Home | History | Annotate | Download | only in vulkan
      1 /*
      2  * Copyright  2015 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 #include <stdint.h>
     25 #include <stdlib.h>
     26 #include <unistd.h>
     27 #include <limits.h>
     28 #include <assert.h>
     29 #include <linux/futex.h>
     30 #include <linux/memfd.h>
     31 #include <sys/time.h>
     32 #include <sys/mman.h>
     33 #include <sys/syscall.h>
     34 
     35 #include "anv_private.h"
     36 
     37 #ifdef HAVE_VALGRIND
     38 #define VG_NOACCESS_READ(__ptr) ({                       \
     39    VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
     40    __typeof(*(__ptr)) __val = *(__ptr);                  \
     41    VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
     42    __val;                                                \
     43 })
     44 #define VG_NOACCESS_WRITE(__ptr, __val) ({                  \
     45    VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr)));  \
     46    *(__ptr) = (__val);                                      \
     47    VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));   \
     48 })
     49 #else
     50 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
     51 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
     52 #endif
     53 
     54 /* Design goals:
     55  *
     56  *  - Lock free (except when resizing underlying bos)
     57  *
     58  *  - Constant time allocation with typically only one atomic
     59  *
     60  *  - Multiple allocation sizes without fragmentation
     61  *
     62  *  - Can grow while keeping addresses and offset of contents stable
     63  *
     64  *  - All allocations within one bo so we can point one of the
     65  *    STATE_BASE_ADDRESS pointers at it.
     66  *
     67  * The overall design is a two-level allocator: top level is a fixed size, big
     68  * block (8k) allocator, which operates out of a bo.  Allocation is done by
     69  * either pulling a block from the free list or growing the used range of the
     70  * bo.  Growing the range may run out of space in the bo which we then need to
     71  * grow.  Growing the bo is tricky in a multi-threaded, lockless environment:
     72  * we need to keep all pointers and contents in the old map valid.  GEM bos in
     73  * general can't grow, but we use a trick: we create a memfd and use ftruncate
     74  * to grow it as necessary.  We mmap the new size and then create a gem bo for
     75  * it using the new gem userptr ioctl.  Without heavy-handed locking around
     76  * our allocation fast-path, there isn't really a way to munmap the old mmap,
     77  * so we just keep it around until garbage collection time.  While the block
     78  * allocator is lockless for normal operations, we block other threads trying
     79  * to allocate while we're growing the map.  It sholdn't happen often, and
     80  * growing is fast anyway.
     81  *
     82  * At the next level we can use various sub-allocators.  The state pool is a
     83  * pool of smaller, fixed size objects, which operates much like the block
     84  * pool.  It uses a free list for freeing objects, but when it runs out of
     85  * space it just allocates a new block from the block pool.  This allocator is
     86  * intended for longer lived state objects such as SURFACE_STATE and most
     87  * other persistent state objects in the API.  We may need to track more info
     88  * with these object and a pointer back to the CPU object (eg VkImage).  In
     89  * those cases we just allocate a slightly bigger object and put the extra
     90  * state after the GPU state object.
     91  *
     92  * The state stream allocator works similar to how the i965 DRI driver streams
     93  * all its state.  Even with Vulkan, we need to emit transient state (whether
     94  * surface state base or dynamic state base), and for that we can just get a
     95  * block and fill it up.  These cases are local to a command buffer and the
     96  * sub-allocator need not be thread safe.  The streaming allocator gets a new
     97  * block when it runs out of space and chains them together so they can be
     98  * easily freed.
     99  */
    100 
    101 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
    102  * We use it to indicate the free list is empty. */
    103 #define EMPTY 1
    104 
    105 struct anv_mmap_cleanup {
    106    void *map;
    107    size_t size;
    108    uint32_t gem_handle;
    109 };
    110 
    111 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
    112 
    113 static inline long
    114 sys_futex(void *addr1, int op, int val1,
    115           struct timespec *timeout, void *addr2, int val3)
    116 {
    117    return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
    118 }
    119 
    120 static inline int
    121 futex_wake(uint32_t *addr, int count)
    122 {
    123    return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
    124 }
    125 
    126 static inline int
    127 futex_wait(uint32_t *addr, int32_t value)
    128 {
    129    return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
    130 }
    131 
    132 static inline int
    133 memfd_create(const char *name, unsigned int flags)
    134 {
    135    return syscall(SYS_memfd_create, name, flags);
    136 }
    137 
    138 static inline uint32_t
    139 ilog2_round_up(uint32_t value)
    140 {
    141    assert(value != 0);
    142    return 32 - __builtin_clz(value - 1);
    143 }
    144 
    145 static inline uint32_t
    146 round_to_power_of_two(uint32_t value)
    147 {
    148    return 1 << ilog2_round_up(value);
    149 }
    150 
    151 static bool
    152 anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
    153 {
    154    union anv_free_list current, new, old;
    155 
    156    current.u64 = list->u64;
    157    while (current.offset != EMPTY) {
    158       /* We have to add a memory barrier here so that the list head (and
    159        * offset) gets read before we read the map pointer.  This way we
    160        * know that the map pointer is valid for the given offset at the
    161        * point where we read it.
    162        */
    163       __sync_synchronize();
    164 
    165       int32_t *next_ptr = *map + current.offset;
    166       new.offset = VG_NOACCESS_READ(next_ptr);
    167       new.count = current.count + 1;
    168       old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
    169       if (old.u64 == current.u64) {
    170          *offset = current.offset;
    171          return true;
    172       }
    173       current = old;
    174    }
    175 
    176    return false;
    177 }
    178 
    179 static void
    180 anv_free_list_push(union anv_free_list *list, void *map, int32_t offset)
    181 {
    182    union anv_free_list current, old, new;
    183    int32_t *next_ptr = map + offset;
    184 
    185    old = *list;
    186    do {
    187       current = old;
    188       VG_NOACCESS_WRITE(next_ptr, current.offset);
    189       new.offset = offset;
    190       new.count = current.count + 1;
    191       old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
    192    } while (old.u64 != current.u64);
    193 }
    194 
    195 /* All pointers in the ptr_free_list are assumed to be page-aligned.  This
    196  * means that the bottom 12 bits should all be zero.
    197  */
    198 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
    199 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
    200 #define PFL_PACK(ptr, count) ({           \
    201    (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
    202 })
    203 
    204 static bool
    205 anv_ptr_free_list_pop(void **list, void **elem)
    206 {
    207    void *current = *list;
    208    while (PFL_PTR(current) != NULL) {
    209       void **next_ptr = PFL_PTR(current);
    210       void *new_ptr = VG_NOACCESS_READ(next_ptr);
    211       unsigned new_count = PFL_COUNT(current) + 1;
    212       void *new = PFL_PACK(new_ptr, new_count);
    213       void *old = __sync_val_compare_and_swap(list, current, new);
    214       if (old == current) {
    215          *elem = PFL_PTR(current);
    216          return true;
    217       }
    218       current = old;
    219    }
    220 
    221    return false;
    222 }
    223 
    224 static void
    225 anv_ptr_free_list_push(void **list, void *elem)
    226 {
    227    void *old, *current;
    228    void **next_ptr = elem;
    229 
    230    /* The pointer-based free list requires that the pointer be
    231     * page-aligned.  This is because we use the bottom 12 bits of the
    232     * pointer to store a counter to solve the ABA concurrency problem.
    233     */
    234    assert(((uintptr_t)elem & 0xfff) == 0);
    235 
    236    old = *list;
    237    do {
    238       current = old;
    239       VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
    240       unsigned new_count = PFL_COUNT(current) + 1;
    241       void *new = PFL_PACK(elem, new_count);
    242       old = __sync_val_compare_and_swap(list, current, new);
    243    } while (old != current);
    244 }
    245 
    246 static uint32_t
    247 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state);
    248 
    249 VkResult
    250 anv_block_pool_init(struct anv_block_pool *pool,
    251                     struct anv_device *device, uint32_t block_size)
    252 {
    253    VkResult result;
    254 
    255    assert(util_is_power_of_two(block_size));
    256 
    257    pool->device = device;
    258    anv_bo_init(&pool->bo, 0, 0);
    259    pool->block_size = block_size;
    260    pool->free_list = ANV_FREE_LIST_EMPTY;
    261    pool->back_free_list = ANV_FREE_LIST_EMPTY;
    262 
    263    pool->fd = memfd_create("block pool", MFD_CLOEXEC);
    264    if (pool->fd == -1)
    265       return vk_error(VK_ERROR_INITIALIZATION_FAILED);
    266 
    267    /* Just make it 2GB up-front.  The Linux kernel won't actually back it
    268     * with pages until we either map and fault on one of them or we use
    269     * userptr and send a chunk of it off to the GPU.
    270     */
    271    if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
    272       result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
    273       goto fail_fd;
    274    }
    275 
    276    if (!u_vector_init(&pool->mmap_cleanups,
    277                       round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
    278                       128)) {
    279       result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
    280       goto fail_fd;
    281    }
    282 
    283    pool->state.next = 0;
    284    pool->state.end = 0;
    285    pool->back_state.next = 0;
    286    pool->back_state.end = 0;
    287 
    288    /* Immediately grow the pool so we'll have a backing bo. */
    289    pool->state.end = anv_block_pool_grow(pool, &pool->state);
    290 
    291    return VK_SUCCESS;
    292 
    293  fail_fd:
    294    close(pool->fd);
    295 
    296    return result;
    297 }
    298 
    299 void
    300 anv_block_pool_finish(struct anv_block_pool *pool)
    301 {
    302    struct anv_mmap_cleanup *cleanup;
    303 
    304    u_vector_foreach(cleanup, &pool->mmap_cleanups) {
    305       if (cleanup->map)
    306          munmap(cleanup->map, cleanup->size);
    307       if (cleanup->gem_handle)
    308          anv_gem_close(pool->device, cleanup->gem_handle);
    309    }
    310 
    311    u_vector_finish(&pool->mmap_cleanups);
    312 
    313    close(pool->fd);
    314 }
    315 
    316 #define PAGE_SIZE 4096
    317 
    318 /** Grows and re-centers the block pool.
    319  *
    320  * We grow the block pool in one or both directions in such a way that the
    321  * following conditions are met:
    322  *
    323  *  1) The size of the entire pool is always a power of two.
    324  *
    325  *  2) The pool only grows on both ends.  Neither end can get
    326  *     shortened.
    327  *
    328  *  3) At the end of the allocation, we have about twice as much space
    329  *     allocated for each end as we have used.  This way the pool doesn't
    330  *     grow too far in one direction or the other.
    331  *
    332  *  4) If the _alloc_back() has never been called, then the back portion of
    333  *     the pool retains a size of zero.  (This makes it easier for users of
    334  *     the block pool that only want a one-sided pool.)
    335  *
    336  *  5) We have enough space allocated for at least one more block in
    337  *     whichever side `state` points to.
    338  *
    339  *  6) The center of the pool is always aligned to both the block_size of
    340  *     the pool and a 4K CPU page.
    341  */
    342 static uint32_t
    343 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
    344 {
    345    size_t size;
    346    void *map;
    347    uint32_t gem_handle;
    348    struct anv_mmap_cleanup *cleanup;
    349 
    350    pthread_mutex_lock(&pool->device->mutex);
    351 
    352    assert(state == &pool->state || state == &pool->back_state);
    353 
    354    /* Gather a little usage information on the pool.  Since we may have
    355     * threadsd waiting in queue to get some storage while we resize, it's
    356     * actually possible that total_used will be larger than old_size.  In
    357     * particular, block_pool_alloc() increments state->next prior to
    358     * calling block_pool_grow, so this ensures that we get enough space for
    359     * which ever side tries to grow the pool.
    360     *
    361     * We align to a page size because it makes it easier to do our
    362     * calculations later in such a way that we state page-aigned.
    363     */
    364    uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
    365    uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
    366    uint32_t total_used = front_used + back_used;
    367 
    368    assert(state == &pool->state || back_used > 0);
    369 
    370    size_t old_size = pool->bo.size;
    371 
    372    if (old_size != 0 &&
    373        back_used * 2 <= pool->center_bo_offset &&
    374        front_used * 2 <= (old_size - pool->center_bo_offset)) {
    375       /* If we're in this case then this isn't the firsta allocation and we
    376        * already have enough space on both sides to hold double what we
    377        * have allocated.  There's nothing for us to do.
    378        */
    379       goto done;
    380    }
    381 
    382    if (old_size == 0) {
    383       /* This is the first allocation */
    384       size = MAX2(32 * pool->block_size, PAGE_SIZE);
    385    } else {
    386       size = old_size * 2;
    387    }
    388 
    389    /* We can't have a block pool bigger than 1GB because we use signed
    390     * 32-bit offsets in the free list and we don't want overflow.  We
    391     * should never need a block pool bigger than 1GB anyway.
    392     */
    393    assert(size <= (1u << 31));
    394 
    395    /* We compute a new center_bo_offset such that, when we double the size
    396     * of the pool, we maintain the ratio of how much is used by each side.
    397     * This way things should remain more-or-less balanced.
    398     */
    399    uint32_t center_bo_offset;
    400    if (back_used == 0) {
    401       /* If we're in this case then we have never called alloc_back().  In
    402        * this case, we want keep the offset at 0 to make things as simple
    403        * as possible for users that don't care about back allocations.
    404        */
    405       center_bo_offset = 0;
    406    } else {
    407       /* Try to "center" the allocation based on how much is currently in
    408        * use on each side of the center line.
    409        */
    410       center_bo_offset = ((uint64_t)size * back_used) / total_used;
    411 
    412       /* Align down to a multiple of both the block size and page size */
    413       uint32_t granularity = MAX2(pool->block_size, PAGE_SIZE);
    414       assert(util_is_power_of_two(granularity));
    415       center_bo_offset &= ~(granularity - 1);
    416 
    417       assert(center_bo_offset >= back_used);
    418 
    419       /* Make sure we don't shrink the back end of the pool */
    420       if (center_bo_offset < pool->back_state.end)
    421          center_bo_offset = pool->back_state.end;
    422 
    423       /* Make sure that we don't shrink the front end of the pool */
    424       if (size - center_bo_offset < pool->state.end)
    425          center_bo_offset = size - pool->state.end;
    426    }
    427 
    428    assert(center_bo_offset % pool->block_size == 0);
    429    assert(center_bo_offset % PAGE_SIZE == 0);
    430 
    431    /* Assert that we only ever grow the pool */
    432    assert(center_bo_offset >= pool->back_state.end);
    433    assert(size - center_bo_offset >= pool->state.end);
    434 
    435    cleanup = u_vector_add(&pool->mmap_cleanups);
    436    if (!cleanup)
    437       goto fail;
    438    *cleanup = ANV_MMAP_CLEANUP_INIT;
    439 
    440    /* Just leak the old map until we destroy the pool.  We can't munmap it
    441     * without races or imposing locking on the block allocate fast path. On
    442     * the whole the leaked maps adds up to less than the size of the
    443     * current map.  MAP_POPULATE seems like the right thing to do, but we
    444     * should try to get some numbers.
    445     */
    446    map = mmap(NULL, size, PROT_READ | PROT_WRITE,
    447               MAP_SHARED | MAP_POPULATE, pool->fd,
    448               BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
    449    cleanup->map = map;
    450    cleanup->size = size;
    451 
    452    if (map == MAP_FAILED)
    453       goto fail;
    454 
    455    gem_handle = anv_gem_userptr(pool->device, map, size);
    456    if (gem_handle == 0)
    457       goto fail;
    458    cleanup->gem_handle = gem_handle;
    459 
    460 #if 0
    461    /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
    462     * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
    463     * always created as I915_CACHING_CACHED, which on non-LLC means
    464     * snooped. That can be useful but comes with a bit of overheard.  Since
    465     * we're eplicitly clflushing and don't want the overhead we need to turn
    466     * it off. */
    467    if (!pool->device->info.has_llc) {
    468       anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
    469       anv_gem_set_domain(pool->device, gem_handle,
    470                          I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
    471    }
    472 #endif
    473 
    474    /* Now that we successfull allocated everything, we can write the new
    475     * values back into pool. */
    476    pool->map = map + center_bo_offset;
    477    pool->center_bo_offset = center_bo_offset;
    478    anv_bo_init(&pool->bo, gem_handle, size);
    479    pool->bo.map = map;
    480 
    481 done:
    482    pthread_mutex_unlock(&pool->device->mutex);
    483 
    484    /* Return the appropreate new size.  This function never actually
    485     * updates state->next.  Instead, we let the caller do that because it
    486     * needs to do so in order to maintain its concurrency model.
    487     */
    488    if (state == &pool->state) {
    489       return pool->bo.size - pool->center_bo_offset;
    490    } else {
    491       assert(pool->center_bo_offset > 0);
    492       return pool->center_bo_offset;
    493    }
    494 
    495 fail:
    496    pthread_mutex_unlock(&pool->device->mutex);
    497 
    498    return 0;
    499 }
    500 
    501 static uint32_t
    502 anv_block_pool_alloc_new(struct anv_block_pool *pool,
    503                          struct anv_block_state *pool_state)
    504 {
    505    struct anv_block_state state, old, new;
    506 
    507    while (1) {
    508       state.u64 = __sync_fetch_and_add(&pool_state->u64, pool->block_size);
    509       if (state.next < state.end) {
    510          assert(pool->map);
    511          return state.next;
    512       } else if (state.next == state.end) {
    513          /* We allocated the first block outside the pool, we have to grow it.
    514           * pool_state->next acts a mutex: threads who try to allocate now will
    515           * get block indexes above the current limit and hit futex_wait
    516           * below. */
    517          new.next = state.next + pool->block_size;
    518          new.end = anv_block_pool_grow(pool, pool_state);
    519          assert(new.end >= new.next && new.end % pool->block_size == 0);
    520          old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
    521          if (old.next != state.next)
    522             futex_wake(&pool_state->end, INT_MAX);
    523          return state.next;
    524       } else {
    525          futex_wait(&pool_state->end, state.end);
    526          continue;
    527       }
    528    }
    529 }
    530 
    531 int32_t
    532 anv_block_pool_alloc(struct anv_block_pool *pool)
    533 {
    534    int32_t offset;
    535 
    536    /* Try free list first. */
    537    if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
    538       assert(offset >= 0);
    539       assert(pool->map);
    540       return offset;
    541    }
    542 
    543    return anv_block_pool_alloc_new(pool, &pool->state);
    544 }
    545 
    546 /* Allocates a block out of the back of the block pool.
    547  *
    548  * This will allocated a block earlier than the "start" of the block pool.
    549  * The offsets returned from this function will be negative but will still
    550  * be correct relative to the block pool's map pointer.
    551  *
    552  * If you ever use anv_block_pool_alloc_back, then you will have to do
    553  * gymnastics with the block pool's BO when doing relocations.
    554  */
    555 int32_t
    556 anv_block_pool_alloc_back(struct anv_block_pool *pool)
    557 {
    558    int32_t offset;
    559 
    560    /* Try free list first. */
    561    if (anv_free_list_pop(&pool->back_free_list, &pool->map, &offset)) {
    562       assert(offset < 0);
    563       assert(pool->map);
    564       return offset;
    565    }
    566 
    567    offset = anv_block_pool_alloc_new(pool, &pool->back_state);
    568 
    569    /* The offset we get out of anv_block_pool_alloc_new() is actually the
    570     * number of bytes downwards from the middle to the end of the block.
    571     * We need to turn it into a (negative) offset from the middle to the
    572     * start of the block.
    573     */
    574    assert(offset >= 0);
    575    return -(offset + pool->block_size);
    576 }
    577 
    578 void
    579 anv_block_pool_free(struct anv_block_pool *pool, int32_t offset)
    580 {
    581    if (offset < 0) {
    582       anv_free_list_push(&pool->back_free_list, pool->map, offset);
    583    } else {
    584       anv_free_list_push(&pool->free_list, pool->map, offset);
    585    }
    586 }
    587 
    588 static void
    589 anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool,
    590                                size_t state_size)
    591 {
    592    /* At least a cache line and must divide the block size. */
    593    assert(state_size >= 64 && util_is_power_of_two(state_size));
    594 
    595    pool->state_size = state_size;
    596    pool->free_list = ANV_FREE_LIST_EMPTY;
    597    pool->block.next = 0;
    598    pool->block.end = 0;
    599 }
    600 
    601 static uint32_t
    602 anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool,
    603                                 struct anv_block_pool *block_pool)
    604 {
    605    int32_t offset;
    606    struct anv_block_state block, old, new;
    607 
    608    /* Try free list first. */
    609    if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset)) {
    610       assert(offset >= 0);
    611       return offset;
    612    }
    613 
    614    /* If free list was empty (or somebody raced us and took the items) we
    615     * allocate a new item from the end of the block */
    616  restart:
    617    block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size);
    618 
    619    if (block.next < block.end) {
    620       return block.next;
    621    } else if (block.next == block.end) {
    622       offset = anv_block_pool_alloc(block_pool);
    623       new.next = offset + pool->state_size;
    624       new.end = offset + block_pool->block_size;
    625       old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
    626       if (old.next != block.next)
    627          futex_wake(&pool->block.end, INT_MAX);
    628       return offset;
    629    } else {
    630       futex_wait(&pool->block.end, block.end);
    631       goto restart;
    632    }
    633 }
    634 
    635 static void
    636 anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool,
    637                                struct anv_block_pool *block_pool,
    638                                uint32_t offset)
    639 {
    640    anv_free_list_push(&pool->free_list, block_pool->map, offset);
    641 }
    642 
    643 void
    644 anv_state_pool_init(struct anv_state_pool *pool,
    645                     struct anv_block_pool *block_pool)
    646 {
    647    pool->block_pool = block_pool;
    648    for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
    649       size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i);
    650       anv_fixed_size_state_pool_init(&pool->buckets[i], size);
    651    }
    652    VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
    653 }
    654 
    655 void
    656 anv_state_pool_finish(struct anv_state_pool *pool)
    657 {
    658    VG(VALGRIND_DESTROY_MEMPOOL(pool));
    659 }
    660 
    661 struct anv_state
    662 anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align)
    663 {
    664    unsigned size_log2 = ilog2_round_up(size < align ? align : size);
    665    assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
    666    if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
    667       size_log2 = ANV_MIN_STATE_SIZE_LOG2;
    668    unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
    669 
    670    struct anv_state state;
    671    state.alloc_size = 1 << size_log2;
    672    state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket],
    673                                                   pool->block_pool);
    674    state.map = pool->block_pool->map + state.offset;
    675    VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
    676    return state;
    677 }
    678 
    679 void
    680 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
    681 {
    682    assert(util_is_power_of_two(state.alloc_size));
    683    unsigned size_log2 = ilog2_round_up(state.alloc_size);
    684    assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
    685           size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
    686    unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
    687 
    688    VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
    689    anv_fixed_size_state_pool_free(&pool->buckets[bucket],
    690                                   pool->block_pool, state.offset);
    691 }
    692 
    693 #define NULL_BLOCK 1
    694 struct anv_state_stream_block {
    695    /* The next block */
    696    struct anv_state_stream_block *next;
    697 
    698    /* The offset into the block pool at which this block starts */
    699    uint32_t offset;
    700 
    701 #ifdef HAVE_VALGRIND
    702    /* A pointer to the first user-allocated thing in this block.  This is
    703     * what valgrind sees as the start of the block.
    704     */
    705    void *_vg_ptr;
    706 #endif
    707 };
    708 
    709 /* The state stream allocator is a one-shot, single threaded allocator for
    710  * variable sized blocks.  We use it for allocating dynamic state.
    711  */
    712 void
    713 anv_state_stream_init(struct anv_state_stream *stream,
    714                       struct anv_block_pool *block_pool)
    715 {
    716    stream->block_pool = block_pool;
    717    stream->block = NULL;
    718 
    719    /* Ensure that next + whatever > end.  This way the first call to
    720     * state_stream_alloc fetches a new block.
    721     */
    722    stream->next = 1;
    723    stream->end = 0;
    724 
    725    VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
    726 }
    727 
    728 void
    729 anv_state_stream_finish(struct anv_state_stream *stream)
    730 {
    731    VG(const uint32_t block_size = stream->block_pool->block_size);
    732 
    733    struct anv_state_stream_block *next = stream->block;
    734    while (next != NULL) {
    735       VG(VALGRIND_MAKE_MEM_DEFINED(next, sizeof(*next)));
    736       struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
    737       VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
    738       VG(VALGRIND_MAKE_MEM_UNDEFINED(next, block_size));
    739       anv_block_pool_free(stream->block_pool, sb.offset);
    740       next = sb.next;
    741    }
    742 
    743    VG(VALGRIND_DESTROY_MEMPOOL(stream));
    744 }
    745 
    746 struct anv_state
    747 anv_state_stream_alloc(struct anv_state_stream *stream,
    748                        uint32_t size, uint32_t alignment)
    749 {
    750    struct anv_state_stream_block *sb = stream->block;
    751 
    752    struct anv_state state;
    753 
    754    state.offset = align_u32(stream->next, alignment);
    755    if (state.offset + size > stream->end) {
    756       uint32_t block = anv_block_pool_alloc(stream->block_pool);
    757       sb = stream->block_pool->map + block;
    758 
    759       VG(VALGRIND_MAKE_MEM_UNDEFINED(sb, sizeof(*sb)));
    760       sb->next = stream->block;
    761       sb->offset = block;
    762       VG(sb->_vg_ptr = NULL);
    763       VG(VALGRIND_MAKE_MEM_NOACCESS(sb, stream->block_pool->block_size));
    764 
    765       stream->block = sb;
    766       stream->start = block;
    767       stream->next = block + sizeof(*sb);
    768       stream->end = block + stream->block_pool->block_size;
    769 
    770       state.offset = align_u32(stream->next, alignment);
    771       assert(state.offset + size <= stream->end);
    772    }
    773 
    774    assert(state.offset > stream->start);
    775    state.map = (void *)sb + (state.offset - stream->start);
    776    state.alloc_size = size;
    777 
    778 #ifdef HAVE_VALGRIND
    779    void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
    780    if (vg_ptr == NULL) {
    781       vg_ptr = state.map;
    782       VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
    783       VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
    784    } else {
    785       void *state_end = state.map + state.alloc_size;
    786       /* This only updates the mempool.  The newly allocated chunk is still
    787        * marked as NOACCESS. */
    788       VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
    789       /* Mark the newly allocated chunk as undefined */
    790       VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
    791    }
    792 #endif
    793 
    794    stream->next = state.offset + size;
    795 
    796    return state;
    797 }
    798 
    799 struct bo_pool_bo_link {
    800    struct bo_pool_bo_link *next;
    801    struct anv_bo bo;
    802 };
    803 
    804 void
    805 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device)
    806 {
    807    pool->device = device;
    808    memset(pool->free_list, 0, sizeof(pool->free_list));
    809 
    810    VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
    811 }
    812 
    813 void
    814 anv_bo_pool_finish(struct anv_bo_pool *pool)
    815 {
    816    for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
    817       struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
    818       while (link != NULL) {
    819          struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
    820 
    821          anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
    822          anv_gem_close(pool->device, link_copy.bo.gem_handle);
    823          link = link_copy.next;
    824       }
    825    }
    826 
    827    VG(VALGRIND_DESTROY_MEMPOOL(pool));
    828 }
    829 
    830 VkResult
    831 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
    832 {
    833    VkResult result;
    834 
    835    const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
    836    const unsigned pow2_size = 1 << size_log2;
    837    const unsigned bucket = size_log2 - 12;
    838    assert(bucket < ARRAY_SIZE(pool->free_list));
    839 
    840    void *next_free_void;
    841    if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
    842       struct bo_pool_bo_link *next_free = next_free_void;
    843       *bo = VG_NOACCESS_READ(&next_free->bo);
    844       assert(bo->gem_handle);
    845       assert(bo->map == next_free);
    846       assert(size <= bo->size);
    847 
    848       VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
    849 
    850       return VK_SUCCESS;
    851    }
    852 
    853    struct anv_bo new_bo;
    854 
    855    result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
    856    if (result != VK_SUCCESS)
    857       return result;
    858 
    859    assert(new_bo.size == pow2_size);
    860 
    861    new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
    862    if (new_bo.map == NULL) {
    863       anv_gem_close(pool->device, new_bo.gem_handle);
    864       return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
    865    }
    866 
    867    *bo = new_bo;
    868 
    869    VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
    870 
    871    return VK_SUCCESS;
    872 }
    873 
    874 void
    875 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
    876 {
    877    /* Make a copy in case the anv_bo happens to be storred in the BO */
    878    struct anv_bo bo = *bo_in;
    879 
    880    VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
    881 
    882    struct bo_pool_bo_link *link = bo.map;
    883    VG_NOACCESS_WRITE(&link->bo, bo);
    884 
    885    assert(util_is_power_of_two(bo.size));
    886    const unsigned size_log2 = ilog2_round_up(bo.size);
    887    const unsigned bucket = size_log2 - 12;
    888    assert(bucket < ARRAY_SIZE(pool->free_list));
    889 
    890    anv_ptr_free_list_push(&pool->free_list[bucket], link);
    891 }
    892 
    893 // Scratch pool
    894 
    895 void
    896 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
    897 {
    898    memset(pool, 0, sizeof(*pool));
    899 }
    900 
    901 void
    902 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
    903 {
    904    for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
    905       for (unsigned i = 0; i < 16; i++) {
    906          struct anv_scratch_bo *bo = &pool->bos[i][s];
    907          if (bo->exists > 0)
    908             anv_gem_close(device, bo->bo.gem_handle);
    909       }
    910    }
    911 }
    912 
    913 struct anv_bo *
    914 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
    915                        gl_shader_stage stage, unsigned per_thread_scratch)
    916 {
    917    if (per_thread_scratch == 0)
    918       return NULL;
    919 
    920    unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
    921    assert(scratch_size_log2 < 16);
    922 
    923    struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
    924 
    925    /* We can use "exists" to shortcut and ignore the critical section */
    926    if (bo->exists)
    927       return &bo->bo;
    928 
    929    pthread_mutex_lock(&device->mutex);
    930 
    931    __sync_synchronize();
    932    if (bo->exists)
    933       return &bo->bo;
    934 
    935    const struct anv_physical_device *physical_device =
    936       &device->instance->physicalDevice;
    937    const struct gen_device_info *devinfo = &physical_device->info;
    938 
    939    /* WaCSScratchSize:hsw
    940     *
    941     * Haswell's scratch space address calculation appears to be sparse
    942     * rather than tightly packed. The Thread ID has bits indicating which
    943     * subslice, EU within a subslice, and thread within an EU it is.
    944     * There's a maximum of two slices and two subslices, so these can be
    945     * stored with a single bit. Even though there are only 10 EUs per
    946     * subslice, this is stored in 4 bits, so there's an effective maximum
    947     * value of 16 EUs. Similarly, although there are only 7 threads per EU,
    948     * this is stored in a 3 bit number, giving an effective maximum value
    949     * of 8 threads per EU.
    950     *
    951     * This means that we need to use 16 * 8 instead of 10 * 7 for the
    952     * number of threads per subslice.
    953     */
    954    const unsigned subslices = MAX2(physical_device->subslice_total, 1);
    955    const unsigned scratch_ids_per_subslice =
    956       device->info.is_haswell ? 16 * 8 : devinfo->max_cs_threads;
    957 
    958    uint32_t max_threads[] = {
    959       [MESA_SHADER_VERTEX]           = devinfo->max_vs_threads,
    960       [MESA_SHADER_TESS_CTRL]        = devinfo->max_tcs_threads,
    961       [MESA_SHADER_TESS_EVAL]        = devinfo->max_tes_threads,
    962       [MESA_SHADER_GEOMETRY]         = devinfo->max_gs_threads,
    963       [MESA_SHADER_FRAGMENT]         = devinfo->max_wm_threads,
    964       [MESA_SHADER_COMPUTE]          = scratch_ids_per_subslice * subslices,
    965    };
    966 
    967    uint32_t size = per_thread_scratch * max_threads[stage];
    968 
    969    anv_bo_init_new(&bo->bo, device, size);
    970 
    971    /* Set the exists last because it may be read by other threads */
    972    __sync_synchronize();
    973    bo->exists = true;
    974 
    975    pthread_mutex_unlock(&device->mutex);
    976 
    977    return &bo->bo;
    978 }
    979