Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2011 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 #include "util/register_allocate.h"
     25 #include "brw_vec4.h"
     26 #include "brw_cfg.h"
     27 
     28 using namespace brw;
     29 
     30 namespace brw {
     31 
     32 static void
     33 assign(unsigned int *reg_hw_locations, backend_reg *reg)
     34 {
     35    if (reg->file == VGRF) {
     36       reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
     37       reg->offset %= REG_SIZE;
     38    }
     39 }
     40 
     41 bool
     42 vec4_visitor::reg_allocate_trivial()
     43 {
     44    unsigned int hw_reg_mapping[this->alloc.count];
     45    bool virtual_grf_used[this->alloc.count];
     46    int next;
     47 
     48    /* Calculate which virtual GRFs are actually in use after whatever
     49     * optimization passes have occurred.
     50     */
     51    for (unsigned i = 0; i < this->alloc.count; i++) {
     52       virtual_grf_used[i] = false;
     53    }
     54 
     55    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
     56       if (inst->dst.file == VGRF)
     57          virtual_grf_used[inst->dst.nr] = true;
     58 
     59       for (unsigned i = 0; i < 3; i++) {
     60 	 if (inst->src[i].file == VGRF)
     61             virtual_grf_used[inst->src[i].nr] = true;
     62       }
     63    }
     64 
     65    hw_reg_mapping[0] = this->first_non_payload_grf;
     66    next = hw_reg_mapping[0] + this->alloc.sizes[0];
     67    for (unsigned i = 1; i < this->alloc.count; i++) {
     68       if (virtual_grf_used[i]) {
     69 	 hw_reg_mapping[i] = next;
     70 	 next += this->alloc.sizes[i];
     71       }
     72    }
     73    prog_data->total_grf = next;
     74 
     75    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
     76       assign(hw_reg_mapping, &inst->dst);
     77       assign(hw_reg_mapping, &inst->src[0]);
     78       assign(hw_reg_mapping, &inst->src[1]);
     79       assign(hw_reg_mapping, &inst->src[2]);
     80    }
     81 
     82    if (prog_data->total_grf > max_grf) {
     83       fail("Ran out of regs on trivial allocator (%d/%d)\n",
     84 	   prog_data->total_grf, max_grf);
     85       return false;
     86    }
     87 
     88    return true;
     89 }
     90 
     91 extern "C" void
     92 brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
     93 {
     94    int base_reg_count =
     95       compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
     96 
     97    /* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
     98     * SEND-from-GRF sources cannot be split, so we also need classes for each
     99     * potential message length.
    100     */
    101    const int class_count = MAX_VGRF_SIZE;
    102    int class_sizes[MAX_VGRF_SIZE];
    103 
    104    for (int i = 0; i < class_count; i++)
    105       class_sizes[i] = i + 1;
    106 
    107    /* Compute the total number of registers across all classes. */
    108    int ra_reg_count = 0;
    109    for (int i = 0; i < class_count; i++) {
    110       ra_reg_count += base_reg_count - (class_sizes[i] - 1);
    111    }
    112 
    113    ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf);
    114    compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
    115    ralloc_free(compiler->vec4_reg_set.regs);
    116    compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
    117    if (compiler->devinfo->gen >= 6)
    118       ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
    119    ralloc_free(compiler->vec4_reg_set.classes);
    120    compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count);
    121 
    122    /* Now, add the registers to their classes, and add the conflicts
    123     * between them and the base GRF registers (and also each other).
    124     */
    125    int reg = 0;
    126    unsigned *q_values[MAX_VGRF_SIZE];
    127    for (int i = 0; i < class_count; i++) {
    128       int class_reg_count = base_reg_count - (class_sizes[i] - 1);
    129       compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs);
    130 
    131       q_values[i] = new unsigned[MAX_VGRF_SIZE];
    132 
    133       for (int j = 0; j < class_reg_count; j++) {
    134 	 ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg);
    135 
    136 	 compiler->vec4_reg_set.ra_reg_to_grf[reg] = j;
    137 
    138 	 for (int base_reg = j;
    139 	      base_reg < j + class_sizes[i];
    140 	      base_reg++) {
    141 	    ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg);
    142 	 }
    143 
    144 	 reg++;
    145       }
    146 
    147       for (int j = 0; j < class_count; j++) {
    148          /* Calculate the q values manually because the algorithm used by
    149           * ra_set_finalize() to do it has higher complexity affecting the
    150           * start-up time of some applications.  q(i, j) is just the maximum
    151           * number of registers from class i a register from class j can
    152           * conflict with.
    153           */
    154          q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
    155       }
    156    }
    157    assert(reg == ra_reg_count);
    158 
    159    for (int reg = 0; reg < base_reg_count; reg++)
    160       ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg);
    161 
    162    ra_set_finalize(compiler->vec4_reg_set.regs, q_values);
    163 
    164    for (int i = 0; i < MAX_VGRF_SIZE; i++)
    165       delete[] q_values[i];
    166 }
    167 
    168 void
    169 vec4_visitor::setup_payload_interference(struct ra_graph *g,
    170                                          int first_payload_node,
    171                                          int reg_node_count)
    172 {
    173    int payload_node_count = this->first_non_payload_grf;
    174 
    175    for (int i = 0; i < payload_node_count; i++) {
    176       /* Mark each payload reg node as being allocated to its physical register.
    177        *
    178        * The alternative would be to have per-physical register classes, which
    179        * would just be silly.
    180        */
    181       ra_set_node_reg(g, first_payload_node + i, i);
    182 
    183       /* For now, just mark each payload node as interfering with every other
    184        * node to be allocated.
    185        */
    186       for (int j = 0; j < reg_node_count; j++) {
    187          ra_add_node_interference(g, first_payload_node + i, j);
    188       }
    189    }
    190 }
    191 
    192 bool
    193 vec4_visitor::reg_allocate()
    194 {
    195    unsigned int hw_reg_mapping[alloc.count];
    196    int payload_reg_count = this->first_non_payload_grf;
    197 
    198    /* Using the trivial allocator can be useful in debugging undefined
    199     * register access as a result of broken optimization passes.
    200     */
    201    if (0)
    202       return reg_allocate_trivial();
    203 
    204    calculate_live_intervals();
    205 
    206    int node_count = alloc.count;
    207    int first_payload_node = node_count;
    208    node_count += payload_reg_count;
    209    struct ra_graph *g =
    210       ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
    211 
    212    for (unsigned i = 0; i < alloc.count; i++) {
    213       int size = this->alloc.sizes[i];
    214       assert(size >= 1 && size <= MAX_VGRF_SIZE);
    215       ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
    216 
    217       for (unsigned j = 0; j < i; j++) {
    218 	 if (virtual_grf_interferes(i, j)) {
    219 	    ra_add_node_interference(g, i, j);
    220 	 }
    221       }
    222    }
    223 
    224    /* Certain instructions can't safely use the same register for their
    225     * sources and destination.  Add interference.
    226     */
    227    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
    228       if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
    229          for (unsigned i = 0; i < 3; i++) {
    230             if (inst->src[i].file == VGRF) {
    231                ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
    232             }
    233          }
    234       }
    235    }
    236 
    237    setup_payload_interference(g, first_payload_node, node_count);
    238 
    239    if (!ra_allocate(g)) {
    240       /* Failed to allocate registers.  Spill a reg, and the caller will
    241        * loop back into here to try again.
    242        */
    243       int reg = choose_spill_reg(g);
    244       if (this->no_spills) {
    245          fail("Failure to register allocate.  Reduce number of live "
    246               "values to avoid this.");
    247       } else if (reg == -1) {
    248          fail("no register to spill\n");
    249       } else {
    250          spill_reg(reg);
    251       }
    252       ralloc_free(g);
    253       return false;
    254    }
    255 
    256    /* Get the chosen virtual registers for each node, and map virtual
    257     * regs in the register classes back down to real hardware reg
    258     * numbers.
    259     */
    260    prog_data->total_grf = payload_reg_count;
    261    for (unsigned i = 0; i < alloc.count; i++) {
    262       int reg = ra_get_node_reg(g, i);
    263 
    264       hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg];
    265       prog_data->total_grf = MAX2(prog_data->total_grf,
    266 				  hw_reg_mapping[i] + alloc.sizes[i]);
    267    }
    268 
    269    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
    270       assign(hw_reg_mapping, &inst->dst);
    271       assign(hw_reg_mapping, &inst->src[0]);
    272       assign(hw_reg_mapping, &inst->src[1]);
    273       assign(hw_reg_mapping, &inst->src[2]);
    274    }
    275 
    276    ralloc_free(g);
    277 
    278    return true;
    279 }
    280 
    281 /**
    282  * When we decide to spill a register, instead of blindly spilling every use,
    283  * save unspills when the spill register is used (read) in consecutive
    284  * instructions. This can potentially save a bunch of unspills that would
    285  * have very little impact in register allocation anyway.
    286  *
    287  * Notice that we need to account for this behavior when spilling a register
    288  * and when evaluating spilling costs. This function is designed so it can
    289  * be called from both places and avoid repeating the logic.
    290  *
    291  *  - When we call this function from spill_reg(), we pass in scratch_reg the
    292  *    actual unspill/spill register that we want to reuse in the current
    293  *    instruction.
    294  *
    295  *  - When we call this from evaluate_spill_costs(), we pass the register for
    296  *    which we are evaluating spilling costs.
    297  *
    298  * In either case, we check if the previous instructions read scratch_reg until
    299  * we find one that writes to it with a compatible mask or does not read/write
    300  * scratch_reg at all.
    301  */
    302 static bool
    303 can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
    304                            unsigned scratch_reg)
    305 {
    306    assert(inst->src[i].file == VGRF);
    307    bool prev_inst_read_scratch_reg = false;
    308 
    309    /* See if any previous source in the same instructions reads scratch_reg */
    310    for (unsigned n = 0; n < i; n++) {
    311       if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
    312          prev_inst_read_scratch_reg = true;
    313    }
    314 
    315    /* Now check if previous instructions read/write scratch_reg */
    316    for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
    317         !prev_inst->is_head_sentinel();
    318         prev_inst = (vec4_instruction *) prev_inst->prev) {
    319 
    320       /* If the previous instruction writes to scratch_reg then we can reuse
    321        * it if the write is not conditional and the channels we write are
    322        * compatible with our read mask
    323        */
    324       if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
    325          return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
    326                 (brw_mask_for_swizzle(inst->src[i].swizzle) &
    327                  ~prev_inst->dst.writemask) == 0;
    328       }
    329 
    330       /* Skip scratch read/writes so that instructions generated by spilling
    331        * other registers (that won't read/write scratch_reg) do not stop us from
    332        * reusing scratch_reg for this instruction.
    333        */
    334       if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE ||
    335           prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ)
    336          continue;
    337 
    338       /* If the previous instruction does not write to scratch_reg, then check
    339        * if it reads it
    340        */
    341       int n;
    342       for (n = 0; n < 3; n++) {
    343          if (prev_inst->src[n].file == VGRF &&
    344              prev_inst->src[n].nr == scratch_reg) {
    345             prev_inst_read_scratch_reg = true;
    346             break;
    347          }
    348       }
    349       if (n == 3) {
    350          /* The previous instruction does not read scratch_reg. At this point,
    351           * if no previous instruction has read scratch_reg it means that we
    352           * will need to unspill it here and we can't reuse it (so we return
    353           * false). Otherwise, if we found at least one consecutive instruction
    354           * that read scratch_reg, then we know that we got here from
    355           * evaluate_spill_costs (since for the spill_reg path any block of
    356           * consecutive instructions using scratch_reg must start with a write
    357           * to that register, so we would've exited the loop in the check for
    358           * the write that we have at the start of this loop), and in that case
    359           * it means that we found the point at which the scratch_reg would be
    360           * unspilled. Since we always unspill a full vec4, it means that we
    361           * have all the channels available and we can just return true to
    362           * signal that we can reuse the register in the current instruction
    363           * too.
    364           */
    365          return prev_inst_read_scratch_reg;
    366       }
    367    }
    368 
    369    return prev_inst_read_scratch_reg;
    370 }
    371 
    372 static inline unsigned
    373 spill_cost_for_type(enum brw_reg_type type)
    374 {
    375    /* Spilling of a 64-bit register involves emitting 2 32-bit scratch
    376     * messages plus the 64b/32b shuffling code.
    377     */
    378    return type_sz(type) == 8 ? 2.25f : 1.0f;
    379 }
    380 
    381 void
    382 vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
    383 {
    384    float loop_scale = 1.0;
    385 
    386    unsigned *reg_type_size = (unsigned *)
    387       ralloc_size(NULL, this->alloc.count * sizeof(unsigned));
    388 
    389    for (unsigned i = 0; i < this->alloc.count; i++) {
    390       spill_costs[i] = 0.0;
    391       no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2;
    392       reg_type_size[i] = 0;
    393    }
    394 
    395    /* Calculate costs for spilling nodes.  Call it a cost of 1 per
    396     * spill/unspill we'll have to do, and guess that the insides of
    397     * loops run 10 times.
    398     */
    399    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
    400       for (unsigned int i = 0; i < 3; i++) {
    401          if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) {
    402             /* We will only unspill src[i] it it wasn't unspilled for the
    403              * previous instruction, in which case we'll just reuse the scratch
    404              * reg for this instruction.
    405              */
    406             if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
    407                spill_costs[inst->src[i].nr] +=
    408                   loop_scale * spill_cost_for_type(inst->src[i].type);
    409                if (inst->src[i].reladdr ||
    410                    inst->src[i].offset >= REG_SIZE)
    411                   no_spill[inst->src[i].nr] = true;
    412 
    413                /* We don't support unspills of partial DF reads.
    414                 *
    415                 * Our 64-bit unspills are implemented with two 32-bit scratch
    416                 * messages, each one reading that for both SIMD4x2 threads that
    417                 * we need to shuffle into correct 64-bit data. Ensure that we
    418                 * are reading data for both threads.
    419                 */
    420                if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8)
    421                   no_spill[inst->src[i].nr] = true;
    422             }
    423 
    424             /* We can't spill registers that mix 32-bit and 64-bit access (that
    425              * contain 64-bit data that is operated on via 32-bit instructions)
    426              */
    427             unsigned type_size = type_sz(inst->src[i].type);
    428             if (reg_type_size[inst->src[i].nr] == 0)
    429                reg_type_size[inst->src[i].nr] = type_size;
    430             else if (reg_type_size[inst->src[i].nr] != type_size)
    431                no_spill[inst->src[i].nr] = true;
    432          }
    433       }
    434 
    435       if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) {
    436          spill_costs[inst->dst.nr] +=
    437             loop_scale * spill_cost_for_type(inst->dst.type);
    438          if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE)
    439             no_spill[inst->dst.nr] = true;
    440 
    441          /* We don't support spills of partial DF writes.
    442           *
    443           * Our 64-bit spills are implemented with two 32-bit scratch messages,
    444           * each one writing that for both SIMD4x2 threads. Ensure that we
    445           * are writing data for both threads.
    446           */
    447          if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8)
    448             no_spill[inst->dst.nr] = true;
    449 
    450          /* FROM_DOUBLE opcodes are setup so that they use a dst register
    451           * with a size of 2 even if they only produce a single-precison
    452           * result (this is so that the opcode can use the larger register to
    453           * produce a 64-bit aligned intermediary result as required by the
    454           * hardware during the conversion process). This creates a problem for
    455           * spilling though, because when we attempt to emit a spill for the
    456           * dst we see a 32-bit destination and emit a scratch write that
    457           * allocates a single spill register.
    458           */
    459          if (inst->opcode == VEC4_OPCODE_FROM_DOUBLE)
    460             no_spill[inst->dst.nr] = true;
    461 
    462          /* We can't spill registers that mix 32-bit and 64-bit access (that
    463           * contain 64-bit data that is operated on via 32-bit instructions)
    464           */
    465          unsigned type_size = type_sz(inst->dst.type);
    466          if (reg_type_size[inst->dst.nr] == 0)
    467             reg_type_size[inst->dst.nr] = type_size;
    468          else if (reg_type_size[inst->dst.nr] != type_size)
    469             no_spill[inst->dst.nr] = true;
    470       }
    471 
    472       switch (inst->opcode) {
    473 
    474       case BRW_OPCODE_DO:
    475          loop_scale *= 10;
    476          break;
    477 
    478       case BRW_OPCODE_WHILE:
    479          loop_scale /= 10;
    480          break;
    481 
    482       case SHADER_OPCODE_GEN4_SCRATCH_READ:
    483       case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
    484          for (int i = 0; i < 3; i++) {
    485             if (inst->src[i].file == VGRF)
    486                no_spill[inst->src[i].nr] = true;
    487          }
    488          if (inst->dst.file == VGRF)
    489             no_spill[inst->dst.nr] = true;
    490          break;
    491 
    492       default:
    493          break;
    494       }
    495    }
    496 
    497    ralloc_free(reg_type_size);
    498 }
    499 
    500 int
    501 vec4_visitor::choose_spill_reg(struct ra_graph *g)
    502 {
    503    float spill_costs[this->alloc.count];
    504    bool no_spill[this->alloc.count];
    505 
    506    evaluate_spill_costs(spill_costs, no_spill);
    507 
    508    for (unsigned i = 0; i < this->alloc.count; i++) {
    509       if (!no_spill[i])
    510          ra_set_node_spill_cost(g, i, spill_costs[i]);
    511    }
    512 
    513    return ra_get_best_spill_node(g);
    514 }
    515 
    516 void
    517 vec4_visitor::spill_reg(int spill_reg_nr)
    518 {
    519    assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2);
    520    unsigned int spill_offset = last_scratch;
    521    last_scratch += alloc.sizes[spill_reg_nr];
    522 
    523    /* Generate spill/unspill instructions for the objects being spilled. */
    524    int scratch_reg = -1;
    525    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
    526       for (unsigned int i = 0; i < 3; i++) {
    527          if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
    528             if (scratch_reg == -1 ||
    529                 !can_use_scratch_for_source(inst, i, scratch_reg)) {
    530                /* We need to unspill anyway so make sure we read the full vec4
    531                 * in any case. This way, the cached register can be reused
    532                 * for consecutive instructions that read different channels of
    533                 * the same vec4.
    534                 */
    535                scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]);
    536                src_reg temp = inst->src[i];
    537                temp.nr = scratch_reg;
    538                temp.offset = 0;
    539                temp.swizzle = BRW_SWIZZLE_XYZW;
    540                emit_scratch_read(block, inst,
    541                                  dst_reg(temp), inst->src[i], spill_offset);
    542                temp.offset = inst->src[i].offset;
    543             }
    544             assert(scratch_reg != -1);
    545             inst->src[i].nr = scratch_reg;
    546          }
    547       }
    548 
    549       if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
    550          emit_scratch_write(block, inst, spill_offset);
    551          scratch_reg = inst->dst.nr;
    552       }
    553    }
    554 
    555    invalidate_live_intervals();
    556 }
    557 
    558 } /* namespace brw */
    559