Home | History | Annotate | Download | only in synchronization
      1 /*-------------------------------------------------------------------------
      2  * Vulkan Conformance Tests
      3  * ------------------------
      4  *
      5  * Copyright (c) 2016 Google Inc.
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief Platform Synchronization tests
     22  *//*--------------------------------------------------------------------*/
     23 
     24 #include "vktSynchronizationSmokeTests.hpp"
     25 
     26 #include "vktTestCaseUtil.hpp"
     27 
     28 #include "vkPlatform.hpp"
     29 #include "vkStrUtil.hpp"
     30 #include "vkRef.hpp"
     31 #include "vkRefUtil.hpp"
     32 #include "vkDeviceUtil.hpp"
     33 
     34 #include "tcuTestLog.hpp"
     35 #include "tcuFormatUtil.hpp"
     36 
     37 #include "deUniquePtr.hpp"
     38 #include "deThread.hpp"
     39 #include "vkMemUtil.hpp"
     40 #include "vkQueryUtil.hpp"
     41 #include "vkPrograms.hpp"
     42 #include "vkTypeUtil.hpp"
     43 
     44 #include <limits>
     45 
     46 namespace vkt
     47 {
     48 namespace synchronization
     49 {
     50 
     51 using namespace vk;
     52 using namespace tcu;
     53 
     54 namespace
     55 {
     56 
     57 using std::vector;
     58 using std::string;
     59 using tcu::TestLog;
     60 using de::UniquePtr;
     61 using de::MovePtr;
     62 
     63 static const deUint64 DEFAULT_TIMEOUT = 2ull*1000*1000*1000; //!< 2 seconds in nanoseconds
     64 
     65 void buildShaders (SourceCollections& shaderCollection)
     66 {
     67 	shaderCollection.glslSources.add("glslvert") <<
     68 		glu::VertexSource(
     69 				"#version 310 es\n"
     70 				"precision mediump float;\n"
     71 				"layout (location = 0) in vec4 vertexPosition;\n"
     72 				"void main()\n"
     73 				"{\n"
     74 				"	gl_Position = vertexPosition;\n"
     75 				"}\n");
     76 
     77 	shaderCollection.glslSources.add("glslfrag") <<
     78 		glu::FragmentSource(
     79 				"#version 310 es\n"
     80 				"precision mediump float;\n"
     81 				"layout (location = 0) out vec4 outputColor;\n"
     82 				"void main()\n"
     83 				"{\n"
     84 				"	outputColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
     85 				"}\n");
     86 }
     87 
     88 Move<VkDevice> createTestDevice (const InstanceInterface& vki, VkPhysicalDevice physicalDevice, deUint32 *outQueueFamilyIndex)
     89 {
     90 	VkDeviceQueueCreateInfo		queueInfo;
     91 	VkDeviceCreateInfo			deviceInfo;
     92 	size_t						queueNdx;
     93 	const deUint32				queueCount					= 2u;
     94 	const float					queuePriority[queueCount]	= { 1.0f, 1.0f };
     95 
     96 	const vector<VkQueueFamilyProperties>	queueProps				= getPhysicalDeviceQueueFamilyProperties(vki, physicalDevice);
     97 	const VkPhysicalDeviceFeatures			physicalDeviceFeatures	= getPhysicalDeviceFeatures(vki, physicalDevice);
     98 
     99 	for (queueNdx = 0; queueNdx < queueProps.size(); queueNdx++)
    100 	{
    101 		if ((queueProps[queueNdx].queueFlags & VK_QUEUE_GRAPHICS_BIT) == VK_QUEUE_GRAPHICS_BIT && (queueProps[queueNdx].queueCount >= queueCount))
    102 			break;
    103 	}
    104 
    105 	if (queueNdx >= queueProps.size())
    106 	{
    107 		// No queue family index found
    108 		std::ostringstream msg;
    109 		msg << "Cannot create device with " << queueCount << " graphics queues";
    110 
    111 		throw tcu::NotSupportedError(msg.str());
    112 	}
    113 
    114 	deMemset(&queueInfo,	0, sizeof(queueInfo));
    115 	deMemset(&deviceInfo,	0, sizeof(deviceInfo));
    116 
    117 	deMemset(&queueInfo, 0xcd, sizeof(queueInfo));
    118 	queueInfo.sType							= VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
    119 	queueInfo.pNext							= DE_NULL;
    120 	queueInfo.flags							= (VkDeviceQueueCreateFlags)0u;
    121 	queueInfo.queueFamilyIndex				= (deUint32)queueNdx;
    122 	queueInfo.queueCount					= queueCount;
    123 	queueInfo.pQueuePriorities				= queuePriority;
    124 
    125 	deMemset(&deviceInfo, 0xcd, sizeof(deviceInfo));
    126 	deviceInfo.sType						= VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
    127 	deviceInfo.pNext						= DE_NULL;
    128 	deviceInfo.flags						= (VkDeviceCreateFlags)0u;
    129 	deviceInfo.queueCreateInfoCount			= 1u;
    130 	deviceInfo.pQueueCreateInfos			= &queueInfo;
    131 	deviceInfo.enabledExtensionCount		= 0u;
    132 	deviceInfo.ppEnabledExtensionNames		= DE_NULL;
    133 	deviceInfo.enabledLayerCount			= 0u;
    134 	deviceInfo.ppEnabledLayerNames			= DE_NULL;
    135 	deviceInfo.pEnabledFeatures				= &physicalDeviceFeatures;
    136 
    137 	*outQueueFamilyIndex					= queueInfo.queueFamilyIndex;
    138 
    139 	return createDevice(vki, physicalDevice, &deviceInfo);
    140 };
    141 
    142 struct BufferParameters
    143 {
    144 	const void*						memory;
    145 	VkDeviceSize					size;
    146 	VkBufferUsageFlags				usage;
    147 	VkSharingMode					sharingMode;
    148 	deUint32						queueFamilyCount;
    149 	const deUint32*					queueFamilyIndex;
    150 	VkAccessFlags					inputBarrierFlags;
    151 };
    152 
    153 struct Buffer
    154 {
    155 	MovePtr<Allocation>				allocation;
    156 	vector<VkMemoryBarrier>			memoryBarrier;
    157 	vk::Move<VkBuffer>				buffer;
    158 };
    159 
    160 void createVulkanBuffer (const DeviceInterface& vkd, VkDevice device, Allocator& allocator, const BufferParameters& bufferParameters, Buffer& buffer, MemoryRequirement visibility)
    161 {
    162 	VkBufferCreateInfo	bufferCreateParams;
    163 
    164 	deMemset(&bufferCreateParams, 0xcd, sizeof(bufferCreateParams));
    165 	bufferCreateParams.sType					= VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
    166 	bufferCreateParams.pNext					= DE_NULL;
    167 	bufferCreateParams.flags					= 0;
    168 	bufferCreateParams.size						= bufferParameters.size;
    169 	bufferCreateParams.usage					= bufferParameters.usage;
    170 	bufferCreateParams.sharingMode				= bufferParameters.sharingMode;
    171 	bufferCreateParams.queueFamilyIndexCount	= bufferParameters.queueFamilyCount;
    172 	bufferCreateParams.pQueueFamilyIndices		= bufferParameters.queueFamilyIndex;
    173 
    174 	buffer.buffer		= createBuffer(vkd, device, &bufferCreateParams);
    175 	buffer.allocation	= allocator.allocate(getBufferMemoryRequirements(vkd, device, *buffer.buffer), visibility);
    176 
    177 	VK_CHECK(vkd.bindBufferMemory(device, *buffer.buffer, buffer.allocation->getMemory(), buffer.allocation->getOffset()));
    178 
    179 	// If caller provides a host memory buffer for the allocation, then go
    180 	// ahead and copy the provided data into the allocation and update the
    181 	// barrier list with the associated access
    182 	if (bufferParameters.memory != DE_NULL)
    183 	{
    184 		VkMemoryBarrier				barrier;
    185 		VkMappedMemoryRange			range;
    186 
    187 		deMemset(&range, 0xcd, sizeof(range));
    188 		range.sType		= VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
    189 		range.pNext		= DE_NULL;
    190 		range.memory	= buffer.allocation->getMemory();
    191 		range.offset	= buffer.allocation->getOffset();
    192 		range.size		= bufferParameters.size;
    193 
    194 		deMemcpy(buffer.allocation->getHostPtr(), bufferParameters.memory, (size_t)bufferParameters.size);
    195 		VK_CHECK(vkd.flushMappedMemoryRanges(device, 1, &range));
    196 
    197 		deMemset(&barrier, 0xcd, sizeof(barrier));
    198 		barrier.sType			= VK_STRUCTURE_TYPE_MEMORY_BARRIER;
    199 		barrier.pNext			= DE_NULL;
    200 		barrier.srcAccessMask	= VK_ACCESS_HOST_WRITE_BIT;
    201 		barrier.dstAccessMask	= bufferParameters.inputBarrierFlags;
    202 
    203 		buffer.memoryBarrier.push_back(barrier);
    204 	}
    205 }
    206 
    207 struct ImageParameters
    208 {
    209 	VkImageType							imageType;
    210 	VkFormat							format;
    211 	VkExtent3D							extent3D;
    212 	deUint32							mipLevels;
    213 	VkSampleCountFlagBits				samples;
    214 	VkImageTiling						tiling;
    215 	VkBufferUsageFlags					usage;
    216 	VkSharingMode						sharingMode;
    217 	deUint32							queueFamilyCount;
    218 	const deUint32*						queueFamilyNdxList;
    219 	VkImageLayout						initialLayout;
    220 	VkImageLayout						finalLayout;
    221 	VkAccessFlags						barrierInputMask;
    222 };
    223 
    224 struct Image
    225 {
    226 	vk::Move<VkImage>					image;
    227 	vk::Move<VkImageView>				imageView;
    228 	MovePtr<Allocation>					allocation;
    229 	vector<VkImageMemoryBarrier>		imageMemoryBarrier;
    230 };
    231 
    232 void createVulkanImage (const DeviceInterface& vkd, VkDevice device, Allocator& allocator, const ImageParameters& imageParameters, Image& image, MemoryRequirement visibility)
    233 {
    234 	VkComponentMapping			componentMap;
    235 	VkImageSubresourceRange		subresourceRange;
    236 	VkImageViewCreateInfo		imageViewCreateInfo;
    237 	VkImageCreateInfo			imageCreateParams;
    238 	VkImageMemoryBarrier		imageBarrier;
    239 
    240 	deMemset(&imageCreateParams, 0xcd, sizeof(imageCreateParams));
    241 	imageCreateParams.sType					= VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
    242 	imageCreateParams.pNext					= DE_NULL;
    243 	imageCreateParams.flags					= 0;
    244 	imageCreateParams.imageType				= imageParameters.imageType;
    245 	imageCreateParams.format				= imageParameters.format;
    246 	imageCreateParams.extent				= imageParameters.extent3D;
    247 	imageCreateParams.mipLevels				= imageParameters.mipLevels;
    248 	imageCreateParams.arrayLayers			= 1;
    249 	imageCreateParams.samples				= imageParameters.samples;
    250 	imageCreateParams.tiling				= imageParameters.tiling;
    251 	imageCreateParams.usage					= imageParameters.usage;
    252 	imageCreateParams.sharingMode			= imageParameters.sharingMode;
    253 	imageCreateParams.queueFamilyIndexCount	= imageParameters.queueFamilyCount;
    254 	imageCreateParams.pQueueFamilyIndices	= imageParameters.queueFamilyNdxList;
    255 	imageCreateParams.initialLayout			= imageParameters.initialLayout;
    256 
    257 	image.image			= createImage(vkd, device, &imageCreateParams);
    258 	image.allocation	= allocator.allocate(getImageMemoryRequirements(vkd, device, *image.image), visibility);
    259 
    260 	VK_CHECK(vkd.bindImageMemory(device, *image.image, image.allocation->getMemory(), image.allocation->getOffset()));
    261 
    262 	componentMap.r							= VK_COMPONENT_SWIZZLE_R;
    263 	componentMap.g							= VK_COMPONENT_SWIZZLE_G;
    264 	componentMap.b							= VK_COMPONENT_SWIZZLE_B;
    265 	componentMap.a							= VK_COMPONENT_SWIZZLE_A;
    266 
    267 	subresourceRange.aspectMask				= VK_IMAGE_ASPECT_COLOR_BIT;
    268 	subresourceRange.baseMipLevel			= 0;
    269 	subresourceRange.levelCount				= imageParameters.mipLevels;
    270 	subresourceRange.baseArrayLayer			= 0;
    271 	subresourceRange.layerCount				= 1;
    272 
    273 	deMemset(&imageViewCreateInfo, 0xcd, sizeof(imageViewCreateInfo));
    274 	imageViewCreateInfo.sType				= VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
    275 	imageViewCreateInfo.pNext				= DE_NULL;
    276 	imageViewCreateInfo.flags				= 0;
    277 	imageViewCreateInfo.image				= image.image.get();
    278 	imageViewCreateInfo.viewType			= VK_IMAGE_VIEW_TYPE_2D;
    279 	imageViewCreateInfo.format				= imageParameters.format;
    280 	imageViewCreateInfo.components			= componentMap;
    281 	imageViewCreateInfo.subresourceRange	= subresourceRange;
    282 
    283 	image.imageView	= createImageView(vkd, device, &imageViewCreateInfo);
    284 
    285 	deMemset(&imageBarrier, 0xcd, sizeof(imageBarrier));
    286 	imageBarrier.sType					= VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    287 	imageBarrier.pNext					= DE_NULL;
    288 	imageBarrier.srcAccessMask			= 0;
    289 	imageBarrier.dstAccessMask			= imageParameters.barrierInputMask;
    290 	imageBarrier.oldLayout				= imageParameters.initialLayout;
    291 	imageBarrier.newLayout				= imageParameters.finalLayout;
    292 	imageBarrier.srcQueueFamilyIndex	= imageParameters.queueFamilyNdxList[0];
    293 	imageBarrier.dstQueueFamilyIndex	= imageParameters.queueFamilyNdxList[imageParameters.queueFamilyCount-1];
    294 	imageBarrier.image					= image.image.get();
    295 	imageBarrier.subresourceRange		= subresourceRange;
    296 
    297 	image.imageMemoryBarrier.push_back(imageBarrier);
    298 }
    299 
    300 struct RenderPassParameters
    301 {
    302 	VkFormat				colorFormat;
    303 	VkSampleCountFlagBits	colorSamples;
    304 };
    305 
    306 void  createColorOnlyRenderPass (const DeviceInterface& vkd, VkDevice device, const RenderPassParameters& renderPassParameters, vk::Move<VkRenderPass>& renderPass)
    307 {
    308 	VkAttachmentDescription				colorAttachmentDesc;
    309 	VkAttachmentReference				colorAttachmentRef;
    310 	VkAttachmentReference				stencilAttachmentRef;
    311 	VkSubpassDescription				subpassDesc;
    312 	VkRenderPassCreateInfo				renderPassParams;
    313 	VkRenderPass						newRenderPass;
    314 
    315 	colorAttachmentDesc.flags			= 0;
    316 	colorAttachmentDesc.format			= renderPassParameters.colorFormat;
    317 	colorAttachmentDesc.samples			= renderPassParameters.colorSamples;
    318 	colorAttachmentDesc.loadOp			= VK_ATTACHMENT_LOAD_OP_CLEAR;
    319 	colorAttachmentDesc.storeOp			= VK_ATTACHMENT_STORE_OP_STORE;
    320 	colorAttachmentDesc.stencilLoadOp	= VK_ATTACHMENT_LOAD_OP_DONT_CARE;
    321 	colorAttachmentDesc.stencilStoreOp	= VK_ATTACHMENT_STORE_OP_DONT_CARE;
    322 	colorAttachmentDesc.initialLayout	= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    323 	colorAttachmentDesc.finalLayout		= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    324 
    325 	colorAttachmentRef.attachment		= 0;
    326 	colorAttachmentRef.layout			= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    327 
    328 	stencilAttachmentRef.attachment		= VK_ATTACHMENT_UNUSED;
    329 	stencilAttachmentRef.layout			= VK_IMAGE_LAYOUT_UNDEFINED;
    330 
    331 	subpassDesc.flags					= 0;
    332 	subpassDesc.pipelineBindPoint		= VK_PIPELINE_BIND_POINT_GRAPHICS;
    333 	subpassDesc.inputAttachmentCount	= 0;
    334 	subpassDesc.pInputAttachments		= DE_NULL;
    335 	subpassDesc.colorAttachmentCount	= 1;
    336 	subpassDesc.pColorAttachments		= &colorAttachmentRef;
    337 	subpassDesc.pResolveAttachments		= DE_NULL;
    338 	subpassDesc.pDepthStencilAttachment	= &stencilAttachmentRef;
    339 	subpassDesc.preserveAttachmentCount	= 0;
    340 	subpassDesc.pPreserveAttachments	= DE_NULL;
    341 
    342 	deMemset(&renderPassParams, 0xcd, sizeof(renderPassParams));
    343 	renderPassParams.sType				= VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
    344 	renderPassParams.pNext				= DE_NULL;
    345 	renderPassParams.flags				= 0;
    346 	renderPassParams.attachmentCount	= 1;
    347 	renderPassParams.pAttachments		= &colorAttachmentDesc;
    348 	renderPassParams.subpassCount		= 1;
    349 	renderPassParams.pSubpasses			= &subpassDesc;
    350 	renderPassParams.dependencyCount	= 0;
    351 	renderPassParams.pDependencies		= DE_NULL;
    352 
    353 	renderPass = createRenderPass(vkd, device, &renderPassParams);
    354 }
    355 
    356 struct ShaderDescParams
    357 {
    358 	VkShaderModule			shaderModule;
    359 	VkShaderStageFlagBits	stage;
    360 };
    361 
    362 struct VertexDesc
    363 {
    364 	deUint32	location;
    365 	VkFormat	format;
    366 	deUint32	stride;
    367 	deUint32	offset;
    368 };
    369 
    370 void createVertexInfo (const vector<VertexDesc>& vertexDesc, vector<VkVertexInputBindingDescription>& bindingList, vector<VkVertexInputAttributeDescription>& attrList, VkPipelineVertexInputStateCreateInfo& vertexInputState)
    371 {
    372 	for (vector<VertexDesc>::const_iterator vertDescIter = vertexDesc.begin(); vertDescIter != vertexDesc.end(); vertDescIter++)
    373 	{
    374 		deUint32							bindingId = 0;
    375 		VkVertexInputBindingDescription		bindingDesc;
    376 		VkVertexInputAttributeDescription	attrDesc;
    377 
    378 		bindingDesc.binding		= bindingId;
    379 		bindingDesc.stride		= vertDescIter->stride;
    380 		bindingDesc.inputRate	= VK_VERTEX_INPUT_RATE_VERTEX;
    381 		bindingList.push_back(bindingDesc);
    382 
    383 		attrDesc.location		= vertDescIter->location;
    384 		attrDesc.binding		= bindingId;
    385 		attrDesc.format			= vertDescIter->format;
    386 		attrDesc.offset			= vertDescIter->offset;
    387 		attrList.push_back(attrDesc);
    388 
    389 		bindingId++;
    390 	}
    391 
    392 	deMemset(&vertexInputState, 0xcd, sizeof(vertexInputState));
    393 	vertexInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
    394 	vertexInputState.pNext = DE_NULL;
    395 	vertexInputState.flags = 0u;
    396 	vertexInputState.vertexBindingDescriptionCount = (deUint32)bindingList.size();
    397 	vertexInputState.pVertexBindingDescriptions = &bindingList[0];
    398 	vertexInputState.vertexAttributeDescriptionCount = (deUint32)attrList.size();
    399 	vertexInputState.pVertexAttributeDescriptions = &attrList[0];
    400 }
    401 
    402 void createCommandBuffer (const DeviceInterface& deviceInterface, const VkDevice device, const deUint32 queueFamilyNdx, vk::Move<VkCommandBuffer>* commandBufferRef, vk::Move<VkCommandPool>* commandPoolRef)
    403 {
    404 	vk::Move<VkCommandPool>		commandPool;
    405 	VkCommandBufferAllocateInfo	commandBufferInfo;
    406 	VkCommandBuffer				commandBuffer;
    407 
    408 	commandPool = createCommandPool(deviceInterface, device, 0u, queueFamilyNdx);
    409 
    410 	deMemset(&commandBufferInfo, 0xcd, sizeof(commandBufferInfo));
    411 	commandBufferInfo.sType					= VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
    412 	commandBufferInfo.pNext					= DE_NULL;
    413 	commandBufferInfo.commandPool			= commandPool.get();
    414 	commandBufferInfo.level					= VK_COMMAND_BUFFER_LEVEL_PRIMARY;
    415 	commandBufferInfo.commandBufferCount	= 1;
    416 
    417 	VK_CHECK(deviceInterface.allocateCommandBuffers(device, &commandBufferInfo, &commandBuffer));
    418 	*commandBufferRef = vk::Move<VkCommandBuffer>(vk::check<VkCommandBuffer>(commandBuffer), Deleter<VkCommandBuffer>(deviceInterface, device, commandPool.get()));
    419 	*commandPoolRef = commandPool;
    420 }
    421 
    422 void createFences (const DeviceInterface& deviceInterface, VkDevice device, bool signaled, deUint32 numFences, VkFence* fence)
    423 {
    424 	VkFenceCreateInfo		fenceState;
    425 	VkFenceCreateFlags		signalFlag = signaled ? VK_FENCE_CREATE_SIGNALED_BIT : 0;
    426 
    427 	deMemset(&fenceState, 0xcd, sizeof(fenceState));
    428 	fenceState.sType		= VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
    429 	fenceState.pNext		= DE_NULL;
    430 	fenceState.flags		= signalFlag;
    431 
    432 	for (deUint32 ndx = 0; ndx < numFences; ndx++)
    433 		VK_CHECK(deviceInterface.createFence(device, &fenceState, DE_NULL, &fence[ndx]));
    434 }
    435 
    436 void destroyFences (const DeviceInterface& deviceInterface, VkDevice device, deUint32 numFences, VkFence* fence)
    437 {
    438 	for (deUint32 ndx = 0; ndx < numFences; ndx++)
    439 		deviceInterface.destroyFence(device, fence[ndx], DE_NULL);
    440 }
    441 
    442 struct RenderInfo
    443 {
    444 	deInt32							width;
    445 	deInt32							height;
    446 	deUint32						vertexBufferSize;
    447 	VkBuffer						vertexBuffer;
    448 	VkImage							image;
    449 	VkCommandBuffer					commandBuffer;
    450 	VkRenderPass					renderPass;
    451 	VkFramebuffer					framebuffer;
    452 	VkPipeline						pipeline;
    453 	deUint32						mipLevels;
    454 	const deUint32*					queueFamilyNdxList;
    455 	deUint32						queueFamilyNdxCount;
    456 	bool							waitEvent;
    457 	VkEvent							event;
    458 	vector<VkImageMemoryBarrier>*	barriers;
    459 };
    460 
    461 void  recordRenderPass (const DeviceInterface& deviceInterface, const RenderInfo& renderInfo)
    462 {
    463 	const VkDeviceSize					bindingOffset			= 0;
    464 	const VkClearValue					clearValue				= makeClearValueColorF32(0.0, 0.0, 1.0, 1.0);
    465 	VkRenderPassBeginInfo				renderPassBeginState;
    466 	VkImageMemoryBarrier				renderBarrier;
    467 
    468 	deMemset(&renderPassBeginState, 0xcd, sizeof(renderPassBeginState));
    469 	renderPassBeginState.sType						= VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
    470 	renderPassBeginState.pNext						= DE_NULL;
    471 	renderPassBeginState.renderPass					= renderInfo.renderPass;
    472 	renderPassBeginState.framebuffer				= renderInfo.framebuffer;
    473 	renderPassBeginState.renderArea.offset.x		= 0;
    474 	renderPassBeginState.renderArea.offset.y		= 0;
    475 	renderPassBeginState.renderArea.extent.width	= renderInfo.width;
    476 	renderPassBeginState.renderArea.extent.height	= renderInfo.height;
    477 	renderPassBeginState.clearValueCount			= 1;
    478 	renderPassBeginState.pClearValues				= &clearValue;
    479 
    480 	if (renderInfo.waitEvent)
    481 		deviceInterface.cmdWaitEvents(renderInfo.commandBuffer, 1, &renderInfo.event, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, DE_NULL, 0, DE_NULL, 0, DE_NULL);
    482 	deviceInterface.cmdBeginRenderPass(renderInfo.commandBuffer, &renderPassBeginState, VK_SUBPASS_CONTENTS_INLINE);
    483 	deviceInterface.cmdBindPipeline(renderInfo.commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, renderInfo.pipeline);
    484 	deviceInterface.cmdBindVertexBuffers(renderInfo.commandBuffer, 0u, 1u, &renderInfo.vertexBuffer, &bindingOffset);
    485 	deviceInterface.cmdDraw(renderInfo.commandBuffer, renderInfo.vertexBufferSize, 1, 0, 0);
    486 	deviceInterface.cmdEndRenderPass(renderInfo.commandBuffer);
    487 
    488 	deMemset(&renderBarrier, 0xcd, sizeof(renderBarrier));
    489 	renderBarrier.sType								= VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    490 	renderBarrier.pNext								= DE_NULL;
    491 	renderBarrier.srcAccessMask						= VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
    492 	renderBarrier.dstAccessMask						= VK_ACCESS_TRANSFER_READ_BIT;
    493 	renderBarrier.oldLayout							= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    494 	renderBarrier.newLayout							= VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
    495 	renderBarrier.srcQueueFamilyIndex				= renderInfo.queueFamilyNdxList[0];
    496 	renderBarrier.dstQueueFamilyIndex				= renderInfo.queueFamilyNdxList[renderInfo.queueFamilyNdxCount-1];
    497 	renderBarrier.image								= renderInfo.image;
    498 	renderBarrier.subresourceRange.aspectMask		= VK_IMAGE_ASPECT_COLOR_BIT;
    499 	renderBarrier.subresourceRange.baseMipLevel		= 0;
    500 	renderBarrier.subresourceRange.levelCount		= renderInfo.mipLevels;
    501 	renderBarrier.subresourceRange.baseArrayLayer	= 0;
    502 	renderBarrier.subresourceRange.layerCount		= 1;
    503 	renderInfo.barriers->push_back(renderBarrier);
    504 }
    505 
    506 struct TransferInfo
    507 {
    508 	VkCommandBuffer					commandBuffer;
    509 	deUint32						width;
    510 	deUint32						height;
    511 	VkImage							image;
    512 	VkBuffer						buffer;
    513 	VkDeviceSize					size;
    514 	deUint32						mipLevel;
    515 	VkOffset3D						imageOffset;
    516 	vector<VkBufferMemoryBarrier>*	barriers;
    517 };
    518 
    519 void copyToCPU (const DeviceInterface& vkd, TransferInfo* transferInfo)
    520 {
    521 	VkBufferImageCopy	copyState;
    522 
    523 	copyState.bufferOffset						= 0;
    524 	copyState.bufferRowLength					= transferInfo->width;
    525 	copyState.bufferImageHeight					= transferInfo->height;
    526 	copyState.imageSubresource.aspectMask		= VK_IMAGE_ASPECT_COLOR_BIT;
    527 	copyState.imageSubresource.mipLevel			= transferInfo->mipLevel;
    528 	copyState.imageSubresource.baseArrayLayer	= 0;
    529 	copyState.imageSubresource.layerCount		= 1;
    530 	copyState.imageOffset						= transferInfo->imageOffset;
    531 	copyState.imageExtent.width					= (deInt32)(transferInfo->width);
    532 	copyState.imageExtent.height				= (deInt32)(transferInfo->height);
    533 	copyState.imageExtent.depth					= 1;
    534 
    535 	vkd.cmdCopyImageToBuffer(transferInfo->commandBuffer, transferInfo->image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, transferInfo->buffer, 1, &copyState);
    536 
    537 	{
    538 		VkBufferMemoryBarrier	bufferBarrier;
    539 		deMemset(&bufferBarrier, 0xcd, sizeof(bufferBarrier));
    540 		bufferBarrier.sType					= VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
    541 		bufferBarrier.pNext					= DE_NULL;
    542 		bufferBarrier.srcAccessMask			= VK_ACCESS_TRANSFER_WRITE_BIT;
    543 		bufferBarrier.dstAccessMask			= VK_ACCESS_HOST_READ_BIT;
    544 		bufferBarrier.srcQueueFamilyIndex	= VK_QUEUE_FAMILY_IGNORED;
    545 		bufferBarrier.dstQueueFamilyIndex	= VK_QUEUE_FAMILY_IGNORED;
    546 		bufferBarrier.buffer				= transferInfo->buffer;
    547 		bufferBarrier.offset				= 0;
    548 		bufferBarrier.size					= transferInfo->size;
    549 		transferInfo->barriers->push_back(bufferBarrier);
    550 	}
    551 }
    552 
    553 struct TestContext
    554 {
    555 	const DeviceInterface&		vkd;
    556 	const VkDevice				device;
    557 	const deUint32				queueFamilyIndex;
    558 	const BinaryCollection&		binaryCollection;
    559 	Allocator&					allocator;
    560 
    561 	const tcu::Vec4*			vertices;
    562 	deUint32					numVertices;
    563 	tcu::IVec2					renderDimension;
    564 	VkFence						fences[2];
    565 	VkDeviceSize				renderSize;
    566 	MovePtr<Allocation>			renderReadBuffer;
    567 	MovePtr<Allocation>			vertexBufferAllocation;
    568 	vk::Move<VkBuffer>			vertexBuffer;
    569 	vk::Move<VkBuffer>			renderBuffer;
    570 	bool						waitEvent;
    571 	VkEvent						event;
    572 	vk::Move<VkImage>			image;
    573 	vk::Move<VkImageView>		imageView;
    574 	vk::Move<VkFramebuffer>		framebuffer;
    575 	vk::Move<VkCommandPool>		commandPool;
    576 	vk::Move<VkCommandBuffer>	cmdBuffer;
    577 	vk::Move<VkRenderPass>		renderPass;
    578 	vk::Move<VkPipelineCache>	pipelineCache;
    579 	vk::Move<VkPipeline>		pipeline;
    580 	MovePtr<Allocation>			imageAllocation;
    581 
    582 	TestContext (const DeviceInterface&		vkd_,
    583 				 const VkDevice				device_,
    584 				 deUint32					queueFamilyIndex_,
    585 				 const BinaryCollection&	binaryCollection_,
    586 				 Allocator&					allocator_)
    587 		: vkd				(vkd_)
    588 		, device			(device_)
    589 		, queueFamilyIndex	(queueFamilyIndex_)
    590 		, binaryCollection	(binaryCollection_)
    591 		, allocator			(allocator_)
    592 		, numVertices		(0)
    593 		, waitEvent			(false)
    594 	{
    595 		createFences(vkd, device, false, DE_LENGTH_OF_ARRAY(fences), fences);
    596 	}
    597 
    598 	~TestContext()
    599 	{
    600 		destroyFences(vkd, device, DE_LENGTH_OF_ARRAY(fences), fences);
    601 	}
    602 };
    603 
    604 void generateWork (TestContext& testContext)
    605 {
    606 	const DeviceInterface&						deviceInterface		= testContext.vkd;
    607 	const deUint32								queueFamilyNdx		= testContext.queueFamilyIndex;
    608 
    609 	// \note VkShaderModule is consumed by vkCreate*Pipelines() so it can be deleted
    610 	//       as pipeline has been constructed.
    611 	const vk::Unique<VkShaderModule>			vertShaderModule	(createShaderModule(deviceInterface,
    612 																						testContext.device,
    613 																						testContext.binaryCollection.get("glslvert"),
    614 																						(VkShaderModuleCreateFlags)0));
    615 
    616 	const vk::Unique<VkShaderModule>			fragShaderModule	(createShaderModule(deviceInterface,
    617 																						testContext.device,
    618 																						testContext.binaryCollection.get("glslfrag"),
    619 																						(VkShaderModuleCreateFlags)0));
    620 	const VkPipelineShaderStageCreateInfo		shaderStageParams[]	=
    621 	{
    622 		{
    623 			VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
    624 			DE_NULL,
    625 			(VkPipelineShaderStageCreateFlags)0,
    626 			VK_SHADER_STAGE_VERTEX_BIT,
    627 			*vertShaderModule,
    628 			"main",
    629 			(const VkSpecializationInfo*)DE_NULL,
    630 		},
    631 		{
    632 			VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
    633 			DE_NULL,
    634 			(VkPipelineShaderStageCreateFlags)0,
    635 			VK_SHADER_STAGE_FRAGMENT_BIT,
    636 			*fragShaderModule,
    637 			"main",
    638 			(const VkSpecializationInfo*)DE_NULL,
    639 		}
    640 	};
    641 
    642 	vk::Move<VkPipelineLayout>					layout;
    643 	vector<ShaderDescParams>					shaderDescParams;
    644 	VertexDesc									vertexDesc;
    645 	vector<VertexDesc>							vertexDescList;
    646 	vector<VkVertexInputAttributeDescription>	attrList;
    647 	vector<VkBufferMemoryBarrier>				bufferMemoryBarrier;
    648 	deUint32									memoryBarrierNdx;
    649 	deUint32									bufferMemoryBarrierNdx;
    650 	deUint32									imageMemoryBarrierNdx;
    651 	vector<VkVertexInputBindingDescription>		bindingList;
    652 	VkPipelineVertexInputStateCreateInfo		vertexInputState;
    653 	VkPipelineInputAssemblyStateCreateInfo		inputAssemblyState;
    654 	VkPipelineDepthStencilStateCreateInfo		depthStencilState;
    655 	VkPipelineColorBlendAttachmentState			blendAttachment;
    656 	VkPipelineColorBlendStateCreateInfo			blendState;
    657 	VkPipelineLayoutCreateInfo					pipelineLayoutState;
    658 	VkGraphicsPipelineCreateInfo				pipelineState;
    659 	VkPipelineCacheCreateInfo					cacheState;
    660 	VkViewport									viewport;
    661 	VkPipelineViewportStateCreateInfo			viewportInfo;
    662 	VkRect2D									scissor;
    663 	BufferParameters							bufferParameters;
    664 	Buffer										buffer;
    665 	RenderInfo									renderInfo;
    666 	ImageParameters								imageParameters;
    667 	Image										image;
    668 	VkPipelineRasterizationStateCreateInfo		rasterState;
    669 	VkPipelineMultisampleStateCreateInfo		multisampleState;
    670 	VkFramebufferCreateInfo						fbState;
    671 	VkCommandBufferBeginInfo					commandBufRecordState;
    672 	VkCommandBufferInheritanceInfo				inheritanceInfo;
    673 	RenderPassParameters						renderPassParameters;
    674 	TransferInfo								transferInfo;
    675 	vector<void*>								barrierList;
    676 	VkExtent3D									extent;
    677 	vector<VkMemoryBarrier>						memoryBarriers;
    678 	vector<VkBufferMemoryBarrier>				bufferBarriers;
    679 	vector<VkImageMemoryBarrier>				imageBarriers;
    680 
    681 	memoryBarrierNdx			= 0;
    682 	bufferMemoryBarrierNdx		= 0;
    683 	imageMemoryBarrierNdx		= 0;
    684 	buffer.memoryBarrier.resize(memoryBarrierNdx);
    685 	bufferMemoryBarrier.resize(bufferMemoryBarrierNdx);
    686 	image.imageMemoryBarrier.resize(imageMemoryBarrierNdx);
    687 
    688 	memoryBarriers.resize(0);
    689 	bufferBarriers.resize(0);
    690 	imageBarriers.resize(0);
    691 
    692 	bufferParameters.memory					= testContext.vertices;
    693 	bufferParameters.size					= testContext.numVertices * sizeof(tcu::Vec4);
    694 	bufferParameters.usage					= VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
    695 	bufferParameters.sharingMode			= VK_SHARING_MODE_EXCLUSIVE;
    696 	bufferParameters.queueFamilyCount		= 1;
    697 	bufferParameters.queueFamilyIndex		= &queueFamilyNdx;
    698 	bufferParameters.inputBarrierFlags		= VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
    699 	createVulkanBuffer(deviceInterface, testContext.device, testContext.allocator, bufferParameters, buffer, MemoryRequirement::HostVisible);
    700 	testContext.vertexBufferAllocation		= buffer.allocation;
    701 	testContext.vertexBuffer				= buffer.buffer;
    702 
    703 	bufferParameters.memory					= DE_NULL;
    704 	bufferParameters.size					= testContext.renderSize;
    705 	bufferParameters.usage					= VK_BUFFER_USAGE_TRANSFER_DST_BIT;
    706 	bufferParameters.sharingMode			= VK_SHARING_MODE_EXCLUSIVE;
    707 	bufferParameters.queueFamilyCount		= 1;
    708 	bufferParameters.queueFamilyIndex		= &queueFamilyNdx;
    709 	bufferParameters.inputBarrierFlags		= 0;
    710 	createVulkanBuffer(deviceInterface, testContext.device, testContext.allocator, bufferParameters, buffer, MemoryRequirement::HostVisible);
    711 	testContext.renderReadBuffer			= buffer.allocation;
    712 	testContext.renderBuffer				= buffer.buffer;
    713 
    714 	extent.width							= testContext.renderDimension.x();
    715 	extent.height							= testContext.renderDimension.y();
    716 	extent.depth							= 1;
    717 
    718 	imageParameters.imageType				= VK_IMAGE_TYPE_2D;
    719 	imageParameters.format					= VK_FORMAT_R8G8B8A8_UNORM;
    720 	imageParameters.extent3D				= extent;
    721 	imageParameters.mipLevels				= 1;
    722 	imageParameters.samples					= VK_SAMPLE_COUNT_1_BIT;
    723 	imageParameters.tiling					= VK_IMAGE_TILING_OPTIMAL;
    724 	imageParameters.usage					= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT|VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
    725 	imageParameters.sharingMode				= VK_SHARING_MODE_EXCLUSIVE;
    726 	imageParameters.queueFamilyCount		= 1;
    727 	imageParameters.queueFamilyNdxList		= &queueFamilyNdx;
    728 	imageParameters.initialLayout			= VK_IMAGE_LAYOUT_UNDEFINED;
    729 	imageParameters.finalLayout				= VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    730 	imageParameters.barrierInputMask		= VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
    731 	createVulkanImage(deviceInterface, testContext.device, testContext.allocator, imageParameters, image, MemoryRequirement::Any);
    732 	testContext.imageAllocation				= image.allocation;
    733 	testContext.image						= image.image;
    734 
    735 	for (size_t ndx = 0; ndx < image.imageMemoryBarrier.size(); ++ndx)
    736 		imageBarriers.push_back(image.imageMemoryBarrier[ndx]);
    737 
    738 	renderPassParameters.colorFormat		= VK_FORMAT_R8G8B8A8_UNORM;
    739 	renderPassParameters.colorSamples		= VK_SAMPLE_COUNT_1_BIT;
    740 	createColorOnlyRenderPass(deviceInterface, testContext.device, renderPassParameters, testContext.renderPass);
    741 
    742 	vertexDesc.location = 0;
    743 	vertexDesc.format = VK_FORMAT_R32G32B32A32_SFLOAT;
    744 	vertexDesc.stride = sizeof(tcu::Vec4);
    745 	vertexDesc.offset = 0;
    746 	vertexDescList.push_back(vertexDesc);
    747 
    748 	createVertexInfo(vertexDescList, bindingList, attrList, vertexInputState);
    749 
    750 	deMemset(&inputAssemblyState, 0xcd, sizeof(inputAssemblyState));
    751 	inputAssemblyState.sType					= VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
    752 	inputAssemblyState.pNext					= DE_NULL;
    753 	inputAssemblyState.flags					= 0u;
    754 	inputAssemblyState.topology					= VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
    755 	inputAssemblyState.primitiveRestartEnable	= false;
    756 
    757 	viewport.x									= 0;
    758 	viewport.y									= 0;
    759 	viewport.width								= (float)testContext.renderDimension.x();
    760 	viewport.height								= (float)testContext.renderDimension.y();
    761 	viewport.minDepth							= 0;
    762 	viewport.maxDepth							= 1;
    763 
    764 	scissor.offset.x							= 0;
    765 	scissor.offset.y							= 0;
    766 	scissor.extent.width						= testContext.renderDimension.x();
    767 	scissor.extent.height						= testContext.renderDimension.y();
    768 
    769 	deMemset(&viewportInfo, 0xcd, sizeof(viewportInfo));
    770 	viewportInfo.sType							= VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
    771 	viewportInfo.pNext							= DE_NULL;
    772 	viewportInfo.flags							= 0;
    773 	viewportInfo.viewportCount					= 1;
    774 	viewportInfo.pViewports						= &viewport;
    775 	viewportInfo.scissorCount					= 1;
    776 	viewportInfo.pScissors						= &scissor;
    777 
    778 	deMemset(&rasterState, 0xcd, sizeof(rasterState));
    779 	rasterState.sType							= VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
    780 	rasterState.pNext							= DE_NULL;
    781 	rasterState.flags							= 0;
    782 	rasterState.depthClampEnable				= VK_TRUE;
    783 	rasterState.rasterizerDiscardEnable			= VK_FALSE;
    784 	rasterState.polygonMode						= VK_POLYGON_MODE_FILL;
    785 	rasterState.cullMode						= VK_CULL_MODE_NONE;
    786 	rasterState.frontFace						= VK_FRONT_FACE_COUNTER_CLOCKWISE;
    787 	rasterState.depthBiasEnable					= VK_FALSE;
    788 	rasterState.lineWidth						= 1;
    789 
    790 	deMemset(&multisampleState, 0xcd, sizeof(multisampleState));
    791 	multisampleState.sType						= VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
    792 	multisampleState.pNext						= DE_NULL;
    793 	multisampleState.flags						= 0;
    794 	multisampleState.rasterizationSamples		= VK_SAMPLE_COUNT_1_BIT;
    795 	multisampleState.sampleShadingEnable		= VK_FALSE;
    796 	multisampleState.pSampleMask				= DE_NULL;
    797 	multisampleState.alphaToCoverageEnable		= VK_FALSE;
    798 	multisampleState.alphaToOneEnable			= VK_FALSE;
    799 
    800 	deMemset(&depthStencilState, 0xcd, sizeof(depthStencilState));
    801 	depthStencilState.sType						= VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
    802 	depthStencilState.pNext						= DE_NULL;
    803 	depthStencilState.flags						= 0;
    804 	depthStencilState.depthTestEnable			= VK_FALSE;
    805 	depthStencilState.depthWriteEnable			= VK_FALSE;
    806 	depthStencilState.depthCompareOp			= VK_COMPARE_OP_ALWAYS;
    807 	depthStencilState.depthBoundsTestEnable		= VK_FALSE;
    808 	depthStencilState.stencilTestEnable			= VK_FALSE;
    809 	depthStencilState.front.failOp				= VK_STENCIL_OP_KEEP;
    810 	depthStencilState.front.passOp				= VK_STENCIL_OP_KEEP;
    811 	depthStencilState.front.depthFailOp			= VK_STENCIL_OP_KEEP;
    812 	depthStencilState.front.compareOp			= VK_COMPARE_OP_ALWAYS;
    813 	depthStencilState.front.compareMask			= 0u;
    814 	depthStencilState.front.writeMask			= 0u;
    815 	depthStencilState.front.reference			= 0u;
    816 	depthStencilState.back						= depthStencilState.front;
    817 
    818 	deMemset(&blendAttachment, 0xcd, sizeof(blendAttachment));
    819 	blendAttachment.blendEnable					= VK_FALSE;
    820 	blendAttachment.srcColorBlendFactor			= VK_BLEND_FACTOR_ZERO;
    821 	blendAttachment.srcAlphaBlendFactor			= VK_BLEND_FACTOR_ZERO;
    822 	blendAttachment.dstColorBlendFactor			= VK_BLEND_FACTOR_ZERO;
    823 	blendAttachment.dstAlphaBlendFactor			= VK_BLEND_FACTOR_ZERO;
    824 	blendAttachment.colorBlendOp				= VK_BLEND_OP_ADD;
    825 	blendAttachment.alphaBlendOp				= VK_BLEND_OP_ADD;
    826 	blendAttachment.colorWriteMask				= VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
    827 
    828 	deMemset(&blendState, 0xcd, sizeof(blendState));
    829 	blendState.sType							= VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
    830 	blendState.pNext							= DE_NULL;
    831 	blendState.flags							= 0;
    832 	blendState.logicOpEnable					= VK_FALSE;
    833 	blendState.logicOp							= VK_LOGIC_OP_COPY;
    834 	blendState.attachmentCount					= 1;
    835 	blendState.pAttachments						= &blendAttachment;
    836 
    837 	deMemset(&pipelineLayoutState, 0xcd, sizeof(pipelineLayoutState));
    838 	pipelineLayoutState.sType					= VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
    839 	pipelineLayoutState.pNext					= DE_NULL;
    840 	pipelineLayoutState.flags					= 0;
    841 	pipelineLayoutState.setLayoutCount			= 0;
    842 	pipelineLayoutState.pSetLayouts				= DE_NULL;
    843 	pipelineLayoutState.pushConstantRangeCount	= 0;
    844 	pipelineLayoutState.pPushConstantRanges		= DE_NULL;
    845 	layout = createPipelineLayout(deviceInterface, testContext.device, &pipelineLayoutState, DE_NULL);
    846 
    847 	deMemset(&pipelineState, 0xcd, sizeof(pipelineState));
    848 	pipelineState.sType							= VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
    849 	pipelineState.pNext							= DE_NULL;
    850 	pipelineState.flags							= 0;
    851 	pipelineState.stageCount					= DE_LENGTH_OF_ARRAY(shaderStageParams);
    852 	pipelineState.pStages						= &shaderStageParams[0];
    853 	pipelineState.pVertexInputState				= &vertexInputState;
    854 	pipelineState.pInputAssemblyState			= &inputAssemblyState;
    855 	pipelineState.pTessellationState			= DE_NULL;
    856 	pipelineState.pViewportState				= &viewportInfo;
    857 	pipelineState.pRasterizationState			= &rasterState;
    858 	pipelineState.pMultisampleState				= &multisampleState;
    859 	pipelineState.pDepthStencilState			= &depthStencilState;
    860 	pipelineState.pColorBlendState				= &blendState;
    861 	pipelineState.pDynamicState					= (const VkPipelineDynamicStateCreateInfo*)DE_NULL;
    862 	pipelineState.layout						= layout.get();
    863 	pipelineState.renderPass					= testContext.renderPass.get();
    864 	pipelineState.subpass						= 0;
    865 	pipelineState.basePipelineHandle			= DE_NULL;
    866 	pipelineState.basePipelineIndex				= 0;
    867 
    868 	deMemset(&cacheState, 0xcd, sizeof(cacheState));
    869 	cacheState.sType							= VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
    870 	cacheState.pNext							= DE_NULL;
    871 	cacheState.flags							= 0;
    872 	cacheState.initialDataSize					= 0;
    873 	cacheState.pInitialData						= DE_NULL;
    874 
    875 	testContext.pipelineCache	= createPipelineCache(deviceInterface, testContext.device, &cacheState);
    876 	testContext.pipeline		= createGraphicsPipeline(deviceInterface, testContext.device, testContext.pipelineCache.get(), &pipelineState);
    877 
    878 	deMemset(&fbState, 0xcd, sizeof(fbState));
    879 	fbState.sType								= VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
    880 	fbState.pNext								= DE_NULL;
    881 	fbState.flags								= 0;
    882 	fbState.renderPass							= testContext.renderPass.get();
    883 	fbState.attachmentCount						= 1;
    884 	fbState.pAttachments						= &image.imageView.get();
    885 	fbState.width								= (deUint32)testContext.renderDimension.x();
    886 	fbState.height								= (deUint32)testContext.renderDimension.y();
    887 	fbState.layers								= 1;
    888 
    889 	testContext.framebuffer	= createFramebuffer(deviceInterface, testContext.device, &fbState);
    890 	testContext.imageView	= image.imageView;
    891 
    892 	deMemset(&inheritanceInfo, 0xcd, sizeof(inheritanceInfo));
    893 	inheritanceInfo.sType						= VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
    894 	inheritanceInfo.pNext						= DE_NULL;
    895 	inheritanceInfo.renderPass					= testContext.renderPass.get();
    896 	inheritanceInfo.subpass						= 0;
    897 	inheritanceInfo.framebuffer					= *testContext.framebuffer;
    898 	inheritanceInfo.occlusionQueryEnable		= VK_FALSE;
    899 	inheritanceInfo.queryFlags					= 0u;
    900 	inheritanceInfo.pipelineStatistics			= 0u;
    901 
    902 	deMemset(&commandBufRecordState, 0xcd, sizeof(commandBufRecordState));
    903 	commandBufRecordState.sType					= VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
    904 	commandBufRecordState.pNext					= DE_NULL;
    905 	commandBufRecordState.flags					= VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
    906 	commandBufRecordState.pInheritanceInfo		= &inheritanceInfo;
    907 	VK_CHECK(deviceInterface.beginCommandBuffer(testContext.cmdBuffer.get(), &commandBufRecordState));
    908 
    909 	deviceInterface.cmdPipelineBarrier( testContext.cmdBuffer.get(),
    910 										VK_PIPELINE_STAGE_HOST_BIT,
    911 										VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
    912 										false,
    913 										(deUint32)memoryBarriers.size(), (memoryBarriers.empty() ? DE_NULL : &memoryBarriers[0]),
    914 										(deUint32)bufferBarriers.size(), (bufferBarriers.empty() ? DE_NULL : &bufferBarriers[0]),
    915 										(deUint32)imageBarriers.size(), (imageBarriers.empty() ? DE_NULL : &imageBarriers[0]));
    916 
    917 	memoryBarriers.resize(0);
    918 	bufferBarriers.resize(0);
    919 	imageBarriers.resize(0);
    920 
    921 	renderInfo.width				= testContext.renderDimension.x();
    922 	renderInfo.height				= testContext.renderDimension.y();
    923 	renderInfo.vertexBufferSize		= testContext.numVertices;
    924 	renderInfo.vertexBuffer			= testContext.vertexBuffer.get();
    925 	renderInfo.image				= testContext.image.get();
    926 	renderInfo.commandBuffer		= testContext.cmdBuffer.get();
    927 	renderInfo.renderPass			= testContext.renderPass.get();
    928 	renderInfo.framebuffer			= *testContext.framebuffer;
    929 	renderInfo.pipeline				= *testContext.pipeline;
    930 	renderInfo.mipLevels			= 1;
    931 	renderInfo.queueFamilyNdxList	= &queueFamilyNdx;
    932 	renderInfo.queueFamilyNdxCount	= 1;
    933 	renderInfo.waitEvent			= testContext.waitEvent;
    934 	renderInfo.event				= testContext.event;
    935 	renderInfo.barriers				= &imageBarriers;
    936 	recordRenderPass(deviceInterface, renderInfo);
    937 
    938 	deviceInterface.cmdPipelineBarrier(	renderInfo.commandBuffer,
    939 										VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
    940 										VK_PIPELINE_STAGE_TRANSFER_BIT,
    941 										false,
    942 										(deUint32)memoryBarriers.size(), (memoryBarriers.empty() ? DE_NULL : &memoryBarriers[0]),
    943 										(deUint32)bufferBarriers.size(), (bufferBarriers.empty() ? DE_NULL : &bufferBarriers[0]),
    944 										(deUint32)imageBarriers.size(), (imageBarriers.empty() ? DE_NULL : &imageBarriers[0]));
    945 
    946 	memoryBarriers.resize(0);
    947 	bufferBarriers.resize(0);
    948 	imageBarriers.resize(0);
    949 
    950 	transferInfo.commandBuffer		= renderInfo.commandBuffer;
    951 	transferInfo.width				= testContext.renderDimension.x();
    952 	transferInfo.height				= testContext.renderDimension.y();
    953 	transferInfo.image				= renderInfo.image;
    954 	transferInfo.buffer				= testContext.renderBuffer.get();
    955 	transferInfo.size				= testContext.renderSize;
    956 	transferInfo.mipLevel			= 0;
    957 	transferInfo.imageOffset.x		= 0;
    958 	transferInfo.imageOffset.y		= 0;
    959 	transferInfo.imageOffset.z		= 0;
    960 	transferInfo.barriers			= &bufferBarriers;
    961 	copyToCPU(deviceInterface, &transferInfo);
    962 
    963 	deviceInterface.cmdPipelineBarrier(	transferInfo.commandBuffer,
    964 										VK_PIPELINE_STAGE_TRANSFER_BIT,
    965 										VK_PIPELINE_STAGE_HOST_BIT,
    966 										false,
    967 										(deUint32)memoryBarriers.size(), (memoryBarriers.empty() ? DE_NULL : &memoryBarriers[0]),
    968 										(deUint32)bufferBarriers.size(), (bufferBarriers.empty() ? DE_NULL : &bufferBarriers[0]),
    969 										(deUint32)imageBarriers.size(), (imageBarriers.empty() ? DE_NULL : &imageBarriers[0]));
    970 
    971 	memoryBarriers.resize(0);
    972 	bufferBarriers.resize(0);
    973 	imageBarriers.resize(0);
    974 
    975 	VK_CHECK(deviceInterface.endCommandBuffer(transferInfo.commandBuffer));
    976 }
    977 
    978 static void initSubmitInfo (VkSubmitInfo* submitInfo, deUint32 submitInfoCount)
    979 {
    980 	for (deUint32 ndx = 0; ndx < submitInfoCount; ndx++)
    981 	{
    982 		submitInfo[ndx].sType					= VK_STRUCTURE_TYPE_SUBMIT_INFO;
    983 		submitInfo[ndx].pNext					= DE_NULL;
    984 		submitInfo[ndx].waitSemaphoreCount		= 0;
    985 		submitInfo[ndx].pWaitSemaphores			= DE_NULL;
    986 		submitInfo[ndx].pWaitDstStageMask		= DE_NULL;
    987 		submitInfo[ndx].commandBufferCount		= 1;
    988 		submitInfo[ndx].signalSemaphoreCount	= 0;
    989 		submitInfo[ndx].pSignalSemaphores		= DE_NULL;
    990 	}
    991 }
    992 
    993 tcu::TestStatus testFences (Context& context)
    994 {
    995 	TestLog&					log					= context.getTestContext().getLog();
    996 	const DeviceInterface&		deviceInterface		= context.getDeviceInterface();
    997 	const VkQueue				queue				= context.getUniversalQueue();
    998 	const deUint32				queueFamilyIdx		= context.getUniversalQueueFamilyIndex();
    999 	VkDevice					device				= context.getDevice();
   1000 	VkResult					waitStatus;
   1001 	VkResult					fenceStatus;
   1002 	TestContext					testContext			(deviceInterface, device, queueFamilyIdx, context.getBinaryCollection(), context.getDefaultAllocator());
   1003 	VkSubmitInfo				submitInfo;
   1004 	VkMappedMemoryRange			range;
   1005 	void*						resultImage;
   1006 
   1007 	const tcu::Vec4				vertices[]			=
   1008 	{
   1009 		tcu::Vec4( 0.5f,  0.5f, 0.0f, 1.0f),
   1010 		tcu::Vec4(-0.5f,  0.5f, 0.0f, 1.0f),
   1011 		tcu::Vec4( 0.0f, -0.5f, 0.0f, 1.0f)
   1012 	};
   1013 
   1014 	testContext.vertices = vertices;
   1015 	testContext.numVertices = DE_LENGTH_OF_ARRAY(vertices);
   1016 	testContext.renderDimension = tcu::IVec2(256, 256);
   1017 	testContext.renderSize = sizeof(deUint32) * testContext.renderDimension.x() * testContext.renderDimension.y();
   1018 
   1019 	createCommandBuffer(deviceInterface, device, queueFamilyIdx, &testContext.cmdBuffer, &testContext.commandPool);
   1020 	generateWork(testContext);
   1021 
   1022 	initSubmitInfo(&submitInfo, 1);
   1023 	submitInfo.pCommandBuffers		= &testContext.cmdBuffer.get();
   1024 
   1025 	// Default status is unsignaled
   1026 	fenceStatus = deviceInterface.getFenceStatus(device, testContext.fences[0]);
   1027 	if (fenceStatus != VK_NOT_READY)
   1028 	{
   1029 		log << TestLog::Message << "testSynchronizationPrimitives fence 0 should be reset but status is " << getResultName(fenceStatus) << TestLog::EndMessage;
   1030 		return tcu::TestStatus::fail("Fence in incorrect state");
   1031 	}
   1032 	fenceStatus = deviceInterface.getFenceStatus(device, testContext.fences[1]);
   1033 	if (fenceStatus != VK_NOT_READY)
   1034 	{
   1035 		log << TestLog::Message << "testSynchronizationPrimitives fence 1 should be reset but status is " << getResultName(fenceStatus) << TestLog::EndMessage;
   1036 		return tcu::TestStatus::fail("Fence in incorrect state");
   1037 	}
   1038 
   1039 	VK_CHECK(deviceInterface.queueSubmit(queue, 1, &submitInfo, testContext.fences[0]));
   1040 
   1041 	// Wait with timeout = 0
   1042 	waitStatus = deviceInterface.waitForFences(device, 1, &testContext.fences[0], true, 0u);
   1043 	if (waitStatus != VK_SUCCESS && waitStatus != VK_TIMEOUT)
   1044 	{
   1045 		// Will most likely end with VK_TIMEOUT
   1046 		log << TestLog::Message << "testSynchPrimitives failed to wait for a single fence" << TestLog::EndMessage;
   1047 		return tcu::TestStatus::fail("Failed to wait for a single fence");
   1048 	}
   1049 
   1050 	// Wait with a reasonable timeout
   1051 	waitStatus = deviceInterface.waitForFences(device, 1, &testContext.fences[0], true, DEFAULT_TIMEOUT);
   1052 	if (waitStatus != VK_SUCCESS && waitStatus != VK_TIMEOUT)
   1053 	{
   1054 		// \note Wait can end with a timeout if DEFAULT_TIMEOUT is not sufficient
   1055 		log << TestLog::Message << "testSynchPrimitives failed to wait for a single fence" << TestLog::EndMessage;
   1056 		return tcu::TestStatus::fail("Failed to wait for a single fence");
   1057 	}
   1058 
   1059 	// Wait for work on fences[0] to actually complete
   1060 	waitStatus = deviceInterface.waitForFences(device, 1, &testContext.fences[0], true, std::numeric_limits<deUint64>::max());
   1061 	if (waitStatus != VK_SUCCESS)
   1062 	{
   1063 		log << TestLog::Message << "testSynchPrimitives failed to wait for a fence" << TestLog::EndMessage;
   1064 		return tcu::TestStatus::fail("failed to wait for a fence");
   1065 	}
   1066 
   1067 	// Wait until timeout on a fence that has not been submitted
   1068 	waitStatus = deviceInterface.waitForFences(device, 1, &testContext.fences[1], true, 1);
   1069 	if (waitStatus != VK_TIMEOUT)
   1070 	{
   1071 		log << TestLog::Message << "testSyncPrimitives failed to timeout on wait for single fence" << TestLog::EndMessage;
   1072 		return tcu::TestStatus::fail("failed to timeout on wait for single fence");
   1073 	}
   1074 
   1075 	// Check that the fence is signaled after the wait
   1076 	fenceStatus = deviceInterface.getFenceStatus(device, testContext.fences[0]);
   1077 	if (fenceStatus != VK_SUCCESS)
   1078 	{
   1079 		log << TestLog::Message << "testSynchronizationPrimitives fence should be signaled but status is " << getResultName(fenceStatus) << TestLog::EndMessage;
   1080 		return tcu::TestStatus::fail("Fence in incorrect state");
   1081 	}
   1082 
   1083 	range.sType			= VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
   1084 	range.pNext			= DE_NULL;
   1085 	range.memory		= testContext.renderReadBuffer->getMemory();
   1086 	range.offset		= 0;
   1087 	range.size			= testContext.renderSize;
   1088 	VK_CHECK(deviceInterface.invalidateMappedMemoryRanges(device, 1, &range));
   1089 	resultImage = testContext.renderReadBuffer->getHostPtr();
   1090 
   1091 	log << TestLog::Image(	"result",
   1092 							"result",
   1093 							tcu::ConstPixelBufferAccess(tcu::TextureFormat(
   1094 									tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
   1095 									testContext.renderDimension.x(),
   1096 									testContext.renderDimension.y(),
   1097 									1,
   1098 									resultImage));
   1099 
   1100 	return TestStatus::pass("synchronization-fences passed");
   1101 }
   1102 
   1103 tcu::TestStatus testSemaphores (Context& context)
   1104 {
   1105 	TestLog&					log					= context.getTestContext().getLog();
   1106 	const InstanceInterface&	instanceInterface	= context.getInstanceInterface();
   1107 	const VkPhysicalDevice		physicalDevice		= context.getPhysicalDevice();
   1108 	deUint32					queueFamilyIdx;
   1109 	vk::Move<VkDevice>			device				= createTestDevice(instanceInterface, physicalDevice, &queueFamilyIdx);
   1110 	const DeviceDriver			deviceInterface		(instanceInterface, *device);
   1111 	SimpleAllocator				allocator			(deviceInterface,
   1112 													 *device,
   1113 													 getPhysicalDeviceMemoryProperties(instanceInterface, physicalDevice));
   1114 	const VkQueue				queue[2]			=
   1115 	{
   1116 		getDeviceQueue(deviceInterface, *device, queueFamilyIdx, 0),
   1117 		getDeviceQueue(deviceInterface, *device, queueFamilyIdx, 1)
   1118 	};
   1119 	VkResult					testStatus;
   1120 	TestContext					testContext1		(deviceInterface, device.get(), queueFamilyIdx, context.getBinaryCollection(), allocator);
   1121 	TestContext					testContext2		(deviceInterface, device.get(), queueFamilyIdx, context.getBinaryCollection(), allocator);
   1122 	Unique<VkSemaphore>			semaphore			(createSemaphore(deviceInterface, *device));
   1123 	VkSubmitInfo				submitInfo[2];
   1124 	VkMappedMemoryRange			range;
   1125 	void*						resultImage;
   1126 	const VkPipelineStageFlags	waitDstStageMask	= VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
   1127 
   1128 	const tcu::Vec4		vertices1[]			=
   1129 	{
   1130 		tcu::Vec4( 0.5f,  0.5f, 0.0f, 1.0f),
   1131 		tcu::Vec4(-0.5f,  0.5f, 0.0f, 1.0f),
   1132 		tcu::Vec4( 0.0f, -0.5f, 0.0f, 1.0f)
   1133 	};
   1134 
   1135 	const tcu::Vec4		vertices2[]			=
   1136 	{
   1137 		tcu::Vec4(-0.5f, -0.5f, 0.0f, 1.0f),
   1138 		tcu::Vec4(+0.5f, -0.5f, 0.0f, 1.0f),
   1139 		tcu::Vec4( 0.0f, +0.5f, 0.0f, 1.0f)
   1140 	};
   1141 
   1142 	testContext1.vertices			= vertices1;
   1143 	testContext1.numVertices		= DE_LENGTH_OF_ARRAY(vertices1);
   1144 	testContext1.renderDimension	= tcu::IVec2(256, 256);
   1145 	testContext1.renderSize			= sizeof(deUint32) * testContext1.renderDimension.x() * testContext1.renderDimension.y();
   1146 
   1147 	testContext2.vertices			= vertices2;
   1148 	testContext2.numVertices		= DE_LENGTH_OF_ARRAY(vertices2);
   1149 	testContext2.renderDimension	= tcu::IVec2(256, 256);
   1150 	testContext2.renderSize			= sizeof(deUint32) * testContext2.renderDimension.x() * testContext2.renderDimension.y();
   1151 
   1152 	createCommandBuffer(deviceInterface, device.get(), queueFamilyIdx, &testContext1.cmdBuffer, &testContext1.commandPool);
   1153 	generateWork(testContext1);
   1154 
   1155 	createCommandBuffer(deviceInterface, device.get(), queueFamilyIdx, &testContext2.cmdBuffer, &testContext2.commandPool);
   1156 	generateWork(testContext2);
   1157 
   1158 	initSubmitInfo(submitInfo, DE_LENGTH_OF_ARRAY(submitInfo));
   1159 
   1160 	// The difference between the two submit infos is that each will use a unique cmd buffer,
   1161 	// and one will signal a semaphore but not wait on a semaphore, the other will wait on the
   1162 	// semaphore but not signal a semaphore
   1163 	submitInfo[0].pCommandBuffers		= &testContext1.cmdBuffer.get();
   1164 	submitInfo[1].pCommandBuffers		= &testContext2.cmdBuffer.get();
   1165 
   1166 	submitInfo[0].signalSemaphoreCount	= 1;
   1167 	submitInfo[0].pSignalSemaphores		= &semaphore.get();
   1168 	submitInfo[1].waitSemaphoreCount	= 1;
   1169 	submitInfo[1].pWaitSemaphores		= &semaphore.get();
   1170 	submitInfo[1].pWaitDstStageMask		= &waitDstStageMask;
   1171 
   1172 	VK_CHECK(deviceInterface.queueSubmit(queue[0], 1, &submitInfo[0], testContext1.fences[0]));
   1173 
   1174 	testStatus  = deviceInterface.waitForFences(device.get(), 1, &testContext1.fences[0], true, std::numeric_limits<deUint64>::max());
   1175 	if (testStatus != VK_SUCCESS)
   1176 	{
   1177 		log << TestLog::Message << "testSynchPrimitives failed to wait for a set fence" << TestLog::EndMessage;
   1178 		return tcu::TestStatus::fail("failed to wait for a set fence");
   1179 	}
   1180 
   1181 	range.sType			= VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
   1182 	range.pNext			= DE_NULL;
   1183 	range.memory		= testContext1.renderReadBuffer->getMemory();
   1184 	range.offset		= 0;
   1185 	range.size			= testContext1.renderSize;
   1186 	VK_CHECK(deviceInterface.invalidateMappedMemoryRanges(device.get(), 1, &range));
   1187 	resultImage = testContext1.renderReadBuffer->getHostPtr();
   1188 
   1189 	log << TestLog::Image(	"result",
   1190 							"result",
   1191 							tcu::ConstPixelBufferAccess(tcu::TextureFormat(
   1192 									tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
   1193 									testContext1.renderDimension.x(),
   1194 									testContext1.renderDimension.y(),
   1195 									1,
   1196 									resultImage));
   1197 
   1198 	VK_CHECK(deviceInterface.queueSubmit(queue[1], 1, &submitInfo[1], testContext2.fences[0]));
   1199 
   1200 	testStatus  = deviceInterface.waitForFences(device.get(), 1, &testContext2.fences[0], true, std::numeric_limits<deUint64>::max());
   1201 	if (testStatus != VK_SUCCESS)
   1202 	{
   1203 		log << TestLog::Message << "testSynchPrimitives failed to wait for a set fence" << TestLog::EndMessage;
   1204 		return tcu::TestStatus::fail("failed to wait for a set fence");
   1205 	}
   1206 
   1207 	range.sType			= VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
   1208 	range.pNext			= DE_NULL;
   1209 	range.memory		= testContext2.renderReadBuffer->getMemory();
   1210 	range.offset		= 0;
   1211 	range.size			= testContext2.renderSize;
   1212 	VK_CHECK(deviceInterface.invalidateMappedMemoryRanges(device.get(), 1, &range));
   1213 	resultImage = testContext2.renderReadBuffer->getHostPtr();
   1214 
   1215 	log << TestLog::Image(	"result",
   1216 							"result",
   1217 							tcu::ConstPixelBufferAccess(tcu::TextureFormat(
   1218 									tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
   1219 									testContext2.renderDimension.x(),
   1220 									testContext2.renderDimension.y(),
   1221 									1,
   1222 									resultImage));
   1223 
   1224 	return tcu::TestStatus::pass("synchronization-semaphores passed");
   1225 }
   1226 
   1227 tcu::TestStatus testEvents (Context& context)
   1228 {
   1229 	TestLog&					log					= context.getTestContext().getLog();
   1230 	const DeviceInterface&		deviceInterface		= context.getDeviceInterface();
   1231 	VkDevice					device				= context.getDevice();
   1232 	const deUint32				queueFamilyIdx		= context.getUniversalQueueFamilyIndex();
   1233 	Allocator&					allocator			= context.getDefaultAllocator();
   1234 	VkQueue						queue				= context.getUniversalQueue();
   1235 	VkResult					testStatus;
   1236 	VkResult					eventStatus;
   1237 	TestContext					testContext			(deviceInterface, device, queueFamilyIdx, context.getBinaryCollection(), allocator);
   1238 	Unique<VkEvent>				event				(createEvent(deviceInterface, device));
   1239 	VkSubmitInfo				submitInfo;
   1240 	VkMappedMemoryRange			range;
   1241 	void*						resultImage;
   1242 
   1243 	const tcu::Vec4		vertices1[]			=
   1244 	{
   1245 		tcu::Vec4( 0.5f,  0.5f, 0.0f, 1.0f),
   1246 		tcu::Vec4(-0.5f,  0.5f, 0.0f, 1.0f),
   1247 		tcu::Vec4( 0.0f, -0.5f, 0.0f, 1.0f)
   1248 	};
   1249 
   1250 	testContext.vertices = vertices1;
   1251 	testContext.numVertices = DE_LENGTH_OF_ARRAY(vertices1);
   1252 	testContext.renderDimension = tcu::IVec2(256, 256);
   1253 	testContext.waitEvent = true;
   1254 	testContext.event = event.get();
   1255 	testContext.renderSize = sizeof(deUint32) * testContext.renderDimension.x() * testContext.renderDimension.y();
   1256 
   1257 	createCommandBuffer(deviceInterface, device, queueFamilyIdx, &testContext.cmdBuffer, &testContext.commandPool);
   1258 	generateWork(testContext);
   1259 
   1260 	initSubmitInfo(&submitInfo, 1);
   1261 	submitInfo.pCommandBuffers = &testContext.cmdBuffer.get();
   1262 
   1263 	// 6.3 An event is initially in the unsignaled state
   1264 	eventStatus = deviceInterface.getEventStatus(device, event.get());
   1265 	if (eventStatus != VK_EVENT_RESET)
   1266 	{
   1267 		log << TestLog::Message << "testSynchronizationPrimitives event should be reset but status is " << getResultName(eventStatus) << TestLog::EndMessage;
   1268 		return tcu::TestStatus::fail("Event in incorrect status");
   1269 	}
   1270 
   1271 	// The recorded command buffer should wait at the top of the graphics pipe for an event signaled by the host and so should not
   1272 	// make forward progress as long as the event is not signaled
   1273 	VK_CHECK(deviceInterface.queueSubmit(queue, 1, &submitInfo, testContext.fences[0]));
   1274 
   1275 	testStatus  = deviceInterface.waitForFences(device, 1, &testContext.fences[0], true, 10000000);
   1276 	if (testStatus != VK_TIMEOUT)
   1277 	{
   1278 		log << TestLog::Message << "testSynchronizationPrimitives failed to wait for set event from host." << TestLog::EndMessage;
   1279 		return tcu::TestStatus::fail("failed to wait for event set from host");
   1280 	}
   1281 
   1282 	// Should allow the recorded command buffer to finally make progress
   1283 	VK_CHECK(deviceInterface.setEvent(device, event.get()));
   1284 	eventStatus = deviceInterface.getEventStatus(device, event.get());
   1285 	if (eventStatus != VK_EVENT_SET)
   1286 	{
   1287 		log << TestLog::Message << "testEvents failed to transition event to signaled state via setEvent call from host" << TestLog::EndMessage;
   1288 		return tcu::TestStatus::fail("failed to signal event from host");
   1289 	}
   1290 
   1291 	testStatus  = deviceInterface.waitForFences(device, 1, &testContext.fences[0], true, ~(0ull));
   1292 	if (testStatus != VK_SUCCESS)
   1293 	{
   1294 		log << TestLog::Message << "testSynchronizationPrimitives failed to proceed after set event from host." << TestLog::EndMessage;
   1295 		return tcu::TestStatus::fail("failed to proceed after event set from host");
   1296 	}
   1297 
   1298 	range.sType			= VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
   1299 	range.pNext			= DE_NULL;
   1300 	range.memory		= testContext.renderReadBuffer->getMemory();
   1301 	range.offset		= 0;
   1302 	range.size			= testContext.renderSize;
   1303 	VK_CHECK(deviceInterface.invalidateMappedMemoryRanges(device, 1, &range));
   1304 	resultImage = testContext.renderReadBuffer->getHostPtr();
   1305 
   1306 	log << TestLog::Image(	"result",
   1307 							"result",
   1308 							tcu::ConstPixelBufferAccess(tcu::TextureFormat(
   1309 									tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8),
   1310 									testContext.renderDimension.x(),
   1311 									testContext.renderDimension.y(),
   1312 									1,
   1313 									resultImage));
   1314 
   1315 	return tcu::TestStatus::pass("synchronization-events passed");
   1316 }
   1317 
   1318 } // anonymous
   1319 
   1320 tcu::TestCaseGroup* createSmokeTests (tcu::TestContext& textCtx)
   1321 {
   1322 	de::MovePtr<tcu::TestCaseGroup> synchTests  (new tcu::TestCaseGroup(textCtx, "smoke", "Synchronization smoke tests"));
   1323 
   1324 	addFunctionCaseWithPrograms(synchTests.get(), "fences", "", buildShaders, testFences);
   1325 	addFunctionCaseWithPrograms(synchTests.get(), "semaphores", "", buildShaders, testSemaphores);
   1326 	addFunctionCaseWithPrograms(synchTests.get(), "events", "", buildShaders, testEvents);
   1327 
   1328 	return synchTests.release();
   1329 }
   1330 
   1331 } // synchronization
   1332 } // vkt
   1333