver;
   4276 	  unsigned int vernum = 0;
   4277 	  bfd_boolean skip;
   4278 
   4279 	  if (ever == NULL)
   4280 	    {
   4281 	      if (info->default_imported_symver)
   4282 		/* Use the default symbol version created earlier.  */
   4283 		iver.vs_vers = elf_tdata (abfd)->cverdefs;
   4284 	      else
   4285 		iver.vs_vers = 0;
   4286 	    }
   4287 	  else
   4288 	    _bfd_elf_swap_versym_in (abfd, ever, &iver);
   4289 
   4290 	  vernum = iver.vs_vers & VERSYM_VERSION;
   4291 
   4292 	  /* If this is a hidden symbol, or if it is not version
   4293 	     1, we append the version name to the symbol name.
   4294 	     However, we do not modify a non-hidden absolute symbol
   4295 	     if it is not a function, because it might be the version
   4296 	     symbol itself.  FIXME: What if it isn't?  */
   4297 	  if ((iver.vs_vers & VERSYM_HIDDEN) != 0
   4298 	      || (vernum > 1
   4299 		  && (!bfd_is_abs_section (sec)
   4300 		      || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
   4301 	    {
   4302 	      const char *verstr;
   4303 	      size_t namelen, verlen, newlen;
   4304 	      char *newname, *p;
   4305 
   4306 	      if (isym->st_shndx != SHN_UNDEF)
   4307 		{
   4308 		  if (vernum > elf_tdata (abfd)->cverdefs)
   4309 		    verstr = NULL;
   4310 		  else if (vernum > 1)
   4311 		    verstr =
   4312 		      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
   4313 		  else
   4314 		    verstr = "";
   4315 
   4316 		  if (verstr == NULL)
   4317 		    {
   4318 		      (*_bfd_error_handler)
   4319 			(_("%B: %s: invalid version %u (max %d)"),
   4320 			 abfd, name, vernum,
   4321 			 elf_tdata (abfd)->cverdefs);
   4322 		      bfd_set_error (bfd_error_bad_value);
   4323 		      goto error_free_vers;
   4324 		    }
   4325 		}
   4326 	      else
   4327 		{
   4328 		  /* We cannot simply test for the number of
   4329 		     entries in the VERNEED section since the
   4330 		     numbers for the needed versions do not start
   4331 		     at 0.  */
   4332 		  Elf_Internal_Verneed *t;
   4333 
   4334 		  verstr = NULL;
   4335 		  for (t = elf_tdata (abfd)->verref;
   4336 		       t != NULL;
   4337 		       t = t->vn_nextref)
   4338 		    {
   4339 		      Elf_Internal_Vernaux *a;
   4340 
   4341 		      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
   4342 			{
   4343 			  if (a->vna_other == vernum)
   4344 			    {
   4345 			      verstr = a->vna_nodename;
   4346 			      break;
   4347 			    }
   4348 			}
   4349 		      if (a != NULL)
   4350 			break;
   4351 		    }
   4352 		  if (verstr == NULL)
   4353 		    {
   4354 		      (*_bfd_error_handler)
   4355 			(_("%B: %s: invalid needed version %d"),
   4356 			 abfd, name, vernum);
   4357 		      bfd_set_error (bfd_error_bad_value);
   4358 		      goto error_free_vers;
   4359 		    }
   4360 		}
   4361 
   4362 	      namelen = strlen (name);
   4363 	      verlen = strlen (verstr);
   4364 	      newlen = namelen + verlen + 2;
   4365 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
   4366 		  && isym->st_shndx != SHN_UNDEF)
   4367 		++newlen;
   4368 
   4369 	      newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
   4370 	      if (newname == NULL)
   4371 		goto error_free_vers;
   4372 	      memcpy (newname, name, namelen);
   4373 	      p = newname + namelen;
   4374 	      *p++ = ELF_VER_CHR;
   4375 	      /* If this is a defined non-hidden version symbol,
   4376 		 we add another @ to the name.  This indicates the
   4377 		 default version of the symbol.  */
   4378 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
   4379 		  && isym->st_shndx != SHN_UNDEF)
   4380 		*p++ = ELF_VER_CHR;
   4381 	      memcpy (p, verstr, verlen + 1);
   4382 
   4383 	      name = newname;
   4384 	    }
   4385 
   4386 	  /* If this symbol has default visibility and the user has
   4387 	     requested we not re-export it, then mark it as hidden.  */
   4388 	  if (!bfd_is_und_section (sec)
   4389 	      && !dynamic
   4390 	      && abfd->no_export
   4391 	      && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
   4392 	    isym->st_other = (STV_HIDDEN
   4393 			      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
   4394 
   4395 	  if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
   4396 				      sym_hash, &old_bfd, &old_weak,
   4397 				      &old_alignment, &skip, &override,
   4398 				      &type_change_ok, &size_change_ok,
   4399 				      &matched))
   4400 	    goto error_free_vers;
   4401 
   4402 	  if (skip)
   4403 	    continue;
   4404 
   4405 	  /* Override a definition only if the new symbol matches the
   4406 	     existing one.  */
   4407 	  if (override && matched)
   4408 	    definition = FALSE;
   4409 
   4410 	  h = *sym_hash;
   4411 	  while (h->root.type == bfd_link_hash_indirect
   4412 		 || h->root.type == bfd_link_hash_warning)
   4413 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
   4414 
   4415 	  if (elf_tdata (abfd)->verdef != NULL
   4416 	      && vernum > 1
   4417 	      && definition)
   4418 	    h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
   4419 	}
   4420 
   4421       if (! (_bfd_generic_link_add_one_symbol
   4422 	     (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
   4423 	      (struct bfd_link_hash_entry **) sym_hash)))
   4424 	goto error_free_vers;
   4425 
   4426       if ((flags & BSF_GNU_UNIQUE)
   4427 	  && (abfd->flags & DYNAMIC) == 0
   4428 	  && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
   4429 	elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
   4430 
   4431       h = *sym_hash;
   4432       /* We need to make sure that indirect symbol dynamic flags are
   4433 	 updated.  */
   4434       hi = h;
   4435       while (h->root.type == bfd_link_hash_indirect
   4436 	     || h->root.type == bfd_link_hash_warning)
   4437 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
   4438 
   4439       /* Setting the index to -3 tells elf_link_output_extsym that
   4440 	 this symbol is defined in a discarded section.  */
   4441       if (discarded)
   4442 	h->indx = -3;
   4443 
   4444       *sym_hash = h;
   4445 
   4446       new_weak = (flags & BSF_WEAK) != 0;
   4447       new_weakdef = FALSE;
   4448       if (dynamic
   4449 	  && definition
   4450 	  && new_weak
   4451 	  && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
   4452 	  && is_elf_hash_table (htab)
   4453 	  && h->u.weakdef == NULL)
   4454 	{
   4455 	  /* Keep a list of all weak defined non function symbols from
   4456 	     a dynamic object, using the weakdef field.  Later in this
   4457 	     function we will set the weakdef field to the correct
   4458 	     value.  We only put non-function symbols from dynamic
   4459 	     objects on this list, because that happens to be the only
   4460 	     time we need to know the normal symbol corresponding to a
   4461 	     weak symbol, and the information is time consuming to
   4462 	     figure out.  If the weakdef field is not already NULL,
   4463 	     then this symbol was already defined by some previous
   4464 	     dynamic object, and we will be using that previous
   4465 	     definition anyhow.  */
   4466 
   4467 	  h->u.weakdef = weaks;
   4468 	  weaks = h;
   4469 	  new_weakdef = TRUE;
   4470 	}
   4471 
   4472       /* Set the alignment of a common symbol.  */
   4473       if ((common || bfd_is_com_section (sec))
   4474 	  && h->root.type == bfd_link_hash_common)
   4475 	{
   4476 	  unsigned int align;
   4477 
   4478 	  if (common)
   4479 	    align = bfd_log2 (isym->st_value);
   4480 	  else
   4481 	    {
   4482 	      /* The new symbol is a common symbol in a shared object.
   4483 		 We need to get the alignment from the section.  */
   4484 	      align = new_sec->alignment_power;
   4485 	    }
   4486 	  if (align > old_alignment)
   4487 	    h->root.u.c.p->alignment_power = align;
   4488 	  else
   4489 	    h->root.u.c.p->alignment_power = old_alignment;
   4490 	}
   4491 
   4492       if (is_elf_hash_table (htab))
   4493 	{
   4494 	  /* Set a flag in the hash table entry indicating the type of
   4495 	     reference or definition we just found.  A dynamic symbol
   4496 	     is one which is referenced or defined by both a regular
   4497 	     object and a shared object.  */
   4498 	  bfd_boolean dynsym = FALSE;
   4499 
   4500 	  /* Plugin symbols aren't normal.  Don't set def_regular or
   4501 	     ref_regular for them, or make them dynamic.  */
   4502 	  if ((abfd->flags & BFD_PLUGIN) != 0)
   4503 	    ;
   4504 	  else if (! dynamic)
   4505 	    {
   4506 	      if (! definition)
   4507 		{
   4508 		  h->ref_regular = 1;
   4509 		  if (bind != STB_WEAK)
   4510 		    h->ref_regular_nonweak = 1;
   4511 		}
   4512 	      else
   4513 		{
   4514 		  h->def_regular = 1;
   4515 		  if (h->def_dynamic)
   4516 		    {
   4517 		      h->def_dynamic = 0;
   4518 		      h->ref_dynamic = 1;
   4519 		    }
   4520 		}
   4521 
   4522 	      /* If the indirect symbol has been forced local, don't
   4523 		 make the real symbol dynamic.  */
   4524 	      if ((h == hi || !hi->forced_local)
   4525 		  && (bfd_link_dll (info)
   4526 		      || h->def_dynamic
   4527 		      || h->ref_dynamic))
   4528 		dynsym = TRUE;
   4529 	    }
   4530 	  else
   4531 	    {
   4532 	      if (! definition)
   4533 		{
   4534 		  h->ref_dynamic = 1;
   4535 		  hi->ref_dynamic = 1;
   4536 		}
   4537 	      else
   4538 		{
   4539 		  h->def_dynamic = 1;
   4540 		  hi->def_dynamic = 1;
   4541 		}
   4542 
   4543 	      /* If the indirect symbol has been forced local, don't
   4544 		 make the real symbol dynamic.  */
   4545 	      if ((h == hi || !hi->forced_local)
   4546 		  && (h->def_regular
   4547 		      || h->ref_regular
   4548 		      || (h->u.weakdef != NULL
   4549 			  && ! new_weakdef
   4550 			  && h->u.weakdef->dynindx != -1)))
   4551 		dynsym = TRUE;
   4552 	    }
   4553 
   4554 	  /* Check to see if we need to add an indirect symbol for
   4555 	     the default name.  */
   4556 	  if (definition
   4557 	      || (!override && h->root.type == bfd_link_hash_common))
   4558 	    if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
   4559 					      sec, value, &old_bfd, &dynsym))
   4560 	      goto error_free_vers;
   4561 
   4562 	  /* Check the alignment when a common symbol is involved. This
   4563 	     can change when a common symbol is overridden by a normal
   4564 	     definition or a common symbol is ignored due to the old
   4565 	     normal definition. We need to make sure the maximum
   4566 	     alignment is maintained.  */
   4567 	  if ((old_alignment || common)
   4568 	      && h->root.type != bfd_link_hash_common)
   4569 	    {
   4570 	      unsigned int common_align;
   4571 	      unsigned int normal_align;
   4572 	      unsigned int symbol_align;
   4573 	      bfd *normal_bfd;
   4574 	      bfd *common_bfd;
   4575 
   4576 	      BFD_ASSERT (h->root.type == bfd_link_hash_defined
   4577 			  || h->root.type == bfd_link_hash_defweak);
   4578 
   4579 	      symbol_align = ffs (h->root.u.def.value) - 1;
   4580 	      if (h->root.u.def.section->owner != NULL
   4581 		  && (h->root.u.def.section->owner->flags
   4582 		       & (DYNAMIC | BFD_PLUGIN)) == 0)
   4583 		{
   4584 		  normal_align = h->root.u.def.section->alignment_power;
   4585 		  if (normal_align > symbol_align)
   4586 		    normal_align = symbol_align;
   4587 		}
   4588 	      else
   4589 		normal_align = symbol_align;
   4590 
   4591 	      if (old_alignment)
   4592 		{
   4593 		  common_align = old_alignment;
   4594 		  common_bfd = old_bfd;
   4595 		  normal_bfd = abfd;
   4596 		}
   4597 	      else
   4598 		{
   4599 		  common_align = bfd_log2 (isym->st_value);
   4600 		  common_bfd = abfd;
   4601 		  normal_bfd = old_bfd;
   4602 		}
   4603 
   4604 	      if (normal_align < common_align)
   4605 		{
   4606 		  /* PR binutils/2735 */
   4607 		  if (normal_bfd == NULL)
   4608 		    (*_bfd_error_handler)
   4609 		      (_("Warning: alignment %u of common symbol `%s' in %B is"
   4610 			 " greater than the alignment (%u) of its section %A"),
   4611 		       common_bfd, h->root.u.def.section,
   4612 		       1 << common_align, name, 1 << normal_align);
   4613 		  else
   4614 		    (*_bfd_error_handler)
   4615 		      (_("Warning: alignment %u of symbol `%s' in %B"
   4616 			 " is smaller than %u in %B"),
   4617 		       normal_bfd, common_bfd,
   4618 		       1 << normal_align, name, 1 << common_align);
   4619 		}
   4620 	    }
   4621 
   4622 	  /* Remember the symbol size if it isn't undefined.  */
   4623 	  if (isym->st_size != 0
   4624 	      && isym->st_shndx != SHN_UNDEF
   4625 	      && (definition || h->size == 0))
   4626 	    {
   4627 	      if (h->size != 0
   4628 		  && h->size != isym->st_size
   4629 		  && ! size_change_ok)
   4630 		(*_bfd_error_handler)
   4631 		  (_("Warning: size of symbol `%s' changed"
   4632 		     " from %lu in %B to %lu in %B"),
   4633 		   old_bfd, abfd,
   4634 		   name, (unsigned long) h->size,
   4635 		   (unsigned long) isym->st_size);
   4636 
   4637 	      h->size = isym->st_size;
   4638 	    }
   4639 
   4640 	  /* If this is a common symbol, then we always want H->SIZE
   4641 	     to be the size of the common symbol.  The code just above
   4642 	     won't fix the size if a common symbol becomes larger.  We
   4643 	     don't warn about a size change here, because that is
   4644 	     covered by --warn-common.  Allow changes between different
   4645 	     function types.  */
   4646 	  if (h->root.type == bfd_link_hash_common)
   4647 	    h->size = h->root.u.c.size;
   4648 
   4649 	  if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
   4650 	      && ((definition && !new_weak)
   4651 		  || (old_weak && h->root.type == bfd_link_hash_common)
   4652 		  || h->type == STT_NOTYPE))
   4653 	    {
   4654 	      unsigned int type = ELF_ST_TYPE (isym->st_info);
   4655 
   4656 	      /* Turn an IFUNC symbol from a DSO into a normal FUNC
   4657 		 symbol.  */
   4658 	      if (type == STT_GNU_IFUNC
   4659 		  && (abfd->flags & DYNAMIC) != 0)
   4660 		type = STT_FUNC;
   4661 
   4662 	      if (h->type != type)
   4663 		{
   4664 		  if (h->type != STT_NOTYPE && ! type_change_ok)
   4665 		    (*_bfd_error_handler)
   4666 		      (_("Warning: type of symbol `%s' changed"
   4667 			 " from %d to %d in %B"),
   4668 		       abfd, name, h->type, type);
   4669 
   4670 		  h->type = type;
   4671 		}
   4672 	    }
   4673 
   4674 	  /* Merge st_other field.  */
   4675 	  elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
   4676 
   4677 	  /* We don't want to make debug symbol dynamic.  */
   4678 	  if (definition
   4679 	      && (sec->flags & SEC_DEBUGGING)
   4680 	      && !bfd_link_relocatable (info))
   4681 	    dynsym = FALSE;
   4682 
   4683 	  /* Nor should we make plugin symbols dynamic.  */
   4684 	  if ((abfd->flags & BFD_PLUGIN) != 0)
   4685 	    dynsym = FALSE;
   4686 
   4687 	  if (definition)
   4688 	    {
   4689 	      h->target_internal = isym->st_target_internal;
   4690 	      h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
   4691 	    }
   4692 
   4693 	  if (definition && !dynamic)
   4694 	    {
   4695 	      char *p = strchr (name, ELF_VER_CHR);
   4696 	      if (p != NULL && p[1] != ELF_VER_CHR)
   4697 		{
   4698 		  /* Queue non-default versions so that .symver x, x@FOO
   4699 		     aliases can be checked.  */
   4700 		  if (!nondeflt_vers)
   4701 		    {
   4702 		      amt = ((isymend - isym + 1)
   4703 			     * sizeof (struct elf_link_hash_entry *));
   4704 		      nondeflt_vers
   4705 			= (struct elf_link_hash_entry **) bfd_malloc (amt);
   4706 		      if (!nondeflt_vers)
   4707 			goto error_free_vers;
   4708 		    }
   4709 		  nondeflt_vers[nondeflt_vers_cnt++] = h;
   4710 		}
   4711 	    }
   4712 
   4713 	  if (dynsym && h->dynindx == -1)
   4714 	    {
   4715 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
   4716 		goto error_free_vers;
   4717 	      if (h->u.weakdef != NULL
   4718 		  && ! new_weakdef
   4719 		  && h->u.weakdef->dynindx == -1)
   4720 		{
   4721 		  if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
   4722 		    goto error_free_vers;
   4723 		}
   4724 	    }
   4725 	  else if (h->dynindx != -1)
   4726 	    /* If the symbol already has a dynamic index, but
   4727 	       visibility says it should not be visible, turn it into
   4728 	       a local symbol.  */
   4729 	    switch (ELF_ST_VISIBILITY (h->other))
   4730 	      {
   4731 	      case STV_INTERNAL:
   4732 	      case STV_HIDDEN:
   4733 		(*bed->elf_backend_hide_symbol) (info, h, TRUE);
   4734 		dynsym = FALSE;
   4735 		break;
   4736 	      }
   4737 
   4738 	  /* Don't add DT_NEEDED for references from the dummy bfd nor
   4739 	     for unmatched symbol.  */
   4740 	  if (!add_needed
   4741 	      && matched
   4742 	      && definition
   4743 	      && ((dynsym
   4744 		   && h->ref_regular_nonweak
   4745 		   && (old_bfd == NULL
   4746 		       || (old_bfd->flags & BFD_PLUGIN) == 0))
   4747 		  || (h->ref_dynamic_nonweak
   4748 		      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
   4749 		      && !on_needed_list (elf_dt_name (abfd),
   4750 					  htab->needed, NULL))))
   4751 	    {
   4752 	      int ret;
   4753 	      const char *soname = elf_dt_name (abfd);
   4754 
   4755 	      info->callbacks->minfo ("%!", soname, old_bfd,
   4756 				      h->root.root.string);
   4757 
   4758 	      /* A symbol from a library loaded via DT_NEEDED of some
   4759 		 other library is referenced by a regular object.
   4760 		 Add a DT_NEEDED entry for it.  Issue an error if
   4761 		 --no-add-needed is used and the reference was not
   4762 		 a weak one.  */
   4763 	      if (old_bfd != NULL
   4764 		  && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
   4765 		{
   4766 		  (*_bfd_error_handler)
   4767 		    (_("%B: undefined reference to symbol '%s'"),
   4768 		     old_bfd, name);
   4769 		  bfd_set_error (bfd_error_missing_dso);
   4770 		  goto error_free_vers;
   4771 		}
   4772 
   4773 	      elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
   4774 		(elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
   4775 
   4776 	      add_needed = TRUE;
   4777 	      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
   4778 	      if (ret < 0)
   4779 		goto error_free_vers;
   4780 
   4781 	      BFD_ASSERT (ret == 0);
   4782 	    }
   4783 	}
   4784     }
   4785 
   4786   if (extversym != NULL)
   4787     {
   4788       free (extversym);
   4789       extversym = NULL;
   4790     }
   4791 
   4792   if (isymbuf != NULL)
   4793     {
   4794       free (isymbuf);
   4795       isymbuf = NULL;
   4796     }
   4797 
   4798   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
   4799     {
   4800       unsigned int i;
   4801 
   4802       /* Restore the symbol table.  */
   4803       old_ent = (char *) old_tab + tabsize;
   4804       memset (elf_sym_hashes (abfd), 0,
   4805 	      extsymcount * sizeof (struct elf_link_hash_entry *));
   4806       htab->root.table.table = old_table;
   4807       htab->root.table.size = old_size;
   4808       htab->root.table.count = old_count;
   4809       memcpy (htab->root.table.table, old_tab, tabsize);
   4810       htab->root.undefs = old_undefs;
   4811       htab->root.undefs_tail = old_undefs_tail;
   4812       _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
   4813       free (old_strtab);
   4814       old_strtab = NULL;
   4815       for (i = 0; i < htab->root.table.size; i++)
   4816 	{
   4817 	  struct bfd_hash_entry *p;
   4818 	  struct elf_link_hash_entry *h;
   4819 	  bfd_size_type size;
   4820 	  unsigned int alignment_power;
   4821 
   4822 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
   4823 	    {
   4824 	      h = (struct elf_link_hash_entry *) p;
   4825 	      if (h->root.type == bfd_link_hash_warning)
   4826 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
   4827 
   4828 	      /* Preserve the maximum alignment and size for common
   4829 		 symbols even if this dynamic lib isn't on DT_NEEDED
   4830 		 since it can still be loaded at run time by another
   4831 		 dynamic lib.  */
   4832 	      if (h->root.type == bfd_link_hash_common)
   4833 		{
   4834 		  size = h->root.u.c.size;
   4835 		  alignment_power = h->root.u.c.p->alignment_power;
   4836 		}
   4837 	      else
   4838 		{
   4839 		  size = 0;
   4840 		  alignment_power = 0;
   4841 		}
   4842 	      memcpy (p, old_ent, htab->root.table.entsize);
   4843 	      old_ent = (char *) old_ent + htab->root.table.entsize;
   4844 	      h = (struct elf_link_hash_entry *) p;
   4845 	      if (h->root.type == bfd_link_hash_warning)
   4846 		{
   4847 		  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
   4848 		  old_ent = (char *) old_ent + htab->root.table.entsize;
   4849 		  h = (struct elf_link_hash_entry *) h->root.u.i.link;
   4850 		}
   4851 	      if (h->root.type == bfd_link_hash_common)
   4852 		{
   4853 		  if (size > h->root.u.c.size)
   4854 		    h->root.u.c.size = size;
   4855 		  if (alignment_power > h->root.u.c.p->alignment_power)
   4856 		    h->root.u.c.p->alignment_power = alignment_power;
   4857 		}
   4858 	    }
   4859 	}
   4860 
   4861       /* Make a special call to the linker "notice" function to
   4862 	 tell it that symbols added for crefs may need to be removed.  */
   4863       if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
   4864 	goto error_free_vers;
   4865 
   4866       free (old_tab);
   4867       objalloc_free_block ((struct objalloc *) htab->root.table.memory,
   4868 			   alloc_mark);
   4869       if (nondeflt_vers != NULL)
   4870 	free (nondeflt_vers);
   4871       return TRUE;
   4872     }
   4873 
   4874   if (old_tab != NULL)
   4875     {
   4876       if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
   4877 	goto error_free_vers;
   4878       free (old_tab);
   4879       old_tab = NULL;
   4880     }
   4881 
   4882   /* Now that all the symbols from this input file are created, if
   4883      not performing a relocatable link, handle .symver foo, foo@BAR
   4884      such that any relocs against foo become foo@BAR.  */
   4885   if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
   4886     {
   4887       size_t cnt, symidx;
   4888 
   4889       for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
   4890 	{
   4891 	  struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
   4892 	  char *shortname, *p;
   4893 
   4894 	  p = strchr (h->root.root.string, ELF_VER_CHR);
   4895 	  if (p == NULL
   4896 	      || (h->root.type != bfd_link_hash_defined
   4897 		  && h->root.type != bfd_link_hash_defweak))
   4898 	    continue;
   4899 
   4900 	  amt = p - h->root.root.string;
   4901 	  shortname = (char *) bfd_malloc (amt + 1);
   4902 	  if (!shortname)
   4903 	    goto error_free_vers;
   4904 	  memcpy (shortname, h->root.root.string, amt);
   4905 	  shortname[amt] = '\0';
   4906 
   4907 	  hi = (struct elf_link_hash_entry *)
   4908 	       bfd_link_hash_lookup (&htab->root, shortname,
   4909 				     FALSE, FALSE, FALSE);
   4910 	  if (hi != NULL
   4911 	      && hi->root.type == h->root.type
   4912 	      && hi->root.u.def.value == h->root.u.def.value
   4913 	      && hi->root.u.def.section == h->root.u.def.section)
   4914 	    {
   4915 	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
   4916 	      hi->root.type = bfd_link_hash_indirect;
   4917 	      hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
   4918 	      (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
   4919 	      sym_hash = elf_sym_hashes (abfd);
   4920 	      if (sym_hash)
   4921 		for (symidx = 0; symidx < extsymcount; ++symidx)
   4922 		  if (sym_hash[symidx] == hi)
   4923 		    {
   4924 		      sym_hash[symidx] = h;
   4925 		      break;
   4926 		    }
   4927 	    }
   4928 	  free (shortname);
   4929 	}
   4930       free (nondeflt_vers);
   4931       nondeflt_vers = NULL;
   4932     }
   4933 
   4934   /* Now set the weakdefs field correctly for all the weak defined
   4935      symbols we found.  The only way to do this is to search all the
   4936      symbols.  Since we only need the information for non functions in
   4937      dynamic objects, that's the only time we actually put anything on
   4938      the list WEAKS.  We need this information so that if a regular
   4939      object refers to a symbol defined weakly in a dynamic object, the
   4940      real symbol in the dynamic object is also put in the dynamic
   4941      symbols; we also must arrange for both symbols to point to the
   4942      same memory location.  We could handle the general case of symbol
   4943      aliasing, but a general symbol alias can only be generated in
   4944      assembler code, handling it correctly would be very time
   4945      consuming, and other ELF linkers don't handle general aliasing
   4946      either.  */
   4947   if (weaks != NULL)
   4948     {
   4949       struct elf_link_hash_entry **hpp;
   4950       struct elf_link_hash_entry **hppend;
   4951       struct elf_link_hash_entry **sorted_sym_hash;
   4952       struct elf_link_hash_entry *h;
   4953       size_t sym_count;
   4954 
   4955       /* Since we have to search the whole symbol list for each weak
   4956 	 defined symbol, search time for N weak defined symbols will be
   4957 	 O(N^2). Binary search will cut it down to O(NlogN).  */
   4958       amt = extsymcount;
   4959       amt *= sizeof (struct elf_link_hash_entry *);
   4960       sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
   4961       if (sorted_sym_hash == NULL)
   4962 	goto error_return;
   4963       sym_hash = sorted_sym_hash;
   4964       hpp = elf_sym_hashes (abfd);
   4965       hppend = hpp + extsymcount;
   4966       sym_count = 0;
   4967       for (; hpp < hppend; hpp++)
   4968 	{
   4969 	  h = *hpp;
   4970 	  if (h != NULL
   4971 	      && h->root.type == bfd_link_hash_defined
   4972 	      && !bed->is_function_type (h->type))
   4973 	    {
   4974 	      *sym_hash = h;
   4975 	      sym_hash++;
   4976 	      sym_count++;
   4977 	    }
   4978 	}
   4979 
   4980       qsort (sorted_sym_hash, sym_count,
   4981 	     sizeof (struct elf_link_hash_entry *),
   4982 	     elf_sort_symbol);
   4983 
   4984       while (weaks != NULL)
   4985 	{
   4986 	  struct elf_link_hash_entry *hlook;
   4987 	  asection *slook;
   4988 	  bfd_vma vlook;
   4989 	  size_t i, j, idx = 0;
   4990 
   4991 	  hlook = weaks;
   4992 	  weaks = hlook->u.weakdef;
   4993 	  hlook->u.weakdef = NULL;
   4994 
   4995 	  BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
   4996 		      || hlook->root.type == bfd_link_hash_defweak
   4997 		      || hlook->root.type == bfd_link_hash_common
   4998 		      || hlook->root.type == bfd_link_hash_indirect);
   4999 	  slook = hlook->root.u.def.section;
   5000 	  vlook = hlook->root.u.def.value;
   5001 
   5002 	  i = 0;
   5003 	  j = sym_count;
   5004 	  while (i != j)
   5005 	    {
   5006 	      bfd_signed_vma vdiff;
   5007 	      idx = (i + j) / 2;
   5008 	      h = sorted_sym_hash[idx];
   5009 	      vdiff = vlook - h->root.u.def.value;
   5010 	      if (vdiff < 0)
   5011 		j = idx;
   5012 	      else if (vdiff > 0)
   5013 		i = idx + 1;
   5014 	      else
   5015 		{
   5016 		  int sdiff = slook->id - h->root.u.def.section->id;
   5017 		  if (sdiff < 0)
   5018 		    j = idx;
   5019 		  else if (sdiff > 0)
   5020 		    i = idx + 1;
   5021 		  else
   5022 		    break;
   5023 		}
   5024 	    }
   5025 
   5026 	  /* We didn't find a value/section match.  */
   5027 	  if (i == j)
   5028 	    continue;
   5029 
   5030 	  /* With multiple aliases, or when the weak symbol is already
   5031 	     strongly defined, we have multiple matching symbols and
   5032 	     the binary search above may land on any of them.  Step
   5033 	     one past the matching symbol(s).  */
   5034 	  while (++idx != j)
   5035 	    {
   5036 	      h = sorted_sym_hash[idx];
   5037 	      if (h->root.u.def.section != slook
   5038 		  || h->root.u.def.value != vlook)
   5039 		break;
   5040 	    }
   5041 
   5042 	  /* Now look back over the aliases.  Since we sorted by size
   5043 	     as well as value and section, we'll choose the one with
   5044 	     the largest size.  */
   5045 	  while (idx-- != i)
   5046 	    {
   5047 	      h = sorted_sym_hash[idx];
   5048 
   5049 	      /* Stop if value or section doesn't match.  */
   5050 	      if (h->root.u.def.section != slook
   5051 		  || h->root.u.def.value != vlook)
   5052 		break;
   5053 	      else if (h != hlook)
   5054 		{
   5055 		  hlook->u.weakdef = h;
   5056 
   5057 		  /* If the weak definition is in the list of dynamic
   5058 		     symbols, make sure the real definition is put
   5059 		     there as well.  */
   5060 		  if (hlook->dynindx != -1 && h->dynindx == -1)
   5061 		    {
   5062 		      if (! bfd_elf_link_record_dynamic_symbol (info, h))
   5063 			{
   5064 			err_free_sym_hash:
   5065 			  free (sorted_sym_hash);
   5066 			  goto error_return;
   5067 			}
   5068 		    }
   5069 
   5070 		  /* If the real definition is in the list of dynamic
   5071 		     symbols, make sure the weak definition is put
   5072 		     there as well.  If we don't do this, then the
   5073 		     dynamic loader might not merge the entries for the
   5074 		     real definition and the weak definition.  */
   5075 		  if (h->dynindx != -1 && hlook->dynindx == -1)
   5076 		    {
   5077 		      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
   5078 			goto err_free_sym_hash;
   5079 		    }
   5080 		  break;
   5081 		}
   5082 	    }
   5083 	}
   5084 
   5085       free (sorted_sym_hash);
   5086     }
   5087 
   5088   if (bed->check_directives
   5089       && !(*bed->check_directives) (abfd, info))
   5090     return FALSE;
   5091 
   5092   if (!info->check_relocs_after_open_input
   5093       && !_bfd_elf_link_check_relocs (abfd, info))
   5094     return FALSE;
   5095 
   5096   /* If this is a non-traditional link, try to optimize the handling
   5097      of the .stab/.stabstr sections.  */
   5098   if (! dynamic
   5099       && ! info->traditional_format
   5100       && is_elf_hash_table (htab)
   5101       && (info->strip != strip_all && info->strip != strip_debugger))
   5102     {
   5103       asection *stabstr;
   5104 
   5105       stabstr = bfd_get_section_by_name (abfd, ".stabstr");
   5106       if (stabstr != NULL)
   5107 	{
   5108 	  bfd_size_type string_offset = 0;
   5109 	  asection *stab;
   5110 
   5111 	  for (stab = abfd->sections; stab; stab = stab->next)
   5112 	    if (CONST_STRNEQ (stab->name, ".stab")
   5113 		&& (!stab->name[5] ||
   5114 		    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
   5115 		&& (stab->flags & SEC_MERGE) == 0
   5116 		&& !bfd_is_abs_section (stab->output_section))
   5117 	      {
   5118 		struct bfd_elf_section_data *secdata;
   5119 
   5120 		secdata = elf_section_data (stab);
   5121 		if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
   5122 					       stabstr, &secdata->sec_info,
   5123 					       &string_offset))
   5124 		  goto error_return;
   5125 		if (secdata->sec_info)
   5126 		  stab->sec_info_type = SEC_INFO_TYPE_STABS;
   5127 	    }
   5128 	}
   5129     }
   5130 
   5131   if (is_elf_hash_table (htab) && add_needed)
   5132     {
   5133       /* Add this bfd to the loaded list.  */
   5134       struct elf_link_loaded_list *n;
   5135 
   5136       n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
   5137       if (n == NULL)
   5138 	goto error_return;
   5139       n->abfd = abfd;
   5140       n->next = htab->loaded;
   5141       htab->loaded = n;
   5142     }
   5143 
   5144   return TRUE;
   5145 
   5146  error_free_vers:
   5147   if (old_tab != NULL)
   5148     free (old_tab);
   5149   if (old_strtab != NULL)
   5150     free (old_strtab);
   5151   if (nondeflt_vers != NULL)
   5152     free (nondeflt_vers);
   5153   if (extversym != NULL)
   5154     free (extversym);
   5155  error_free_sym:
   5156   if (isymbuf != NULL)
   5157     free (isymbuf);
   5158  error_return:
   5159   return FALSE;
   5160 }
   5161 
   5162 /* Return the linker hash table entry of a symbol that might be
   5163    satisfied by an archive symbol.  Return -1 on error.  */
   5164 
   5165 struct elf_link_hash_entry *
   5166 _bfd_elf_archive_symbol_lookup (bfd *abfd,
   5167 				struct bfd_link_info *info,
   5168 				const char *name)
   5169 {
   5170   struct elf_link_hash_entry *h;
   5171   char *p, *copy;
   5172   size_t len, first;
   5173 
   5174   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
   5175   if (h != NULL)
   5176     return h;
   5177 
   5178   /* If this is a default version (the name contains @@), look up the
   5179      symbol again with only one `@' as well as without the version.
   5180      The effect is that references to the symbol with and without the
   5181      version will be matched by the default symbol in the archive.  */
   5182 
   5183   p = strchr (name, ELF_VER_CHR);
   5184   if (p == NULL || p[1] != ELF_VER_CHR)
   5185     return h;
   5186 
   5187   /* First check with only one `@'.  */
   5188   len = strlen (name);
   5189   copy = (char *) bfd_alloc (abfd, len);
   5190   if (copy == NULL)
   5191     return (struct elf_link_hash_entry *) 0 - 1;
   5192 
   5193   first = p - name + 1;
   5194   memcpy (copy, name, first);
   5195   memcpy (copy + first, name + first + 1, len - first);
   5196 
   5197   h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
   5198   if (h == NULL)
   5199     {
   5200       /* We also need to check references to the symbol without the
   5201 	 version.  */
   5202       copy[first - 1] = '\0';
   5203       h = elf_link_hash_lookup (elf_hash_table (info), copy,
   5204 				FALSE, FALSE, TRUE);
   5205     }
   5206 
   5207   bfd_release (abfd, copy);
   5208   return h;
   5209 }
   5210 
   5211 /* Add symbols from an ELF archive file to the linker hash table.  We
   5212    don't use _bfd_generic_link_add_archive_symbols because we need to
   5213    handle versioned symbols.
   5214 
   5215    Fortunately, ELF archive handling is simpler than that done by
   5216    _bfd_generic_link_add_archive_symbols, which has to allow for a.out
   5217    oddities.  In ELF, if we find a symbol in the archive map, and the
   5218    symbol is currently undefined, we know that we must pull in that
   5219    object file.
   5220 
   5221    Unfortunately, we do have to make multiple passes over the symbol
   5222    table until nothing further is resolved.  */
   5223 
   5224 static bfd_boolean
   5225 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
   5226 {
   5227   symindex c;
   5228   unsigned char *included = NULL;
   5229   carsym *symdefs;
   5230   bfd_boolean loop;
   5231   bfd_size_type amt;
   5232   const struct elf_backend_data *bed;
   5233   struct elf_link_hash_entry * (*archive_symbol_lookup)
   5234     (bfd *, struct bfd_link_info *, const char *);
   5235 
   5236   if (! bfd_has_map (abfd))
   5237     {
   5238       /* An empty archive is a special case.  */
   5239       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
   5240 	return TRUE;
   5241       bfd_set_error (bfd_error_no_armap);
   5242       return FALSE;
   5243     }
   5244 
   5245   /* Keep track of all symbols we know to be already defined, and all
   5246      files we know to be already included.  This is to speed up the
   5247      second and subsequent passes.  */
   5248   c = bfd_ardata (abfd)->symdef_count;
   5249   if (c == 0)
   5250     return TRUE;
   5251   amt = c;
   5252   amt *= sizeof (*included);
   5253   included = (unsigned char *) bfd_zmalloc (amt);
   5254   if (included == NULL)
   5255     return FALSE;
   5256 
   5257   symdefs = bfd_ardata (abfd)->symdefs;
   5258   bed = get_elf_backend_data (abfd);
   5259   archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
   5260 
   5261   do
   5262     {
   5263       file_ptr last;
   5264       symindex i;
   5265       carsym *symdef;
   5266       carsym *symdefend;
   5267 
   5268       loop = FALSE;
   5269       last = -1;
   5270 
   5271       symdef = symdefs;
   5272       symdefend = symdef + c;
   5273       for (i = 0; symdef < symdefend; symdef++, i++)
   5274 	{
   5275 	  struct elf_link_hash_entry *h;
   5276 	  bfd *element;
   5277 	  struct bfd_link_hash_entry *undefs_tail;
   5278 	  symindex mark;
   5279 
   5280 	  if (included[i])
   5281 	    continue;
   5282 	  if (symdef->file_offset == last)
   5283 	    {
   5284 	      included[i] = TRUE;
   5285 	      continue;
   5286 	    }
   5287 
   5288 	  h = archive_symbol_lookup (abfd, info, symdef->name);
   5289 	  if (h == (struct elf_link_hash_entry *) 0 - 1)
   5290 	    goto error_return;
   5291 
   5292 	  if (h == NULL)
   5293 	    continue;
   5294 
   5295 	  if (h->root.type == bfd_link_hash_common)
   5296 	    {
   5297 	      /* We currently have a common symbol.  The archive map contains
   5298 		 a reference to this symbol, so we may want to include it.  We
   5299 		 only want to include it however, if this archive element
   5300 		 contains a definition of the symbol, not just another common
   5301 		 declaration of it.
   5302 
   5303 		 Unfortunately some archivers (including GNU ar) will put
   5304 		 declarations of common symbols into their archive maps, as
   5305 		 well as real definitions, so we cannot just go by the archive
   5306 		 map alone.  Instead we must read in the element's symbol
   5307 		 table and check that to see what kind of symbol definition
   5308 		 this is.  */
   5309 	      if (! elf_link_is_defined_archive_symbol (abfd, symdef))
   5310 		continue;
   5311 	    }
   5312 	  else if (h->root.type != bfd_link_hash_undefined)
   5313 	    {
   5314 	      if (h->root.type != bfd_link_hash_undefweak)
   5315 		/* Symbol must be defined.  Don't check it again.  */
   5316 		included[i] = TRUE;
   5317 	      continue;
   5318 	    }
   5319 
   5320 	  /* We need to include this archive member.  */
   5321 	  element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
   5322 	  if (element == NULL)
   5323 	    goto error_return;
   5324 
   5325 	  if (! bfd_check_format (element, bfd_object))
   5326 	    goto error_return;
   5327 
   5328 	  undefs_tail = info->hash->undefs_tail;
   5329 
   5330 	  if (!(*info->callbacks
   5331 		->add_archive_element) (info, element, symdef->name, &element))
   5332 	    continue;
   5333 	  if (!bfd_link_add_symbols (element, info))
   5334 	    goto error_return;
   5335 
   5336 	  /* If there are any new undefined symbols, we need to make
   5337 	     another pass through the archive in order to see whether
   5338 	     they can be defined.  FIXME: This isn't perfect, because
   5339 	     common symbols wind up on undefs_tail and because an
   5340 	     undefined symbol which is defined later on in this pass
   5341 	     does not require another pass.  This isn't a bug, but it
   5342 	     does make the code less efficient than it could be.  */
   5343 	  if (undefs_tail != info->hash->undefs_tail)
   5344 	    loop = TRUE;
   5345 
   5346 	  /* Look backward to mark all symbols from this object file
   5347 	     which we have already seen in this pass.  */
   5348 	  mark = i;
   5349 	  do
   5350 	    {
   5351 	      included[mark] = TRUE;
   5352 	      if (mark == 0)
   5353 		break;
   5354 	      --mark;
   5355 	    }
   5356 	  while (symdefs[mark].file_offset == symdef->file_offset);
   5357 
   5358 	  /* We mark subsequent symbols from this object file as we go
   5359 	     on through the loop.  */
   5360 	  last = symdef->file_offset;
   5361 	}
   5362     }
   5363   while (loop);
   5364 
   5365   free (included);
   5366 
   5367   return TRUE;
   5368 
   5369  error_return:
   5370   if (included != NULL)
   5371     free (included);
   5372   return FALSE;
   5373 }
   5374 
   5375 /* Given an ELF BFD, add symbols to the global hash table as
   5376    appropriate.  */
   5377 
   5378 bfd_boolean
   5379 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
   5380 {
   5381   switch (bfd_get_format (abfd))
   5382     {
   5383     case bfd_object:
   5384       return elf_link_add_object_symbols (abfd, info);
   5385     case bfd_archive:
   5386       return elf_link_add_archive_symbols (abfd, info);
   5387     default:
   5388       bfd_set_error (bfd_error_wrong_format);
   5389       return FALSE;
   5390     }
   5391 }
   5392 
   5393 struct hash_codes_info
   5395 {
   5396   unsigned long *hashcodes;
   5397   bfd_boolean error;
   5398 };
   5399 
   5400 /* This function will be called though elf_link_hash_traverse to store
   5401    all hash value of the exported symbols in an array.  */
   5402 
   5403 static bfd_boolean
   5404 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
   5405 {
   5406   struct hash_codes_info *inf = (struct hash_codes_info *) data;
   5407   const char *name;
   5408   unsigned long ha;
   5409   char *alc = NULL;
   5410 
   5411   /* Ignore indirect symbols.  These are added by the versioning code.  */
   5412   if (h->dynindx == -1)
   5413     return TRUE;
   5414 
   5415   name = h->root.root.string;
   5416   if (h->versioned >= versioned)
   5417     {
   5418       char *p = strchr (name, ELF_VER_CHR);
   5419       if (p != NULL)
   5420 	{
   5421 	  alc = (char *) bfd_malloc (p - name + 1);
   5422 	  if (alc == NULL)
   5423 	    {
   5424 	      inf->error = TRUE;
   5425 	      return FALSE;
   5426 	    }
   5427 	  memcpy (alc, name, p - name);
   5428 	  alc[p - name] = '\0';
   5429 	  name = alc;
   5430 	}
   5431     }
   5432 
   5433   /* Compute the hash value.  */
   5434   ha = bfd_elf_hash (name);
   5435 
   5436   /* Store the found hash value in the array given as the argument.  */
   5437   *(inf->hashcodes)++ = ha;
   5438 
   5439   /* And store it in the struct so that we can put it in the hash table
   5440      later.  */
   5441   h->u.elf_hash_value = ha;
   5442 
   5443   if (alc != NULL)
   5444     free (alc);
   5445 
   5446   return TRUE;
   5447 }
   5448 
   5449 struct collect_gnu_hash_codes
   5450 {
   5451   bfd *output_bfd;
   5452   const struct elf_backend_data *bed;
   5453   unsigned long int nsyms;
   5454   unsigned long int maskbits;
   5455   unsigned long int *hashcodes;
   5456   unsigned long int *hashval;
   5457   unsigned long int *indx;
   5458   unsigned long int *counts;
   5459   bfd_vma *bitmask;
   5460   bfd_byte *contents;
   5461   long int min_dynindx;
   5462   unsigned long int bucketcount;
   5463   unsigned long int symindx;
   5464   long int local_indx;
   5465   long int shift1, shift2;
   5466   unsigned long int mask;
   5467   bfd_boolean error;
   5468 };
   5469 
   5470 /* This function will be called though elf_link_hash_traverse to store
   5471    all hash value of the exported symbols in an array.  */
   5472 
   5473 static bfd_boolean
   5474 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
   5475 {
   5476   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
   5477   const char *name;
   5478   unsigned long ha;
   5479   char *alc = NULL;
   5480 
   5481   /* Ignore indirect symbols.  These are added by the versioning code.  */
   5482   if (h->dynindx == -1)
   5483     return TRUE;
   5484 
   5485   /* Ignore also local symbols and undefined symbols.  */
   5486   if (! (*s->bed->elf_hash_symbol) (h))
   5487     return TRUE;
   5488 
   5489   name = h->root.root.string;
   5490   if (h->versioned >= versioned)
   5491     {
   5492       char *p = strchr (name, ELF_VER_CHR);
   5493       if (p != NULL)
   5494 	{
   5495 	  alc = (char *) bfd_malloc (p - name + 1);
   5496 	  if (alc == NULL)
   5497 	    {
   5498 	      s->error = TRUE;
   5499 	      return FALSE;
   5500 	    }
   5501 	  memcpy (alc, name, p - name);
   5502 	  alc[p - name] = '\0';
   5503 	  name = alc;
   5504 	}
   5505     }
   5506 
   5507   /* Compute the hash value.  */
   5508   ha = bfd_elf_gnu_hash (name);
   5509 
   5510   /* Store the found hash value in the array for compute_bucket_count,
   5511      and also for .dynsym reordering purposes.  */
   5512   s->hashcodes[s->nsyms] = ha;
   5513   s->hashval[h->dynindx] = ha;
   5514   ++s->nsyms;
   5515   if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
   5516     s->min_dynindx = h->dynindx;
   5517 
   5518   if (alc != NULL)
   5519     free (alc);
   5520 
   5521   return TRUE;
   5522 }
   5523 
   5524 /* This function will be called though elf_link_hash_traverse to do
   5525    final dynaminc symbol renumbering.  */
   5526 
   5527 static bfd_boolean
   5528 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
   5529 {
   5530   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
   5531   unsigned long int bucket;
   5532   unsigned long int val;
   5533 
   5534   /* Ignore indirect symbols.  */
   5535   if (h->dynindx == -1)
   5536     return TRUE;
   5537 
   5538   /* Ignore also local symbols and undefined symbols.  */
   5539   if (! (*s->bed->elf_hash_symbol) (h))
   5540     {
   5541       if (h->dynindx >= s->min_dynindx)
   5542 	h->dynindx = s->local_indx++;
   5543       return TRUE;
   5544     }
   5545 
   5546   bucket = s->hashval[h->dynindx] % s->bucketcount;
   5547   val = (s->hashval[h->dynindx] >> s->shift1)
   5548 	& ((s->maskbits >> s->shift1) - 1);
   5549   s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
   5550   s->bitmask[val]
   5551     |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
   5552   val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
   5553   if (s->counts[bucket] == 1)
   5554     /* Last element terminates the chain.  */
   5555     val |= 1;
   5556   bfd_put_32 (s->output_bfd, val,
   5557 	      s->contents + (s->indx[bucket] - s->symindx) * 4);
   5558   --s->counts[bucket];
   5559   h->dynindx = s->indx[bucket]++;
   5560   return TRUE;
   5561 }
   5562 
   5563 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
   5564 
   5565 bfd_boolean
   5566 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
   5567 {
   5568   return !(h->forced_local
   5569 	   || h->root.type == bfd_link_hash_undefined
   5570 	   || h->root.type == bfd_link_hash_undefweak
   5571 	   || ((h->root.type == bfd_link_hash_defined
   5572 		|| h->root.type == bfd_link_hash_defweak)
   5573 	       && h->root.u.def.section->output_section == NULL));
   5574 }
   5575 
   5576 /* Array used to determine the number of hash table buckets to use
   5577    based on the number of symbols there are.  If there are fewer than
   5578    3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
   5579    fewer than 37 we use 17 buckets, and so forth.  We never use more
   5580    than 32771 buckets.  */
   5581 
   5582 static const size_t elf_buckets[] =
   5583 {
   5584   1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
   5585   16411, 32771, 0
   5586 };
   5587 
   5588 /* Compute bucket count for hashing table.  We do not use a static set
   5589    of possible tables sizes anymore.  Instead we determine for all
   5590    possible reasonable sizes of the table the outcome (i.e., the
   5591    number of collisions etc) and choose the best solution.  The
   5592    weighting functions are not too simple to allow the table to grow
   5593    without bounds.  Instead one of the weighting factors is the size.
   5594    Therefore the result is always a good payoff between few collisions
   5595    (= short chain lengths) and table size.  */
   5596 static size_t
   5597 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
   5598 		      unsigned long int *hashcodes ATTRIBUTE_UNUSED,
   5599 		      unsigned long int nsyms,
   5600 		      int gnu_hash)
   5601 {
   5602   size_t best_size = 0;
   5603   unsigned long int i;
   5604 
   5605   /* We have a problem here.  The following code to optimize the table
   5606      size requires an integer type with more the 32 bits.  If
   5607      BFD_HOST_U_64_BIT is set we know about such a type.  */
   5608 #ifdef BFD_HOST_U_64_BIT
   5609   if (info->optimize)
   5610     {
   5611       size_t minsize;
   5612       size_t maxsize;
   5613       BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
   5614       bfd *dynobj = elf_hash_table (info)->dynobj;
   5615       size_t dynsymcount = elf_hash_table (info)->dynsymcount;
   5616       const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
   5617       unsigned long int *counts;
   5618       bfd_size_type amt;
   5619       unsigned int no_improvement_count = 0;
   5620 
   5621       /* Possible optimization parameters: if we have NSYMS symbols we say
   5622 	 that the hashing table must at least have NSYMS/4 and at most
   5623 	 2*NSYMS buckets.  */
   5624       minsize = nsyms / 4;
   5625       if (minsize == 0)
   5626 	minsize = 1;
   5627       best_size = maxsize = nsyms * 2;
   5628       if (gnu_hash)
   5629 	{
   5630 	  if (minsize < 2)
   5631 	    minsize = 2;
   5632 	  if ((best_size & 31) == 0)
   5633 	    ++best_size;
   5634 	}
   5635 
   5636       /* Create array where we count the collisions in.  We must use bfd_malloc
   5637 	 since the size could be large.  */
   5638       amt = maxsize;
   5639       amt *= sizeof (unsigned long int);
   5640       counts = (unsigned long int *) bfd_malloc (amt);
   5641       if (counts == NULL)
   5642 	return 0;
   5643 
   5644       /* Compute the "optimal" size for the hash table.  The criteria is a
   5645 	 minimal chain length.  The minor criteria is (of course) the size
   5646 	 of the table.  */
   5647       for (i = minsize; i < maxsize; ++i)
   5648 	{
   5649 	  /* Walk through the array of hashcodes and count the collisions.  */
   5650 	  BFD_HOST_U_64_BIT max;
   5651 	  unsigned long int j;
   5652 	  unsigned long int fact;
   5653 
   5654 	  if (gnu_hash && (i & 31) == 0)
   5655 	    continue;
   5656 
   5657 	  memset (counts, '\0', i * sizeof (unsigned long int));
   5658 
   5659 	  /* Determine how often each hash bucket is used.  */
   5660 	  for (j = 0; j < nsyms; ++j)
   5661 	    ++counts[hashcodes[j] % i];
   5662 
   5663 	  /* For the weight function we need some information about the
   5664 	     pagesize on the target.  This is information need not be 100%
   5665 	     accurate.  Since this information is not available (so far) we
   5666 	     define it here to a reasonable default value.  If it is crucial
   5667 	     to have a better value some day simply define this value.  */
   5668 # ifndef BFD_TARGET_PAGESIZE
   5669 #  define BFD_TARGET_PAGESIZE	(4096)
   5670 # endif
   5671 
   5672 	  /* We in any case need 2 + DYNSYMCOUNT entries for the size values
   5673 	     and the chains.  */
   5674 	  max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
   5675 
   5676 # if 1
   5677 	  /* Variant 1: optimize for short chains.  We add the squares
   5678 	     of all the chain lengths (which favors many small chain
   5679 	     over a few long chains).  */
   5680 	  for (j = 0; j < i; ++j)
   5681 	    max += counts[j] * counts[j];
   5682 
   5683 	  /* This adds penalties for the overall size of the table.  */
   5684 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
   5685 	  max *= fact * fact;
   5686 # else
   5687 	  /* Variant 2: Optimize a lot more for small table.  Here we
   5688 	     also add squares of the size but we also add penalties for
   5689 	     empty slots (the +1 term).  */
   5690 	  for (j = 0; j < i; ++j)
   5691 	    max += (1 + counts[j]) * (1 + counts[j]);
   5692 
   5693 	  /* The overall size of the table is considered, but not as
   5694 	     strong as in variant 1, where it is squared.  */
   5695 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
   5696 	  max *= fact;
   5697 # endif
   5698 
   5699 	  /* Compare with current best results.  */
   5700 	  if (max < best_chlen)
   5701 	    {
   5702 	      best_chlen = max;
   5703 	      best_size = i;
   5704 	      no_improvement_count = 0;
   5705 	    }
   5706 	  /* PR 11843: Avoid futile long searches for the best bucket size
   5707 	     when there are a large number of symbols.  */
   5708 	  else if (++no_improvement_count == 100)
   5709 	    break;
   5710 	}
   5711 
   5712       free (counts);
   5713     }
   5714   else
   5715 #endif /* defined (BFD_HOST_U_64_BIT) */
   5716     {
   5717       /* This is the fallback solution if no 64bit type is available or if we
   5718 	 are not supposed to spend much time on optimizations.  We select the
   5719 	 bucket count using a fixed set of numbers.  */
   5720       for (i = 0; elf_buckets[i] != 0; i++)
   5721 	{
   5722 	  best_size = elf_buckets[i];
   5723 	  if (nsyms < elf_buckets[i + 1])
   5724 	    break;
   5725 	}
   5726       if (gnu_hash && best_size < 2)
   5727 	best_size = 2;
   5728     }
   5729 
   5730   return best_size;
   5731 }
   5732 
   5733 /* Size any SHT_GROUP section for ld -r.  */
   5734 
   5735 bfd_boolean
   5736 _bfd_elf_size_group_sections (struct bfd_link_info *info)
   5737 {
   5738   bfd *ibfd;
   5739 
   5740   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
   5741     if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
   5742 	&& !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
   5743       return FALSE;
   5744   return TRUE;
   5745 }
   5746 
   5747 /* Set a default stack segment size.  The value in INFO wins.  If it
   5748    is unset, LEGACY_SYMBOL's value is used, and if that symbol is
   5749    undefined it is initialized.  */
   5750 
   5751 bfd_boolean
   5752 bfd_elf_stack_segment_size (bfd *output_bfd,
   5753 			    struct bfd_link_info *info,
   5754 			    const char *legacy_symbol,
   5755 			    bfd_vma default_size)
   5756 {
   5757   struct elf_link_hash_entry *h = NULL;
   5758 
   5759   /* Look for legacy symbol.  */
   5760   if (legacy_symbol)
   5761     h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
   5762 			      FALSE, FALSE, FALSE);
   5763   if (h && (h->root.type == bfd_link_hash_defined
   5764 	    || h->root.type == bfd_link_hash_defweak)
   5765       && h->def_regular
   5766       && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
   5767     {
   5768       /* The symbol has no type if specified on the command line.  */
   5769       h->type = STT_OBJECT;
   5770       if (info->stacksize)
   5771 	(*_bfd_error_handler) (_("%B: stack size specified and %s set"),
   5772 			       output_bfd, legacy_symbol);
   5773       else if (h->root.u.def.section != bfd_abs_section_ptr)
   5774 	(*_bfd_error_handler) (_("%B: %s not absolute"),
   5775 			       output_bfd, legacy_symbol);
   5776       else
   5777 	info->stacksize = h->root.u.def.value;
   5778     }
   5779 
   5780   if (!info->stacksize)
   5781     /* If the user didn't set a size, or explicitly inhibit the
   5782        size, set it now.  */
   5783     info->stacksize = default_size;
   5784 
   5785   /* Provide the legacy symbol, if it is referenced.  */
   5786   if (h && (h->root.type == bfd_link_hash_undefined
   5787 	    || h->root.type == bfd_link_hash_undefweak))
   5788     {
   5789       struct bfd_link_hash_entry *bh = NULL;
   5790 
   5791       if (!(_bfd_generic_link_add_one_symbol
   5792 	    (info, output_bfd, legacy_symbol,
   5793 	     BSF_GLOBAL, bfd_abs_section_ptr,
   5794 	     info->stacksize >= 0 ? info->stacksize : 0,
   5795 	     NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
   5796 	return FALSE;
   5797 
   5798       h = (struct elf_link_hash_entry *) bh;
   5799       h->def_regular = 1;
   5800       h->type = STT_OBJECT;
   5801     }
   5802 
   5803   return TRUE;
   5804 }
   5805 
   5806 /* Set up the sizes and contents of the ELF dynamic sections.  This is
   5807    called by the ELF linker emulation before_allocation routine.  We
   5808    must set the sizes of the sections before the linker sets the
   5809    addresses of the various sections.  */
   5810 
   5811 bfd_boolean
   5812 bfd_elf_size_dynamic_sections (bfd *output_bfd,
   5813 			       const char *soname,
   5814 			       const char *rpath,
   5815 			       const char *filter_shlib,
   5816 			       const char *audit,
   5817 			       const char *depaudit,
   5818 			       const char * const *auxiliary_filters,
   5819 			       struct bfd_link_info *info,
   5820 			       asection **sinterpptr)
   5821 {
   5822   size_t soname_indx;
   5823   bfd *dynobj;
   5824   const struct elf_backend_data *bed;
   5825   struct elf_info_failed asvinfo;
   5826 
   5827   *sinterpptr = NULL;
   5828 
   5829   soname_indx = (size_t) -1;
   5830 
   5831   if (!is_elf_hash_table (info->hash))
   5832     return TRUE;
   5833 
   5834   bed = get_elf_backend_data (output_bfd);
   5835 
   5836   /* Any syms created from now on start with -1 in
   5837      got.refcount/offset and plt.refcount/offset.  */
   5838   elf_hash_table (info)->init_got_refcount
   5839     = elf_hash_table (info)->init_got_offset;
   5840   elf_hash_table (info)->init_plt_refcount
   5841     = elf_hash_table (info)->init_plt_offset;
   5842 
   5843   if (bfd_link_relocatable (info)
   5844       && !_bfd_elf_size_group_sections (info))
   5845     return FALSE;
   5846 
   5847   /* The backend may have to create some sections regardless of whether
   5848      we're dynamic or not.  */
   5849   if (bed->elf_backend_always_size_sections
   5850       && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
   5851     return FALSE;
   5852 
   5853   /* Determine any GNU_STACK segment requirements, after the backend
   5854      has had a chance to set a default segment size.  */
   5855   if (info->execstack)
   5856     elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
   5857   else if (info->noexecstack)
   5858     elf_stack_flags (output_bfd) = PF_R | PF_W;
   5859   else
   5860     {
   5861       bfd *inputobj;
   5862       asection *notesec = NULL;
   5863       int exec = 0;
   5864 
   5865       for (inputobj = info->input_bfds;
   5866 	   inputobj;
   5867 	   inputobj = inputobj->link.next)
   5868 	{
   5869 	  asection *s;
   5870 
   5871 	  if (inputobj->flags
   5872 	      & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
   5873 	    continue;
   5874 	  s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
   5875 	  if (s)
   5876 	    {
   5877 	      if (s->flags & SEC_CODE)
   5878 		exec = PF_X;
   5879 	      notesec = s;
   5880 	    }
   5881 	  else if (bed->default_execstack)
   5882 	    exec = PF_X;
   5883 	}
   5884       if (notesec || info->stacksize > 0)
   5885 	elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
   5886       if (notesec && exec && bfd_link_relocatable (info)
   5887 	  && notesec->output_section != bfd_abs_section_ptr)
   5888 	notesec->output_section->flags |= SEC_CODE;
   5889     }
   5890 
   5891   dynobj = elf_hash_table (info)->dynobj;
   5892 
   5893   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
   5894     {
   5895       struct elf_info_failed eif;
   5896       struct elf_link_hash_entry *h;
   5897       asection *dynstr;
   5898       struct bfd_elf_version_tree *t;
   5899       struct bfd_elf_version_expr *d;
   5900       asection *s;
   5901       bfd_boolean all_defined;
   5902 
   5903       *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
   5904       BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
   5905 
   5906       if (soname != NULL)
   5907 	{
   5908 	  soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
   5909 					     soname, TRUE);
   5910 	  if (soname_indx == (size_t) -1
   5911 	      || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
   5912 	    return FALSE;
   5913 	}
   5914 
   5915       if (info->symbolic)
   5916 	{
   5917 	  if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
   5918 	    return FALSE;
   5919 	  info->flags |= DF_SYMBOLIC;
   5920 	}
   5921 
   5922       if (rpath != NULL)
   5923 	{
   5924 	  size_t indx;
   5925 	  bfd_vma tag;
   5926 
   5927 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
   5928 				      TRUE);
   5929 	  if (indx == (size_t) -1)
   5930 	    return FALSE;
   5931 
   5932 	  tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
   5933 	  if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
   5934 	    return FALSE;
   5935 	}
   5936 
   5937       if (filter_shlib != NULL)
   5938 	{
   5939 	  size_t indx;
   5940 
   5941 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
   5942 				      filter_shlib, TRUE);
   5943 	  if (indx == (size_t) -1
   5944 	      || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
   5945 	    return FALSE;
   5946 	}
   5947 
   5948       if (auxiliary_filters != NULL)
   5949 	{
   5950 	  const char * const *p;
   5951 
   5952 	  for (p = auxiliary_filters; *p != NULL; p++)
   5953 	    {
   5954 	      size_t indx;
   5955 
   5956 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
   5957 					  *p, TRUE);
   5958 	      if (indx == (size_t) -1
   5959 		  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
   5960 		return FALSE;
   5961 	    }
   5962 	}
   5963 
   5964       if (audit != NULL)
   5965 	{
   5966 	  size_t indx;
   5967 
   5968 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
   5969 				      TRUE);
   5970 	  if (indx == (size_t) -1
   5971 	      || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
   5972 	    return FALSE;
   5973 	}
   5974 
   5975       if (depaudit != NULL)
   5976 	{
   5977 	  size_t indx;
   5978 
   5979 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
   5980 				      TRUE);
   5981 	  if (indx == (size_t) -1
   5982 	      || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
   5983 	    return FALSE;
   5984 	}
   5985 
   5986       eif.info = info;
   5987       eif.failed = FALSE;
   5988 
   5989       /* If we are supposed to export all symbols into the dynamic symbol
   5990 	 table (this is not the normal case), then do so.  */
   5991       if (info->export_dynamic
   5992 	  || (bfd_link_executable (info) && info->dynamic))
   5993 	{
   5994 	  elf_link_hash_traverse (elf_hash_table (info),
   5995 				  _bfd_elf_export_symbol,
   5996 				  &eif);
   5997 	  if (eif.failed)
   5998 	    return FALSE;
   5999 	}
   6000 
   6001       /* Make all global versions with definition.  */
   6002       for (t = info->version_info; t != NULL; t = t->next)
   6003 	for (d = t->globals.list; d != NULL; d = d->next)
   6004 	  if (!d->symver && d->literal)
   6005 	    {
   6006 	      const char *verstr, *name;
   6007 	      size_t namelen, verlen, newlen;
   6008 	      char *newname, *p, leading_char;
   6009 	      struct elf_link_hash_entry *newh;
   6010 
   6011 	      leading_char = bfd_get_symbol_leading_char (output_bfd);
   6012 	      name = d->pattern;
   6013 	      namelen = strlen (name) + (leading_char != '\0');
   6014 	      verstr = t->name;
   6015 	      verlen = strlen (verstr);
   6016 	      newlen = namelen + verlen + 3;
   6017 
   6018 	      newname = (char *) bfd_malloc (newlen);
   6019 	      if (newname == NULL)
   6020 		return FALSE;
   6021 	      newname[0] = leading_char;
   6022 	      memcpy (newname + (leading_char != '\0'), name, namelen);
   6023 
   6024 	      /* Check the hidden versioned definition.  */
   6025 	      p = newname + namelen;
   6026 	      *p++ = ELF_VER_CHR;
   6027 	      memcpy (p, verstr, verlen + 1);
   6028 	      newh = elf_link_hash_lookup (elf_hash_table (info),
   6029 					   newname, FALSE, FALSE,
   6030 					   FALSE);
   6031 	      if (newh == NULL
   6032 		  || (newh->root.type != bfd_link_hash_defined
   6033 		      && newh->root.type != bfd_link_hash_defweak))
   6034 		{
   6035 		  /* Check the default versioned definition.  */
   6036 		  *p++ = ELF_VER_CHR;
   6037 		  memcpy (p, verstr, verlen + 1);
   6038 		  newh = elf_link_hash_lookup (elf_hash_table (info),
   6039 					       newname, FALSE, FALSE,
   6040 					       FALSE);
   6041 		}
   6042 	      free (newname);
   6043 
   6044 	      /* Mark this version if there is a definition and it is
   6045 		 not defined in a shared object.  */
   6046 	      if (newh != NULL
   6047 		  && !newh->def_dynamic
   6048 		  && (newh->root.type == bfd_link_hash_defined
   6049 		      || newh->root.type == bfd_link_hash_defweak))
   6050 		d->symver = 1;
   6051 	    }
   6052 
   6053       /* Attach all the symbols to their version information.  */
   6054       asvinfo.info = info;
   6055       asvinfo.failed = FALSE;
   6056 
   6057       elf_link_hash_traverse (elf_hash_table (info),
   6058 			      _bfd_elf_link_assign_sym_version,
   6059 			      &asvinfo);
   6060       if (asvinfo.failed)
   6061 	return FALSE;
   6062 
   6063       if (!info->allow_undefined_version)
   6064 	{
   6065 	  /* Check if all global versions have a definition.  */
   6066 	  all_defined = TRUE;
   6067 	  for (t = info->version_info; t != NULL; t = t->next)
   6068 	    for (d = t->globals.list; d != NULL; d = d->next)
   6069 	      if (d->literal && !d->symver && !d->script)
   6070 		{
   6071 		  (*_bfd_error_handler)
   6072 		    (_("%s: undefined version: %s"),
   6073 		     d->pattern, t->name);
   6074 		  all_defined = FALSE;
   6075 		}
   6076 
   6077 	  if (!all_defined)
   6078 	    {
   6079 	      bfd_set_error (bfd_error_bad_value);
   6080 	      return FALSE;
   6081 	    }
   6082 	}
   6083 
   6084       /* Find all symbols which were defined in a dynamic object and make
   6085 	 the backend pick a reasonable value for them.  */
   6086       elf_link_hash_traverse (elf_hash_table (info),
   6087 			      _bfd_elf_adjust_dynamic_symbol,
   6088 			      &eif);
   6089       if (eif.failed)
   6090 	return FALSE;
   6091 
   6092       /* Add some entries to the .dynamic section.  We fill in some of the
   6093 	 values later, in bfd_elf_final_link, but we must add the entries
   6094 	 now so that we know the final size of the .dynamic section.  */
   6095 
   6096       /* If there are initialization and/or finalization functions to
   6097 	 call then add the corresponding DT_INIT/DT_FINI entries.  */
   6098       h = (info->init_function
   6099 	   ? elf_link_hash_lookup (elf_hash_table (info),
   6100 				   info->init_function, FALSE,
   6101 				   FALSE, FALSE)
   6102 	   : NULL);
   6103       if (h != NULL
   6104 	  && (h->ref_regular
   6105 	      || h->def_regular))
   6106 	{
   6107 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
   6108 	    return FALSE;
   6109 	}
   6110       h = (info->fini_function
   6111 	   ? elf_link_hash_lookup (elf_hash_table (info),
   6112 				   info->fini_function, FALSE,
   6113 				   FALSE, FALSE)
   6114 	   : NULL);
   6115       if (h != NULL
   6116 	  && (h->ref_regular
   6117 	      || h->def_regular))
   6118 	{
   6119 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
   6120 	    return FALSE;
   6121 	}
   6122 
   6123       s = bfd_get_section_by_name (output_bfd, ".preinit_array");
   6124       if (s != NULL && s->linker_has_input)
   6125 	{
   6126 	  /* DT_PREINIT_ARRAY is not allowed in shared library.  */
   6127 	  if (! bfd_link_executable (info))
   6128 	    {
   6129 	      bfd *sub;
   6130 	      asection *o;
   6131 
   6132 	      for (sub = info->input_bfds; sub != NULL;
   6133 		   sub = sub->link.next)
   6134 		if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
   6135 		  for (o = sub->sections; o != NULL; o = o->next)
   6136 		    if (elf_section_data (o)->this_hdr.sh_type
   6137 			== SHT_PREINIT_ARRAY)
   6138 		      {
   6139 			(*_bfd_error_handler)
   6140 			  (_("%B: .preinit_array section is not allowed in DSO"),
   6141 			   sub);
   6142 			break;
   6143 		      }
   6144 
   6145 	      bfd_set_error (bfd_error_nonrepresentable_section);
   6146 	      return FALSE;
   6147 	    }
   6148 
   6149 	  if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
   6150 	      || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
   6151 	    return FALSE;
   6152 	}
   6153       s = bfd_get_section_by_name (output_bfd, ".init_array");
   6154       if (s != NULL && s->linker_has_input)
   6155 	{
   6156 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
   6157 	      || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
   6158 	    return FALSE;
   6159 	}
   6160       s = bfd_get_section_by_name (output_bfd, ".fini_array");
   6161       if (s != NULL && s->linker_has_input)
   6162 	{
   6163 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
   6164 	      || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
   6165 	    return FALSE;
   6166 	}
   6167 
   6168       dynstr = bfd_get_linker_section (dynobj, ".dynstr");
   6169       /* If .dynstr is excluded from the link, we don't want any of
   6170 	 these tags.  Strictly, we should be checking each section
   6171 	 individually;  This quick check covers for the case where
   6172 	 someone does a /DISCARD/ : { *(*) }.  */
   6173       if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
   6174 	{
   6175 	  bfd_size_type strsize;
   6176 
   6177 	  strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
   6178 	  if ((info->emit_hash
   6179 	       && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
   6180 	      || (info->emit_gnu_hash
   6181 		  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
   6182 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
   6183 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
   6184 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
   6185 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
   6186 					      bed->s->sizeof_sym))
   6187 	    return FALSE;
   6188 	}
   6189     }
   6190 
   6191   if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
   6192     return FALSE;
   6193 
   6194   /* The backend must work out the sizes of all the other dynamic
   6195      sections.  */
   6196   if (dynobj != NULL
   6197       && bed->elf_backend_size_dynamic_sections != NULL
   6198       && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
   6199     return FALSE;
   6200 
   6201   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
   6202     {
   6203       unsigned long section_sym_count;
   6204       struct bfd_elf_version_tree *verdefs;
   6205       asection *s;
   6206 
   6207       /* Set up the version definition section.  */
   6208       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
   6209       BFD_ASSERT (s != NULL);
   6210 
   6211       /* We may have created additional version definitions if we are
   6212 	 just linking a regular application.  */
   6213       verdefs = info->version_info;
   6214 
   6215       /* Skip anonymous version tag.  */
   6216       if (verdefs != NULL && verdefs->vernum == 0)
   6217 	verdefs = verdefs->next;
   6218 
   6219       if (verdefs == NULL && !info->create_default_symver)
   6220 	s->flags |= SEC_EXCLUDE;
   6221       else
   6222 	{
   6223 	  unsigned int cdefs;
   6224 	  bfd_size_type size;
   6225 	  struct bfd_elf_version_tree *t;
   6226 	  bfd_byte *p;
   6227 	  Elf_Internal_Verdef def;
   6228 	  Elf_Internal_Verdaux defaux;
   6229 	  struct bfd_link_hash_entry *bh;
   6230 	  struct elf_link_hash_entry *h;
   6231 	  const char *name;
   6232 
   6233 	  cdefs = 0;
   6234 	  size = 0;
   6235 
   6236 	  /* Make space for the base version.  */
   6237 	  size += sizeof (Elf_External_Verdef);
   6238 	  size += sizeof (Elf_External_Verdaux);
   6239 	  ++cdefs;
   6240 
   6241 	  /* Make space for the default version.  */
   6242 	  if (info->create_default_symver)
   6243 	    {
   6244 	      size += sizeof (Elf_External_Verdef);
   6245 	      ++cdefs;
   6246 	    }
   6247 
   6248 	  for (t = verdefs; t != NULL; t = t->next)
   6249 	    {
   6250 	      struct bfd_elf_version_deps *n;
   6251 
   6252 	      /* Don't emit base version twice.  */
   6253 	      if (t->vernum == 0)
   6254 		continue;
   6255 
   6256 	      size += sizeof (Elf_External_Verdef);
   6257 	      size += sizeof (Elf_External_Verdaux);
   6258 	      ++cdefs;
   6259 
   6260 	      for (n = t->deps; n != NULL; n = n->next)
   6261 		size += sizeof (Elf_External_Verdaux);
   6262 	    }
   6263 
   6264 	  s->size = size;
   6265 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
   6266 	  if (s->contents == NULL && s->size != 0)
   6267 	    return FALSE;
   6268 
   6269 	  /* Fill in the version definition section.  */
   6270 
   6271 	  p = s->contents;
   6272 
   6273 	  def.vd_version = VER_DEF_CURRENT;
   6274 	  def.vd_flags = VER_FLG_BASE;
   6275 	  def.vd_ndx = 1;
   6276 	  def.vd_cnt = 1;
   6277 	  if (info->create_default_symver)
   6278 	    {
   6279 	      def.vd_aux = 2 * sizeof (Elf_External_Verdef);
   6280 	      def.vd_next = sizeof (Elf_External_Verdef);
   6281 	    }
   6282 	  else
   6283 	    {
   6284 	      def.vd_aux = sizeof (Elf_External_Verdef);
   6285 	      def.vd_next = (sizeof (Elf_External_Verdef)
   6286 			     + sizeof (Elf_External_Verdaux));
   6287 	    }
   6288 
   6289 	  if (soname_indx != (size_t) -1)
   6290 	    {
   6291 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
   6292 				      soname_indx);
   6293 	      def.vd_hash = bfd_elf_hash (soname);
   6294 	      defaux.vda_name = soname_indx;
   6295 	      name = soname;
   6296 	    }
   6297 	  else
   6298 	    {
   6299 	      size_t indx;
   6300 
   6301 	      name = lbasename (output_bfd->filename);
   6302 	      def.vd_hash = bfd_elf_hash (name);
   6303 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
   6304 					  name, FALSE);
   6305 	      if (indx == (size_t) -1)
   6306 		return FALSE;
   6307 	      defaux.vda_name = indx;
   6308 	    }
   6309 	  defaux.vda_next = 0;
   6310 
   6311 	  _bfd_elf_swap_verdef_out (output_bfd, &def,
   6312 				    (Elf_External_Verdef *) p);
   6313 	  p += sizeof (Elf_External_Verdef);
   6314 	  if (info->create_default_symver)
   6315 	    {
   6316 	      /* Add a symbol representing this version.  */
   6317 	      bh = NULL;
   6318 	      if (! (_bfd_generic_link_add_one_symbol
   6319 		     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
   6320 		      0, NULL, FALSE,
   6321 		      get_elf_backend_data (dynobj)->collect, &bh)))
   6322 		return FALSE;
   6323 	      h = (struct elf_link_hash_entry *) bh;
   6324 	      h->non_elf = 0;
   6325 	      h->def_regular = 1;
   6326 	      h->type = STT_OBJECT;
   6327 	      h->verinfo.vertree = NULL;
   6328 
   6329 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
   6330 		return FALSE;
   6331 
   6332 	      /* Create a duplicate of the base version with the same
   6333 		 aux block, but different flags.  */
   6334 	      def.vd_flags = 0;
   6335 	      def.vd_ndx = 2;
   6336 	      def.vd_aux = sizeof (Elf_External_Verdef);
   6337 	      if (verdefs)
   6338 		def.vd_next = (sizeof (Elf_External_Verdef)
   6339 			       + sizeof (Elf_External_Verdaux));
   6340 	      else
   6341 		def.vd_next = 0;
   6342 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
   6343 					(Elf_External_Verdef *) p);
   6344 	      p += sizeof (Elf_External_Verdef);
   6345 	    }
   6346 	  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
   6347 				     (Elf_External_Verdaux *) p);
   6348 	  p += sizeof (Elf_External_Verdaux);
   6349 
   6350 	  for (t = verdefs; t != NULL; t = t->next)
   6351 	    {
   6352 	      unsigned int cdeps;
   6353 	      struct bfd_elf_version_deps *n;
   6354 
   6355 	      /* Don't emit the base version twice.  */
   6356 	      if (t->vernum == 0)
   6357 		continue;
   6358 
   6359 	      cdeps = 0;
   6360 	      for (n = t->deps; n != NULL; n = n->next)
   6361 		++cdeps;
   6362 
   6363 	      /* Add a symbol representing this version.  */
   6364 	      bh = NULL;
   6365 	      if (! (_bfd_generic_link_add_one_symbol
   6366 		     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
   6367 		      0, NULL, FALSE,
   6368 		      get_elf_backend_data (dynobj)->collect, &bh)))
   6369 		return FALSE;
   6370 	      h = (struct elf_link_hash_entry *) bh;
   6371 	      h->non_elf = 0;
   6372 	      h->def_regular = 1;
   6373 	      h->type = STT_OBJECT;
   6374 	      h->verinfo.vertree = t;
   6375 
   6376 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
   6377 		return FALSE;
   6378 
   6379 	      def.vd_version = VER_DEF_CURRENT;
   6380 	      def.vd_flags = 0;
   6381 	      if (t->globals.list == NULL
   6382 		  && t->locals.list == NULL
   6383 		  && ! t->used)
   6384 		def.vd_flags |= VER_FLG_WEAK;
   6385 	      def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
   6386 	      def.vd_cnt = cdeps + 1;
   6387 	      def.vd_hash = bfd_elf_hash (t->name);
   6388 	      def.vd_aux = sizeof (Elf_External_Verdef);
   6389 	      def.vd_next = 0;
   6390 
   6391 	      /* If a basever node is next, it *must* be the last node in
   6392 		 the chain, otherwise Verdef construction breaks.  */
   6393 	      if (t->next != NULL && t->next->vernum == 0)
   6394 		BFD_ASSERT (t->next->next == NULL);
   6395 
   6396 	      if (t->next != NULL && t->next->vernum != 0)
   6397 		def.vd_next = (sizeof (Elf_External_Verdef)
   6398 			       + (cdeps + 1) * sizeof (Elf_External_Verdaux));
   6399 
   6400 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
   6401 					(Elf_External_Verdef *) p);
   6402 	      p += sizeof (Elf_External_Verdef);
   6403 
   6404 	      defaux.vda_name = h->dynstr_index;
   6405 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
   6406 				      h->dynstr_index);
   6407 	      defaux.vda_next = 0;
   6408 	      if (t->deps != NULL)
   6409 		defaux.vda_next = sizeof (Elf_External_Verdaux);
   6410 	      t->name_indx = defaux.vda_name;
   6411 
   6412 	      _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
   6413 					 (Elf_External_Verdaux *) p);
   6414 	      p += sizeof (Elf_External_Verdaux);
   6415 
   6416 	      for (n = t->deps; n != NULL; n = n->next)
   6417 		{
   6418 		  if (n->version_needed == NULL)
   6419 		    {
   6420 		      /* This can happen if there was an error in the
   6421 			 version script.  */
   6422 		      defaux.vda_name = 0;
   6423 		    }
   6424 		  else
   6425 		    {
   6426 		      defaux.vda_name = n->version_needed->name_indx;
   6427 		      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
   6428 					      defaux.vda_name);
   6429 		    }
   6430 		  if (n->next == NULL)
   6431 		    defaux.vda_next = 0;
   6432 		  else
   6433 		    defaux.vda_next = sizeof (Elf_External_Verdaux);
   6434 
   6435 		  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
   6436 					     (Elf_External_Verdaux *) p);
   6437 		  p += sizeof (Elf_External_Verdaux);
   6438 		}
   6439 	    }
   6440 
   6441 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
   6442 	      || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
   6443 	    return FALSE;
   6444 
   6445 	  elf_tdata (output_bfd)->cverdefs = cdefs;
   6446 	}
   6447 
   6448       if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
   6449 	{
   6450 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
   6451 	    return FALSE;
   6452 	}
   6453       else if (info->flags & DF_BIND_NOW)
   6454 	{
   6455 	  if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
   6456 	    return FALSE;
   6457 	}
   6458 
   6459       if (info->flags_1)
   6460 	{
   6461 	  if (bfd_link_executable (info))
   6462 	    info->flags_1 &= ~ (DF_1_INITFIRST
   6463 				| DF_1_NODELETE
   6464 				| DF_1_NOOPEN);
   6465 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
   6466 	    return FALSE;
   6467 	}
   6468 
   6469       /* Work out the size of the version reference section.  */
   6470 
   6471       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
   6472       BFD_ASSERT (s != NULL);
   6473       {
   6474 	struct elf_find_verdep_info sinfo;
   6475 
   6476 	sinfo.info = info;
   6477 	sinfo.vers = elf_tdata (output_bfd)->cverdefs;
   6478 	if (sinfo.vers == 0)
   6479 	  sinfo.vers = 1;
   6480 	sinfo.failed = FALSE;
   6481 
   6482 	elf_link_hash_traverse (elf_hash_table (info),
   6483 				_bfd_elf_link_find_version_dependencies,
   6484 				&sinfo);
   6485 	if (sinfo.failed)
   6486 	  return FALSE;
   6487 
   6488 	if (elf_tdata (output_bfd)->verref == NULL)
   6489 	  s->flags |= SEC_EXCLUDE;
   6490 	else
   6491 	  {
   6492 	    Elf_Internal_Verneed *t;
   6493 	    unsigned int size;
   6494 	    unsigned int crefs;
   6495 	    bfd_byte *p;
   6496 
   6497 	    /* Build the version dependency section.  */
   6498 	    size = 0;
   6499 	    crefs = 0;
   6500 	    for (t = elf_tdata (output_bfd)->verref;
   6501 		 t != NULL;
   6502 		 t = t->vn_nextref)
   6503 	      {
   6504 		Elf_Internal_Vernaux *a;
   6505 
   6506 		size += sizeof (Elf_External_Verneed);
   6507 		++crefs;
   6508 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
   6509 		  size += sizeof (Elf_External_Vernaux);
   6510 	      }
   6511 
   6512 	    s->size = size;
   6513 	    s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
   6514 	    if (s->contents == NULL)
   6515 	      return FALSE;
   6516 
   6517 	    p = s->contents;
   6518 	    for (t = elf_tdata (output_bfd)->verref;
   6519 		 t != NULL;
   6520 		 t = t->vn_nextref)
   6521 	      {
   6522 		unsigned int caux;
   6523 		Elf_Internal_Vernaux *a;
   6524 		size_t indx;
   6525 
   6526 		caux = 0;
   6527 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
   6528 		  ++caux;
   6529 
   6530 		t->vn_version = VER_NEED_CURRENT;
   6531 		t->vn_cnt = caux;
   6532 		indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
   6533 					    elf_dt_name (t->vn_bfd) != NULL
   6534 					    ? elf_dt_name (t->vn_bfd)
   6535 					    : lbasename (t->vn_bfd->filename),
   6536 					    FALSE);
   6537 		if (indx == (size_t) -1)
   6538 		  return FALSE;
   6539 		t->vn_file = indx;
   6540 		t->vn_aux = sizeof (Elf_External_Verneed);
   6541 		if (t->vn_nextref == NULL)
   6542 		  t->vn_next = 0;
   6543 		else
   6544 		  t->vn_next = (sizeof (Elf_External_Verneed)
   6545 				+ caux * sizeof (Elf_External_Vernaux));
   6546 
   6547 		_bfd_elf_swap_verneed_out (output_bfd, t,
   6548 					   (Elf_External_Verneed *) p);
   6549 		p += sizeof (Elf_External_Verneed);
   6550 
   6551 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
   6552 		  {
   6553 		    a->vna_hash = bfd_elf_hash (a->vna_nodename);
   6554 		    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
   6555 						a->vna_nodename, FALSE);
   6556 		    if (indx == (size_t) -1)
   6557 		      return FALSE;
   6558 		    a->vna_name = indx;
   6559 		    if (a->vna_nextptr == NULL)
   6560 		      a->vna_next = 0;
   6561 		    else
   6562 		      a->vna_next = sizeof (Elf_External_Vernaux);
   6563 
   6564 		    _bfd_elf_swap_vernaux_out (output_bfd, a,
   6565 					       (Elf_External_Vernaux *) p);
   6566 		    p += sizeof (Elf_External_Vernaux);
   6567 		  }
   6568 	      }
   6569 
   6570 	    if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
   6571 		|| !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
   6572 	      return FALSE;
   6573 
   6574 	    elf_tdata (output_bfd)->cverrefs = crefs;
   6575 	  }
   6576       }
   6577 
   6578       if ((elf_tdata (output_bfd)->cverrefs == 0
   6579 	   && elf_tdata (output_bfd)->cverdefs == 0)
   6580 	  || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
   6581 					     &section_sym_count) == 0)
   6582 	{
   6583 	  s = bfd_get_linker_section (dynobj, ".gnu.version");
   6584 	  s->flags |= SEC_EXCLUDE;
   6585 	}
   6586     }
   6587   return TRUE;
   6588 }
   6589 
   6590 /* Find the first non-excluded output section.  We'll use its
   6591    section symbol for some emitted relocs.  */
   6592 void
   6593 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
   6594 {
   6595   asection *s;
   6596 
   6597   for (s = output_bfd->sections; s != NULL; s = s->next)
   6598     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
   6599 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
   6600       {
   6601 	elf_hash_table (info)->text_index_section = s;
   6602 	break;
   6603       }
   6604 }
   6605 
   6606 /* Find two non-excluded output sections, one for code, one for data.
   6607    We'll use their section symbols for some emitted relocs.  */
   6608 void
   6609 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
   6610 {
   6611   asection *s;
   6612 
   6613   /* Data first, since setting text_index_section changes
   6614      _bfd_elf_link_omit_section_dynsym.  */
   6615   for (s = output_bfd->sections; s != NULL; s = s->next)
   6616     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
   6617 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
   6618       {
   6619 	elf_hash_table (info)->data_index_section = s;
   6620 	break;
   6621       }
   6622 
   6623   for (s = output_bfd->sections; s != NULL; s = s->next)
   6624     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
   6625 	 == (SEC_ALLOC | SEC_READONLY))
   6626 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
   6627       {
   6628 	elf_hash_table (info)->text_index_section = s;
   6629 	break;
   6630       }
   6631 
   6632   if (elf_hash_table (info)->text_index_section == NULL)
   6633     elf_hash_table (info)->text_index_section
   6634       = elf_hash_table (info)->data_index_section;
   6635 }
   6636 
   6637 bfd_boolean
   6638 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
   6639 {
   6640   const struct elf_backend_data *bed;
   6641 
   6642   if (!is_elf_hash_table (info->hash))
   6643     return TRUE;
   6644 
   6645   bed = get_elf_backend_data (output_bfd);
   6646   (*bed->elf_backend_init_index_section) (output_bfd, info);
   6647 
   6648   if (elf_hash_table (info)->dynamic_sections_created)
   6649     {
   6650       bfd *dynobj;
   6651       asection *s;
   6652       bfd_size_type dynsymcount;
   6653       unsigned long section_sym_count;
   6654       unsigned int dtagcount;
   6655 
   6656       dynobj = elf_hash_table (info)->dynobj;
   6657 
   6658       /* Assign dynsym indicies.  In a shared library we generate a
   6659 	 section symbol for each output section, which come first.
   6660 	 Next come all of the back-end allocated local dynamic syms,
   6661 	 followed by the rest of the global symbols.  */
   6662 
   6663       dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
   6664 						    &section_sym_count);
   6665 
   6666       /* Work out the size of the symbol version section.  */
   6667       s = bfd_get_linker_section (dynobj, ".gnu.version");
   6668       BFD_ASSERT (s != NULL);
   6669       if ((s->flags & SEC_EXCLUDE) == 0)
   6670 	{
   6671 	  s->size = dynsymcount * sizeof (Elf_External_Versym);
   6672 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
   6673 	  if (s->contents == NULL)
   6674 	    return FALSE;
   6675 
   6676 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
   6677 	    return FALSE;
   6678 	}
   6679 
   6680       /* Set the size of the .dynsym and .hash sections.  We counted
   6681 	 the number of dynamic symbols in elf_link_add_object_symbols.
   6682 	 We will build the contents of .dynsym and .hash when we build
   6683 	 the final symbol table, because until then we do not know the
   6684 	 correct value to give the symbols.  We built the .dynstr
   6685 	 section as we went along in elf_link_add_object_symbols.  */
   6686       s = elf_hash_table (info)->dynsym;
   6687       BFD_ASSERT (s != NULL);
   6688       s->size = dynsymcount * bed->s->sizeof_sym;
   6689 
   6690       s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
   6691       if (s->contents == NULL)
   6692 	return FALSE;
   6693 
   6694       /* The first entry in .dynsym is a dummy symbol.  Clear all the
   6695 	 section syms, in case we don't output them all.  */
   6696       ++section_sym_count;
   6697       memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
   6698 
   6699       elf_hash_table (info)->bucketcount = 0;
   6700 
   6701       /* Compute the size of the hashing table.  As a side effect this
   6702 	 computes the hash values for all the names we export.  */
   6703       if (info->emit_hash)
   6704 	{
   6705 	  unsigned long int *hashcodes;
   6706 	  struct hash_codes_info hashinf;
   6707 	  bfd_size_type amt;
   6708 	  unsigned long int nsyms;
   6709 	  size_t bucketcount;
   6710 	  size_t hash_entry_size;
   6711 
   6712 	  /* Compute the hash values for all exported symbols.  At the same
   6713 	     time store the values in an array so that we could use them for
   6714 	     optimizations.  */
   6715 	  amt = dynsymcount * sizeof (unsigned long int);
   6716 	  hashcodes = (unsigned long int *) bfd_malloc (amt);
   6717 	  if (hashcodes == NULL)
   6718 	    return FALSE;
   6719 	  hashinf.hashcodes = hashcodes;
   6720 	  hashinf.error = FALSE;
   6721 
   6722 	  /* Put all hash values in HASHCODES.  */
   6723 	  elf_link_hash_traverse (elf_hash_table (info),
   6724 				  elf_collect_hash_codes, &hashinf);
   6725 	  if (hashinf.error)
   6726 	    {
   6727 	      free (hashcodes);
   6728 	      return FALSE;
   6729 	    }
   6730 
   6731 	  nsyms = hashinf.hashcodes - hashcodes;
   6732 	  bucketcount
   6733 	    = compute_bucket_count (info, hashcodes, nsyms, 0);
   6734 	  free (hashcodes);
   6735 
   6736 	  if (bucketcount == 0)
   6737 	    return FALSE;
   6738 
   6739 	  elf_hash_table (info)->bucketcount = bucketcount;
   6740 
   6741 	  s = bfd_get_linker_section (dynobj, ".hash");
   6742 	  BFD_ASSERT (s != NULL);
   6743 	  hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
   6744 	  s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
   6745 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
   6746 	  if (s->contents == NULL)
   6747 	    return FALSE;
   6748 
   6749 	  bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
   6750 	  bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
   6751 		   s->contents + hash_entry_size);
   6752 	}
   6753 
   6754       if (info->emit_gnu_hash)
   6755 	{
   6756 	  size_t i, cnt;
   6757 	  unsigned char *contents;
   6758 	  struct collect_gnu_hash_codes cinfo;
   6759 	  bfd_size_type amt;
   6760 	  size_t bucketcount;
   6761 
   6762 	  memset (&cinfo, 0, sizeof (cinfo));
   6763 
   6764 	  /* Compute the hash values for all exported symbols.  At the same
   6765 	     time store the values in an array so that we could use them for
   6766 	     optimizations.  */
   6767 	  amt = dynsymcount * 2 * sizeof (unsigned long int);
   6768 	  cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
   6769 	  if (cinfo.hashcodes == NULL)
   6770 	    return FALSE;
   6771 
   6772 	  cinfo.hashval = cinfo.hashcodes + dynsymcount;
   6773 	  cinfo.min_dynindx = -1;
   6774 	  cinfo.output_bfd = output_bfd;
   6775 	  cinfo.bed = bed;
   6776 
   6777 	  /* Put all hash values in HASHCODES.  */
   6778 	  elf_link_hash_traverse (elf_hash_table (info),
   6779 				  elf_collect_gnu_hash_codes, &cinfo);
   6780 	  if (cinfo.error)
   6781 	    {
   6782 	      free (cinfo.hashcodes);
   6783 	      return FALSE;
   6784 	    }
   6785 
   6786 	  bucketcount
   6787 	    = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
   6788 
   6789 	  if (bucketcount == 0)
   6790 	    {
   6791 	      free (cinfo.hashcodes);
   6792 	      return FALSE;
   6793 	    }
   6794 
   6795 	  s = bfd_get_linker_section (dynobj, ".gnu.hash");
   6796 	  BFD_ASSERT (s != NULL);
   6797 
   6798 	  if (cinfo.nsyms == 0)
   6799 	    {
   6800 	      /* Empty .gnu.hash section is special.  */
   6801 	      BFD_ASSERT (cinfo.min_dynindx == -1);
   6802 	      free (cinfo.hashcodes);
   6803 	      s->size = 5 * 4 + bed->s->arch_size / 8;
   6804 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
   6805 	      if (contents == NULL)
   6806 		return FALSE;
   6807 	      s->contents = contents;
   6808 	      /* 1 empty bucket.  */
   6809 	      bfd_put_32 (output_bfd, 1, contents);
   6810 	      /* SYMIDX above the special symbol 0.  */
   6811 	      bfd_put_32 (output_bfd, 1, contents + 4);
   6812 	      /* Just one word for bitmask.  */
   6813 	      bfd_put_32 (output_bfd, 1, contents + 8);
   6814 	      /* Only hash fn bloom filter.  */
   6815 	      bfd_put_32 (output_bfd, 0, contents + 12);
   6816 	      /* No hashes are valid - empty bitmask.  */
   6817 	      bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
   6818 	      /* No hashes in the only bucket.  */
   6819 	      bfd_put_32 (output_bfd, 0,
   6820 			  contents + 16 + bed->s->arch_size / 8);
   6821 	    }
   6822 	  else
   6823 	    {
   6824 	      unsigned long int maskwords, maskbitslog2, x;
   6825 	      BFD_ASSERT (cinfo.min_dynindx != -1);
   6826 
   6827 	      x = cinfo.nsyms;
   6828 	      maskbitslog2 = 1;
   6829 	      while ((x >>= 1) != 0)
   6830 		++maskbitslog2;
   6831 	      if (maskbitslog2 < 3)
   6832 		maskbitslog2 = 5;
   6833 	      else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
   6834 		maskbitslog2 = maskbitslog2 + 3;
   6835 	      else
   6836 		maskbitslog2 = maskbitslog2 + 2;
   6837 	      if (bed->s->arch_size == 64)
   6838 		{
   6839 		  if (maskbitslog2 == 5)
   6840 		    maskbitslog2 = 6;
   6841 		  cinfo.shift1 = 6;
   6842 		}
   6843 	      else
   6844 		cinfo.shift1 = 5;
   6845 	      cinfo.mask = (1 << cinfo.shift1) - 1;
   6846 	      cinfo.shift2 = maskbitslog2;
   6847 	      cinfo.maskbits = 1 << maskbitslog2;
   6848 	      maskwords = 1 << (maskbitslog2 - cinfo.shift1);
   6849 	      amt = bucketcount * sizeof (unsigned long int) * 2;
   6850 	      amt += maskwords * sizeof (bfd_vma);
   6851 	      cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
   6852 	      if (cinfo.bitmask == NULL)
   6853 		{
   6854 		  free (cinfo.hashcodes);
   6855 		  return FALSE;
   6856 		}
   6857 
   6858 	      cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
   6859 	      cinfo.indx = cinfo.counts + bucketcount;
   6860 	      cinfo.symindx = dynsymcount - cinfo.nsyms;
   6861 	      memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
   6862 
   6863 	      /* Determine how often each hash bucket is used.  */
   6864 	      memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
   6865 	      for (i = 0; i < cinfo.nsyms; ++i)
   6866 		++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
   6867 
   6868 	      for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
   6869 		if (cinfo.counts[i] != 0)
   6870 		  {
   6871 		    cinfo.indx[i] = cnt;
   6872 		    cnt += cinfo.counts[i];
   6873 		  }
   6874 	      BFD_ASSERT (cnt == dynsymcount);
   6875 	      cinfo.bucketcount = bucketcount;
   6876 	      cinfo.local_indx = cinfo.min_dynindx;
   6877 
   6878 	      s->size = (4 + bucketcount + cinfo.nsyms) * 4;
   6879 	      s->size += cinfo.maskbits / 8;
   6880 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
   6881 	      if (contents == NULL)
   6882 		{
   6883 		  free (cinfo.bitmask);
   6884 		  free (cinfo.hashcodes);
   6885 		  return FALSE;
   6886 		}
   6887 
   6888 	      s->contents = contents;
   6889 	      bfd_put_32 (output_bfd, bucketcount, contents);
   6890 	      bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
   6891 	      bfd_put_32 (output_bfd, maskwords, contents + 8);
   6892 	      bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
   6893 	      contents += 16 + cinfo.maskbits / 8;
   6894 
   6895 	      for (i = 0; i < bucketcount; ++i)
   6896 		{
   6897 		  if (cinfo.counts[i] == 0)
   6898 		    bfd_put_32 (output_bfd, 0, contents);
   6899 		  else
   6900 		    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
   6901 		  contents += 4;
   6902 		}
   6903 
   6904 	      cinfo.contents = contents;
   6905 
   6906 	      /* Renumber dynamic symbols, populate .gnu.hash section.  */
   6907 	      elf_link_hash_traverse (elf_hash_table (info),
   6908 				      elf_renumber_gnu_hash_syms, &cinfo);
   6909 
   6910 	      contents = s->contents + 16;
   6911 	      for (i = 0; i < maskwords; ++i)
   6912 		{
   6913 		  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
   6914 			   contents);
   6915 		  contents += bed->s->arch_size / 8;
   6916 		}
   6917 
   6918 	      free (cinfo.bitmask);
   6919 	      free (cinfo.hashcodes);
   6920 	    }
   6921 	}
   6922 
   6923       s = bfd_get_linker_section (dynobj, ".dynstr");
   6924       BFD_ASSERT (s != NULL);
   6925 
   6926       elf_finalize_dynstr (output_bfd, info);
   6927 
   6928       s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
   6929 
   6930       for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
   6931 	if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
   6932 	  return FALSE;
   6933     }
   6934 
   6935   return TRUE;
   6936 }
   6937 
   6938 /* Make sure sec_info_type is cleared if sec_info is cleared too.  */
   6940 
   6941 static void
   6942 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
   6943 			    asection *sec)
   6944 {
   6945   BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
   6946   sec->sec_info_type = SEC_INFO_TYPE_NONE;
   6947 }
   6948 
   6949 /* Finish SHF_MERGE section merging.  */
   6950 
   6951 bfd_boolean
   6952 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
   6953 {
   6954   bfd *ibfd;
   6955   asection *sec;
   6956 
   6957   if (!is_elf_hash_table (info->hash))
   6958     return FALSE;
   6959 
   6960   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
   6961     if ((ibfd->flags & DYNAMIC) == 0
   6962 	&& bfd_get_flavour (ibfd) == bfd_target_elf_flavour
   6963 	&& (elf_elfheader (ibfd)->e_ident[EI_CLASS]
   6964 	    == get_elf_backend_data (obfd)->s->elfclass))
   6965       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
   6966 	if ((sec->flags & SEC_MERGE) != 0
   6967 	    && !bfd_is_abs_section (sec->output_section))
   6968 	  {
   6969 	    struct bfd_elf_section_data *secdata;
   6970 
   6971 	    secdata = elf_section_data (sec);
   6972 	    if (! _bfd_add_merge_section (obfd,
   6973 					  &elf_hash_table (info)->merge_info,
   6974 					  sec, &secdata->sec_info))
   6975 	      return FALSE;
   6976 	    else if (secdata->sec_info)
   6977 	      sec->sec_info_type = SEC_INFO_TYPE_MERGE;
   6978 	  }
   6979 
   6980   if (elf_hash_table (info)->merge_info != NULL)
   6981     _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
   6982 			 merge_sections_remove_hook);
   6983   return TRUE;
   6984 }
   6985 
   6986 /* Create an entry in an ELF linker hash table.  */
   6987 
   6988 struct bfd_hash_entry *
   6989 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
   6990 			    struct bfd_hash_table *table,
   6991 			    const char *string)
   6992 {
   6993   /* Allocate the structure if it has not already been allocated by a
   6994      subclass.  */
   6995   if (entry == NULL)
   6996     {
   6997       entry = (struct bfd_hash_entry *)
   6998 	bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
   6999       if (entry == NULL)
   7000 	return entry;
   7001     }
   7002 
   7003   /* Call the allocation method of the superclass.  */
   7004   entry = _bfd_link_hash_newfunc (entry, table, string);
   7005   if (entry != NULL)
   7006     {
   7007       struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
   7008       struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
   7009 
   7010       /* Set local fields.  */
   7011       ret->indx = -1;
   7012       ret->dynindx = -1;
   7013       ret->got = htab->init_got_refcount;
   7014       ret->plt = htab->init_plt_refcount;
   7015       memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
   7016 			      - offsetof (struct elf_link_hash_entry, size)));
   7017       /* Assume that we have been called by a non-ELF symbol reader.
   7018 	 This flag is then reset by the code which reads an ELF input
   7019 	 file.  This ensures that a symbol created by a non-ELF symbol
   7020 	 reader will have the flag set correctly.  */
   7021       ret->non_elf = 1;
   7022     }
   7023 
   7024   return entry;
   7025 }
   7026 
   7027 /* Copy data from an indirect symbol to its direct symbol, hiding the
   7028    old indirect symbol.  Also used for copying flags to a weakdef.  */
   7029 
   7030 void
   7031 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
   7032 				  struct elf_link_hash_entry *dir,
   7033 				  struct elf_link_hash_entry *ind)
   7034 {
   7035   struct elf_link_hash_table *htab;
   7036 
   7037   /* Copy down any references that we may have already seen to the
   7038      symbol which just became indirect if DIR isn't a hidden versioned
   7039      symbol.  */
   7040 
   7041   if (dir->versioned != versioned_hidden)
   7042     {
   7043       dir->ref_dynamic |= ind->ref_dynamic;
   7044       dir->ref_regular |= ind->ref_regular;
   7045       dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
   7046       dir->non_got_ref |= ind->non_got_ref;
   7047       dir->needs_plt |= ind->needs_plt;
   7048       dir->pointer_equality_needed |= ind->pointer_equality_needed;
   7049     }
   7050 
   7051   if (ind->root.type != bfd_link_hash_indirect)
   7052     return;
   7053 
   7054   /* Copy over the global and procedure linkage table refcount entries.
   7055      These may have been already set up by a check_relocs routine.  */
   7056   htab = elf_hash_table (info);
   7057   if (ind->got.refcount > htab->init_got_refcount.refcount)
   7058     {
   7059       if (dir->got.refcount < 0)
   7060 	dir->got.refcount = 0;
   7061       dir->got.refcount += ind->got.refcount;
   7062       ind->got.refcount = htab->init_got_refcount.refcount;
   7063     }
   7064 
   7065   if (ind->plt.refcount > htab->init_plt_refcount.refcount)
   7066     {
   7067       if (dir->plt.refcount < 0)
   7068 	dir->plt.refcount = 0;
   7069       dir->plt.refcount += ind->plt.refcount;
   7070       ind->plt.refcount = htab->init_plt_refcount.refcount;
   7071     }
   7072 
   7073   if (ind->dynindx != -1)
   7074     {
   7075       if (dir->dynindx != -1)
   7076 	_bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
   7077       dir->dynindx = ind->dynindx;
   7078       dir->dynstr_index = ind->dynstr_index;
   7079       ind->dynindx = -1;
   7080       ind->dynstr_index = 0;
   7081     }
   7082 }
   7083 
   7084 void
   7085 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
   7086 				struct elf_link_hash_entry *h,
   7087 				bfd_boolean force_local)
   7088 {
   7089   /* STT_GNU_IFUNC symbol must go through PLT.  */
   7090   if (h->type != STT_GNU_IFUNC)
   7091     {
   7092       h->plt = elf_hash_table (info)->init_plt_offset;
   7093       h->needs_plt = 0;
   7094     }
   7095   if (force_local)
   7096     {
   7097       h->forced_local = 1;
   7098       if (h->dynindx != -1)
   7099 	{
   7100 	  h->dynindx = -1;
   7101 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
   7102 				  h->dynstr_index);
   7103 	}
   7104     }
   7105 }
   7106 
   7107 /* Initialize an ELF linker hash table.  *TABLE has been zeroed by our
   7108    caller.  */
   7109 
   7110 bfd_boolean
   7111 _bfd_elf_link_hash_table_init
   7112   (struct elf_link_hash_table *table,
   7113    bfd *abfd,
   7114    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
   7115 				      struct bfd_hash_table *,
   7116 				      const char *),
   7117    unsigned int entsize,
   7118    enum elf_target_id target_id)
   7119 {
   7120   bfd_boolean ret;
   7121   int can_refcount = get_elf_backend_data (abfd)->can_refcount;
   7122 
   7123   table->init_got_refcount.refcount = can_refcount - 1;
   7124   table->init_plt_refcount.refcount = can_refcount - 1;
   7125   table->init_got_offset.offset = -(bfd_vma) 1;
   7126   table->init_plt_offset.offset = -(bfd_vma) 1;
   7127   /* The first dynamic symbol is a dummy.  */
   7128   table->dynsymcount = 1;
   7129 
   7130   ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
   7131 
   7132   table->root.type = bfd_link_elf_hash_table;
   7133   table->hash_table_id = target_id;
   7134 
   7135   return ret;
   7136 }
   7137 
   7138 /* Create an ELF linker hash table.  */
   7139 
   7140 struct bfd_link_hash_table *
   7141 _bfd_elf_link_hash_table_create (bfd *abfd)
   7142 {
   7143   struct elf_link_hash_table *ret;
   7144   bfd_size_type amt = sizeof (struct elf_link_hash_table);
   7145 
   7146   ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
   7147   if (ret == NULL)
   7148     return NULL;
   7149 
   7150   if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
   7151 				       sizeof (struct elf_link_hash_entry),
   7152 				       GENERIC_ELF_DATA))
   7153     {
   7154       free (ret);
   7155       return NULL;
   7156     }
   7157   ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
   7158 
   7159   return &ret->root;
   7160 }
   7161 
   7162 /* Destroy an ELF linker hash table.  */
   7163 
   7164 void
   7165 _bfd_elf_link_hash_table_free (bfd *obfd)
   7166 {
   7167   struct elf_link_hash_table *htab;
   7168 
   7169   htab = (struct elf_link_hash_table *) obfd->link.hash;
   7170   if (htab->dynstr != NULL)
   7171     _bfd_elf_strtab_free (htab->dynstr);
   7172   _bfd_merge_sections_free (htab->merge_info);
   7173   _bfd_generic_link_hash_table_free (obfd);
   7174 }
   7175 
   7176 /* This is a hook for the ELF emulation code in the generic linker to
   7177    tell the backend linker what file name to use for the DT_NEEDED
   7178    entry for a dynamic object.  */
   7179 
   7180 void
   7181 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
   7182 {
   7183   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
   7184       && bfd_get_format (abfd) == bfd_object)
   7185     elf_dt_name (abfd) = name;
   7186 }
   7187 
   7188 int
   7189 bfd_elf_get_dyn_lib_class (bfd *abfd)
   7190 {
   7191   int lib_class;
   7192   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
   7193       && bfd_get_format (abfd) == bfd_object)
   7194     lib_class = elf_dyn_lib_class (abfd);
   7195   else
   7196     lib_class = 0;
   7197   return lib_class;
   7198 }
   7199 
   7200 void
   7201 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
   7202 {
   7203   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
   7204       && bfd_get_format (abfd) == bfd_object)
   7205     elf_dyn_lib_class (abfd) = lib_class;
   7206 }
   7207 
   7208 /* Get the list of DT_NEEDED entries for a link.  This is a hook for
   7209    the linker ELF emulation code.  */
   7210 
   7211 struct bfd_link_needed_list *
   7212 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
   7213 			 struct bfd_link_info *info)
   7214 {
   7215   if (! is_elf_hash_table (info->hash))
   7216     return NULL;
   7217   return elf_hash_table (info)->needed;
   7218 }
   7219 
   7220 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a
   7221    hook for the linker ELF emulation code.  */
   7222 
   7223 struct bfd_link_needed_list *
   7224 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
   7225 			  struct bfd_link_info *info)
   7226 {
   7227   if (! is_elf_hash_table (info->hash))
   7228     return NULL;
   7229   return elf_hash_table (info)->runpath;
   7230 }
   7231 
   7232 /* Get the name actually used for a dynamic object for a link.  This
   7233    is the SONAME entry if there is one.  Otherwise, it is the string
   7234    passed to bfd_elf_set_dt_needed_name, or it is the filename.  */
   7235 
   7236 const char *
   7237 bfd_elf_get_dt_soname (bfd *abfd)
   7238 {
   7239   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
   7240       && bfd_get_format (abfd) == bfd_object)
   7241     return elf_dt_name (abfd);
   7242   return NULL;
   7243 }
   7244 
   7245 /* Get the list of DT_NEEDED entries from a BFD.  This is a hook for
   7246    the ELF linker emulation code.  */
   7247 
   7248 bfd_boolean
   7249 bfd_elf_get_bfd_needed_list (bfd *abfd,
   7250 			     struct bfd_link_needed_list **pneeded)
   7251 {
   7252   asection *s;
   7253   bfd_byte *dynbuf = NULL;
   7254   unsigned int elfsec;
   7255   unsigned long shlink;
   7256   bfd_byte *extdyn, *extdynend;
   7257   size_t extdynsize;
   7258   void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
   7259 
   7260   *pneeded = NULL;
   7261 
   7262   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
   7263       || bfd_get_format (abfd) != bfd_object)
   7264     return TRUE;
   7265 
   7266   s = bfd_get_section_by_name (abfd, ".dynamic");
   7267   if (s == NULL || s->size == 0)
   7268     return TRUE;
   7269 
   7270   if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
   7271     goto error_return;
   7272 
   7273   elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
   7274   if (elfsec == SHN_BAD)
   7275     goto error_return;
   7276 
   7277   shlink = elf_elfsections (abfd)[elfsec]->sh_link;
   7278 
   7279   extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
   7280   swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
   7281 
   7282   extdyn = dynbuf;
   7283   extdynend = extdyn + s->size;
   7284   for (; extdyn < extdynend; extdyn += extdynsize)
   7285     {
   7286       Elf_Internal_Dyn dyn;
   7287 
   7288       (*swap_dyn_in) (abfd, extdyn, &dyn);
   7289 
   7290       if (dyn.d_tag == DT_NULL)
   7291 	break;
   7292 
   7293       if (dyn.d_tag == DT_NEEDED)
   7294 	{
   7295 	  const char *string;
   7296 	  struct bfd_link_needed_list *l;
   7297 	  unsigned int tagv = dyn.d_un.d_val;
   7298 	  bfd_size_type amt;
   7299 
   7300 	  string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
   7301 	  if (string == NULL)
   7302 	    goto error_return;
   7303 
   7304 	  amt = sizeof *l;
   7305 	  l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
   7306 	  if (l == NULL)
   7307 	    goto error_return;
   7308 
   7309 	  l->by = abfd;
   7310 	  l->name = string;
   7311 	  l->next = *pneeded;
   7312 	  *pneeded = l;
   7313 	}
   7314     }
   7315 
   7316   free (dynbuf);
   7317 
   7318   return TRUE;
   7319 
   7320  error_return:
   7321   if (dynbuf != NULL)
   7322     free (dynbuf);
   7323   return FALSE;
   7324 }
   7325 
   7326 struct elf_symbuf_symbol
   7327 {
   7328   unsigned long st_name;	/* Symbol name, index in string tbl */
   7329   unsigned char st_info;	/* Type and binding attributes */
   7330   unsigned char st_other;	/* Visibilty, and target specific */
   7331 };
   7332 
   7333 struct elf_symbuf_head
   7334 {
   7335   struct elf_symbuf_symbol *ssym;
   7336   size_t count;
   7337   unsigned int st_shndx;
   7338 };
   7339 
   7340 struct elf_symbol
   7341 {
   7342   union
   7343     {
   7344       Elf_Internal_Sym *isym;
   7345       struct elf_symbuf_symbol *ssym;
   7346     } u;
   7347   const char *name;
   7348 };
   7349 
   7350 /* Sort references to symbols by ascending section number.  */
   7351 
   7352 static int
   7353 elf_sort_elf_symbol (const void *arg1, const void *arg2)
   7354 {
   7355   const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
   7356   const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
   7357 
   7358   return s1->st_shndx - s2->st_shndx;
   7359 }
   7360 
   7361 static int
   7362 elf_sym_name_compare (const void *arg1, const void *arg2)
   7363 {
   7364   const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
   7365   const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
   7366   return strcmp (s1->name, s2->name);
   7367 }
   7368 
   7369 static struct elf_symbuf_head *
   7370 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
   7371 {
   7372   Elf_Internal_Sym **ind, **indbufend, **indbuf;
   7373   struct elf_symbuf_symbol *ssym;
   7374   struct elf_symbuf_head *ssymbuf, *ssymhead;
   7375   size_t i, shndx_count, total_size;
   7376 
   7377   indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
   7378   if (indbuf == NULL)
   7379     return NULL;
   7380 
   7381   for (ind = indbuf, i = 0; i < symcount; i++)
   7382     if (isymbuf[i].st_shndx != SHN_UNDEF)
   7383       *ind++ = &isymbuf[i];
   7384   indbufend = ind;
   7385 
   7386   qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
   7387 	 elf_sort_elf_symbol);
   7388 
   7389   shndx_count = 0;
   7390   if (indbufend > indbuf)
   7391     for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
   7392       if (ind[0]->st_shndx != ind[1]->st_shndx)
   7393 	shndx_count++;
   7394 
   7395   total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
   7396 		+ (indbufend - indbuf) * sizeof (*ssym));
   7397   ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
   7398   if (ssymbuf == NULL)
   7399     {
   7400       free (indbuf);
   7401       return NULL;
   7402     }
   7403 
   7404   ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
   7405   ssymbuf->ssym = NULL;
   7406   ssymbuf->count = shndx_count;
   7407   ssymbuf->st_shndx = 0;
   7408   for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
   7409     {
   7410       if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
   7411 	{
   7412 	  ssymhead++;
   7413 	  ssymhead->ssym = ssym;
   7414 	  ssymhead->count = 0;
   7415 	  ssymhead->st_shndx = (*ind)->st_shndx;
   7416 	}
   7417       ssym->st_name = (*ind)->st_name;
   7418       ssym->st_info = (*ind)->st_info;
   7419       ssym->st_other = (*ind)->st_other;
   7420       ssymhead->count++;
   7421     }
   7422   BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
   7423 	      && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
   7424 		  == total_size));
   7425 
   7426   free (indbuf);
   7427   return ssymbuf;
   7428 }
   7429 
   7430 /* Check if 2 sections define the same set of local and global
   7431    symbols.  */
   7432 
   7433 static bfd_boolean
   7434 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
   7435 				   struct bfd_link_info *info)
   7436 {
   7437   bfd *bfd1, *bfd2;
   7438   const struct elf_backend_data *bed1, *bed2;
   7439   Elf_Internal_Shdr *hdr1, *hdr2;
   7440   size_t symcount1, symcount2;
   7441   Elf_Internal_Sym *isymbuf1, *isymbuf2;
   7442   struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
   7443   Elf_Internal_Sym *isym, *isymend;
   7444   struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
   7445   size_t count1, count2, i;
   7446   unsigned int shndx1, shndx2;
   7447   bfd_boolean result;
   7448 
   7449   bfd1 = sec1->owner;
   7450   bfd2 = sec2->owner;
   7451 
   7452   /* Both sections have to be in ELF.  */
   7453   if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
   7454       || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
   7455     return FALSE;
   7456 
   7457   if (elf_section_type (sec1) != elf_section_type (sec2))
   7458     return FALSE;
   7459 
   7460   shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
   7461   shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
   7462   if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
   7463     return FALSE;
   7464 
   7465   bed1 = get_elf_backend_data (bfd1);
   7466   bed2 = get_elf_backend_data (bfd2);
   7467   hdr1 = &elf_tdata (bfd1)->symtab_hdr;
   7468   symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
   7469   hdr2 = &elf_tdata (bfd2)->symtab_hdr;
   7470   symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
   7471 
   7472   if (symcount1 == 0 || symcount2 == 0)
   7473     return FALSE;
   7474 
   7475   result = FALSE;
   7476   isymbuf1 = NULL;
   7477   isymbuf2 = NULL;
   7478   ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
   7479   ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
   7480 
   7481   if (ssymbuf1 == NULL)
   7482     {
   7483       isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
   7484 				       NULL, NULL, NULL);
   7485       if (isymbuf1 == NULL)
   7486 	goto done;
   7487 
   7488       if (!info->reduce_memory_overheads)
   7489 	elf_tdata (bfd1)->symbuf = ssymbuf1
   7490 	  = elf_create_symbuf (symcount1, isymbuf1);
   7491     }
   7492 
   7493   if (ssymbuf1 == NULL || ssymbuf2 == NULL)
   7494     {
   7495       isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
   7496 				       NULL, NULL, NULL);
   7497       if (isymbuf2 == NULL)
   7498 	goto done;
   7499 
   7500       if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
   7501 	elf_tdata (bfd2)->symbuf = ssymbuf2
   7502 	  = elf_create_symbuf (symcount2, isymbuf2);
   7503     }
   7504 
   7505   if (ssymbuf1 != NULL && ssymbuf2 != NULL)
   7506     {
   7507       /* Optimized faster version.  */
   7508       size_t lo, hi, mid;
   7509       struct elf_symbol *symp;
   7510       struct elf_symbuf_symbol *ssym, *ssymend;
   7511 
   7512       lo = 0;
   7513       hi = ssymbuf1->count;
   7514       ssymbuf1++;
   7515       count1 = 0;
   7516       while (lo < hi)
   7517 	{
   7518 	  mid = (lo + hi) / 2;
   7519 	  if (shndx1 < ssymbuf1[mid].st_shndx)
   7520 	    hi = mid;
   7521 	  else if (shndx1 > ssymbuf1[mid].st_shndx)
   7522 	    lo = mid + 1;
   7523 	  else
   7524 	    {
   7525 	      count1 = ssymbuf1[mid].count;
   7526 	      ssymbuf1 += mid;
   7527 	      break;
   7528 	    }
   7529 	}
   7530 
   7531       lo = 0;
   7532       hi = ssymbuf2->count;
   7533       ssymbuf2++;
   7534       count2 = 0;
   7535       while (lo < hi)
   7536 	{
   7537 	  mid = (lo + hi) / 2;
   7538 	  if (shndx2 < ssymbuf2[mid].st_shndx)
   7539 	    hi = mid;
   7540 	  else if (shndx2 > ssymbuf2[mid].st_shndx)
   7541 	    lo = mid + 1;
   7542 	  else
   7543 	    {
   7544 	      count2 = ssymbuf2[mid].count;
   7545 	      ssymbuf2 += mid;
   7546 	      break;
   7547 	    }
   7548 	}
   7549 
   7550       if (count1 == 0 || count2 == 0 || count1 != count2)
   7551 	goto done;
   7552 
   7553       symtable1
   7554 	= (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
   7555       symtable2
   7556 	= (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
   7557       if (symtable1 == NULL || symtable2 == NULL)
   7558 	goto done;
   7559 
   7560       symp = symtable1;
   7561       for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
   7562 	   ssym < ssymend; ssym++, symp++)
   7563 	{
   7564 	  symp->u.ssym = ssym;
   7565 	  symp->name = bfd_elf_string_from_elf_section (bfd1,
   7566 							hdr1->sh_link,
   7567 							ssym->st_name);
   7568 	}
   7569 
   7570       symp = symtable2;
   7571       for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
   7572 	   ssym < ssymend; ssym++, symp++)
   7573 	{
   7574 	  symp->u.ssym = ssym;
   7575 	  symp->name = bfd_elf_string_from_elf_section (bfd2,
   7576 							hdr2->sh_link,
   7577 							ssym->st_name);
   7578 	}
   7579 
   7580       /* Sort symbol by name.  */
   7581       qsort (symtable1, count1, sizeof (struct elf_symbol),
   7582 	     elf_sym_name_compare);
   7583       qsort (symtable2, count1, sizeof (struct elf_symbol),
   7584 	     elf_sym_name_compare);
   7585 
   7586       for (i = 0; i < count1; i++)
   7587 	/* Two symbols must have the same binding, type and name.  */
   7588 	if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
   7589 	    || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
   7590 	    || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
   7591 	  goto done;
   7592 
   7593       result = TRUE;
   7594       goto done;
   7595     }
   7596 
   7597   symtable1 = (struct elf_symbol *)
   7598       bfd_malloc (symcount1 * sizeof (struct elf_symbol));
   7599   symtable2 = (struct elf_symbol *)
   7600       bfd_malloc (symcount2 * sizeof (struct elf_symbol));
   7601   if (symtable1 == NULL || symtable2 == NULL)
   7602     goto done;
   7603 
   7604   /* Count definitions in the section.  */
   7605   count1 = 0;
   7606   for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
   7607     if (isym->st_shndx == shndx1)
   7608       symtable1[count1++].u.isym = isym;
   7609 
   7610   count2 = 0;
   7611   for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
   7612     if (isym->st_shndx == shndx2)
   7613       symtable2[count2++].u.isym = isym;
   7614 
   7615   if (count1 == 0 || count2 == 0 || count1 != count2)
   7616     goto done;
   7617 
   7618   for (i = 0; i < count1; i++)
   7619     symtable1[i].name
   7620       = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
   7621 					 symtable1[i].u.isym->st_name);
   7622 
   7623   for (i = 0; i < count2; i++)
   7624     symtable2[i].name
   7625       = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
   7626 					 symtable2[i].u.isym->st_name);
   7627 
   7628   /* Sort symbol by name.  */
   7629   qsort (symtable1, count1, sizeof (struct elf_symbol),
   7630 	 elf_sym_name_compare);
   7631   qsort (symtable2, count1, sizeof (struct elf_symbol),
   7632 	 elf_sym_name_compare);
   7633 
   7634   for (i = 0; i < count1; i++)
   7635     /* Two symbols must have the same binding, type and name.  */
   7636     if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
   7637 	|| symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
   7638 	|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
   7639       goto done;
   7640 
   7641   result = TRUE;
   7642 
   7643 done:
   7644   if (symtable1)
   7645     free (symtable1);
   7646   if (symtable2)
   7647     free (symtable2);
   7648   if (isymbuf1)
   7649     free (isymbuf1);
   7650   if (isymbuf2)
   7651     free (isymbuf2);
   7652 
   7653   return result;
   7654 }
   7655 
   7656 /* Return TRUE if 2 section types are compatible.  */
   7657 
   7658 bfd_boolean
   7659 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
   7660 				 bfd *bbfd, const asection *bsec)
   7661 {
   7662   if (asec == NULL
   7663       || bsec == NULL
   7664       || abfd->xvec->flavour != bfd_target_elf_flavour
   7665       || bbfd->xvec->flavour != bfd_target_elf_flavour)
   7666     return TRUE;
   7667 
   7668   return elf_section_type (asec) == elf_section_type (bsec);
   7669 }
   7670 
   7671 /* Final phase of ELF linker.  */
   7673 
   7674 /* A structure we use to avoid passing large numbers of arguments.  */
   7675 
   7676 struct elf_final_link_info
   7677 {
   7678   /* General link information.  */
   7679   struct bfd_link_info *info;
   7680   /* Output BFD.  */
   7681   bfd *output_bfd;
   7682   /* Symbol string table.  */
   7683   struct elf_strtab_hash *symstrtab;
   7684   /* .hash section.  */
   7685   asection *hash_sec;
   7686   /* symbol version section (.gnu.version).  */
   7687   asection *symver_sec;
   7688   /* Buffer large enough to hold contents of any section.  */
   7689   bfd_byte *contents;
   7690   /* Buffer large enough to hold external relocs of any section.  */
   7691   void *external_relocs;
   7692   /* Buffer large enough to hold internal relocs of any section.  */
   7693   Elf_Internal_Rela *internal_relocs;
   7694   /* Buffer large enough to hold external local symbols of any input
   7695      BFD.  */
   7696   bfd_byte *external_syms;
   7697   /* And a buffer for symbol section indices.  */
   7698   Elf_External_Sym_Shndx *locsym_shndx;
   7699   /* Buffer large enough to hold internal local symbols of any input
   7700      BFD.  */
   7701   Elf_Internal_Sym *internal_syms;
   7702   /* Array large enough to hold a symbol index for each local symbol
   7703      of any input BFD.  */
   7704   long *indices;
   7705   /* Array large enough to hold a section pointer for each local
   7706      symbol of any input BFD.  */
   7707   asection **sections;
   7708   /* Buffer for SHT_SYMTAB_SHNDX section.  */
   7709   Elf_External_Sym_Shndx *symshndxbuf;
   7710   /* Number of STT_FILE syms seen.  */
   7711   size_t filesym_count;
   7712 };
   7713 
   7714 /* This struct is used to pass information to elf_link_output_extsym.  */
   7715 
   7716 struct elf_outext_info
   7717 {
   7718   bfd_boolean failed;
   7719   bfd_boolean localsyms;
   7720   bfd_boolean file_sym_done;
   7721   struct elf_final_link_info *flinfo;
   7722 };
   7723 
   7724 
   7725 /* Support for evaluating a complex relocation.
   7726 
   7727    Complex relocations are generalized, self-describing relocations.  The
   7728    implementation of them consists of two parts: complex symbols, and the
   7729    relocations themselves.
   7730 
   7731    The relocations are use a reserved elf-wide relocation type code (R_RELC
   7732    external / BFD_RELOC_RELC internal) and an encoding of relocation field
   7733    information (start bit, end bit, word width, etc) into the addend.  This
   7734    information is extracted from CGEN-generated operand tables within gas.
   7735 
   7736    Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
   7737    internal) representing prefix-notation expressions, including but not
   7738    limited to those sorts of expressions normally encoded as addends in the
   7739    addend field.  The symbol mangling format is:
   7740 
   7741    <node> := <literal>
   7742           |  <unary-operator> ':' <node>
   7743           |  <binary-operator> ':' <node> ':' <node>
   7744 	  ;
   7745 
   7746    <literal> := 's' <digits=N> ':' <N character symbol name>
   7747              |  'S' <digits=N> ':' <N character section name>
   7748 	     |  '#' <hexdigits>
   7749 	     ;
   7750 
   7751    <binary-operator> := as in C
   7752    <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
   7753 
   7754 static void
   7755 set_symbol_value (bfd *bfd_with_globals,
   7756 		  Elf_Internal_Sym *isymbuf,
   7757 		  size_t locsymcount,
   7758 		  size_t symidx,
   7759 		  bfd_vma val)
   7760 {
   7761   struct elf_link_hash_entry **sym_hashes;
   7762   struct elf_link_hash_entry *h;
   7763   size_t extsymoff = locsymcount;
   7764 
   7765   if (symidx < locsymcount)
   7766     {
   7767       Elf_Internal_Sym *sym;
   7768 
   7769       sym = isymbuf + symidx;
   7770       if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
   7771 	{
   7772 	  /* It is a local symbol: move it to the
   7773 	     "absolute" section and give it a value.  */
   7774 	  sym->st_shndx = SHN_ABS;
   7775 	  sym->st_value = val;
   7776 	  return;
   7777 	}
   7778       BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
   7779       extsymoff = 0;
   7780     }
   7781 
   7782   /* It is a global symbol: set its link type
   7783      to "defined" and give it a value.  */
   7784 
   7785   sym_hashes = elf_sym_hashes (bfd_with_globals);
   7786   h = sym_hashes [symidx - extsymoff];
   7787   while (h->root.type == bfd_link_hash_indirect
   7788 	 || h->root.type == bfd_link_hash_warning)
   7789     h = (struct elf_link_hash_entry *) h->root.u.i.link;
   7790   h->root.type = bfd_link_hash_defined;
   7791   h->root.u.def.value = val;
   7792   h->root.u.def.section = bfd_abs_section_ptr;
   7793 }
   7794 
   7795 static bfd_boolean
   7796 resolve_symbol (const char *name,
   7797 		bfd *input_bfd,
   7798 		struct elf_final_link_info *flinfo,
   7799 		bfd_vma *result,
   7800 		Elf_Internal_Sym *isymbuf,
   7801 		size_t locsymcount)
   7802 {
   7803   Elf_Internal_Sym *sym;
   7804   struct bfd_link_hash_entry *global_entry;
   7805   const char *candidate = NULL;
   7806   Elf_Internal_Shdr *symtab_hdr;
   7807   size_t i;
   7808 
   7809   symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
   7810 
   7811   for (i = 0; i < locsymcount; ++ i)
   7812     {
   7813       sym = isymbuf + i;
   7814 
   7815       if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
   7816 	continue;
   7817 
   7818       candidate = bfd_elf_string_from_elf_section (input_bfd,
   7819 						   symtab_hdr->sh_link,
   7820 						   sym->st_name);
   7821 #ifdef DEBUG
   7822       printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
   7823 	      name, candidate, (unsigned long) sym->st_value);
   7824 #endif
   7825       if (candidate && strcmp (candidate, name) == 0)
   7826 	{
   7827 	  asection *sec = flinfo->sections [i];
   7828 
   7829 	  *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
   7830 	  *result += sec->output_offset + sec->output_section->vma;
   7831 #ifdef DEBUG
   7832 	  printf ("Found symbol with value %8.8lx\n",
   7833 		  (unsigned long) *result);
   7834 #endif
   7835 	  return TRUE;
   7836 	}
   7837     }
   7838 
   7839   /* Hmm, haven't found it yet. perhaps it is a global.  */
   7840   global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
   7841 				       FALSE, FALSE, TRUE);
   7842   if (!global_entry)
   7843     return FALSE;
   7844 
   7845   if (global_entry->type == bfd_link_hash_defined
   7846       || global_entry->type == bfd_link_hash_defweak)
   7847     {
   7848       *result = (global_entry->u.def.value
   7849 		 + global_entry->u.def.section->output_section->vma
   7850 		 + global_entry->u.def.section->output_offset);
   7851 #ifdef DEBUG
   7852       printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
   7853 	      global_entry->root.string, (unsigned long) *result);
   7854 #endif
   7855       return TRUE;
   7856     }
   7857 
   7858   return FALSE;
   7859 }
   7860 
   7861 /* Looks up NAME in SECTIONS.  If found sets RESULT to NAME's address (in
   7862    bytes) and returns TRUE, otherwise returns FALSE.  Accepts pseudo-section
   7863    names like "foo.end" which is the end address of section "foo".  */
   7864 
   7865 static bfd_boolean
   7866 resolve_section (const char *name,
   7867 		 asection *sections,
   7868 		 bfd_vma *result,
   7869 		 bfd * abfd)
   7870 {
   7871   asection *curr;
   7872   unsigned int len;
   7873 
   7874   for (curr = sections; curr; curr = curr->next)
   7875     if (strcmp (curr->name, name) == 0)
   7876       {
   7877 	*result = curr->vma;
   7878 	return TRUE;
   7879       }
   7880 
   7881   /* Hmm. still haven't found it. try pseudo-section names.  */
   7882   /* FIXME: This could be coded more efficiently...  */
   7883   for (curr = sections; curr; curr = curr->next)
   7884     {
   7885       len = strlen (curr->name);
   7886       if (len > strlen (name))
   7887 	continue;
   7888 
   7889       if (strncmp (curr->name, name, len) == 0)
   7890 	{
   7891 	  if (strncmp (".end", name + len, 4) == 0)
   7892 	    {
   7893 	      *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
   7894 	      return TRUE;
   7895 	    }
   7896 
   7897 	  /* Insert more pseudo-section names here, if you like.  */
   7898 	}
   7899     }
   7900 
   7901   return FALSE;
   7902 }
   7903 
   7904 static void
   7905 undefined_reference (const char *reftype, const char *name)
   7906 {
   7907   _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
   7908 		      reftype, name);
   7909 }
   7910 
   7911 static bfd_boolean
   7912 eval_symbol (bfd_vma *result,
   7913 	     const char **symp,
   7914 	     bfd *input_bfd,
   7915 	     struct elf_final_link_info *flinfo,
   7916 	     bfd_vma dot,
   7917 	     Elf_Internal_Sym *isymbuf,
   7918 	     size_t locsymcount,
   7919 	     int signed_p)
   7920 {
   7921   size_t len;
   7922   size_t symlen;
   7923   bfd_vma a;
   7924   bfd_vma b;
   7925   char symbuf[4096];
   7926   const char *sym = *symp;
   7927   const char *symend;
   7928   bfd_boolean symbol_is_section = FALSE;
   7929 
   7930   len = strlen (sym);
   7931   symend = sym + len;
   7932 
   7933   if (len < 1 || len > sizeof (symbuf))
   7934     {
   7935       bfd_set_error (bfd_error_invalid_operation);
   7936       return FALSE;
   7937     }
   7938 
   7939   switch (* sym)
   7940     {
   7941     case '.':
   7942       *result = dot;
   7943       *symp = sym + 1;
   7944       return TRUE;
   7945 
   7946     case '#':
   7947       ++sym;
   7948       *result = strtoul (sym, (char **) symp, 16);
   7949       return TRUE;
   7950 
   7951     case 'S':
   7952       symbol_is_section = TRUE;
   7953     case 's':
   7954       ++sym;
   7955       symlen = strtol (sym, (char **) symp, 10);
   7956       sym = *symp + 1; /* Skip the trailing ':'.  */
   7957 
   7958       if (symend < sym || symlen + 1 > sizeof (symbuf))
   7959 	{
   7960 	  bfd_set_error (bfd_error_invalid_operation);
   7961 	  return FALSE;
   7962 	}
   7963 
   7964       memcpy (symbuf, sym, symlen);
   7965       symbuf[symlen] = '\0';
   7966       *symp = sym + symlen;
   7967 
   7968       /* Is it always possible, with complex symbols, that gas "mis-guessed"
   7969 	 the symbol as a section, or vice-versa. so we're pretty liberal in our
   7970 	 interpretation here; section means "try section first", not "must be a
   7971 	 section", and likewise with symbol.  */
   7972 
   7973       if (symbol_is_section)
   7974 	{
   7975 	  if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
   7976 	      && !resolve_symbol (symbuf, input_bfd, flinfo, result,
   7977 				  isymbuf, locsymcount))
   7978 	    {
   7979 	      undefined_reference ("section", symbuf);
   7980 	      return FALSE;
   7981 	    }
   7982 	}
   7983       else
   7984 	{
   7985 	  if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
   7986 			       isymbuf, locsymcount)
   7987 	      && !resolve_section (symbuf, flinfo->output_bfd->sections,
   7988 				   result, input_bfd))
   7989 	    {
   7990 	      undefined_reference ("symbol", symbuf);
   7991 	      return FALSE;
   7992 	    }
   7993 	}
   7994 
   7995       return TRUE;
   7996 
   7997       /* All that remains are operators.  */
   7998 
   7999 #define UNARY_OP(op)						\
   8000   if (strncmp (sym, #op, strlen (#op)) == 0)			\
   8001     {								\
   8002       sym += strlen (#op);					\
   8003       if (*sym == ':')						\
   8004 	++sym;							\
   8005       *symp = sym;						\
   8006       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
   8007 			isymbuf, locsymcount, signed_p))	\
   8008 	return FALSE;						\
   8009       if (signed_p)						\
   8010 	*result = op ((bfd_signed_vma) a);			\
   8011       else							\
   8012 	*result = op a;						\
   8013       return TRUE;						\
   8014     }
   8015 
   8016 #define BINARY_OP(op)						\
   8017   if (strncmp (sym, #op, strlen (#op)) == 0)			\
   8018     {								\
   8019       sym += strlen (#op);					\
   8020       if (*sym == ':')						\
   8021 	++sym;							\
   8022       *symp = sym;						\
   8023       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
   8024 			isymbuf, locsymcount, signed_p))	\
   8025 	return FALSE;						\
   8026       ++*symp;							\
   8027       if (!eval_symbol (&b, symp, input_bfd, flinfo, dot,	\
   8028 			isymbuf, locsymcount, signed_p))	\
   8029 	return FALSE;						\
   8030       if (signed_p)						\
   8031 	*result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b);	\
   8032       else							\
   8033 	*result = a op b;					\
   8034       return TRUE;						\
   8035     }
   8036 
   8037     default:
   8038       UNARY_OP  (0-);
   8039       BINARY_OP (<<);
   8040       BINARY_OP (>>);
   8041       BINARY_OP (==);
   8042       BINARY_OP (!=);
   8043       BINARY_OP (<=);
   8044       BINARY_OP (>=);
   8045       BINARY_OP (&&);
   8046       BINARY_OP (||);
   8047       UNARY_OP  (~);
   8048       UNARY_OP  (!);
   8049       BINARY_OP (*);
   8050       BINARY_OP (/);
   8051       BINARY_OP (%);
   8052       BINARY_OP (^);
   8053       BINARY_OP (|);
   8054       BINARY_OP (&);
   8055       BINARY_OP (+);
   8056       BINARY_OP (-);
   8057       BINARY_OP (<);
   8058       BINARY_OP (>);
   8059 #undef UNARY_OP
   8060 #undef BINARY_OP
   8061       _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
   8062       bfd_set_error (bfd_error_invalid_operation);
   8063       return FALSE;
   8064     }
   8065 }
   8066 
   8067 static void
   8068 put_value (bfd_vma size,
   8069 	   unsigned long chunksz,
   8070 	   bfd *input_bfd,
   8071 	   bfd_vma x,
   8072 	   bfd_byte *location)
   8073 {
   8074   location += (size - chunksz);
   8075 
   8076   for (; size; size -= chunksz, location -= chunksz)
   8077     {
   8078       switch (chunksz)
   8079 	{
   8080 	case 1:
   8081 	  bfd_put_8 (input_bfd, x, location);
   8082 	  x >>= 8;
   8083 	  break;
   8084 	case 2:
   8085 	  bfd_put_16 (input_bfd, x, location);
   8086 	  x >>= 16;
   8087 	  break;
   8088 	case 4:
   8089 	  bfd_put_32 (input_bfd, x, location);
   8090 	  /* Computed this way because x >>= 32 is undefined if x is a 32-bit value.  */
   8091 	  x >>= 16;
   8092 	  x >>= 16;
   8093 	  break;
   8094 #ifdef BFD64
   8095 	case 8:
   8096 	  bfd_put_64 (input_bfd, x, location);
   8097 	  /* Computed this way because x >>= 64 is undefined if x is a 64-bit value.  */
   8098 	  x >>= 32;
   8099 	  x >>= 32;
   8100 	  break;
   8101 #endif
   8102 	default:
   8103 	  abort ();
   8104 	  break;
   8105 	}
   8106     }
   8107 }
   8108 
   8109 static bfd_vma
   8110 get_value (bfd_vma size,
   8111 	   unsigned long chunksz,
   8112 	   bfd *input_bfd,
   8113 	   bfd_byte *location)
   8114 {
   8115   int shift;
   8116   bfd_vma x = 0;
   8117 
   8118   /* Sanity checks.  */
   8119   BFD_ASSERT (chunksz <= sizeof (x)
   8120 	      && size >= chunksz
   8121 	      && chunksz != 0
   8122 	      && (size % chunksz) == 0
   8123 	      && input_bfd != NULL
   8124 	      && location != NULL);
   8125 
   8126   if (chunksz == sizeof (x))
   8127     {
   8128       BFD_ASSERT (size == chunksz);
   8129 
   8130       /* Make sure that we do not perform an undefined shift operation.
   8131 	 We know that size == chunksz so there will only be one iteration
   8132 	 of the loop below.  */
   8133       shift = 0;
   8134     }
   8135   else
   8136     shift = 8 * chunksz;
   8137 
   8138   for (; size; size -= chunksz, location += chunksz)
   8139     {
   8140       switch (chunksz)
   8141 	{
   8142 	case 1:
   8143 	  x = (x << shift) | bfd_get_8 (input_bfd, location);
   8144 	  break;
   8145 	case 2:
   8146 	  x = (x << shift) | bfd_get_16 (input_bfd, location);
   8147 	  break;
   8148 	case 4:
   8149 	  x = (x << shift) | bfd_get_32 (input_bfd, location);
   8150 	  break;
   8151 #ifdef BFD64
   8152 	case 8:
   8153 	  x = (x << shift) | bfd_get_64 (input_bfd, location);
   8154 	  break;
   8155 #endif
   8156 	default:
   8157 	  abort ();
   8158 	}
   8159     }
   8160   return x;
   8161 }
   8162 
   8163 static void
   8164 decode_complex_addend (unsigned long *start,   /* in bits */
   8165 		       unsigned long *oplen,   /* in bits */
   8166 		       unsigned long *len,     /* in bits */
   8167 		       unsigned long *wordsz,  /* in bytes */
   8168 		       unsigned long *chunksz, /* in bytes */
   8169 		       unsigned long *lsb0_p,
   8170 		       unsigned long *signed_p,
   8171 		       unsigned long *trunc_p,
   8172 		       unsigned long encoded)
   8173 {
   8174   * start     =  encoded        & 0x3F;
   8175   * len       = (encoded >>  6) & 0x3F;
   8176   * oplen     = (encoded >> 12) & 0x3F;
   8177   * wordsz    = (encoded >> 18) & 0xF;
   8178   * chunksz   = (encoded >> 22) & 0xF;
   8179   * lsb0_p    = (encoded >> 27) & 1;
   8180   * signed_p  = (encoded >> 28) & 1;
   8181   * trunc_p   = (encoded >> 29) & 1;
   8182 }
   8183 
   8184 bfd_reloc_status_type
   8185 bfd_elf_perform_complex_relocation (bfd *input_bfd,
   8186 				    asection *input_section ATTRIBUTE_UNUSED,
   8187 				    bfd_byte *contents,
   8188 				    Elf_Internal_Rela *rel,
   8189 				    bfd_vma relocation)
   8190 {
   8191   bfd_vma shift, x, mask;
   8192   unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
   8193   bfd_reloc_status_type r;
   8194 
   8195   /*  Perform this reloc, since it is complex.
   8196       (this is not to say that it necessarily refers to a complex
   8197       symbol; merely that it is a self-describing CGEN based reloc.
   8198       i.e. the addend has the complete reloc information (bit start, end,
   8199       word size, etc) encoded within it.).  */
   8200 
   8201   decode_complex_addend (&start, &oplen, &len, &wordsz,
   8202 			 &chunksz, &lsb0_p, &signed_p,
   8203 			 &trunc_p, rel->r_addend);
   8204 
   8205   mask = (((1L << (len - 1)) - 1) << 1) | 1;
   8206 
   8207   if (lsb0_p)
   8208     shift = (start + 1) - len;
   8209   else
   8210     shift = (8 * wordsz) - (start + len);
   8211 
   8212   x = get_value (wordsz, chunksz, input_bfd,
   8213 		 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
   8214 
   8215 #ifdef DEBUG
   8216   printf ("Doing complex reloc: "
   8217 	  "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
   8218 	  "chunksz %ld, start %ld, len %ld, oplen %ld\n"
   8219 	  "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
   8220 	  lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
   8221 	  oplen, (unsigned long) x, (unsigned long) mask,
   8222 	  (unsigned long) relocation);
   8223 #endif
   8224 
   8225   r = bfd_reloc_ok;
   8226   if (! trunc_p)
   8227     /* Now do an overflow check.  */
   8228     r = bfd_check_overflow ((signed_p
   8229 			     ? complain_overflow_signed
   8230 			     : complain_overflow_unsigned),
   8231 			    len, 0, (8 * wordsz),
   8232 			    relocation);
   8233 
   8234   /* Do the deed.  */
   8235   x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
   8236 
   8237 #ifdef DEBUG
   8238   printf ("           relocation: %8.8lx\n"
   8239 	  "         shifted mask: %8.8lx\n"
   8240 	  " shifted/masked reloc: %8.8lx\n"
   8241 	  "               result: %8.8lx\n",
   8242 	  (unsigned long) relocation, (unsigned long) (mask << shift),
   8243 	  (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
   8244 #endif
   8245   put_value (wordsz, chunksz, input_bfd, x,
   8246 	     contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
   8247   return r;
   8248 }
   8249 
   8250 /* Functions to read r_offset from external (target order) reloc
   8251    entry.  Faster than bfd_getl32 et al, because we let the compiler
   8252    know the value is aligned.  */
   8253 
   8254 static bfd_vma
   8255 ext32l_r_offset (const void *p)
   8256 {
   8257   union aligned32
   8258   {
   8259     uint32_t v;
   8260     unsigned char c[4];
   8261   };
   8262   const union aligned32 *a
   8263     = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
   8264 
   8265   uint32_t aval = (  (uint32_t) a->c[0]
   8266 		   | (uint32_t) a->c[1] << 8
   8267 		   | (uint32_t) a->c[2] << 16
   8268 		   | (uint32_t) a->c[3] << 24);
   8269   return aval;
   8270 }
   8271 
   8272 static bfd_vma
   8273 ext32b_r_offset (const void *p)
   8274 {
   8275   union aligned32
   8276   {
   8277     uint32_t v;
   8278     unsigned char c[4];
   8279   };
   8280   const union aligned32 *a
   8281     = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
   8282 
   8283   uint32_t aval = (  (uint32_t) a->c[0] << 24
   8284 		   | (uint32_t) a->c[1] << 16
   8285 		   | (uint32_t) a->c[2] << 8
   8286 		   | (uint32_t) a->c[3]);
   8287   return aval;
   8288 }
   8289 
   8290 #ifdef BFD_HOST_64_BIT
   8291 static bfd_vma
   8292 ext64l_r_offset (const void *p)
   8293 {
   8294   union aligned64
   8295   {
   8296     uint64_t v;
   8297     unsigned char c[8];
   8298   };
   8299   const union aligned64 *a
   8300     = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
   8301 
   8302   uint64_t aval = (  (uint64_t) a->c[0]
   8303 		   | (uint64_t) a->c[1] << 8
   8304 		   | (uint64_t) a->c[2] << 16
   8305 		   | (uint64_t) a->c[3] << 24
   8306 		   | (uint64_t) a->c[4] << 32
   8307 		   | (uint64_t) a->c[5] << 40
   8308 		   | (uint64_t) a->c[6] << 48
   8309 		   | (uint64_t) a->c[7] << 56);
   8310   return aval;
   8311 }
   8312 
   8313 static bfd_vma
   8314 ext64b_r_offset (const void *p)
   8315 {
   8316   union aligned64
   8317   {
   8318     uint64_t v;
   8319     unsigned char c[8];
   8320   };
   8321   const union aligned64 *a
   8322     = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
   8323 
   8324   uint64_t aval = (  (uint64_t) a->c[0] << 56
   8325 		   | (uint64_t) a->c[1] << 48
   8326 		   | (uint64_t) a->c[2] << 40
   8327 		   | (uint64_t) a->c[3] << 32
   8328 		   | (uint64_t) a->c[4] << 24
   8329 		   | (uint64_t) a->c[5] << 16
   8330 		   | (uint64_t) a->c[6] << 8
   8331 		   | (uint64_t) a->c[7]);
   8332   return aval;
   8333 }
   8334 #endif
   8335 
   8336 /* When performing a relocatable link, the input relocations are
   8337    preserved.  But, if they reference global symbols, the indices
   8338    referenced must be updated.  Update all the relocations found in
   8339    RELDATA.  */
   8340 
   8341 static bfd_boolean
   8342 elf_link_adjust_relocs (bfd *abfd,
   8343 			struct bfd_elf_section_reloc_data *reldata,
   8344 			bfd_boolean sort)
   8345 {
   8346   unsigned int i;
   8347   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   8348   bfd_byte *erela;
   8349   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
   8350   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
   8351   bfd_vma r_type_mask;
   8352   int r_sym_shift;
   8353   unsigned int count = reldata->count;
   8354   struct elf_link_hash_entry **rel_hash = reldata->hashes;
   8355 
   8356   if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
   8357     {
   8358       swap_in = bed->s->swap_reloc_in;
   8359       swap_out = bed->s->swap_reloc_out;
   8360     }
   8361   else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
   8362     {
   8363       swap_in = bed->s->swap_reloca_in;
   8364       swap_out = bed->s->swap_reloca_out;
   8365     }
   8366   else
   8367     abort ();
   8368 
   8369   if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
   8370     abort ();
   8371 
   8372   if (bed->s->arch_size == 32)
   8373     {
   8374       r_type_mask = 0xff;
   8375       r_sym_shift = 8;
   8376     }
   8377   else
   8378     {
   8379       r_type_mask = 0xffffffff;
   8380       r_sym_shift = 32;
   8381     }
   8382 
   8383   erela = reldata->hdr->contents;
   8384   for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
   8385     {
   8386       Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
   8387       unsigned int j;
   8388 
   8389       if (*rel_hash == NULL)
   8390 	continue;
   8391 
   8392       BFD_ASSERT ((*rel_hash)->indx >= 0);
   8393 
   8394       (*swap_in) (abfd, erela, irela);
   8395       for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
   8396 	irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
   8397 			   | (irela[j].r_info & r_type_mask));
   8398       (*swap_out) (abfd, irela, erela);
   8399     }
   8400 
   8401   if (sort && count != 0)
   8402     {
   8403       bfd_vma (*ext_r_off) (const void *);
   8404       bfd_vma r_off;
   8405       size_t elt_size;
   8406       bfd_byte *base, *end, *p, *loc;
   8407       bfd_byte *buf = NULL;
   8408 
   8409       if (bed->s->arch_size == 32)
   8410 	{
   8411 	  if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
   8412 	    ext_r_off = ext32l_r_offset;
   8413 	  else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
   8414 	    ext_r_off = ext32b_r_offset;
   8415 	  else
   8416 	    abort ();
   8417 	}
   8418       else
   8419 	{
   8420 #ifdef BFD_HOST_64_BIT
   8421 	  if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
   8422 	    ext_r_off = ext64l_r_offset;
   8423 	  else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
   8424 	    ext_r_off = ext64b_r_offset;
   8425 	  else
   8426 #endif
   8427 	    abort ();
   8428 	}
   8429 
   8430       /*  Must use a stable sort here.  A modified insertion sort,
   8431 	  since the relocs are mostly sorted already.  */
   8432       elt_size = reldata->hdr->sh_entsize;
   8433       base = reldata->hdr->contents;
   8434       end = base + count * elt_size;
   8435       if (elt_size > sizeof (Elf64_External_Rela))
   8436 	abort ();
   8437 
   8438       /* Ensure the first element is lowest.  This acts as a sentinel,
   8439 	 speeding the main loop below.  */
   8440       r_off = (*ext_r_off) (base);
   8441       for (p = loc = base; (p += elt_size) < end; )
   8442 	{
   8443 	  bfd_vma r_off2 = (*ext_r_off) (p);
   8444 	  if (r_off > r_off2)
   8445 	    {
   8446 	      r_off = r_off2;
   8447 	      loc = p;
   8448 	    }
   8449 	}
   8450       if (loc != base)
   8451 	{
   8452 	  /* Don't just swap *base and *loc as that changes the order
   8453 	     of the original base[0] and base[1] if they happen to
   8454 	     have the same r_offset.  */
   8455 	  bfd_byte onebuf[sizeof (Elf64_External_Rela)];
   8456 	  memcpy (onebuf, loc, elt_size);
   8457 	  memmove (base + elt_size, base, loc - base);
   8458 	  memcpy (base, onebuf, elt_size);
   8459 	}
   8460 
   8461       for (p = base + elt_size; (p += elt_size) < end; )
   8462 	{
   8463 	  /* base to p is sorted, *p is next to insert.  */
   8464 	  r_off = (*ext_r_off) (p);
   8465 	  /* Search the sorted region for location to insert.  */
   8466 	  loc = p - elt_size;
   8467 	  while (r_off < (*ext_r_off) (loc))
   8468 	    loc -= elt_size;
   8469 	  loc += elt_size;
   8470 	  if (loc != p)
   8471 	    {
   8472 	      /* Chances are there is a run of relocs to insert here,
   8473 		 from one of more input files.  Files are not always
   8474 		 linked in order due to the way elf_link_input_bfd is
   8475 		 called.  See pr17666.  */
   8476 	      size_t sortlen = p - loc;
   8477 	      bfd_vma r_off2 = (*ext_r_off) (loc);
   8478 	      size_t runlen = elt_size;
   8479 	      size_t buf_size = 96 * 1024;
   8480 	      while (p + runlen < end
   8481 		     && (sortlen <= buf_size
   8482 			 || runlen + elt_size <= buf_size)
   8483 		     && r_off2 > (*ext_r_off) (p + runlen))
   8484 		runlen += elt_size;
   8485 	      if (buf == NULL)
   8486 		{
   8487 		  buf = bfd_malloc (buf_size);
   8488 		  if (buf == NULL)
   8489 		    return FALSE;
   8490 		}
   8491 	      if (runlen < sortlen)
   8492 		{
   8493 		  memcpy (buf, p, runlen);
   8494 		  memmove (loc + runlen, loc, sortlen);
   8495 		  memcpy (loc, buf, runlen);
   8496 		}
   8497 	      else
   8498 		{
   8499 		  memcpy (buf, loc, sortlen);
   8500 		  memmove (loc, p, runlen);
   8501 		  memcpy (loc + runlen, buf, sortlen);
   8502 		}
   8503 	      p += runlen - elt_size;
   8504 	    }
   8505 	}
   8506       /* Hashes are no longer valid.  */
   8507       free (reldata->hashes);
   8508       reldata->hashes = NULL;
   8509       free (buf);
   8510     }
   8511   return TRUE;
   8512 }
   8513 
   8514 struct elf_link_sort_rela
   8515 {
   8516   union {
   8517     bfd_vma offset;
   8518     bfd_vma sym_mask;
   8519   } u;
   8520   enum elf_reloc_type_class type;
   8521   /* We use this as an array of size int_rels_per_ext_rel.  */
   8522   Elf_Internal_Rela rela[1];
   8523 };
   8524 
   8525 static int
   8526 elf_link_sort_cmp1 (const void *A, const void *B)
   8527 {
   8528   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
   8529   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
   8530   int relativea, relativeb;
   8531 
   8532   relativea = a->type == reloc_class_relative;
   8533   relativeb = b->type == reloc_class_relative;
   8534 
   8535   if (relativea < relativeb)
   8536     return 1;
   8537   if (relativea > relativeb)
   8538     return -1;
   8539   if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
   8540     return -1;
   8541   if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
   8542     return 1;
   8543   if (a->rela->r_offset < b->rela->r_offset)
   8544     return -1;
   8545   if (a->rela->r_offset > b->rela->r_offset)
   8546     return 1;
   8547   return 0;
   8548 }
   8549 
   8550 static int
   8551 elf_link_sort_cmp2 (const void *A, const void *B)
   8552 {
   8553   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
   8554   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
   8555 
   8556   if (a->type < b->type)
   8557     return -1;
   8558   if (a->type > b->type)
   8559     return 1;
   8560   if (a->u.offset < b->u.offset)
   8561     return -1;
   8562   if (a->u.offset > b->u.offset)
   8563     return 1;
   8564   if (a->rela->r_offset < b->rela->r_offset)
   8565     return -1;
   8566   if (a->rela->r_offset > b->rela->r_offset)
   8567     return 1;
   8568   return 0;
   8569 }
   8570 
   8571 static size_t
   8572 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
   8573 {
   8574   asection *dynamic_relocs;
   8575   asection *rela_dyn;
   8576   asection *rel_dyn;
   8577   bfd_size_type count, size;
   8578   size_t i, ret, sort_elt, ext_size;
   8579   bfd_byte *sort, *s_non_relative, *p;
   8580   struct elf_link_sort_rela *sq;
   8581   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   8582   int i2e = bed->s->int_rels_per_ext_rel;
   8583   unsigned int opb = bfd_octets_per_byte (abfd);
   8584   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
   8585   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
   8586   struct bfd_link_order *lo;
   8587   bfd_vma r_sym_mask;
   8588   bfd_boolean use_rela;
   8589 
   8590   /* Find a dynamic reloc section.  */
   8591   rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
   8592   rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn");
   8593   if (rela_dyn != NULL && rela_dyn->size > 0
   8594       && rel_dyn != NULL && rel_dyn->size > 0)
   8595     {
   8596       bfd_boolean use_rela_initialised = FALSE;
   8597 
   8598       /* This is just here to stop gcc from complaining.
   8599 	 Its initialization checking code is not perfect.  */
   8600       use_rela = TRUE;
   8601 
   8602       /* Both sections are present.  Examine the sizes
   8603 	 of the indirect sections to help us choose.  */
   8604       for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
   8605 	if (lo->type == bfd_indirect_link_order)
   8606 	  {
   8607 	    asection *o = lo->u.indirect.section;
   8608 
   8609 	    if ((o->size % bed->s->sizeof_rela) == 0)
   8610 	      {
   8611 		if ((o->size % bed->s->sizeof_rel) == 0)
   8612 		  /* Section size is divisible by both rel and rela sizes.
   8613 		     It is of no help to us.  */
   8614 		  ;
   8615 		else
   8616 		  {
   8617 		    /* Section size is only divisible by rela.  */
   8618 		    if (use_rela_initialised && (use_rela == FALSE))
   8619 		      {
   8620 			_bfd_error_handler (_("%B: Unable to sort relocs - "
   8621 					      "they are in more than one size"),
   8622 					    abfd);
   8623 			bfd_set_error (bfd_error_invalid_operation);
   8624 			return 0;
   8625 		      }
   8626 		    else
   8627 		      {
   8628 			use_rela = TRUE;
   8629 			use_rela_initialised = TRUE;
   8630 		      }
   8631 		  }
   8632 	      }
   8633 	    else if ((o->size % bed->s->sizeof_rel) == 0)
   8634 	      {
   8635 		/* Section size is only divisible by rel.  */
   8636 		if (use_rela_initialised && (use_rela == TRUE))
   8637 		  {
   8638 		    _bfd_error_handler (_("%B: Unable to sort relocs - "
   8639 					  "they are in more than one size"),
   8640 					abfd);
   8641 		    bfd_set_error (bfd_error_invalid_operation);
   8642 		    return 0;
   8643 		  }
   8644 		else
   8645 		  {
   8646 		    use_rela = FALSE;
   8647 		    use_rela_initialised = TRUE;
   8648 		  }
   8649 	      }
   8650 	    else
   8651 	      {
   8652 		/* The section size is not divisible by either -
   8653 		   something is wrong.  */
   8654 		_bfd_error_handler (_("%B: Unable to sort relocs - "
   8655 				      "they are of an unknown size"), abfd);
   8656 		bfd_set_error (bfd_error_invalid_operation);
   8657 		return 0;
   8658 	      }
   8659 	  }
   8660 
   8661       for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
   8662 	if (lo->type == bfd_indirect_link_order)
   8663 	  {
   8664 	    asection *o = lo->u.indirect.section;
   8665 
   8666 	    if ((o->size % bed->s->sizeof_rela) == 0)
   8667 	      {
   8668 		if ((o->size % bed->s->sizeof_rel) == 0)
   8669 		  /* Section size is divisible by both rel and rela sizes.
   8670 		     It is of no help to us.  */
   8671 		  ;
   8672 		else
   8673 		  {
   8674 		    /* Section size is only divisible by rela.  */
   8675 		    if (use_rela_initialised && (use_rela == FALSE))
   8676 		      {
   8677 			_bfd_error_handler (_("%B: Unable to sort relocs - "
   8678 					      "they are in more than one size"),
   8679 					    abfd);
   8680 			bfd_set_error (bfd_error_invalid_operation);
   8681 			return 0;
   8682 		      }
   8683 		    else
   8684 		      {
   8685 			use_rela = TRUE;
   8686 			use_rela_initialised = TRUE;
   8687 		      }
   8688 		  }
   8689 	      }
   8690 	    else if ((o->size % bed->s->sizeof_rel) == 0)
   8691 	      {
   8692 		/* Section size is only divisible by rel.  */
   8693 		if (use_rela_initialised && (use_rela == TRUE))
   8694 		  {
   8695 		    _bfd_error_handler (_("%B: Unable to sort relocs - "
   8696 					  "they are in more than one size"),
   8697 					abfd);
   8698 		    bfd_set_error (bfd_error_invalid_operation);
   8699 		    return 0;
   8700 		  }
   8701 		else
   8702 		  {
   8703 		    use_rela = FALSE;
   8704 		    use_rela_initialised = TRUE;
   8705 		  }
   8706 	      }
   8707 	    else
   8708 	      {
   8709 		/* The section size is not divisible by either -
   8710 		   something is wrong.  */
   8711 		_bfd_error_handler (_("%B: Unable to sort relocs - "
   8712 				      "they are of an unknown size"), abfd);
   8713 		bfd_set_error (bfd_error_invalid_operation);
   8714 		return 0;
   8715 	      }
   8716 	  }
   8717 
   8718       if (! use_rela_initialised)
   8719 	/* Make a guess.  */
   8720 	use_rela = TRUE;
   8721     }
   8722   else if (rela_dyn != NULL && rela_dyn->size > 0)
   8723     use_rela = TRUE;
   8724   else if (rel_dyn != NULL && rel_dyn->size > 0)
   8725     use_rela = FALSE;
   8726   else
   8727     return 0;
   8728 
   8729   if (use_rela)
   8730     {
   8731       dynamic_relocs = rela_dyn;
   8732       ext_size = bed->s->sizeof_rela;
   8733       swap_in = bed->s->swap_reloca_in;
   8734       swap_out = bed->s->swap_reloca_out;
   8735     }
   8736   else
   8737     {
   8738       dynamic_relocs = rel_dyn;
   8739       ext_size = bed->s->sizeof_rel;
   8740       swap_in = bed->s->swap_reloc_in;
   8741       swap_out = bed->s->swap_reloc_out;
   8742     }
   8743 
   8744   size = 0;
   8745   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
   8746     if (lo->type == bfd_indirect_link_order)
   8747       size += lo->u.indirect.section->size;
   8748 
   8749   if (size != dynamic_relocs->size)
   8750     return 0;
   8751 
   8752   sort_elt = (sizeof (struct elf_link_sort_rela)
   8753 	      + (i2e - 1) * sizeof (Elf_Internal_Rela));
   8754 
   8755   count = dynamic_relocs->size / ext_size;
   8756   if (count == 0)
   8757     return 0;
   8758   sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
   8759 
   8760   if (sort == NULL)
   8761     {
   8762       (*info->callbacks->warning)
   8763 	(info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
   8764       return 0;
   8765     }
   8766 
   8767   if (bed->s->arch_size == 32)
   8768     r_sym_mask = ~(bfd_vma) 0xff;
   8769   else
   8770     r_sym_mask = ~(bfd_vma) 0xffffffff;
   8771 
   8772   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
   8773     if (lo->type == bfd_indirect_link_order)
   8774       {
   8775 	bfd_byte *erel, *erelend;
   8776 	asection *o = lo->u.indirect.section;
   8777 
   8778 	if (o->contents == NULL && o->size != 0)
   8779 	  {
   8780 	    /* This is a reloc section that is being handled as a normal
   8781 	       section.  See bfd_section_from_shdr.  We can't combine
   8782 	       relocs in this case.  */
   8783 	    free (sort);
   8784 	    return 0;
   8785 	  }
   8786 	erel = o->contents;
   8787 	erelend = o->contents + o->size;
   8788 	p = sort + o->output_offset * opb / ext_size * sort_elt;
   8789 
   8790 	while (erel < erelend)
   8791 	  {
   8792 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
   8793 
   8794 	    (*swap_in) (abfd, erel, s->rela);
   8795 	    s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
   8796 	    s->u.sym_mask = r_sym_mask;
   8797 	    p += sort_elt;
   8798 	    erel += ext_size;
   8799 	  }
   8800       }
   8801 
   8802   qsort (sort, count, sort_elt, elf_link_sort_cmp1);
   8803 
   8804   for (i = 0, p = sort; i < count; i++, p += sort_elt)
   8805     {
   8806       struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
   8807       if (s->type != reloc_class_relative)
   8808 	break;
   8809     }
   8810   ret = i;
   8811   s_non_relative = p;
   8812 
   8813   sq = (struct elf_link_sort_rela *) s_non_relative;
   8814   for (; i < count; i++, p += sort_elt)
   8815     {
   8816       struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
   8817       if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
   8818 	sq = sp;
   8819       sp->u.offset = sq->rela->r_offset;
   8820     }
   8821 
   8822   qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
   8823 
   8824   struct elf_link_hash_table *htab = elf_hash_table (info);
   8825   if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
   8826     {
   8827       /* We have plt relocs in .rela.dyn.  */
   8828       sq = (struct elf_link_sort_rela *) sort;
   8829       for (i = 0; i < count; i++)
   8830 	if (sq[count - i - 1].type != reloc_class_plt)
   8831 	  break;
   8832       if (i != 0 && htab->srelplt->size == i * ext_size)
   8833 	{
   8834 	  struct bfd_link_order **plo;
   8835 	  /* Put srelplt link_order last.  This is so the output_offset
   8836 	     set in the next loop is correct for DT_JMPREL.  */
   8837 	  for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
   8838 	    if ((*plo)->type == bfd_indirect_link_order
   8839 		&& (*plo)->u.indirect.section == htab->srelplt)
   8840 	      {
   8841 		lo = *plo;
   8842 		*plo = lo->next;
   8843 	      }
   8844 	    else
   8845 	      plo = &(*plo)->next;
   8846 	  *plo = lo;
   8847 	  lo->next = NULL;
   8848 	  dynamic_relocs->map_tail.link_order = lo;
   8849 	}
   8850     }
   8851 
   8852   p = sort;
   8853   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
   8854     if (lo->type == bfd_indirect_link_order)
   8855       {
   8856 	bfd_byte *erel, *erelend;
   8857 	asection *o = lo->u.indirect.section;
   8858 
   8859 	erel = o->contents;
   8860 	erelend = o->contents + o->size;
   8861 	o->output_offset = (p - sort) / sort_elt * ext_size / opb;
   8862 	while (erel < erelend)
   8863 	  {
   8864 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
   8865 	    (*swap_out) (abfd, s->rela, erel);
   8866 	    p += sort_elt;
   8867 	    erel += ext_size;
   8868 	  }
   8869       }
   8870 
   8871   free (sort);
   8872   *psec = dynamic_relocs;
   8873   return ret;
   8874 }
   8875 
   8876 /* Add a symbol to the output symbol string table.  */
   8877 
   8878 static int
   8879 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
   8880 			   const char *name,
   8881 			   Elf_Internal_Sym *elfsym,
   8882 			   asection *input_sec,
   8883 			   struct elf_link_hash_entry *h)
   8884 {
   8885   int (*output_symbol_hook)
   8886     (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
   8887      struct elf_link_hash_entry *);
   8888   struct elf_link_hash_table *hash_table;
   8889   const struct elf_backend_data *bed;
   8890   bfd_size_type strtabsize;
   8891 
   8892   BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
   8893 
   8894   bed = get_elf_backend_data (flinfo->output_bfd);
   8895   output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
   8896   if (output_symbol_hook != NULL)
   8897     {
   8898       int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
   8899       if (ret != 1)
   8900 	return ret;
   8901     }
   8902 
   8903   if (name == NULL
   8904       || *name == '\0'
   8905       || (input_sec->flags & SEC_EXCLUDE))
   8906     elfsym->st_name = (unsigned long) -1;
   8907   else
   8908     {
   8909       /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
   8910 	 to get the final offset for st_name.  */
   8911       elfsym->st_name
   8912 	= (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
   8913 					       name, FALSE);
   8914       if (elfsym->st_name == (unsigned long) -1)
   8915 	return 0;
   8916     }
   8917 
   8918   hash_table = elf_hash_table (flinfo->info);
   8919   strtabsize = hash_table->strtabsize;
   8920   if (strtabsize <= hash_table->strtabcount)
   8921     {
   8922       strtabsize += strtabsize;
   8923       hash_table->strtabsize = strtabsize;
   8924       strtabsize *= sizeof (*hash_table->strtab);
   8925       hash_table->strtab
   8926 	= (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
   8927 						 strtabsize);
   8928       if (hash_table->strtab == NULL)
   8929 	return 0;
   8930     }
   8931   hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
   8932   hash_table->strtab[hash_table->strtabcount].dest_index
   8933     = hash_table->strtabcount;
   8934   hash_table->strtab[hash_table->strtabcount].destshndx_index
   8935     = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
   8936 
   8937   bfd_get_symcount (flinfo->output_bfd) += 1;
   8938   hash_table->strtabcount += 1;
   8939 
   8940   return 1;
   8941 }
   8942 
   8943 /* Swap symbols out to the symbol table and flush the output symbols to
   8944    the file.  */
   8945 
   8946 static bfd_boolean
   8947 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
   8948 {
   8949   struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
   8950   bfd_size_type amt;
   8951   size_t i;
   8952   const struct elf_backend_data *bed;
   8953   bfd_byte *symbuf;
   8954   Elf_Internal_Shdr *hdr;
   8955   file_ptr pos;
   8956   bfd_boolean ret;
   8957 
   8958   if (!hash_table->strtabcount)
   8959     return TRUE;
   8960 
   8961   BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
   8962 
   8963   bed = get_elf_backend_data (flinfo->output_bfd);
   8964 
   8965   amt = bed->s->sizeof_sym * hash_table->strtabcount;
   8966   symbuf = (bfd_byte *) bfd_malloc (amt);
   8967   if (symbuf == NULL)
   8968     return FALSE;
   8969 
   8970   if (flinfo->symshndxbuf)
   8971     {
   8972       amt = sizeof (Elf_External_Sym_Shndx);
   8973       amt *= bfd_get_symcount (flinfo->output_bfd);
   8974       flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
   8975       if (flinfo->symshndxbuf == NULL)
   8976 	{
   8977 	  free (symbuf);
   8978 	  return FALSE;
   8979 	}
   8980     }
   8981 
   8982   for (i = 0; i < hash_table->strtabcount; i++)
   8983     {
   8984       struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
   8985       if (elfsym->sym.st_name == (unsigned long) -1)
   8986 	elfsym->sym.st_name = 0;
   8987       else
   8988 	elfsym->sym.st_name
   8989 	  = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
   8990 						    elfsym->sym.st_name);
   8991       bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
   8992 			       ((bfd_byte *) symbuf
   8993 				+ (elfsym->dest_index
   8994 				   * bed->s->sizeof_sym)),
   8995 			       (flinfo->symshndxbuf
   8996 				+ elfsym->destshndx_index));
   8997     }
   8998 
   8999   hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
   9000   pos = hdr->sh_offset + hdr->sh_size;
   9001   amt = hash_table->strtabcount * bed->s->sizeof_sym;
   9002   if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
   9003       && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
   9004     {
   9005       hdr->sh_size += amt;
   9006       ret = TRUE;
   9007     }
   9008   else
   9009     ret = FALSE;
   9010 
   9011   free (symbuf);
   9012 
   9013   free (hash_table->strtab);
   9014   hash_table->strtab = NULL;
   9015 
   9016   return ret;
   9017 }
   9018 
   9019 /* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
   9020 
   9021 static bfd_boolean
   9022 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
   9023 {
   9024   if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
   9025       && sym->st_shndx < SHN_LORESERVE)
   9026     {
   9027       /* The gABI doesn't support dynamic symbols in output sections
   9028 	 beyond 64k.  */
   9029       (*_bfd_error_handler)
   9030 	(_("%B: Too many sections: %d (>= %d)"),
   9031 	 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
   9032       bfd_set_error (bfd_error_nonrepresentable_section);
   9033       return FALSE;
   9034     }
   9035   return TRUE;
   9036 }
   9037 
   9038 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
   9039    allowing an unsatisfied unversioned symbol in the DSO to match a
   9040    versioned symbol that would normally require an explicit version.
   9041    We also handle the case that a DSO references a hidden symbol
   9042    which may be satisfied by a versioned symbol in another DSO.  */
   9043 
   9044 static bfd_boolean
   9045 elf_link_check_versioned_symbol (struct bfd_link_info *info,
   9046 				 const struct elf_backend_data *bed,
   9047 				 struct elf_link_hash_entry *h)
   9048 {
   9049   bfd *abfd;
   9050   struct elf_link_loaded_list *loaded;
   9051 
   9052   if (!is_elf_hash_table (info->hash))
   9053     return FALSE;
   9054 
   9055   /* Check indirect symbol.  */
   9056   while (h->root.type == bfd_link_hash_indirect)
   9057     h = (struct elf_link_hash_entry *) h->root.u.i.link;
   9058 
   9059   switch (h->root.type)
   9060     {
   9061     default:
   9062       abfd = NULL;
   9063       break;
   9064 
   9065     case bfd_link_hash_undefined:
   9066     case bfd_link_hash_undefweak:
   9067       abfd = h->root.u.undef.abfd;
   9068       if (abfd == NULL
   9069 	  || (abfd->flags & DYNAMIC) == 0
   9070 	  || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
   9071 	return FALSE;
   9072       break;
   9073 
   9074     case bfd_link_hash_defined:
   9075     case bfd_link_hash_defweak:
   9076       abfd = h->root.u.def.section->owner;
   9077       break;
   9078 
   9079     case bfd_link_hash_common:
   9080       abfd = h->root.u.c.p->section->owner;
   9081       break;
   9082     }
   9083   BFD_ASSERT (abfd != NULL);
   9084 
   9085   for (loaded = elf_hash_table (info)->loaded;
   9086        loaded != NULL;
   9087        loaded = loaded->next)
   9088     {
   9089       bfd *input;
   9090       Elf_Internal_Shdr *hdr;
   9091       size_t symcount;
   9092       size_t extsymcount;
   9093       size_t extsymoff;
   9094       Elf_Internal_Shdr *versymhdr;
   9095       Elf_Internal_Sym *isym;
   9096       Elf_Internal_Sym *isymend;
   9097       Elf_Internal_Sym *isymbuf;
   9098       Elf_External_Versym *ever;
   9099       Elf_External_Versym *extversym;
   9100 
   9101       input = loaded->abfd;
   9102 
   9103       /* We check each DSO for a possible hidden versioned definition.  */
   9104       if (input == abfd
   9105 	  || (input->flags & DYNAMIC) == 0
   9106 	  || elf_dynversym (input) == 0)
   9107 	continue;
   9108 
   9109       hdr = &elf_tdata (input)->dynsymtab_hdr;
   9110 
   9111       symcount = hdr->sh_size / bed->s->sizeof_sym;
   9112       if (elf_bad_symtab (input))
   9113 	{
   9114 	  extsymcount = symcount;
   9115 	  extsymoff = 0;
   9116 	}
   9117       else
   9118 	{
   9119 	  extsymcount = symcount - hdr->sh_info;
   9120 	  extsymoff = hdr->sh_info;
   9121 	}
   9122 
   9123       if (extsymcount == 0)
   9124 	continue;
   9125 
   9126       isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
   9127 				      NULL, NULL, NULL);
   9128       if (isymbuf == NULL)
   9129 	return FALSE;
   9130 
   9131       /* Read in any version definitions.  */
   9132       versymhdr = &elf_tdata (input)->dynversym_hdr;
   9133       extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
   9134       if (extversym == NULL)
   9135 	goto error_ret;
   9136 
   9137       if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
   9138 	  || (bfd_bread (extversym, versymhdr->sh_size, input)
   9139 	      != versymhdr->sh_size))
   9140 	{
   9141 	  free (extversym);
   9142 	error_ret:
   9143 	  free (isymbuf);
   9144 	  return FALSE;
   9145 	}
   9146 
   9147       ever = extversym + extsymoff;
   9148       isymend = isymbuf + extsymcount;
   9149       for (isym = isymbuf; isym < isymend; isym++, ever++)
   9150 	{
   9151 	  const char *name;
   9152 	  Elf_Internal_Versym iver;
   9153 	  unsigned short version_index;
   9154 
   9155 	  if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
   9156 	      || isym->st_shndx == SHN_UNDEF)
   9157 	    continue;
   9158 
   9159 	  name = bfd_elf_string_from_elf_section (input,
   9160 						  hdr->sh_link,
   9161 						  isym->st_name);
   9162 	  if (strcmp (name, h->root.root.string) != 0)
   9163 	    continue;
   9164 
   9165 	  _bfd_elf_swap_versym_in (input, ever, &iver);
   9166 
   9167 	  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
   9168 	      && !(h->def_regular
   9169 		   && h->forced_local))
   9170 	    {
   9171 	      /* If we have a non-hidden versioned sym, then it should
   9172 		 have provided a definition for the undefined sym unless
   9173 		 it is defined in a non-shared object and forced local.
   9174 	       */
   9175 	      abort ();
   9176 	    }
   9177 
   9178 	  version_index = iver.vs_vers & VERSYM_VERSION;
   9179 	  if (version_index == 1 || version_index == 2)
   9180 	    {
   9181 	      /* This is the base or first version.  We can use it.  */
   9182 	      free (extversym);
   9183 	      free (isymbuf);
   9184 	      return TRUE;
   9185 	    }
   9186 	}
   9187 
   9188       free (extversym);
   9189       free (isymbuf);
   9190     }
   9191 
   9192   return FALSE;
   9193 }
   9194 
   9195 /* Convert ELF common symbol TYPE.  */
   9196 
   9197 static int
   9198 elf_link_convert_common_type (struct bfd_link_info *info, int type)
   9199 {
   9200   /* Commom symbol can only appear in relocatable link.  */
   9201   if (!bfd_link_relocatable (info))
   9202     abort ();
   9203   switch (info->elf_stt_common)
   9204     {
   9205     case unchanged:
   9206       break;
   9207     case elf_stt_common:
   9208       type = STT_COMMON;
   9209       break;
   9210     case no_elf_stt_common:
   9211       type = STT_OBJECT;
   9212       break;
   9213     }
   9214   return type;
   9215 }
   9216 
   9217 /* Add an external symbol to the symbol table.  This is called from
   9218    the hash table traversal routine.  When generating a shared object,
   9219    we go through the symbol table twice.  The first time we output
   9220    anything that might have been forced to local scope in a version
   9221    script.  The second time we output the symbols that are still
   9222    global symbols.  */
   9223 
   9224 static bfd_boolean
   9225 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
   9226 {
   9227   struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
   9228   struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
   9229   struct elf_final_link_info *flinfo = eoinfo->flinfo;
   9230   bfd_boolean strip;
   9231   Elf_Internal_Sym sym;
   9232   asection *input_sec;
   9233   const struct elf_backend_data *bed;
   9234   long indx;
   9235   int ret;
   9236   unsigned int type;
   9237   /* A symbol is bound locally if it is forced local or it is locally
   9238      defined, hidden versioned, not referenced by shared library and
   9239      not exported when linking executable.  */
   9240   bfd_boolean local_bind = (h->forced_local
   9241 			    || (bfd_link_executable (flinfo->info)
   9242 				&& !flinfo->info->export_dynamic
   9243 				&& !h->dynamic
   9244 				&& !h->ref_dynamic
   9245 				&& h->def_regular
   9246 				&& h->versioned == versioned_hidden));
   9247 
   9248   if (h->root.type == bfd_link_hash_warning)
   9249     {
   9250       h = (struct elf_link_hash_entry *) h->root.u.i.link;
   9251       if (h->root.type == bfd_link_hash_new)
   9252 	return TRUE;
   9253     }
   9254 
   9255   /* Decide whether to output this symbol in this pass.  */
   9256   if (eoinfo->localsyms)
   9257     {
   9258       if (!local_bind)
   9259 	return TRUE;
   9260     }
   9261   else
   9262     {
   9263       if (local_bind)
   9264 	return TRUE;
   9265     }
   9266 
   9267   bed = get_elf_backend_data (flinfo->output_bfd);
   9268 
   9269   if (h->root.type == bfd_link_hash_undefined)
   9270     {
   9271       /* If we have an undefined symbol reference here then it must have
   9272 	 come from a shared library that is being linked in.  (Undefined
   9273 	 references in regular files have already been handled unless
   9274 	 they are in unreferenced sections which are removed by garbage
   9275 	 collection).  */
   9276       bfd_boolean ignore_undef = FALSE;
   9277 
   9278       /* Some symbols may be special in that the fact that they're
   9279 	 undefined can be safely ignored - let backend determine that.  */
   9280       if (bed->elf_backend_ignore_undef_symbol)
   9281 	ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
   9282 
   9283       /* If we are reporting errors for this situation then do so now.  */
   9284       if (!ignore_undef
   9285 	  && h->ref_dynamic
   9286 	  && (!h->ref_regular || flinfo->info->gc_sections)
   9287 	  && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
   9288 	  && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
   9289 	(*flinfo->info->callbacks->undefined_symbol)
   9290 	  (flinfo->info, h->root.root.string,
   9291 	   h->ref_regular ? NULL : h->root.u.undef.abfd,
   9292 	   NULL, 0,
   9293 	   flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
   9294 
   9295       /* Strip a global symbol defined in a discarded section.  */
   9296       if (h->indx == -3)
   9297 	return TRUE;
   9298     }
   9299 
   9300   /* We should also warn if a forced local symbol is referenced from
   9301      shared libraries.  */
   9302   if (bfd_link_executable (flinfo->info)
   9303       && h->forced_local
   9304       && h->ref_dynamic
   9305       && h->def_regular
   9306       && !h->dynamic_def
   9307       && h->ref_dynamic_nonweak
   9308       && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
   9309     {
   9310       bfd *def_bfd;
   9311       const char *msg;
   9312       struct elf_link_hash_entry *hi = h;
   9313 
   9314       /* Check indirect symbol.  */
   9315       while (hi->root.type == bfd_link_hash_indirect)
   9316 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
   9317 
   9318       if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
   9319 	msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
   9320       else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
   9321 	msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
   9322       else
   9323 	msg = _("%B: local symbol `%s' in %B is referenced by DSO");
   9324       def_bfd = flinfo->output_bfd;
   9325       if (hi->root.u.def.section != bfd_abs_section_ptr)
   9326 	def_bfd = hi->root.u.def.section->owner;
   9327       (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
   9328 			     h->root.root.string);
   9329       bfd_set_error (bfd_error_bad_value);
   9330       eoinfo->failed = TRUE;
   9331       return FALSE;
   9332     }
   9333 
   9334   /* We don't want to output symbols that have never been mentioned by
   9335      a regular file, or that we have been told to strip.  However, if
   9336      h->indx is set to -2, the symbol is used by a reloc and we must
   9337      output it.  */
   9338   strip = FALSE;
   9339   if (h->indx == -2)
   9340     ;
   9341   else if ((h->def_dynamic
   9342 	    || h->ref_dynamic
   9343 	    || h->root.type == bfd_link_hash_new)
   9344 	   && !h->def_regular
   9345 	   && !h->ref_regular)
   9346     strip = TRUE;
   9347   else if (flinfo->info->strip == strip_all)
   9348     strip = TRUE;
   9349   else if (flinfo->info->strip == strip_some
   9350 	   && bfd_hash_lookup (flinfo->info->keep_hash,
   9351 			       h->root.root.string, FALSE, FALSE) == NULL)
   9352     strip = TRUE;
   9353   else if ((h->root.type == bfd_link_hash_defined
   9354 	    || h->root.type == bfd_link_hash_defweak)
   9355 	   && ((flinfo->info->strip_discarded
   9356 		&& discarded_section (h->root.u.def.section))
   9357 	       || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
   9358 		   && h->root.u.def.section->owner != NULL
   9359 		   && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
   9360     strip = TRUE;
   9361   else if ((h->root.type == bfd_link_hash_undefined
   9362 	    || h->root.type == bfd_link_hash_undefweak)
   9363 	   && h->root.u.undef.abfd != NULL
   9364 	   && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
   9365     strip = TRUE;
   9366 
   9367   type = h->type;
   9368 
   9369   /* If we're stripping it, and it's not a dynamic symbol, there's
   9370      nothing else to do.   However, if it is a forced local symbol or
   9371      an ifunc symbol we need to give the backend finish_dynamic_symbol
   9372      function a chance to make it dynamic.  */
   9373   if (strip
   9374       && h->dynindx == -1
   9375       && type != STT_GNU_IFUNC
   9376       && !h->forced_local)
   9377     return TRUE;
   9378 
   9379   sym.st_value = 0;
   9380   sym.st_size = h->size;
   9381   sym.st_other = h->other;
   9382   switch (h->root.type)
   9383     {
   9384     default:
   9385     case bfd_link_hash_new:
   9386     case bfd_link_hash_warning:
   9387       abort ();
   9388       return FALSE;
   9389 
   9390     case bfd_link_hash_undefined:
   9391     case bfd_link_hash_undefweak:
   9392       input_sec = bfd_und_section_ptr;
   9393       sym.st_shndx = SHN_UNDEF;
   9394       break;
   9395 
   9396     case bfd_link_hash_defined:
   9397     case bfd_link_hash_defweak:
   9398       {
   9399 	input_sec = h->root.u.def.section;
   9400 	if (input_sec->output_section != NULL)
   9401 	  {
   9402 	    sym.st_shndx =
   9403 	      _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
   9404 						 input_sec->output_section);
   9405 	    if (sym.st_shndx == SHN_BAD)
   9406 	      {
   9407 		(*_bfd_error_handler)
   9408 		  (_("%B: could not find output section %A for input section %A"),
   9409 		   flinfo->output_bfd, input_sec->output_section, input_sec);
   9410 		bfd_set_error (bfd_error_nonrepresentable_section);
   9411 		eoinfo->failed = TRUE;
   9412 		return FALSE;
   9413 	      }
   9414 
   9415 	    /* ELF symbols in relocatable files are section relative,
   9416 	       but in nonrelocatable files they are virtual
   9417 	       addresses.  */
   9418 	    sym.st_value = h->root.u.def.value + input_sec->output_offset;
   9419 	    if (!bfd_link_relocatable (flinfo->info))
   9420 	      {
   9421 		sym.st_value += input_sec->output_section->vma;
   9422 		if (h->type == STT_TLS)
   9423 		  {
   9424 		    asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
   9425 		    if (tls_sec != NULL)
   9426 		      sym.st_value -= tls_sec->vma;
   9427 		  }
   9428 	      }
   9429 	  }
   9430 	else
   9431 	  {
   9432 	    BFD_ASSERT (input_sec->owner == NULL
   9433 			|| (input_sec->owner->flags & DYNAMIC) != 0);
   9434 	    sym.st_shndx = SHN_UNDEF;
   9435 	    input_sec = bfd_und_section_ptr;
   9436 	  }
   9437       }
   9438       break;
   9439 
   9440     case bfd_link_hash_common:
   9441       input_sec = h->root.u.c.p->section;
   9442       sym.st_shndx = bed->common_section_index (input_sec);
   9443       sym.st_value = 1 << h->root.u.c.p->alignment_power;
   9444       break;
   9445 
   9446     case bfd_link_hash_indirect:
   9447       /* These symbols are created by symbol versioning.  They point
   9448 	 to the decorated version of the name.  For example, if the
   9449 	 symbol foo@@GNU_1.2 is the default, which should be used when
   9450 	 foo is used with no version, then we add an indirect symbol
   9451 	 foo which points to foo@@GNU_1.2.  We ignore these symbols,
   9452 	 since the indirected symbol is already in the hash table.  */
   9453       return TRUE;
   9454     }
   9455 
   9456   if (type == STT_COMMON || type == STT_OBJECT)
   9457     switch (h->root.type)
   9458       {
   9459       case bfd_link_hash_common:
   9460 	type = elf_link_convert_common_type (flinfo->info, type);
   9461 	break;
   9462       case bfd_link_hash_defined:
   9463       case bfd_link_hash_defweak:
   9464 	if (bed->common_definition (&sym))
   9465 	  type = elf_link_convert_common_type (flinfo->info, type);
   9466 	else
   9467 	  type = STT_OBJECT;
   9468 	break;
   9469       case bfd_link_hash_undefined:
   9470       case bfd_link_hash_undefweak:
   9471 	break;
   9472       default:
   9473 	abort ();
   9474       }
   9475 
   9476   if (local_bind)
   9477     {
   9478       sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
   9479       /* Turn off visibility on local symbol.  */
   9480       sym.st_other &= ~ELF_ST_VISIBILITY (-1);
   9481     }
   9482   /* Set STB_GNU_UNIQUE only if symbol is defined in regular object.  */
   9483   else if (h->unique_global && h->def_regular)
   9484     sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
   9485   else if (h->root.type == bfd_link_hash_undefweak
   9486 	   || h->root.type == bfd_link_hash_defweak)
   9487     sym.st_info = ELF_ST_INFO (STB_WEAK, type);
   9488   else
   9489     sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
   9490   sym.st_target_internal = h->target_internal;
   9491 
   9492   /* Give the processor backend a chance to tweak the symbol value,
   9493      and also to finish up anything that needs to be done for this
   9494      symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
   9495      forced local syms when non-shared is due to a historical quirk.
   9496      STT_GNU_IFUNC symbol must go through PLT.  */
   9497   if ((h->type == STT_GNU_IFUNC
   9498        && h->def_regular
   9499        && !bfd_link_relocatable (flinfo->info))
   9500       || ((h->dynindx != -1
   9501 	   || h->forced_local)
   9502 	  && ((bfd_link_pic (flinfo->info)
   9503 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
   9504 		   || h->root.type != bfd_link_hash_undefweak))
   9505 	      || !h->forced_local)
   9506 	  && elf_hash_table (flinfo->info)->dynamic_sections_created))
   9507     {
   9508       if (! ((*bed->elf_backend_finish_dynamic_symbol)
   9509 	     (flinfo->output_bfd, flinfo->info, h, &sym)))
   9510 	{
   9511 	  eoinfo->failed = TRUE;
   9512 	  return FALSE;
   9513 	}
   9514     }
   9515 
   9516   /* If we are marking the symbol as undefined, and there are no
   9517      non-weak references to this symbol from a regular object, then
   9518      mark the symbol as weak undefined; if there are non-weak
   9519      references, mark the symbol as strong.  We can't do this earlier,
   9520      because it might not be marked as undefined until the
   9521      finish_dynamic_symbol routine gets through with it.  */
   9522   if (sym.st_shndx == SHN_UNDEF
   9523       && h->ref_regular
   9524       && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
   9525 	  || ELF_ST_BIND (sym.st_info) == STB_WEAK))
   9526     {
   9527       int bindtype;
   9528       type = ELF_ST_TYPE (sym.st_info);
   9529 
   9530       /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
   9531       if (type == STT_GNU_IFUNC)
   9532 	type = STT_FUNC;
   9533 
   9534       if (h->ref_regular_nonweak)
   9535 	bindtype = STB_GLOBAL;
   9536       else
   9537 	bindtype = STB_WEAK;
   9538       sym.st_info = ELF_ST_INFO (bindtype, type);
   9539     }
   9540 
   9541   /* If this is a symbol defined in a dynamic library, don't use the
   9542      symbol size from the dynamic library.  Relinking an executable
   9543      against a new library may introduce gratuitous changes in the
   9544      executable's symbols if we keep the size.  */
   9545   if (sym.st_shndx == SHN_UNDEF
   9546       && !h->def_regular
   9547       && h->def_dynamic)
   9548     sym.st_size = 0;
   9549 
   9550   /* If a non-weak symbol with non-default visibility is not defined
   9551      locally, it is a fatal error.  */
   9552   if (!bfd_link_relocatable (flinfo->info)
   9553       && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
   9554       && ELF_ST_BIND (sym.st_info) != STB_WEAK
   9555       && h->root.type == bfd_link_hash_undefined
   9556       && !h->def_regular)
   9557     {
   9558       const char *msg;
   9559 
   9560       if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
   9561 	msg = _("%B: protected symbol `%s' isn't defined");
   9562       else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
   9563 	msg = _("%B: internal symbol `%s' isn't defined");
   9564       else
   9565 	msg = _("%B: hidden symbol `%s' isn't defined");
   9566       (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
   9567       bfd_set_error (bfd_error_bad_value);
   9568       eoinfo->failed = TRUE;
   9569       return FALSE;
   9570     }
   9571 
   9572   /* If this symbol should be put in the .dynsym section, then put it
   9573      there now.  We already know the symbol index.  We also fill in
   9574      the entry in the .hash section.  */
   9575   if (elf_hash_table (flinfo->info)->dynsym != NULL
   9576       && h->dynindx != -1
   9577       && elf_hash_table (flinfo->info)->dynamic_sections_created)
   9578     {
   9579       bfd_byte *esym;
   9580 
   9581       /* Since there is no version information in the dynamic string,
   9582 	 if there is no version info in symbol version section, we will
   9583 	 have a run-time problem if not linking executable, referenced
   9584 	 by shared library, not locally defined, or not bound locally.
   9585       */
   9586       if (h->verinfo.verdef == NULL
   9587 	  && !local_bind
   9588 	  && (!bfd_link_executable (flinfo->info)
   9589 	      || h->ref_dynamic
   9590 	      || !h->def_regular))
   9591 	{
   9592 	  char *p = strrchr (h->root.root.string, ELF_VER_CHR);
   9593 
   9594 	  if (p && p [1] != '\0')
   9595 	    {
   9596 	      (*_bfd_error_handler)
   9597 		(_("%B: No symbol version section for versioned symbol `%s'"),
   9598 		 flinfo->output_bfd, h->root.root.string);
   9599 	      eoinfo->failed = TRUE;
   9600 	      return FALSE;
   9601 	    }
   9602 	}
   9603 
   9604       sym.st_name = h->dynstr_index;
   9605       esym = (elf_hash_table (flinfo->info)->dynsym->contents
   9606 	      + h->dynindx * bed->s->sizeof_sym);
   9607       if (!check_dynsym (flinfo->output_bfd, &sym))
   9608 	{
   9609 	  eoinfo->failed = TRUE;
   9610 	  return FALSE;
   9611 	}
   9612       bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
   9613 
   9614       if (flinfo->hash_sec != NULL)
   9615 	{
   9616 	  size_t hash_entry_size;
   9617 	  bfd_byte *bucketpos;
   9618 	  bfd_vma chain;
   9619 	  size_t bucketcount;
   9620 	  size_t bucket;
   9621 
   9622 	  bucketcount = elf_hash_table (flinfo->info)->bucketcount;
   9623 	  bucket = h->u.elf_hash_value % bucketcount;
   9624 
   9625 	  hash_entry_size
   9626 	    = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
   9627 	  bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
   9628 		       + (bucket + 2) * hash_entry_size);
   9629 	  chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
   9630 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
   9631 		   bucketpos);
   9632 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
   9633 		   ((bfd_byte *) flinfo->hash_sec->contents
   9634 		    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
   9635 	}
   9636 
   9637       if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
   9638 	{
   9639 	  Elf_Internal_Versym iversym;
   9640 	  Elf_External_Versym *eversym;
   9641 
   9642 	  if (!h->def_regular)
   9643 	    {
   9644 	      if (h->verinfo.verdef == NULL
   9645 		  || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
   9646 		      & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
   9647 		iversym.vs_vers = 0;
   9648 	      else
   9649 		iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
   9650 	    }
   9651 	  else
   9652 	    {
   9653 	      if (h->verinfo.vertree == NULL)
   9654 		iversym.vs_vers = 1;
   9655 	      else
   9656 		iversym.vs_vers = h->verinfo.vertree->vernum + 1;
   9657 	      if (flinfo->info->create_default_symver)
   9658 		iversym.vs_vers++;
   9659 	    }
   9660 
   9661 	  /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
   9662 	     defined locally.  */
   9663 	  if (h->versioned == versioned_hidden && h->def_regular)
   9664 	    iversym.vs_vers |= VERSYM_HIDDEN;
   9665 
   9666 	  eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
   9667 	  eversym += h->dynindx;
   9668 	  _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
   9669 	}
   9670     }
   9671 
   9672   /* If the symbol is undefined, and we didn't output it to .dynsym,
   9673      strip it from .symtab too.  Obviously we can't do this for
   9674      relocatable output or when needed for --emit-relocs.  */
   9675   else if (input_sec == bfd_und_section_ptr
   9676 	   && h->indx != -2
   9677 	   && !bfd_link_relocatable (flinfo->info))
   9678     return TRUE;
   9679   /* Also strip others that we couldn't earlier due to dynamic symbol
   9680      processing.  */
   9681   if (strip)
   9682     return TRUE;
   9683   if ((input_sec->flags & SEC_EXCLUDE) != 0)
   9684     return TRUE;
   9685 
   9686   /* Output a FILE symbol so that following locals are not associated
   9687      with the wrong input file.  We need one for forced local symbols
   9688      if we've seen more than one FILE symbol or when we have exactly
   9689      one FILE symbol but global symbols are present in a file other
   9690      than the one with the FILE symbol.  We also need one if linker
   9691      defined symbols are present.  In practice these conditions are
   9692      always met, so just emit the FILE symbol unconditionally.  */
   9693   if (eoinfo->localsyms
   9694       && !eoinfo->file_sym_done
   9695       && eoinfo->flinfo->filesym_count != 0)
   9696     {
   9697       Elf_Internal_Sym fsym;
   9698 
   9699       memset (&fsym, 0, sizeof (fsym));
   9700       fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
   9701       fsym.st_shndx = SHN_ABS;
   9702       if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
   9703 				      bfd_und_section_ptr, NULL))
   9704 	return FALSE;
   9705 
   9706       eoinfo->file_sym_done = TRUE;
   9707     }
   9708 
   9709   indx = bfd_get_symcount (flinfo->output_bfd);
   9710   ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
   9711 				   input_sec, h);
   9712   if (ret == 0)
   9713     {
   9714       eoinfo->failed = TRUE;
   9715       return FALSE;
   9716     }
   9717   else if (ret == 1)
   9718     h->indx = indx;
   9719   else if (h->indx == -2)
   9720     abort();
   9721 
   9722   return TRUE;
   9723 }
   9724 
   9725 /* Return TRUE if special handling is done for relocs in SEC against
   9726    symbols defined in discarded sections.  */
   9727 
   9728 static bfd_boolean
   9729 elf_section_ignore_discarded_relocs (asection *sec)
   9730 {
   9731   const struct elf_backend_data *bed;
   9732 
   9733   switch (sec->sec_info_type)
   9734     {
   9735     case SEC_INFO_TYPE_STABS:
   9736     case SEC_INFO_TYPE_EH_FRAME:
   9737     case SEC_INFO_TYPE_EH_FRAME_ENTRY:
   9738       return TRUE;
   9739     default:
   9740       break;
   9741     }
   9742 
   9743   bed = get_elf_backend_data (sec->owner);
   9744   if (bed->elf_backend_ignore_discarded_relocs != NULL
   9745       && (*bed->elf_backend_ignore_discarded_relocs) (sec))
   9746     return TRUE;
   9747 
   9748   return FALSE;
   9749 }
   9750 
   9751 /* Return a mask saying how ld should treat relocations in SEC against
   9752    symbols defined in discarded sections.  If this function returns
   9753    COMPLAIN set, ld will issue a warning message.  If this function
   9754    returns PRETEND set, and the discarded section was link-once and the
   9755    same size as the kept link-once section, ld will pretend that the
   9756    symbol was actually defined in the kept section.  Otherwise ld will
   9757    zero the reloc (at least that is the intent, but some cooperation by
   9758    the target dependent code is needed, particularly for REL targets).  */
   9759 
   9760 unsigned int
   9761 _bfd_elf_default_action_discarded (asection *sec)
   9762 {
   9763   if (sec->flags & SEC_DEBUGGING)
   9764     return PRETEND;
   9765 
   9766   if (strcmp (".eh_frame", sec->name) == 0)
   9767     return 0;
   9768 
   9769   if (strcmp (".gcc_except_table", sec->name) == 0)
   9770     return 0;
   9771 
   9772   return COMPLAIN | PRETEND;
   9773 }
   9774 
   9775 /* Find a match between a section and a member of a section group.  */
   9776 
   9777 static asection *
   9778 match_group_member (asection *sec, asection *group,
   9779 		    struct bfd_link_info *info)
   9780 {
   9781   asection *first = elf_next_in_group (group);
   9782   asection *s = first;
   9783 
   9784   while (s != NULL)
   9785     {
   9786       if (bfd_elf_match_symbols_in_sections (s, sec, info))
   9787 	return s;
   9788 
   9789       s = elf_next_in_group (s);
   9790       if (s == first)
   9791 	break;
   9792     }
   9793 
   9794   return NULL;
   9795 }
   9796 
   9797 /* Check if the kept section of a discarded section SEC can be used
   9798    to replace it.  Return the replacement if it is OK.  Otherwise return
   9799    NULL.  */
   9800 
   9801 asection *
   9802 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
   9803 {
   9804   asection *kept;
   9805 
   9806   kept = sec->kept_section;
   9807   if (kept != NULL)
   9808     {
   9809       if ((kept->flags & SEC_GROUP) != 0)
   9810 	kept = match_group_member (sec, kept, info);
   9811       if (kept != NULL
   9812 	  && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
   9813 	      != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
   9814 	kept = NULL;
   9815       sec->kept_section = kept;
   9816     }
   9817   return kept;
   9818 }
   9819 
   9820 /* Link an input file into the linker output file.  This function
   9821    handles all the sections and relocations of the input file at once.
   9822    This is so that we only have to read the local symbols once, and
   9823    don't have to keep them in memory.  */
   9824 
   9825 static bfd_boolean
   9826 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
   9827 {
   9828   int (*relocate_section)
   9829     (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
   9830      Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
   9831   bfd *output_bfd;
   9832   Elf_Internal_Shdr *symtab_hdr;
   9833   size_t locsymcount;
   9834   size_t extsymoff;
   9835   Elf_Internal_Sym *isymbuf;
   9836   Elf_Internal_Sym *isym;
   9837   Elf_Internal_Sym *isymend;
   9838   long *pindex;
   9839   asection **ppsection;
   9840   asection *o;
   9841   const struct elf_backend_data *bed;
   9842   struct elf_link_hash_entry **sym_hashes;
   9843   bfd_size_type address_size;
   9844   bfd_vma r_type_mask;
   9845   int r_sym_shift;
   9846   bfd_boolean have_file_sym = FALSE;
   9847 
   9848   output_bfd = flinfo->output_bfd;
   9849   bed = get_elf_backend_data (output_bfd);
   9850   relocate_section = bed->elf_backend_relocate_section;
   9851 
   9852   /* If this is a dynamic object, we don't want to do anything here:
   9853      we don't want the local symbols, and we don't want the section
   9854      contents.  */
   9855   if ((input_bfd->flags & DYNAMIC) != 0)
   9856     return TRUE;
   9857 
   9858   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
   9859   if (elf_bad_symtab (input_bfd))
   9860     {
   9861       locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
   9862       extsymoff = 0;
   9863     }
   9864   else
   9865     {
   9866       locsymcount = symtab_hdr->sh_info;
   9867       extsymoff = symtab_hdr->sh_info;
   9868     }
   9869 
   9870   /* Read the local symbols.  */
   9871   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
   9872   if (isymbuf == NULL && locsymcount != 0)
   9873     {
   9874       isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
   9875 				      flinfo->internal_syms,
   9876 				      flinfo->external_syms,
   9877 				      flinfo->locsym_shndx);
   9878       if (isymbuf == NULL)
   9879 	return FALSE;
   9880     }
   9881 
   9882   /* Find local symbol sections and adjust values of symbols in
   9883      SEC_MERGE sections.  Write out those local symbols we know are
   9884      going into the output file.  */
   9885   isymend = isymbuf + locsymcount;
   9886   for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
   9887        isym < isymend;
   9888        isym++, pindex++, ppsection++)
   9889     {
   9890       asection *isec;
   9891       const char *name;
   9892       Elf_Internal_Sym osym;
   9893       long indx;
   9894       int ret;
   9895 
   9896       *pindex = -1;
   9897 
   9898       if (elf_bad_symtab (input_bfd))
   9899 	{
   9900 	  if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
   9901 	    {
   9902 	      *ppsection = NULL;
   9903 	      continue;
   9904 	    }
   9905 	}
   9906 
   9907       if (isym->st_shndx == SHN_UNDEF)
   9908 	isec = bfd_und_section_ptr;
   9909       else if (isym->st_shndx == SHN_ABS)
   9910 	isec = bfd_abs_section_ptr;
   9911       else if (isym->st_shndx == SHN_COMMON)
   9912 	isec = bfd_com_section_ptr;
   9913       else
   9914 	{
   9915 	  isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
   9916 	  if (isec == NULL)
   9917 	    {
   9918 	      /* Don't attempt to output symbols with st_shnx in the
   9919 		 reserved range other than SHN_ABS and SHN_COMMON.  */
   9920 	      *ppsection = NULL;
   9921 	      continue;
   9922 	    }
   9923 	  else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
   9924 		   && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
   9925 	    isym->st_value =
   9926 	      _bfd_merged_section_offset (output_bfd, &isec,
   9927 					  elf_section_data (isec)->sec_info,
   9928 					  isym->st_value);
   9929 	}
   9930 
   9931       *ppsection = isec;
   9932 
   9933       /* Don't output the first, undefined, symbol.  In fact, don't
   9934 	 output any undefined local symbol.  */
   9935       if (isec == bfd_und_section_ptr)
   9936 	continue;
   9937 
   9938       if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
   9939 	{
   9940 	  /* We never output section symbols.  Instead, we use the
   9941 	     section symbol of the corresponding section in the output
   9942 	     file.  */
   9943 	  continue;
   9944 	}
   9945 
   9946       /* If we are stripping all symbols, we don't want to output this
   9947 	 one.  */
   9948       if (flinfo->info->strip == strip_all)
   9949 	continue;
   9950 
   9951       /* If we are discarding all local symbols, we don't want to
   9952 	 output this one.  If we are generating a relocatable output
   9953 	 file, then some of the local symbols may be required by
   9954 	 relocs; we output them below as we discover that they are
   9955 	 needed.  */
   9956       if (flinfo->info->discard == discard_all)
   9957 	continue;
   9958 
   9959       /* If this symbol is defined in a section which we are
   9960 	 discarding, we don't need to keep it.  */
   9961       if (isym->st_shndx != SHN_UNDEF
   9962 	  && isym->st_shndx < SHN_LORESERVE
   9963 	  && bfd_section_removed_from_list (output_bfd,
   9964 					    isec->output_section))
   9965 	continue;
   9966 
   9967       /* Get the name of the symbol.  */
   9968       name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
   9969 					      isym->st_name);
   9970       if (name == NULL)
   9971 	return FALSE;
   9972 
   9973       /* See if we are discarding symbols with this name.  */
   9974       if ((flinfo->info->strip == strip_some
   9975 	   && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
   9976 	       == NULL))
   9977 	  || (((flinfo->info->discard == discard_sec_merge
   9978 		&& (isec->flags & SEC_MERGE)
   9979 		&& !bfd_link_relocatable (flinfo->info))
   9980 	       || flinfo->info->discard == discard_l)
   9981 	      && bfd_is_local_label_name (input_bfd, name)))
   9982 	continue;
   9983 
   9984       if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
   9985 	{
   9986 	  if (input_bfd->lto_output)
   9987 	    /* -flto puts a temp file name here.  This means builds
   9988 	       are not reproducible.  Discard the symbol.  */
   9989 	    continue;
   9990 	  have_file_sym = TRUE;
   9991 	  flinfo->filesym_count += 1;
   9992 	}
   9993       if (!have_file_sym)
   9994 	{
   9995 	  /* In the absence of debug info, bfd_find_nearest_line uses
   9996 	     FILE symbols to determine the source file for local
   9997 	     function symbols.  Provide a FILE symbol here if input
   9998 	     files lack such, so that their symbols won't be
   9999 	     associated with a previous input file.  It's not the
   10000 	     source file, but the best we can do.  */
   10001 	  have_file_sym = TRUE;
   10002 	  flinfo->filesym_count += 1;
   10003 	  memset (&osym, 0, sizeof (osym));
   10004 	  osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
   10005 	  osym.st_shndx = SHN_ABS;
   10006 	  if (!elf_link_output_symstrtab (flinfo,
   10007 					  (input_bfd->lto_output ? NULL
   10008 					   : input_bfd->filename),
   10009 					  &osym, bfd_abs_section_ptr,
   10010 					  NULL))
   10011 	    return FALSE;
   10012 	}
   10013 
   10014       osym = *isym;
   10015 
   10016       /* Adjust the section index for the output file.  */
   10017       osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
   10018 							 isec->output_section);
   10019       if (osym.st_shndx == SHN_BAD)
   10020 	return FALSE;
   10021 
   10022       /* ELF symbols in relocatable files are section relative, but
   10023 	 in executable files they are virtual addresses.  Note that
   10024 	 this code assumes that all ELF sections have an associated
   10025 	 BFD section with a reasonable value for output_offset; below
   10026 	 we assume that they also have a reasonable value for
   10027 	 output_section.  Any special sections must be set up to meet
   10028 	 these requirements.  */
   10029       osym.st_value += isec->output_offset;
   10030       if (!bfd_link_relocatable (flinfo->info))
   10031 	{
   10032 	  osym.st_value += isec->output_section->vma;
   10033 	  if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
   10034 	    {
   10035 	      /* STT_TLS symbols are relative to PT_TLS segment base.  */
   10036 	      BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
   10037 	      osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
   10038 	    }
   10039 	}
   10040 
   10041       indx = bfd_get_symcount (output_bfd);
   10042       ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
   10043       if (ret == 0)
   10044 	return FALSE;
   10045       else if (ret == 1)
   10046 	*pindex = indx;
   10047     }
   10048 
   10049   if (bed->s->arch_size == 32)
   10050     {
   10051       r_type_mask = 0xff;
   10052       r_sym_shift = 8;
   10053       address_size = 4;
   10054     }
   10055   else
   10056     {
   10057       r_type_mask = 0xffffffff;
   10058       r_sym_shift = 32;
   10059       address_size = 8;
   10060     }
   10061 
   10062   /* Relocate the contents of each section.  */
   10063   sym_hashes = elf_sym_hashes (input_bfd);
   10064   for (o = input_bfd->sections; o != NULL; o = o->next)
   10065     {
   10066       bfd_byte *contents;
   10067 
   10068       if (! o->linker_mark)
   10069 	{
   10070 	  /* This section was omitted from the link.  */
   10071 	  continue;
   10072 	}
   10073 
   10074       if (bfd_link_relocatable (flinfo->info)
   10075 	  && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
   10076 	{
   10077 	  /* Deal with the group signature symbol.  */
   10078 	  struct bfd_elf_section_data *sec_data = elf_section_data (o);
   10079 	  unsigned long symndx = sec_data->this_hdr.sh_info;
   10080 	  asection *osec = o->output_section;
   10081 
   10082 	  if (symndx >= locsymcount
   10083 	      || (elf_bad_symtab (input_bfd)
   10084 		  && flinfo->sections[symndx] == NULL))
   10085 	    {
   10086 	      struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
   10087 	      while (h->root.type == bfd_link_hash_indirect
   10088 		     || h->root.type == bfd_link_hash_warning)
   10089 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
   10090 	      /* Arrange for symbol to be output.  */
   10091 	      h->indx = -2;
   10092 	      elf_section_data (osec)->this_hdr.sh_info = -2;
   10093 	    }
   10094 	  else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
   10095 	    {
   10096 	      /* We'll use the output section target_index.  */
   10097 	      asection *sec = flinfo->sections[symndx]->output_section;
   10098 	      elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
   10099 	    }
   10100 	  else
   10101 	    {
   10102 	      if (flinfo->indices[symndx] == -1)
   10103 		{
   10104 		  /* Otherwise output the local symbol now.  */
   10105 		  Elf_Internal_Sym sym = isymbuf[symndx];
   10106 		  asection *sec = flinfo->sections[symndx]->output_section;
   10107 		  const char *name;
   10108 		  long indx;
   10109 		  int ret;
   10110 
   10111 		  name = bfd_elf_string_from_elf_section (input_bfd,
   10112 							  symtab_hdr->sh_link,
   10113 							  sym.st_name);
   10114 		  if (name == NULL)
   10115 		    return FALSE;
   10116 
   10117 		  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
   10118 								    sec);
   10119 		  if (sym.st_shndx == SHN_BAD)
   10120 		    return FALSE;
   10121 
   10122 		  sym.st_value += o->output_offset;
   10123 
   10124 		  indx = bfd_get_symcount (output_bfd);
   10125 		  ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
   10126 						   NULL);
   10127 		  if (ret == 0)
   10128 		    return FALSE;
   10129 		  else if (ret == 1)
   10130 		    flinfo->indices[symndx] = indx;
   10131 		  else
   10132 		    abort ();
   10133 		}
   10134 	      elf_section_data (osec)->this_hdr.sh_info
   10135 		= flinfo->indices[symndx];
   10136 	    }
   10137 	}
   10138 
   10139       if ((o->flags & SEC_HAS_CONTENTS) == 0
   10140 	  || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
   10141 	continue;
   10142 
   10143       if ((o->flags & SEC_LINKER_CREATED) != 0)
   10144 	{
   10145 	  /* Section was created by _bfd_elf_link_create_dynamic_sections
   10146 	     or somesuch.  */
   10147 	  continue;
   10148 	}
   10149 
   10150       /* Get the contents of the section.  They have been cached by a
   10151 	 relaxation routine.  Note that o is a section in an input
   10152 	 file, so the contents field will not have been set by any of
   10153 	 the routines which work on output files.  */
   10154       if (elf_section_data (o)->this_hdr.contents != NULL)
   10155 	{
   10156 	  contents = elf_section_data (o)->this_hdr.contents;
   10157 	  if (bed->caches_rawsize
   10158 	      && o->rawsize != 0
   10159 	      && o->rawsize < o->size)
   10160 	    {
   10161 	      memcpy (flinfo->contents, contents, o->rawsize);
   10162 	      contents = flinfo->contents;
   10163 	    }
   10164 	}
   10165       else
   10166 	{
   10167 	  contents = flinfo->contents;
   10168 	  if (! bfd_get_full_section_contents (input_bfd, o, &contents))
   10169 	    return FALSE;
   10170 	}
   10171 
   10172       if ((o->flags & SEC_RELOC) != 0)
   10173 	{
   10174 	  Elf_Internal_Rela *internal_relocs;
   10175 	  Elf_Internal_Rela *rel, *relend;
   10176 	  int action_discarded;
   10177 	  int ret;
   10178 
   10179 	  /* Get the swapped relocs.  */
   10180 	  internal_relocs
   10181 	    = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
   10182 					 flinfo->internal_relocs, FALSE);
   10183 	  if (internal_relocs == NULL
   10184 	      && o->reloc_count > 0)
   10185 	    return FALSE;
   10186 
   10187 	  /* We need to reverse-copy input .ctors/.dtors sections if
   10188 	     they are placed in .init_array/.finit_array for output.  */
   10189 	  if (o->size > address_size
   10190 	      && ((strncmp (o->name, ".ctors", 6) == 0
   10191 		   && strcmp (o->output_section->name,
   10192 			      ".init_array") == 0)
   10193 		  || (strncmp (o->name, ".dtors", 6) == 0
   10194 		      && strcmp (o->output_section->name,
   10195 				 ".fini_array") == 0))
   10196 	      && (o->name[6] == 0 || o->name[6] == '.'))
   10197 	    {
   10198 	      if (o->size != o->reloc_count * address_size)
   10199 		{
   10200 		  (*_bfd_error_handler)
   10201 		    (_("error: %B: size of section %A is not "
   10202 		       "multiple of address size"),
   10203 		     input_bfd, o);
   10204 		  bfd_set_error (bfd_error_on_input);
   10205 		  return FALSE;
   10206 		}
   10207 	      o->flags |= SEC_ELF_REVERSE_COPY;
   10208 	    }
   10209 
   10210 	  action_discarded = -1;
   10211 	  if (!elf_section_ignore_discarded_relocs (o))
   10212 	    action_discarded = (*bed->action_discarded) (o);
   10213 
   10214 	  /* Run through the relocs evaluating complex reloc symbols and
   10215 	     looking for relocs against symbols from discarded sections
   10216 	     or section symbols from removed link-once sections.
   10217 	     Complain about relocs against discarded sections.  Zero
   10218 	     relocs against removed link-once sections.  */
   10219 
   10220 	  rel = internal_relocs;
   10221 	  relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
   10222 	  for ( ; rel < relend; rel++)
   10223 	    {
   10224 	      unsigned long r_symndx = rel->r_info >> r_sym_shift;
   10225 	      unsigned int s_type;
   10226 	      asection **ps, *sec;
   10227 	      struct elf_link_hash_entry *h = NULL;
   10228 	      const char *sym_name;
   10229 
   10230 	      if (r_symndx == STN_UNDEF)
   10231 		continue;
   10232 
   10233 	      if (r_symndx >= locsymcount
   10234 		  || (elf_bad_symtab (input_bfd)
   10235 		      && flinfo->sections[r_symndx] == NULL))
   10236 		{
   10237 		  h = sym_hashes[r_symndx - extsymoff];
   10238 
   10239 		  /* Badly formatted input files can contain relocs that
   10240 		     reference non-existant symbols.  Check here so that
   10241 		     we do not seg fault.  */
   10242 		  if (h == NULL)
   10243 		    {
   10244 		      char buffer [32];
   10245 
   10246 		      sprintf_vma (buffer, rel->r_info);
   10247 		      (*_bfd_error_handler)
   10248 			(_("error: %B contains a reloc (0x%s) for section %A "
   10249 			   "that references a non-existent global symbol"),
   10250 			 input_bfd, o, buffer);
   10251 		      bfd_set_error (bfd_error_bad_value);
   10252 		      return FALSE;
   10253 		    }
   10254 
   10255 		  while (h->root.type == bfd_link_hash_indirect
   10256 			 || h->root.type == bfd_link_hash_warning)
   10257 		    h = (struct elf_link_hash_entry *) h->root.u.i.link;
   10258 
   10259 		  s_type = h->type;
   10260 
   10261 		  /* If a plugin symbol is referenced from a non-IR file,
   10262 		     mark the symbol as undefined.  Note that the
   10263 		     linker may attach linker created dynamic sections
   10264 		     to the plugin bfd.  Symbols defined in linker
   10265 		     created sections are not plugin symbols.  */
   10266 		  if (h->root.non_ir_ref
   10267 		      && (h->root.type == bfd_link_hash_defined
   10268 			  || h->root.type == bfd_link_hash_defweak)
   10269 		      && (h->root.u.def.section->flags
   10270 			  & SEC_LINKER_CREATED) == 0
   10271 		      && h->root.u.def.section->owner != NULL
   10272 		      && (h->root.u.def.section->owner->flags
   10273 			  & BFD_PLUGIN) != 0)
   10274 		    {
   10275 		      h->root.type = bfd_link_hash_undefined;
   10276 		      h->root.u.undef.abfd = h->root.u.def.section->owner;
   10277 		    }
   10278 
   10279 		  ps = NULL;
   10280 		  if (h->root.type == bfd_link_hash_defined
   10281 		      || h->root.type == bfd_link_hash_defweak)
   10282 		    ps = &h->root.u.def.section;
   10283 
   10284 		  sym_name = h->root.root.string;
   10285 		}
   10286 	      else
   10287 		{
   10288 		  Elf_Internal_Sym *sym = isymbuf + r_symndx;
   10289 
   10290 		  s_type = ELF_ST_TYPE (sym->st_info);
   10291 		  ps = &flinfo->sections[r_symndx];
   10292 		  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
   10293 					       sym, *ps);
   10294 		}
   10295 
   10296 	      if ((s_type == STT_RELC || s_type == STT_SRELC)
   10297 		  && !bfd_link_relocatable (flinfo->info))
   10298 		{
   10299 		  bfd_vma val;
   10300 		  bfd_vma dot = (rel->r_offset
   10301 				 + o->output_offset + o->output_section->vma);
   10302 #ifdef DEBUG
   10303 		  printf ("Encountered a complex symbol!");
   10304 		  printf (" (input_bfd %s, section %s, reloc %ld\n",
   10305 			  input_bfd->filename, o->name,
   10306 			  (long) (rel - internal_relocs));
   10307 		  printf (" symbol: idx  %8.8lx, name %s\n",
   10308 			  r_symndx, sym_name);
   10309 		  printf (" reloc : info %8.8lx, addr %8.8lx\n",
   10310 			  (unsigned long) rel->r_info,
   10311 			  (unsigned long) rel->r_offset);
   10312 #endif
   10313 		  if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
   10314 				    isymbuf, locsymcount, s_type == STT_SRELC))
   10315 		    return FALSE;
   10316 
   10317 		  /* Symbol evaluated OK.  Update to absolute value.  */
   10318 		  set_symbol_value (input_bfd, isymbuf, locsymcount,
   10319 				    r_symndx, val);
   10320 		  continue;
   10321 		}
   10322 
   10323 	      if (action_discarded != -1 && ps != NULL)
   10324 		{
   10325 		  /* Complain if the definition comes from a
   10326 		     discarded section.  */
   10327 		  if ((sec = *ps) != NULL && discarded_section (sec))
   10328 		    {
   10329 		      BFD_ASSERT (r_symndx != STN_UNDEF);
   10330 		      if (action_discarded & COMPLAIN)
   10331 			(*flinfo->info->callbacks->einfo)
   10332 			  (_("%X`%s' referenced in section `%A' of %B: "
   10333 			     "defined in discarded section `%A' of %B\n"),
   10334 			   sym_name, o, input_bfd, sec, sec->owner);
   10335 
   10336 		      /* Try to do the best we can to support buggy old
   10337 			 versions of gcc.  Pretend that the symbol is
   10338 			 really defined in the kept linkonce section.
   10339 			 FIXME: This is quite broken.  Modifying the
   10340 			 symbol here means we will be changing all later
   10341 			 uses of the symbol, not just in this section.  */
   10342 		      if (action_discarded & PRETEND)
   10343 			{
   10344 			  asection *kept;
   10345 
   10346 			  kept = _bfd_elf_check_kept_section (sec,
   10347 							      flinfo->info);
   10348 			  if (kept != NULL)
   10349 			    {
   10350 			      *ps = kept;
   10351 			      continue;
   10352 			    }
   10353 			}
   10354 		    }
   10355 		}
   10356 	    }
   10357 
   10358 	  /* Relocate the section by invoking a back end routine.
   10359 
   10360 	     The back end routine is responsible for adjusting the
   10361 	     section contents as necessary, and (if using Rela relocs
   10362 	     and generating a relocatable output file) adjusting the
   10363 	     reloc addend as necessary.
   10364 
   10365 	     The back end routine does not have to worry about setting
   10366 	     the reloc address or the reloc symbol index.
   10367 
   10368 	     The back end routine is given a pointer to the swapped in
   10369 	     internal symbols, and can access the hash table entries
   10370 	     for the external symbols via elf_sym_hashes (input_bfd).
   10371 
   10372 	     When generating relocatable output, the back end routine
   10373 	     must handle STB_LOCAL/STT_SECTION symbols specially.  The
   10374 	     output symbol is going to be a section symbol
   10375 	     corresponding to the output section, which will require
   10376 	     the addend to be adjusted.  */
   10377 
   10378 	  ret = (*relocate_section) (output_bfd, flinfo->info,
   10379 				     input_bfd, o, contents,
   10380 				     internal_relocs,
   10381 				     isymbuf,
   10382 				     flinfo->sections);
   10383 	  if (!ret)
   10384 	    return FALSE;
   10385 
   10386 	  if (ret == 2
   10387 	      || bfd_link_relocatable (flinfo->info)
   10388 	      || flinfo->info->emitrelocations)
   10389 	    {
   10390 	      Elf_Internal_Rela *irela;
   10391 	      Elf_Internal_Rela *irelaend, *irelamid;
   10392 	      bfd_vma last_offset;
   10393 	      struct elf_link_hash_entry **rel_hash;
   10394 	      struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
   10395 	      Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
   10396 	      unsigned int next_erel;
   10397 	      bfd_boolean rela_normal;
   10398 	      struct bfd_elf_section_data *esdi, *esdo;
   10399 
   10400 	      esdi = elf_section_data (o);
   10401 	      esdo = elf_section_data (o->output_section);
   10402 	      rela_normal = FALSE;
   10403 
   10404 	      /* Adjust the reloc addresses and symbol indices.  */
   10405 
   10406 	      irela = internal_relocs;
   10407 	      irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
   10408 	      rel_hash = esdo->rel.hashes + esdo->rel.count;
   10409 	      /* We start processing the REL relocs, if any.  When we reach
   10410 		 IRELAMID in the loop, we switch to the RELA relocs.  */
   10411 	      irelamid = irela;
   10412 	      if (esdi->rel.hdr != NULL)
   10413 		irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
   10414 			     * bed->s->int_rels_per_ext_rel);
   10415 	      rel_hash_list = rel_hash;
   10416 	      rela_hash_list = NULL;
   10417 	      last_offset = o->output_offset;
   10418 	      if (!bfd_link_relocatable (flinfo->info))
   10419 		last_offset += o->output_section->vma;
   10420 	      for (next_erel = 0; irela < irelaend; irela++, next_erel++)
   10421 		{
   10422 		  unsigned long r_symndx;
   10423 		  asection *sec;
   10424 		  Elf_Internal_Sym sym;
   10425 
   10426 		  if (next_erel == bed->s->int_rels_per_ext_rel)
   10427 		    {
   10428 		      rel_hash++;
   10429 		      next_erel = 0;
   10430 		    }
   10431 
   10432 		  if (irela == irelamid)
   10433 		    {
   10434 		      rel_hash = esdo->rela.hashes + esdo->rela.count;
   10435 		      rela_hash_list = rel_hash;
   10436 		      rela_normal = bed->rela_normal;
   10437 		    }
   10438 
   10439 		  irela->r_offset = _bfd_elf_section_offset (output_bfd,
   10440 							     flinfo->info, o,
   10441 							     irela->r_offset);
   10442 		  if (irela->r_offset >= (bfd_vma) -2)
   10443 		    {
   10444 		      /* This is a reloc for a deleted entry or somesuch.
   10445 			 Turn it into an R_*_NONE reloc, at the same
   10446 			 offset as the last reloc.  elf_eh_frame.c and
   10447 			 bfd_elf_discard_info rely on reloc offsets
   10448 			 being ordered.  */
   10449 		      irela->r_offset = last_offset;
   10450 		      irela->r_info = 0;
   10451 		      irela->r_addend = 0;
   10452 		      continue;
   10453 		    }
   10454 
   10455 		  irela->r_offset += o->output_offset;
   10456 
   10457 		  /* Relocs in an executable have to be virtual addresses.  */
   10458 		  if (!bfd_link_relocatable (flinfo->info))
   10459 		    irela->r_offset += o->output_section->vma;
   10460 
   10461 		  last_offset = irela->r_offset;
   10462 
   10463 		  r_symndx = irela->r_info >> r_sym_shift;
   10464 		  if (r_symndx == STN_UNDEF)
   10465 		    continue;
   10466 
   10467 		  if (r_symndx >= locsymcount
   10468 		      || (elf_bad_symtab (input_bfd)
   10469 			  && flinfo->sections[r_symndx] == NULL))
   10470 		    {
   10471 		      struct elf_link_hash_entry *rh;
   10472 		      unsigned long indx;
   10473 
   10474 		      /* This is a reloc against a global symbol.  We
   10475 			 have not yet output all the local symbols, so
   10476 			 we do not know the symbol index of any global
   10477 			 symbol.  We set the rel_hash entry for this
   10478 			 reloc to point to the global hash table entry
   10479 			 for this symbol.  The symbol index is then
   10480 			 set at the end of bfd_elf_final_link.  */
   10481 		      indx = r_symndx - extsymoff;
   10482 		      rh = elf_sym_hashes (input_bfd)[indx];
   10483 		      while (rh->root.type == bfd_link_hash_indirect
   10484 			     || rh->root.type == bfd_link_hash_warning)
   10485 			rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
   10486 
   10487 		      /* Setting the index to -2 tells
   10488 			 elf_link_output_extsym that this symbol is
   10489 			 used by a reloc.  */
   10490 		      BFD_ASSERT (rh->indx < 0);
   10491 		      rh->indx = -2;
   10492 
   10493 		      *rel_hash = rh;
   10494 
   10495 		      continue;
   10496 		    }
   10497 
   10498 		  /* This is a reloc against a local symbol.  */
   10499 
   10500 		  *rel_hash = NULL;
   10501 		  sym = isymbuf[r_symndx];
   10502 		  sec = flinfo->sections[r_symndx];
   10503 		  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
   10504 		    {
   10505 		      /* I suppose the backend ought to fill in the
   10506 			 section of any STT_SECTION symbol against a
   10507 			 processor specific section.  */
   10508 		      r_symndx = STN_UNDEF;
   10509 		      if (bfd_is_abs_section (sec))
   10510 			;
   10511 		      else if (sec == NULL || sec->owner == NULL)
   10512 			{
   10513 			  bfd_set_error (bfd_error_bad_value);
   10514 			  return FALSE;
   10515 			}
   10516 		      else
   10517 			{
   10518 			  asection *osec = sec->output_section;
   10519 
   10520 			  /* If we have discarded a section, the output
   10521 			     section will be the absolute section.  In
   10522 			     case of discarded SEC_MERGE sections, use
   10523 			     the kept section.  relocate_section should
   10524 			     have already handled discarded linkonce
   10525 			     sections.  */
   10526 			  if (bfd_is_abs_section (osec)
   10527 			      && sec->kept_section != NULL
   10528 			      && sec->kept_section->output_section != NULL)
   10529 			    {
   10530 			      osec = sec->kept_section->output_section;
   10531 			      irela->r_addend -= osec->vma;
   10532 			    }
   10533 
   10534 			  if (!bfd_is_abs_section (osec))
   10535 			    {
   10536 			      r_symndx = osec->target_index;
   10537 			      if (r_symndx == STN_UNDEF)
   10538 				{
   10539 				  irela->r_addend += osec->vma;
   10540 				  osec = _bfd_nearby_section (output_bfd, osec,
   10541 							      osec->vma);
   10542 				  irela->r_addend -= osec->vma;
   10543 				  r_symndx = osec->target_index;
   10544 				}
   10545 			    }
   10546 			}
   10547 
   10548 		      /* Adjust the addend according to where the
   10549 			 section winds up in the output section.  */
   10550 		      if (rela_normal)
   10551 			irela->r_addend += sec->output_offset;
   10552 		    }
   10553 		  else
   10554 		    {
   10555 		      if (flinfo->indices[r_symndx] == -1)
   10556 			{
   10557 			  unsigned long shlink;
   10558 			  const char *name;
   10559 			  asection *osec;
   10560 			  long indx;
   10561 
   10562 			  if (flinfo->info->strip == strip_all)
   10563 			    {
   10564 			      /* You can't do ld -r -s.  */
   10565 			      bfd_set_error (bfd_error_invalid_operation);
   10566 			      return FALSE;
   10567 			    }
   10568 
   10569 			  /* This symbol was skipped earlier, but
   10570 			     since it is needed by a reloc, we
   10571 			     must output it now.  */
   10572 			  shlink = symtab_hdr->sh_link;
   10573 			  name = (bfd_elf_string_from_elf_section
   10574 				  (input_bfd, shlink, sym.st_name));
   10575 			  if (name == NULL)
   10576 			    return FALSE;
   10577 
   10578 			  osec = sec->output_section;
   10579 			  sym.st_shndx =
   10580 			    _bfd_elf_section_from_bfd_section (output_bfd,
   10581 							       osec);
   10582 			  if (sym.st_shndx == SHN_BAD)
   10583 			    return FALSE;
   10584 
   10585 			  sym.st_value += sec->output_offset;
   10586 			  if (!bfd_link_relocatable (flinfo->info))
   10587 			    {
   10588 			      sym.st_value += osec->vma;
   10589 			      if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
   10590 				{
   10591 				  /* STT_TLS symbols are relative to PT_TLS
   10592 				     segment base.  */
   10593 				  BFD_ASSERT (elf_hash_table (flinfo->info)
   10594 					      ->tls_sec != NULL);
   10595 				  sym.st_value -= (elf_hash_table (flinfo->info)
   10596 						   ->tls_sec->vma);
   10597 				}
   10598 			    }
   10599 
   10600 			  indx = bfd_get_symcount (output_bfd);
   10601 			  ret = elf_link_output_symstrtab (flinfo, name,
   10602 							   &sym, sec,
   10603 							   NULL);
   10604 			  if (ret == 0)
   10605 			    return FALSE;
   10606 			  else if (ret == 1)
   10607 			    flinfo->indices[r_symndx] = indx;
   10608 			  else
   10609 			    abort ();
   10610 			}
   10611 
   10612 		      r_symndx = flinfo->indices[r_symndx];
   10613 		    }
   10614 
   10615 		  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
   10616 				   | (irela->r_info & r_type_mask));
   10617 		}
   10618 
   10619 	      /* Swap out the relocs.  */
   10620 	      input_rel_hdr = esdi->rel.hdr;
   10621 	      if (input_rel_hdr && input_rel_hdr->sh_size != 0)
   10622 		{
   10623 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
   10624 						     input_rel_hdr,
   10625 						     internal_relocs,
   10626 						     rel_hash_list))
   10627 		    return FALSE;
   10628 		  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
   10629 				      * bed->s->int_rels_per_ext_rel);
   10630 		  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
   10631 		}
   10632 
   10633 	      input_rela_hdr = esdi->rela.hdr;
   10634 	      if (input_rela_hdr && input_rela_hdr->sh_size != 0)
   10635 		{
   10636 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
   10637 						     input_rela_hdr,
   10638 						     internal_relocs,
   10639 						     rela_hash_list))
   10640 		    return FALSE;
   10641 		}
   10642 	    }
   10643 	}
   10644 
   10645       /* Write out the modified section contents.  */
   10646       if (bed->elf_backend_write_section
   10647 	  && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
   10648 						contents))
   10649 	{
   10650 	  /* Section written out.  */
   10651 	}
   10652       else switch (o->sec_info_type)
   10653 	{
   10654 	case SEC_INFO_TYPE_STABS:
   10655 	  if (! (_bfd_write_section_stabs
   10656 		 (output_bfd,
   10657 		  &elf_hash_table (flinfo->info)->stab_info,
   10658 		  o, &elf_section_data (o)->sec_info, contents)))
   10659 	    return FALSE;
   10660 	  break;
   10661 	case SEC_INFO_TYPE_MERGE:
   10662 	  if (! _bfd_write_merged_section (output_bfd, o,
   10663 					   elf_section_data (o)->sec_info))
   10664 	    return FALSE;
   10665 	  break;
   10666 	case SEC_INFO_TYPE_EH_FRAME:
   10667 	  {
   10668 	    if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
   10669 						   o, contents))
   10670 	      return FALSE;
   10671 	  }
   10672 	  break;
   10673 	case SEC_INFO_TYPE_EH_FRAME_ENTRY:
   10674 	  {
   10675 	    if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
   10676 							 flinfo->info,
   10677 							 o, contents))
   10678 	      return FALSE;
   10679 	  }
   10680 	  break;
   10681 	default:
   10682 	  {
   10683 	    if (! (o->flags & SEC_EXCLUDE))
   10684 	      {
   10685 		file_ptr offset = (file_ptr) o->output_offset;
   10686 		bfd_size_type todo = o->size;
   10687 
   10688 		offset *= bfd_octets_per_byte (output_bfd);
   10689 
   10690 		if ((o->flags & SEC_ELF_REVERSE_COPY))
   10691 		  {
   10692 		    /* Reverse-copy input section to output.  */
   10693 		    do
   10694 		      {
   10695 			todo -= address_size;
   10696 			if (! bfd_set_section_contents (output_bfd,
   10697 							o->output_section,
   10698 							contents + todo,
   10699 							offset,
   10700 							address_size))
   10701 			  return FALSE;
   10702 			if (todo == 0)
   10703 			  break;
   10704 			offset += address_size;
   10705 		      }
   10706 		    while (1);
   10707 		  }
   10708 		else if (! bfd_set_section_contents (output_bfd,
   10709 						     o->output_section,
   10710 						     contents,
   10711 						     offset, todo))
   10712 		  return FALSE;
   10713 	      }
   10714 	  }
   10715 	  break;
   10716 	}
   10717     }
   10718 
   10719   return TRUE;
   10720 }
   10721 
   10722 /* Generate a reloc when linking an ELF file.  This is a reloc
   10723    requested by the linker, and does not come from any input file.  This
   10724    is used to build constructor and destructor tables when linking
   10725    with -Ur.  */
   10726 
   10727 static bfd_boolean
   10728 elf_reloc_link_order (bfd *output_bfd,
   10729 		      struct bfd_link_info *info,
   10730 		      asection *output_section,
   10731 		      struct bfd_link_order *link_order)
   10732 {
   10733   reloc_howto_type *howto;
   10734   long indx;
   10735   bfd_vma offset;
   10736   bfd_vma addend;
   10737   struct bfd_elf_section_reloc_data *reldata;
   10738   struct elf_link_hash_entry **rel_hash_ptr;
   10739   Elf_Internal_Shdr *rel_hdr;
   10740   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
   10741   Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
   10742   bfd_byte *erel;
   10743   unsigned int i;
   10744   struct bfd_elf_section_data *esdo = elf_section_data (output_section);
   10745 
   10746   howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
   10747   if (howto == NULL)
   10748     {
   10749       bfd_set_error (bfd_error_bad_value);
   10750       return FALSE;
   10751     }
   10752 
   10753   addend = link_order->u.reloc.p->addend;
   10754 
   10755   if (esdo->rel.hdr)
   10756     reldata = &esdo->rel;
   10757   else if (esdo->rela.hdr)
   10758     reldata = &esdo->rela;
   10759   else
   10760     {
   10761       reldata = NULL;
   10762       BFD_ASSERT (0);
   10763     }
   10764 
   10765   /* Figure out the symbol index.  */
   10766   rel_hash_ptr = reldata->hashes + reldata->count;
   10767   if (link_order->type == bfd_section_reloc_link_order)
   10768     {
   10769       indx = link_order->u.reloc.p->u.section->target_index;
   10770       BFD_ASSERT (indx != 0);
   10771       *rel_hash_ptr = NULL;
   10772     }
   10773   else
   10774     {
   10775       struct elf_link_hash_entry *h;
   10776 
   10777       /* Treat a reloc against a defined symbol as though it were
   10778 	 actually against the section.  */
   10779       h = ((struct elf_link_hash_entry *)
   10780 	   bfd_wrapped_link_hash_lookup (output_bfd, info,
   10781 					 link_order->u.reloc.p->u.name,
   10782 					 FALSE, FALSE, TRUE));
   10783       if (h != NULL
   10784 	  && (h->root.type == bfd_link_hash_defined
   10785 	      || h->root.type == bfd_link_hash_defweak))
   10786 	{
   10787 	  asection *section;
   10788 
   10789 	  section = h->root.u.def.section;
   10790 	  indx = section->output_section->target_index;
   10791 	  *rel_hash_ptr = NULL;
   10792 	  /* It seems that we ought to add the symbol value to the
   10793 	     addend here, but in practice it has already been added
   10794 	     because it was passed to constructor_callback.  */
   10795 	  addend += section->output_section->vma + section->output_offset;
   10796 	}
   10797       else if (h != NULL)
   10798 	{
   10799 	  /* Setting the index to -2 tells elf_link_output_extsym that
   10800 	     this symbol is used by a reloc.  */
   10801 	  h->indx = -2;
   10802 	  *rel_hash_ptr = h;
   10803 	  indx = 0;
   10804 	}
   10805       else
   10806 	{
   10807 	  (*info->callbacks->unattached_reloc)
   10808 	    (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
   10809 	  indx = 0;
   10810 	}
   10811     }
   10812 
   10813   /* If this is an inplace reloc, we must write the addend into the
   10814      object file.  */
   10815   if (howto->partial_inplace && addend != 0)
   10816     {
   10817       bfd_size_type size;
   10818       bfd_reloc_status_type rstat;
   10819       bfd_byte *buf;
   10820       bfd_boolean ok;
   10821       const char *sym_name;
   10822 
   10823       size = (bfd_size_type) bfd_get_reloc_size (howto);
   10824       buf = (bfd_byte *) bfd_zmalloc (size);
   10825       if (buf == NULL && size != 0)
   10826 	return FALSE;
   10827       rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
   10828       switch (rstat)
   10829 	{
   10830 	case bfd_reloc_ok:
   10831 	  break;
   10832 
   10833 	default:
   10834 	case bfd_reloc_outofrange:
   10835 	  abort ();
   10836 
   10837 	case bfd_reloc_overflow:
   10838 	  if (link_order->type == bfd_section_reloc_link_order)
   10839 	    sym_name = bfd_section_name (output_bfd,
   10840 					 link_order->u.reloc.p->u.section);
   10841 	  else
   10842 	    sym_name = link_order->u.reloc.p->u.name;
   10843 	  (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
   10844 					      howto->name, addend, NULL, NULL,
   10845 					      (bfd_vma) 0);
   10846 	  break;
   10847 	}
   10848 
   10849       ok = bfd_set_section_contents (output_bfd, output_section, buf,
   10850 				     link_order->offset
   10851 				     * bfd_octets_per_byte (output_bfd),
   10852 				     size);
   10853       free (buf);
   10854       if (! ok)
   10855 	return FALSE;
   10856     }
   10857 
   10858   /* The address of a reloc is relative to the section in a
   10859      relocatable file, and is a virtual address in an executable
   10860      file.  */
   10861   offset = link_order->offset;
   10862   if (! bfd_link_relocatable (info))
   10863     offset += output_section->vma;
   10864 
   10865   for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
   10866     {
   10867       irel[i].r_offset = offset;
   10868       irel[i].r_info = 0;
   10869       irel[i].r_addend = 0;
   10870     }
   10871   if (bed->s->arch_size == 32)
   10872     irel[0].r_info = ELF32_R_INFO (indx, howto->type);
   10873   else
   10874     irel[0].r_info = ELF64_R_INFO (indx, howto->type);
   10875 
   10876   rel_hdr = reldata->hdr;
   10877   erel = rel_hdr->contents;
   10878   if (rel_hdr->sh_type == SHT_REL)
   10879     {
   10880       erel += reldata->count * bed->s->sizeof_rel;
   10881       (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
   10882     }
   10883   else
   10884     {
   10885       irel[0].r_addend = addend;
   10886       erel += reldata->count * bed->s->sizeof_rela;
   10887       (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
   10888     }
   10889 
   10890   ++reldata->count;
   10891 
   10892   return TRUE;
   10893 }
   10894 
   10895 
   10896 /* Get the output vma of the section pointed to by the sh_link field.  */
   10897 
   10898 static bfd_vma
   10899 elf_get_linked_section_vma (struct bfd_link_order *p)
   10900 {
   10901   Elf_Internal_Shdr **elf_shdrp;
   10902   asection *s;
   10903   int elfsec;
   10904 
   10905   s = p->u.indirect.section;
   10906   elf_shdrp = elf_elfsections (s->owner);
   10907   elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
   10908   elfsec = elf_shdrp[elfsec]->sh_link;
   10909   /* PR 290:
   10910      The Intel C compiler generates SHT_IA_64_UNWIND with
   10911      SHF_LINK_ORDER.  But it doesn't set the sh_link or
   10912      sh_info fields.  Hence we could get the situation
   10913      where elfsec is 0.  */
   10914   if (elfsec == 0)
   10915     {
   10916       const struct elf_backend_data *bed
   10917 	= get_elf_backend_data (s->owner);
   10918       if (bed->link_order_error_handler)
   10919 	bed->link_order_error_handler
   10920 	  (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
   10921       return 0;
   10922     }
   10923   else
   10924     {
   10925       s = elf_shdrp[elfsec]->bfd_section;
   10926       return s->output_section->vma + s->output_offset;
   10927     }
   10928 }
   10929 
   10930 
   10931 /* Compare two sections based on the locations of the sections they are
   10932    linked to.  Used by elf_fixup_link_order.  */
   10933 
   10934 static int
   10935 compare_link_order (const void * a, const void * b)
   10936 {
   10937   bfd_vma apos;
   10938   bfd_vma bpos;
   10939 
   10940   apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
   10941   bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
   10942   if (apos < bpos)
   10943     return -1;
   10944   return apos > bpos;
   10945 }
   10946 
   10947 
   10948 /* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
   10949    order as their linked sections.  Returns false if this could not be done
   10950    because an output section includes both ordered and unordered
   10951    sections.  Ideally we'd do this in the linker proper.  */
   10952 
   10953 static bfd_boolean
   10954 elf_fixup_link_order (bfd *abfd, asection *o)
   10955 {
   10956   int seen_linkorder;
   10957   int seen_other;
   10958   int n;
   10959   struct bfd_link_order *p;
   10960   bfd *sub;
   10961   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   10962   unsigned elfsec;
   10963   struct bfd_link_order **sections;
   10964   asection *s, *other_sec, *linkorder_sec;
   10965   bfd_vma offset;
   10966 
   10967   other_sec = NULL;
   10968   linkorder_sec = NULL;
   10969   seen_other = 0;
   10970   seen_linkorder = 0;
   10971   for (p = o->map_head.link_order; p != NULL; p = p->next)
   10972     {
   10973       if (p->type == bfd_indirect_link_order)
   10974 	{
   10975 	  s = p->u.indirect.section;
   10976 	  sub = s->owner;
   10977 	  if (bfd_get_flavour (sub) == bfd_target_elf_flavour
   10978 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
   10979 	      && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
   10980 	      && elfsec < elf_numsections (sub)
   10981 	      && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
   10982 	      && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
   10983 	    {
   10984 	      seen_linkorder++;
   10985 	      linkorder_sec = s;
   10986 	    }
   10987 	  else
   10988 	    {
   10989 	      seen_other++;
   10990 	      other_sec = s;
   10991 	    }
   10992 	}
   10993       else
   10994 	seen_other++;
   10995 
   10996       if (seen_other && seen_linkorder)
   10997 	{
   10998 	  if (other_sec && linkorder_sec)
   10999 	    (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
   11000 				   o, linkorder_sec,
   11001 				   linkorder_sec->owner, other_sec,
   11002 				   other_sec->owner);
   11003 	  else
   11004 	    (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
   11005 				   o);
   11006 	  bfd_set_error (bfd_error_bad_value);
   11007 	  return FALSE;
   11008 	}
   11009     }
   11010 
   11011   if (!seen_linkorder)
   11012     return TRUE;
   11013 
   11014   sections = (struct bfd_link_order **)
   11015     bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
   11016   if (sections == NULL)
   11017     return FALSE;
   11018   seen_linkorder = 0;
   11019 
   11020   for (p = o->map_head.link_order; p != NULL; p = p->next)
   11021     {
   11022       sections[seen_linkorder++] = p;
   11023     }
   11024   /* Sort the input sections in the order of their linked section.  */
   11025   qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
   11026 	 compare_link_order);
   11027 
   11028   /* Change the offsets of the sections.  */
   11029   offset = 0;
   11030   for (n = 0; n < seen_linkorder; n++)
   11031     {
   11032       s = sections[n]->u.indirect.section;
   11033       offset &= ~(bfd_vma) 0 << s->alignment_power;
   11034       s->output_offset = offset / bfd_octets_per_byte (abfd);
   11035       sections[n]->offset = offset;
   11036       offset += sections[n]->size;
   11037     }
   11038 
   11039   free (sections);
   11040   return TRUE;
   11041 }
   11042 
   11043 static void
   11044 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
   11045 {
   11046   asection *o;
   11047 
   11048   if (flinfo->symstrtab != NULL)
   11049     _bfd_elf_strtab_free (flinfo->symstrtab);
   11050   if (flinfo->contents != NULL)
   11051     free (flinfo->contents);
   11052   if (flinfo->external_relocs != NULL)
   11053     free (flinfo->external_relocs);
   11054   if (flinfo->internal_relocs != NULL)
   11055     free (flinfo->internal_relocs);
   11056   if (flinfo->external_syms != NULL)
   11057     free (flinfo->external_syms);
   11058   if (flinfo->locsym_shndx != NULL)
   11059     free (flinfo->locsym_shndx);
   11060   if (flinfo->internal_syms != NULL)
   11061     free (flinfo->internal_syms);
   11062   if (flinfo->indices != NULL)
   11063     free (flinfo->indices);
   11064   if (flinfo->sections != NULL)
   11065     free (flinfo->sections);
   11066   if (flinfo->symshndxbuf != NULL)
   11067     free (flinfo->symshndxbuf);
   11068   for (o = obfd->sections; o != NULL; o = o->next)
   11069     {
   11070       struct bfd_elf_section_data *esdo = elf_section_data (o);
   11071       if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
   11072 	free (esdo->rel.hashes);
   11073       if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
   11074 	free (esdo->rela.hashes);
   11075     }
   11076 }
   11077 
   11078 /* Do the final step of an ELF link.  */
   11079 
   11080 bfd_boolean
   11081 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
   11082 {
   11083   bfd_boolean dynamic;
   11084   bfd_boolean emit_relocs;
   11085   bfd *dynobj;
   11086   struct elf_final_link_info flinfo;
   11087   asection *o;
   11088   struct bfd_link_order *p;
   11089   bfd *sub;
   11090   bfd_size_type max_contents_size;
   11091   bfd_size_type max_external_reloc_size;
   11092   bfd_size_type max_internal_reloc_count;
   11093   bfd_size_type max_sym_count;
   11094   bfd_size_type max_sym_shndx_count;
   11095   Elf_Internal_Sym elfsym;
   11096   unsigned int i;
   11097   Elf_Internal_Shdr *symtab_hdr;
   11098   Elf_Internal_Shdr *symtab_shndx_hdr;
   11099   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   11100   struct elf_outext_info eoinfo;
   11101   bfd_boolean merged;
   11102   size_t relativecount = 0;
   11103   asection *reldyn = 0;
   11104   bfd_size_type amt;
   11105   asection *attr_section = NULL;
   11106   bfd_vma attr_size = 0;
   11107   const char *std_attrs_section;
   11108 
   11109   if (! is_elf_hash_table (info->hash))
   11110     return FALSE;
   11111 
   11112   if (bfd_link_pic (info))
   11113     abfd->flags |= DYNAMIC;
   11114 
   11115   dynamic = elf_hash_table (info)->dynamic_sections_created;
   11116   dynobj = elf_hash_table (info)->dynobj;
   11117 
   11118   emit_relocs = (bfd_link_relocatable (info)
   11119 		 || info->emitrelocations);
   11120 
   11121   flinfo.info = info;
   11122   flinfo.output_bfd = abfd;
   11123   flinfo.symstrtab = _bfd_elf_strtab_init ();
   11124   if (flinfo.symstrtab == NULL)
   11125     return FALSE;
   11126 
   11127   if (! dynamic)
   11128     {
   11129       flinfo.hash_sec = NULL;
   11130       flinfo.symver_sec = NULL;
   11131     }
   11132   else
   11133     {
   11134       flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
   11135       /* Note that dynsym_sec can be NULL (on VMS).  */
   11136       flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
   11137       /* Note that it is OK if symver_sec is NULL.  */
   11138     }
   11139 
   11140   flinfo.contents = NULL;
   11141   flinfo.external_relocs = NULL;
   11142   flinfo.internal_relocs = NULL;
   11143   flinfo.external_syms = NULL;
   11144   flinfo.locsym_shndx = NULL;
   11145   flinfo.internal_syms = NULL;
   11146   flinfo.indices = NULL;
   11147   flinfo.sections = NULL;
   11148   flinfo.symshndxbuf = NULL;
   11149   flinfo.filesym_count = 0;
   11150 
   11151   /* The object attributes have been merged.  Remove the input
   11152      sections from the link, and set the contents of the output
   11153      secton.  */
   11154   std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
   11155   for (o = abfd->sections; o != NULL; o = o->next)
   11156     {
   11157       if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
   11158 	  || strcmp (o->name, ".gnu.attributes") == 0)
   11159 	{
   11160 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
   11161 	    {
   11162 	      asection *input_section;
   11163 
   11164 	      if (p->type != bfd_indirect_link_order)
   11165 		continue;
   11166 	      input_section = p->u.indirect.section;
   11167 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
   11168 		 elf_link_input_bfd ignores this section.  */
   11169 	      input_section->flags &= ~SEC_HAS_CONTENTS;
   11170 	    }
   11171 
   11172 	  attr_size = bfd_elf_obj_attr_size (abfd);
   11173 	  if (attr_size)
   11174 	    {
   11175 	      bfd_set_section_size (abfd, o, attr_size);
   11176 	      attr_section = o;
   11177 	      /* Skip this section later on.  */
   11178 	      o->map_head.link_order = NULL;
   11179 	    }
   11180 	  else
   11181 	    o->flags |= SEC_EXCLUDE;
   11182 	}
   11183     }
   11184 
   11185   /* Count up the number of relocations we will output for each output
   11186      section, so that we know the sizes of the reloc sections.  We
   11187      also figure out some maximum sizes.  */
   11188   max_contents_size = 0;
   11189   max_external_reloc_size = 0;
   11190   max_internal_reloc_count = 0;
   11191   max_sym_count = 0;
   11192   max_sym_shndx_count = 0;
   11193   merged = FALSE;
   11194   for (o = abfd->sections; o != NULL; o = o->next)
   11195     {
   11196       struct bfd_elf_section_data *esdo = elf_section_data (o);
   11197       o->reloc_count = 0;
   11198 
   11199       for (p = o->map_head.link_order; p != NULL; p = p->next)
   11200 	{
   11201 	  unsigned int reloc_count = 0;
   11202 	  unsigned int additional_reloc_count = 0;
   11203 	  struct bfd_elf_section_data *esdi = NULL;
   11204 
   11205 	  if (p->type == bfd_section_reloc_link_order
   11206 	      || p->type == bfd_symbol_reloc_link_order)
   11207 	    reloc_count = 1;
   11208 	  else if (p->type == bfd_indirect_link_order)
   11209 	    {
   11210 	      asection *sec;
   11211 
   11212 	      sec = p->u.indirect.section;
   11213 	      esdi = elf_section_data (sec);
   11214 
   11215 	      /* Mark all sections which are to be included in the
   11216 		 link.  This will normally be every section.  We need
   11217 		 to do this so that we can identify any sections which
   11218 		 the linker has decided to not include.  */
   11219 	      sec->linker_mark = TRUE;
   11220 
   11221 	      if (sec->flags & SEC_MERGE)
   11222 		merged = TRUE;
   11223 
   11224 	      if (esdo->this_hdr.sh_type == SHT_REL
   11225 		  || esdo->this_hdr.sh_type == SHT_RELA)
   11226 		/* Some backends use reloc_count in relocation sections
   11227 		   to count particular types of relocs.  Of course,
   11228 		   reloc sections themselves can't have relocations.  */
   11229 		reloc_count = 0;
   11230 	      else if (emit_relocs)
   11231 		{
   11232 		  reloc_count = sec->reloc_count;
   11233 		  if (bed->elf_backend_count_additional_relocs)
   11234 		    {
   11235 		      int c;
   11236 		      c = (*bed->elf_backend_count_additional_relocs) (sec);
   11237 		      additional_reloc_count += c;
   11238 		    }
   11239 		}
   11240 	      else if (bed->elf_backend_count_relocs)
   11241 		reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
   11242 
   11243 	      if (sec->rawsize > max_contents_size)
   11244 		max_contents_size = sec->rawsize;
   11245 	      if (sec->size > max_contents_size)
   11246 		max_contents_size = sec->size;
   11247 
   11248 	      /* We are interested in just local symbols, not all
   11249 		 symbols.  */
   11250 	      if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
   11251 		  && (sec->owner->flags & DYNAMIC) == 0)
   11252 		{
   11253 		  size_t sym_count;
   11254 
   11255 		  if (elf_bad_symtab (sec->owner))
   11256 		    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
   11257 				 / bed->s->sizeof_sym);
   11258 		  else
   11259 		    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
   11260 
   11261 		  if (sym_count > max_sym_count)
   11262 		    max_sym_count = sym_count;
   11263 
   11264 		  if (sym_count > max_sym_shndx_count
   11265 		      && elf_symtab_shndx_list (sec->owner) != NULL)
   11266 		    max_sym_shndx_count = sym_count;
   11267 
   11268 		  if ((sec->flags & SEC_RELOC) != 0)
   11269 		    {
   11270 		      size_t ext_size = 0;
   11271 
   11272 		      if (esdi->rel.hdr != NULL)
   11273 			ext_size = esdi->rel.hdr->sh_size;
   11274 		      if (esdi->rela.hdr != NULL)
   11275 			ext_size += esdi->rela.hdr->sh_size;
   11276 
   11277 		      if (ext_size > max_external_reloc_size)
   11278 			max_external_reloc_size = ext_size;
   11279 		      if (sec->reloc_count > max_internal_reloc_count)
   11280 			max_internal_reloc_count = sec->reloc_count;
   11281 		    }
   11282 		}
   11283 	    }
   11284 
   11285 	  if (reloc_count == 0)
   11286 	    continue;
   11287 
   11288 	  reloc_count += additional_reloc_count;
   11289 	  o->reloc_count += reloc_count;
   11290 
   11291 	  if (p->type == bfd_indirect_link_order && emit_relocs)
   11292 	    {
   11293 	      if (esdi->rel.hdr)
   11294 		{
   11295 		  esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
   11296 		  esdo->rel.count += additional_reloc_count;
   11297 		}
   11298 	      if (esdi->rela.hdr)
   11299 		{
   11300 		  esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
   11301 		  esdo->rela.count += additional_reloc_count;
   11302 		}
   11303 	    }
   11304 	  else
   11305 	    {
   11306 	      if (o->use_rela_p)
   11307 		esdo->rela.count += reloc_count;
   11308 	      else
   11309 		esdo->rel.count += reloc_count;
   11310 	    }
   11311 	}
   11312 
   11313       if (o->reloc_count > 0)
   11314 	o->flags |= SEC_RELOC;
   11315       else
   11316 	{
   11317 	  /* Explicitly clear the SEC_RELOC flag.  The linker tends to
   11318 	     set it (this is probably a bug) and if it is set
   11319 	     assign_section_numbers will create a reloc section.  */
   11320 	  o->flags &=~ SEC_RELOC;
   11321 	}
   11322 
   11323       /* If the SEC_ALLOC flag is not set, force the section VMA to
   11324 	 zero.  This is done in elf_fake_sections as well, but forcing
   11325 	 the VMA to 0 here will ensure that relocs against these
   11326 	 sections are handled correctly.  */
   11327       if ((o->flags & SEC_ALLOC) == 0
   11328 	  && ! o->user_set_vma)
   11329 	o->vma = 0;
   11330     }
   11331 
   11332   if (! bfd_link_relocatable (info) && merged)
   11333     elf_link_hash_traverse (elf_hash_table (info),
   11334 			    _bfd_elf_link_sec_merge_syms, abfd);
   11335 
   11336   /* Figure out the file positions for everything but the symbol table
   11337      and the relocs.  We set symcount to force assign_section_numbers
   11338      to create a symbol table.  */
   11339   bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
   11340   BFD_ASSERT (! abfd->output_has_begun);
   11341   if (! _bfd_elf_compute_section_file_positions (abfd, info))
   11342     goto error_return;
   11343 
   11344   /* Set sizes, and assign file positions for reloc sections.  */
   11345   for (o = abfd->sections; o != NULL; o = o->next)
   11346     {
   11347       struct bfd_elf_section_data *esdo = elf_section_data (o);
   11348       if ((o->flags & SEC_RELOC) != 0)
   11349 	{
   11350 	  if (esdo->rel.hdr
   11351 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
   11352 	    goto error_return;
   11353 
   11354 	  if (esdo->rela.hdr
   11355 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
   11356 	    goto error_return;
   11357 	}
   11358 
   11359       /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
   11360 	 to count upwards while actually outputting the relocations.  */
   11361       esdo->rel.count = 0;
   11362       esdo->rela.count = 0;
   11363 
   11364       if (esdo->this_hdr.sh_offset == (file_ptr) -1)
   11365 	{
   11366 	  /* Cache the section contents so that they can be compressed
   11367 	     later.  Use bfd_malloc since it will be freed by
   11368 	     bfd_compress_section_contents.  */
   11369 	  unsigned char *contents = esdo->this_hdr.contents;
   11370 	  if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
   11371 	    abort ();
   11372 	  contents
   11373 	    = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
   11374 	  if (contents == NULL)
   11375 	    goto error_return;
   11376 	  esdo->this_hdr.contents = contents;
   11377 	}
   11378     }
   11379 
   11380   /* We have now assigned file positions for all the sections except
   11381      .symtab, .strtab, and non-loaded reloc sections.  We start the
   11382      .symtab section at the current file position, and write directly
   11383      to it.  We build the .strtab section in memory.  */
   11384   bfd_get_symcount (abfd) = 0;
   11385   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
   11386   /* sh_name is set in prep_headers.  */
   11387   symtab_hdr->sh_type = SHT_SYMTAB;
   11388   /* sh_flags, sh_addr and sh_size all start off zero.  */
   11389   symtab_hdr->sh_entsize = bed->s->sizeof_sym;
   11390   /* sh_link is set in assign_section_numbers.  */
   11391   /* sh_info is set below.  */
   11392   /* sh_offset is set just below.  */
   11393   symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
   11394 
   11395   if (max_sym_count < 20)
   11396     max_sym_count = 20;
   11397   elf_hash_table (info)->strtabsize = max_sym_count;
   11398   amt = max_sym_count * sizeof (struct elf_sym_strtab);
   11399   elf_hash_table (info)->strtab
   11400     = (struct elf_sym_strtab *) bfd_malloc (amt);
   11401   if (elf_hash_table (info)->strtab == NULL)
   11402     goto error_return;
   11403   /* The real buffer will be allocated in elf_link_swap_symbols_out.  */
   11404   flinfo.symshndxbuf
   11405     = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
   11406        ? (Elf_External_Sym_Shndx *) -1 : NULL);
   11407 
   11408   if (info->strip != strip_all || emit_relocs)
   11409     {
   11410       file_ptr off = elf_next_file_pos (abfd);
   11411 
   11412       _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
   11413 
   11414       /* Note that at this point elf_next_file_pos (abfd) is
   11415 	 incorrect.  We do not yet know the size of the .symtab section.
   11416 	 We correct next_file_pos below, after we do know the size.  */
   11417 
   11418       /* Start writing out the symbol table.  The first symbol is always a
   11419 	 dummy symbol.  */
   11420       elfsym.st_value = 0;
   11421       elfsym.st_size = 0;
   11422       elfsym.st_info = 0;
   11423       elfsym.st_other = 0;
   11424       elfsym.st_shndx = SHN_UNDEF;
   11425       elfsym.st_target_internal = 0;
   11426       if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
   11427 				     bfd_und_section_ptr, NULL) != 1)
   11428 	goto error_return;
   11429 
   11430       /* Output a symbol for each section.  We output these even if we are
   11431 	 discarding local symbols, since they are used for relocs.  These
   11432 	 symbols have no names.  We store the index of each one in the
   11433 	 index field of the section, so that we can find it again when
   11434 	 outputting relocs.  */
   11435 
   11436       elfsym.st_size = 0;
   11437       elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
   11438       elfsym.st_other = 0;
   11439       elfsym.st_value = 0;
   11440       elfsym.st_target_internal = 0;
   11441       for (i = 1; i < elf_numsections (abfd); i++)
   11442 	{
   11443 	  o = bfd_section_from_elf_index (abfd, i);
   11444 	  if (o != NULL)
   11445 	    {
   11446 	      o->target_index = bfd_get_symcount (abfd);
   11447 	      elfsym.st_shndx = i;
   11448 	      if (!bfd_link_relocatable (info))
   11449 		elfsym.st_value = o->vma;
   11450 	      if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
   11451 					     NULL) != 1)
   11452 		goto error_return;
   11453 	    }
   11454 	}
   11455     }
   11456 
   11457   /* Allocate some memory to hold information read in from the input
   11458      files.  */
   11459   if (max_contents_size != 0)
   11460     {
   11461       flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
   11462       if (flinfo.contents == NULL)
   11463 	goto error_return;
   11464     }
   11465 
   11466   if (max_external_reloc_size != 0)
   11467     {
   11468       flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
   11469       if (flinfo.external_relocs == NULL)
   11470 	goto error_return;
   11471     }
   11472 
   11473   if (max_internal_reloc_count != 0)
   11474     {
   11475       amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
   11476       amt *= sizeof (Elf_Internal_Rela);
   11477       flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
   11478       if (flinfo.internal_relocs == NULL)
   11479 	goto error_return;
   11480     }
   11481 
   11482   if (max_sym_count != 0)
   11483     {
   11484       amt = max_sym_count * bed->s->sizeof_sym;
   11485       flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
   11486       if (flinfo.external_syms == NULL)
   11487 	goto error_return;
   11488 
   11489       amt = max_sym_count * sizeof (Elf_Internal_Sym);
   11490       flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
   11491       if (flinfo.internal_syms == NULL)
   11492 	goto error_return;
   11493 
   11494       amt = max_sym_count * sizeof (long);
   11495       flinfo.indices = (long int *) bfd_malloc (amt);
   11496       if (flinfo.indices == NULL)
   11497 	goto error_return;
   11498 
   11499       amt = max_sym_count * sizeof (asection *);
   11500       flinfo.sections = (asection **) bfd_malloc (amt);
   11501       if (flinfo.sections == NULL)
   11502 	goto error_return;
   11503     }
   11504 
   11505   if (max_sym_shndx_count != 0)
   11506     {
   11507       amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
   11508       flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
   11509       if (flinfo.locsym_shndx == NULL)
   11510 	goto error_return;
   11511     }
   11512 
   11513   if (elf_hash_table (info)->tls_sec)
   11514     {
   11515       bfd_vma base, end = 0;
   11516       asection *sec;
   11517 
   11518       for (sec = elf_hash_table (info)->tls_sec;
   11519 	   sec && (sec->flags & SEC_THREAD_LOCAL);
   11520 	   sec = sec->next)
   11521 	{
   11522 	  bfd_size_type size = sec->size;
   11523 
   11524 	  if (size == 0
   11525 	      && (sec->flags & SEC_HAS_CONTENTS) == 0)
   11526 	    {
   11527 	      struct bfd_link_order *ord = sec->map_tail.link_order;
   11528 
   11529 	      if (ord != NULL)
   11530 		size = ord->offset + ord->size;
   11531 	    }
   11532 	  end = sec->vma + size;
   11533 	}
   11534       base = elf_hash_table (info)->tls_sec->vma;
   11535       /* Only align end of TLS section if static TLS doesn't have special
   11536 	 alignment requirements.  */
   11537       if (bed->static_tls_alignment == 1)
   11538 	end = align_power (end,
   11539 			   elf_hash_table (info)->tls_sec->alignment_power);
   11540       elf_hash_table (info)->tls_size = end - base;
   11541     }
   11542 
   11543   /* Reorder SHF_LINK_ORDER sections.  */
   11544   for (o = abfd->sections; o != NULL; o = o->next)
   11545     {
   11546       if (!elf_fixup_link_order (abfd, o))
   11547 	return FALSE;
   11548     }
   11549 
   11550   if (!_bfd_elf_fixup_eh_frame_hdr (info))
   11551     return FALSE;
   11552 
   11553   /* Since ELF permits relocations to be against local symbols, we
   11554      must have the local symbols available when we do the relocations.
   11555      Since we would rather only read the local symbols once, and we
   11556      would rather not keep them in memory, we handle all the
   11557      relocations for a single input file at the same time.
   11558 
   11559      Unfortunately, there is no way to know the total number of local
   11560      symbols until we have seen all of them, and the local symbol
   11561      indices precede the global symbol indices.  This means that when
   11562      we are generating relocatable output, and we see a reloc against
   11563      a global symbol, we can not know the symbol index until we have
   11564      finished examining all the local symbols to see which ones we are
   11565      going to output.  To deal with this, we keep the relocations in
   11566      memory, and don't output them until the end of the link.  This is
   11567      an unfortunate waste of memory, but I don't see a good way around
   11568      it.  Fortunately, it only happens when performing a relocatable
   11569      link, which is not the common case.  FIXME: If keep_memory is set
   11570      we could write the relocs out and then read them again; I don't
   11571      know how bad the memory loss will be.  */
   11572 
   11573   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
   11574     sub->output_has_begun = FALSE;
   11575   for (o = abfd->sections; o != NULL; o = o->next)
   11576     {
   11577       for (p = o->map_head.link_order; p != NULL; p = p->next)
   11578 	{
   11579 	  if (p->type == bfd_indirect_link_order
   11580 	      && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
   11581 		  == bfd_target_elf_flavour)
   11582 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
   11583 	    {
   11584 	      if (! sub->output_has_begun)
   11585 		{
   11586 		  if (! elf_link_input_bfd (&flinfo, sub))
   11587 		    goto error_return;
   11588 		  sub->output_has_begun = TRUE;
   11589 		}
   11590 	    }
   11591 	  else if (p->type == bfd_section_reloc_link_order
   11592 		   || p->type == bfd_symbol_reloc_link_order)
   11593 	    {
   11594 	      if (! elf_reloc_link_order (abfd, info, o, p))
   11595 		goto error_return;
   11596 	    }
   11597 	  else
   11598 	    {
   11599 	      if (! _bfd_default_link_order (abfd, info, o, p))
   11600 		{
   11601 		  if (p->type == bfd_indirect_link_order
   11602 		      && (bfd_get_flavour (sub)
   11603 			  == bfd_target_elf_flavour)
   11604 		      && (elf_elfheader (sub)->e_ident[EI_CLASS]
   11605 			  != bed->s->elfclass))
   11606 		    {
   11607 		      const char *iclass, *oclass;
   11608 
   11609 		      switch (bed->s->elfclass)
   11610 			{
   11611 			case ELFCLASS64: oclass = "ELFCLASS64"; break;
   11612 			case ELFCLASS32: oclass = "ELFCLASS32"; break;
   11613 			case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
   11614 			default: abort ();
   11615 			}
   11616 
   11617 		      switch (elf_elfheader (sub)->e_ident[EI_CLASS])
   11618 			{
   11619 			case ELFCLASS64: iclass = "ELFCLASS64"; break;
   11620 			case ELFCLASS32: iclass = "ELFCLASS32"; break;
   11621 			case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
   11622 			default: abort ();
   11623 			}
   11624 
   11625 		      bfd_set_error (bfd_error_wrong_format);
   11626 		      (*_bfd_error_handler)
   11627 			(_("%B: file class %s incompatible with %s"),
   11628 			 sub, iclass, oclass);
   11629 		    }
   11630 
   11631 		  goto error_return;
   11632 		}
   11633 	    }
   11634 	}
   11635     }
   11636 
   11637   /* Free symbol buffer if needed.  */
   11638   if (!info->reduce_memory_overheads)
   11639     {
   11640       for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
   11641 	if (bfd_get_flavour (sub) == bfd_target_elf_flavour
   11642 	    && elf_tdata (sub)->symbuf)
   11643 	  {
   11644 	    free (elf_tdata (sub)->symbuf);
   11645 	    elf_tdata (sub)->symbuf = NULL;
   11646 	  }
   11647     }
   11648 
   11649   /* Output any global symbols that got converted to local in a
   11650      version script or due to symbol visibility.  We do this in a
   11651      separate step since ELF requires all local symbols to appear
   11652      prior to any global symbols.  FIXME: We should only do this if
   11653      some global symbols were, in fact, converted to become local.
   11654      FIXME: Will this work correctly with the Irix 5 linker?  */
   11655   eoinfo.failed = FALSE;
   11656   eoinfo.flinfo = &flinfo;
   11657   eoinfo.localsyms = TRUE;
   11658   eoinfo.file_sym_done = FALSE;
   11659   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
   11660   if (eoinfo.failed)
   11661     return FALSE;
   11662 
   11663   /* If backend needs to output some local symbols not present in the hash
   11664      table, do it now.  */
   11665   if (bed->elf_backend_output_arch_local_syms
   11666       && (info->strip != strip_all || emit_relocs))
   11667     {
   11668       typedef int (*out_sym_func)
   11669 	(void *, const char *, Elf_Internal_Sym *, asection *,
   11670 	 struct elf_link_hash_entry *);
   11671 
   11672       if (! ((*bed->elf_backend_output_arch_local_syms)
   11673 	     (abfd, info, &flinfo,
   11674 	      (out_sym_func) elf_link_output_symstrtab)))
   11675 	return FALSE;
   11676     }
   11677 
   11678   /* That wrote out all the local symbols.  Finish up the symbol table
   11679      with the global symbols. Even if we want to strip everything we
   11680      can, we still need to deal with those global symbols that got
   11681      converted to local in a version script.  */
   11682 
   11683   /* The sh_info field records the index of the first non local symbol.  */
   11684   symtab_hdr->sh_info = bfd_get_symcount (abfd);
   11685 
   11686   if (dynamic
   11687       && elf_hash_table (info)->dynsym != NULL
   11688       && (elf_hash_table (info)->dynsym->output_section
   11689 	  != bfd_abs_section_ptr))
   11690     {
   11691       Elf_Internal_Sym sym;
   11692       bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
   11693       long last_local = 0;
   11694 
   11695       /* Write out the section symbols for the output sections.  */
   11696       if (bfd_link_pic (info)
   11697 	  || elf_hash_table (info)->is_relocatable_executable)
   11698 	{
   11699 	  asection *s;
   11700 
   11701 	  sym.st_size = 0;
   11702 	  sym.st_name = 0;
   11703 	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
   11704 	  sym.st_other = 0;
   11705 	  sym.st_target_internal = 0;
   11706 
   11707 	  for (s = abfd->sections; s != NULL; s = s->next)
   11708 	    {
   11709 	      int indx;
   11710 	      bfd_byte *dest;
   11711 	      long dynindx;
   11712 
   11713 	      dynindx = elf_section_data (s)->dynindx;
   11714 	      if (dynindx <= 0)
   11715 		continue;
   11716 	      indx = elf_section_data (s)->this_idx;
   11717 	      BFD_ASSERT (indx > 0);
   11718 	      sym.st_shndx = indx;
   11719 	      if (! check_dynsym (abfd, &sym))
   11720 		return FALSE;
   11721 	      sym.st_value = s->vma;
   11722 	      dest = dynsym + dynindx * bed->s->sizeof_sym;
   11723 	      if (last_local < dynindx)
   11724 		last_local = dynindx;
   11725 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
   11726 	    }
   11727 	}
   11728 
   11729       /* Write out the local dynsyms.  */
   11730       if (elf_hash_table (info)->dynlocal)
   11731 	{
   11732 	  struct elf_link_local_dynamic_entry *e;
   11733 	  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
   11734 	    {
   11735 	      asection *s;
   11736 	      bfd_byte *dest;
   11737 
   11738 	      /* Copy the internal symbol and turn off visibility.
   11739 		 Note that we saved a word of storage and overwrote
   11740 		 the original st_name with the dynstr_index.  */
   11741 	      sym = e->isym;
   11742 	      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
   11743 
   11744 	      s = bfd_section_from_elf_index (e->input_bfd,
   11745 					      e->isym.st_shndx);
   11746 	      if (s != NULL)
   11747 		{
   11748 		  sym.st_shndx =
   11749 		    elf_section_data (s->output_section)->this_idx;
   11750 		  if (! check_dynsym (abfd, &sym))
   11751 		    return FALSE;
   11752 		  sym.st_value = (s->output_section->vma
   11753 				  + s->output_offset
   11754 				  + e->isym.st_value);
   11755 		}
   11756 
   11757 	      if (last_local < e->dynindx)
   11758 		last_local = e->dynindx;
   11759 
   11760 	      dest = dynsym + e->dynindx * bed->s->sizeof_sym;
   11761 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
   11762 	    }
   11763 	}
   11764 
   11765       elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
   11766 	last_local + 1;
   11767     }
   11768 
   11769   /* We get the global symbols from the hash table.  */
   11770   eoinfo.failed = FALSE;
   11771   eoinfo.localsyms = FALSE;
   11772   eoinfo.flinfo = &flinfo;
   11773   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
   11774   if (eoinfo.failed)
   11775     return FALSE;
   11776 
   11777   /* If backend needs to output some symbols not present in the hash
   11778      table, do it now.  */
   11779   if (bed->elf_backend_output_arch_syms
   11780       && (info->strip != strip_all || emit_relocs))
   11781     {
   11782       typedef int (*out_sym_func)
   11783 	(void *, const char *, Elf_Internal_Sym *, asection *,
   11784 	 struct elf_link_hash_entry *);
   11785 
   11786       if (! ((*bed->elf_backend_output_arch_syms)
   11787 	     (abfd, info, &flinfo,
   11788 	      (out_sym_func) elf_link_output_symstrtab)))
   11789 	return FALSE;
   11790     }
   11791 
   11792   /* Finalize the .strtab section.  */
   11793   _bfd_elf_strtab_finalize (flinfo.symstrtab);
   11794 
   11795   /* Swap out the .strtab section. */
   11796   if (!elf_link_swap_symbols_out (&flinfo))
   11797     return FALSE;
   11798 
   11799   /* Now we know the size of the symtab section.  */
   11800   if (bfd_get_symcount (abfd) > 0)
   11801     {
   11802       /* Finish up and write out the symbol string table (.strtab)
   11803 	 section.  */
   11804       Elf_Internal_Shdr *symstrtab_hdr;
   11805       file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
   11806 
   11807       symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
   11808       if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
   11809 	{
   11810 	  symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
   11811 	  symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
   11812 	  symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
   11813 	  amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
   11814 	  symtab_shndx_hdr->sh_size = amt;
   11815 
   11816 	  off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
   11817 							   off, TRUE);
   11818 
   11819 	  if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
   11820 	      || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
   11821 	    return FALSE;
   11822 	}
   11823 
   11824       symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
   11825       /* sh_name was set in prep_headers.  */
   11826       symstrtab_hdr->sh_type = SHT_STRTAB;
   11827       symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
   11828       symstrtab_hdr->sh_addr = 0;
   11829       symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
   11830       symstrtab_hdr->sh_entsize = 0;
   11831       symstrtab_hdr->sh_link = 0;
   11832       symstrtab_hdr->sh_info = 0;
   11833       /* sh_offset is set just below.  */
   11834       symstrtab_hdr->sh_addralign = 1;
   11835 
   11836       off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
   11837 						       off, TRUE);
   11838       elf_next_file_pos (abfd) = off;
   11839 
   11840       if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
   11841 	  || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
   11842 	return FALSE;
   11843     }
   11844 
   11845   /* Adjust the relocs to have the correct symbol indices.  */
   11846   for (o = abfd->sections; o != NULL; o = o->next)
   11847     {
   11848       struct bfd_elf_section_data *esdo = elf_section_data (o);
   11849       bfd_boolean sort;
   11850       if ((o->flags & SEC_RELOC) == 0)
   11851 	continue;
   11852 
   11853       sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
   11854       if (esdo->rel.hdr != NULL
   11855 	  && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
   11856 	return FALSE;
   11857       if (esdo->rela.hdr != NULL
   11858 	  && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
   11859 	return FALSE;
   11860 
   11861       /* Set the reloc_count field to 0 to prevent write_relocs from
   11862 	 trying to swap the relocs out itself.  */
   11863       o->reloc_count = 0;
   11864     }
   11865 
   11866   if (dynamic && info->combreloc && dynobj != NULL)
   11867     relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
   11868 
   11869   /* If we are linking against a dynamic object, or generating a
   11870      shared library, finish up the dynamic linking information.  */
   11871   if (dynamic)
   11872     {
   11873       bfd_byte *dyncon, *dynconend;
   11874 
   11875       /* Fix up .dynamic entries.  */
   11876       o = bfd_get_linker_section (dynobj, ".dynamic");
   11877       BFD_ASSERT (o != NULL);
   11878 
   11879       dyncon = o->contents;
   11880       dynconend = o->contents + o->size;
   11881       for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
   11882 	{
   11883 	  Elf_Internal_Dyn dyn;
   11884 	  const char *name;
   11885 	  unsigned int type;
   11886 
   11887 	  bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
   11888 
   11889 	  switch (dyn.d_tag)
   11890 	    {
   11891 	    default:
   11892 	      continue;
   11893 	    case DT_NULL:
   11894 	      if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
   11895 		{
   11896 		  switch (elf_section_data (reldyn)->this_hdr.sh_type)
   11897 		    {
   11898 		    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
   11899 		    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
   11900 		    default: continue;
   11901 		    }
   11902 		  dyn.d_un.d_val = relativecount;
   11903 		  relativecount = 0;
   11904 		  break;
   11905 		}
   11906 	      continue;
   11907 
   11908 	    case DT_INIT:
   11909 	      name = info->init_function;
   11910 	      goto get_sym;
   11911 	    case DT_FINI:
   11912 	      name = info->fini_function;
   11913 	    get_sym:
   11914 	      {
   11915 		struct elf_link_hash_entry *h;
   11916 
   11917 		h = elf_link_hash_lookup (elf_hash_table (info), name,
   11918 					  FALSE, FALSE, TRUE);
   11919 		if (h != NULL
   11920 		    && (h->root.type == bfd_link_hash_defined
   11921 			|| h->root.type == bfd_link_hash_defweak))
   11922 		  {
   11923 		    dyn.d_un.d_ptr = h->root.u.def.value;
   11924 		    o = h->root.u.def.section;
   11925 		    if (o->output_section != NULL)
   11926 		      dyn.d_un.d_ptr += (o->output_section->vma
   11927 					 + o->output_offset);
   11928 		    else
   11929 		      {
   11930 			/* The symbol is imported from another shared
   11931 			   library and does not apply to this one.  */
   11932 			dyn.d_un.d_ptr = 0;
   11933 		      }
   11934 		    break;
   11935 		  }
   11936 	      }
   11937 	      continue;
   11938 
   11939 	    case DT_PREINIT_ARRAYSZ:
   11940 	      name = ".preinit_array";
   11941 	      goto get_out_size;
   11942 	    case DT_INIT_ARRAYSZ:
   11943 	      name = ".init_array";
   11944 	      goto get_out_size;
   11945 	    case DT_FINI_ARRAYSZ:
   11946 	      name = ".fini_array";
   11947 	    get_out_size:
   11948 	      o = bfd_get_section_by_name (abfd, name);
   11949 	      if (o == NULL)
   11950 		{
   11951 		  (*_bfd_error_handler)
   11952 		    (_("could not find section %s"), name);
   11953 		  goto error_return;
   11954 		}
   11955 	      if (o->size == 0)
   11956 		(*_bfd_error_handler)
   11957 		  (_("warning: %s section has zero size"), name);
   11958 	      dyn.d_un.d_val = o->size;
   11959 	      break;
   11960 
   11961 	    case DT_PREINIT_ARRAY:
   11962 	      name = ".preinit_array";
   11963 	      goto get_out_vma;
   11964 	    case DT_INIT_ARRAY:
   11965 	      name = ".init_array";
   11966 	      goto get_out_vma;
   11967 	    case DT_FINI_ARRAY:
   11968 	      name = ".fini_array";
   11969 	    get_out_vma:
   11970 	      o = bfd_get_section_by_name (abfd, name);
   11971 	      goto do_vma;
   11972 
   11973 	    case DT_HASH:
   11974 	      name = ".hash";
   11975 	      goto get_vma;
   11976 	    case DT_GNU_HASH:
   11977 	      name = ".gnu.hash";
   11978 	      goto get_vma;
   11979 	    case DT_STRTAB:
   11980 	      name = ".dynstr";
   11981 	      goto get_vma;
   11982 	    case DT_SYMTAB:
   11983 	      name = ".dynsym";
   11984 	      goto get_vma;
   11985 	    case DT_VERDEF:
   11986 	      name = ".gnu.version_d";
   11987 	      goto get_vma;
   11988 	    case DT_VERNEED:
   11989 	      name = ".gnu.version_r";
   11990 	      goto get_vma;
   11991 	    case DT_VERSYM:
   11992 	      name = ".gnu.version";
   11993 	    get_vma:
   11994 	      o = bfd_get_linker_section (dynobj, name);
   11995 	    do_vma:
   11996 	      if (o == NULL)
   11997 		{
   11998 		  (*_bfd_error_handler)
   11999 		    (_("could not find section %s"), name);
   12000 		  goto error_return;
   12001 		}
   12002 	      if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
   12003 		{
   12004 		  (*_bfd_error_handler)
   12005 		    (_("warning: section '%s' is being made into a note"), name);
   12006 		  bfd_set_error (bfd_error_nonrepresentable_section);
   12007 		  goto error_return;
   12008 		}
   12009 	      dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
   12010 	      break;
   12011 
   12012 	    case DT_REL:
   12013 	    case DT_RELA:
   12014 	    case DT_RELSZ:
   12015 	    case DT_RELASZ:
   12016 	      if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
   12017 		type = SHT_REL;
   12018 	      else
   12019 		type = SHT_RELA;
   12020 	      dyn.d_un.d_val = 0;
   12021 	      dyn.d_un.d_ptr = 0;
   12022 	      for (i = 1; i < elf_numsections (abfd); i++)
   12023 		{
   12024 		  Elf_Internal_Shdr *hdr;
   12025 
   12026 		  hdr = elf_elfsections (abfd)[i];
   12027 		  if (hdr->sh_type == type
   12028 		      && (hdr->sh_flags & SHF_ALLOC) != 0)
   12029 		    {
   12030 		      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
   12031 			dyn.d_un.d_val += hdr->sh_size;
   12032 		      else
   12033 			{
   12034 			  if (dyn.d_un.d_ptr == 0
   12035 			      || hdr->sh_addr < dyn.d_un.d_ptr)
   12036 			    dyn.d_un.d_ptr = hdr->sh_addr;
   12037 			}
   12038 		    }
   12039 		}
   12040 	      break;
   12041 	    }
   12042 	  bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
   12043 	}
   12044     }
   12045 
   12046   /* If we have created any dynamic sections, then output them.  */
   12047   if (dynobj != NULL)
   12048     {
   12049       if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
   12050 	goto error_return;
   12051 
   12052       /* Check for DT_TEXTREL (late, in case the backend removes it).  */
   12053       if (((info->warn_shared_textrel && bfd_link_pic (info))
   12054 	   || info->error_textrel)
   12055 	  && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
   12056 	{
   12057 	  bfd_byte *dyncon, *dynconend;
   12058 
   12059 	  dyncon = o->contents;
   12060 	  dynconend = o->contents + o->size;
   12061 	  for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
   12062 	    {
   12063 	      Elf_Internal_Dyn dyn;
   12064 
   12065 	      bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
   12066 
   12067 	      if (dyn.d_tag == DT_TEXTREL)
   12068 		{
   12069 		  if (info->error_textrel)
   12070 		    info->callbacks->einfo
   12071 		      (_("%P%X: read-only segment has dynamic relocations.\n"));
   12072 		  else
   12073 		    info->callbacks->einfo
   12074 		      (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
   12075 		  break;
   12076 		}
   12077 	    }
   12078 	}
   12079 
   12080       for (o = dynobj->sections; o != NULL; o = o->next)
   12081 	{
   12082 	  if ((o->flags & SEC_HAS_CONTENTS) == 0
   12083 	      || o->size == 0
   12084 	      || o->output_section == bfd_abs_section_ptr)
   12085 	    continue;
   12086 	  if ((o->flags & SEC_LINKER_CREATED) == 0)
   12087 	    {
   12088 	      /* At this point, we are only interested in sections
   12089 		 created by _bfd_elf_link_create_dynamic_sections.  */
   12090 	      continue;
   12091 	    }
   12092 	  if (elf_hash_table (info)->stab_info.stabstr == o)
   12093 	    continue;
   12094 	  if (elf_hash_table (info)->eh_info.hdr_sec == o)
   12095 	    continue;
   12096 	  if (strcmp (o->name, ".dynstr") != 0)
   12097 	    {
   12098 	      if (! bfd_set_section_contents (abfd, o->output_section,
   12099 					      o->contents,
   12100 					      (file_ptr) o->output_offset
   12101 					      * bfd_octets_per_byte (abfd),
   12102 					      o->size))
   12103 		goto error_return;
   12104 	    }
   12105 	  else
   12106 	    {
   12107 	      /* The contents of the .dynstr section are actually in a
   12108 		 stringtab.  */
   12109 	      file_ptr off;
   12110 
   12111 	      off = elf_section_data (o->output_section)->this_hdr.sh_offset;
   12112 	      if (bfd_seek (abfd, off, SEEK_SET) != 0
   12113 		  || ! _bfd_elf_strtab_emit (abfd,
   12114 					     elf_hash_table (info)->dynstr))
   12115 		goto error_return;
   12116 	    }
   12117 	}
   12118     }
   12119 
   12120   if (bfd_link_relocatable (info))
   12121     {
   12122       bfd_boolean failed = FALSE;
   12123 
   12124       bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
   12125       if (failed)
   12126 	goto error_return;
   12127     }
   12128 
   12129   /* If we have optimized stabs strings, output them.  */
   12130   if (elf_hash_table (info)->stab_info.stabstr != NULL)
   12131     {
   12132       if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
   12133 	goto error_return;
   12134     }
   12135 
   12136   if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
   12137     goto error_return;
   12138 
   12139   elf_final_link_free (abfd, &flinfo);
   12140 
   12141   elf_linker (abfd) = TRUE;
   12142 
   12143   if (attr_section)
   12144     {
   12145       bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
   12146       if (contents == NULL)
   12147 	return FALSE;	/* Bail out and fail.  */
   12148       bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
   12149       bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
   12150       free (contents);
   12151     }
   12152 
   12153   return TRUE;
   12154 
   12155  error_return:
   12156   elf_final_link_free (abfd, &flinfo);
   12157   return FALSE;
   12158 }
   12159 
   12160 /* Initialize COOKIE for input bfd ABFD.  */
   12162 
   12163 static bfd_boolean
   12164 init_reloc_cookie (struct elf_reloc_cookie *cookie,
   12165 		   struct bfd_link_info *info, bfd *abfd)
   12166 {
   12167   Elf_Internal_Shdr *symtab_hdr;
   12168   const struct elf_backend_data *bed;
   12169 
   12170   bed = get_elf_backend_data (abfd);
   12171   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
   12172 
   12173   cookie->abfd = abfd;
   12174   cookie->sym_hashes = elf_sym_hashes (abfd);
   12175   cookie->bad_symtab = elf_bad_symtab (abfd);
   12176   if (cookie->bad_symtab)
   12177     {
   12178       cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
   12179       cookie->extsymoff = 0;
   12180     }
   12181   else
   12182     {
   12183       cookie->locsymcount = symtab_hdr->sh_info;
   12184       cookie->extsymoff = symtab_hdr->sh_info;
   12185     }
   12186 
   12187   if (bed->s->arch_size == 32)
   12188     cookie->r_sym_shift = 8;
   12189   else
   12190     cookie->r_sym_shift = 32;
   12191 
   12192   cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
   12193   if (cookie->locsyms == NULL && cookie->locsymcount != 0)
   12194     {
   12195       cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
   12196 					      cookie->locsymcount, 0,
   12197 					      NULL, NULL, NULL);
   12198       if (cookie->locsyms == NULL)
   12199 	{
   12200 	  info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
   12201 	  return FALSE;
   12202 	}
   12203       if (info->keep_memory)
   12204 	symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
   12205     }
   12206   return TRUE;
   12207 }
   12208 
   12209 /* Free the memory allocated by init_reloc_cookie, if appropriate.  */
   12210 
   12211 static void
   12212 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
   12213 {
   12214   Elf_Internal_Shdr *symtab_hdr;
   12215 
   12216   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
   12217   if (cookie->locsyms != NULL
   12218       && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
   12219     free (cookie->locsyms);
   12220 }
   12221 
   12222 /* Initialize the relocation information in COOKIE for input section SEC
   12223    of input bfd ABFD.  */
   12224 
   12225 static bfd_boolean
   12226 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
   12227 			struct bfd_link_info *info, bfd *abfd,
   12228 			asection *sec)
   12229 {
   12230   const struct elf_backend_data *bed;
   12231 
   12232   if (sec->reloc_count == 0)
   12233     {
   12234       cookie->rels = NULL;
   12235       cookie->relend = NULL;
   12236     }
   12237   else
   12238     {
   12239       bed = get_elf_backend_data (abfd);
   12240 
   12241       cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
   12242 						info->keep_memory);
   12243       if (cookie->rels == NULL)
   12244 	return FALSE;
   12245       cookie->rel = cookie->rels;
   12246       cookie->relend = (cookie->rels
   12247 			+ sec->reloc_count * bed->s->int_rels_per_ext_rel);
   12248     }
   12249   cookie->rel = cookie->rels;
   12250   return TRUE;
   12251 }
   12252 
   12253 /* Free the memory allocated by init_reloc_cookie_rels,
   12254    if appropriate.  */
   12255 
   12256 static void
   12257 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
   12258 			asection *sec)
   12259 {
   12260   if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
   12261     free (cookie->rels);
   12262 }
   12263 
   12264 /* Initialize the whole of COOKIE for input section SEC.  */
   12265 
   12266 static bfd_boolean
   12267 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
   12268 			       struct bfd_link_info *info,
   12269 			       asection *sec)
   12270 {
   12271   if (!init_reloc_cookie (cookie, info, sec->owner))
   12272     goto error1;
   12273   if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
   12274     goto error2;
   12275   return TRUE;
   12276 
   12277  error2:
   12278   fini_reloc_cookie (cookie, sec->owner);
   12279  error1:
   12280   return FALSE;
   12281 }
   12282 
   12283 /* Free the memory allocated by init_reloc_cookie_for_section,
   12284    if appropriate.  */
   12285 
   12286 static void
   12287 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
   12288 			       asection *sec)
   12289 {
   12290   fini_reloc_cookie_rels (cookie, sec);
   12291   fini_reloc_cookie (cookie, sec->owner);
   12292 }
   12293 
   12294 /* Garbage collect unused sections.  */
   12296 
   12297 /* Default gc_mark_hook.  */
   12298 
   12299 asection *
   12300 _bfd_elf_gc_mark_hook (asection *sec,
   12301 		       struct bfd_link_info *info ATTRIBUTE_UNUSED,
   12302 		       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
   12303 		       struct elf_link_hash_entry *h,
   12304 		       Elf_Internal_Sym *sym)
   12305 {
   12306   if (h != NULL)
   12307     {
   12308       switch (h->root.type)
   12309 	{
   12310 	case bfd_link_hash_defined:
   12311 	case bfd_link_hash_defweak:
   12312 	  return h->root.u.def.section;
   12313 
   12314 	case bfd_link_hash_common:
   12315 	  return h->root.u.c.p->section;
   12316 
   12317 	default:
   12318 	  break;
   12319 	}
   12320     }
   12321   else
   12322     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
   12323 
   12324   return NULL;
   12325 }
   12326 
   12327 /* For undefined __start_<name> and __stop_<name> symbols, return the
   12328    first input section matching <name>.  Return NULL otherwise.  */
   12329 
   12330 asection *
   12331 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
   12332 			struct elf_link_hash_entry *h)
   12333 {
   12334   asection *s;
   12335   const char *sec_name;
   12336 
   12337   if (h->root.type != bfd_link_hash_undefined
   12338       && h->root.type != bfd_link_hash_undefweak)
   12339     return NULL;
   12340 
   12341   s = h->root.u.undef.section;
   12342   if (s != NULL)
   12343     {
   12344       if (s == (asection *) 0 - 1)
   12345 	return NULL;
   12346       return s;
   12347     }
   12348 
   12349   sec_name = NULL;
   12350   if (strncmp (h->root.root.string, "__start_", 8) == 0)
   12351     sec_name = h->root.root.string + 8;
   12352   else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
   12353     sec_name = h->root.root.string + 7;
   12354 
   12355   if (sec_name != NULL && *sec_name != '\0')
   12356     {
   12357       bfd *i;
   12358 
   12359       for (i = info->input_bfds; i != NULL; i = i->link.next)
   12360 	{
   12361 	  s = bfd_get_section_by_name (i, sec_name);
   12362 	  if (s != NULL)
   12363 	    {
   12364 	      h->root.u.undef.section = s;
   12365 	      break;
   12366 	    }
   12367 	}
   12368     }
   12369 
   12370   if (s == NULL)
   12371     h->root.u.undef.section = (asection *) 0 - 1;
   12372 
   12373   return s;
   12374 }
   12375 
   12376 /* COOKIE->rel describes a relocation against section SEC, which is
   12377    a section we've decided to keep.  Return the section that contains
   12378    the relocation symbol, or NULL if no section contains it.  */
   12379 
   12380 asection *
   12381 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
   12382 		       elf_gc_mark_hook_fn gc_mark_hook,
   12383 		       struct elf_reloc_cookie *cookie,
   12384 		       bfd_boolean *start_stop)
   12385 {
   12386   unsigned long r_symndx;
   12387   struct elf_link_hash_entry *h;
   12388 
   12389   r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
   12390   if (r_symndx == STN_UNDEF)
   12391     return NULL;
   12392 
   12393   if (r_symndx >= cookie->locsymcount
   12394       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
   12395     {
   12396       h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
   12397       if (h == NULL)
   12398 	{
   12399 	  info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
   12400 				  sec->owner);
   12401 	  return NULL;
   12402 	}
   12403       while (h->root.type == bfd_link_hash_indirect
   12404 	     || h->root.type == bfd_link_hash_warning)
   12405 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
   12406       h->mark = 1;
   12407       /* If this symbol is weak and there is a non-weak definition, we
   12408 	 keep the non-weak definition because many backends put
   12409 	 dynamic reloc info on the non-weak definition for code
   12410 	 handling copy relocs.  */
   12411       if (h->u.weakdef != NULL)
   12412 	h->u.weakdef->mark = 1;
   12413 
   12414       if (start_stop != NULL)
   12415 	{
   12416 	  /* To work around a glibc bug, mark all XXX input sections
   12417 	     when there is an as yet undefined reference to __start_XXX
   12418 	     or __stop_XXX symbols.  The linker will later define such
   12419 	     symbols for orphan input sections that have a name
   12420 	     representable as a C identifier.  */
   12421 	  asection *s = _bfd_elf_is_start_stop (info, h);
   12422 
   12423 	  if (s != NULL)
   12424 	    {
   12425 	      *start_stop = !s->gc_mark;
   12426 	      return s;
   12427 	    }
   12428 	}
   12429 
   12430       return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
   12431     }
   12432 
   12433   return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
   12434 			  &cookie->locsyms[r_symndx]);
   12435 }
   12436 
   12437 /* COOKIE->rel describes a relocation against section SEC, which is
   12438    a section we've decided to keep.  Mark the section that contains
   12439    the relocation symbol.  */
   12440 
   12441 bfd_boolean
   12442 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
   12443 			asection *sec,
   12444 			elf_gc_mark_hook_fn gc_mark_hook,
   12445 			struct elf_reloc_cookie *cookie)
   12446 {
   12447   asection *rsec;
   12448   bfd_boolean start_stop = FALSE;
   12449 
   12450   rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
   12451   while (rsec != NULL)
   12452     {
   12453       if (!rsec->gc_mark)
   12454 	{
   12455 	  if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
   12456 	      || (rsec->owner->flags & DYNAMIC) != 0)
   12457 	    rsec->gc_mark = 1;
   12458 	  else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
   12459 	    return FALSE;
   12460 	}
   12461       if (!start_stop)
   12462 	break;
   12463       rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
   12464     }
   12465   return TRUE;
   12466 }
   12467 
   12468 /* The mark phase of garbage collection.  For a given section, mark
   12469    it and any sections in this section's group, and all the sections
   12470    which define symbols to which it refers.  */
   12471 
   12472 bfd_boolean
   12473 _bfd_elf_gc_mark (struct bfd_link_info *info,
   12474 		  asection *sec,
   12475 		  elf_gc_mark_hook_fn gc_mark_hook)
   12476 {
   12477   bfd_boolean ret;
   12478   asection *group_sec, *eh_frame;
   12479 
   12480   sec->gc_mark = 1;
   12481 
   12482   /* Mark all the sections in the group.  */
   12483   group_sec = elf_section_data (sec)->next_in_group;
   12484   if (group_sec && !group_sec->gc_mark)
   12485     if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
   12486       return FALSE;
   12487 
   12488   /* Look through the section relocs.  */
   12489   ret = TRUE;
   12490   eh_frame = elf_eh_frame_section (sec->owner);
   12491   if ((sec->flags & SEC_RELOC) != 0
   12492       && sec->reloc_count > 0
   12493       && sec != eh_frame)
   12494     {
   12495       struct elf_reloc_cookie cookie;
   12496 
   12497       if (!init_reloc_cookie_for_section (&cookie, info, sec))
   12498 	ret = FALSE;
   12499       else
   12500 	{
   12501 	  for (; cookie.rel < cookie.relend; cookie.rel++)
   12502 	    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
   12503 	      {
   12504 		ret = FALSE;
   12505 		break;
   12506 	      }
   12507 	  fini_reloc_cookie_for_section (&cookie, sec);
   12508 	}
   12509     }
   12510 
   12511   if (ret && eh_frame && elf_fde_list (sec))
   12512     {
   12513       struct elf_reloc_cookie cookie;
   12514 
   12515       if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
   12516 	ret = FALSE;
   12517       else
   12518 	{
   12519 	  if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
   12520 				      gc_mark_hook, &cookie))
   12521 	    ret = FALSE;
   12522 	  fini_reloc_cookie_for_section (&cookie, eh_frame);
   12523 	}
   12524     }
   12525 
   12526   eh_frame = elf_section_eh_frame_entry (sec);
   12527   if (ret && eh_frame && !eh_frame->gc_mark)
   12528     if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
   12529       ret = FALSE;
   12530 
   12531   return ret;
   12532 }
   12533 
   12534 /* Scan and mark sections in a special or debug section group.  */
   12535 
   12536 static void
   12537 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
   12538 {
   12539   /* Point to first section of section group.  */
   12540   asection *ssec;
   12541   /* Used to iterate the section group.  */
   12542   asection *msec;
   12543 
   12544   bfd_boolean is_special_grp = TRUE;
   12545   bfd_boolean is_debug_grp = TRUE;
   12546 
   12547   /* First scan to see if group contains any section other than debug
   12548      and special section.  */
   12549   ssec = msec = elf_next_in_group (grp);
   12550   do
   12551     {
   12552       if ((msec->flags & SEC_DEBUGGING) == 0)
   12553 	is_debug_grp = FALSE;
   12554 
   12555       if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
   12556 	is_special_grp = FALSE;
   12557 
   12558       msec = elf_next_in_group (msec);
   12559     }
   12560   while (msec != ssec);
   12561 
   12562   /* If this is a pure debug section group or pure special section group,
   12563      keep all sections in this group.  */
   12564   if (is_debug_grp || is_special_grp)
   12565     {
   12566       do
   12567 	{
   12568 	  msec->gc_mark = 1;
   12569 	  msec = elf_next_in_group (msec);
   12570 	}
   12571       while (msec != ssec);
   12572     }
   12573 }
   12574 
   12575 /* Keep debug and special sections.  */
   12576 
   12577 bfd_boolean
   12578 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
   12579 				 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
   12580 {
   12581   bfd *ibfd;
   12582 
   12583   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
   12584     {
   12585       asection *isec;
   12586       bfd_boolean some_kept;
   12587       bfd_boolean debug_frag_seen;
   12588 
   12589       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
   12590 	continue;
   12591 
   12592       /* Ensure all linker created sections are kept,
   12593 	 see if any other section is already marked,
   12594 	 and note if we have any fragmented debug sections.  */
   12595       debug_frag_seen = some_kept = FALSE;
   12596       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
   12597 	{
   12598 	  if ((isec->flags & SEC_LINKER_CREATED) != 0)
   12599 	    isec->gc_mark = 1;
   12600 	  else if (isec->gc_mark)
   12601 	    some_kept = TRUE;
   12602 
   12603 	  if (debug_frag_seen == FALSE
   12604 	      && (isec->flags & SEC_DEBUGGING)
   12605 	      && CONST_STRNEQ (isec->name, ".debug_line."))
   12606 	    debug_frag_seen = TRUE;
   12607 	}
   12608 
   12609       /* If no section in this file will be kept, then we can
   12610 	 toss out the debug and special sections.  */
   12611       if (!some_kept)
   12612 	continue;
   12613 
   12614       /* Keep debug and special sections like .comment when they are
   12615 	 not part of a group.  Also keep section groups that contain
   12616 	 just debug sections or special sections.  */
   12617       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
   12618 	{
   12619 	  if ((isec->flags & SEC_GROUP) != 0)
   12620 	    _bfd_elf_gc_mark_debug_special_section_group (isec);
   12621 	  else if (((isec->flags & SEC_DEBUGGING) != 0
   12622 		    || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
   12623 		   && elf_next_in_group (isec) == NULL)
   12624 	    isec->gc_mark = 1;
   12625 	}
   12626 
   12627       if (! debug_frag_seen)
   12628 	continue;
   12629 
   12630       /* Look for CODE sections which are going to be discarded,
   12631 	 and find and discard any fragmented debug sections which
   12632 	 are associated with that code section.  */
   12633       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
   12634 	if ((isec->flags & SEC_CODE) != 0
   12635 	    && isec->gc_mark == 0)
   12636 	  {
   12637 	    unsigned int ilen;
   12638 	    asection *dsec;
   12639 
   12640 	    ilen = strlen (isec->name);
   12641 
   12642 	    /* Association is determined by the name of the debug section
   12643 	       containing the name of the code section as a suffix.  For
   12644 	       example .debug_line.text.foo is a debug section associated
   12645 	       with .text.foo.  */
   12646 	    for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
   12647 	      {
   12648 		unsigned int dlen;
   12649 
   12650 		if (dsec->gc_mark == 0
   12651 		    || (dsec->flags & SEC_DEBUGGING) == 0)
   12652 		  continue;
   12653 
   12654 		dlen = strlen (dsec->name);
   12655 
   12656 		if (dlen > ilen
   12657 		    && strncmp (dsec->name + (dlen - ilen),
   12658 				isec->name, ilen) == 0)
   12659 		  {
   12660 		    dsec->gc_mark = 0;
   12661 		  }
   12662 	      }
   12663 	  }
   12664     }
   12665   return TRUE;
   12666 }
   12667 
   12668 /* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
   12669 
   12670 struct elf_gc_sweep_symbol_info
   12671 {
   12672   struct bfd_link_info *info;
   12673   void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
   12674 		       bfd_boolean);
   12675 };
   12676 
   12677 static bfd_boolean
   12678 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
   12679 {
   12680   if (!h->mark
   12681       && (((h->root.type == bfd_link_hash_defined
   12682 	    || h->root.type == bfd_link_hash_defweak)
   12683 	   && !((h->def_regular || ELF_COMMON_DEF_P (h))
   12684 		&& h->root.u.def.section->gc_mark))
   12685 	  || h->root.type == bfd_link_hash_undefined
   12686 	  || h->root.type == bfd_link_hash_undefweak))
   12687     {
   12688       struct elf_gc_sweep_symbol_info *inf;
   12689 
   12690       inf = (struct elf_gc_sweep_symbol_info *) data;
   12691       (*inf->hide_symbol) (inf->info, h, TRUE);
   12692       h->def_regular = 0;
   12693       h->ref_regular = 0;
   12694       h->ref_regular_nonweak = 0;
   12695     }
   12696 
   12697   return TRUE;
   12698 }
   12699 
   12700 /* The sweep phase of garbage collection.  Remove all garbage sections.  */
   12701 
   12702 typedef bfd_boolean (*gc_sweep_hook_fn)
   12703   (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
   12704 
   12705 static bfd_boolean
   12706 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
   12707 {
   12708   bfd *sub;
   12709   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   12710   gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
   12711   unsigned long section_sym_count;
   12712   struct elf_gc_sweep_symbol_info sweep_info;
   12713 
   12714   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
   12715     {
   12716       asection *o;
   12717 
   12718       if (bfd_get_flavour (sub) != bfd_target_elf_flavour
   12719 	  || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
   12720 	continue;
   12721 
   12722       for (o = sub->sections; o != NULL; o = o->next)
   12723 	{
   12724 	  /* When any section in a section group is kept, we keep all
   12725 	     sections in the section group.  If the first member of
   12726 	     the section group is excluded, we will also exclude the
   12727 	     group section.  */
   12728 	  if (o->flags & SEC_GROUP)
   12729 	    {
   12730 	      asection *first = elf_next_in_group (o);
   12731 	      o->gc_mark = first->gc_mark;
   12732 	    }
   12733 
   12734 	  if (o->gc_mark)
   12735 	    continue;
   12736 
   12737 	  /* Skip sweeping sections already excluded.  */
   12738 	  if (o->flags & SEC_EXCLUDE)
   12739 	    continue;
   12740 
   12741 	  /* Since this is early in the link process, it is simple
   12742 	     to remove a section from the output.  */
   12743 	  o->flags |= SEC_EXCLUDE;
   12744 
   12745 	  if (info->print_gc_sections && o->size != 0)
   12746 	    _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
   12747 
   12748 	  /* But we also have to update some of the relocation
   12749 	     info we collected before.  */
   12750 	  if (gc_sweep_hook
   12751 	      && (o->flags & SEC_RELOC) != 0
   12752 	      && o->reloc_count != 0
   12753 	      && !((info->strip == strip_all || info->strip == strip_debugger)
   12754 		   && (o->flags & SEC_DEBUGGING) != 0)
   12755 	      && !bfd_is_abs_section (o->output_section))
   12756 	    {
   12757 	      Elf_Internal_Rela *internal_relocs;
   12758 	      bfd_boolean r;
   12759 
   12760 	      internal_relocs
   12761 		= _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
   12762 					     info->keep_memory);
   12763 	      if (internal_relocs == NULL)
   12764 		return FALSE;
   12765 
   12766 	      r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
   12767 
   12768 	      if (elf_section_data (o)->relocs != internal_relocs)
   12769 		free (internal_relocs);
   12770 
   12771 	      if (!r)
   12772 		return FALSE;
   12773 	    }
   12774 	}
   12775     }
   12776 
   12777   /* Remove the symbols that were in the swept sections from the dynamic
   12778      symbol table.  GCFIXME: Anyone know how to get them out of the
   12779      static symbol table as well?  */
   12780   sweep_info.info = info;
   12781   sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
   12782   elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
   12783 			  &sweep_info);
   12784 
   12785   _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
   12786   return TRUE;
   12787 }
   12788 
   12789 /* Propagate collected vtable information.  This is called through
   12790    elf_link_hash_traverse.  */
   12791 
   12792 static bfd_boolean
   12793 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
   12794 {
   12795   /* Those that are not vtables.  */
   12796   if (h->vtable == NULL || h->vtable->parent == NULL)
   12797     return TRUE;
   12798 
   12799   /* Those vtables that do not have parents, we cannot merge.  */
   12800   if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
   12801     return TRUE;
   12802 
   12803   /* If we've already been done, exit.  */
   12804   if (h->vtable->used && h->vtable->used[-1])
   12805     return TRUE;
   12806 
   12807   /* Make sure the parent's table is up to date.  */
   12808   elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
   12809 
   12810   if (h->vtable->used == NULL)
   12811     {
   12812       /* None of this table's entries were referenced.  Re-use the
   12813 	 parent's table.  */
   12814       h->vtable->used = h->vtable->parent->vtable->used;
   12815       h->vtable->size = h->vtable->parent->vtable->size;
   12816     }
   12817   else
   12818     {
   12819       size_t n;
   12820       bfd_boolean *cu, *pu;
   12821 
   12822       /* Or the parent's entries into ours.  */
   12823       cu = h->vtable->used;
   12824       cu[-1] = TRUE;
   12825       pu = h->vtable->parent->vtable->used;
   12826       if (pu != NULL)
   12827 	{
   12828 	  const struct elf_backend_data *bed;
   12829 	  unsigned int log_file_align;
   12830 
   12831 	  bed = get_elf_backend_data (h->root.u.def.section->owner);
   12832 	  log_file_align = bed->s->log_file_align;
   12833 	  n = h->vtable->parent->vtable->size >> log_file_align;
   12834 	  while (n--)
   12835 	    {
   12836 	      if (*pu)
   12837 		*cu = TRUE;
   12838 	      pu++;
   12839 	      cu++;
   12840 	    }
   12841 	}
   12842     }
   12843 
   12844   return TRUE;
   12845 }
   12846 
   12847 static bfd_boolean
   12848 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
   12849 {
   12850   asection *sec;
   12851   bfd_vma hstart, hend;
   12852   Elf_Internal_Rela *relstart, *relend, *rel;
   12853   const struct elf_backend_data *bed;
   12854   unsigned int log_file_align;
   12855 
   12856   /* Take care of both those symbols that do not describe vtables as
   12857      well as those that are not loaded.  */
   12858   if (h->vtable == NULL || h->vtable->parent == NULL)
   12859     return TRUE;
   12860 
   12861   BFD_ASSERT (h->root.type == bfd_link_hash_defined
   12862 	      || h->root.type == bfd_link_hash_defweak);
   12863 
   12864   sec = h->root.u.def.section;
   12865   hstart = h->root.u.def.value;
   12866   hend = hstart + h->size;
   12867 
   12868   relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
   12869   if (!relstart)
   12870     return *(bfd_boolean *) okp = FALSE;
   12871   bed = get_elf_backend_data (sec->owner);
   12872   log_file_align = bed->s->log_file_align;
   12873 
   12874   relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
   12875 
   12876   for (rel = relstart; rel < relend; ++rel)
   12877     if (rel->r_offset >= hstart && rel->r_offset < hend)
   12878       {
   12879 	/* If the entry is in use, do nothing.  */
   12880 	if (h->vtable->used
   12881 	    && (rel->r_offset - hstart) < h->vtable->size)
   12882 	  {
   12883 	    bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
   12884 	    if (h->vtable->used[entry])
   12885 	      continue;
   12886 	  }
   12887 	/* Otherwise, kill it.  */
   12888 	rel->r_offset = rel->r_info = rel->r_addend = 0;
   12889       }
   12890 
   12891   return TRUE;
   12892 }
   12893 
   12894 /* Mark sections containing dynamically referenced symbols.  When
   12895    building shared libraries, we must assume that any visible symbol is
   12896    referenced.  */
   12897 
   12898 bfd_boolean
   12899 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
   12900 {
   12901   struct bfd_link_info *info = (struct bfd_link_info *) inf;
   12902   struct bfd_elf_dynamic_list *d = info->dynamic_list;
   12903 
   12904   if ((h->root.type == bfd_link_hash_defined
   12905        || h->root.type == bfd_link_hash_defweak)
   12906       && (h->ref_dynamic
   12907 	  || ((h->def_regular || ELF_COMMON_DEF_P (h))
   12908 	      && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
   12909 	      && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
   12910 	      && (!bfd_link_executable (info)
   12911 		  || info->export_dynamic
   12912 		  || (h->dynamic
   12913 		      && d != NULL
   12914 		      && (*d->match) (&d->head, NULL, h->root.root.string)))
   12915 	      && (h->versioned >= versioned
   12916 		  || !bfd_hide_sym_by_version (info->version_info,
   12917 					       h->root.root.string)))))
   12918     h->root.u.def.section->flags |= SEC_KEEP;
   12919 
   12920   return TRUE;
   12921 }
   12922 
   12923 /* Keep all sections containing symbols undefined on the command-line,
   12924    and the section containing the entry symbol.  */
   12925 
   12926 void
   12927 _bfd_elf_gc_keep (struct bfd_link_info *info)
   12928 {
   12929   struct bfd_sym_chain *sym;
   12930 
   12931   for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
   12932     {
   12933       struct elf_link_hash_entry *h;
   12934 
   12935       h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
   12936 				FALSE, FALSE, FALSE);
   12937 
   12938       if (h != NULL
   12939 	  && (h->root.type == bfd_link_hash_defined
   12940 	      || h->root.type == bfd_link_hash_defweak)
   12941 	  && !bfd_is_abs_section (h->root.u.def.section))
   12942 	h->root.u.def.section->flags |= SEC_KEEP;
   12943     }
   12944 }
   12945 
   12946 bfd_boolean
   12947 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
   12948 				struct bfd_link_info *info)
   12949 {
   12950   bfd *ibfd = info->input_bfds;
   12951 
   12952   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
   12953     {
   12954       asection *sec;
   12955       struct elf_reloc_cookie cookie;
   12956 
   12957       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
   12958 	continue;
   12959 
   12960       if (!init_reloc_cookie (&cookie, info, ibfd))
   12961 	return FALSE;
   12962 
   12963       for (sec = ibfd->sections; sec; sec = sec->next)
   12964 	{
   12965 	  if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
   12966 	      && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
   12967 	    {
   12968 	      _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
   12969 	      fini_reloc_cookie_rels (&cookie, sec);
   12970 	    }
   12971 	}
   12972     }
   12973   return TRUE;
   12974 }
   12975 
   12976 /* Do mark and sweep of unused sections.  */
   12977 
   12978 bfd_boolean
   12979 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
   12980 {
   12981   bfd_boolean ok = TRUE;
   12982   bfd *sub;
   12983   elf_gc_mark_hook_fn gc_mark_hook;
   12984   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   12985   struct elf_link_hash_table *htab;
   12986 
   12987   if (!bed->can_gc_sections
   12988       || !is_elf_hash_table (info->hash))
   12989     {
   12990       (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
   12991       return TRUE;
   12992     }
   12993 
   12994   bed->gc_keep (info);
   12995   htab = elf_hash_table (info);
   12996 
   12997   /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section
   12998      at the .eh_frame section if we can mark the FDEs individually.  */
   12999   for (sub = info->input_bfds;
   13000        info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
   13001        sub = sub->link.next)
   13002     {
   13003       asection *sec;
   13004       struct elf_reloc_cookie cookie;
   13005 
   13006       sec = bfd_get_section_by_name (sub, ".eh_frame");
   13007       while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
   13008 	{
   13009 	  _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
   13010 	  if (elf_section_data (sec)->sec_info
   13011 	      && (sec->flags & SEC_LINKER_CREATED) == 0)
   13012 	    elf_eh_frame_section (sub) = sec;
   13013 	  fini_reloc_cookie_for_section (&cookie, sec);
   13014 	  sec = bfd_get_next_section_by_name (NULL, sec);
   13015 	}
   13016     }
   13017 
   13018   /* Apply transitive closure to the vtable entry usage info.  */
   13019   elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
   13020   if (!ok)
   13021     return FALSE;
   13022 
   13023   /* Kill the vtable relocations that were not used.  */
   13024   elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
   13025   if (!ok)
   13026     return FALSE;
   13027 
   13028   /* Mark dynamically referenced symbols.  */
   13029   if (htab->dynamic_sections_created)
   13030     elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
   13031 
   13032   /* Grovel through relocs to find out who stays ...  */
   13033   gc_mark_hook = bed->gc_mark_hook;
   13034   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
   13035     {
   13036       asection *o;
   13037 
   13038       if (bfd_get_flavour (sub) != bfd_target_elf_flavour
   13039 	  || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
   13040 	continue;
   13041 
   13042       /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
   13043 	 Also treat note sections as a root, if the section is not part
   13044 	 of a group.  */
   13045       for (o = sub->sections; o != NULL; o = o->next)
   13046 	if (!o->gc_mark
   13047 	    && (o->flags & SEC_EXCLUDE) == 0
   13048 	    && ((o->flags & SEC_KEEP) != 0
   13049 		|| (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
   13050 		    && elf_next_in_group (o) == NULL )))
   13051 	  {
   13052 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
   13053 	      return FALSE;
   13054 	  }
   13055     }
   13056 
   13057   /* Allow the backend to mark additional target specific sections.  */
   13058   bed->gc_mark_extra_sections (info, gc_mark_hook);
   13059 
   13060   /* ... and mark SEC_EXCLUDE for those that go.  */
   13061   return elf_gc_sweep (abfd, info);
   13062 }
   13063 
   13064 /* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
   13066 
   13067 bfd_boolean
   13068 bfd_elf_gc_record_vtinherit (bfd *abfd,
   13069 			     asection *sec,
   13070 			     struct elf_link_hash_entry *h,
   13071 			     bfd_vma offset)
   13072 {
   13073   struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
   13074   struct elf_link_hash_entry **search, *child;
   13075   size_t extsymcount;
   13076   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   13077 
   13078   /* The sh_info field of the symtab header tells us where the
   13079      external symbols start.  We don't care about the local symbols at
   13080      this point.  */
   13081   extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
   13082   if (!elf_bad_symtab (abfd))
   13083     extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
   13084 
   13085   sym_hashes = elf_sym_hashes (abfd);
   13086   sym_hashes_end = sym_hashes + extsymcount;
   13087 
   13088   /* Hunt down the child symbol, which is in this section at the same
   13089      offset as the relocation.  */
   13090   for (search = sym_hashes; search != sym_hashes_end; ++search)
   13091     {
   13092       if ((child = *search) != NULL
   13093 	  && (child->root.type == bfd_link_hash_defined
   13094 	      || child->root.type == bfd_link_hash_defweak)
   13095 	  && child->root.u.def.section == sec
   13096 	  && child->root.u.def.value == offset)
   13097 	goto win;
   13098     }
   13099 
   13100   (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
   13101 			 abfd, sec, (unsigned long) offset);
   13102   bfd_set_error (bfd_error_invalid_operation);
   13103   return FALSE;
   13104 
   13105  win:
   13106   if (!child->vtable)
   13107     {
   13108       child->vtable = ((struct elf_link_virtual_table_entry *)
   13109 		       bfd_zalloc (abfd, sizeof (*child->vtable)));
   13110       if (!child->vtable)
   13111 	return FALSE;
   13112     }
   13113   if (!h)
   13114     {
   13115       /* This *should* only be the absolute section.  It could potentially
   13116 	 be that someone has defined a non-global vtable though, which
   13117 	 would be bad.  It isn't worth paging in the local symbols to be
   13118 	 sure though; that case should simply be handled by the assembler.  */
   13119 
   13120       child->vtable->parent = (struct elf_link_hash_entry *) -1;
   13121     }
   13122   else
   13123     child->vtable->parent = h;
   13124 
   13125   return TRUE;
   13126 }
   13127 
   13128 /* Called from check_relocs to record the existence of a VTENTRY reloc.  */
   13129 
   13130 bfd_boolean
   13131 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
   13132 			   asection *sec ATTRIBUTE_UNUSED,
   13133 			   struct elf_link_hash_entry *h,
   13134 			   bfd_vma addend)
   13135 {
   13136   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   13137   unsigned int log_file_align = bed->s->log_file_align;
   13138 
   13139   if (!h->vtable)
   13140     {
   13141       h->vtable = ((struct elf_link_virtual_table_entry *)
   13142 		   bfd_zalloc (abfd, sizeof (*h->vtable)));
   13143       if (!h->vtable)
   13144 	return FALSE;
   13145     }
   13146 
   13147   if (addend >= h->vtable->size)
   13148     {
   13149       size_t size, bytes, file_align;
   13150       bfd_boolean *ptr = h->vtable->used;
   13151 
   13152       /* While the symbol is undefined, we have to be prepared to handle
   13153 	 a zero size.  */
   13154       file_align = 1 << log_file_align;
   13155       if (h->root.type == bfd_link_hash_undefined)
   13156 	size = addend + file_align;
   13157       else
   13158 	{
   13159 	  size = h->size;
   13160 	  if (addend >= size)
   13161 	    {
   13162 	      /* Oops!  We've got a reference past the defined end of
   13163 		 the table.  This is probably a bug -- shall we warn?  */
   13164 	      size = addend + file_align;
   13165 	    }
   13166 	}
   13167       size = (size + file_align - 1) & -file_align;
   13168 
   13169       /* Allocate one extra entry for use as a "done" flag for the
   13170 	 consolidation pass.  */
   13171       bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
   13172 
   13173       if (ptr)
   13174 	{
   13175 	  ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
   13176 
   13177 	  if (ptr != NULL)
   13178 	    {
   13179 	      size_t oldbytes;
   13180 
   13181 	      oldbytes = (((h->vtable->size >> log_file_align) + 1)
   13182 			  * sizeof (bfd_boolean));
   13183 	      memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
   13184 	    }
   13185 	}
   13186       else
   13187 	ptr = (bfd_boolean *) bfd_zmalloc (bytes);
   13188 
   13189       if (ptr == NULL)
   13190 	return FALSE;
   13191 
   13192       /* And arrange for that done flag to be at index -1.  */
   13193       h->vtable->used = ptr + 1;
   13194       h->vtable->size = size;
   13195     }
   13196 
   13197   h->vtable->used[addend >> log_file_align] = TRUE;
   13198 
   13199   return TRUE;
   13200 }
   13201 
   13202 /* Map an ELF section header flag to its corresponding string.  */
   13203 typedef struct
   13204 {
   13205   char *flag_name;
   13206   flagword flag_value;
   13207 } elf_flags_to_name_table;
   13208 
   13209 static elf_flags_to_name_table elf_flags_to_names [] =
   13210 {
   13211   { "SHF_WRITE", SHF_WRITE },
   13212   { "SHF_ALLOC", SHF_ALLOC },
   13213   { "SHF_EXECINSTR", SHF_EXECINSTR },
   13214   { "SHF_MERGE", SHF_MERGE },
   13215   { "SHF_STRINGS", SHF_STRINGS },
   13216   { "SHF_INFO_LINK", SHF_INFO_LINK},
   13217   { "SHF_LINK_ORDER", SHF_LINK_ORDER},
   13218   { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
   13219   { "SHF_GROUP", SHF_GROUP },
   13220   { "SHF_TLS", SHF_TLS },
   13221   { "SHF_MASKOS", SHF_MASKOS },
   13222   { "SHF_EXCLUDE", SHF_EXCLUDE },
   13223 };
   13224 
   13225 /* Returns TRUE if the section is to be included, otherwise FALSE.  */
   13226 bfd_boolean
   13227 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
   13228 			      struct flag_info *flaginfo,
   13229 			      asection *section)
   13230 {
   13231   const bfd_vma sh_flags = elf_section_flags (section);
   13232 
   13233   if (!flaginfo->flags_initialized)
   13234     {
   13235       bfd *obfd = info->output_bfd;
   13236       const struct elf_backend_data *bed = get_elf_backend_data (obfd);
   13237       struct flag_info_list *tf = flaginfo->flag_list;
   13238       int with_hex = 0;
   13239       int without_hex = 0;
   13240 
   13241       for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
   13242 	{
   13243 	  unsigned i;
   13244 	  flagword (*lookup) (char *);
   13245 
   13246 	  lookup = bed->elf_backend_lookup_section_flags_hook;
   13247 	  if (lookup != NULL)
   13248 	    {
   13249 	      flagword hexval = (*lookup) ((char *) tf->name);
   13250 
   13251 	      if (hexval != 0)
   13252 		{
   13253 		  if (tf->with == with_flags)
   13254 		    with_hex |= hexval;
   13255 		  else if (tf->with == without_flags)
   13256 		    without_hex |= hexval;
   13257 		  tf->valid = TRUE;
   13258 		  continue;
   13259 		}
   13260 	    }
   13261 	  for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
   13262 	    {
   13263 	      if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
   13264 		{
   13265 		  if (tf->with == with_flags)
   13266 		    with_hex |= elf_flags_to_names[i].flag_value;
   13267 		  else if (tf->with == without_flags)
   13268 		    without_hex |= elf_flags_to_names[i].flag_value;
   13269 		  tf->valid = TRUE;
   13270 		  break;
   13271 		}
   13272 	    }
   13273 	  if (!tf->valid)
   13274 	    {
   13275 	      info->callbacks->einfo
   13276 		(_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
   13277 	      return FALSE;
   13278 	    }
   13279 	}
   13280       flaginfo->flags_initialized = TRUE;
   13281       flaginfo->only_with_flags |= with_hex;
   13282       flaginfo->not_with_flags |= without_hex;
   13283     }
   13284 
   13285   if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
   13286     return FALSE;
   13287 
   13288   if ((flaginfo->not_with_flags & sh_flags) != 0)
   13289     return FALSE;
   13290 
   13291   return TRUE;
   13292 }
   13293 
   13294 struct alloc_got_off_arg {
   13295   bfd_vma gotoff;
   13296   struct bfd_link_info *info;
   13297 };
   13298 
   13299 /* We need a special top-level link routine to convert got reference counts
   13300    to real got offsets.  */
   13301 
   13302 static bfd_boolean
   13303 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
   13304 {
   13305   struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
   13306   bfd *obfd = gofarg->info->output_bfd;
   13307   const struct elf_backend_data *bed = get_elf_backend_data (obfd);
   13308 
   13309   if (h->got.refcount > 0)
   13310     {
   13311       h->got.offset = gofarg->gotoff;
   13312       gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
   13313     }
   13314   else
   13315     h->got.offset = (bfd_vma) -1;
   13316 
   13317   return TRUE;
   13318 }
   13319 
   13320 /* And an accompanying bit to work out final got entry offsets once
   13321    we're done.  Should be called from final_link.  */
   13322 
   13323 bfd_boolean
   13324 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
   13325 					struct bfd_link_info *info)
   13326 {
   13327   bfd *i;
   13328   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   13329   bfd_vma gotoff;
   13330   struct alloc_got_off_arg gofarg;
   13331 
   13332   BFD_ASSERT (abfd == info->output_bfd);
   13333 
   13334   if (! is_elf_hash_table (info->hash))
   13335     return FALSE;
   13336 
   13337   /* The GOT offset is relative to the .got section, but the GOT header is
   13338      put into the .got.plt section, if the backend uses it.  */
   13339   if (bed->want_got_plt)
   13340     gotoff = 0;
   13341   else
   13342     gotoff = bed->got_header_size;
   13343 
   13344   /* Do the local .got entries first.  */
   13345   for (i = info->input_bfds; i; i = i->link.next)
   13346     {
   13347       bfd_signed_vma *local_got;
   13348       size_t j, locsymcount;
   13349       Elf_Internal_Shdr *symtab_hdr;
   13350 
   13351       if (bfd_get_flavour (i) != bfd_target_elf_flavour)
   13352 	continue;
   13353 
   13354       local_got = elf_local_got_refcounts (i);
   13355       if (!local_got)
   13356 	continue;
   13357 
   13358       symtab_hdr = &elf_tdata (i)->symtab_hdr;
   13359       if (elf_bad_symtab (i))
   13360 	locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
   13361       else
   13362 	locsymcount = symtab_hdr->sh_info;
   13363 
   13364       for (j = 0; j < locsymcount; ++j)
   13365 	{
   13366 	  if (local_got[j] > 0)
   13367 	    {
   13368 	      local_got[j] = gotoff;
   13369 	      gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
   13370 	    }
   13371 	  else
   13372 	    local_got[j] = (bfd_vma) -1;
   13373 	}
   13374     }
   13375 
   13376   /* Then the global .got entries.  .plt refcounts are handled by
   13377      adjust_dynamic_symbol  */
   13378   gofarg.gotoff = gotoff;
   13379   gofarg.info = info;
   13380   elf_link_hash_traverse (elf_hash_table (info),
   13381 			  elf_gc_allocate_got_offsets,
   13382 			  &gofarg);
   13383   return TRUE;
   13384 }
   13385 
   13386 /* Many folk need no more in the way of final link than this, once
   13387    got entry reference counting is enabled.  */
   13388 
   13389 bfd_boolean
   13390 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
   13391 {
   13392   if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
   13393     return FALSE;
   13394 
   13395   /* Invoke the regular ELF backend linker to do all the work.  */
   13396   return bfd_elf_final_link (abfd, info);
   13397 }
   13398 
   13399 bfd_boolean
   13400 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
   13401 {
   13402   struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
   13403 
   13404   if (rcookie->bad_symtab)
   13405     rcookie->rel = rcookie->rels;
   13406 
   13407   for (; rcookie->rel < rcookie->relend; rcookie->rel++)
   13408     {
   13409       unsigned long r_symndx;
   13410 
   13411       if (! rcookie->bad_symtab)
   13412 	if (rcookie->rel->r_offset > offset)
   13413 	  return FALSE;
   13414       if (rcookie->rel->r_offset != offset)
   13415 	continue;
   13416 
   13417       r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
   13418       if (r_symndx == STN_UNDEF)
   13419 	return TRUE;
   13420 
   13421       if (r_symndx >= rcookie->locsymcount
   13422 	  || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
   13423 	{
   13424 	  struct elf_link_hash_entry *h;
   13425 
   13426 	  h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
   13427 
   13428 	  while (h->root.type == bfd_link_hash_indirect
   13429 		 || h->root.type == bfd_link_hash_warning)
   13430 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
   13431 
   13432 	  if ((h->root.type == bfd_link_hash_defined
   13433 	       || h->root.type == bfd_link_hash_defweak)
   13434 	      && (h->root.u.def.section->owner != rcookie->abfd
   13435 		  || h->root.u.def.section->kept_section != NULL
   13436 		  || discarded_section (h->root.u.def.section)))
   13437 	    return TRUE;
   13438 	}
   13439       else
   13440 	{
   13441 	  /* It's not a relocation against a global symbol,
   13442 	     but it could be a relocation against a local
   13443 	     symbol for a discarded section.  */
   13444 	  asection *isec;
   13445 	  Elf_Internal_Sym *isym;
   13446 
   13447 	  /* Need to: get the symbol; get the section.  */
   13448 	  isym = &rcookie->locsyms[r_symndx];
   13449 	  isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
   13450 	  if (isec != NULL
   13451 	      && (isec->kept_section != NULL
   13452 		  || discarded_section (isec)))
   13453 	    return TRUE;
   13454 	}
   13455       return FALSE;
   13456     }
   13457   return FALSE;
   13458 }
   13459 
   13460 /* Discard unneeded references to discarded sections.
   13461    Returns -1 on error, 1 if any section's size was changed, 0 if
   13462    nothing changed.  This function assumes that the relocations are in
   13463    sorted order, which is true for all known assemblers.  */
   13464 
   13465 int
   13466 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
   13467 {
   13468   struct elf_reloc_cookie cookie;
   13469   asection *o;
   13470   bfd *abfd;
   13471   int changed = 0;
   13472 
   13473   if (info->traditional_format
   13474       || !is_elf_hash_table (info->hash))
   13475     return 0;
   13476 
   13477   o = bfd_get_section_by_name (output_bfd, ".stab");
   13478   if (o != NULL)
   13479     {
   13480       asection *i;
   13481 
   13482       for (i = o->map_head.s; i != NULL; i = i->map_head.s)
   13483 	{
   13484 	  if (i->size == 0
   13485 	      || i->reloc_count == 0
   13486 	      || i->sec_info_type != SEC_INFO_TYPE_STABS)
   13487 	    continue;
   13488 
   13489 	  abfd = i->owner;
   13490 	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
   13491 	    continue;
   13492 
   13493 	  if (!init_reloc_cookie_for_section (&cookie, info, i))
   13494 	    return -1;
   13495 
   13496 	  if (_bfd_discard_section_stabs (abfd, i,
   13497 					  elf_section_data (i)->sec_info,
   13498 					  bfd_elf_reloc_symbol_deleted_p,
   13499 					  &cookie))
   13500 	    changed = 1;
   13501 
   13502 	  fini_reloc_cookie_for_section (&cookie, i);
   13503 	}
   13504     }
   13505 
   13506   o = NULL;
   13507   if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
   13508     o = bfd_get_section_by_name (output_bfd, ".eh_frame");
   13509   if (o != NULL)
   13510     {
   13511       asection *i;
   13512 
   13513       for (i = o->map_head.s; i != NULL; i = i->map_head.s)
   13514 	{
   13515 	  if (i->size == 0)
   13516 	    continue;
   13517 
   13518 	  abfd = i->owner;
   13519 	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
   13520 	    continue;
   13521 
   13522 	  if (!init_reloc_cookie_for_section (&cookie, info, i))
   13523 	    return -1;
   13524 
   13525 	  _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
   13526 	  if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
   13527 						 bfd_elf_reloc_symbol_deleted_p,
   13528 						 &cookie))
   13529 	    changed = 1;
   13530 
   13531 	  fini_reloc_cookie_for_section (&cookie, i);
   13532 	}
   13533     }
   13534 
   13535   for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
   13536     {
   13537       const struct elf_backend_data *bed;
   13538 
   13539       if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
   13540 	continue;
   13541 
   13542       bed = get_elf_backend_data (abfd);
   13543 
   13544       if (bed->elf_backend_discard_info != NULL)
   13545 	{
   13546 	  if (!init_reloc_cookie (&cookie, info, abfd))
   13547 	    return -1;
   13548 
   13549 	  if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
   13550 	    changed = 1;
   13551 
   13552 	  fini_reloc_cookie (&cookie, abfd);
   13553 	}
   13554     }
   13555 
   13556   if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
   13557     _bfd_elf_end_eh_frame_parsing (info);
   13558 
   13559   if (info->eh_frame_hdr_type
   13560       && !bfd_link_relocatable (info)
   13561       && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
   13562     changed = 1;
   13563 
   13564   return changed;
   13565 }
   13566 
   13567 bfd_boolean
   13568 _bfd_elf_section_already_linked (bfd *abfd,
   13569 				 asection *sec,
   13570 				 struct bfd_link_info *info)
   13571 {
   13572   flagword flags;
   13573   const char *name, *key;
   13574   struct bfd_section_already_linked *l;
   13575   struct bfd_section_already_linked_hash_entry *already_linked_list;
   13576 
   13577   if (sec->output_section == bfd_abs_section_ptr)
   13578     return FALSE;
   13579 
   13580   flags = sec->flags;
   13581 
   13582   /* Return if it isn't a linkonce section.  A comdat group section
   13583      also has SEC_LINK_ONCE set.  */
   13584   if ((flags & SEC_LINK_ONCE) == 0)
   13585     return FALSE;
   13586 
   13587   /* Don't put group member sections on our list of already linked
   13588      sections.  They are handled as a group via their group section.  */
   13589   if (elf_sec_group (sec) != NULL)
   13590     return FALSE;
   13591 
   13592   /* For a SHT_GROUP section, use the group signature as the key.  */
   13593   name = sec->name;
   13594   if ((flags & SEC_GROUP) != 0
   13595       && elf_next_in_group (sec) != NULL
   13596       && elf_group_name (elf_next_in_group (sec)) != NULL)
   13597     key = elf_group_name (elf_next_in_group (sec));
   13598   else
   13599     {
   13600       /* Otherwise we should have a .gnu.linkonce.<type>.<key> section.  */
   13601       if (CONST_STRNEQ (name, ".gnu.linkonce.")
   13602 	  && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
   13603 	key++;
   13604       else
   13605 	/* Must be a user linkonce section that doesn't follow gcc's
   13606 	   naming convention.  In this case we won't be matching
   13607 	   single member groups.  */
   13608 	key = name;
   13609     }
   13610 
   13611   already_linked_list = bfd_section_already_linked_table_lookup (key);
   13612 
   13613   for (l = already_linked_list->entry; l != NULL; l = l->next)
   13614     {
   13615       /* We may have 2 different types of sections on the list: group
   13616 	 sections with a signature of <key> (<key> is some string),
   13617 	 and linkonce sections named .gnu.linkonce.<type>.<key>.
   13618 	 Match like sections.  LTO plugin sections are an exception.
   13619 	 They are always named .gnu.linkonce.t.<key> and match either
   13620 	 type of section.  */
   13621       if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
   13622 	   && ((flags & SEC_GROUP) != 0
   13623 	       || strcmp (name, l->sec->name) == 0))
   13624 	  || (l->sec->owner->flags & BFD_PLUGIN) != 0)
   13625 	{
   13626 	  /* The section has already been linked.  See if we should
   13627 	     issue a warning.  */
   13628 	  if (!_bfd_handle_already_linked (sec, l, info))
   13629 	    return FALSE;
   13630 
   13631 	  if (flags & SEC_GROUP)
   13632 	    {
   13633 	      asection *first = elf_next_in_group (sec);
   13634 	      asection *s = first;
   13635 
   13636 	      while (s != NULL)
   13637 		{
   13638 		  s->output_section = bfd_abs_section_ptr;
   13639 		  /* Record which group discards it.  */
   13640 		  s->kept_section = l->sec;
   13641 		  s = elf_next_in_group (s);
   13642 		  /* These lists are circular.  */
   13643 		  if (s == first)
   13644 		    break;
   13645 		}
   13646 	    }
   13647 
   13648 	  return TRUE;
   13649 	}
   13650     }
   13651 
   13652   /* A single member comdat group section may be discarded by a
   13653      linkonce section and vice versa.  */
   13654   if ((flags & SEC_GROUP) != 0)
   13655     {
   13656       asection *first = elf_next_in_group (sec);
   13657 
   13658       if (first != NULL && elf_next_in_group (first) == first)
   13659 	/* Check this single member group against linkonce sections.  */
   13660 	for (l = already_linked_list->entry; l != NULL; l = l->next)
   13661 	  if ((l->sec->flags & SEC_GROUP) == 0
   13662 	      && bfd_elf_match_symbols_in_sections (l->sec, first, info))
   13663 	    {
   13664 	      first->output_section = bfd_abs_section_ptr;
   13665 	      first->kept_section = l->sec;
   13666 	      sec->output_section = bfd_abs_section_ptr;
   13667 	      break;
   13668 	    }
   13669     }
   13670   else
   13671     /* Check this linkonce section against single member groups.  */
   13672     for (l = already_linked_list->entry; l != NULL; l = l->next)
   13673       if (l->sec->flags & SEC_GROUP)
   13674 	{
   13675 	  asection *first = elf_next_in_group (l->sec);
   13676 
   13677 	  if (first != NULL
   13678 	      && elf_next_in_group (first) == first
   13679 	      && bfd_elf_match_symbols_in_sections (first, sec, info))
   13680 	    {
   13681 	      sec->output_section = bfd_abs_section_ptr;
   13682 	      sec->kept_section = first;
   13683 	      break;
   13684 	    }
   13685 	}
   13686 
   13687   /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
   13688      referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
   13689      specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
   13690      prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its
   13691      matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded
   13692      but its `.gnu.linkonce.t.F' is discarded means we chose one-only
   13693      `.gnu.linkonce.t.F' section from a different bfd not requiring any
   13694      `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded.
   13695      The reverse order cannot happen as there is never a bfd with only the
   13696      `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not
   13697      matter as here were are looking only for cross-bfd sections.  */
   13698 
   13699   if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
   13700     for (l = already_linked_list->entry; l != NULL; l = l->next)
   13701       if ((l->sec->flags & SEC_GROUP) == 0
   13702 	  && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
   13703 	{
   13704 	  if (abfd != l->sec->owner)
   13705 	    sec->output_section = bfd_abs_section_ptr;
   13706 	  break;
   13707 	}
   13708 
   13709   /* This is the first section with this name.  Record it.  */
   13710   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
   13711     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
   13712   return sec->output_section == bfd_abs_section_ptr;
   13713 }
   13714 
   13715 bfd_boolean
   13716 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
   13717 {
   13718   return sym->st_shndx == SHN_COMMON;
   13719 }
   13720 
   13721 unsigned int
   13722 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
   13723 {
   13724   return SHN_COMMON;
   13725 }
   13726 
   13727 asection *
   13728 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
   13729 {
   13730   return bfd_com_section_ptr;
   13731 }
   13732 
   13733 bfd_vma
   13734 _bfd_elf_default_got_elt_size (bfd *abfd,
   13735 			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
   13736 			       struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
   13737 			       bfd *ibfd ATTRIBUTE_UNUSED,
   13738 			       unsigned long symndx ATTRIBUTE_UNUSED)
   13739 {
   13740   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   13741   return bed->s->arch_size / 8;
   13742 }
   13743 
   13744 /* Routines to support the creation of dynamic relocs.  */
   13745 
   13746 /* Returns the name of the dynamic reloc section associated with SEC.  */
   13747 
   13748 static const char *
   13749 get_dynamic_reloc_section_name (bfd *       abfd,
   13750 				asection *  sec,
   13751 				bfd_boolean is_rela)
   13752 {
   13753   char *name;
   13754   const char *old_name = bfd_get_section_name (NULL, sec);
   13755   const char *prefix = is_rela ? ".rela" : ".rel";
   13756 
   13757   if (old_name == NULL)
   13758     return NULL;
   13759 
   13760   name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
   13761   sprintf (name, "%s%s", prefix, old_name);
   13762 
   13763   return name;
   13764 }
   13765 
   13766 /* Returns the dynamic reloc section associated with SEC.
   13767    If necessary compute the name of the dynamic reloc section based
   13768    on SEC's name (looked up in ABFD's string table) and the setting
   13769    of IS_RELA.  */
   13770 
   13771 asection *
   13772 _bfd_elf_get_dynamic_reloc_section (bfd *       abfd,
   13773 				    asection *  sec,
   13774 				    bfd_boolean is_rela)
   13775 {
   13776   asection * reloc_sec = elf_section_data (sec)->sreloc;
   13777 
   13778   if (reloc_sec == NULL)
   13779     {
   13780       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
   13781 
   13782       if (name != NULL)
   13783 	{
   13784 	  reloc_sec = bfd_get_linker_section (abfd, name);
   13785 
   13786 	  if (reloc_sec != NULL)
   13787 	    elf_section_data (sec)->sreloc = reloc_sec;
   13788 	}
   13789     }
   13790 
   13791   return reloc_sec;
   13792 }
   13793 
   13794 /* Returns the dynamic reloc section associated with SEC.  If the
   13795    section does not exist it is created and attached to the DYNOBJ
   13796    bfd and stored in the SRELOC field of SEC's elf_section_data
   13797    structure.
   13798 
   13799    ALIGNMENT is the alignment for the newly created section and
   13800    IS_RELA defines whether the name should be .rela.<SEC's name>
   13801    or .rel.<SEC's name>.  The section name is looked up in the
   13802    string table associated with ABFD.  */
   13803 
   13804 asection *
   13805 _bfd_elf_make_dynamic_reloc_section (asection *sec,
   13806 				     bfd *dynobj,
   13807 				     unsigned int alignment,
   13808 				     bfd *abfd,
   13809 				     bfd_boolean is_rela)
   13810 {
   13811   asection * reloc_sec = elf_section_data (sec)->sreloc;
   13812 
   13813   if (reloc_sec == NULL)
   13814     {
   13815       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
   13816 
   13817       if (name == NULL)
   13818 	return NULL;
   13819 
   13820       reloc_sec = bfd_get_linker_section (dynobj, name);
   13821 
   13822       if (reloc_sec == NULL)
   13823 	{
   13824 	  flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
   13825 			    | SEC_IN_MEMORY | SEC_LINKER_CREATED);
   13826 	  if ((sec->flags & SEC_ALLOC) != 0)
   13827 	    flags |= SEC_ALLOC | SEC_LOAD;
   13828 
   13829 	  reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
   13830 	  if (reloc_sec != NULL)
   13831 	    {
   13832 	      /* _bfd_elf_get_sec_type_attr chooses a section type by
   13833 		 name.  Override as it may be wrong, eg. for a user
   13834 		 section named "auto" we'll get ".relauto" which is
   13835 		 seen to be a .rela section.  */
   13836 	      elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
   13837 	      if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
   13838 		reloc_sec = NULL;
   13839 	    }
   13840 	}
   13841 
   13842       elf_section_data (sec)->sreloc = reloc_sec;
   13843     }
   13844 
   13845   return reloc_sec;
   13846 }
   13847 
   13848 /* Copy the ELF symbol type and other attributes for a linker script
   13849    assignment from HSRC to HDEST.  Generally this should be treated as
   13850    if we found a strong non-dynamic definition for HDEST (except that
   13851    ld ignores multiple definition errors).  */
   13852 void
   13853 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
   13854 				     struct bfd_link_hash_entry *hdest,
   13855 				     struct bfd_link_hash_entry *hsrc)
   13856 {
   13857   struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
   13858   struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
   13859   Elf_Internal_Sym isym;
   13860 
   13861   ehdest->type = ehsrc->type;
   13862   ehdest->target_internal = ehsrc->target_internal;
   13863 
   13864   isym.st_other = ehsrc->other;
   13865   elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
   13866 }
   13867 
   13868 /* Append a RELA relocation REL to section S in BFD.  */
   13869 
   13870 void
   13871 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
   13872 {
   13873   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   13874   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
   13875   BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
   13876   bed->s->swap_reloca_out (abfd, rel, loc);
   13877 }
   13878 
   13879 /* Append a REL relocation REL to section S in BFD.  */
   13880 
   13881 void
   13882 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
   13883 {
   13884   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
   13885   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
   13886   BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
   13887   bed->s->swap_reloc_out (abfd, rel, loc);
   13888 }
   13889