1 /* 2 * Copyright 2014 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef GrGLSLFragmentShaderBuilder_DEFINED 9 #define GrGLSLFragmentShaderBuilder_DEFINED 10 11 #include "GrBlend.h" 12 #include "GrGLSLShaderBuilder.h" 13 #include "GrProcessor.h" 14 15 class GrRenderTarget; 16 class GrGLSLVarying; 17 18 /* 19 * This base class encapsulates the common functionality which all processors use to build fragment 20 * shaders. 21 */ 22 class GrGLSLFragmentBuilder : public GrGLSLShaderBuilder { 23 public: 24 GrGLSLFragmentBuilder(GrGLSLProgramBuilder* program) : INHERITED(program) {} 25 virtual ~GrGLSLFragmentBuilder() {} 26 27 /** 28 * Use of these features may require a GLSL extension to be enabled. Shaders may not compile 29 * if code is added that uses one of these features without calling enableFeature() 30 */ 31 enum GLSLFeature { 32 kMultisampleInterpolation_GLSLFeature 33 }; 34 35 /** 36 * If the feature is supported then true is returned and any necessary #extension declarations 37 * are added to the shaders. If the feature is not supported then false will be returned. 38 */ 39 virtual bool enableFeature(GLSLFeature) = 0; 40 41 /** 42 * This returns a variable name to access the 2D, perspective correct version of the coords in 43 * the fragment shader. The passed in coordinates must either be of type kHalf2 or kHalf3. If 44 * the coordinates are 3-dimensional, it a perspective divide into is emitted into the 45 * fragment shader (xy / z) to convert them to 2D. 46 */ 47 virtual SkString ensureCoords2D(const GrShaderVar&) = 0; 48 49 // TODO: remove this method. 50 void declAppendf(const char* fmt, ...); 51 52 private: 53 typedef GrGLSLShaderBuilder INHERITED; 54 }; 55 56 /* 57 * This class is used by fragment processors to build their fragment code. 58 */ 59 class GrGLSLFPFragmentBuilder : virtual public GrGLSLFragmentBuilder { 60 public: 61 /** Appease the compiler; the derived class initializes GrGLSLFragmentBuilder. */ 62 GrGLSLFPFragmentBuilder() : GrGLSLFragmentBuilder(nullptr) {} 63 64 enum Coordinates { 65 kSkiaDevice_Coordinates, 66 kGLSLWindow_Coordinates, 67 68 kLast_Coordinates = kGLSLWindow_Coordinates 69 }; 70 71 /** 72 * Appends the offset from the center of the pixel to a specified sample. 73 * 74 * @param sampleIdx GLSL expression of the sample index. 75 * @param Coordinates Coordinate space in which to emit the offset. 76 * 77 * A processor must call setWillUseSampleLocations in its constructor before using this method. 78 */ 79 virtual void appendOffsetToSample(const char* sampleIdx, Coordinates) = 0; 80 81 /** 82 * Subtracts sample coverage from the fragment. Any sample whose corresponding bit is not found 83 * in the mask will not be written out to the framebuffer. 84 * 85 * @param mask int that contains the sample mask. Bit N corresponds to the Nth sample. 86 * @param invert perform a bit-wise NOT on the provided mask before applying it? 87 * 88 * Requires GLSL support for sample variables. 89 */ 90 virtual void maskSampleCoverage(const char* mask, bool invert = false) = 0; 91 92 /** 93 * Fragment procs with child procs should call these functions before/after calling emitCode 94 * on a child proc. 95 */ 96 virtual void onBeforeChildProcEmitCode() = 0; 97 virtual void onAfterChildProcEmitCode() = 0; 98 99 virtual const SkString& getMangleString() const = 0; 100 101 virtual void forceHighPrecision() = 0; 102 }; 103 104 /* 105 * This class is used by primitive processors to build their fragment code. 106 */ 107 class GrGLSLPPFragmentBuilder : public GrGLSLFPFragmentBuilder { 108 public: 109 /** Appease the compiler; the derived class initializes GrGLSLFragmentBuilder. */ 110 GrGLSLPPFragmentBuilder() : GrGLSLFragmentBuilder(nullptr) {} 111 112 /** 113 * Overrides the fragment's sample coverage. The provided mask determines which samples will now 114 * be written out to the framebuffer. Note that this mask can be reduced by a future call to 115 * maskSampleCoverage. 116 * 117 * If a primitive processor uses this method, it must guarantee that every codepath through the 118 * shader overrides the sample mask at some point. 119 * 120 * @param mask int that contains the new coverage mask. Bit N corresponds to the Nth sample. 121 * 122 * Requires NV_sample_mask_override_coverage. 123 */ 124 virtual void overrideSampleCoverage(const char* mask) = 0; 125 }; 126 127 /* 128 * This class is used by Xfer processors to build their fragment code. 129 */ 130 class GrGLSLXPFragmentBuilder : virtual public GrGLSLFragmentBuilder { 131 public: 132 /** Appease the compiler; the derived class initializes GrGLSLFragmentBuilder. */ 133 GrGLSLXPFragmentBuilder() : GrGLSLFragmentBuilder(nullptr) {} 134 135 virtual bool hasCustomColorOutput() const = 0; 136 virtual bool hasSecondaryOutput() const = 0; 137 138 /** Returns the variable name that holds the color of the destination pixel. This may be nullptr 139 * if no effect advertised that it will read the destination. */ 140 virtual const char* dstColor() = 0; 141 142 /** Adds any necessary layout qualifiers in order to legalize the supplied blend equation with 143 this shader. It is only legal to call this method with an advanced blend equation, and only 144 if these equations are supported. */ 145 virtual void enableAdvancedBlendEquationIfNeeded(GrBlendEquation) = 0; 146 }; 147 148 /* 149 * This class implements the various fragment builder interfaces. 150 */ 151 class GrGLSLFragmentShaderBuilder : public GrGLSLPPFragmentBuilder, public GrGLSLXPFragmentBuilder { 152 public: 153 /** Returns a nonzero key for a surface's origin. This should only be called if a processor will 154 use the fragment position and/or sample locations. */ 155 static uint8_t KeyForSurfaceOrigin(GrSurfaceOrigin); 156 157 GrGLSLFragmentShaderBuilder(GrGLSLProgramBuilder* program); 158 159 // Shared GrGLSLFragmentBuilder interface. 160 bool enableFeature(GLSLFeature) override; 161 virtual SkString ensureCoords2D(const GrShaderVar&) override; 162 163 // GrGLSLFPFragmentBuilder interface. 164 void appendOffsetToSample(const char* sampleIdx, Coordinates) override; 165 void maskSampleCoverage(const char* mask, bool invert = false) override; 166 void overrideSampleCoverage(const char* mask) override; 167 const SkString& getMangleString() const override { return fMangleString; } 168 void onBeforeChildProcEmitCode() override; 169 void onAfterChildProcEmitCode() override; 170 void forceHighPrecision() override { fForceHighPrecision = true; } 171 172 // GrGLSLXPFragmentBuilder interface. 173 bool hasCustomColorOutput() const override { return fHasCustomColorOutput; } 174 bool hasSecondaryOutput() const override { return fHasSecondaryOutput; } 175 const char* dstColor() override; 176 void enableAdvancedBlendEquationIfNeeded(GrBlendEquation) override; 177 178 private: 179 // Private public interface, used by GrGLProgramBuilder to build a fragment shader 180 void enableCustomOutput(); 181 void enableSecondaryOutput(); 182 const char* getPrimaryColorOutputName() const; 183 const char* getSecondaryColorOutputName() const; 184 bool primaryColorOutputIsInOut() const; 185 186 #ifdef SK_DEBUG 187 // As GLSLProcessors emit code, there are some conditions we need to verify. We use the below 188 // state to track this. The reset call is called per processor emitted. 189 GrProcessor::RequiredFeatures usedProcessorFeatures() const { return fUsedProcessorFeatures; } 190 bool hasReadDstColor() const { return fHasReadDstColor; } 191 void resetVerification() { 192 fUsedProcessorFeatures = GrProcessor::kNone_RequiredFeatures; 193 fHasReadDstColor = false; 194 } 195 #endif 196 197 static const char* DeclaredColorOutputName() { return "sk_FragColor"; } 198 static const char* DeclaredSecondaryColorOutputName() { return "fsSecondaryColorOut"; } 199 200 GrSurfaceOrigin getSurfaceOrigin() const; 201 202 void onFinalize() override; 203 void defineSampleOffsetArray(const char* name, const SkMatrix&); 204 205 static const char* kDstColorName; 206 207 /* 208 * State that tracks which child proc in the proc tree is currently emitting code. This is 209 * used to update the fMangleString, which is used to mangle the names of uniforms and functions 210 * emitted by the proc. fSubstageIndices is a stack: its count indicates how many levels deep 211 * we are in the tree, and its second-to-last value is the index of the child proc at that 212 * level which is currently emitting code. For example, if fSubstageIndices = [3, 1, 2, 0], that 213 * means we're currently emitting code for the base proc's 3rd child's 1st child's 2nd child. 214 */ 215 SkTArray<int> fSubstageIndices; 216 217 /* 218 * The mangle string is used to mangle the names of uniforms/functions emitted by the child 219 * procs so no duplicate uniforms/functions appear in the generated shader program. The mangle 220 * string is simply based on fSubstageIndices. For example, if fSubstageIndices = [3, 1, 2, 0], 221 * then the manglestring will be "_c3_c1_c2", and any uniform/function emitted by that proc will 222 * have "_c3_c1_c2" appended to its name, which can be interpreted as "base proc's 3rd child's 223 * 1st child's 2nd child". 224 */ 225 SkString fMangleString; 226 227 bool fSetupFragPosition; 228 bool fHasCustomColorOutput; 229 int fCustomColorOutputIndex; 230 bool fHasSecondaryOutput; 231 uint8_t fUsedSampleOffsetArrays; 232 bool fHasInitializedSampleMask; 233 bool fForceHighPrecision; 234 235 #ifdef SK_DEBUG 236 // some state to verify shaders and effects are consistent, this is reset between effects by 237 // the program creator 238 GrProcessor::RequiredFeatures fUsedProcessorFeatures; 239 bool fHasReadDstColor; 240 #endif 241 242 friend class GrGLSLProgramBuilder; 243 friend class GrGLProgramBuilder; 244 }; 245 246 #endif 247