Home | History | Annotate | Download | only in common
      1 /*-------------------------------------------------------------------------
      2  * drawElements Quality Program Tester Core
      3  * ----------------------------------------
      4  *
      5  * Copyright 2014 The Android Open Source Project
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief Texture lookup simulator that is capable of verifying generic
     22  *		  lookup results based on accuracy parameters.
     23  *//*--------------------------------------------------------------------*/
     24 
     25 #include "tcuTexLookupVerifier.hpp"
     26 #include "tcuTexVerifierUtil.hpp"
     27 #include "tcuVectorUtil.hpp"
     28 #include "tcuTextureUtil.hpp"
     29 #include "deMath.h"
     30 
     31 namespace tcu
     32 {
     33 
     34 using namespace TexVerifierUtil;
     35 
     36 // Generic utilities
     37 
     38 #if defined(DE_DEBUG)
     39 static bool isSamplerSupported (const Sampler& sampler)
     40 {
     41 	return sampler.compare == Sampler::COMPAREMODE_NONE &&
     42 		   isWrapModeSupported(sampler.wrapS)			&&
     43 		   isWrapModeSupported(sampler.wrapT)			&&
     44 		   isWrapModeSupported(sampler.wrapR);
     45 }
     46 #endif // DE_DEBUG
     47 
     48 // Color read & compare utilities
     49 
     50 static inline bool coordsInBounds (const ConstPixelBufferAccess& access, int x, int y, int z)
     51 {
     52 	return de::inBounds(x, 0, access.getWidth()) && de::inBounds(y, 0, access.getHeight()) && de::inBounds(z, 0, access.getDepth());
     53 }
     54 
     55 template<typename ScalarType>
     56 inline Vector<ScalarType, 4> lookup (const ConstPixelBufferAccess& access, const Sampler& sampler, int i, int j, int k)
     57 {
     58 	if (coordsInBounds(access, i, j, k))
     59 		return access.getPixelT<ScalarType>(i, j, k);
     60 	else
     61 		return sampleTextureBorder<ScalarType>(access.getFormat(), sampler);
     62 }
     63 
     64 template<>
     65 inline Vector<float, 4> lookup (const ConstPixelBufferAccess& access, const Sampler& sampler, int i, int j, int k)
     66 {
     67 	// Specialization for float lookups: sRGB conversion is performed as specified in format.
     68 	if (coordsInBounds(access, i, j, k))
     69 	{
     70 		const Vec4 p = access.getPixel(i, j, k);
     71 		return isSRGB(access.getFormat()) ? sRGBToLinear(p) : p;
     72 	}
     73 	else
     74 		return sampleTextureBorder<float>(access.getFormat(), sampler);
     75 }
     76 
     77 static inline bool isColorValid (const LookupPrecision& prec, const Vec4& ref, const Vec4& result)
     78 {
     79 	const Vec4 diff = abs(ref - result);
     80 	return boolAll(logicalOr(lessThanEqual(diff, prec.colorThreshold), logicalNot(prec.colorMask)));
     81 }
     82 
     83 static inline bool isColorValid (const IntLookupPrecision& prec, const IVec4& ref, const IVec4& result)
     84 {
     85 	return boolAll(logicalOr(lessThanEqual(absDiff(ref, result).asUint(), prec.colorThreshold), logicalNot(prec.colorMask)));
     86 }
     87 
     88 static inline bool isColorValid (const IntLookupPrecision& prec, const UVec4& ref, const UVec4& result)
     89 {
     90 	return boolAll(logicalOr(lessThanEqual(absDiff(ref, result), prec.colorThreshold), logicalNot(prec.colorMask)));
     91 }
     92 
     93 struct ColorQuad
     94 {
     95 	Vec4	p00;		//!< (0, 0)
     96 	Vec4	p01;		//!< (1, 0)
     97 	Vec4	p10;		//!< (0, 1)
     98 	Vec4	p11;		//!< (1, 1)
     99 };
    100 
    101 static void lookupQuad (ColorQuad& dst, const ConstPixelBufferAccess& level, const Sampler& sampler, int x0, int x1, int y0, int y1, int z)
    102 {
    103 	dst.p00	= lookup<float>(level, sampler, x0, y0, z);
    104 	dst.p10	= lookup<float>(level, sampler, x1, y0, z);
    105 	dst.p01	= lookup<float>(level, sampler, x0, y1, z);
    106 	dst.p11	= lookup<float>(level, sampler, x1, y1, z);
    107 }
    108 
    109 struct ColorLine
    110 {
    111 	Vec4	p0;		//!< 0
    112 	Vec4	p1;		//!< 1
    113 };
    114 
    115 static void lookupLine (ColorLine& dst, const ConstPixelBufferAccess& level, const Sampler& sampler, int x0, int x1, int y)
    116 {
    117 	dst.p0 = lookup<float>(level, sampler, x0, y, 0);
    118 	dst.p1 = lookup<float>(level, sampler, x1, y, 0);
    119 }
    120 
    121 template<typename T, int Size>
    122 static T minComp (const Vector<T, Size>& vec)
    123 {
    124 	T minVal = vec[0];
    125 	for (int ndx = 1; ndx < Size; ndx++)
    126 		minVal = de::min(minVal, vec[ndx]);
    127 	return minVal;
    128 }
    129 
    130 template<typename T, int Size>
    131 static T maxComp (const Vector<T, Size>& vec)
    132 {
    133 	T maxVal = vec[0];
    134 	for (int ndx = 1; ndx < Size; ndx++)
    135 		maxVal = de::max(maxVal, vec[ndx]);
    136 	return maxVal;
    137 }
    138 
    139 static float computeBilinearSearchStepFromFloatLine (const LookupPrecision&	prec,
    140 													 const ColorLine&		line)
    141 {
    142 	DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f))));
    143 
    144 	const int		maxSteps	= 1<<16;
    145 	const Vec4		d			= abs(line.p1 - line.p0);
    146 	const Vec4		stepCount	= d / prec.colorThreshold;
    147 	const Vec4		minStep		= 1.0f / (stepCount + 1.0f);
    148 	const float		step		= de::max(minComp(minStep), 1.0f / float(maxSteps));
    149 
    150 	return step;
    151 }
    152 
    153 static float computeBilinearSearchStepFromFloatQuad (const LookupPrecision&	prec,
    154 													 const ColorQuad&		quad)
    155 {
    156 	DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f))));
    157 
    158 	const int		maxSteps	= 1<<16;
    159 	const Vec4		d0			= abs(quad.p10 - quad.p00);
    160 	const Vec4		d1			= abs(quad.p01 - quad.p00);
    161 	const Vec4		d2			= abs(quad.p11 - quad.p10);
    162 	const Vec4		d3			= abs(quad.p11 - quad.p01);
    163 	const Vec4		maxD		= max(d0, max(d1, max(d2, d3)));
    164 	const Vec4		stepCount	= maxD / prec.colorThreshold;
    165 	const Vec4		minStep		= 1.0f / (stepCount + 1.0f);
    166 	const float		step		= de::max(minComp(minStep), 1.0f / float(maxSteps));
    167 
    168 	return step;
    169 }
    170 
    171 static float computeBilinearSearchStepForUnorm (const LookupPrecision& prec)
    172 {
    173 	DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f))));
    174 
    175 	const Vec4		stepCount	= 1.0f / prec.colorThreshold;
    176 	const Vec4		minStep		= 1.0f / (stepCount + 1.0f);
    177 	const float		step		= minComp(minStep);
    178 
    179 	return step;
    180 }
    181 
    182 static float computeBilinearSearchStepForSnorm (const LookupPrecision& prec)
    183 {
    184 	DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f))));
    185 
    186 	const Vec4		stepCount	= 2.0f / prec.colorThreshold;
    187 	const Vec4		minStep		= 1.0f / (stepCount + 1.0f);
    188 	const float		step		= minComp(minStep);
    189 
    190 	return step;
    191 }
    192 
    193 static inline Vec4 min (const ColorLine& line)
    194 {
    195 	return min(line.p0, line.p1);
    196 }
    197 
    198 static inline Vec4 max (const ColorLine& line)
    199 {
    200 	return max(line.p0, line.p1);
    201 }
    202 
    203 static inline Vec4 min (const ColorQuad& quad)
    204 {
    205 	return min(quad.p00, min(quad.p10, min(quad.p01, quad.p11)));
    206 }
    207 
    208 static inline Vec4 max (const ColorQuad& quad)
    209 {
    210 	return max(quad.p00, max(quad.p10, max(quad.p01, quad.p11)));
    211 }
    212 
    213 static bool isInColorBounds (const LookupPrecision& prec, const ColorQuad& quad, const Vec4& result)
    214 {
    215 	const tcu::Vec4 minVal = min(quad) - prec.colorThreshold;
    216 	const tcu::Vec4 maxVal = max(quad) + prec.colorThreshold;
    217 	return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask)));
    218 }
    219 
    220 static bool isInColorBounds (const LookupPrecision& prec, const ColorQuad& quad0, const ColorQuad& quad1, const Vec4& result)
    221 {
    222 	const tcu::Vec4 minVal = min(min(quad0), min(quad1)) - prec.colorThreshold;
    223 	const tcu::Vec4 maxVal = max(max(quad0), max(quad1)) + prec.colorThreshold;
    224 	return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask)));
    225 }
    226 
    227 static bool isInColorBounds (const LookupPrecision& prec, const ColorLine& line0, const ColorLine& line1, const Vec4& result)
    228 {
    229 	const tcu::Vec4 minVal = min(min(line0), min(line1)) - prec.colorThreshold;
    230 	const tcu::Vec4 maxVal = max(max(line0), max(line1)) + prec.colorThreshold;
    231 	return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask)));
    232 }
    233 
    234 static bool isInColorBounds (const LookupPrecision&		prec,
    235 							 const ColorQuad&			quad00,
    236 							 const ColorQuad&			quad01,
    237 							 const ColorQuad&			quad10,
    238 							 const ColorQuad&			quad11,
    239 							 const Vec4&				result)
    240 {
    241 	const tcu::Vec4 minVal = min(min(quad00), min(min(quad01), min(min(quad10), min(quad11)))) - prec.colorThreshold;
    242 	const tcu::Vec4 maxVal = max(max(quad00), max(max(quad01), max(max(quad10), max(quad11)))) + prec.colorThreshold;
    243 	return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask)));
    244 }
    245 
    246 // Range search utilities
    247 
    248 static bool isLinearRangeValid (const LookupPrecision&	prec,
    249 								const Vec4&				c0,
    250 								const Vec4&				c1,
    251 								const Vec2&				fBounds,
    252 								const Vec4&				result)
    253 {
    254 	// This is basically line segment - AABB test. Valid interpolation line is checked
    255 	// against result AABB constructed by applying threshold.
    256 
    257 	const Vec4		i0				= c0*(1.0f - fBounds[0]) + c1*fBounds[0];
    258 	const Vec4		i1				= c0*(1.0f - fBounds[1]) + c1*fBounds[1];
    259 	const Vec4		rMin			= result - prec.colorThreshold;
    260 	const Vec4		rMax			= result + prec.colorThreshold;
    261 	bool			allIntersect	= true;
    262 
    263 	// Algorithm: For each component check whether segment endpoints are inside, or intersect with slab.
    264 	// If all intersect or are inside, line segment intersects the whole 4D AABB.
    265 	for (int compNdx = 0; compNdx < 4; compNdx++)
    266 	{
    267 		if (!prec.colorMask[compNdx])
    268 			continue;
    269 
    270 		// Signs for both bounds: false = left, true = right.
    271 		const bool	sMin0	= i0[compNdx] >= rMin[compNdx];
    272 		const bool	sMin1	= i1[compNdx] >= rMin[compNdx];
    273 		const bool	sMax0	= i0[compNdx] > rMax[compNdx];
    274 		const bool	sMax1	= i1[compNdx] > rMax[compNdx];
    275 
    276 		// If all signs are equal, line segment is outside bounds.
    277 		if (sMin0 == sMin1 && sMin1 == sMax0 && sMax0 == sMax1)
    278 		{
    279 			allIntersect = false;
    280 			break;
    281 		}
    282 	}
    283 
    284 	return allIntersect;
    285 }
    286 
    287 static bool isBilinearRangeValid (const LookupPrecision&	prec,
    288 								  const ColorQuad&			quad,
    289 								  const Vec2&				xBounds,
    290 								  const Vec2&				yBounds,
    291 								  const float				searchStep,
    292 								  const Vec4&				result)
    293 {
    294 	DE_ASSERT(xBounds.x() <= xBounds.y());
    295 	DE_ASSERT(yBounds.x() <= yBounds.y());
    296 	DE_ASSERT(xBounds.x() + searchStep > xBounds.x()); // step is not effectively 0
    297 	DE_ASSERT(xBounds.y() + searchStep > xBounds.y());
    298 
    299 	if (!isInColorBounds(prec, quad, result))
    300 		return false;
    301 
    302 	for (float x = xBounds.x(); x < xBounds.y()+searchStep; x += searchStep)
    303 	{
    304 		const float		a	= de::min(x, xBounds.y());
    305 		const Vec4		c0	= quad.p00*(1.0f - a) + quad.p10*a;
    306 		const Vec4		c1	= quad.p01*(1.0f - a) + quad.p11*a;
    307 
    308 		if (isLinearRangeValid(prec, c0, c1, yBounds, result))
    309 			return true;
    310 	}
    311 
    312 	return false;
    313 }
    314 
    315 static bool isTrilinearRangeValid (const LookupPrecision&	prec,
    316 								   const ColorQuad&			quad0,
    317 								   const ColorQuad&			quad1,
    318 								   const Vec2&				xBounds,
    319 								   const Vec2&				yBounds,
    320 								   const Vec2&				zBounds,
    321 								   const float				searchStep,
    322 								   const Vec4&				result)
    323 {
    324 	DE_ASSERT(xBounds.x() <= xBounds.y());
    325 	DE_ASSERT(yBounds.x() <= yBounds.y());
    326 	DE_ASSERT(zBounds.x() <= zBounds.y());
    327 	DE_ASSERT(xBounds.x() + searchStep > xBounds.x()); // step is not effectively 0
    328 	DE_ASSERT(xBounds.y() + searchStep > xBounds.y());
    329 	DE_ASSERT(yBounds.x() + searchStep > yBounds.x());
    330 	DE_ASSERT(yBounds.y() + searchStep > yBounds.y());
    331 
    332 	if (!isInColorBounds(prec, quad0, quad1, result))
    333 		return false;
    334 
    335 	for (float x = xBounds.x(); x < xBounds.y()+searchStep; x += searchStep)
    336 	{
    337 		for (float y = yBounds.x(); y < yBounds.y()+searchStep; y += searchStep)
    338 		{
    339 			const float		a	= de::min(x, xBounds.y());
    340 			const float		b	= de::min(y, yBounds.y());
    341 			const Vec4		c0	= quad0.p00*(1.0f-a)*(1.0f-b) + quad0.p10*a*(1.0f-b) + quad0.p01*(1.0f-a)*b + quad0.p11*a*b;
    342 			const Vec4		c1	= quad1.p00*(1.0f-a)*(1.0f-b) + quad1.p10*a*(1.0f-b) + quad1.p01*(1.0f-a)*b + quad1.p11*a*b;
    343 
    344 			if (isLinearRangeValid(prec, c0, c1, zBounds, result))
    345 				return true;
    346 		}
    347 	}
    348 
    349 	return false;
    350 }
    351 
    352 static bool is1DTrilinearFilterResultValid (const LookupPrecision&	prec,
    353 											const ColorLine&		line0,
    354 											const ColorLine&		line1,
    355 											const Vec2&				xBounds0,
    356 											const Vec2&				xBounds1,
    357 											const Vec2&				zBounds,
    358 											const float				searchStep,
    359 											const Vec4&				result)
    360 {
    361 	DE_ASSERT(xBounds0.x() <= xBounds0.y());
    362 	DE_ASSERT(xBounds1.x() <= xBounds1.y());
    363 	DE_ASSERT(xBounds0.x() + searchStep > xBounds0.x()); // step is not effectively 0
    364 	DE_ASSERT(xBounds0.y() + searchStep > xBounds0.y());
    365 	DE_ASSERT(xBounds1.x() + searchStep > xBounds1.x());
    366 	DE_ASSERT(xBounds1.y() + searchStep > xBounds1.y());
    367 
    368 	if (!isInColorBounds(prec, line0, line1, result))
    369 		return false;
    370 
    371 	for (float x0 = xBounds0.x(); x0 < xBounds0.y()+searchStep; x0 += searchStep)
    372 	{
    373 		const float		a0	= de::min(x0, xBounds0.y());
    374 		const Vec4		c0	= line0.p0*(1.0f-a0) + line0.p1*a0;
    375 
    376 		for (float x1 = xBounds1.x(); x1 <= xBounds1.y(); x1 += searchStep)
    377 		{
    378 			const float		a1	= de::min(x1, xBounds1.y());
    379 			const Vec4		c1	= line1.p0*(1.0f-a1) + line1.p1*a1;
    380 
    381 			if (isLinearRangeValid(prec, c0, c1, zBounds, result))
    382 				return true;
    383 		}
    384 	}
    385 
    386 	return false;
    387 }
    388 
    389 static bool is2DTrilinearFilterResultValid (const LookupPrecision&	prec,
    390 											const ColorQuad&		quad0,
    391 											const ColorQuad&		quad1,
    392 											const Vec2&				xBounds0,
    393 											const Vec2&				yBounds0,
    394 											const Vec2&				xBounds1,
    395 											const Vec2&				yBounds1,
    396 											const Vec2&				zBounds,
    397 											const float				searchStep,
    398 											const Vec4&				result)
    399 {
    400 	DE_ASSERT(xBounds0.x() <= xBounds0.y());
    401 	DE_ASSERT(yBounds0.x() <= yBounds0.y());
    402 	DE_ASSERT(xBounds1.x() <= xBounds1.y());
    403 	DE_ASSERT(yBounds1.x() <= yBounds1.y());
    404 	DE_ASSERT(xBounds0.x() + searchStep > xBounds0.x()); // step is not effectively 0
    405 	DE_ASSERT(xBounds0.y() + searchStep > xBounds0.y());
    406 	DE_ASSERT(yBounds0.x() + searchStep > yBounds0.x());
    407 	DE_ASSERT(yBounds0.y() + searchStep > yBounds0.y());
    408 	DE_ASSERT(xBounds1.x() + searchStep > xBounds1.x());
    409 	DE_ASSERT(xBounds1.y() + searchStep > xBounds1.y());
    410 	DE_ASSERT(yBounds1.x() + searchStep > yBounds1.x());
    411 	DE_ASSERT(yBounds1.y() + searchStep > yBounds1.y());
    412 
    413 	if (!isInColorBounds(prec, quad0, quad1, result))
    414 		return false;
    415 
    416 	for (float x0 = xBounds0.x(); x0 < xBounds0.y()+searchStep; x0 += searchStep)
    417 	{
    418 		for (float y0 = yBounds0.x(); y0 < yBounds0.y()+searchStep; y0 += searchStep)
    419 		{
    420 			const float		a0	= de::min(x0, xBounds0.y());
    421 			const float		b0	= de::min(y0, yBounds0.y());
    422 			const Vec4		c0	= quad0.p00*(1.0f-a0)*(1.0f-b0) + quad0.p10*a0*(1.0f-b0) + quad0.p01*(1.0f-a0)*b0 + quad0.p11*a0*b0;
    423 
    424 			for (float x1 = xBounds1.x(); x1 <= xBounds1.y(); x1 += searchStep)
    425 			{
    426 				for (float y1 = yBounds1.x(); y1 <= yBounds1.y(); y1 += searchStep)
    427 				{
    428 					const float		a1	= de::min(x1, xBounds1.y());
    429 					const float		b1	= de::min(y1, yBounds1.y());
    430 					const Vec4		c1	= quad1.p00*(1.0f-a1)*(1.0f-b1) + quad1.p10*a1*(1.0f-b1) + quad1.p01*(1.0f-a1)*b1 + quad1.p11*a1*b1;
    431 
    432 					if (isLinearRangeValid(prec, c0, c1, zBounds, result))
    433 						return true;
    434 				}
    435 			}
    436 		}
    437 	}
    438 
    439 	return false;
    440 }
    441 
    442 static bool is3DTrilinearFilterResultValid (const LookupPrecision&	prec,
    443 											const ColorQuad&		quad00,
    444 											const ColorQuad&		quad01,
    445 											const ColorQuad&		quad10,
    446 											const ColorQuad&		quad11,
    447 											const Vec2&				xBounds0,
    448 											const Vec2&				yBounds0,
    449 											const Vec2&				zBounds0,
    450 											const Vec2&				xBounds1,
    451 											const Vec2&				yBounds1,
    452 											const Vec2&				zBounds1,
    453 											const Vec2&				wBounds,
    454 											const float				searchStep,
    455 											const Vec4&				result)
    456 {
    457 	DE_ASSERT(xBounds0.x() <= xBounds0.y());
    458 	DE_ASSERT(yBounds0.x() <= yBounds0.y());
    459 	DE_ASSERT(zBounds0.x() <= zBounds0.y());
    460 	DE_ASSERT(xBounds1.x() <= xBounds1.y());
    461 	DE_ASSERT(yBounds1.x() <= yBounds1.y());
    462 	DE_ASSERT(zBounds1.x() <= zBounds1.y());
    463 	DE_ASSERT(xBounds0.x() + searchStep > xBounds0.x()); // step is not effectively 0
    464 	DE_ASSERT(xBounds0.y() + searchStep > xBounds0.y());
    465 	DE_ASSERT(yBounds0.x() + searchStep > yBounds0.x());
    466 	DE_ASSERT(yBounds0.y() + searchStep > yBounds0.y());
    467 	DE_ASSERT(zBounds0.x() + searchStep > zBounds0.x());
    468 	DE_ASSERT(zBounds0.y() + searchStep > zBounds0.y());
    469 	DE_ASSERT(xBounds1.x() + searchStep > xBounds1.x());
    470 	DE_ASSERT(xBounds1.y() + searchStep > xBounds1.y());
    471 	DE_ASSERT(yBounds1.x() + searchStep > yBounds1.x());
    472 	DE_ASSERT(yBounds1.y() + searchStep > yBounds1.y());
    473 	DE_ASSERT(zBounds1.x() + searchStep > zBounds1.x());
    474 	DE_ASSERT(zBounds1.y() + searchStep > zBounds1.y());
    475 
    476 	if (!isInColorBounds(prec, quad00, quad01, quad10, quad11, result))
    477 		return false;
    478 
    479 	for (float x0 = xBounds0.x(); x0 < xBounds0.y()+searchStep; x0 += searchStep)
    480 	{
    481 		for (float y0 = yBounds0.x(); y0 < yBounds0.y()+searchStep; y0 += searchStep)
    482 		{
    483 			const float		a0	= de::min(x0, xBounds0.y());
    484 			const float		b0	= de::min(y0, yBounds0.y());
    485 			const Vec4		c00	= quad00.p00*(1.0f-a0)*(1.0f-b0) + quad00.p10*a0*(1.0f-b0) + quad00.p01*(1.0f-a0)*b0 + quad00.p11*a0*b0;
    486 			const Vec4		c01	= quad01.p00*(1.0f-a0)*(1.0f-b0) + quad01.p10*a0*(1.0f-b0) + quad01.p01*(1.0f-a0)*b0 + quad01.p11*a0*b0;
    487 
    488 			for (float z0 = zBounds0.x(); z0 < zBounds0.y()+searchStep; z0 += searchStep)
    489 			{
    490 				const float		c0	= de::min(z0, zBounds0.y());
    491 				const Vec4		cz0	= c00*(1.0f-c0) + c01*c0;
    492 
    493 				for (float x1 = xBounds1.x(); x1 < xBounds1.y()+searchStep; x1 += searchStep)
    494 				{
    495 					for (float y1 = yBounds1.x(); y1 < yBounds1.y()+searchStep; y1 += searchStep)
    496 					{
    497 						const float		a1	= de::min(x1, xBounds1.y());
    498 						const float		b1	= de::min(y1, yBounds1.y());
    499 						const Vec4		c10	= quad10.p00*(1.0f-a1)*(1.0f-b1) + quad10.p10*a1*(1.0f-b1) + quad10.p01*(1.0f-a1)*b1 + quad10.p11*a1*b1;
    500 						const Vec4		c11	= quad11.p00*(1.0f-a1)*(1.0f-b1) + quad11.p10*a1*(1.0f-b1) + quad11.p01*(1.0f-a1)*b1 + quad11.p11*a1*b1;
    501 
    502 						for (float z1 = zBounds1.x(); z1 < zBounds1.y()+searchStep; z1 += searchStep)
    503 						{
    504 							const float		c1	= de::min(z1, zBounds1.y());
    505 							const Vec4		cz1	= c10*(1.0f - c1) + c11*c1;
    506 
    507 							if (isLinearRangeValid(prec, cz0, cz1, wBounds, result))
    508 								return true;
    509 						}
    510 					}
    511 				}
    512 			}
    513 		}
    514 	}
    515 
    516 	return false;
    517 }
    518 
    519 template<typename PrecType, typename ScalarType>
    520 static bool isNearestSampleResultValid (const ConstPixelBufferAccess&		level,
    521 										const Sampler&						sampler,
    522 										const PrecType&						prec,
    523 										const float							coordX,
    524 										const int							coordY,
    525 										const Vector<ScalarType, 4>&		result)
    526 {
    527 	DE_ASSERT(level.getDepth() == 1);
    528 
    529 	const Vec2		uBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(),	coordX, prec.coordBits.x(), prec.uvwBits.x());
    530 
    531 	const int		minI			= deFloorFloatToInt32(uBounds.x());
    532 	const int		maxI			= deFloorFloatToInt32(uBounds.y());
    533 
    534 	for (int i = minI; i <= maxI; i++)
    535 	{
    536 		const int					x		= wrap(sampler.wrapS, i, level.getWidth());
    537 		const Vector<ScalarType, 4>	color	= lookup<ScalarType>(level, sampler, x, coordY, 0);
    538 
    539 		if (isColorValid(prec, color, result))
    540 			return true;
    541 	}
    542 
    543 	return false;
    544 }
    545 
    546 template<typename PrecType, typename ScalarType>
    547 static bool isNearestSampleResultValid (const ConstPixelBufferAccess&		level,
    548 										const Sampler&						sampler,
    549 										const PrecType&						prec,
    550 										const Vec2&							coord,
    551 										const int							coordZ,
    552 										const Vector<ScalarType, 4>&		result)
    553 {
    554 	const Vec2		uBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(),	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
    555 	const Vec2		vBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(),	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
    556 
    557 	// Integer coordinates - without wrap mode
    558 	const int		minI			= deFloorFloatToInt32(uBounds.x());
    559 	const int		maxI			= deFloorFloatToInt32(uBounds.y());
    560 	const int		minJ			= deFloorFloatToInt32(vBounds.x());
    561 	const int		maxJ			= deFloorFloatToInt32(vBounds.y());
    562 
    563 	// \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode.
    564 
    565 	for (int j = minJ; j <= maxJ; j++)
    566 	{
    567 		for (int i = minI; i <= maxI; i++)
    568 		{
    569 			const int					x		= wrap(sampler.wrapS, i, level.getWidth());
    570 			const int					y		= wrap(sampler.wrapT, j, level.getHeight());
    571 			const Vector<ScalarType, 4>	color	= lookup<ScalarType>(level, sampler, x, y, coordZ);
    572 
    573 			if (isColorValid(prec, color, result))
    574 				return true;
    575 		}
    576 	}
    577 
    578 	return false;
    579 }
    580 
    581 template<typename PrecType, typename ScalarType>
    582 static bool isNearestSampleResultValid (const ConstPixelBufferAccess&		level,
    583 										const Sampler&						sampler,
    584 										const PrecType&						prec,
    585 										const Vec3&							coord,
    586 										const Vector<ScalarType, 4>&		result)
    587 {
    588 	const Vec2		uBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(),	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
    589 	const Vec2		vBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(),	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
    590 	const Vec2		wBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getDepth(),	coord.z(), prec.coordBits.z(), prec.uvwBits.z());
    591 
    592 	// Integer coordinates - without wrap mode
    593 	const int		minI			= deFloorFloatToInt32(uBounds.x());
    594 	const int		maxI			= deFloorFloatToInt32(uBounds.y());
    595 	const int		minJ			= deFloorFloatToInt32(vBounds.x());
    596 	const int		maxJ			= deFloorFloatToInt32(vBounds.y());
    597 	const int		minK			= deFloorFloatToInt32(wBounds.x());
    598 	const int		maxK			= deFloorFloatToInt32(wBounds.y());
    599 
    600 	// \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode.
    601 
    602 	for (int k = minK; k <= maxK; k++)
    603 	{
    604 		for (int j = minJ; j <= maxJ; j++)
    605 		{
    606 			for (int i = minI; i <= maxI; i++)
    607 			{
    608 				const int					x		= wrap(sampler.wrapS, i, level.getWidth());
    609 				const int					y		= wrap(sampler.wrapT, j, level.getHeight());
    610 				const int					z		= wrap(sampler.wrapR, k, level.getDepth());
    611 				const Vector<ScalarType, 4>	color	= lookup<ScalarType>(level, sampler, x, y, z);
    612 
    613 				if (isColorValid(prec, color, result))
    614 					return true;
    615 			}
    616 		}
    617 	}
    618 
    619 	return false;
    620 }
    621 
    622 bool isLinearSampleResultValid (const ConstPixelBufferAccess&		level,
    623 								const Sampler&						sampler,
    624 								const LookupPrecision&				prec,
    625 								const float							coordX,
    626 								const int							coordY,
    627 								const Vec4&							result)
    628 {
    629 	const Vec2					uBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coordX, prec.coordBits.x(), prec.uvwBits.x());
    630 
    631 	const int					minI			= deFloorFloatToInt32(uBounds.x()-0.5f);
    632 	const int					maxI			= deFloorFloatToInt32(uBounds.y()-0.5f);
    633 
    634 	const int					w				= level.getWidth();
    635 
    636 	const TextureFormat			format			= level.getFormat();
    637 	const TextureChannelClass	texClass		= getTextureChannelClass(format.type);
    638 
    639 	DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	||
    640 			  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	||
    641 			  texClass == TEXTURECHANNELCLASS_FLOATING_POINT);
    642 	DE_UNREF(texClass);
    643 	DE_UNREF(format);
    644 
    645 	for (int i = minI; i <= maxI; i++)
    646 	{
    647 		// Wrapped coordinates
    648 		const int	x0		= wrap(sampler.wrapS, i  , w);
    649 		const int	x1		= wrap(sampler.wrapS, i+1, w);
    650 
    651 		// Bounds for filtering factors
    652 		const float	minA	= de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f);
    653 		const float	maxA	= de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f);
    654 
    655 		const Vec4	colorA	= lookup<float>(level, sampler, x0, coordY, 0);
    656 		const Vec4	colorB	= lookup<float>(level, sampler, x1, coordY, 0);
    657 
    658 		if (isLinearRangeValid(prec, colorA, colorB, Vec2(minA, maxA), result))
    659 			return true;
    660 	}
    661 
    662 	return false;
    663 }
    664 
    665 bool isLinearSampleResultValid (const ConstPixelBufferAccess&		level,
    666 								const Sampler&						sampler,
    667 								const LookupPrecision&				prec,
    668 								const Vec2&							coord,
    669 								const int							coordZ,
    670 								const Vec4&							result)
    671 {
    672 	const Vec2					uBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(),	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
    673 	const Vec2					vBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(),	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
    674 
    675 	// Integer coordinate bounds for (x0,y0) - without wrap mode
    676 	const int					minI			= deFloorFloatToInt32(uBounds.x()-0.5f);
    677 	const int					maxI			= deFloorFloatToInt32(uBounds.y()-0.5f);
    678 	const int					minJ			= deFloorFloatToInt32(vBounds.x()-0.5f);
    679 	const int					maxJ			= deFloorFloatToInt32(vBounds.y()-0.5f);
    680 
    681 	const int					w				= level.getWidth();
    682 	const int					h				= level.getHeight();
    683 
    684 	const TextureChannelClass	texClass		= getTextureChannelClass(level.getFormat().type);
    685 	float						searchStep		= texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	? computeBilinearSearchStepForUnorm(prec) :
    686 												  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	? computeBilinearSearchStepForSnorm(prec) :
    687 												  0.0f; // Step is computed for floating-point quads based on texel values.
    688 
    689 	DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	||
    690 			  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	||
    691 			  texClass == TEXTURECHANNELCLASS_FLOATING_POINT);
    692 
    693 	// \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode.
    694 
    695 	for (int j = minJ; j <= maxJ; j++)
    696 	{
    697 		for (int i = minI; i <= maxI; i++)
    698 		{
    699 			// Wrapped coordinates
    700 			const int	x0		= wrap(sampler.wrapS, i  , w);
    701 			const int	x1		= wrap(sampler.wrapS, i+1, w);
    702 			const int	y0		= wrap(sampler.wrapT, j  , h);
    703 			const int	y1		= wrap(sampler.wrapT, j+1, h);
    704 
    705 			// Bounds for filtering factors
    706 			const float	minA	= de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f);
    707 			const float	maxA	= de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f);
    708 			const float	minB	= de::clamp((vBounds.x()-0.5f)-float(j), 0.0f, 1.0f);
    709 			const float	maxB	= de::clamp((vBounds.y()-0.5f)-float(j), 0.0f, 1.0f);
    710 
    711 			ColorQuad quad;
    712 			lookupQuad(quad, level, sampler, x0, x1, y0, y1, coordZ);
    713 
    714 			if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT)
    715 				searchStep = computeBilinearSearchStepFromFloatQuad(prec, quad);
    716 
    717 			if (isBilinearRangeValid(prec, quad, Vec2(minA, maxA), Vec2(minB, maxB), searchStep, result))
    718 				return true;
    719 		}
    720 	}
    721 
    722 	return false;
    723 }
    724 
    725 static bool isLinearSampleResultValid (const ConstPixelBufferAccess&		level,
    726 									   const Sampler&						sampler,
    727 									   const LookupPrecision&				prec,
    728 									   const Vec3&							coord,
    729 									   const Vec4&							result)
    730 {
    731 	const Vec2					uBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(),	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
    732 	const Vec2					vBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(),	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
    733 	const Vec2					wBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getDepth(),	coord.z(), prec.coordBits.z(), prec.uvwBits.z());
    734 
    735 	// Integer coordinate bounds for (x0,y0) - without wrap mode
    736 	const int					minI			= deFloorFloatToInt32(uBounds.x()-0.5f);
    737 	const int					maxI			= deFloorFloatToInt32(uBounds.y()-0.5f);
    738 	const int					minJ			= deFloorFloatToInt32(vBounds.x()-0.5f);
    739 	const int					maxJ			= deFloorFloatToInt32(vBounds.y()-0.5f);
    740 	const int					minK			= deFloorFloatToInt32(wBounds.x()-0.5f);
    741 	const int					maxK			= deFloorFloatToInt32(wBounds.y()-0.5f);
    742 
    743 	const int					w				= level.getWidth();
    744 	const int					h				= level.getHeight();
    745 	const int					d				= level.getDepth();
    746 
    747 	const TextureChannelClass	texClass		= getTextureChannelClass(level.getFormat().type);
    748 	float						searchStep		= texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	? computeBilinearSearchStepForUnorm(prec) :
    749 												  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	? computeBilinearSearchStepForSnorm(prec) :
    750 												  0.0f; // Step is computed for floating-point quads based on texel values.
    751 
    752 	DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	||
    753 			  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	||
    754 			  texClass == TEXTURECHANNELCLASS_FLOATING_POINT);
    755 
    756 	// \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode.
    757 
    758 	for (int k = minK; k <= maxK; k++)
    759 	{
    760 		for (int j = minJ; j <= maxJ; j++)
    761 		{
    762 			for (int i = minI; i <= maxI; i++)
    763 			{
    764 				// Wrapped coordinates
    765 				const int	x0		= wrap(sampler.wrapS, i  , w);
    766 				const int	x1		= wrap(sampler.wrapS, i+1, w);
    767 				const int	y0		= wrap(sampler.wrapT, j  , h);
    768 				const int	y1		= wrap(sampler.wrapT, j+1, h);
    769 				const int	z0		= wrap(sampler.wrapR, k  , d);
    770 				const int	z1		= wrap(sampler.wrapR, k+1, d);
    771 
    772 				// Bounds for filtering factors
    773 				const float	minA	= de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f);
    774 				const float	maxA	= de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f);
    775 				const float	minB	= de::clamp((vBounds.x()-0.5f)-float(j), 0.0f, 1.0f);
    776 				const float	maxB	= de::clamp((vBounds.y()-0.5f)-float(j), 0.0f, 1.0f);
    777 				const float	minC	= de::clamp((wBounds.x()-0.5f)-float(k), 0.0f, 1.0f);
    778 				const float	maxC	= de::clamp((wBounds.y()-0.5f)-float(k), 0.0f, 1.0f);
    779 
    780 				ColorQuad quad0, quad1;
    781 				lookupQuad(quad0, level, sampler, x0, x1, y0, y1, z0);
    782 				lookupQuad(quad1, level, sampler, x0, x1, y0, y1, z1);
    783 
    784 				if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT)
    785 					searchStep = de::min(computeBilinearSearchStepFromFloatQuad(prec, quad0), computeBilinearSearchStepFromFloatQuad(prec, quad1));
    786 
    787 				if (isTrilinearRangeValid(prec, quad0, quad1, Vec2(minA, maxA), Vec2(minB, maxB), Vec2(minC, maxC), searchStep, result))
    788 					return true;
    789 			}
    790 		}
    791 	}
    792 
    793 	return false;
    794 }
    795 
    796 static bool isNearestMipmapLinearSampleResultValid (const ConstPixelBufferAccess&	level0,
    797 													const ConstPixelBufferAccess&	level1,
    798 													const Sampler&					sampler,
    799 													const LookupPrecision&			prec,
    800 													const float						coord,
    801 													const int						coordY,
    802 													const Vec2&						fBounds,
    803 													const Vec4&						result)
    804 {
    805 	const int		w0				= level0.getWidth();
    806 	const int		w1				= level1.getWidth();
    807 
    808 	const Vec2		uBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0,	coord, prec.coordBits.x(), prec.uvwBits.x());
    809 	const Vec2		uBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1,	coord, prec.coordBits.x(), prec.uvwBits.x());
    810 
    811 	// Integer coordinates - without wrap mode
    812 	const int		minI0			= deFloorFloatToInt32(uBounds0.x());
    813 	const int		maxI0			= deFloorFloatToInt32(uBounds0.y());
    814 	const int		minI1			= deFloorFloatToInt32(uBounds1.x());
    815 	const int		maxI1			= deFloorFloatToInt32(uBounds1.y());
    816 
    817 	for (int i0 = minI0; i0 <= maxI0; i0++)
    818 	{
    819 		for (int i1 = minI1; i1 <= maxI1; i1++)
    820 		{
    821 			const Vec4	c0	= lookup<float>(level0, sampler, wrap(sampler.wrapS, i0, w0), coordY, 0);
    822 			const Vec4	c1	= lookup<float>(level1, sampler, wrap(sampler.wrapS, i1, w1), coordY, 0);
    823 
    824 			if (isLinearRangeValid(prec, c0, c1, fBounds, result))
    825 				return true;
    826 		}
    827 	}
    828 
    829 	return false;
    830 }
    831 
    832 static bool isNearestMipmapLinearSampleResultValid (const ConstPixelBufferAccess&	level0,
    833 													const ConstPixelBufferAccess&	level1,
    834 													const Sampler&					sampler,
    835 													const LookupPrecision&			prec,
    836 													const Vec2&						coord,
    837 													const int						coordZ,
    838 													const Vec2&						fBounds,
    839 													const Vec4&						result)
    840 {
    841 	const int		w0				= level0.getWidth();
    842 	const int		w1				= level1.getWidth();
    843 	const int		h0				= level0.getHeight();
    844 	const int		h1				= level1.getHeight();
    845 
    846 	const Vec2		uBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0,	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
    847 	const Vec2		uBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1,	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
    848 	const Vec2		vBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0,	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
    849 	const Vec2		vBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1,	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
    850 
    851 	// Integer coordinates - without wrap mode
    852 	const int		minI0			= deFloorFloatToInt32(uBounds0.x());
    853 	const int		maxI0			= deFloorFloatToInt32(uBounds0.y());
    854 	const int		minI1			= deFloorFloatToInt32(uBounds1.x());
    855 	const int		maxI1			= deFloorFloatToInt32(uBounds1.y());
    856 	const int		minJ0			= deFloorFloatToInt32(vBounds0.x());
    857 	const int		maxJ0			= deFloorFloatToInt32(vBounds0.y());
    858 	const int		minJ1			= deFloorFloatToInt32(vBounds1.x());
    859 	const int		maxJ1			= deFloorFloatToInt32(vBounds1.y());
    860 
    861 	for (int j0 = minJ0; j0 <= maxJ0; j0++)
    862 	{
    863 		for (int i0 = minI0; i0 <= maxI0; i0++)
    864 		{
    865 			for (int j1 = minJ1; j1 <= maxJ1; j1++)
    866 			{
    867 				for (int i1 = minI1; i1 <= maxI1; i1++)
    868 				{
    869 					const Vec4	c0	= lookup<float>(level0, sampler, wrap(sampler.wrapS, i0, w0), wrap(sampler.wrapT, j0, h0), coordZ);
    870 					const Vec4	c1	= lookup<float>(level1, sampler, wrap(sampler.wrapS, i1, w1), wrap(sampler.wrapT, j1, h1), coordZ);
    871 
    872 					if (isLinearRangeValid(prec, c0, c1, fBounds, result))
    873 						return true;
    874 				}
    875 			}
    876 		}
    877 	}
    878 
    879 	return false;
    880 }
    881 
    882 static bool isNearestMipmapLinearSampleResultValid (const ConstPixelBufferAccess&	level0,
    883 													const ConstPixelBufferAccess&	level1,
    884 													const Sampler&					sampler,
    885 													const LookupPrecision&			prec,
    886 													const Vec3&						coord,
    887 													const Vec2&						fBounds,
    888 													const Vec4&						result)
    889 {
    890 	const int		w0				= level0.getWidth();
    891 	const int		w1				= level1.getWidth();
    892 	const int		h0				= level0.getHeight();
    893 	const int		h1				= level1.getHeight();
    894 	const int		d0				= level0.getDepth();
    895 	const int		d1				= level1.getDepth();
    896 
    897 	const Vec2		uBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0,	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
    898 	const Vec2		uBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1,	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
    899 	const Vec2		vBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0,	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
    900 	const Vec2		vBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1,	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
    901 	const Vec2		wBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, d0,	coord.z(), prec.coordBits.z(), prec.uvwBits.z());
    902 	const Vec2		wBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, d1,	coord.z(), prec.coordBits.z(), prec.uvwBits.z());
    903 
    904 	// Integer coordinates - without wrap mode
    905 	const int		minI0			= deFloorFloatToInt32(uBounds0.x());
    906 	const int		maxI0			= deFloorFloatToInt32(uBounds0.y());
    907 	const int		minI1			= deFloorFloatToInt32(uBounds1.x());
    908 	const int		maxI1			= deFloorFloatToInt32(uBounds1.y());
    909 	const int		minJ0			= deFloorFloatToInt32(vBounds0.x());
    910 	const int		maxJ0			= deFloorFloatToInt32(vBounds0.y());
    911 	const int		minJ1			= deFloorFloatToInt32(vBounds1.x());
    912 	const int		maxJ1			= deFloorFloatToInt32(vBounds1.y());
    913 	const int		minK0			= deFloorFloatToInt32(wBounds0.x());
    914 	const int		maxK0			= deFloorFloatToInt32(wBounds0.y());
    915 	const int		minK1			= deFloorFloatToInt32(wBounds1.x());
    916 	const int		maxK1			= deFloorFloatToInt32(wBounds1.y());
    917 
    918 	for (int k0 = minK0; k0 <= maxK0; k0++)
    919 	{
    920 		for (int j0 = minJ0; j0 <= maxJ0; j0++)
    921 		{
    922 			for (int i0 = minI0; i0 <= maxI0; i0++)
    923 			{
    924 				for (int k1 = minK1; k1 <= maxK1; k1++)
    925 				{
    926 					for (int j1 = minJ1; j1 <= maxJ1; j1++)
    927 					{
    928 						for (int i1 = minI1; i1 <= maxI1; i1++)
    929 						{
    930 							const Vec4	c0	= lookup<float>(level0, sampler, wrap(sampler.wrapS, i0, w0), wrap(sampler.wrapT, j0, h0), wrap(sampler.wrapR, k0, d0));
    931 							const Vec4	c1	= lookup<float>(level1, sampler, wrap(sampler.wrapS, i1, w1), wrap(sampler.wrapT, j1, h1), wrap(sampler.wrapR, k1, d1));
    932 
    933 							if (isLinearRangeValid(prec, c0, c1, fBounds, result))
    934 								return true;
    935 						}
    936 					}
    937 				}
    938 			}
    939 		}
    940 	}
    941 
    942 	return false;
    943 }
    944 
    945 static bool isLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess&	level0,
    946 												   const ConstPixelBufferAccess&	level1,
    947 												   const Sampler&					sampler,
    948 												   const LookupPrecision&			prec,
    949 												   const float						coordX,
    950 												   const int						coordY,
    951 												   const Vec2&						fBounds,
    952 												   const Vec4&						result)
    953 {
    954 	// \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent.
    955 	//						   Right now this allows pairing any two valid bilinear quads.
    956 
    957 	const int					w0				= level0.getWidth();
    958 	const int					w1				= level1.getWidth();
    959 
    960 	const Vec2					uBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coordX, prec.coordBits.x(), prec.uvwBits.x());
    961 	const Vec2					uBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coordX, prec.coordBits.x(), prec.uvwBits.x());
    962 
    963 	// Integer coordinates - without wrap mode
    964 	const int					minI0			= deFloorFloatToInt32(uBounds0.x()-0.5f);
    965 	const int					maxI0			= deFloorFloatToInt32(uBounds0.y()-0.5f);
    966 	const int					minI1			= deFloorFloatToInt32(uBounds1.x()-0.5f);
    967 	const int					maxI1			= deFloorFloatToInt32(uBounds1.y()-0.5f);
    968 
    969 	const TextureChannelClass	texClass		= getTextureChannelClass(level0.getFormat().type);
    970 	const float					cSearchStep		= texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	? computeBilinearSearchStepForUnorm(prec) :
    971 												  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	? computeBilinearSearchStepForSnorm(prec) :
    972 												  0.0f; // Step is computed for floating-point quads based on texel values.
    973 
    974 	DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	||
    975 			  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	||
    976 			  texClass == TEXTURECHANNELCLASS_FLOATING_POINT);
    977 
    978 	for (int i0 = minI0; i0 <= maxI0; i0++)
    979 	{
    980 		ColorLine	line0;
    981 		float		searchStep0;
    982 
    983 		{
    984 			const int	x0		= wrap(sampler.wrapS, i0  , w0);
    985 			const int	x1		= wrap(sampler.wrapS, i0+1, w0);
    986 			lookupLine(line0, level0, sampler, x0, x1, coordY);
    987 
    988 			if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT)
    989 				searchStep0 = computeBilinearSearchStepFromFloatLine(prec, line0);
    990 			else
    991 				searchStep0 = cSearchStep;
    992 		}
    993 
    994 		const float	minA0	= de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f);
    995 		const float	maxA0	= de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f);
    996 
    997 		for (int i1 = minI1; i1 <= maxI1; i1++)
    998 		{
    999 			ColorLine	line1;
   1000 			float		searchStep1;
   1001 
   1002 			{
   1003 				const int	x0		= wrap(sampler.wrapS, i1  , w1);
   1004 				const int	x1		= wrap(sampler.wrapS, i1+1, w1);
   1005 				lookupLine(line1, level1, sampler, x0, x1, coordY);
   1006 
   1007 				if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT)
   1008 					searchStep1 = computeBilinearSearchStepFromFloatLine(prec, line1);
   1009 				else
   1010 					searchStep1 = cSearchStep;
   1011 			}
   1012 
   1013 			const float	minA1	= de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f);
   1014 			const float	maxA1	= de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f);
   1015 
   1016 			if (is1DTrilinearFilterResultValid(prec, line0, line1, Vec2(minA0, maxA0), Vec2(minA1, maxA1), fBounds, de::min(searchStep0, searchStep1), result))
   1017 				return true;
   1018 		}
   1019 	}
   1020 
   1021 	return false;
   1022 }
   1023 
   1024 static bool isLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess&	level0,
   1025 												   const ConstPixelBufferAccess&	level1,
   1026 												   const Sampler&					sampler,
   1027 												   const LookupPrecision&			prec,
   1028 												   const Vec2&						coord,
   1029 												   const int						coordZ,
   1030 												   const Vec2&						fBounds,
   1031 												   const Vec4&						result)
   1032 {
   1033 	// \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent.
   1034 	//						   Right now this allows pairing any two valid bilinear quads.
   1035 
   1036 	const int					w0				= level0.getWidth();
   1037 	const int					w1				= level1.getWidth();
   1038 	const int					h0				= level0.getHeight();
   1039 	const int					h1				= level1.getHeight();
   1040 
   1041 	const Vec2					uBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0,	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
   1042 	const Vec2					uBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1,	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
   1043 	const Vec2					vBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0,	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
   1044 	const Vec2					vBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1,	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
   1045 
   1046 	// Integer coordinates - without wrap mode
   1047 	const int					minI0			= deFloorFloatToInt32(uBounds0.x()-0.5f);
   1048 	const int					maxI0			= deFloorFloatToInt32(uBounds0.y()-0.5f);
   1049 	const int					minI1			= deFloorFloatToInt32(uBounds1.x()-0.5f);
   1050 	const int					maxI1			= deFloorFloatToInt32(uBounds1.y()-0.5f);
   1051 	const int					minJ0			= deFloorFloatToInt32(vBounds0.x()-0.5f);
   1052 	const int					maxJ0			= deFloorFloatToInt32(vBounds0.y()-0.5f);
   1053 	const int					minJ1			= deFloorFloatToInt32(vBounds1.x()-0.5f);
   1054 	const int					maxJ1			= deFloorFloatToInt32(vBounds1.y()-0.5f);
   1055 
   1056 	const TextureChannelClass	texClass		= getTextureChannelClass(level0.getFormat().type);
   1057 	const float					cSearchStep		= texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	? computeBilinearSearchStepForUnorm(prec) :
   1058 												  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	? computeBilinearSearchStepForSnorm(prec) :
   1059 												  0.0f; // Step is computed for floating-point quads based on texel values.
   1060 
   1061 	DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	||
   1062 			  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	||
   1063 			  texClass == TEXTURECHANNELCLASS_FLOATING_POINT);
   1064 
   1065 	for (int j0 = minJ0; j0 <= maxJ0; j0++)
   1066 	{
   1067 		for (int i0 = minI0; i0 <= maxI0; i0++)
   1068 		{
   1069 			ColorQuad	quad0;
   1070 			float		searchStep0;
   1071 
   1072 			{
   1073 				const int	x0		= wrap(sampler.wrapS, i0  , w0);
   1074 				const int	x1		= wrap(sampler.wrapS, i0+1, w0);
   1075 				const int	y0		= wrap(sampler.wrapT, j0  , h0);
   1076 				const int	y1		= wrap(sampler.wrapT, j0+1, h0);
   1077 				lookupQuad(quad0, level0, sampler, x0, x1, y0, y1, coordZ);
   1078 
   1079 				if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT)
   1080 					searchStep0 = computeBilinearSearchStepFromFloatQuad(prec, quad0);
   1081 				else
   1082 					searchStep0 = cSearchStep;
   1083 			}
   1084 
   1085 			const float	minA0	= de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f);
   1086 			const float	maxA0	= de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f);
   1087 			const float	minB0	= de::clamp((vBounds0.x()-0.5f)-float(j0), 0.0f, 1.0f);
   1088 			const float	maxB0	= de::clamp((vBounds0.y()-0.5f)-float(j0), 0.0f, 1.0f);
   1089 
   1090 			for (int j1 = minJ1; j1 <= maxJ1; j1++)
   1091 			{
   1092 				for (int i1 = minI1; i1 <= maxI1; i1++)
   1093 				{
   1094 					ColorQuad	quad1;
   1095 					float		searchStep1;
   1096 
   1097 					{
   1098 						const int	x0		= wrap(sampler.wrapS, i1  , w1);
   1099 						const int	x1		= wrap(sampler.wrapS, i1+1, w1);
   1100 						const int	y0		= wrap(sampler.wrapT, j1  , h1);
   1101 						const int	y1		= wrap(sampler.wrapT, j1+1, h1);
   1102 						lookupQuad(quad1, level1, sampler, x0, x1, y0, y1, coordZ);
   1103 
   1104 						if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT)
   1105 							searchStep1 = computeBilinearSearchStepFromFloatQuad(prec, quad1);
   1106 						else
   1107 							searchStep1 = cSearchStep;
   1108 					}
   1109 
   1110 					const float	minA1	= de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f);
   1111 					const float	maxA1	= de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f);
   1112 					const float	minB1	= de::clamp((vBounds1.x()-0.5f)-float(j1), 0.0f, 1.0f);
   1113 					const float	maxB1	= de::clamp((vBounds1.y()-0.5f)-float(j1), 0.0f, 1.0f);
   1114 
   1115 					if (is2DTrilinearFilterResultValid(prec, quad0, quad1, Vec2(minA0, maxA0), Vec2(minB0, maxB0), Vec2(minA1, maxA1), Vec2(minB1, maxB1),
   1116 													   fBounds, de::min(searchStep0, searchStep1), result))
   1117 						return true;
   1118 				}
   1119 			}
   1120 		}
   1121 	}
   1122 
   1123 	return false;
   1124 }
   1125 
   1126 static bool isLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess&	level0,
   1127 												   const ConstPixelBufferAccess&	level1,
   1128 												   const Sampler&					sampler,
   1129 												   const LookupPrecision&			prec,
   1130 												   const Vec3&						coord,
   1131 												   const Vec2&						fBounds,
   1132 												   const Vec4&						result)
   1133 {
   1134 	// \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent.
   1135 	//						   Right now this allows pairing any two valid bilinear quads.
   1136 
   1137 	const int					w0				= level0.getWidth();
   1138 	const int					w1				= level1.getWidth();
   1139 	const int					h0				= level0.getHeight();
   1140 	const int					h1				= level1.getHeight();
   1141 	const int					d0				= level0.getDepth();
   1142 	const int					d1				= level1.getDepth();
   1143 
   1144 	const Vec2					uBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0,	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
   1145 	const Vec2					uBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1,	coord.x(), prec.coordBits.x(), prec.uvwBits.x());
   1146 	const Vec2					vBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0,	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
   1147 	const Vec2					vBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1,	coord.y(), prec.coordBits.y(), prec.uvwBits.y());
   1148 	const Vec2					wBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, d0,	coord.z(), prec.coordBits.z(), prec.uvwBits.z());
   1149 	const Vec2					wBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, d1,	coord.z(), prec.coordBits.z(), prec.uvwBits.z());
   1150 
   1151 	// Integer coordinates - without wrap mode
   1152 	const int					minI0			= deFloorFloatToInt32(uBounds0.x()-0.5f);
   1153 	const int					maxI0			= deFloorFloatToInt32(uBounds0.y()-0.5f);
   1154 	const int					minI1			= deFloorFloatToInt32(uBounds1.x()-0.5f);
   1155 	const int					maxI1			= deFloorFloatToInt32(uBounds1.y()-0.5f);
   1156 	const int					minJ0			= deFloorFloatToInt32(vBounds0.x()-0.5f);
   1157 	const int					maxJ0			= deFloorFloatToInt32(vBounds0.y()-0.5f);
   1158 	const int					minJ1			= deFloorFloatToInt32(vBounds1.x()-0.5f);
   1159 	const int					maxJ1			= deFloorFloatToInt32(vBounds1.y()-0.5f);
   1160 	const int					minK0			= deFloorFloatToInt32(wBounds0.x()-0.5f);
   1161 	const int					maxK0			= deFloorFloatToInt32(wBounds0.y()-0.5f);
   1162 	const int					minK1			= deFloorFloatToInt32(wBounds1.x()-0.5f);
   1163 	const int					maxK1			= deFloorFloatToInt32(wBounds1.y()-0.5f);
   1164 
   1165 	const TextureChannelClass	texClass		= getTextureChannelClass(level0.getFormat().type);
   1166 	const float					cSearchStep		= texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	? computeBilinearSearchStepForUnorm(prec) :
   1167 												  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	? computeBilinearSearchStepForSnorm(prec) :
   1168 												  0.0f; // Step is computed for floating-point quads based on texel values.
   1169 
   1170 	DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	||
   1171 			  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	||
   1172 			  texClass == TEXTURECHANNELCLASS_FLOATING_POINT);
   1173 
   1174 	for (int k0 = minK0; k0 <= maxK0; k0++)
   1175 	{
   1176 		for (int j0 = minJ0; j0 <= maxJ0; j0++)
   1177 		{
   1178 			for (int i0 = minI0; i0 <= maxI0; i0++)
   1179 			{
   1180 				ColorQuad	quad00, quad01;
   1181 				float		searchStep0;
   1182 
   1183 				{
   1184 					const int	x0		= wrap(sampler.wrapS, i0  , w0);
   1185 					const int	x1		= wrap(sampler.wrapS, i0+1, w0);
   1186 					const int	y0		= wrap(sampler.wrapT, j0  , h0);
   1187 					const int	y1		= wrap(sampler.wrapT, j0+1, h0);
   1188 					const int	z0		= wrap(sampler.wrapR, k0  , d0);
   1189 					const int	z1		= wrap(sampler.wrapR, k0+1, d0);
   1190 					lookupQuad(quad00, level0, sampler, x0, x1, y0, y1, z0);
   1191 					lookupQuad(quad01, level0, sampler, x0, x1, y0, y1, z1);
   1192 
   1193 					if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT)
   1194 						searchStep0 = de::min(computeBilinearSearchStepFromFloatQuad(prec, quad00), computeBilinearSearchStepFromFloatQuad(prec, quad01));
   1195 					else
   1196 						searchStep0 = cSearchStep;
   1197 				}
   1198 
   1199 				const float	minA0	= de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f);
   1200 				const float	maxA0	= de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f);
   1201 				const float	minB0	= de::clamp((vBounds0.x()-0.5f)-float(j0), 0.0f, 1.0f);
   1202 				const float	maxB0	= de::clamp((vBounds0.y()-0.5f)-float(j0), 0.0f, 1.0f);
   1203 				const float	minC0	= de::clamp((wBounds0.x()-0.5f)-float(k0), 0.0f, 1.0f);
   1204 				const float	maxC0	= de::clamp((wBounds0.y()-0.5f)-float(k0), 0.0f, 1.0f);
   1205 
   1206 				for (int k1 = minK1; k1 <= maxK1; k1++)
   1207 				{
   1208 					for (int j1 = minJ1; j1 <= maxJ1; j1++)
   1209 					{
   1210 						for (int i1 = minI1; i1 <= maxI1; i1++)
   1211 						{
   1212 							ColorQuad	quad10, quad11;
   1213 							float		searchStep1;
   1214 
   1215 							{
   1216 								const int	x0		= wrap(sampler.wrapS, i1  , w1);
   1217 								const int	x1		= wrap(sampler.wrapS, i1+1, w1);
   1218 								const int	y0		= wrap(sampler.wrapT, j1  , h1);
   1219 								const int	y1		= wrap(sampler.wrapT, j1+1, h1);
   1220 								const int	z0		= wrap(sampler.wrapR, k1  , d1);
   1221 								const int	z1		= wrap(sampler.wrapR, k1+1, d1);
   1222 								lookupQuad(quad10, level1, sampler, x0, x1, y0, y1, z0);
   1223 								lookupQuad(quad11, level1, sampler, x0, x1, y0, y1, z1);
   1224 
   1225 								if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT)
   1226 									searchStep1 = de::min(computeBilinearSearchStepFromFloatQuad(prec, quad10), computeBilinearSearchStepFromFloatQuad(prec, quad11));
   1227 								else
   1228 									searchStep1 = cSearchStep;
   1229 							}
   1230 
   1231 							const float	minA1	= de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f);
   1232 							const float	maxA1	= de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f);
   1233 							const float	minB1	= de::clamp((vBounds1.x()-0.5f)-float(j1), 0.0f, 1.0f);
   1234 							const float	maxB1	= de::clamp((vBounds1.y()-0.5f)-float(j1), 0.0f, 1.0f);
   1235 							const float	minC1	= de::clamp((wBounds1.x()-0.5f)-float(k1), 0.0f, 1.0f);
   1236 							const float	maxC1	= de::clamp((wBounds1.y()-0.5f)-float(k1), 0.0f, 1.0f);
   1237 
   1238 							if (is3DTrilinearFilterResultValid(prec, quad00, quad01, quad10, quad11,
   1239 															   Vec2(minA0, maxA0), Vec2(minB0, maxB0), Vec2(minC0, maxC0),
   1240 															   Vec2(minA1, maxA1), Vec2(minB1, maxB1), Vec2(minC1, maxC1),
   1241 															   fBounds, de::min(searchStep0, searchStep1), result))
   1242 								return true;
   1243 						}
   1244 					}
   1245 				}
   1246 			}
   1247 		}
   1248 	}
   1249 
   1250 	return false;
   1251 }
   1252 
   1253 static bool isLevelSampleResultValid (const ConstPixelBufferAccess&		level,
   1254 									  const Sampler&					sampler,
   1255 									  const Sampler::FilterMode			filterMode,
   1256 									  const LookupPrecision&			prec,
   1257 									  const float						coordX,
   1258 									  const int							coordY,
   1259 									  const Vec4&						result)
   1260 {
   1261 	if (filterMode == Sampler::LINEAR)
   1262 		return isLinearSampleResultValid(level, sampler, prec, coordX, coordY, result);
   1263 	else
   1264 		return isNearestSampleResultValid(level, sampler, prec, coordX, coordY, result);
   1265 }
   1266 
   1267 static bool isLevelSampleResultValid (const ConstPixelBufferAccess&		level,
   1268 									  const Sampler&					sampler,
   1269 									  const Sampler::FilterMode			filterMode,
   1270 									  const LookupPrecision&			prec,
   1271 									  const Vec2&						coord,
   1272 									  const int							coordZ,
   1273 									  const Vec4&						result)
   1274 {
   1275 	if (filterMode == Sampler::LINEAR)
   1276 		return isLinearSampleResultValid(level, sampler, prec, coord, coordZ, result);
   1277 	else
   1278 		return isNearestSampleResultValid(level, sampler, prec, coord, coordZ, result);
   1279 }
   1280 
   1281 static bool isMipmapLinearSampleResultValid (const ConstPixelBufferAccess&		level0,
   1282 										     const ConstPixelBufferAccess&		level1,
   1283 											 const Sampler&						sampler,
   1284 										     const Sampler::FilterMode			levelFilter,
   1285 										     const LookupPrecision&				prec,
   1286 										     const float						coordX,
   1287 											 const int							coordY,
   1288 										     const Vec2&						fBounds,
   1289 										     const Vec4&						result)
   1290 {
   1291 	if (levelFilter == Sampler::LINEAR)
   1292 		return isLinearMipmapLinearSampleResultValid(level0, level1, sampler, prec, coordX, coordY, fBounds, result);
   1293 	else
   1294 		return isNearestMipmapLinearSampleResultValid(level0, level1, sampler, prec, coordX, coordY, fBounds, result);
   1295 }
   1296 
   1297 static bool isMipmapLinearSampleResultValid (const ConstPixelBufferAccess&		level0,
   1298 										     const ConstPixelBufferAccess&		level1,
   1299 											 const Sampler&						sampler,
   1300 										     const Sampler::FilterMode			levelFilter,
   1301 										     const LookupPrecision&				prec,
   1302 										     const Vec2&						coord,
   1303 											 const int							coordZ,
   1304 										     const Vec2&						fBounds,
   1305 										     const Vec4&						result)
   1306 {
   1307 	if (levelFilter == Sampler::LINEAR)
   1308 		return isLinearMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, coordZ, fBounds, result);
   1309 	else
   1310 		return isNearestMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, coordZ, fBounds, result);
   1311 }
   1312 
   1313 bool isLookupResultValid (const Texture2DView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec2& coord, const Vec2& lodBounds, const Vec4& result)
   1314 {
   1315 	const float		minLod			= lodBounds.x();
   1316 	const float		maxLod			= lodBounds.y();
   1317 	const bool		canBeMagnified	= minLod <= sampler.lodThreshold;
   1318 	const bool		canBeMinified	= maxLod > sampler.lodThreshold;
   1319 
   1320 	DE_ASSERT(isSamplerSupported(sampler));
   1321 
   1322 	if (canBeMagnified)
   1323 	{
   1324 		if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coord, 0, result))
   1325 			return true;
   1326 	}
   1327 
   1328 	if (canBeMinified)
   1329 	{
   1330 		const bool	isNearestMipmap	= isNearestMipmapFilter(sampler.minFilter);
   1331 		const bool	isLinearMipmap	= isLinearMipmapFilter(sampler.minFilter);
   1332 		const int	minTexLevel		= 0;
   1333 		const int	maxTexLevel		= texture.getNumLevels()-1;
   1334 
   1335 		DE_ASSERT(minTexLevel <= maxTexLevel);
   1336 
   1337 		if (isLinearMipmap && minTexLevel < maxTexLevel)
   1338 		{
   1339 			const int		minLevel		= de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1);
   1340 			const int		maxLevel		= de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1);
   1341 
   1342 			DE_ASSERT(minLevel <= maxLevel);
   1343 
   1344 			for (int level = minLevel; level <= maxLevel; level++)
   1345 			{
   1346 				const float		minF	= de::clamp(minLod - float(level), 0.0f, 1.0f);
   1347 				const float		maxF	= de::clamp(maxLod - float(level), 0.0f, 1.0f);
   1348 
   1349 				if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, Vec2(minF, maxF), result))
   1350 					return true;
   1351 			}
   1352 		}
   1353 		else if (isNearestMipmap)
   1354 		{
   1355 			// \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made
   1356 			//		 decision to allow floor(lod + 0.5) as well.
   1357 			const int		minLevel		= de::clamp((int)deFloatCeil(minLod + 0.5f) - 1,	minTexLevel, maxTexLevel);
   1358 			const int		maxLevel		= de::clamp((int)deFloatFloor(maxLod + 0.5f),		minTexLevel, maxTexLevel);
   1359 
   1360 			DE_ASSERT(minLevel <= maxLevel);
   1361 
   1362 			for (int level = minLevel; level <= maxLevel; level++)
   1363 			{
   1364 				if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, result))
   1365 					return true;
   1366 			}
   1367 		}
   1368 		else
   1369 		{
   1370 			if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coord, 0, result))
   1371 				return true;
   1372 		}
   1373 	}
   1374 
   1375 	return false;
   1376 }
   1377 
   1378 bool isLookupResultValid (const Texture1DView& texture, const Sampler& sampler, const LookupPrecision& prec, const float coord, const Vec2& lodBounds, const Vec4& result)
   1379 {
   1380 	const float		minLod			= lodBounds.x();
   1381 	const float		maxLod			= lodBounds.y();
   1382 	const bool		canBeMagnified	= minLod <= sampler.lodThreshold;
   1383 	const bool		canBeMinified	= maxLod > sampler.lodThreshold;
   1384 
   1385 	DE_ASSERT(isSamplerSupported(sampler));
   1386 
   1387 	if (canBeMagnified)
   1388 	{
   1389 		if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coord, 0, result))
   1390 			return true;
   1391 	}
   1392 
   1393 	if (canBeMinified)
   1394 	{
   1395 		const bool	isNearestMipmap	= isNearestMipmapFilter(sampler.minFilter);
   1396 		const bool	isLinearMipmap	= isLinearMipmapFilter(sampler.minFilter);
   1397 		const int	minTexLevel		= 0;
   1398 		const int	maxTexLevel		= texture.getNumLevels()-1;
   1399 
   1400 		DE_ASSERT(minTexLevel <= maxTexLevel);
   1401 
   1402 		if (isLinearMipmap && minTexLevel < maxTexLevel)
   1403 		{
   1404 			const int		minLevel		= de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1);
   1405 			const int		maxLevel		= de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1);
   1406 
   1407 			DE_ASSERT(minLevel <= maxLevel);
   1408 
   1409 			for (int level = minLevel; level <= maxLevel; level++)
   1410 			{
   1411 				const float		minF	= de::clamp(minLod - float(level), 0.0f, 1.0f);
   1412 				const float		maxF	= de::clamp(maxLod - float(level), 0.0f, 1.0f);
   1413 
   1414 				if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, Vec2(minF, maxF), result))
   1415 					return true;
   1416 			}
   1417 		}
   1418 		else if (isNearestMipmap)
   1419 		{
   1420 			// \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made
   1421 			//		 decision to allow floor(lod + 0.5) as well.
   1422 			const int		minLevel		= de::clamp((int)deFloatCeil(minLod + 0.5f) - 1,	minTexLevel, maxTexLevel);
   1423 			const int		maxLevel		= de::clamp((int)deFloatFloor(maxLod + 0.5f),		minTexLevel, maxTexLevel);
   1424 
   1425 			DE_ASSERT(minLevel <= maxLevel);
   1426 
   1427 			for (int level = minLevel; level <= maxLevel; level++)
   1428 			{
   1429 				if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, result))
   1430 					return true;
   1431 			}
   1432 		}
   1433 		else
   1434 		{
   1435 			if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coord, 0, result))
   1436 				return true;
   1437 		}
   1438 	}
   1439 
   1440 	return false;
   1441 }
   1442 
   1443 static bool isSeamlessLinearSampleResultValid (const ConstPixelBufferAccess (&faces)[CUBEFACE_LAST],
   1444 											   const Sampler&				sampler,
   1445 											   const LookupPrecision&		prec,
   1446 											   const CubeFaceFloatCoords&	coords,
   1447 											   const Vec4&					result)
   1448 {
   1449 	const int					size			= faces[coords.face].getWidth();
   1450 
   1451 	const Vec2					uBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, size, coords.s, prec.coordBits.x(), prec.uvwBits.x());
   1452 	const Vec2					vBounds			= computeNonNormalizedCoordBounds(sampler.normalizedCoords, size, coords.t, prec.coordBits.y(), prec.uvwBits.y());
   1453 
   1454 	// Integer coordinate bounds for (x0,y0) - without wrap mode
   1455 	const int					minI			= deFloorFloatToInt32(uBounds.x()-0.5f);
   1456 	const int					maxI			= deFloorFloatToInt32(uBounds.y()-0.5f);
   1457 	const int					minJ			= deFloorFloatToInt32(vBounds.x()-0.5f);
   1458 	const int					maxJ			= deFloorFloatToInt32(vBounds.y()-0.5f);
   1459 
   1460 	const TextureChannelClass	texClass		= getTextureChannelClass(faces[coords.face].getFormat().type);
   1461 	float						searchStep		= texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	? computeBilinearSearchStepForUnorm(prec) :
   1462 												  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	? computeBilinearSearchStepForSnorm(prec) :
   1463 												  0.0f; // Step is computed for floating-point quads based on texel values.
   1464 
   1465 	DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	||
   1466 			  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	||
   1467 			  texClass == TEXTURECHANNELCLASS_FLOATING_POINT);
   1468 
   1469 	for (int j = minJ; j <= maxJ; j++)
   1470 	{
   1471 		for (int i = minI; i <= maxI; i++)
   1472 		{
   1473 			const CubeFaceIntCoords	c00	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+0, j+0)), size);
   1474 			const CubeFaceIntCoords	c10	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+1, j+0)), size);
   1475 			const CubeFaceIntCoords	c01	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+0, j+1)), size);
   1476 			const CubeFaceIntCoords	c11	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+1, j+1)), size);
   1477 
   1478 			// If any of samples is out of both edges, implementations can do pretty much anything according to spec.
   1479 			// \todo [2013-07-08 pyry] Test the special case where all corner pixels have exactly the same color.
   1480 			if (c00.face == CUBEFACE_LAST || c01.face == CUBEFACE_LAST || c10.face == CUBEFACE_LAST || c11.face == CUBEFACE_LAST)
   1481 				return true;
   1482 
   1483 			// Bounds for filtering factors
   1484 			const float	minA	= de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f);
   1485 			const float	maxA	= de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f);
   1486 			const float	minB	= de::clamp((vBounds.x()-0.5f)-float(j), 0.0f, 1.0f);
   1487 			const float	maxB	= de::clamp((vBounds.y()-0.5f)-float(j), 0.0f, 1.0f);
   1488 
   1489 			ColorQuad quad;
   1490 			quad.p00 = lookup<float>(faces[c00.face], sampler, c00.s, c00.t, 0);
   1491 			quad.p10 = lookup<float>(faces[c10.face], sampler, c10.s, c10.t, 0);
   1492 			quad.p01 = lookup<float>(faces[c01.face], sampler, c01.s, c01.t, 0);
   1493 			quad.p11 = lookup<float>(faces[c11.face], sampler, c11.s, c11.t, 0);
   1494 
   1495 			if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT)
   1496 				searchStep = computeBilinearSearchStepFromFloatQuad(prec, quad);
   1497 
   1498 			if (isBilinearRangeValid(prec, quad, Vec2(minA, maxA), Vec2(minB, maxB), searchStep, result))
   1499 				return true;
   1500 		}
   1501 	}
   1502 
   1503 	return false;
   1504 }
   1505 
   1506 static bool isSeamplessLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess	(&faces0)[CUBEFACE_LAST],
   1507 															const ConstPixelBufferAccess	(&faces1)[CUBEFACE_LAST],
   1508 															const Sampler&					sampler,
   1509 															const LookupPrecision&			prec,
   1510 															const CubeFaceFloatCoords&		coords,
   1511 															const Vec2&						fBounds,
   1512 															const Vec4&						result)
   1513 {
   1514 	// \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent.
   1515 	//						   Right now this allows pairing any two valid bilinear quads.
   1516 
   1517 	const int					size0			= faces0[coords.face].getWidth();
   1518 	const int					size1			= faces1[coords.face].getWidth();
   1519 
   1520 	const Vec2					uBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, size0,	coords.s, prec.coordBits.x(), prec.uvwBits.x());
   1521 	const Vec2					uBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, size1,	coords.s, prec.coordBits.x(), prec.uvwBits.x());
   1522 	const Vec2					vBounds0		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, size0,	coords.t, prec.coordBits.y(), prec.uvwBits.y());
   1523 	const Vec2					vBounds1		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, size1,	coords.t, prec.coordBits.y(), prec.uvwBits.y());
   1524 
   1525 	// Integer coordinates - without wrap mode
   1526 	const int					minI0			= deFloorFloatToInt32(uBounds0.x()-0.5f);
   1527 	const int					maxI0			= deFloorFloatToInt32(uBounds0.y()-0.5f);
   1528 	const int					minI1			= deFloorFloatToInt32(uBounds1.x()-0.5f);
   1529 	const int					maxI1			= deFloorFloatToInt32(uBounds1.y()-0.5f);
   1530 	const int					minJ0			= deFloorFloatToInt32(vBounds0.x()-0.5f);
   1531 	const int					maxJ0			= deFloorFloatToInt32(vBounds0.y()-0.5f);
   1532 	const int					minJ1			= deFloorFloatToInt32(vBounds1.x()-0.5f);
   1533 	const int					maxJ1			= deFloorFloatToInt32(vBounds1.y()-0.5f);
   1534 
   1535 	const TextureChannelClass	texClass		= getTextureChannelClass(faces0[coords.face].getFormat().type);
   1536 	const float					cSearchStep		= texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	? computeBilinearSearchStepForUnorm(prec) :
   1537 												  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	? computeBilinearSearchStepForSnorm(prec) :
   1538 												  0.0f; // Step is computed for floating-point quads based on texel values.
   1539 
   1540 	DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT	||
   1541 			  texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT	||
   1542 			  texClass == TEXTURECHANNELCLASS_FLOATING_POINT);
   1543 
   1544 	for (int j0 = minJ0; j0 <= maxJ0; j0++)
   1545 	{
   1546 		for (int i0 = minI0; i0 <= maxI0; i0++)
   1547 		{
   1548 			ColorQuad	quad0;
   1549 			float		searchStep0;
   1550 
   1551 			{
   1552 				const CubeFaceIntCoords	c00	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+0, j0+0)), size0);
   1553 				const CubeFaceIntCoords	c10	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+1, j0+0)), size0);
   1554 				const CubeFaceIntCoords	c01	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+0, j0+1)), size0);
   1555 				const CubeFaceIntCoords	c11	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+1, j0+1)), size0);
   1556 
   1557 				// If any of samples is out of both edges, implementations can do pretty much anything according to spec.
   1558 				// \todo [2013-07-08 pyry] Test the special case where all corner pixels have exactly the same color.
   1559 				if (c00.face == CUBEFACE_LAST || c01.face == CUBEFACE_LAST || c10.face == CUBEFACE_LAST || c11.face == CUBEFACE_LAST)
   1560 					return true;
   1561 
   1562 				quad0.p00 = lookup<float>(faces0[c00.face], sampler, c00.s, c00.t, 0);
   1563 				quad0.p10 = lookup<float>(faces0[c10.face], sampler, c10.s, c10.t, 0);
   1564 				quad0.p01 = lookup<float>(faces0[c01.face], sampler, c01.s, c01.t, 0);
   1565 				quad0.p11 = lookup<float>(faces0[c11.face], sampler, c11.s, c11.t, 0);
   1566 
   1567 				if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT)
   1568 					searchStep0 = computeBilinearSearchStepFromFloatQuad(prec, quad0);
   1569 				else
   1570 					searchStep0 = cSearchStep;
   1571 			}
   1572 
   1573 			const float	minA0	= de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f);
   1574 			const float	maxA0	= de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f);
   1575 			const float	minB0	= de::clamp((vBounds0.x()-0.5f)-float(j0), 0.0f, 1.0f);
   1576 			const float	maxB0	= de::clamp((vBounds0.y()-0.5f)-float(j0), 0.0f, 1.0f);
   1577 
   1578 			for (int j1 = minJ1; j1 <= maxJ1; j1++)
   1579 			{
   1580 				for (int i1 = minI1; i1 <= maxI1; i1++)
   1581 				{
   1582 					ColorQuad	quad1;
   1583 					float		searchStep1;
   1584 
   1585 					{
   1586 						const CubeFaceIntCoords	c00	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+0, j1+0)), size1);
   1587 						const CubeFaceIntCoords	c10	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+1, j1+0)), size1);
   1588 						const CubeFaceIntCoords	c01	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+0, j1+1)), size1);
   1589 						const CubeFaceIntCoords	c11	= remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+1, j1+1)), size1);
   1590 
   1591 						if (c00.face == CUBEFACE_LAST || c01.face == CUBEFACE_LAST || c10.face == CUBEFACE_LAST || c11.face == CUBEFACE_LAST)
   1592 							return true;
   1593 
   1594 						quad1.p00 = lookup<float>(faces1[c00.face], sampler, c00.s, c00.t, 0);
   1595 						quad1.p10 = lookup<float>(faces1[c10.face], sampler, c10.s, c10.t, 0);
   1596 						quad1.p01 = lookup<float>(faces1[c01.face], sampler, c01.s, c01.t, 0);
   1597 						quad1.p11 = lookup<float>(faces1[c11.face], sampler, c11.s, c11.t, 0);
   1598 
   1599 						if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT)
   1600 							searchStep1 = computeBilinearSearchStepFromFloatQuad(prec, quad1);
   1601 						else
   1602 							searchStep1 = cSearchStep;
   1603 					}
   1604 
   1605 					const float	minA1	= de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f);
   1606 					const float	maxA1	= de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f);
   1607 					const float	minB1	= de::clamp((vBounds1.x()-0.5f)-float(j1), 0.0f, 1.0f);
   1608 					const float	maxB1	= de::clamp((vBounds1.y()-0.5f)-float(j1), 0.0f, 1.0f);
   1609 
   1610 					if (is2DTrilinearFilterResultValid(prec, quad0, quad1, Vec2(minA0, maxA0), Vec2(minB0, maxB0), Vec2(minA1, maxA1), Vec2(minB1, maxB1),
   1611 													   fBounds, de::min(searchStep0, searchStep1), result))
   1612 						return true;
   1613 				}
   1614 			}
   1615 		}
   1616 	}
   1617 
   1618 	return false;
   1619 }
   1620 
   1621 static bool isCubeLevelSampleResultValid (const ConstPixelBufferAccess		(&level)[CUBEFACE_LAST],
   1622 										  const Sampler&					sampler,
   1623 										  const Sampler::FilterMode			filterMode,
   1624 										  const LookupPrecision&			prec,
   1625 										  const CubeFaceFloatCoords&		coords,
   1626 										  const Vec4&						result)
   1627 {
   1628 	if (filterMode == Sampler::LINEAR)
   1629 	{
   1630 		if (sampler.seamlessCubeMap)
   1631 			return isSeamlessLinearSampleResultValid(level, sampler, prec, coords, result);
   1632 		else
   1633 			return isLinearSampleResultValid(level[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, result);
   1634 	}
   1635 	else
   1636 		return isNearestSampleResultValid(level[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, result);
   1637 }
   1638 
   1639 static bool isCubeMipmapLinearSampleResultValid (const ConstPixelBufferAccess	(&faces0)[CUBEFACE_LAST],
   1640 												 const ConstPixelBufferAccess	(&faces1)[CUBEFACE_LAST],
   1641 												 const Sampler&					sampler,
   1642 												 const Sampler::FilterMode		levelFilter,
   1643 												 const LookupPrecision&			prec,
   1644 												 const CubeFaceFloatCoords&		coords,
   1645 												 const Vec2&					fBounds,
   1646 												 const Vec4&					result)
   1647 {
   1648 	if (levelFilter == Sampler::LINEAR)
   1649 	{
   1650 		if (sampler.seamlessCubeMap)
   1651 			return isSeamplessLinearMipmapLinearSampleResultValid(faces0, faces1, sampler, prec, coords, fBounds, result);
   1652 		else
   1653 			return isLinearMipmapLinearSampleResultValid(faces0[coords.face], faces1[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, fBounds, result);
   1654 	}
   1655 	else
   1656 		return isNearestMipmapLinearSampleResultValid(faces0[coords.face], faces1[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, fBounds, result);
   1657 }
   1658 
   1659 static void getCubeLevelFaces (const TextureCubeView& texture, const int levelNdx, ConstPixelBufferAccess (&out)[CUBEFACE_LAST])
   1660 {
   1661 	for (int faceNdx = 0; faceNdx < CUBEFACE_LAST; faceNdx++)
   1662 		out[faceNdx] = texture.getLevelFace(levelNdx, (CubeFace)faceNdx);
   1663 }
   1664 
   1665 bool isLookupResultValid (const TextureCubeView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec2& lodBounds, const Vec4& result)
   1666 {
   1667 	int			numPossibleFaces				= 0;
   1668 	CubeFace	possibleFaces[CUBEFACE_LAST];
   1669 
   1670 	DE_ASSERT(isSamplerSupported(sampler));
   1671 
   1672 	getPossibleCubeFaces(coord, prec.coordBits, &possibleFaces[0], numPossibleFaces);
   1673 
   1674 	if (numPossibleFaces == 0)
   1675 		return true; // Result is undefined.
   1676 
   1677 	for (int tryFaceNdx = 0; tryFaceNdx < numPossibleFaces; tryFaceNdx++)
   1678 	{
   1679 		const CubeFaceFloatCoords	faceCoords		(possibleFaces[tryFaceNdx], projectToFace(possibleFaces[tryFaceNdx], coord));
   1680 		const float					minLod			= lodBounds.x();
   1681 		const float					maxLod			= lodBounds.y();
   1682 		const bool					canBeMagnified	= minLod <= sampler.lodThreshold;
   1683 		const bool					canBeMinified	= maxLod > sampler.lodThreshold;
   1684 
   1685 		if (canBeMagnified)
   1686 		{
   1687 			ConstPixelBufferAccess faces[CUBEFACE_LAST];
   1688 			getCubeLevelFaces(texture, 0, faces);
   1689 
   1690 			if (isCubeLevelSampleResultValid(faces, sampler, sampler.magFilter, prec, faceCoords, result))
   1691 				return true;
   1692 		}
   1693 
   1694 		if (canBeMinified)
   1695 		{
   1696 			const bool	isNearestMipmap	= isNearestMipmapFilter(sampler.minFilter);
   1697 			const bool	isLinearMipmap	= isLinearMipmapFilter(sampler.minFilter);
   1698 			const int	minTexLevel		= 0;
   1699 			const int	maxTexLevel		= texture.getNumLevels()-1;
   1700 
   1701 			DE_ASSERT(minTexLevel <= maxTexLevel);
   1702 
   1703 			if (isLinearMipmap && minTexLevel < maxTexLevel)
   1704 			{
   1705 				const int	minLevel	= de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1);
   1706 				const int	maxLevel	= de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1);
   1707 
   1708 				DE_ASSERT(minLevel <= maxLevel);
   1709 
   1710 				for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++)
   1711 				{
   1712 					const float				minF	= de::clamp(minLod - float(levelNdx), 0.0f, 1.0f);
   1713 					const float				maxF	= de::clamp(maxLod - float(levelNdx), 0.0f, 1.0f);
   1714 
   1715 					ConstPixelBufferAccess	faces0[CUBEFACE_LAST];
   1716 					ConstPixelBufferAccess	faces1[CUBEFACE_LAST];
   1717 
   1718 					getCubeLevelFaces(texture, levelNdx,		faces0);
   1719 					getCubeLevelFaces(texture, levelNdx + 1,	faces1);
   1720 
   1721 					if (isCubeMipmapLinearSampleResultValid(faces0, faces1, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, Vec2(minF, maxF), result))
   1722 						return true;
   1723 				}
   1724 			}
   1725 			else if (isNearestMipmap)
   1726 			{
   1727 				// \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made
   1728 				//		 decision to allow floor(lod + 0.5) as well.
   1729 				const int	minLevel	= de::clamp((int)deFloatCeil(minLod + 0.5f) - 1,	minTexLevel, maxTexLevel);
   1730 				const int	maxLevel	= de::clamp((int)deFloatFloor(maxLod + 0.5f),		minTexLevel, maxTexLevel);
   1731 
   1732 				DE_ASSERT(minLevel <= maxLevel);
   1733 
   1734 				for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++)
   1735 				{
   1736 					ConstPixelBufferAccess faces[CUBEFACE_LAST];
   1737 					getCubeLevelFaces(texture, levelNdx, faces);
   1738 
   1739 					if (isCubeLevelSampleResultValid(faces, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, result))
   1740 						return true;
   1741 				}
   1742 			}
   1743 			else
   1744 			{
   1745 				ConstPixelBufferAccess faces[CUBEFACE_LAST];
   1746 				getCubeLevelFaces(texture, 0, faces);
   1747 
   1748 				if (isCubeLevelSampleResultValid(faces, sampler, sampler.minFilter, prec, faceCoords, result))
   1749 					return true;
   1750 			}
   1751 		}
   1752 	}
   1753 
   1754 	return false;
   1755 }
   1756 
   1757 static inline IVec2 computeLayerRange (int numLayers, int numCoordBits, float layerCoord)
   1758 {
   1759 	const float	err		= computeFloatingPointError(layerCoord, numCoordBits);
   1760 	const int	minL	= (int)deFloatFloor(layerCoord - err + 0.5f);		// Round down
   1761 	const int	maxL	= (int)deFloatCeil(layerCoord + err + 0.5f) - 1;	// Round up
   1762 
   1763 	DE_ASSERT(minL <= maxL);
   1764 
   1765 	return IVec2(de::clamp(minL, 0, numLayers-1), de::clamp(maxL, 0, numLayers-1));
   1766 }
   1767 
   1768 bool isLookupResultValid (const Texture1DArrayView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec2& coord, const Vec2& lodBounds, const Vec4& result)
   1769 {
   1770 	const IVec2		layerRange		= computeLayerRange(texture.getNumLayers(), prec.coordBits.y(), coord.y());
   1771 	const float		coordX			= coord.x();
   1772 	const float		minLod			= lodBounds.x();
   1773 	const float		maxLod			= lodBounds.y();
   1774 	const bool		canBeMagnified	= minLod <= sampler.lodThreshold;
   1775 	const bool		canBeMinified	= maxLod > sampler.lodThreshold;
   1776 
   1777 	DE_ASSERT(isSamplerSupported(sampler));
   1778 
   1779 	for (int layer = layerRange.x(); layer <= layerRange.y(); layer++)
   1780 	{
   1781 		if (canBeMagnified)
   1782 		{
   1783 			if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coordX, layer, result))
   1784 				return true;
   1785 		}
   1786 
   1787 		if (canBeMinified)
   1788 		{
   1789 			const bool	isNearestMipmap	= isNearestMipmapFilter(sampler.minFilter);
   1790 			const bool	isLinearMipmap	= isLinearMipmapFilter(sampler.minFilter);
   1791 			const int	minTexLevel		= 0;
   1792 			const int	maxTexLevel		= texture.getNumLevels()-1;
   1793 
   1794 			DE_ASSERT(minTexLevel <= maxTexLevel);
   1795 
   1796 			if (isLinearMipmap && minTexLevel < maxTexLevel)
   1797 			{
   1798 				const int		minLevel		= de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1);
   1799 				const int		maxLevel		= de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1);
   1800 
   1801 				DE_ASSERT(minLevel <= maxLevel);
   1802 
   1803 				for (int level = minLevel; level <= maxLevel; level++)
   1804 				{
   1805 					const float		minF	= de::clamp(minLod - float(level), 0.0f, 1.0f);
   1806 					const float		maxF	= de::clamp(maxLod - float(level), 0.0f, 1.0f);
   1807 
   1808 					if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coordX, layer, Vec2(minF, maxF), result))
   1809 						return true;
   1810 				}
   1811 			}
   1812 			else if (isNearestMipmap)
   1813 			{
   1814 				// \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made
   1815 				//		 decision to allow floor(lod + 0.5) as well.
   1816 				const int		minLevel		= de::clamp((int)deFloatCeil(minLod + 0.5f) - 1,	minTexLevel, maxTexLevel);
   1817 				const int		maxLevel		= de::clamp((int)deFloatFloor(maxLod + 0.5f),		minTexLevel, maxTexLevel);
   1818 
   1819 				DE_ASSERT(minLevel <= maxLevel);
   1820 
   1821 				for (int level = minLevel; level <= maxLevel; level++)
   1822 				{
   1823 					if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coordX, layer, result))
   1824 						return true;
   1825 				}
   1826 			}
   1827 			else
   1828 			{
   1829 				if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coordX, layer, result))
   1830 					return true;
   1831 			}
   1832 		}
   1833 	}
   1834 
   1835 	return false;
   1836 }
   1837 
   1838 bool isLookupResultValid (const Texture2DArrayView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec2& lodBounds, const Vec4& result)
   1839 {
   1840 	const IVec2		layerRange		= computeLayerRange(texture.getNumLayers(), prec.coordBits.z(), coord.z());
   1841 	const Vec2		coordXY			= coord.swizzle(0,1);
   1842 	const float		minLod			= lodBounds.x();
   1843 	const float		maxLod			= lodBounds.y();
   1844 	const bool		canBeMagnified	= minLod <= sampler.lodThreshold;
   1845 	const bool		canBeMinified	= maxLod > sampler.lodThreshold;
   1846 
   1847 	DE_ASSERT(isSamplerSupported(sampler));
   1848 
   1849 	for (int layer = layerRange.x(); layer <= layerRange.y(); layer++)
   1850 	{
   1851 		if (canBeMagnified)
   1852 		{
   1853 			if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coordXY, layer, result))
   1854 				return true;
   1855 		}
   1856 
   1857 		if (canBeMinified)
   1858 		{
   1859 			const bool	isNearestMipmap	= isNearestMipmapFilter(sampler.minFilter);
   1860 			const bool	isLinearMipmap	= isLinearMipmapFilter(sampler.minFilter);
   1861 			const int	minTexLevel		= 0;
   1862 			const int	maxTexLevel		= texture.getNumLevels()-1;
   1863 
   1864 			DE_ASSERT(minTexLevel <= maxTexLevel);
   1865 
   1866 			if (isLinearMipmap && minTexLevel < maxTexLevel)
   1867 			{
   1868 				const int		minLevel		= de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1);
   1869 				const int		maxLevel		= de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1);
   1870 
   1871 				DE_ASSERT(minLevel <= maxLevel);
   1872 
   1873 				for (int level = minLevel; level <= maxLevel; level++)
   1874 				{
   1875 					const float		minF	= de::clamp(minLod - float(level), 0.0f, 1.0f);
   1876 					const float		maxF	= de::clamp(maxLod - float(level), 0.0f, 1.0f);
   1877 
   1878 					if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coordXY, layer, Vec2(minF, maxF), result))
   1879 						return true;
   1880 				}
   1881 			}
   1882 			else if (isNearestMipmap)
   1883 			{
   1884 				// \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made
   1885 				//		 decision to allow floor(lod + 0.5) as well.
   1886 				const int		minLevel		= de::clamp((int)deFloatCeil(minLod + 0.5f) - 1,	minTexLevel, maxTexLevel);
   1887 				const int		maxLevel		= de::clamp((int)deFloatFloor(maxLod + 0.5f),		minTexLevel, maxTexLevel);
   1888 
   1889 				DE_ASSERT(minLevel <= maxLevel);
   1890 
   1891 				for (int level = minLevel; level <= maxLevel; level++)
   1892 				{
   1893 					if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coordXY, layer, result))
   1894 						return true;
   1895 				}
   1896 			}
   1897 			else
   1898 			{
   1899 				if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coordXY, layer, result))
   1900 					return true;
   1901 			}
   1902 		}
   1903 	}
   1904 
   1905 	return false;
   1906 }
   1907 
   1908 static bool isLevelSampleResultValid (const ConstPixelBufferAccess&		level,
   1909 									  const Sampler&					sampler,
   1910 									  const Sampler::FilterMode			filterMode,
   1911 									  const LookupPrecision&			prec,
   1912 									  const Vec3&						coord,
   1913 									  const Vec4&						result)
   1914 {
   1915 	if (filterMode == Sampler::LINEAR)
   1916 		return isLinearSampleResultValid(level, sampler, prec, coord, result);
   1917 	else
   1918 		return isNearestSampleResultValid(level, sampler, prec, coord, result);
   1919 }
   1920 
   1921 static bool isMipmapLinearSampleResultValid (const ConstPixelBufferAccess&		level0,
   1922 										     const ConstPixelBufferAccess&		level1,
   1923 											 const Sampler&						sampler,
   1924 										     const Sampler::FilterMode			levelFilter,
   1925 										     const LookupPrecision&				prec,
   1926 										     const Vec3&						coord,
   1927 										     const Vec2&						fBounds,
   1928 										     const Vec4&						result)
   1929 {
   1930 	if (levelFilter == Sampler::LINEAR)
   1931 		return isLinearMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, fBounds, result);
   1932 	else
   1933 		return isNearestMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, fBounds, result);
   1934 }
   1935 
   1936 bool isLookupResultValid (const Texture3DView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec2& lodBounds, const Vec4& result)
   1937 {
   1938 	const float		minLod			= lodBounds.x();
   1939 	const float		maxLod			= lodBounds.y();
   1940 	const bool		canBeMagnified	= minLod <= sampler.lodThreshold;
   1941 	const bool		canBeMinified	= maxLod > sampler.lodThreshold;
   1942 
   1943 	DE_ASSERT(isSamplerSupported(sampler));
   1944 
   1945 	if (canBeMagnified)
   1946 	{
   1947 		if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coord, result))
   1948 			return true;
   1949 	}
   1950 
   1951 	if (canBeMinified)
   1952 	{
   1953 		const bool	isNearestMipmap	= isNearestMipmapFilter(sampler.minFilter);
   1954 		const bool	isLinearMipmap	= isLinearMipmapFilter(sampler.minFilter);
   1955 		const int	minTexLevel		= 0;
   1956 		const int	maxTexLevel		= texture.getNumLevels()-1;
   1957 
   1958 		DE_ASSERT(minTexLevel <= maxTexLevel);
   1959 
   1960 		if (isLinearMipmap && minTexLevel < maxTexLevel)
   1961 		{
   1962 			const int		minLevel		= de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1);
   1963 			const int		maxLevel		= de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1);
   1964 
   1965 			DE_ASSERT(minLevel <= maxLevel);
   1966 
   1967 			for (int level = minLevel; level <= maxLevel; level++)
   1968 			{
   1969 				const float		minF	= de::clamp(minLod - float(level), 0.0f, 1.0f);
   1970 				const float		maxF	= de::clamp(maxLod - float(level), 0.0f, 1.0f);
   1971 
   1972 				if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coord, Vec2(minF, maxF), result))
   1973 					return true;
   1974 			}
   1975 		}
   1976 		else if (isNearestMipmap)
   1977 		{
   1978 			// \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made
   1979 			//		 decision to allow floor(lod + 0.5) as well.
   1980 			const int		minLevel		= de::clamp((int)deFloatCeil(minLod + 0.5f) - 1,	minTexLevel, maxTexLevel);
   1981 			const int		maxLevel		= de::clamp((int)deFloatFloor(maxLod + 0.5f),		minTexLevel, maxTexLevel);
   1982 
   1983 			DE_ASSERT(minLevel <= maxLevel);
   1984 
   1985 			for (int level = minLevel; level <= maxLevel; level++)
   1986 			{
   1987 				if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coord, result))
   1988 					return true;
   1989 			}
   1990 		}
   1991 		else
   1992 		{
   1993 			if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coord, result))
   1994 				return true;
   1995 		}
   1996 	}
   1997 
   1998 	return false;
   1999 }
   2000 
   2001 static void getCubeArrayLevelFaces (const TextureCubeArrayView& texture, const int levelNdx, const int layerNdx, ConstPixelBufferAccess (&out)[CUBEFACE_LAST])
   2002 {
   2003 	const ConstPixelBufferAccess&	level		= texture.getLevel(levelNdx);
   2004 	const int						layerDepth	= layerNdx * 6;
   2005 
   2006 	for (int faceNdx = 0; faceNdx < CUBEFACE_LAST; faceNdx++)
   2007 	{
   2008 		const CubeFace face = (CubeFace)faceNdx;
   2009 		out[faceNdx] = getSubregion(level, 0, 0, layerDepth + getCubeArrayFaceIndex(face), level.getWidth(), level.getHeight(), 1);
   2010 	}
   2011 }
   2012 
   2013 bool isLookupResultValid (const TextureCubeArrayView& texture, const Sampler& sampler, const LookupPrecision& prec, const IVec4& coordBits, const Vec4& coord, const Vec2& lodBounds, const Vec4& result)
   2014 {
   2015 	const IVec2	layerRange						= computeLayerRange(texture.getNumLayers(), coordBits.w(), coord.w());
   2016 	const Vec3	layerCoord						= coord.toWidth<3>();
   2017 	int			numPossibleFaces				= 0;
   2018 	CubeFace	possibleFaces[CUBEFACE_LAST];
   2019 
   2020 	DE_ASSERT(isSamplerSupported(sampler));
   2021 
   2022 	getPossibleCubeFaces(layerCoord, prec.coordBits, &possibleFaces[0], numPossibleFaces);
   2023 
   2024 	if (numPossibleFaces == 0)
   2025 		return true; // Result is undefined.
   2026 
   2027 	for (int layerNdx = layerRange.x(); layerNdx <= layerRange.y(); layerNdx++)
   2028 	{
   2029 		for (int tryFaceNdx = 0; tryFaceNdx < numPossibleFaces; tryFaceNdx++)
   2030 		{
   2031 			const CubeFaceFloatCoords	faceCoords		(possibleFaces[tryFaceNdx], projectToFace(possibleFaces[tryFaceNdx], layerCoord));
   2032 			const float					minLod			= lodBounds.x();
   2033 			const float					maxLod			= lodBounds.y();
   2034 			const bool					canBeMagnified	= minLod <= sampler.lodThreshold;
   2035 			const bool					canBeMinified	= maxLod > sampler.lodThreshold;
   2036 
   2037 			if (canBeMagnified)
   2038 			{
   2039 				ConstPixelBufferAccess faces[CUBEFACE_LAST];
   2040 				getCubeArrayLevelFaces(texture, 0, layerNdx, faces);
   2041 
   2042 				if (isCubeLevelSampleResultValid(faces, sampler, sampler.magFilter, prec, faceCoords, result))
   2043 					return true;
   2044 			}
   2045 
   2046 			if (canBeMinified)
   2047 			{
   2048 				const bool	isNearestMipmap	= isNearestMipmapFilter(sampler.minFilter);
   2049 				const bool	isLinearMipmap	= isLinearMipmapFilter(sampler.minFilter);
   2050 				const int	minTexLevel		= 0;
   2051 				const int	maxTexLevel		= texture.getNumLevels()-1;
   2052 
   2053 				DE_ASSERT(minTexLevel <= maxTexLevel);
   2054 
   2055 				if (isLinearMipmap && minTexLevel < maxTexLevel)
   2056 				{
   2057 					const int	minLevel	= de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1);
   2058 					const int	maxLevel	= de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1);
   2059 
   2060 					DE_ASSERT(minLevel <= maxLevel);
   2061 
   2062 					for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++)
   2063 					{
   2064 						const float		minF	= de::clamp(minLod - float(levelNdx), 0.0f, 1.0f);
   2065 						const float		maxF	= de::clamp(maxLod - float(levelNdx), 0.0f, 1.0f);
   2066 
   2067 						ConstPixelBufferAccess	faces0[CUBEFACE_LAST];
   2068 						ConstPixelBufferAccess	faces1[CUBEFACE_LAST];
   2069 
   2070 						getCubeArrayLevelFaces(texture, levelNdx,		layerNdx,	faces0);
   2071 						getCubeArrayLevelFaces(texture, levelNdx + 1,	layerNdx,	faces1);
   2072 
   2073 						if (isCubeMipmapLinearSampleResultValid(faces0, faces1, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, Vec2(minF, maxF), result))
   2074 							return true;
   2075 					}
   2076 				}
   2077 				else if (isNearestMipmap)
   2078 				{
   2079 					// \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made
   2080 					//		 decision to allow floor(lod + 0.5) as well.
   2081 					const int	minLevel	= de::clamp((int)deFloatCeil(minLod + 0.5f) - 1,	minTexLevel, maxTexLevel);
   2082 					const int	maxLevel	= de::clamp((int)deFloatFloor(maxLod + 0.5f),		minTexLevel, maxTexLevel);
   2083 
   2084 					DE_ASSERT(minLevel <= maxLevel);
   2085 
   2086 					for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++)
   2087 					{
   2088 						ConstPixelBufferAccess faces[CUBEFACE_LAST];
   2089 						getCubeArrayLevelFaces(texture, levelNdx, layerNdx, faces);
   2090 
   2091 						if (isCubeLevelSampleResultValid(faces, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, result))
   2092 							return true;
   2093 					}
   2094 				}
   2095 				else
   2096 				{
   2097 					ConstPixelBufferAccess faces[CUBEFACE_LAST];
   2098 					getCubeArrayLevelFaces(texture, 0, layerNdx, faces);
   2099 
   2100 					if (isCubeLevelSampleResultValid(faces, sampler, sampler.minFilter, prec, faceCoords, result))
   2101 						return true;
   2102 				}
   2103 			}
   2104 		}
   2105 	}
   2106 
   2107 	return false;
   2108 }
   2109 
   2110 Vec4 computeFixedPointThreshold (const IVec4& bits)
   2111 {
   2112 	return computeFixedPointError(bits);
   2113 }
   2114 
   2115 Vec4 computeFloatingPointThreshold (const IVec4& bits, const Vec4& value)
   2116 {
   2117 	return computeFloatingPointError(value, bits);
   2118 }
   2119 
   2120 Vec2 computeLodBoundsFromDerivates (const float dudx, const float dvdx, const float dwdx, const float dudy, const float dvdy, const float dwdy, const LodPrecision& prec)
   2121 {
   2122 	const float		mux			= deFloatAbs(dudx);
   2123 	const float		mvx			= deFloatAbs(dvdx);
   2124 	const float		mwx			= deFloatAbs(dwdx);
   2125 	const float		muy			= deFloatAbs(dudy);
   2126 	const float		mvy			= deFloatAbs(dvdy);
   2127 	const float		mwy			= deFloatAbs(dwdy);
   2128 
   2129 	// Ideal:
   2130 	// px = deFloatSqrt2(mux*mux + mvx*mvx + mwx*mwx);
   2131 	// py = deFloatSqrt2(muy*muy + mvy*mvy + mwy*mwy);
   2132 
   2133 	// fx, fy estimate lower bounds
   2134 	const float		fxMin		= de::max(de::max(mux, mvx), mwx);
   2135 	const float		fyMin		= de::max(de::max(muy, mvy), mwy);
   2136 
   2137 	// fx, fy estimate upper bounds
   2138 	const float		sqrt2		= deFloatSqrt(2.0f);
   2139 	const float		fxMax		= sqrt2 * (mux + mvx + mwx);
   2140 	const float		fyMax		= sqrt2 * (muy + mvy + mwy);
   2141 
   2142 	// p = max(px, py) (isotropic filtering)
   2143 	const float		pMin		= de::max(fxMin, fyMin);
   2144 	const float		pMax		= de::max(fxMax, fyMax);
   2145 
   2146 	// error terms
   2147 	const float		pMinErr		= computeFloatingPointError(pMin, prec.derivateBits);
   2148 	const float		pMaxErr		= computeFloatingPointError(pMax, prec.derivateBits);
   2149 
   2150 	const float		minLod		= deFloatLog2(pMin-pMinErr);
   2151 	const float		maxLod		= deFloatLog2(pMax+pMaxErr);
   2152 	const float		lodErr		= computeFixedPointError(prec.lodBits);
   2153 
   2154 	DE_ASSERT(minLod <= maxLod);
   2155 	return Vec2(minLod-lodErr, maxLod+lodErr);
   2156 }
   2157 
   2158 Vec2 computeLodBoundsFromDerivates (const float dudx, const float dvdx, const float dudy, const float dvdy, const LodPrecision& prec)
   2159 {
   2160 	return computeLodBoundsFromDerivates(dudx, dvdx, 0.0f, dudy, dvdy, 0.0f, prec);
   2161 }
   2162 
   2163 Vec2 computeLodBoundsFromDerivates (const float dudx, const float dudy, const LodPrecision& prec)
   2164 {
   2165 	return computeLodBoundsFromDerivates(dudx, 0.0f, 0.0f, dudy, 0.0f, 0.0f, prec);
   2166 }
   2167 
   2168 Vec2 computeCubeLodBoundsFromDerivates (const Vec3& coord, const Vec3& coordDx, const Vec3& coordDy, const int faceSize, const LodPrecision& prec)
   2169 {
   2170 	const bool			allowBrokenEdgeDerivate		= false;
   2171 	const CubeFace		face						= selectCubeFace(coord);
   2172 	int					maNdx						= 0;
   2173 	int					sNdx						= 0;
   2174 	int					tNdx						= 0;
   2175 
   2176 	// \note Derivate signs don't matter when computing lod
   2177 	switch (face)
   2178 	{
   2179 		case CUBEFACE_NEGATIVE_X:
   2180 		case CUBEFACE_POSITIVE_X: maNdx = 0; sNdx = 2; tNdx = 1; break;
   2181 		case CUBEFACE_NEGATIVE_Y:
   2182 		case CUBEFACE_POSITIVE_Y: maNdx = 1; sNdx = 0; tNdx = 2; break;
   2183 		case CUBEFACE_NEGATIVE_Z:
   2184 		case CUBEFACE_POSITIVE_Z: maNdx = 2; sNdx = 0; tNdx = 1; break;
   2185 		default:
   2186 			DE_ASSERT(DE_FALSE);
   2187 	}
   2188 
   2189 	{
   2190 		const float		sc		= coord[sNdx];
   2191 		const float		tc		= coord[tNdx];
   2192 		const float		ma		= de::abs(coord[maNdx]);
   2193 		const float		scdx	= coordDx[sNdx];
   2194 		const float		tcdx	= coordDx[tNdx];
   2195 		const float		madx	= de::abs(coordDx[maNdx]);
   2196 		const float		scdy	= coordDy[sNdx];
   2197 		const float		tcdy	= coordDy[tNdx];
   2198 		const float		mady	= de::abs(coordDy[maNdx]);
   2199 		const float		dudx	= float(faceSize) * 0.5f * (scdx*ma - sc*madx) / (ma*ma);
   2200 		const float		dvdx	= float(faceSize) * 0.5f * (tcdx*ma - tc*madx) / (ma*ma);
   2201 		const float		dudy	= float(faceSize) * 0.5f * (scdy*ma - sc*mady) / (ma*ma);
   2202 		const float		dvdy	= float(faceSize) * 0.5f * (tcdy*ma - tc*mady) / (ma*ma);
   2203 		const Vec2		bounds	= computeLodBoundsFromDerivates(dudx, dvdx, dudy, dvdy, prec);
   2204 
   2205 		// Implementations may compute derivate from projected (s, t) resulting in incorrect values at edges.
   2206 		if (allowBrokenEdgeDerivate)
   2207 		{
   2208 			const Vec3			dxErr		= computeFloatingPointError(coordDx, IVec3(prec.derivateBits));
   2209 			const Vec3			dyErr		= computeFloatingPointError(coordDy, IVec3(prec.derivateBits));
   2210 			const Vec3			xoffs		= abs(coordDx) + dxErr;
   2211 			const Vec3			yoffs		= abs(coordDy) + dyErr;
   2212 
   2213 			if (selectCubeFace(coord + xoffs) != face ||
   2214 				selectCubeFace(coord - xoffs) != face ||
   2215 				selectCubeFace(coord + yoffs) != face ||
   2216 				selectCubeFace(coord - yoffs) != face)
   2217 			{
   2218 				return Vec2(bounds.x(), 1000.0f);
   2219 			}
   2220 		}
   2221 
   2222 		return bounds;
   2223 	}
   2224 }
   2225 
   2226 Vec2 clampLodBounds (const Vec2& lodBounds, const Vec2& lodMinMax, const LodPrecision& prec)
   2227 {
   2228 	const float lodErr	= computeFixedPointError(prec.lodBits);
   2229 	const float	a		= lodMinMax.x();
   2230 	const float	b		= lodMinMax.y();
   2231 	return Vec2(de::clamp(lodBounds.x(), a-lodErr, b-lodErr), de::clamp(lodBounds.y(), a+lodErr, b+lodErr));
   2232 }
   2233 
   2234 bool isLevel1DLookupResultValid (const ConstPixelBufferAccess&	access,
   2235 								 const Sampler&					sampler,
   2236 								 TexLookupScaleMode				scaleMode,
   2237 								 const LookupPrecision&			prec,
   2238 								 const float					coordX,
   2239 								 const int						coordY,
   2240 								 const Vec4&					result)
   2241 {
   2242 	const Sampler::FilterMode filterMode = scaleMode == TEX_LOOKUP_SCALE_MAGNIFY ? sampler.magFilter : sampler.minFilter;
   2243 	return isLevelSampleResultValid(access, sampler, filterMode, prec, coordX, coordY, result);
   2244 }
   2245 
   2246 bool isLevel1DLookupResultValid (const ConstPixelBufferAccess&	access,
   2247 								 const Sampler&					sampler,
   2248 								 TexLookupScaleMode				scaleMode,
   2249 								 const IntLookupPrecision&		prec,
   2250 								 const float					coordX,
   2251 								 const int						coordY,
   2252 								 const IVec4&					result)
   2253 {
   2254 	DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST);
   2255 	DE_UNREF(scaleMode);
   2256 	return isNearestSampleResultValid(access, sampler, prec, coordX, coordY, result);
   2257 }
   2258 
   2259 bool isLevel1DLookupResultValid (const ConstPixelBufferAccess&	access,
   2260 								 const Sampler&					sampler,
   2261 								 TexLookupScaleMode				scaleMode,
   2262 								 const IntLookupPrecision&		prec,
   2263 								 const float					coordX,
   2264 								 const int						coordY,
   2265 								 const UVec4&					result)
   2266 {
   2267 	DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST);
   2268 	DE_UNREF(scaleMode);
   2269 	return isNearestSampleResultValid(access, sampler, prec, coordX, coordY, result);
   2270 }
   2271 
   2272 bool isLevel2DLookupResultValid (const ConstPixelBufferAccess&	access,
   2273 								 const Sampler&					sampler,
   2274 								 TexLookupScaleMode				scaleMode,
   2275 								 const LookupPrecision&			prec,
   2276 								 const Vec2&					coord,
   2277 								 const int						coordZ,
   2278 								 const Vec4&					result)
   2279 {
   2280 	const Sampler::FilterMode filterMode = scaleMode == TEX_LOOKUP_SCALE_MAGNIFY ? sampler.magFilter : sampler.minFilter;
   2281 	return isLevelSampleResultValid(access, sampler, filterMode, prec, coord, coordZ, result);
   2282 }
   2283 
   2284 bool isLevel2DLookupResultValid (const ConstPixelBufferAccess&	access,
   2285 								 const Sampler&					sampler,
   2286 								 TexLookupScaleMode				scaleMode,
   2287 								 const IntLookupPrecision&		prec,
   2288 								 const Vec2&					coord,
   2289 								 const int						coordZ,
   2290 								 const IVec4&					result)
   2291 {
   2292 	DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST);
   2293 	DE_UNREF(scaleMode);
   2294 	return isNearestSampleResultValid(access, sampler, prec, coord, coordZ, result);
   2295 }
   2296 
   2297 bool isLevel2DLookupResultValid (const ConstPixelBufferAccess&	access,
   2298 								 const Sampler&					sampler,
   2299 								 TexLookupScaleMode				scaleMode,
   2300 								 const IntLookupPrecision&		prec,
   2301 								 const Vec2&					coord,
   2302 								 const int						coordZ,
   2303 								 const UVec4&					result)
   2304 {
   2305 	DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST);
   2306 	DE_UNREF(scaleMode);
   2307 	return isNearestSampleResultValid(access, sampler, prec, coord, coordZ, result);
   2308 }
   2309 
   2310 bool isLevel3DLookupResultValid (const ConstPixelBufferAccess&	access,
   2311 								 const Sampler&					sampler,
   2312 								 TexLookupScaleMode				scaleMode,
   2313 								 const LookupPrecision&			prec,
   2314 								 const Vec3&					coord,
   2315 								 const Vec4&					result)
   2316 {
   2317 	const tcu::Sampler::FilterMode filterMode = scaleMode == TEX_LOOKUP_SCALE_MAGNIFY ? sampler.magFilter : sampler.minFilter;
   2318 	return isLevelSampleResultValid(access, sampler, filterMode, prec, coord, result);
   2319 }
   2320 
   2321 bool isLevel3DLookupResultValid (const ConstPixelBufferAccess&	access,
   2322 								 const Sampler&					sampler,
   2323 								 TexLookupScaleMode				scaleMode,
   2324 								 const IntLookupPrecision&		prec,
   2325 								 const Vec3&					coord,
   2326 								 const IVec4&					result)
   2327 {
   2328 	DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST);
   2329 	DE_UNREF(scaleMode);
   2330 	return isNearestSampleResultValid(access, sampler, prec, coord, result);
   2331 }
   2332 
   2333 bool isLevel3DLookupResultValid (const ConstPixelBufferAccess&	access,
   2334 								 const Sampler&					sampler,
   2335 								 TexLookupScaleMode				scaleMode,
   2336 								 const IntLookupPrecision&		prec,
   2337 								 const Vec3&					coord,
   2338 								 const UVec4&					result)
   2339 {
   2340 	DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST);
   2341 	DE_UNREF(scaleMode);
   2342 	return isNearestSampleResultValid(access, sampler, prec, coord, result);
   2343 }
   2344 
   2345 template<typename PrecType, typename ScalarType>
   2346 static bool isGatherOffsetsResultValid (const ConstPixelBufferAccess&	level,
   2347 										const Sampler&					sampler,
   2348 										const PrecType&					prec,
   2349 										const Vec2&						coord,
   2350 										int								coordZ,
   2351 										int								componentNdx,
   2352 										const IVec2						(&offsets)[4],
   2353 										const Vector<ScalarType, 4>&	result)
   2354 {
   2355 	const Vec2	uBounds		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coord.x(), prec.coordBits.x(), prec.uvwBits.x());
   2356 	const Vec2	vBounds		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(), coord.y(), prec.coordBits.y(), prec.uvwBits.y());
   2357 
   2358 	// Integer coordinate bounds for (x0, y0) - without wrap mode
   2359 	const int	minI		= deFloorFloatToInt32(uBounds.x()-0.5f);
   2360 	const int	maxI		= deFloorFloatToInt32(uBounds.y()-0.5f);
   2361 	const int	minJ		= deFloorFloatToInt32(vBounds.x()-0.5f);
   2362 	const int	maxJ		= deFloorFloatToInt32(vBounds.y()-0.5f);
   2363 
   2364 	const int	w			= level.getWidth();
   2365 	const int	h			= level.getHeight();
   2366 
   2367 	for (int j = minJ; j <= maxJ; j++)
   2368 	{
   2369 		for (int i = minI; i <= maxI; i++)
   2370 		{
   2371 			Vector<ScalarType, 4> color;
   2372 			for (int offNdx = 0; offNdx < 4; offNdx++)
   2373 			{
   2374 				// offNdx-th coordinate offset and then wrapped.
   2375 				const int x = wrap(sampler.wrapS, i+offsets[offNdx].x(), w);
   2376 				const int y = wrap(sampler.wrapT, j+offsets[offNdx].y(), h);
   2377 				color[offNdx] = lookup<ScalarType>(level, sampler, x, y, coordZ)[componentNdx];
   2378 			}
   2379 
   2380 			if (isColorValid(prec, color, result))
   2381 				return true;
   2382 		}
   2383 	}
   2384 
   2385 	return false;
   2386 }
   2387 
   2388 bool isGatherOffsetsResultValid (const Texture2DView&			texture,
   2389 								 const Sampler&					sampler,
   2390 								 const LookupPrecision&			prec,
   2391 								 const Vec2&					coord,
   2392 								 int							componentNdx,
   2393 								 const IVec2					(&offsets)[4],
   2394 								 const Vec4&					result)
   2395 {
   2396 	return isGatherOffsetsResultValid(texture.getLevel(0), sampler, prec, coord, 0, componentNdx, offsets, result);
   2397 }
   2398 
   2399 bool isGatherOffsetsResultValid (const Texture2DView&			texture,
   2400 								 const Sampler&					sampler,
   2401 								 const IntLookupPrecision&		prec,
   2402 								 const Vec2&					coord,
   2403 								 int							componentNdx,
   2404 								 const IVec2					(&offsets)[4],
   2405 								 const IVec4&					result)
   2406 {
   2407 	return isGatherOffsetsResultValid(texture.getLevel(0), sampler, prec, coord, 0, componentNdx, offsets, result);
   2408 }
   2409 
   2410 bool isGatherOffsetsResultValid (const Texture2DView&			texture,
   2411 								 const Sampler&					sampler,
   2412 								 const IntLookupPrecision&		prec,
   2413 								 const Vec2&					coord,
   2414 								 int							componentNdx,
   2415 								 const IVec2					(&offsets)[4],
   2416 								 const UVec4&					result)
   2417 {
   2418 	return isGatherOffsetsResultValid(texture.getLevel(0), sampler, prec, coord, 0, componentNdx, offsets, result);
   2419 }
   2420 
   2421 template <typename PrecType, typename ScalarType>
   2422 static bool is2DArrayGatherOffsetsResultValid (const Texture2DArrayView&		texture,
   2423 											   const Sampler&					sampler,
   2424 											   const PrecType&					prec,
   2425 											   const Vec3&						coord,
   2426 											   int								componentNdx,
   2427 											   const IVec2						(&offsets)[4],
   2428 											   const Vector<ScalarType, 4>&		result)
   2429 {
   2430 	const IVec2 layerRange = computeLayerRange(texture.getNumLayers(), prec.coordBits.z(), coord.z());
   2431 	for (int layer = layerRange.x(); layer <= layerRange.y(); layer++)
   2432 	{
   2433 		if (isGatherOffsetsResultValid(texture.getLevel(0), sampler, prec, coord.swizzle(0,1), layer, componentNdx, offsets, result))
   2434 			return true;
   2435 	}
   2436 	return false;
   2437 }
   2438 
   2439 bool isGatherOffsetsResultValid (const Texture2DArrayView&		texture,
   2440 								 const Sampler&					sampler,
   2441 								 const LookupPrecision&			prec,
   2442 								 const Vec3&					coord,
   2443 								 int							componentNdx,
   2444 								 const IVec2					(&offsets)[4],
   2445 								 const Vec4&					result)
   2446 {
   2447 	return is2DArrayGatherOffsetsResultValid(texture, sampler, prec, coord, componentNdx, offsets, result);
   2448 }
   2449 
   2450 bool isGatherOffsetsResultValid (const Texture2DArrayView&		texture,
   2451 								 const Sampler&					sampler,
   2452 								 const IntLookupPrecision&		prec,
   2453 								 const Vec3&					coord,
   2454 								 int							componentNdx,
   2455 								 const IVec2					(&offsets)[4],
   2456 								 const IVec4&					result)
   2457 {
   2458 	return is2DArrayGatherOffsetsResultValid(texture, sampler, prec, coord, componentNdx, offsets, result);
   2459 }
   2460 
   2461 bool isGatherOffsetsResultValid (const Texture2DArrayView&		texture,
   2462 								 const Sampler&					sampler,
   2463 								 const IntLookupPrecision&		prec,
   2464 								 const Vec3&					coord,
   2465 								 int							componentNdx,
   2466 								 const IVec2					(&offsets)[4],
   2467 								 const UVec4&					result)
   2468 {
   2469 	return is2DArrayGatherOffsetsResultValid(texture, sampler, prec, coord, componentNdx, offsets, result);
   2470 }
   2471 
   2472 template<typename PrecType, typename ScalarType>
   2473 static bool isGatherResultValid (const TextureCubeView&			texture,
   2474 								 const Sampler&					sampler,
   2475 								 const PrecType&				prec,
   2476 								 const CubeFaceFloatCoords&		coords,
   2477 								 int							componentNdx,
   2478 								 const Vector<ScalarType, 4>&	result)
   2479 {
   2480 	const int	size		= texture.getLevelFace(0, coords.face).getWidth();
   2481 
   2482 	const Vec2	uBounds		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, size, coords.s, prec.coordBits.x(), prec.uvwBits.x());
   2483 	const Vec2	vBounds		= computeNonNormalizedCoordBounds(sampler.normalizedCoords, size, coords.t, prec.coordBits.y(), prec.uvwBits.y());
   2484 
   2485 	// Integer coordinate bounds for (x0,y0) - without wrap mode
   2486 	const int	minI		= deFloorFloatToInt32(uBounds.x()-0.5f);
   2487 	const int	maxI		= deFloorFloatToInt32(uBounds.y()-0.5f);
   2488 	const int	minJ		= deFloorFloatToInt32(vBounds.x()-0.5f);
   2489 	const int	maxJ		= deFloorFloatToInt32(vBounds.y()-0.5f);
   2490 
   2491 	// Face accesses
   2492 	ConstPixelBufferAccess faces[CUBEFACE_LAST];
   2493 	for (int face = 0; face < CUBEFACE_LAST; face++)
   2494 		faces[face] = texture.getLevelFace(0, CubeFace(face));
   2495 
   2496 	for (int j = minJ; j <= maxJ; j++)
   2497 	{
   2498 		for (int i = minI; i <= maxI; i++)
   2499 		{
   2500 			static const IVec2 offsets[4] =
   2501 			{
   2502 				IVec2(0, 1),
   2503 				IVec2(1, 1),
   2504 				IVec2(1, 0),
   2505 				IVec2(0, 0)
   2506 			};
   2507 
   2508 			Vector<ScalarType, 4> color;
   2509 			for (int offNdx = 0; offNdx < 4; offNdx++)
   2510 			{
   2511 				const CubeFaceIntCoords c = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, i+offsets[offNdx].x(), j+offsets[offNdx].y()), size);
   2512 				// If any of samples is out of both edges, implementations can do pretty much anything according to spec.
   2513 				// \todo [2014-06-05 nuutti] Test the special case where all corner pixels have exactly the same color.
   2514 				//							 See also isSeamlessLinearSampleResultValid and similar.
   2515 				if (c.face == CUBEFACE_LAST)
   2516 					return true;
   2517 
   2518 				color[offNdx] = lookup<ScalarType>(faces[c.face], sampler, c.s, c.t, 0)[componentNdx];
   2519 			}
   2520 
   2521 			if (isColorValid(prec, color, result))
   2522 				return true;
   2523 		}
   2524 	}
   2525 
   2526 	return false;
   2527 }
   2528 
   2529 template <typename PrecType, typename ScalarType>
   2530 static bool isCubeGatherResultValid (const TextureCubeView&			texture,
   2531 									 const Sampler&					sampler,
   2532 									 const PrecType&				prec,
   2533 									 const Vec3&					coord,
   2534 									 int							componentNdx,
   2535 									 const Vector<ScalarType, 4>&	result)
   2536 {
   2537 	int			numPossibleFaces				= 0;
   2538 	CubeFace	possibleFaces[CUBEFACE_LAST];
   2539 
   2540 	getPossibleCubeFaces(coord, prec.coordBits, &possibleFaces[0], numPossibleFaces);
   2541 
   2542 	if (numPossibleFaces == 0)
   2543 		return true; // Result is undefined.
   2544 
   2545 	for (int tryFaceNdx = 0; tryFaceNdx < numPossibleFaces; tryFaceNdx++)
   2546 	{
   2547 		const CubeFaceFloatCoords faceCoords(possibleFaces[tryFaceNdx], projectToFace(possibleFaces[tryFaceNdx], coord));
   2548 
   2549 		if (isGatherResultValid(texture, sampler, prec, faceCoords, componentNdx, result))
   2550 			return true;
   2551 	}
   2552 
   2553 	return false;
   2554 }
   2555 
   2556 bool isGatherResultValid (const TextureCubeView&	texture,
   2557 						  const Sampler&			sampler,
   2558 						  const LookupPrecision&	prec,
   2559 						  const Vec3&				coord,
   2560 						  int						componentNdx,
   2561 						  const Vec4&				result)
   2562 {
   2563 	return isCubeGatherResultValid(texture, sampler, prec, coord, componentNdx, result);
   2564 }
   2565 
   2566 bool isGatherResultValid (const TextureCubeView&		texture,
   2567 						  const Sampler&				sampler,
   2568 						  const IntLookupPrecision&		prec,
   2569 						  const Vec3&					coord,
   2570 						  int							componentNdx,
   2571 						  const IVec4&					result)
   2572 {
   2573 	return isCubeGatherResultValid(texture, sampler, prec, coord, componentNdx, result);
   2574 }
   2575 
   2576 bool isGatherResultValid (const TextureCubeView&		texture,
   2577 						  const Sampler&				sampler,
   2578 						  const IntLookupPrecision&		prec,
   2579 						  const Vec3&					coord,
   2580 						  int							componentNdx,
   2581 						  const UVec4&					result)
   2582 {
   2583 	return isCubeGatherResultValid(texture, sampler, prec, coord, componentNdx, result);
   2584 }
   2585 
   2586 } // tcu
   2587