1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define LOG_TAG "InputReader" 18 19 //#define LOG_NDEBUG 0 20 21 // Log debug messages for each raw event received from the EventHub. 22 #define DEBUG_RAW_EVENTS 0 23 24 // Log debug messages about touch screen filtering hacks. 25 #define DEBUG_HACKS 0 26 27 // Log debug messages about virtual key processing. 28 #define DEBUG_VIRTUAL_KEYS 0 29 30 // Log debug messages about pointers. 31 #define DEBUG_POINTERS 0 32 33 // Log debug messages about pointer assignment calculations. 34 #define DEBUG_POINTER_ASSIGNMENT 0 35 36 // Log debug messages about gesture detection. 37 #define DEBUG_GESTURES 0 38 39 // Log debug messages about the vibrator. 40 #define DEBUG_VIBRATOR 0 41 42 // Log debug messages about fusing stylus data. 43 #define DEBUG_STYLUS_FUSION 0 44 45 #include "InputReader.h" 46 47 #include <errno.h> 48 #include <inttypes.h> 49 #include <limits.h> 50 #include <math.h> 51 #include <stddef.h> 52 #include <stdlib.h> 53 #include <unistd.h> 54 55 #include <log/log.h> 56 57 #include <android-base/stringprintf.h> 58 #include <input/Keyboard.h> 59 #include <input/VirtualKeyMap.h> 60 61 #define INDENT " " 62 #define INDENT2 " " 63 #define INDENT3 " " 64 #define INDENT4 " " 65 #define INDENT5 " " 66 67 using android::base::StringPrintf; 68 69 namespace android { 70 71 // --- Constants --- 72 73 // Maximum number of slots supported when using the slot-based Multitouch Protocol B. 74 static const size_t MAX_SLOTS = 32; 75 76 // Maximum amount of latency to add to touch events while waiting for data from an 77 // external stylus. 78 static const nsecs_t EXTERNAL_STYLUS_DATA_TIMEOUT = ms2ns(72); 79 80 // Maximum amount of time to wait on touch data before pushing out new pressure data. 81 static const nsecs_t TOUCH_DATA_TIMEOUT = ms2ns(20); 82 83 // Artificial latency on synthetic events created from stylus data without corresponding touch 84 // data. 85 static const nsecs_t STYLUS_DATA_LATENCY = ms2ns(10); 86 87 // --- Static Functions --- 88 89 template<typename T> 90 inline static T abs(const T& value) { 91 return value < 0 ? - value : value; 92 } 93 94 template<typename T> 95 inline static T min(const T& a, const T& b) { 96 return a < b ? a : b; 97 } 98 99 template<typename T> 100 inline static void swap(T& a, T& b) { 101 T temp = a; 102 a = b; 103 b = temp; 104 } 105 106 inline static float avg(float x, float y) { 107 return (x + y) / 2; 108 } 109 110 inline static float distance(float x1, float y1, float x2, float y2) { 111 return hypotf(x1 - x2, y1 - y2); 112 } 113 114 inline static int32_t signExtendNybble(int32_t value) { 115 return value >= 8 ? value - 16 : value; 116 } 117 118 static inline const char* toString(bool value) { 119 return value ? "true" : "false"; 120 } 121 122 static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation, 123 const int32_t map[][4], size_t mapSize) { 124 if (orientation != DISPLAY_ORIENTATION_0) { 125 for (size_t i = 0; i < mapSize; i++) { 126 if (value == map[i][0]) { 127 return map[i][orientation]; 128 } 129 } 130 } 131 return value; 132 } 133 134 static const int32_t keyCodeRotationMap[][4] = { 135 // key codes enumerated counter-clockwise with the original (unrotated) key first 136 // no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation 137 { AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT }, 138 { AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN }, 139 { AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT }, 140 { AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP }, 141 { AKEYCODE_SYSTEM_NAVIGATION_DOWN, AKEYCODE_SYSTEM_NAVIGATION_RIGHT, 142 AKEYCODE_SYSTEM_NAVIGATION_UP, AKEYCODE_SYSTEM_NAVIGATION_LEFT }, 143 { AKEYCODE_SYSTEM_NAVIGATION_RIGHT, AKEYCODE_SYSTEM_NAVIGATION_UP, 144 AKEYCODE_SYSTEM_NAVIGATION_LEFT, AKEYCODE_SYSTEM_NAVIGATION_DOWN }, 145 { AKEYCODE_SYSTEM_NAVIGATION_UP, AKEYCODE_SYSTEM_NAVIGATION_LEFT, 146 AKEYCODE_SYSTEM_NAVIGATION_DOWN, AKEYCODE_SYSTEM_NAVIGATION_RIGHT }, 147 { AKEYCODE_SYSTEM_NAVIGATION_LEFT, AKEYCODE_SYSTEM_NAVIGATION_DOWN, 148 AKEYCODE_SYSTEM_NAVIGATION_RIGHT, AKEYCODE_SYSTEM_NAVIGATION_UP }, 149 }; 150 static const size_t keyCodeRotationMapSize = 151 sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]); 152 153 static int32_t rotateStemKey(int32_t value, int32_t orientation, 154 const int32_t map[][2], size_t mapSize) { 155 if (orientation == DISPLAY_ORIENTATION_180) { 156 for (size_t i = 0; i < mapSize; i++) { 157 if (value == map[i][0]) { 158 return map[i][1]; 159 } 160 } 161 } 162 return value; 163 } 164 165 // The mapping can be defined using input device configuration properties keyboard.rotated.stem_X 166 static int32_t stemKeyRotationMap[][2] = { 167 // key codes enumerated with the original (unrotated) key first 168 // no rotation, 180 degree rotation 169 { AKEYCODE_STEM_PRIMARY, AKEYCODE_STEM_PRIMARY }, 170 { AKEYCODE_STEM_1, AKEYCODE_STEM_1 }, 171 { AKEYCODE_STEM_2, AKEYCODE_STEM_2 }, 172 { AKEYCODE_STEM_3, AKEYCODE_STEM_3 }, 173 }; 174 static const size_t stemKeyRotationMapSize = 175 sizeof(stemKeyRotationMap) / sizeof(stemKeyRotationMap[0]); 176 177 static int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) { 178 keyCode = rotateStemKey(keyCode, orientation, 179 stemKeyRotationMap, stemKeyRotationMapSize); 180 return rotateValueUsingRotationMap(keyCode, orientation, 181 keyCodeRotationMap, keyCodeRotationMapSize); 182 } 183 184 static void rotateDelta(int32_t orientation, float* deltaX, float* deltaY) { 185 float temp; 186 switch (orientation) { 187 case DISPLAY_ORIENTATION_90: 188 temp = *deltaX; 189 *deltaX = *deltaY; 190 *deltaY = -temp; 191 break; 192 193 case DISPLAY_ORIENTATION_180: 194 *deltaX = -*deltaX; 195 *deltaY = -*deltaY; 196 break; 197 198 case DISPLAY_ORIENTATION_270: 199 temp = *deltaX; 200 *deltaX = -*deltaY; 201 *deltaY = temp; 202 break; 203 } 204 } 205 206 static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) { 207 return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0; 208 } 209 210 // Returns true if the pointer should be reported as being down given the specified 211 // button states. This determines whether the event is reported as a touch event. 212 static bool isPointerDown(int32_t buttonState) { 213 return buttonState & 214 (AMOTION_EVENT_BUTTON_PRIMARY | AMOTION_EVENT_BUTTON_SECONDARY 215 | AMOTION_EVENT_BUTTON_TERTIARY); 216 } 217 218 static float calculateCommonVector(float a, float b) { 219 if (a > 0 && b > 0) { 220 return a < b ? a : b; 221 } else if (a < 0 && b < 0) { 222 return a > b ? a : b; 223 } else { 224 return 0; 225 } 226 } 227 228 static void synthesizeButtonKey(InputReaderContext* context, int32_t action, 229 nsecs_t when, int32_t deviceId, uint32_t source, 230 uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState, 231 int32_t buttonState, int32_t keyCode) { 232 if ( 233 (action == AKEY_EVENT_ACTION_DOWN 234 && !(lastButtonState & buttonState) 235 && (currentButtonState & buttonState)) 236 || (action == AKEY_EVENT_ACTION_UP 237 && (lastButtonState & buttonState) 238 && !(currentButtonState & buttonState))) { 239 NotifyKeyArgs args(when, deviceId, source, policyFlags, 240 action, 0, keyCode, 0, context->getGlobalMetaState(), when); 241 context->getListener()->notifyKey(&args); 242 } 243 } 244 245 static void synthesizeButtonKeys(InputReaderContext* context, int32_t action, 246 nsecs_t when, int32_t deviceId, uint32_t source, 247 uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState) { 248 synthesizeButtonKey(context, action, when, deviceId, source, policyFlags, 249 lastButtonState, currentButtonState, 250 AMOTION_EVENT_BUTTON_BACK, AKEYCODE_BACK); 251 synthesizeButtonKey(context, action, when, deviceId, source, policyFlags, 252 lastButtonState, currentButtonState, 253 AMOTION_EVENT_BUTTON_FORWARD, AKEYCODE_FORWARD); 254 } 255 256 257 // --- InputReaderConfiguration --- 258 259 bool InputReaderConfiguration::getDisplayViewport(ViewportType viewportType, 260 const String8* uniqueDisplayId, DisplayViewport* outViewport) const { 261 const DisplayViewport* viewport = NULL; 262 if (viewportType == ViewportType::VIEWPORT_VIRTUAL && uniqueDisplayId != NULL) { 263 for (const DisplayViewport& currentViewport : mVirtualDisplays) { 264 if (currentViewport.uniqueId == *uniqueDisplayId) { 265 viewport = ¤tViewport; 266 break; 267 } 268 } 269 } else if (viewportType == ViewportType::VIEWPORT_EXTERNAL) { 270 viewport = &mExternalDisplay; 271 } else if (viewportType == ViewportType::VIEWPORT_INTERNAL) { 272 viewport = &mInternalDisplay; 273 } 274 275 if (viewport != NULL && viewport->displayId >= 0) { 276 *outViewport = *viewport; 277 return true; 278 } 279 return false; 280 } 281 282 void InputReaderConfiguration::setPhysicalDisplayViewport(ViewportType viewportType, 283 const DisplayViewport& viewport) { 284 if (viewportType == ViewportType::VIEWPORT_EXTERNAL) { 285 mExternalDisplay = viewport; 286 } else if (viewportType == ViewportType::VIEWPORT_INTERNAL) { 287 mInternalDisplay = viewport; 288 } 289 } 290 291 void InputReaderConfiguration::setVirtualDisplayViewports( 292 const Vector<DisplayViewport>& viewports) { 293 mVirtualDisplays = viewports; 294 } 295 296 void InputReaderConfiguration::dump(std::string& dump) const { 297 dump += INDENT4 "ViewportInternal:\n"; 298 dumpViewport(dump, mInternalDisplay); 299 dump += INDENT4 "ViewportExternal:\n"; 300 dumpViewport(dump, mExternalDisplay); 301 dump += INDENT4 "ViewportVirtual:\n"; 302 for (const DisplayViewport& viewport : mVirtualDisplays) { 303 dumpViewport(dump, viewport); 304 } 305 } 306 307 void InputReaderConfiguration::dumpViewport(std::string& dump, const DisplayViewport& viewport) const { 308 dump += StringPrintf(INDENT5 "Viewport: displayId=%d, orientation=%d, uniqueId='%s', " 309 "logicalFrame=[%d, %d, %d, %d], " 310 "physicalFrame=[%d, %d, %d, %d], " 311 "deviceSize=[%d, %d]\n", 312 viewport.displayId, viewport.orientation, viewport.uniqueId.c_str(), 313 viewport.logicalLeft, viewport.logicalTop, 314 viewport.logicalRight, viewport.logicalBottom, 315 viewport.physicalLeft, viewport.physicalTop, 316 viewport.physicalRight, viewport.physicalBottom, 317 viewport.deviceWidth, viewport.deviceHeight); 318 } 319 320 321 // -- TouchAffineTransformation -- 322 void TouchAffineTransformation::applyTo(float& x, float& y) const { 323 float newX, newY; 324 newX = x * x_scale + y * x_ymix + x_offset; 325 newY = x * y_xmix + y * y_scale + y_offset; 326 327 x = newX; 328 y = newY; 329 } 330 331 332 // --- InputReader --- 333 334 InputReader::InputReader(const sp<EventHubInterface>& eventHub, 335 const sp<InputReaderPolicyInterface>& policy, 336 const sp<InputListenerInterface>& listener) : 337 mContext(this), mEventHub(eventHub), mPolicy(policy), 338 mGlobalMetaState(0), mGeneration(1), 339 mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX), 340 mConfigurationChangesToRefresh(0) { 341 mQueuedListener = new QueuedInputListener(listener); 342 343 { // acquire lock 344 AutoMutex _l(mLock); 345 346 refreshConfigurationLocked(0); 347 updateGlobalMetaStateLocked(); 348 } // release lock 349 } 350 351 InputReader::~InputReader() { 352 for (size_t i = 0; i < mDevices.size(); i++) { 353 delete mDevices.valueAt(i); 354 } 355 } 356 357 void InputReader::loopOnce() { 358 int32_t oldGeneration; 359 int32_t timeoutMillis; 360 bool inputDevicesChanged = false; 361 Vector<InputDeviceInfo> inputDevices; 362 { // acquire lock 363 AutoMutex _l(mLock); 364 365 oldGeneration = mGeneration; 366 timeoutMillis = -1; 367 368 uint32_t changes = mConfigurationChangesToRefresh; 369 if (changes) { 370 mConfigurationChangesToRefresh = 0; 371 timeoutMillis = 0; 372 refreshConfigurationLocked(changes); 373 } else if (mNextTimeout != LLONG_MAX) { 374 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 375 timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout); 376 } 377 } // release lock 378 379 size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE); 380 381 { // acquire lock 382 AutoMutex _l(mLock); 383 mReaderIsAliveCondition.broadcast(); 384 385 if (count) { 386 processEventsLocked(mEventBuffer, count); 387 } 388 389 if (mNextTimeout != LLONG_MAX) { 390 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 391 if (now >= mNextTimeout) { 392 #if DEBUG_RAW_EVENTS 393 ALOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f); 394 #endif 395 mNextTimeout = LLONG_MAX; 396 timeoutExpiredLocked(now); 397 } 398 } 399 400 if (oldGeneration != mGeneration) { 401 inputDevicesChanged = true; 402 getInputDevicesLocked(inputDevices); 403 } 404 } // release lock 405 406 // Send out a message that the describes the changed input devices. 407 if (inputDevicesChanged) { 408 mPolicy->notifyInputDevicesChanged(inputDevices); 409 } 410 411 // Flush queued events out to the listener. 412 // This must happen outside of the lock because the listener could potentially call 413 // back into the InputReader's methods, such as getScanCodeState, or become blocked 414 // on another thread similarly waiting to acquire the InputReader lock thereby 415 // resulting in a deadlock. This situation is actually quite plausible because the 416 // listener is actually the input dispatcher, which calls into the window manager, 417 // which occasionally calls into the input reader. 418 mQueuedListener->flush(); 419 } 420 421 void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) { 422 for (const RawEvent* rawEvent = rawEvents; count;) { 423 int32_t type = rawEvent->type; 424 size_t batchSize = 1; 425 if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) { 426 int32_t deviceId = rawEvent->deviceId; 427 while (batchSize < count) { 428 if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT 429 || rawEvent[batchSize].deviceId != deviceId) { 430 break; 431 } 432 batchSize += 1; 433 } 434 #if DEBUG_RAW_EVENTS 435 ALOGD("BatchSize: %zu Count: %zu", batchSize, count); 436 #endif 437 processEventsForDeviceLocked(deviceId, rawEvent, batchSize); 438 } else { 439 switch (rawEvent->type) { 440 case EventHubInterface::DEVICE_ADDED: 441 addDeviceLocked(rawEvent->when, rawEvent->deviceId); 442 break; 443 case EventHubInterface::DEVICE_REMOVED: 444 removeDeviceLocked(rawEvent->when, rawEvent->deviceId); 445 break; 446 case EventHubInterface::FINISHED_DEVICE_SCAN: 447 handleConfigurationChangedLocked(rawEvent->when); 448 break; 449 default: 450 ALOG_ASSERT(false); // can't happen 451 break; 452 } 453 } 454 count -= batchSize; 455 rawEvent += batchSize; 456 } 457 } 458 459 void InputReader::addDeviceLocked(nsecs_t when, int32_t deviceId) { 460 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 461 if (deviceIndex >= 0) { 462 ALOGW("Ignoring spurious device added event for deviceId %d.", deviceId); 463 return; 464 } 465 466 InputDeviceIdentifier identifier = mEventHub->getDeviceIdentifier(deviceId); 467 uint32_t classes = mEventHub->getDeviceClasses(deviceId); 468 int32_t controllerNumber = mEventHub->getDeviceControllerNumber(deviceId); 469 470 InputDevice* device = createDeviceLocked(deviceId, controllerNumber, identifier, classes); 471 device->configure(when, &mConfig, 0); 472 device->reset(when); 473 474 if (device->isIgnored()) { 475 ALOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, 476 identifier.name.string()); 477 } else { 478 ALOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, 479 identifier.name.string(), device->getSources()); 480 } 481 482 mDevices.add(deviceId, device); 483 bumpGenerationLocked(); 484 485 if (device->getClasses() & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) { 486 notifyExternalStylusPresenceChanged(); 487 } 488 } 489 490 void InputReader::removeDeviceLocked(nsecs_t when, int32_t deviceId) { 491 InputDevice* device = NULL; 492 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 493 if (deviceIndex < 0) { 494 ALOGW("Ignoring spurious device removed event for deviceId %d.", deviceId); 495 return; 496 } 497 498 device = mDevices.valueAt(deviceIndex); 499 mDevices.removeItemsAt(deviceIndex, 1); 500 bumpGenerationLocked(); 501 502 if (device->isIgnored()) { 503 ALOGI("Device removed: id=%d, name='%s' (ignored non-input device)", 504 device->getId(), device->getName().string()); 505 } else { 506 ALOGI("Device removed: id=%d, name='%s', sources=0x%08x", 507 device->getId(), device->getName().string(), device->getSources()); 508 } 509 510 if (device->getClasses() & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) { 511 notifyExternalStylusPresenceChanged(); 512 } 513 514 device->reset(when); 515 delete device; 516 } 517 518 InputDevice* InputReader::createDeviceLocked(int32_t deviceId, int32_t controllerNumber, 519 const InputDeviceIdentifier& identifier, uint32_t classes) { 520 InputDevice* device = new InputDevice(&mContext, deviceId, bumpGenerationLocked(), 521 controllerNumber, identifier, classes); 522 523 // External devices. 524 if (classes & INPUT_DEVICE_CLASS_EXTERNAL) { 525 device->setExternal(true); 526 } 527 528 // Devices with mics. 529 if (classes & INPUT_DEVICE_CLASS_MIC) { 530 device->setMic(true); 531 } 532 533 // Switch-like devices. 534 if (classes & INPUT_DEVICE_CLASS_SWITCH) { 535 device->addMapper(new SwitchInputMapper(device)); 536 } 537 538 // Scroll wheel-like devices. 539 if (classes & INPUT_DEVICE_CLASS_ROTARY_ENCODER) { 540 device->addMapper(new RotaryEncoderInputMapper(device)); 541 } 542 543 // Vibrator-like devices. 544 if (classes & INPUT_DEVICE_CLASS_VIBRATOR) { 545 device->addMapper(new VibratorInputMapper(device)); 546 } 547 548 // Keyboard-like devices. 549 uint32_t keyboardSource = 0; 550 int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC; 551 if (classes & INPUT_DEVICE_CLASS_KEYBOARD) { 552 keyboardSource |= AINPUT_SOURCE_KEYBOARD; 553 } 554 if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) { 555 keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC; 556 } 557 if (classes & INPUT_DEVICE_CLASS_DPAD) { 558 keyboardSource |= AINPUT_SOURCE_DPAD; 559 } 560 if (classes & INPUT_DEVICE_CLASS_GAMEPAD) { 561 keyboardSource |= AINPUT_SOURCE_GAMEPAD; 562 } 563 564 if (keyboardSource != 0) { 565 device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType)); 566 } 567 568 // Cursor-like devices. 569 if (classes & INPUT_DEVICE_CLASS_CURSOR) { 570 device->addMapper(new CursorInputMapper(device)); 571 } 572 573 // Touchscreens and touchpad devices. 574 if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) { 575 device->addMapper(new MultiTouchInputMapper(device)); 576 } else if (classes & INPUT_DEVICE_CLASS_TOUCH) { 577 device->addMapper(new SingleTouchInputMapper(device)); 578 } 579 580 // Joystick-like devices. 581 if (classes & INPUT_DEVICE_CLASS_JOYSTICK) { 582 device->addMapper(new JoystickInputMapper(device)); 583 } 584 585 // External stylus-like devices. 586 if (classes & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) { 587 device->addMapper(new ExternalStylusInputMapper(device)); 588 } 589 590 return device; 591 } 592 593 void InputReader::processEventsForDeviceLocked(int32_t deviceId, 594 const RawEvent* rawEvents, size_t count) { 595 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 596 if (deviceIndex < 0) { 597 ALOGW("Discarding event for unknown deviceId %d.", deviceId); 598 return; 599 } 600 601 InputDevice* device = mDevices.valueAt(deviceIndex); 602 if (device->isIgnored()) { 603 //ALOGD("Discarding event for ignored deviceId %d.", deviceId); 604 return; 605 } 606 607 device->process(rawEvents, count); 608 } 609 610 void InputReader::timeoutExpiredLocked(nsecs_t when) { 611 for (size_t i = 0; i < mDevices.size(); i++) { 612 InputDevice* device = mDevices.valueAt(i); 613 if (!device->isIgnored()) { 614 device->timeoutExpired(when); 615 } 616 } 617 } 618 619 void InputReader::handleConfigurationChangedLocked(nsecs_t when) { 620 // Reset global meta state because it depends on the list of all configured devices. 621 updateGlobalMetaStateLocked(); 622 623 // Enqueue configuration changed. 624 NotifyConfigurationChangedArgs args(when); 625 mQueuedListener->notifyConfigurationChanged(&args); 626 } 627 628 void InputReader::refreshConfigurationLocked(uint32_t changes) { 629 mPolicy->getReaderConfiguration(&mConfig); 630 mEventHub->setExcludedDevices(mConfig.excludedDeviceNames); 631 632 if (changes) { 633 ALOGI("Reconfiguring input devices. changes=0x%08x", changes); 634 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 635 636 if (changes & InputReaderConfiguration::CHANGE_MUST_REOPEN) { 637 mEventHub->requestReopenDevices(); 638 } else { 639 for (size_t i = 0; i < mDevices.size(); i++) { 640 InputDevice* device = mDevices.valueAt(i); 641 device->configure(now, &mConfig, changes); 642 } 643 } 644 } 645 } 646 647 void InputReader::updateGlobalMetaStateLocked() { 648 mGlobalMetaState = 0; 649 650 for (size_t i = 0; i < mDevices.size(); i++) { 651 InputDevice* device = mDevices.valueAt(i); 652 mGlobalMetaState |= device->getMetaState(); 653 } 654 } 655 656 int32_t InputReader::getGlobalMetaStateLocked() { 657 return mGlobalMetaState; 658 } 659 660 void InputReader::notifyExternalStylusPresenceChanged() { 661 refreshConfigurationLocked(InputReaderConfiguration::CHANGE_EXTERNAL_STYLUS_PRESENCE); 662 } 663 664 void InputReader::getExternalStylusDevicesLocked(Vector<InputDeviceInfo>& outDevices) { 665 for (size_t i = 0; i < mDevices.size(); i++) { 666 InputDevice* device = mDevices.valueAt(i); 667 if (device->getClasses() & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS && !device->isIgnored()) { 668 outDevices.push(); 669 device->getDeviceInfo(&outDevices.editTop()); 670 } 671 } 672 } 673 674 void InputReader::dispatchExternalStylusState(const StylusState& state) { 675 for (size_t i = 0; i < mDevices.size(); i++) { 676 InputDevice* device = mDevices.valueAt(i); 677 device->updateExternalStylusState(state); 678 } 679 } 680 681 void InputReader::disableVirtualKeysUntilLocked(nsecs_t time) { 682 mDisableVirtualKeysTimeout = time; 683 } 684 685 bool InputReader::shouldDropVirtualKeyLocked(nsecs_t now, 686 InputDevice* device, int32_t keyCode, int32_t scanCode) { 687 if (now < mDisableVirtualKeysTimeout) { 688 ALOGI("Dropping virtual key from device %s because virtual keys are " 689 "temporarily disabled for the next %0.3fms. keyCode=%d, scanCode=%d", 690 device->getName().string(), 691 (mDisableVirtualKeysTimeout - now) * 0.000001, 692 keyCode, scanCode); 693 return true; 694 } else { 695 return false; 696 } 697 } 698 699 void InputReader::fadePointerLocked() { 700 for (size_t i = 0; i < mDevices.size(); i++) { 701 InputDevice* device = mDevices.valueAt(i); 702 device->fadePointer(); 703 } 704 } 705 706 void InputReader::requestTimeoutAtTimeLocked(nsecs_t when) { 707 if (when < mNextTimeout) { 708 mNextTimeout = when; 709 mEventHub->wake(); 710 } 711 } 712 713 int32_t InputReader::bumpGenerationLocked() { 714 return ++mGeneration; 715 } 716 717 void InputReader::getInputDevices(Vector<InputDeviceInfo>& outInputDevices) { 718 AutoMutex _l(mLock); 719 getInputDevicesLocked(outInputDevices); 720 } 721 722 void InputReader::getInputDevicesLocked(Vector<InputDeviceInfo>& outInputDevices) { 723 outInputDevices.clear(); 724 725 size_t numDevices = mDevices.size(); 726 for (size_t i = 0; i < numDevices; i++) { 727 InputDevice* device = mDevices.valueAt(i); 728 if (!device->isIgnored()) { 729 outInputDevices.push(); 730 device->getDeviceInfo(&outInputDevices.editTop()); 731 } 732 } 733 } 734 735 int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask, 736 int32_t keyCode) { 737 AutoMutex _l(mLock); 738 739 return getStateLocked(deviceId, sourceMask, keyCode, &InputDevice::getKeyCodeState); 740 } 741 742 int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask, 743 int32_t scanCode) { 744 AutoMutex _l(mLock); 745 746 return getStateLocked(deviceId, sourceMask, scanCode, &InputDevice::getScanCodeState); 747 } 748 749 int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) { 750 AutoMutex _l(mLock); 751 752 return getStateLocked(deviceId, sourceMask, switchCode, &InputDevice::getSwitchState); 753 } 754 755 int32_t InputReader::getStateLocked(int32_t deviceId, uint32_t sourceMask, int32_t code, 756 GetStateFunc getStateFunc) { 757 int32_t result = AKEY_STATE_UNKNOWN; 758 if (deviceId >= 0) { 759 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 760 if (deviceIndex >= 0) { 761 InputDevice* device = mDevices.valueAt(deviceIndex); 762 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { 763 result = (device->*getStateFunc)(sourceMask, code); 764 } 765 } 766 } else { 767 size_t numDevices = mDevices.size(); 768 for (size_t i = 0; i < numDevices; i++) { 769 InputDevice* device = mDevices.valueAt(i); 770 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { 771 // If any device reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that 772 // value. Otherwise, return AKEY_STATE_UP as long as one device reports it. 773 int32_t currentResult = (device->*getStateFunc)(sourceMask, code); 774 if (currentResult >= AKEY_STATE_DOWN) { 775 return currentResult; 776 } else if (currentResult == AKEY_STATE_UP) { 777 result = currentResult; 778 } 779 } 780 } 781 } 782 return result; 783 } 784 785 void InputReader::toggleCapsLockState(int32_t deviceId) { 786 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 787 if (deviceIndex < 0) { 788 ALOGW("Ignoring toggleCapsLock for unknown deviceId %" PRId32 ".", deviceId); 789 return; 790 } 791 792 InputDevice* device = mDevices.valueAt(deviceIndex); 793 if (device->isIgnored()) { 794 return; 795 } 796 797 device->updateMetaState(AKEYCODE_CAPS_LOCK); 798 } 799 800 bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask, 801 size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { 802 AutoMutex _l(mLock); 803 804 memset(outFlags, 0, numCodes); 805 return markSupportedKeyCodesLocked(deviceId, sourceMask, numCodes, keyCodes, outFlags); 806 } 807 808 bool InputReader::markSupportedKeyCodesLocked(int32_t deviceId, uint32_t sourceMask, 809 size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { 810 bool result = false; 811 if (deviceId >= 0) { 812 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 813 if (deviceIndex >= 0) { 814 InputDevice* device = mDevices.valueAt(deviceIndex); 815 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { 816 result = device->markSupportedKeyCodes(sourceMask, 817 numCodes, keyCodes, outFlags); 818 } 819 } 820 } else { 821 size_t numDevices = mDevices.size(); 822 for (size_t i = 0; i < numDevices; i++) { 823 InputDevice* device = mDevices.valueAt(i); 824 if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { 825 result |= device->markSupportedKeyCodes(sourceMask, 826 numCodes, keyCodes, outFlags); 827 } 828 } 829 } 830 return result; 831 } 832 833 void InputReader::requestRefreshConfiguration(uint32_t changes) { 834 AutoMutex _l(mLock); 835 836 if (changes) { 837 bool needWake = !mConfigurationChangesToRefresh; 838 mConfigurationChangesToRefresh |= changes; 839 840 if (needWake) { 841 mEventHub->wake(); 842 } 843 } 844 } 845 846 void InputReader::vibrate(int32_t deviceId, const nsecs_t* pattern, size_t patternSize, 847 ssize_t repeat, int32_t token) { 848 AutoMutex _l(mLock); 849 850 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 851 if (deviceIndex >= 0) { 852 InputDevice* device = mDevices.valueAt(deviceIndex); 853 device->vibrate(pattern, patternSize, repeat, token); 854 } 855 } 856 857 void InputReader::cancelVibrate(int32_t deviceId, int32_t token) { 858 AutoMutex _l(mLock); 859 860 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 861 if (deviceIndex >= 0) { 862 InputDevice* device = mDevices.valueAt(deviceIndex); 863 device->cancelVibrate(token); 864 } 865 } 866 867 bool InputReader::isInputDeviceEnabled(int32_t deviceId) { 868 AutoMutex _l(mLock); 869 870 ssize_t deviceIndex = mDevices.indexOfKey(deviceId); 871 if (deviceIndex >= 0) { 872 InputDevice* device = mDevices.valueAt(deviceIndex); 873 return device->isEnabled(); 874 } 875 ALOGW("Ignoring invalid device id %" PRId32 ".", deviceId); 876 return false; 877 } 878 879 void InputReader::dump(std::string& dump) { 880 AutoMutex _l(mLock); 881 882 mEventHub->dump(dump); 883 dump += "\n"; 884 885 dump += "Input Reader State:\n"; 886 887 for (size_t i = 0; i < mDevices.size(); i++) { 888 mDevices.valueAt(i)->dump(dump); 889 } 890 891 dump += INDENT "Configuration:\n"; 892 dump += INDENT2 "ExcludedDeviceNames: ["; 893 for (size_t i = 0; i < mConfig.excludedDeviceNames.size(); i++) { 894 if (i != 0) { 895 dump += ", "; 896 } 897 dump += mConfig.excludedDeviceNames.itemAt(i).string(); 898 } 899 dump += "]\n"; 900 dump += StringPrintf(INDENT2 "VirtualKeyQuietTime: %0.1fms\n", 901 mConfig.virtualKeyQuietTime * 0.000001f); 902 903 dump += StringPrintf(INDENT2 "PointerVelocityControlParameters: " 904 "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n", 905 mConfig.pointerVelocityControlParameters.scale, 906 mConfig.pointerVelocityControlParameters.lowThreshold, 907 mConfig.pointerVelocityControlParameters.highThreshold, 908 mConfig.pointerVelocityControlParameters.acceleration); 909 910 dump += StringPrintf(INDENT2 "WheelVelocityControlParameters: " 911 "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n", 912 mConfig.wheelVelocityControlParameters.scale, 913 mConfig.wheelVelocityControlParameters.lowThreshold, 914 mConfig.wheelVelocityControlParameters.highThreshold, 915 mConfig.wheelVelocityControlParameters.acceleration); 916 917 dump += StringPrintf(INDENT2 "PointerGesture:\n"); 918 dump += StringPrintf(INDENT3 "Enabled: %s\n", 919 toString(mConfig.pointerGesturesEnabled)); 920 dump += StringPrintf(INDENT3 "QuietInterval: %0.1fms\n", 921 mConfig.pointerGestureQuietInterval * 0.000001f); 922 dump += StringPrintf(INDENT3 "DragMinSwitchSpeed: %0.1fpx/s\n", 923 mConfig.pointerGestureDragMinSwitchSpeed); 924 dump += StringPrintf(INDENT3 "TapInterval: %0.1fms\n", 925 mConfig.pointerGestureTapInterval * 0.000001f); 926 dump += StringPrintf(INDENT3 "TapDragInterval: %0.1fms\n", 927 mConfig.pointerGestureTapDragInterval * 0.000001f); 928 dump += StringPrintf(INDENT3 "TapSlop: %0.1fpx\n", 929 mConfig.pointerGestureTapSlop); 930 dump += StringPrintf(INDENT3 "MultitouchSettleInterval: %0.1fms\n", 931 mConfig.pointerGestureMultitouchSettleInterval * 0.000001f); 932 dump += StringPrintf(INDENT3 "MultitouchMinDistance: %0.1fpx\n", 933 mConfig.pointerGestureMultitouchMinDistance); 934 dump += StringPrintf(INDENT3 "SwipeTransitionAngleCosine: %0.1f\n", 935 mConfig.pointerGestureSwipeTransitionAngleCosine); 936 dump += StringPrintf(INDENT3 "SwipeMaxWidthRatio: %0.1f\n", 937 mConfig.pointerGestureSwipeMaxWidthRatio); 938 dump += StringPrintf(INDENT3 "MovementSpeedRatio: %0.1f\n", 939 mConfig.pointerGestureMovementSpeedRatio); 940 dump += StringPrintf(INDENT3 "ZoomSpeedRatio: %0.1f\n", 941 mConfig.pointerGestureZoomSpeedRatio); 942 943 dump += INDENT3 "Viewports:\n"; 944 mConfig.dump(dump); 945 } 946 947 void InputReader::monitor() { 948 // Acquire and release the lock to ensure that the reader has not deadlocked. 949 mLock.lock(); 950 mEventHub->wake(); 951 mReaderIsAliveCondition.wait(mLock); 952 mLock.unlock(); 953 954 // Check the EventHub 955 mEventHub->monitor(); 956 } 957 958 959 // --- InputReader::ContextImpl --- 960 961 InputReader::ContextImpl::ContextImpl(InputReader* reader) : 962 mReader(reader) { 963 } 964 965 void InputReader::ContextImpl::updateGlobalMetaState() { 966 // lock is already held by the input loop 967 mReader->updateGlobalMetaStateLocked(); 968 } 969 970 int32_t InputReader::ContextImpl::getGlobalMetaState() { 971 // lock is already held by the input loop 972 return mReader->getGlobalMetaStateLocked(); 973 } 974 975 void InputReader::ContextImpl::disableVirtualKeysUntil(nsecs_t time) { 976 // lock is already held by the input loop 977 mReader->disableVirtualKeysUntilLocked(time); 978 } 979 980 bool InputReader::ContextImpl::shouldDropVirtualKey(nsecs_t now, 981 InputDevice* device, int32_t keyCode, int32_t scanCode) { 982 // lock is already held by the input loop 983 return mReader->shouldDropVirtualKeyLocked(now, device, keyCode, scanCode); 984 } 985 986 void InputReader::ContextImpl::fadePointer() { 987 // lock is already held by the input loop 988 mReader->fadePointerLocked(); 989 } 990 991 void InputReader::ContextImpl::requestTimeoutAtTime(nsecs_t when) { 992 // lock is already held by the input loop 993 mReader->requestTimeoutAtTimeLocked(when); 994 } 995 996 int32_t InputReader::ContextImpl::bumpGeneration() { 997 // lock is already held by the input loop 998 return mReader->bumpGenerationLocked(); 999 } 1000 1001 void InputReader::ContextImpl::getExternalStylusDevices(Vector<InputDeviceInfo>& outDevices) { 1002 // lock is already held by whatever called refreshConfigurationLocked 1003 mReader->getExternalStylusDevicesLocked(outDevices); 1004 } 1005 1006 void InputReader::ContextImpl::dispatchExternalStylusState(const StylusState& state) { 1007 mReader->dispatchExternalStylusState(state); 1008 } 1009 1010 InputReaderPolicyInterface* InputReader::ContextImpl::getPolicy() { 1011 return mReader->mPolicy.get(); 1012 } 1013 1014 InputListenerInterface* InputReader::ContextImpl::getListener() { 1015 return mReader->mQueuedListener.get(); 1016 } 1017 1018 EventHubInterface* InputReader::ContextImpl::getEventHub() { 1019 return mReader->mEventHub.get(); 1020 } 1021 1022 1023 // --- InputReaderThread --- 1024 1025 InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) : 1026 Thread(/*canCallJava*/ true), mReader(reader) { 1027 } 1028 1029 InputReaderThread::~InputReaderThread() { 1030 } 1031 1032 bool InputReaderThread::threadLoop() { 1033 mReader->loopOnce(); 1034 return true; 1035 } 1036 1037 1038 // --- InputDevice --- 1039 1040 InputDevice::InputDevice(InputReaderContext* context, int32_t id, int32_t generation, 1041 int32_t controllerNumber, const InputDeviceIdentifier& identifier, uint32_t classes) : 1042 mContext(context), mId(id), mGeneration(generation), mControllerNumber(controllerNumber), 1043 mIdentifier(identifier), mClasses(classes), 1044 mSources(0), mIsExternal(false), mHasMic(false), mDropUntilNextSync(false) { 1045 } 1046 1047 InputDevice::~InputDevice() { 1048 size_t numMappers = mMappers.size(); 1049 for (size_t i = 0; i < numMappers; i++) { 1050 delete mMappers[i]; 1051 } 1052 mMappers.clear(); 1053 } 1054 1055 bool InputDevice::isEnabled() { 1056 return getEventHub()->isDeviceEnabled(mId); 1057 } 1058 1059 void InputDevice::setEnabled(bool enabled, nsecs_t when) { 1060 if (isEnabled() == enabled) { 1061 return; 1062 } 1063 1064 if (enabled) { 1065 getEventHub()->enableDevice(mId); 1066 reset(when); 1067 } else { 1068 reset(when); 1069 getEventHub()->disableDevice(mId); 1070 } 1071 // Must change generation to flag this device as changed 1072 bumpGeneration(); 1073 } 1074 1075 void InputDevice::dump(std::string& dump) { 1076 InputDeviceInfo deviceInfo; 1077 getDeviceInfo(& deviceInfo); 1078 1079 dump += StringPrintf(INDENT "Device %d: %s\n", deviceInfo.getId(), 1080 deviceInfo.getDisplayName().string()); 1081 dump += StringPrintf(INDENT2 "Generation: %d\n", mGeneration); 1082 dump += StringPrintf(INDENT2 "IsExternal: %s\n", toString(mIsExternal)); 1083 dump += StringPrintf(INDENT2 "HasMic: %s\n", toString(mHasMic)); 1084 dump += StringPrintf(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources()); 1085 dump += StringPrintf(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType()); 1086 1087 const Vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges(); 1088 if (!ranges.isEmpty()) { 1089 dump += INDENT2 "Motion Ranges:\n"; 1090 for (size_t i = 0; i < ranges.size(); i++) { 1091 const InputDeviceInfo::MotionRange& range = ranges.itemAt(i); 1092 const char* label = getAxisLabel(range.axis); 1093 char name[32]; 1094 if (label) { 1095 strncpy(name, label, sizeof(name)); 1096 name[sizeof(name) - 1] = '\0'; 1097 } else { 1098 snprintf(name, sizeof(name), "%d", range.axis); 1099 } 1100 dump += StringPrintf(INDENT3 "%s: source=0x%08x, " 1101 "min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f, resolution=%0.3f\n", 1102 name, range.source, range.min, range.max, range.flat, range.fuzz, 1103 range.resolution); 1104 } 1105 } 1106 1107 size_t numMappers = mMappers.size(); 1108 for (size_t i = 0; i < numMappers; i++) { 1109 InputMapper* mapper = mMappers[i]; 1110 mapper->dump(dump); 1111 } 1112 } 1113 1114 void InputDevice::addMapper(InputMapper* mapper) { 1115 mMappers.add(mapper); 1116 } 1117 1118 void InputDevice::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) { 1119 mSources = 0; 1120 1121 if (!isIgnored()) { 1122 if (!changes) { // first time only 1123 mContext->getEventHub()->getConfiguration(mId, &mConfiguration); 1124 } 1125 1126 if (!changes || (changes & InputReaderConfiguration::CHANGE_KEYBOARD_LAYOUTS)) { 1127 if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) { 1128 sp<KeyCharacterMap> keyboardLayout = 1129 mContext->getPolicy()->getKeyboardLayoutOverlay(mIdentifier); 1130 if (mContext->getEventHub()->setKeyboardLayoutOverlay(mId, keyboardLayout)) { 1131 bumpGeneration(); 1132 } 1133 } 1134 } 1135 1136 if (!changes || (changes & InputReaderConfiguration::CHANGE_DEVICE_ALIAS)) { 1137 if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) { 1138 String8 alias = mContext->getPolicy()->getDeviceAlias(mIdentifier); 1139 if (mAlias != alias) { 1140 mAlias = alias; 1141 bumpGeneration(); 1142 } 1143 } 1144 } 1145 1146 if (!changes || (changes & InputReaderConfiguration::CHANGE_ENABLED_STATE)) { 1147 ssize_t index = config->disabledDevices.indexOf(mId); 1148 bool enabled = index < 0; 1149 setEnabled(enabled, when); 1150 } 1151 1152 size_t numMappers = mMappers.size(); 1153 for (size_t i = 0; i < numMappers; i++) { 1154 InputMapper* mapper = mMappers[i]; 1155 mapper->configure(when, config, changes); 1156 mSources |= mapper->getSources(); 1157 } 1158 } 1159 } 1160 1161 void InputDevice::reset(nsecs_t when) { 1162 size_t numMappers = mMappers.size(); 1163 for (size_t i = 0; i < numMappers; i++) { 1164 InputMapper* mapper = mMappers[i]; 1165 mapper->reset(when); 1166 } 1167 1168 mContext->updateGlobalMetaState(); 1169 1170 notifyReset(when); 1171 } 1172 1173 void InputDevice::process(const RawEvent* rawEvents, size_t count) { 1174 // Process all of the events in order for each mapper. 1175 // We cannot simply ask each mapper to process them in bulk because mappers may 1176 // have side-effects that must be interleaved. For example, joystick movement events and 1177 // gamepad button presses are handled by different mappers but they should be dispatched 1178 // in the order received. 1179 size_t numMappers = mMappers.size(); 1180 for (const RawEvent* rawEvent = rawEvents; count != 0; rawEvent++) { 1181 #if DEBUG_RAW_EVENTS 1182 ALOGD("Input event: device=%d type=0x%04x code=0x%04x value=0x%08x when=%" PRId64, 1183 rawEvent->deviceId, rawEvent->type, rawEvent->code, rawEvent->value, 1184 rawEvent->when); 1185 #endif 1186 1187 if (mDropUntilNextSync) { 1188 if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { 1189 mDropUntilNextSync = false; 1190 #if DEBUG_RAW_EVENTS 1191 ALOGD("Recovered from input event buffer overrun."); 1192 #endif 1193 } else { 1194 #if DEBUG_RAW_EVENTS 1195 ALOGD("Dropped input event while waiting for next input sync."); 1196 #endif 1197 } 1198 } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED) { 1199 ALOGI("Detected input event buffer overrun for device %s.", getName().string()); 1200 mDropUntilNextSync = true; 1201 reset(rawEvent->when); 1202 } else { 1203 for (size_t i = 0; i < numMappers; i++) { 1204 InputMapper* mapper = mMappers[i]; 1205 mapper->process(rawEvent); 1206 } 1207 } 1208 --count; 1209 } 1210 } 1211 1212 void InputDevice::timeoutExpired(nsecs_t when) { 1213 size_t numMappers = mMappers.size(); 1214 for (size_t i = 0; i < numMappers; i++) { 1215 InputMapper* mapper = mMappers[i]; 1216 mapper->timeoutExpired(when); 1217 } 1218 } 1219 1220 void InputDevice::updateExternalStylusState(const StylusState& state) { 1221 size_t numMappers = mMappers.size(); 1222 for (size_t i = 0; i < numMappers; i++) { 1223 InputMapper* mapper = mMappers[i]; 1224 mapper->updateExternalStylusState(state); 1225 } 1226 } 1227 1228 void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) { 1229 outDeviceInfo->initialize(mId, mGeneration, mControllerNumber, mIdentifier, mAlias, 1230 mIsExternal, mHasMic); 1231 size_t numMappers = mMappers.size(); 1232 for (size_t i = 0; i < numMappers; i++) { 1233 InputMapper* mapper = mMappers[i]; 1234 mapper->populateDeviceInfo(outDeviceInfo); 1235 } 1236 } 1237 1238 int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { 1239 return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState); 1240 } 1241 1242 int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { 1243 return getState(sourceMask, scanCode, & InputMapper::getScanCodeState); 1244 } 1245 1246 int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) { 1247 return getState(sourceMask, switchCode, & InputMapper::getSwitchState); 1248 } 1249 1250 int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) { 1251 int32_t result = AKEY_STATE_UNKNOWN; 1252 size_t numMappers = mMappers.size(); 1253 for (size_t i = 0; i < numMappers; i++) { 1254 InputMapper* mapper = mMappers[i]; 1255 if (sourcesMatchMask(mapper->getSources(), sourceMask)) { 1256 // If any mapper reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that 1257 // value. Otherwise, return AKEY_STATE_UP as long as one mapper reports it. 1258 int32_t currentResult = (mapper->*getStateFunc)(sourceMask, code); 1259 if (currentResult >= AKEY_STATE_DOWN) { 1260 return currentResult; 1261 } else if (currentResult == AKEY_STATE_UP) { 1262 result = currentResult; 1263 } 1264 } 1265 } 1266 return result; 1267 } 1268 1269 bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, 1270 const int32_t* keyCodes, uint8_t* outFlags) { 1271 bool result = false; 1272 size_t numMappers = mMappers.size(); 1273 for (size_t i = 0; i < numMappers; i++) { 1274 InputMapper* mapper = mMappers[i]; 1275 if (sourcesMatchMask(mapper->getSources(), sourceMask)) { 1276 result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags); 1277 } 1278 } 1279 return result; 1280 } 1281 1282 void InputDevice::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, 1283 int32_t token) { 1284 size_t numMappers = mMappers.size(); 1285 for (size_t i = 0; i < numMappers; i++) { 1286 InputMapper* mapper = mMappers[i]; 1287 mapper->vibrate(pattern, patternSize, repeat, token); 1288 } 1289 } 1290 1291 void InputDevice::cancelVibrate(int32_t token) { 1292 size_t numMappers = mMappers.size(); 1293 for (size_t i = 0; i < numMappers; i++) { 1294 InputMapper* mapper = mMappers[i]; 1295 mapper->cancelVibrate(token); 1296 } 1297 } 1298 1299 void InputDevice::cancelTouch(nsecs_t when) { 1300 size_t numMappers = mMappers.size(); 1301 for (size_t i = 0; i < numMappers; i++) { 1302 InputMapper* mapper = mMappers[i]; 1303 mapper->cancelTouch(when); 1304 } 1305 } 1306 1307 int32_t InputDevice::getMetaState() { 1308 int32_t result = 0; 1309 size_t numMappers = mMappers.size(); 1310 for (size_t i = 0; i < numMappers; i++) { 1311 InputMapper* mapper = mMappers[i]; 1312 result |= mapper->getMetaState(); 1313 } 1314 return result; 1315 } 1316 1317 void InputDevice::updateMetaState(int32_t keyCode) { 1318 size_t numMappers = mMappers.size(); 1319 for (size_t i = 0; i < numMappers; i++) { 1320 mMappers[i]->updateMetaState(keyCode); 1321 } 1322 } 1323 1324 void InputDevice::fadePointer() { 1325 size_t numMappers = mMappers.size(); 1326 for (size_t i = 0; i < numMappers; i++) { 1327 InputMapper* mapper = mMappers[i]; 1328 mapper->fadePointer(); 1329 } 1330 } 1331 1332 void InputDevice::bumpGeneration() { 1333 mGeneration = mContext->bumpGeneration(); 1334 } 1335 1336 void InputDevice::notifyReset(nsecs_t when) { 1337 NotifyDeviceResetArgs args(when, mId); 1338 mContext->getListener()->notifyDeviceReset(&args); 1339 } 1340 1341 1342 // --- CursorButtonAccumulator --- 1343 1344 CursorButtonAccumulator::CursorButtonAccumulator() { 1345 clearButtons(); 1346 } 1347 1348 void CursorButtonAccumulator::reset(InputDevice* device) { 1349 mBtnLeft = device->isKeyPressed(BTN_LEFT); 1350 mBtnRight = device->isKeyPressed(BTN_RIGHT); 1351 mBtnMiddle = device->isKeyPressed(BTN_MIDDLE); 1352 mBtnBack = device->isKeyPressed(BTN_BACK); 1353 mBtnSide = device->isKeyPressed(BTN_SIDE); 1354 mBtnForward = device->isKeyPressed(BTN_FORWARD); 1355 mBtnExtra = device->isKeyPressed(BTN_EXTRA); 1356 mBtnTask = device->isKeyPressed(BTN_TASK); 1357 } 1358 1359 void CursorButtonAccumulator::clearButtons() { 1360 mBtnLeft = 0; 1361 mBtnRight = 0; 1362 mBtnMiddle = 0; 1363 mBtnBack = 0; 1364 mBtnSide = 0; 1365 mBtnForward = 0; 1366 mBtnExtra = 0; 1367 mBtnTask = 0; 1368 } 1369 1370 void CursorButtonAccumulator::process(const RawEvent* rawEvent) { 1371 if (rawEvent->type == EV_KEY) { 1372 switch (rawEvent->code) { 1373 case BTN_LEFT: 1374 mBtnLeft = rawEvent->value; 1375 break; 1376 case BTN_RIGHT: 1377 mBtnRight = rawEvent->value; 1378 break; 1379 case BTN_MIDDLE: 1380 mBtnMiddle = rawEvent->value; 1381 break; 1382 case BTN_BACK: 1383 mBtnBack = rawEvent->value; 1384 break; 1385 case BTN_SIDE: 1386 mBtnSide = rawEvent->value; 1387 break; 1388 case BTN_FORWARD: 1389 mBtnForward = rawEvent->value; 1390 break; 1391 case BTN_EXTRA: 1392 mBtnExtra = rawEvent->value; 1393 break; 1394 case BTN_TASK: 1395 mBtnTask = rawEvent->value; 1396 break; 1397 } 1398 } 1399 } 1400 1401 uint32_t CursorButtonAccumulator::getButtonState() const { 1402 uint32_t result = 0; 1403 if (mBtnLeft) { 1404 result |= AMOTION_EVENT_BUTTON_PRIMARY; 1405 } 1406 if (mBtnRight) { 1407 result |= AMOTION_EVENT_BUTTON_SECONDARY; 1408 } 1409 if (mBtnMiddle) { 1410 result |= AMOTION_EVENT_BUTTON_TERTIARY; 1411 } 1412 if (mBtnBack || mBtnSide) { 1413 result |= AMOTION_EVENT_BUTTON_BACK; 1414 } 1415 if (mBtnForward || mBtnExtra) { 1416 result |= AMOTION_EVENT_BUTTON_FORWARD; 1417 } 1418 return result; 1419 } 1420 1421 1422 // --- CursorMotionAccumulator --- 1423 1424 CursorMotionAccumulator::CursorMotionAccumulator() { 1425 clearRelativeAxes(); 1426 } 1427 1428 void CursorMotionAccumulator::reset(InputDevice* device) { 1429 clearRelativeAxes(); 1430 } 1431 1432 void CursorMotionAccumulator::clearRelativeAxes() { 1433 mRelX = 0; 1434 mRelY = 0; 1435 } 1436 1437 void CursorMotionAccumulator::process(const RawEvent* rawEvent) { 1438 if (rawEvent->type == EV_REL) { 1439 switch (rawEvent->code) { 1440 case REL_X: 1441 mRelX = rawEvent->value; 1442 break; 1443 case REL_Y: 1444 mRelY = rawEvent->value; 1445 break; 1446 } 1447 } 1448 } 1449 1450 void CursorMotionAccumulator::finishSync() { 1451 clearRelativeAxes(); 1452 } 1453 1454 1455 // --- CursorScrollAccumulator --- 1456 1457 CursorScrollAccumulator::CursorScrollAccumulator() : 1458 mHaveRelWheel(false), mHaveRelHWheel(false) { 1459 clearRelativeAxes(); 1460 } 1461 1462 void CursorScrollAccumulator::configure(InputDevice* device) { 1463 mHaveRelWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_WHEEL); 1464 mHaveRelHWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_HWHEEL); 1465 } 1466 1467 void CursorScrollAccumulator::reset(InputDevice* device) { 1468 clearRelativeAxes(); 1469 } 1470 1471 void CursorScrollAccumulator::clearRelativeAxes() { 1472 mRelWheel = 0; 1473 mRelHWheel = 0; 1474 } 1475 1476 void CursorScrollAccumulator::process(const RawEvent* rawEvent) { 1477 if (rawEvent->type == EV_REL) { 1478 switch (rawEvent->code) { 1479 case REL_WHEEL: 1480 mRelWheel = rawEvent->value; 1481 break; 1482 case REL_HWHEEL: 1483 mRelHWheel = rawEvent->value; 1484 break; 1485 } 1486 } 1487 } 1488 1489 void CursorScrollAccumulator::finishSync() { 1490 clearRelativeAxes(); 1491 } 1492 1493 1494 // --- TouchButtonAccumulator --- 1495 1496 TouchButtonAccumulator::TouchButtonAccumulator() : 1497 mHaveBtnTouch(false), mHaveStylus(false) { 1498 clearButtons(); 1499 } 1500 1501 void TouchButtonAccumulator::configure(InputDevice* device) { 1502 mHaveBtnTouch = device->hasKey(BTN_TOUCH); 1503 mHaveStylus = device->hasKey(BTN_TOOL_PEN) 1504 || device->hasKey(BTN_TOOL_RUBBER) 1505 || device->hasKey(BTN_TOOL_BRUSH) 1506 || device->hasKey(BTN_TOOL_PENCIL) 1507 || device->hasKey(BTN_TOOL_AIRBRUSH); 1508 } 1509 1510 void TouchButtonAccumulator::reset(InputDevice* device) { 1511 mBtnTouch = device->isKeyPressed(BTN_TOUCH); 1512 mBtnStylus = device->isKeyPressed(BTN_STYLUS); 1513 // BTN_0 is what gets mapped for the HID usage Digitizers.SecondaryBarrelSwitch 1514 mBtnStylus2 = 1515 device->isKeyPressed(BTN_STYLUS2) || device->isKeyPressed(BTN_0); 1516 mBtnToolFinger = device->isKeyPressed(BTN_TOOL_FINGER); 1517 mBtnToolPen = device->isKeyPressed(BTN_TOOL_PEN); 1518 mBtnToolRubber = device->isKeyPressed(BTN_TOOL_RUBBER); 1519 mBtnToolBrush = device->isKeyPressed(BTN_TOOL_BRUSH); 1520 mBtnToolPencil = device->isKeyPressed(BTN_TOOL_PENCIL); 1521 mBtnToolAirbrush = device->isKeyPressed(BTN_TOOL_AIRBRUSH); 1522 mBtnToolMouse = device->isKeyPressed(BTN_TOOL_MOUSE); 1523 mBtnToolLens = device->isKeyPressed(BTN_TOOL_LENS); 1524 mBtnToolDoubleTap = device->isKeyPressed(BTN_TOOL_DOUBLETAP); 1525 mBtnToolTripleTap = device->isKeyPressed(BTN_TOOL_TRIPLETAP); 1526 mBtnToolQuadTap = device->isKeyPressed(BTN_TOOL_QUADTAP); 1527 } 1528 1529 void TouchButtonAccumulator::clearButtons() { 1530 mBtnTouch = 0; 1531 mBtnStylus = 0; 1532 mBtnStylus2 = 0; 1533 mBtnToolFinger = 0; 1534 mBtnToolPen = 0; 1535 mBtnToolRubber = 0; 1536 mBtnToolBrush = 0; 1537 mBtnToolPencil = 0; 1538 mBtnToolAirbrush = 0; 1539 mBtnToolMouse = 0; 1540 mBtnToolLens = 0; 1541 mBtnToolDoubleTap = 0; 1542 mBtnToolTripleTap = 0; 1543 mBtnToolQuadTap = 0; 1544 } 1545 1546 void TouchButtonAccumulator::process(const RawEvent* rawEvent) { 1547 if (rawEvent->type == EV_KEY) { 1548 switch (rawEvent->code) { 1549 case BTN_TOUCH: 1550 mBtnTouch = rawEvent->value; 1551 break; 1552 case BTN_STYLUS: 1553 mBtnStylus = rawEvent->value; 1554 break; 1555 case BTN_STYLUS2: 1556 case BTN_0:// BTN_0 is what gets mapped for the HID usage Digitizers.SecondaryBarrelSwitch 1557 mBtnStylus2 = rawEvent->value; 1558 break; 1559 case BTN_TOOL_FINGER: 1560 mBtnToolFinger = rawEvent->value; 1561 break; 1562 case BTN_TOOL_PEN: 1563 mBtnToolPen = rawEvent->value; 1564 break; 1565 case BTN_TOOL_RUBBER: 1566 mBtnToolRubber = rawEvent->value; 1567 break; 1568 case BTN_TOOL_BRUSH: 1569 mBtnToolBrush = rawEvent->value; 1570 break; 1571 case BTN_TOOL_PENCIL: 1572 mBtnToolPencil = rawEvent->value; 1573 break; 1574 case BTN_TOOL_AIRBRUSH: 1575 mBtnToolAirbrush = rawEvent->value; 1576 break; 1577 case BTN_TOOL_MOUSE: 1578 mBtnToolMouse = rawEvent->value; 1579 break; 1580 case BTN_TOOL_LENS: 1581 mBtnToolLens = rawEvent->value; 1582 break; 1583 case BTN_TOOL_DOUBLETAP: 1584 mBtnToolDoubleTap = rawEvent->value; 1585 break; 1586 case BTN_TOOL_TRIPLETAP: 1587 mBtnToolTripleTap = rawEvent->value; 1588 break; 1589 case BTN_TOOL_QUADTAP: 1590 mBtnToolQuadTap = rawEvent->value; 1591 break; 1592 } 1593 } 1594 } 1595 1596 uint32_t TouchButtonAccumulator::getButtonState() const { 1597 uint32_t result = 0; 1598 if (mBtnStylus) { 1599 result |= AMOTION_EVENT_BUTTON_STYLUS_PRIMARY; 1600 } 1601 if (mBtnStylus2) { 1602 result |= AMOTION_EVENT_BUTTON_STYLUS_SECONDARY; 1603 } 1604 return result; 1605 } 1606 1607 int32_t TouchButtonAccumulator::getToolType() const { 1608 if (mBtnToolMouse || mBtnToolLens) { 1609 return AMOTION_EVENT_TOOL_TYPE_MOUSE; 1610 } 1611 if (mBtnToolRubber) { 1612 return AMOTION_EVENT_TOOL_TYPE_ERASER; 1613 } 1614 if (mBtnToolPen || mBtnToolBrush || mBtnToolPencil || mBtnToolAirbrush) { 1615 return AMOTION_EVENT_TOOL_TYPE_STYLUS; 1616 } 1617 if (mBtnToolFinger || mBtnToolDoubleTap || mBtnToolTripleTap || mBtnToolQuadTap) { 1618 return AMOTION_EVENT_TOOL_TYPE_FINGER; 1619 } 1620 return AMOTION_EVENT_TOOL_TYPE_UNKNOWN; 1621 } 1622 1623 bool TouchButtonAccumulator::isToolActive() const { 1624 return mBtnTouch || mBtnToolFinger || mBtnToolPen || mBtnToolRubber 1625 || mBtnToolBrush || mBtnToolPencil || mBtnToolAirbrush 1626 || mBtnToolMouse || mBtnToolLens 1627 || mBtnToolDoubleTap || mBtnToolTripleTap || mBtnToolQuadTap; 1628 } 1629 1630 bool TouchButtonAccumulator::isHovering() const { 1631 return mHaveBtnTouch && !mBtnTouch; 1632 } 1633 1634 bool TouchButtonAccumulator::hasStylus() const { 1635 return mHaveStylus; 1636 } 1637 1638 1639 // --- RawPointerAxes --- 1640 1641 RawPointerAxes::RawPointerAxes() { 1642 clear(); 1643 } 1644 1645 void RawPointerAxes::clear() { 1646 x.clear(); 1647 y.clear(); 1648 pressure.clear(); 1649 touchMajor.clear(); 1650 touchMinor.clear(); 1651 toolMajor.clear(); 1652 toolMinor.clear(); 1653 orientation.clear(); 1654 distance.clear(); 1655 tiltX.clear(); 1656 tiltY.clear(); 1657 trackingId.clear(); 1658 slot.clear(); 1659 } 1660 1661 1662 // --- RawPointerData --- 1663 1664 RawPointerData::RawPointerData() { 1665 clear(); 1666 } 1667 1668 void RawPointerData::clear() { 1669 pointerCount = 0; 1670 clearIdBits(); 1671 } 1672 1673 void RawPointerData::copyFrom(const RawPointerData& other) { 1674 pointerCount = other.pointerCount; 1675 hoveringIdBits = other.hoveringIdBits; 1676 touchingIdBits = other.touchingIdBits; 1677 1678 for (uint32_t i = 0; i < pointerCount; i++) { 1679 pointers[i] = other.pointers[i]; 1680 1681 int id = pointers[i].id; 1682 idToIndex[id] = other.idToIndex[id]; 1683 } 1684 } 1685 1686 void RawPointerData::getCentroidOfTouchingPointers(float* outX, float* outY) const { 1687 float x = 0, y = 0; 1688 uint32_t count = touchingIdBits.count(); 1689 if (count) { 1690 for (BitSet32 idBits(touchingIdBits); !idBits.isEmpty(); ) { 1691 uint32_t id = idBits.clearFirstMarkedBit(); 1692 const Pointer& pointer = pointerForId(id); 1693 x += pointer.x; 1694 y += pointer.y; 1695 } 1696 x /= count; 1697 y /= count; 1698 } 1699 *outX = x; 1700 *outY = y; 1701 } 1702 1703 1704 // --- CookedPointerData --- 1705 1706 CookedPointerData::CookedPointerData() { 1707 clear(); 1708 } 1709 1710 void CookedPointerData::clear() { 1711 pointerCount = 0; 1712 hoveringIdBits.clear(); 1713 touchingIdBits.clear(); 1714 } 1715 1716 void CookedPointerData::copyFrom(const CookedPointerData& other) { 1717 pointerCount = other.pointerCount; 1718 hoveringIdBits = other.hoveringIdBits; 1719 touchingIdBits = other.touchingIdBits; 1720 1721 for (uint32_t i = 0; i < pointerCount; i++) { 1722 pointerProperties[i].copyFrom(other.pointerProperties[i]); 1723 pointerCoords[i].copyFrom(other.pointerCoords[i]); 1724 1725 int id = pointerProperties[i].id; 1726 idToIndex[id] = other.idToIndex[id]; 1727 } 1728 } 1729 1730 1731 // --- SingleTouchMotionAccumulator --- 1732 1733 SingleTouchMotionAccumulator::SingleTouchMotionAccumulator() { 1734 clearAbsoluteAxes(); 1735 } 1736 1737 void SingleTouchMotionAccumulator::reset(InputDevice* device) { 1738 mAbsX = device->getAbsoluteAxisValue(ABS_X); 1739 mAbsY = device->getAbsoluteAxisValue(ABS_Y); 1740 mAbsPressure = device->getAbsoluteAxisValue(ABS_PRESSURE); 1741 mAbsToolWidth = device->getAbsoluteAxisValue(ABS_TOOL_WIDTH); 1742 mAbsDistance = device->getAbsoluteAxisValue(ABS_DISTANCE); 1743 mAbsTiltX = device->getAbsoluteAxisValue(ABS_TILT_X); 1744 mAbsTiltY = device->getAbsoluteAxisValue(ABS_TILT_Y); 1745 } 1746 1747 void SingleTouchMotionAccumulator::clearAbsoluteAxes() { 1748 mAbsX = 0; 1749 mAbsY = 0; 1750 mAbsPressure = 0; 1751 mAbsToolWidth = 0; 1752 mAbsDistance = 0; 1753 mAbsTiltX = 0; 1754 mAbsTiltY = 0; 1755 } 1756 1757 void SingleTouchMotionAccumulator::process(const RawEvent* rawEvent) { 1758 if (rawEvent->type == EV_ABS) { 1759 switch (rawEvent->code) { 1760 case ABS_X: 1761 mAbsX = rawEvent->value; 1762 break; 1763 case ABS_Y: 1764 mAbsY = rawEvent->value; 1765 break; 1766 case ABS_PRESSURE: 1767 mAbsPressure = rawEvent->value; 1768 break; 1769 case ABS_TOOL_WIDTH: 1770 mAbsToolWidth = rawEvent->value; 1771 break; 1772 case ABS_DISTANCE: 1773 mAbsDistance = rawEvent->value; 1774 break; 1775 case ABS_TILT_X: 1776 mAbsTiltX = rawEvent->value; 1777 break; 1778 case ABS_TILT_Y: 1779 mAbsTiltY = rawEvent->value; 1780 break; 1781 } 1782 } 1783 } 1784 1785 1786 // --- MultiTouchMotionAccumulator --- 1787 1788 MultiTouchMotionAccumulator::MultiTouchMotionAccumulator() : 1789 mCurrentSlot(-1), mSlots(NULL), mSlotCount(0), mUsingSlotsProtocol(false), 1790 mHaveStylus(false), mDeviceTimestamp(0) { 1791 } 1792 1793 MultiTouchMotionAccumulator::~MultiTouchMotionAccumulator() { 1794 delete[] mSlots; 1795 } 1796 1797 void MultiTouchMotionAccumulator::configure(InputDevice* device, 1798 size_t slotCount, bool usingSlotsProtocol) { 1799 mSlotCount = slotCount; 1800 mUsingSlotsProtocol = usingSlotsProtocol; 1801 mHaveStylus = device->hasAbsoluteAxis(ABS_MT_TOOL_TYPE); 1802 1803 delete[] mSlots; 1804 mSlots = new Slot[slotCount]; 1805 } 1806 1807 void MultiTouchMotionAccumulator::reset(InputDevice* device) { 1808 // Unfortunately there is no way to read the initial contents of the slots. 1809 // So when we reset the accumulator, we must assume they are all zeroes. 1810 if (mUsingSlotsProtocol) { 1811 // Query the driver for the current slot index and use it as the initial slot 1812 // before we start reading events from the device. It is possible that the 1813 // current slot index will not be the same as it was when the first event was 1814 // written into the evdev buffer, which means the input mapper could start 1815 // out of sync with the initial state of the events in the evdev buffer. 1816 // In the extremely unlikely case that this happens, the data from 1817 // two slots will be confused until the next ABS_MT_SLOT event is received. 1818 // This can cause the touch point to "jump", but at least there will be 1819 // no stuck touches. 1820 int32_t initialSlot; 1821 status_t status = device->getEventHub()->getAbsoluteAxisValue(device->getId(), 1822 ABS_MT_SLOT, &initialSlot); 1823 if (status) { 1824 ALOGD("Could not retrieve current multitouch slot index. status=%d", status); 1825 initialSlot = -1; 1826 } 1827 clearSlots(initialSlot); 1828 } else { 1829 clearSlots(-1); 1830 } 1831 mDeviceTimestamp = 0; 1832 } 1833 1834 void MultiTouchMotionAccumulator::clearSlots(int32_t initialSlot) { 1835 if (mSlots) { 1836 for (size_t i = 0; i < mSlotCount; i++) { 1837 mSlots[i].clear(); 1838 } 1839 } 1840 mCurrentSlot = initialSlot; 1841 } 1842 1843 void MultiTouchMotionAccumulator::process(const RawEvent* rawEvent) { 1844 if (rawEvent->type == EV_ABS) { 1845 bool newSlot = false; 1846 if (mUsingSlotsProtocol) { 1847 if (rawEvent->code == ABS_MT_SLOT) { 1848 mCurrentSlot = rawEvent->value; 1849 newSlot = true; 1850 } 1851 } else if (mCurrentSlot < 0) { 1852 mCurrentSlot = 0; 1853 } 1854 1855 if (mCurrentSlot < 0 || size_t(mCurrentSlot) >= mSlotCount) { 1856 #if DEBUG_POINTERS 1857 if (newSlot) { 1858 ALOGW("MultiTouch device emitted invalid slot index %d but it " 1859 "should be between 0 and %zd; ignoring this slot.", 1860 mCurrentSlot, mSlotCount - 1); 1861 } 1862 #endif 1863 } else { 1864 Slot* slot = &mSlots[mCurrentSlot]; 1865 1866 switch (rawEvent->code) { 1867 case ABS_MT_POSITION_X: 1868 slot->mInUse = true; 1869 slot->mAbsMTPositionX = rawEvent->value; 1870 break; 1871 case ABS_MT_POSITION_Y: 1872 slot->mInUse = true; 1873 slot->mAbsMTPositionY = rawEvent->value; 1874 break; 1875 case ABS_MT_TOUCH_MAJOR: 1876 slot->mInUse = true; 1877 slot->mAbsMTTouchMajor = rawEvent->value; 1878 break; 1879 case ABS_MT_TOUCH_MINOR: 1880 slot->mInUse = true; 1881 slot->mAbsMTTouchMinor = rawEvent->value; 1882 slot->mHaveAbsMTTouchMinor = true; 1883 break; 1884 case ABS_MT_WIDTH_MAJOR: 1885 slot->mInUse = true; 1886 slot->mAbsMTWidthMajor = rawEvent->value; 1887 break; 1888 case ABS_MT_WIDTH_MINOR: 1889 slot->mInUse = true; 1890 slot->mAbsMTWidthMinor = rawEvent->value; 1891 slot->mHaveAbsMTWidthMinor = true; 1892 break; 1893 case ABS_MT_ORIENTATION: 1894 slot->mInUse = true; 1895 slot->mAbsMTOrientation = rawEvent->value; 1896 break; 1897 case ABS_MT_TRACKING_ID: 1898 if (mUsingSlotsProtocol && rawEvent->value < 0) { 1899 // The slot is no longer in use but it retains its previous contents, 1900 // which may be reused for subsequent touches. 1901 slot->mInUse = false; 1902 } else { 1903 slot->mInUse = true; 1904 slot->mAbsMTTrackingId = rawEvent->value; 1905 } 1906 break; 1907 case ABS_MT_PRESSURE: 1908 slot->mInUse = true; 1909 slot->mAbsMTPressure = rawEvent->value; 1910 break; 1911 case ABS_MT_DISTANCE: 1912 slot->mInUse = true; 1913 slot->mAbsMTDistance = rawEvent->value; 1914 break; 1915 case ABS_MT_TOOL_TYPE: 1916 slot->mInUse = true; 1917 slot->mAbsMTToolType = rawEvent->value; 1918 slot->mHaveAbsMTToolType = true; 1919 break; 1920 } 1921 } 1922 } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_MT_REPORT) { 1923 // MultiTouch Sync: The driver has returned all data for *one* of the pointers. 1924 mCurrentSlot += 1; 1925 } else if (rawEvent->type == EV_MSC && rawEvent->code == MSC_TIMESTAMP) { 1926 mDeviceTimestamp = rawEvent->value; 1927 } 1928 } 1929 1930 void MultiTouchMotionAccumulator::finishSync() { 1931 if (!mUsingSlotsProtocol) { 1932 clearSlots(-1); 1933 } 1934 } 1935 1936 bool MultiTouchMotionAccumulator::hasStylus() const { 1937 return mHaveStylus; 1938 } 1939 1940 1941 // --- MultiTouchMotionAccumulator::Slot --- 1942 1943 MultiTouchMotionAccumulator::Slot::Slot() { 1944 clear(); 1945 } 1946 1947 void MultiTouchMotionAccumulator::Slot::clear() { 1948 mInUse = false; 1949 mHaveAbsMTTouchMinor = false; 1950 mHaveAbsMTWidthMinor = false; 1951 mHaveAbsMTToolType = false; 1952 mAbsMTPositionX = 0; 1953 mAbsMTPositionY = 0; 1954 mAbsMTTouchMajor = 0; 1955 mAbsMTTouchMinor = 0; 1956 mAbsMTWidthMajor = 0; 1957 mAbsMTWidthMinor = 0; 1958 mAbsMTOrientation = 0; 1959 mAbsMTTrackingId = -1; 1960 mAbsMTPressure = 0; 1961 mAbsMTDistance = 0; 1962 mAbsMTToolType = 0; 1963 } 1964 1965 int32_t MultiTouchMotionAccumulator::Slot::getToolType() const { 1966 if (mHaveAbsMTToolType) { 1967 switch (mAbsMTToolType) { 1968 case MT_TOOL_FINGER: 1969 return AMOTION_EVENT_TOOL_TYPE_FINGER; 1970 case MT_TOOL_PEN: 1971 return AMOTION_EVENT_TOOL_TYPE_STYLUS; 1972 } 1973 } 1974 return AMOTION_EVENT_TOOL_TYPE_UNKNOWN; 1975 } 1976 1977 1978 // --- InputMapper --- 1979 1980 InputMapper::InputMapper(InputDevice* device) : 1981 mDevice(device), mContext(device->getContext()) { 1982 } 1983 1984 InputMapper::~InputMapper() { 1985 } 1986 1987 void InputMapper::populateDeviceInfo(InputDeviceInfo* info) { 1988 info->addSource(getSources()); 1989 } 1990 1991 void InputMapper::dump(std::string& dump) { 1992 } 1993 1994 void InputMapper::configure(nsecs_t when, 1995 const InputReaderConfiguration* config, uint32_t changes) { 1996 } 1997 1998 void InputMapper::reset(nsecs_t when) { 1999 } 2000 2001 void InputMapper::timeoutExpired(nsecs_t when) { 2002 } 2003 2004 int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { 2005 return AKEY_STATE_UNKNOWN; 2006 } 2007 2008 int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { 2009 return AKEY_STATE_UNKNOWN; 2010 } 2011 2012 int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { 2013 return AKEY_STATE_UNKNOWN; 2014 } 2015 2016 bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, 2017 const int32_t* keyCodes, uint8_t* outFlags) { 2018 return false; 2019 } 2020 2021 void InputMapper::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, 2022 int32_t token) { 2023 } 2024 2025 void InputMapper::cancelVibrate(int32_t token) { 2026 } 2027 2028 void InputMapper::cancelTouch(nsecs_t when) { 2029 } 2030 2031 int32_t InputMapper::getMetaState() { 2032 return 0; 2033 } 2034 2035 void InputMapper::updateMetaState(int32_t keyCode) { 2036 } 2037 2038 void InputMapper::updateExternalStylusState(const StylusState& state) { 2039 2040 } 2041 2042 void InputMapper::fadePointer() { 2043 } 2044 2045 status_t InputMapper::getAbsoluteAxisInfo(int32_t axis, RawAbsoluteAxisInfo* axisInfo) { 2046 return getEventHub()->getAbsoluteAxisInfo(getDeviceId(), axis, axisInfo); 2047 } 2048 2049 void InputMapper::bumpGeneration() { 2050 mDevice->bumpGeneration(); 2051 } 2052 2053 void InputMapper::dumpRawAbsoluteAxisInfo(std::string& dump, 2054 const RawAbsoluteAxisInfo& axis, const char* name) { 2055 if (axis.valid) { 2056 dump += StringPrintf(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d, resolution=%d\n", 2057 name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz, axis.resolution); 2058 } else { 2059 dump += StringPrintf(INDENT4 "%s: unknown range\n", name); 2060 } 2061 } 2062 2063 void InputMapper::dumpStylusState(std::string& dump, const StylusState& state) { 2064 dump += StringPrintf(INDENT4 "When: %" PRId64 "\n", state.when); 2065 dump += StringPrintf(INDENT4 "Pressure: %f\n", state.pressure); 2066 dump += StringPrintf(INDENT4 "Button State: 0x%08x\n", state.buttons); 2067 dump += StringPrintf(INDENT4 "Tool Type: %" PRId32 "\n", state.toolType); 2068 } 2069 2070 // --- SwitchInputMapper --- 2071 2072 SwitchInputMapper::SwitchInputMapper(InputDevice* device) : 2073 InputMapper(device), mSwitchValues(0), mUpdatedSwitchMask(0) { 2074 } 2075 2076 SwitchInputMapper::~SwitchInputMapper() { 2077 } 2078 2079 uint32_t SwitchInputMapper::getSources() { 2080 return AINPUT_SOURCE_SWITCH; 2081 } 2082 2083 void SwitchInputMapper::process(const RawEvent* rawEvent) { 2084 switch (rawEvent->type) { 2085 case EV_SW: 2086 processSwitch(rawEvent->code, rawEvent->value); 2087 break; 2088 2089 case EV_SYN: 2090 if (rawEvent->code == SYN_REPORT) { 2091 sync(rawEvent->when); 2092 } 2093 } 2094 } 2095 2096 void SwitchInputMapper::processSwitch(int32_t switchCode, int32_t switchValue) { 2097 if (switchCode >= 0 && switchCode < 32) { 2098 if (switchValue) { 2099 mSwitchValues |= 1 << switchCode; 2100 } else { 2101 mSwitchValues &= ~(1 << switchCode); 2102 } 2103 mUpdatedSwitchMask |= 1 << switchCode; 2104 } 2105 } 2106 2107 void SwitchInputMapper::sync(nsecs_t when) { 2108 if (mUpdatedSwitchMask) { 2109 uint32_t updatedSwitchValues = mSwitchValues & mUpdatedSwitchMask; 2110 NotifySwitchArgs args(when, 0, updatedSwitchValues, mUpdatedSwitchMask); 2111 getListener()->notifySwitch(&args); 2112 2113 mUpdatedSwitchMask = 0; 2114 } 2115 } 2116 2117 int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { 2118 return getEventHub()->getSwitchState(getDeviceId(), switchCode); 2119 } 2120 2121 void SwitchInputMapper::dump(std::string& dump) { 2122 dump += INDENT2 "Switch Input Mapper:\n"; 2123 dump += StringPrintf(INDENT3 "SwitchValues: %x\n", mSwitchValues); 2124 } 2125 2126 // --- VibratorInputMapper --- 2127 2128 VibratorInputMapper::VibratorInputMapper(InputDevice* device) : 2129 InputMapper(device), mVibrating(false) { 2130 } 2131 2132 VibratorInputMapper::~VibratorInputMapper() { 2133 } 2134 2135 uint32_t VibratorInputMapper::getSources() { 2136 return 0; 2137 } 2138 2139 void VibratorInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 2140 InputMapper::populateDeviceInfo(info); 2141 2142 info->setVibrator(true); 2143 } 2144 2145 void VibratorInputMapper::process(const RawEvent* rawEvent) { 2146 // TODO: Handle FF_STATUS, although it does not seem to be widely supported. 2147 } 2148 2149 void VibratorInputMapper::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, 2150 int32_t token) { 2151 #if DEBUG_VIBRATOR 2152 std::string patternStr; 2153 for (size_t i = 0; i < patternSize; i++) { 2154 if (i != 0) { 2155 patternStr += ", "; 2156 } 2157 patternStr += StringPrintf("%" PRId64, pattern[i]); 2158 } 2159 ALOGD("vibrate: deviceId=%d, pattern=[%s], repeat=%zd, token=%d", 2160 getDeviceId(), patternStr.c_str(), repeat, token); 2161 #endif 2162 2163 mVibrating = true; 2164 memcpy(mPattern, pattern, patternSize * sizeof(nsecs_t)); 2165 mPatternSize = patternSize; 2166 mRepeat = repeat; 2167 mToken = token; 2168 mIndex = -1; 2169 2170 nextStep(); 2171 } 2172 2173 void VibratorInputMapper::cancelVibrate(int32_t token) { 2174 #if DEBUG_VIBRATOR 2175 ALOGD("cancelVibrate: deviceId=%d, token=%d", getDeviceId(), token); 2176 #endif 2177 2178 if (mVibrating && mToken == token) { 2179 stopVibrating(); 2180 } 2181 } 2182 2183 void VibratorInputMapper::timeoutExpired(nsecs_t when) { 2184 if (mVibrating) { 2185 if (when >= mNextStepTime) { 2186 nextStep(); 2187 } else { 2188 getContext()->requestTimeoutAtTime(mNextStepTime); 2189 } 2190 } 2191 } 2192 2193 void VibratorInputMapper::nextStep() { 2194 mIndex += 1; 2195 if (size_t(mIndex) >= mPatternSize) { 2196 if (mRepeat < 0) { 2197 // We are done. 2198 stopVibrating(); 2199 return; 2200 } 2201 mIndex = mRepeat; 2202 } 2203 2204 bool vibratorOn = mIndex & 1; 2205 nsecs_t duration = mPattern[mIndex]; 2206 if (vibratorOn) { 2207 #if DEBUG_VIBRATOR 2208 ALOGD("nextStep: sending vibrate deviceId=%d, duration=%" PRId64, getDeviceId(), duration); 2209 #endif 2210 getEventHub()->vibrate(getDeviceId(), duration); 2211 } else { 2212 #if DEBUG_VIBRATOR 2213 ALOGD("nextStep: sending cancel vibrate deviceId=%d", getDeviceId()); 2214 #endif 2215 getEventHub()->cancelVibrate(getDeviceId()); 2216 } 2217 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 2218 mNextStepTime = now + duration; 2219 getContext()->requestTimeoutAtTime(mNextStepTime); 2220 #if DEBUG_VIBRATOR 2221 ALOGD("nextStep: scheduled timeout in %0.3fms", duration * 0.000001f); 2222 #endif 2223 } 2224 2225 void VibratorInputMapper::stopVibrating() { 2226 mVibrating = false; 2227 #if DEBUG_VIBRATOR 2228 ALOGD("stopVibrating: sending cancel vibrate deviceId=%d", getDeviceId()); 2229 #endif 2230 getEventHub()->cancelVibrate(getDeviceId()); 2231 } 2232 2233 void VibratorInputMapper::dump(std::string& dump) { 2234 dump += INDENT2 "Vibrator Input Mapper:\n"; 2235 dump += StringPrintf(INDENT3 "Vibrating: %s\n", toString(mVibrating)); 2236 } 2237 2238 2239 // --- KeyboardInputMapper --- 2240 2241 KeyboardInputMapper::KeyboardInputMapper(InputDevice* device, 2242 uint32_t source, int32_t keyboardType) : 2243 InputMapper(device), mSource(source), 2244 mKeyboardType(keyboardType) { 2245 } 2246 2247 KeyboardInputMapper::~KeyboardInputMapper() { 2248 } 2249 2250 uint32_t KeyboardInputMapper::getSources() { 2251 return mSource; 2252 } 2253 2254 void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 2255 InputMapper::populateDeviceInfo(info); 2256 2257 info->setKeyboardType(mKeyboardType); 2258 info->setKeyCharacterMap(getEventHub()->getKeyCharacterMap(getDeviceId())); 2259 } 2260 2261 void KeyboardInputMapper::dump(std::string& dump) { 2262 dump += INDENT2 "Keyboard Input Mapper:\n"; 2263 dumpParameters(dump); 2264 dump += StringPrintf(INDENT3 "KeyboardType: %d\n", mKeyboardType); 2265 dump += StringPrintf(INDENT3 "Orientation: %d\n", mOrientation); 2266 dump += StringPrintf(INDENT3 "KeyDowns: %zu keys currently down\n", mKeyDowns.size()); 2267 dump += StringPrintf(INDENT3 "MetaState: 0x%0x\n", mMetaState); 2268 dump += StringPrintf(INDENT3 "DownTime: %" PRId64 "\n", mDownTime); 2269 } 2270 2271 2272 void KeyboardInputMapper::configure(nsecs_t when, 2273 const InputReaderConfiguration* config, uint32_t changes) { 2274 InputMapper::configure(when, config, changes); 2275 2276 if (!changes) { // first time only 2277 // Configure basic parameters. 2278 configureParameters(); 2279 } 2280 2281 if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { 2282 if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) { 2283 DisplayViewport v; 2284 if (config->getDisplayViewport(ViewportType::VIEWPORT_INTERNAL, NULL, &v)) { 2285 mOrientation = v.orientation; 2286 } else { 2287 mOrientation = DISPLAY_ORIENTATION_0; 2288 } 2289 } else { 2290 mOrientation = DISPLAY_ORIENTATION_0; 2291 } 2292 } 2293 } 2294 2295 static void mapStemKey(int32_t keyCode, const PropertyMap& config, char const *property) { 2296 int32_t mapped = 0; 2297 if (config.tryGetProperty(String8(property), mapped) && mapped > 0) { 2298 for (size_t i = 0; i < stemKeyRotationMapSize; i++) { 2299 if (stemKeyRotationMap[i][0] == keyCode) { 2300 stemKeyRotationMap[i][1] = mapped; 2301 return; 2302 } 2303 } 2304 } 2305 } 2306 2307 void KeyboardInputMapper::configureParameters() { 2308 mParameters.orientationAware = false; 2309 const PropertyMap& config = getDevice()->getConfiguration(); 2310 config.tryGetProperty(String8("keyboard.orientationAware"), 2311 mParameters.orientationAware); 2312 2313 mParameters.hasAssociatedDisplay = false; 2314 if (mParameters.orientationAware) { 2315 mParameters.hasAssociatedDisplay = true; 2316 2317 mapStemKey(AKEYCODE_STEM_PRIMARY, config, "keyboard.rotated.stem_primary"); 2318 mapStemKey(AKEYCODE_STEM_1, config, "keyboard.rotated.stem_1"); 2319 mapStemKey(AKEYCODE_STEM_2, config, "keyboard.rotated.stem_2"); 2320 mapStemKey(AKEYCODE_STEM_3, config, "keyboard.rotated.stem_3"); 2321 } 2322 2323 mParameters.handlesKeyRepeat = false; 2324 config.tryGetProperty(String8("keyboard.handlesKeyRepeat"), 2325 mParameters.handlesKeyRepeat); 2326 } 2327 2328 void KeyboardInputMapper::dumpParameters(std::string& dump) { 2329 dump += INDENT3 "Parameters:\n"; 2330 dump += StringPrintf(INDENT4 "HasAssociatedDisplay: %s\n", 2331 toString(mParameters.hasAssociatedDisplay)); 2332 dump += StringPrintf(INDENT4 "OrientationAware: %s\n", 2333 toString(mParameters.orientationAware)); 2334 dump += StringPrintf(INDENT4 "HandlesKeyRepeat: %s\n", 2335 toString(mParameters.handlesKeyRepeat)); 2336 } 2337 2338 void KeyboardInputMapper::reset(nsecs_t when) { 2339 mMetaState = AMETA_NONE; 2340 mDownTime = 0; 2341 mKeyDowns.clear(); 2342 mCurrentHidUsage = 0; 2343 2344 resetLedState(); 2345 2346 InputMapper::reset(when); 2347 } 2348 2349 void KeyboardInputMapper::process(const RawEvent* rawEvent) { 2350 switch (rawEvent->type) { 2351 case EV_KEY: { 2352 int32_t scanCode = rawEvent->code; 2353 int32_t usageCode = mCurrentHidUsage; 2354 mCurrentHidUsage = 0; 2355 2356 if (isKeyboardOrGamepadKey(scanCode)) { 2357 processKey(rawEvent->when, rawEvent->value != 0, scanCode, usageCode); 2358 } 2359 break; 2360 } 2361 case EV_MSC: { 2362 if (rawEvent->code == MSC_SCAN) { 2363 mCurrentHidUsage = rawEvent->value; 2364 } 2365 break; 2366 } 2367 case EV_SYN: { 2368 if (rawEvent->code == SYN_REPORT) { 2369 mCurrentHidUsage = 0; 2370 } 2371 } 2372 } 2373 } 2374 2375 bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) { 2376 return scanCode < BTN_MOUSE 2377 || scanCode >= KEY_OK 2378 || (scanCode >= BTN_MISC && scanCode < BTN_MOUSE) 2379 || (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI); 2380 } 2381 2382 bool KeyboardInputMapper::isMediaKey(int32_t keyCode) { 2383 switch (keyCode) { 2384 case AKEYCODE_MEDIA_PLAY: 2385 case AKEYCODE_MEDIA_PAUSE: 2386 case AKEYCODE_MEDIA_PLAY_PAUSE: 2387 case AKEYCODE_MUTE: 2388 case AKEYCODE_HEADSETHOOK: 2389 case AKEYCODE_MEDIA_STOP: 2390 case AKEYCODE_MEDIA_NEXT: 2391 case AKEYCODE_MEDIA_PREVIOUS: 2392 case AKEYCODE_MEDIA_REWIND: 2393 case AKEYCODE_MEDIA_RECORD: 2394 case AKEYCODE_MEDIA_FAST_FORWARD: 2395 case AKEYCODE_MEDIA_SKIP_FORWARD: 2396 case AKEYCODE_MEDIA_SKIP_BACKWARD: 2397 case AKEYCODE_MEDIA_STEP_FORWARD: 2398 case AKEYCODE_MEDIA_STEP_BACKWARD: 2399 case AKEYCODE_MEDIA_AUDIO_TRACK: 2400 case AKEYCODE_VOLUME_UP: 2401 case AKEYCODE_VOLUME_DOWN: 2402 case AKEYCODE_VOLUME_MUTE: 2403 case AKEYCODE_TV_AUDIO_DESCRIPTION: 2404 case AKEYCODE_TV_AUDIO_DESCRIPTION_MIX_UP: 2405 case AKEYCODE_TV_AUDIO_DESCRIPTION_MIX_DOWN: 2406 return true; 2407 } 2408 return false; 2409 } 2410 2411 void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t scanCode, 2412 int32_t usageCode) { 2413 int32_t keyCode; 2414 int32_t keyMetaState; 2415 uint32_t policyFlags; 2416 2417 if (getEventHub()->mapKey(getDeviceId(), scanCode, usageCode, mMetaState, 2418 &keyCode, &keyMetaState, &policyFlags)) { 2419 keyCode = AKEYCODE_UNKNOWN; 2420 keyMetaState = mMetaState; 2421 policyFlags = 0; 2422 } 2423 2424 if (down) { 2425 // Rotate key codes according to orientation if needed. 2426 if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) { 2427 keyCode = rotateKeyCode(keyCode, mOrientation); 2428 } 2429 2430 // Add key down. 2431 ssize_t keyDownIndex = findKeyDown(scanCode); 2432 if (keyDownIndex >= 0) { 2433 // key repeat, be sure to use same keycode as before in case of rotation 2434 keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode; 2435 } else { 2436 // key down 2437 if ((policyFlags & POLICY_FLAG_VIRTUAL) 2438 && mContext->shouldDropVirtualKey(when, 2439 getDevice(), keyCode, scanCode)) { 2440 return; 2441 } 2442 if (policyFlags & POLICY_FLAG_GESTURE) { 2443 mDevice->cancelTouch(when); 2444 } 2445 2446 mKeyDowns.push(); 2447 KeyDown& keyDown = mKeyDowns.editTop(); 2448 keyDown.keyCode = keyCode; 2449 keyDown.scanCode = scanCode; 2450 } 2451 2452 mDownTime = when; 2453 } else { 2454 // Remove key down. 2455 ssize_t keyDownIndex = findKeyDown(scanCode); 2456 if (keyDownIndex >= 0) { 2457 // key up, be sure to use same keycode as before in case of rotation 2458 keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode; 2459 mKeyDowns.removeAt(size_t(keyDownIndex)); 2460 } else { 2461 // key was not actually down 2462 ALOGI("Dropping key up from device %s because the key was not down. " 2463 "keyCode=%d, scanCode=%d", 2464 getDeviceName().string(), keyCode, scanCode); 2465 return; 2466 } 2467 } 2468 2469 if (updateMetaStateIfNeeded(keyCode, down)) { 2470 // If global meta state changed send it along with the key. 2471 // If it has not changed then we'll use what keymap gave us, 2472 // since key replacement logic might temporarily reset a few 2473 // meta bits for given key. 2474 keyMetaState = mMetaState; 2475 } 2476 2477 nsecs_t downTime = mDownTime; 2478 2479 // Key down on external an keyboard should wake the device. 2480 // We don't do this for internal keyboards to prevent them from waking up in your pocket. 2481 // For internal keyboards, the key layout file should specify the policy flags for 2482 // each wake key individually. 2483 // TODO: Use the input device configuration to control this behavior more finely. 2484 if (down && getDevice()->isExternal() && !isMediaKey(keyCode)) { 2485 policyFlags |= POLICY_FLAG_WAKE; 2486 } 2487 2488 if (mParameters.handlesKeyRepeat) { 2489 policyFlags |= POLICY_FLAG_DISABLE_KEY_REPEAT; 2490 } 2491 2492 NotifyKeyArgs args(when, getDeviceId(), mSource, policyFlags, 2493 down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP, 2494 AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, keyMetaState, downTime); 2495 getListener()->notifyKey(&args); 2496 } 2497 2498 ssize_t KeyboardInputMapper::findKeyDown(int32_t scanCode) { 2499 size_t n = mKeyDowns.size(); 2500 for (size_t i = 0; i < n; i++) { 2501 if (mKeyDowns[i].scanCode == scanCode) { 2502 return i; 2503 } 2504 } 2505 return -1; 2506 } 2507 2508 int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { 2509 return getEventHub()->getKeyCodeState(getDeviceId(), keyCode); 2510 } 2511 2512 int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { 2513 return getEventHub()->getScanCodeState(getDeviceId(), scanCode); 2514 } 2515 2516 bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, 2517 const int32_t* keyCodes, uint8_t* outFlags) { 2518 return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags); 2519 } 2520 2521 int32_t KeyboardInputMapper::getMetaState() { 2522 return mMetaState; 2523 } 2524 2525 void KeyboardInputMapper::updateMetaState(int32_t keyCode) { 2526 updateMetaStateIfNeeded(keyCode, false); 2527 } 2528 2529 bool KeyboardInputMapper::updateMetaStateIfNeeded(int32_t keyCode, bool down) { 2530 int32_t oldMetaState = mMetaState; 2531 int32_t newMetaState = android::updateMetaState(keyCode, down, oldMetaState); 2532 bool metaStateChanged = oldMetaState != newMetaState; 2533 if (metaStateChanged) { 2534 mMetaState = newMetaState; 2535 updateLedState(false); 2536 2537 getContext()->updateGlobalMetaState(); 2538 } 2539 2540 return metaStateChanged; 2541 } 2542 2543 void KeyboardInputMapper::resetLedState() { 2544 initializeLedState(mCapsLockLedState, ALED_CAPS_LOCK); 2545 initializeLedState(mNumLockLedState, ALED_NUM_LOCK); 2546 initializeLedState(mScrollLockLedState, ALED_SCROLL_LOCK); 2547 2548 updateLedState(true); 2549 } 2550 2551 void KeyboardInputMapper::initializeLedState(LedState& ledState, int32_t led) { 2552 ledState.avail = getEventHub()->hasLed(getDeviceId(), led); 2553 ledState.on = false; 2554 } 2555 2556 void KeyboardInputMapper::updateLedState(bool reset) { 2557 updateLedStateForModifier(mCapsLockLedState, ALED_CAPS_LOCK, 2558 AMETA_CAPS_LOCK_ON, reset); 2559 updateLedStateForModifier(mNumLockLedState, ALED_NUM_LOCK, 2560 AMETA_NUM_LOCK_ON, reset); 2561 updateLedStateForModifier(mScrollLockLedState, ALED_SCROLL_LOCK, 2562 AMETA_SCROLL_LOCK_ON, reset); 2563 } 2564 2565 void KeyboardInputMapper::updateLedStateForModifier(LedState& ledState, 2566 int32_t led, int32_t modifier, bool reset) { 2567 if (ledState.avail) { 2568 bool desiredState = (mMetaState & modifier) != 0; 2569 if (reset || ledState.on != desiredState) { 2570 getEventHub()->setLedState(getDeviceId(), led, desiredState); 2571 ledState.on = desiredState; 2572 } 2573 } 2574 } 2575 2576 2577 // --- CursorInputMapper --- 2578 2579 CursorInputMapper::CursorInputMapper(InputDevice* device) : 2580 InputMapper(device) { 2581 } 2582 2583 CursorInputMapper::~CursorInputMapper() { 2584 } 2585 2586 uint32_t CursorInputMapper::getSources() { 2587 return mSource; 2588 } 2589 2590 void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 2591 InputMapper::populateDeviceInfo(info); 2592 2593 if (mParameters.mode == Parameters::MODE_POINTER) { 2594 float minX, minY, maxX, maxY; 2595 if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) { 2596 info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, minX, maxX, 0.0f, 0.0f, 0.0f); 2597 info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, minY, maxY, 0.0f, 0.0f, 0.0f); 2598 } 2599 } else { 2600 info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, -1.0f, 1.0f, 0.0f, mXScale, 0.0f); 2601 info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, -1.0f, 1.0f, 0.0f, mYScale, 0.0f); 2602 } 2603 info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mSource, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f); 2604 2605 if (mCursorScrollAccumulator.haveRelativeVWheel()) { 2606 info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); 2607 } 2608 if (mCursorScrollAccumulator.haveRelativeHWheel()) { 2609 info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); 2610 } 2611 } 2612 2613 void CursorInputMapper::dump(std::string& dump) { 2614 dump += INDENT2 "Cursor Input Mapper:\n"; 2615 dumpParameters(dump); 2616 dump += StringPrintf(INDENT3 "XScale: %0.3f\n", mXScale); 2617 dump += StringPrintf(INDENT3 "YScale: %0.3f\n", mYScale); 2618 dump += StringPrintf(INDENT3 "XPrecision: %0.3f\n", mXPrecision); 2619 dump += StringPrintf(INDENT3 "YPrecision: %0.3f\n", mYPrecision); 2620 dump += StringPrintf(INDENT3 "HaveVWheel: %s\n", 2621 toString(mCursorScrollAccumulator.haveRelativeVWheel())); 2622 dump += StringPrintf(INDENT3 "HaveHWheel: %s\n", 2623 toString(mCursorScrollAccumulator.haveRelativeHWheel())); 2624 dump += StringPrintf(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale); 2625 dump += StringPrintf(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale); 2626 dump += StringPrintf(INDENT3 "Orientation: %d\n", mOrientation); 2627 dump += StringPrintf(INDENT3 "ButtonState: 0x%08x\n", mButtonState); 2628 dump += StringPrintf(INDENT3 "Down: %s\n", toString(isPointerDown(mButtonState))); 2629 dump += StringPrintf(INDENT3 "DownTime: %" PRId64 "\n", mDownTime); 2630 } 2631 2632 void CursorInputMapper::configure(nsecs_t when, 2633 const InputReaderConfiguration* config, uint32_t changes) { 2634 InputMapper::configure(when, config, changes); 2635 2636 if (!changes) { // first time only 2637 mCursorScrollAccumulator.configure(getDevice()); 2638 2639 // Configure basic parameters. 2640 configureParameters(); 2641 2642 // Configure device mode. 2643 switch (mParameters.mode) { 2644 case Parameters::MODE_POINTER_RELATIVE: 2645 // Should not happen during first time configuration. 2646 ALOGE("Cannot start a device in MODE_POINTER_RELATIVE, starting in MODE_POINTER"); 2647 mParameters.mode = Parameters::MODE_POINTER; 2648 // fall through. 2649 case Parameters::MODE_POINTER: 2650 mSource = AINPUT_SOURCE_MOUSE; 2651 mXPrecision = 1.0f; 2652 mYPrecision = 1.0f; 2653 mXScale = 1.0f; 2654 mYScale = 1.0f; 2655 mPointerController = getPolicy()->obtainPointerController(getDeviceId()); 2656 break; 2657 case Parameters::MODE_NAVIGATION: 2658 mSource = AINPUT_SOURCE_TRACKBALL; 2659 mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD; 2660 mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD; 2661 mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; 2662 mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; 2663 break; 2664 } 2665 2666 mVWheelScale = 1.0f; 2667 mHWheelScale = 1.0f; 2668 } 2669 2670 if ((!changes && config->pointerCapture) 2671 || (changes & InputReaderConfiguration::CHANGE_POINTER_CAPTURE)) { 2672 if (config->pointerCapture) { 2673 if (mParameters.mode == Parameters::MODE_POINTER) { 2674 mParameters.mode = Parameters::MODE_POINTER_RELATIVE; 2675 mSource = AINPUT_SOURCE_MOUSE_RELATIVE; 2676 // Keep PointerController around in order to preserve the pointer position. 2677 mPointerController->fade(PointerControllerInterface::TRANSITION_IMMEDIATE); 2678 } else { 2679 ALOGE("Cannot request pointer capture, device is not in MODE_POINTER"); 2680 } 2681 } else { 2682 if (mParameters.mode == Parameters::MODE_POINTER_RELATIVE) { 2683 mParameters.mode = Parameters::MODE_POINTER; 2684 mSource = AINPUT_SOURCE_MOUSE; 2685 } else { 2686 ALOGE("Cannot release pointer capture, device is not in MODE_POINTER_RELATIVE"); 2687 } 2688 } 2689 bumpGeneration(); 2690 if (changes) { 2691 getDevice()->notifyReset(when); 2692 } 2693 } 2694 2695 if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) { 2696 mPointerVelocityControl.setParameters(config->pointerVelocityControlParameters); 2697 mWheelXVelocityControl.setParameters(config->wheelVelocityControlParameters); 2698 mWheelYVelocityControl.setParameters(config->wheelVelocityControlParameters); 2699 } 2700 2701 if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { 2702 if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) { 2703 DisplayViewport v; 2704 if (config->getDisplayViewport(ViewportType::VIEWPORT_INTERNAL, NULL, &v)) { 2705 mOrientation = v.orientation; 2706 } else { 2707 mOrientation = DISPLAY_ORIENTATION_0; 2708 } 2709 } else { 2710 mOrientation = DISPLAY_ORIENTATION_0; 2711 } 2712 bumpGeneration(); 2713 } 2714 } 2715 2716 void CursorInputMapper::configureParameters() { 2717 mParameters.mode = Parameters::MODE_POINTER; 2718 String8 cursorModeString; 2719 if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) { 2720 if (cursorModeString == "navigation") { 2721 mParameters.mode = Parameters::MODE_NAVIGATION; 2722 } else if (cursorModeString != "pointer" && cursorModeString != "default") { 2723 ALOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string()); 2724 } 2725 } 2726 2727 mParameters.orientationAware = false; 2728 getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"), 2729 mParameters.orientationAware); 2730 2731 mParameters.hasAssociatedDisplay = false; 2732 if (mParameters.mode == Parameters::MODE_POINTER || mParameters.orientationAware) { 2733 mParameters.hasAssociatedDisplay = true; 2734 } 2735 } 2736 2737 void CursorInputMapper::dumpParameters(std::string& dump) { 2738 dump += INDENT3 "Parameters:\n"; 2739 dump += StringPrintf(INDENT4 "HasAssociatedDisplay: %s\n", 2740 toString(mParameters.hasAssociatedDisplay)); 2741 2742 switch (mParameters.mode) { 2743 case Parameters::MODE_POINTER: 2744 dump += INDENT4 "Mode: pointer\n"; 2745 break; 2746 case Parameters::MODE_POINTER_RELATIVE: 2747 dump += INDENT4 "Mode: relative pointer\n"; 2748 break; 2749 case Parameters::MODE_NAVIGATION: 2750 dump += INDENT4 "Mode: navigation\n"; 2751 break; 2752 default: 2753 ALOG_ASSERT(false); 2754 } 2755 2756 dump += StringPrintf(INDENT4 "OrientationAware: %s\n", 2757 toString(mParameters.orientationAware)); 2758 } 2759 2760 void CursorInputMapper::reset(nsecs_t when) { 2761 mButtonState = 0; 2762 mDownTime = 0; 2763 2764 mPointerVelocityControl.reset(); 2765 mWheelXVelocityControl.reset(); 2766 mWheelYVelocityControl.reset(); 2767 2768 mCursorButtonAccumulator.reset(getDevice()); 2769 mCursorMotionAccumulator.reset(getDevice()); 2770 mCursorScrollAccumulator.reset(getDevice()); 2771 2772 InputMapper::reset(when); 2773 } 2774 2775 void CursorInputMapper::process(const RawEvent* rawEvent) { 2776 mCursorButtonAccumulator.process(rawEvent); 2777 mCursorMotionAccumulator.process(rawEvent); 2778 mCursorScrollAccumulator.process(rawEvent); 2779 2780 if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { 2781 sync(rawEvent->when); 2782 } 2783 } 2784 2785 void CursorInputMapper::sync(nsecs_t when) { 2786 int32_t lastButtonState = mButtonState; 2787 int32_t currentButtonState = mCursorButtonAccumulator.getButtonState(); 2788 mButtonState = currentButtonState; 2789 2790 bool wasDown = isPointerDown(lastButtonState); 2791 bool down = isPointerDown(currentButtonState); 2792 bool downChanged; 2793 if (!wasDown && down) { 2794 mDownTime = when; 2795 downChanged = true; 2796 } else if (wasDown && !down) { 2797 downChanged = true; 2798 } else { 2799 downChanged = false; 2800 } 2801 nsecs_t downTime = mDownTime; 2802 bool buttonsChanged = currentButtonState != lastButtonState; 2803 int32_t buttonsPressed = currentButtonState & ~lastButtonState; 2804 int32_t buttonsReleased = lastButtonState & ~currentButtonState; 2805 2806 float deltaX = mCursorMotionAccumulator.getRelativeX() * mXScale; 2807 float deltaY = mCursorMotionAccumulator.getRelativeY() * mYScale; 2808 bool moved = deltaX != 0 || deltaY != 0; 2809 2810 // Rotate delta according to orientation if needed. 2811 if (mParameters.orientationAware && mParameters.hasAssociatedDisplay 2812 && (deltaX != 0.0f || deltaY != 0.0f)) { 2813 rotateDelta(mOrientation, &deltaX, &deltaY); 2814 } 2815 2816 // Move the pointer. 2817 PointerProperties pointerProperties; 2818 pointerProperties.clear(); 2819 pointerProperties.id = 0; 2820 pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_MOUSE; 2821 2822 PointerCoords pointerCoords; 2823 pointerCoords.clear(); 2824 2825 float vscroll = mCursorScrollAccumulator.getRelativeVWheel(); 2826 float hscroll = mCursorScrollAccumulator.getRelativeHWheel(); 2827 bool scrolled = vscroll != 0 || hscroll != 0; 2828 2829 mWheelYVelocityControl.move(when, NULL, &vscroll); 2830 mWheelXVelocityControl.move(when, &hscroll, NULL); 2831 2832 mPointerVelocityControl.move(when, &deltaX, &deltaY); 2833 2834 int32_t displayId; 2835 if (mSource == AINPUT_SOURCE_MOUSE) { 2836 if (moved || scrolled || buttonsChanged) { 2837 mPointerController->setPresentation( 2838 PointerControllerInterface::PRESENTATION_POINTER); 2839 2840 if (moved) { 2841 mPointerController->move(deltaX, deltaY); 2842 } 2843 2844 if (buttonsChanged) { 2845 mPointerController->setButtonState(currentButtonState); 2846 } 2847 2848 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); 2849 } 2850 2851 float x, y; 2852 mPointerController->getPosition(&x, &y); 2853 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); 2854 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); 2855 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, deltaX); 2856 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, deltaY); 2857 displayId = ADISPLAY_ID_DEFAULT; 2858 } else { 2859 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX); 2860 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY); 2861 displayId = ADISPLAY_ID_NONE; 2862 } 2863 2864 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f); 2865 2866 // Moving an external trackball or mouse should wake the device. 2867 // We don't do this for internal cursor devices to prevent them from waking up 2868 // the device in your pocket. 2869 // TODO: Use the input device configuration to control this behavior more finely. 2870 uint32_t policyFlags = 0; 2871 if ((buttonsPressed || moved || scrolled) && getDevice()->isExternal()) { 2872 policyFlags |= POLICY_FLAG_WAKE; 2873 } 2874 2875 // Synthesize key down from buttons if needed. 2876 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource, 2877 policyFlags, lastButtonState, currentButtonState); 2878 2879 // Send motion event. 2880 if (downChanged || moved || scrolled || buttonsChanged) { 2881 int32_t metaState = mContext->getGlobalMetaState(); 2882 int32_t buttonState = lastButtonState; 2883 int32_t motionEventAction; 2884 if (downChanged) { 2885 motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP; 2886 } else if (down || (mSource != AINPUT_SOURCE_MOUSE)) { 2887 motionEventAction = AMOTION_EVENT_ACTION_MOVE; 2888 } else { 2889 motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE; 2890 } 2891 2892 if (buttonsReleased) { 2893 BitSet32 released(buttonsReleased); 2894 while (!released.isEmpty()) { 2895 int32_t actionButton = BitSet32::valueForBit(released.clearFirstMarkedBit()); 2896 buttonState &= ~actionButton; 2897 NotifyMotionArgs releaseArgs(when, getDeviceId(), mSource, policyFlags, 2898 AMOTION_EVENT_ACTION_BUTTON_RELEASE, actionButton, 0, 2899 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, 2900 displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, 2901 mXPrecision, mYPrecision, downTime); 2902 getListener()->notifyMotion(&releaseArgs); 2903 } 2904 } 2905 2906 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 2907 motionEventAction, 0, 0, metaState, currentButtonState, 2908 AMOTION_EVENT_EDGE_FLAG_NONE, 2909 displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, 2910 mXPrecision, mYPrecision, downTime); 2911 getListener()->notifyMotion(&args); 2912 2913 if (buttonsPressed) { 2914 BitSet32 pressed(buttonsPressed); 2915 while (!pressed.isEmpty()) { 2916 int32_t actionButton = BitSet32::valueForBit(pressed.clearFirstMarkedBit()); 2917 buttonState |= actionButton; 2918 NotifyMotionArgs pressArgs(when, getDeviceId(), mSource, policyFlags, 2919 AMOTION_EVENT_ACTION_BUTTON_PRESS, actionButton, 0, 2920 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, 2921 displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, 2922 mXPrecision, mYPrecision, downTime); 2923 getListener()->notifyMotion(&pressArgs); 2924 } 2925 } 2926 2927 ALOG_ASSERT(buttonState == currentButtonState); 2928 2929 // Send hover move after UP to tell the application that the mouse is hovering now. 2930 if (motionEventAction == AMOTION_EVENT_ACTION_UP 2931 && (mSource == AINPUT_SOURCE_MOUSE)) { 2932 NotifyMotionArgs hoverArgs(when, getDeviceId(), mSource, policyFlags, 2933 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, 2934 metaState, currentButtonState, AMOTION_EVENT_EDGE_FLAG_NONE, 2935 displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, 2936 mXPrecision, mYPrecision, downTime); 2937 getListener()->notifyMotion(&hoverArgs); 2938 } 2939 2940 // Send scroll events. 2941 if (scrolled) { 2942 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); 2943 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); 2944 2945 NotifyMotionArgs scrollArgs(when, getDeviceId(), mSource, policyFlags, 2946 AMOTION_EVENT_ACTION_SCROLL, 0, 0, metaState, currentButtonState, 2947 AMOTION_EVENT_EDGE_FLAG_NONE, 2948 displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, 2949 mXPrecision, mYPrecision, downTime); 2950 getListener()->notifyMotion(&scrollArgs); 2951 } 2952 } 2953 2954 // Synthesize key up from buttons if needed. 2955 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource, 2956 policyFlags, lastButtonState, currentButtonState); 2957 2958 mCursorMotionAccumulator.finishSync(); 2959 mCursorScrollAccumulator.finishSync(); 2960 } 2961 2962 int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { 2963 if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) { 2964 return getEventHub()->getScanCodeState(getDeviceId(), scanCode); 2965 } else { 2966 return AKEY_STATE_UNKNOWN; 2967 } 2968 } 2969 2970 void CursorInputMapper::fadePointer() { 2971 if (mPointerController != NULL) { 2972 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 2973 } 2974 } 2975 2976 // --- RotaryEncoderInputMapper --- 2977 2978 RotaryEncoderInputMapper::RotaryEncoderInputMapper(InputDevice* device) : 2979 InputMapper(device), mOrientation(DISPLAY_ORIENTATION_0) { 2980 mSource = AINPUT_SOURCE_ROTARY_ENCODER; 2981 } 2982 2983 RotaryEncoderInputMapper::~RotaryEncoderInputMapper() { 2984 } 2985 2986 uint32_t RotaryEncoderInputMapper::getSources() { 2987 return mSource; 2988 } 2989 2990 void RotaryEncoderInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 2991 InputMapper::populateDeviceInfo(info); 2992 2993 if (mRotaryEncoderScrollAccumulator.haveRelativeVWheel()) { 2994 float res = 0.0f; 2995 if (!mDevice->getConfiguration().tryGetProperty(String8("device.res"), res)) { 2996 ALOGW("Rotary Encoder device configuration file didn't specify resolution!\n"); 2997 } 2998 if (!mDevice->getConfiguration().tryGetProperty(String8("device.scalingFactor"), 2999 mScalingFactor)) { 3000 ALOGW("Rotary Encoder device configuration file didn't specify scaling factor," 3001 "default to 1.0!\n"); 3002 mScalingFactor = 1.0f; 3003 } 3004 info->addMotionRange(AMOTION_EVENT_AXIS_SCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 3005 res * mScalingFactor); 3006 } 3007 } 3008 3009 void RotaryEncoderInputMapper::dump(std::string& dump) { 3010 dump += INDENT2 "Rotary Encoder Input Mapper:\n"; 3011 dump += StringPrintf(INDENT3 "HaveWheel: %s\n", 3012 toString(mRotaryEncoderScrollAccumulator.haveRelativeVWheel())); 3013 } 3014 3015 void RotaryEncoderInputMapper::configure(nsecs_t when, 3016 const InputReaderConfiguration* config, uint32_t changes) { 3017 InputMapper::configure(when, config, changes); 3018 if (!changes) { 3019 mRotaryEncoderScrollAccumulator.configure(getDevice()); 3020 } 3021 if (!changes || (InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { 3022 DisplayViewport v; 3023 if (config->getDisplayViewport(ViewportType::VIEWPORT_INTERNAL, NULL, &v)) { 3024 mOrientation = v.orientation; 3025 } else { 3026 mOrientation = DISPLAY_ORIENTATION_0; 3027 } 3028 } 3029 } 3030 3031 void RotaryEncoderInputMapper::reset(nsecs_t when) { 3032 mRotaryEncoderScrollAccumulator.reset(getDevice()); 3033 3034 InputMapper::reset(when); 3035 } 3036 3037 void RotaryEncoderInputMapper::process(const RawEvent* rawEvent) { 3038 mRotaryEncoderScrollAccumulator.process(rawEvent); 3039 3040 if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { 3041 sync(rawEvent->when); 3042 } 3043 } 3044 3045 void RotaryEncoderInputMapper::sync(nsecs_t when) { 3046 PointerCoords pointerCoords; 3047 pointerCoords.clear(); 3048 3049 PointerProperties pointerProperties; 3050 pointerProperties.clear(); 3051 pointerProperties.id = 0; 3052 pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_UNKNOWN; 3053 3054 float scroll = mRotaryEncoderScrollAccumulator.getRelativeVWheel(); 3055 bool scrolled = scroll != 0; 3056 3057 // This is not a pointer, so it's not associated with a display. 3058 int32_t displayId = ADISPLAY_ID_NONE; 3059 3060 // Moving the rotary encoder should wake the device (if specified). 3061 uint32_t policyFlags = 0; 3062 if (scrolled && getDevice()->isExternal()) { 3063 policyFlags |= POLICY_FLAG_WAKE; 3064 } 3065 3066 if (mOrientation == DISPLAY_ORIENTATION_180) { 3067 scroll = -scroll; 3068 } 3069 3070 // Send motion event. 3071 if (scrolled) { 3072 int32_t metaState = mContext->getGlobalMetaState(); 3073 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_SCROLL, scroll * mScalingFactor); 3074 3075 NotifyMotionArgs scrollArgs(when, getDeviceId(), mSource, policyFlags, 3076 AMOTION_EVENT_ACTION_SCROLL, 0, 0, metaState, 0, 3077 AMOTION_EVENT_EDGE_FLAG_NONE, 3078 displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, 3079 0, 0, 0); 3080 getListener()->notifyMotion(&scrollArgs); 3081 } 3082 3083 mRotaryEncoderScrollAccumulator.finishSync(); 3084 } 3085 3086 // --- TouchInputMapper --- 3087 3088 TouchInputMapper::TouchInputMapper(InputDevice* device) : 3089 InputMapper(device), 3090 mSource(0), mDeviceMode(DEVICE_MODE_DISABLED), 3091 mSurfaceWidth(-1), mSurfaceHeight(-1), mSurfaceLeft(0), mSurfaceTop(0), 3092 mSurfaceOrientation(DISPLAY_ORIENTATION_0) { 3093 } 3094 3095 TouchInputMapper::~TouchInputMapper() { 3096 } 3097 3098 uint32_t TouchInputMapper::getSources() { 3099 return mSource; 3100 } 3101 3102 void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 3103 InputMapper::populateDeviceInfo(info); 3104 3105 if (mDeviceMode != DEVICE_MODE_DISABLED) { 3106 info->addMotionRange(mOrientedRanges.x); 3107 info->addMotionRange(mOrientedRanges.y); 3108 info->addMotionRange(mOrientedRanges.pressure); 3109 3110 if (mOrientedRanges.haveSize) { 3111 info->addMotionRange(mOrientedRanges.size); 3112 } 3113 3114 if (mOrientedRanges.haveTouchSize) { 3115 info->addMotionRange(mOrientedRanges.touchMajor); 3116 info->addMotionRange(mOrientedRanges.touchMinor); 3117 } 3118 3119 if (mOrientedRanges.haveToolSize) { 3120 info->addMotionRange(mOrientedRanges.toolMajor); 3121 info->addMotionRange(mOrientedRanges.toolMinor); 3122 } 3123 3124 if (mOrientedRanges.haveOrientation) { 3125 info->addMotionRange(mOrientedRanges.orientation); 3126 } 3127 3128 if (mOrientedRanges.haveDistance) { 3129 info->addMotionRange(mOrientedRanges.distance); 3130 } 3131 3132 if (mOrientedRanges.haveTilt) { 3133 info->addMotionRange(mOrientedRanges.tilt); 3134 } 3135 3136 if (mCursorScrollAccumulator.haveRelativeVWheel()) { 3137 info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 3138 0.0f); 3139 } 3140 if (mCursorScrollAccumulator.haveRelativeHWheel()) { 3141 info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 3142 0.0f); 3143 } 3144 if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_BOX) { 3145 const InputDeviceInfo::MotionRange& x = mOrientedRanges.x; 3146 const InputDeviceInfo::MotionRange& y = mOrientedRanges.y; 3147 info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_1, mSource, x.min, x.max, x.flat, 3148 x.fuzz, x.resolution); 3149 info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_2, mSource, y.min, y.max, y.flat, 3150 y.fuzz, y.resolution); 3151 info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_3, mSource, x.min, x.max, x.flat, 3152 x.fuzz, x.resolution); 3153 info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_4, mSource, y.min, y.max, y.flat, 3154 y.fuzz, y.resolution); 3155 } 3156 info->setButtonUnderPad(mParameters.hasButtonUnderPad); 3157 } 3158 } 3159 3160 void TouchInputMapper::dump(std::string& dump) { 3161 dump += StringPrintf(INDENT2 "Touch Input Mapper (mode - %s):\n", modeToString(mDeviceMode)); 3162 dumpParameters(dump); 3163 dumpVirtualKeys(dump); 3164 dumpRawPointerAxes(dump); 3165 dumpCalibration(dump); 3166 dumpAffineTransformation(dump); 3167 dumpSurface(dump); 3168 3169 dump += StringPrintf(INDENT3 "Translation and Scaling Factors:\n"); 3170 dump += StringPrintf(INDENT4 "XTranslate: %0.3f\n", mXTranslate); 3171 dump += StringPrintf(INDENT4 "YTranslate: %0.3f\n", mYTranslate); 3172 dump += StringPrintf(INDENT4 "XScale: %0.3f\n", mXScale); 3173 dump += StringPrintf(INDENT4 "YScale: %0.3f\n", mYScale); 3174 dump += StringPrintf(INDENT4 "XPrecision: %0.3f\n", mXPrecision); 3175 dump += StringPrintf(INDENT4 "YPrecision: %0.3f\n", mYPrecision); 3176 dump += StringPrintf(INDENT4 "GeometricScale: %0.3f\n", mGeometricScale); 3177 dump += StringPrintf(INDENT4 "PressureScale: %0.3f\n", mPressureScale); 3178 dump += StringPrintf(INDENT4 "SizeScale: %0.3f\n", mSizeScale); 3179 dump += StringPrintf(INDENT4 "OrientationScale: %0.3f\n", mOrientationScale); 3180 dump += StringPrintf(INDENT4 "DistanceScale: %0.3f\n", mDistanceScale); 3181 dump += StringPrintf(INDENT4 "HaveTilt: %s\n", toString(mHaveTilt)); 3182 dump += StringPrintf(INDENT4 "TiltXCenter: %0.3f\n", mTiltXCenter); 3183 dump += StringPrintf(INDENT4 "TiltXScale: %0.3f\n", mTiltXScale); 3184 dump += StringPrintf(INDENT4 "TiltYCenter: %0.3f\n", mTiltYCenter); 3185 dump += StringPrintf(INDENT4 "TiltYScale: %0.3f\n", mTiltYScale); 3186 3187 dump += StringPrintf(INDENT3 "Last Raw Button State: 0x%08x\n", mLastRawState.buttonState); 3188 dump += StringPrintf(INDENT3 "Last Raw Touch: pointerCount=%d\n", 3189 mLastRawState.rawPointerData.pointerCount); 3190 for (uint32_t i = 0; i < mLastRawState.rawPointerData.pointerCount; i++) { 3191 const RawPointerData::Pointer& pointer = mLastRawState.rawPointerData.pointers[i]; 3192 dump += StringPrintf(INDENT4 "[%d]: id=%d, x=%d, y=%d, pressure=%d, " 3193 "touchMajor=%d, touchMinor=%d, toolMajor=%d, toolMinor=%d, " 3194 "orientation=%d, tiltX=%d, tiltY=%d, distance=%d, " 3195 "toolType=%d, isHovering=%s\n", i, 3196 pointer.id, pointer.x, pointer.y, pointer.pressure, 3197 pointer.touchMajor, pointer.touchMinor, 3198 pointer.toolMajor, pointer.toolMinor, 3199 pointer.orientation, pointer.tiltX, pointer.tiltY, pointer.distance, 3200 pointer.toolType, toString(pointer.isHovering)); 3201 } 3202 3203 dump += StringPrintf(INDENT3 "Last Cooked Button State: 0x%08x\n", mLastCookedState.buttonState); 3204 dump += StringPrintf(INDENT3 "Last Cooked Touch: pointerCount=%d\n", 3205 mLastCookedState.cookedPointerData.pointerCount); 3206 for (uint32_t i = 0; i < mLastCookedState.cookedPointerData.pointerCount; i++) { 3207 const PointerProperties& pointerProperties = 3208 mLastCookedState.cookedPointerData.pointerProperties[i]; 3209 const PointerCoords& pointerCoords = mLastCookedState.cookedPointerData.pointerCoords[i]; 3210 dump += StringPrintf(INDENT4 "[%d]: id=%d, x=%0.3f, y=%0.3f, pressure=%0.3f, " 3211 "touchMajor=%0.3f, touchMinor=%0.3f, toolMajor=%0.3f, toolMinor=%0.3f, " 3212 "orientation=%0.3f, tilt=%0.3f, distance=%0.3f, " 3213 "toolType=%d, isHovering=%s\n", i, 3214 pointerProperties.id, 3215 pointerCoords.getX(), 3216 pointerCoords.getY(), 3217 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), 3218 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), 3219 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), 3220 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), 3221 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), 3222 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION), 3223 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TILT), 3224 pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE), 3225 pointerProperties.toolType, 3226 toString(mLastCookedState.cookedPointerData.isHovering(i))); 3227 } 3228 3229 dump += INDENT3 "Stylus Fusion:\n"; 3230 dump += StringPrintf(INDENT4 "ExternalStylusConnected: %s\n", 3231 toString(mExternalStylusConnected)); 3232 dump += StringPrintf(INDENT4 "External Stylus ID: %" PRId64 "\n", mExternalStylusId); 3233 dump += StringPrintf(INDENT4 "External Stylus Data Timeout: %" PRId64 "\n", 3234 mExternalStylusFusionTimeout); 3235 dump += INDENT3 "External Stylus State:\n"; 3236 dumpStylusState(dump, mExternalStylusState); 3237 3238 if (mDeviceMode == DEVICE_MODE_POINTER) { 3239 dump += StringPrintf(INDENT3 "Pointer Gesture Detector:\n"); 3240 dump += StringPrintf(INDENT4 "XMovementScale: %0.3f\n", 3241 mPointerXMovementScale); 3242 dump += StringPrintf(INDENT4 "YMovementScale: %0.3f\n", 3243 mPointerYMovementScale); 3244 dump += StringPrintf(INDENT4 "XZoomScale: %0.3f\n", 3245 mPointerXZoomScale); 3246 dump += StringPrintf(INDENT4 "YZoomScale: %0.3f\n", 3247 mPointerYZoomScale); 3248 dump += StringPrintf(INDENT4 "MaxSwipeWidth: %f\n", 3249 mPointerGestureMaxSwipeWidth); 3250 } 3251 } 3252 3253 const char* TouchInputMapper::modeToString(DeviceMode deviceMode) { 3254 switch (deviceMode) { 3255 case DEVICE_MODE_DISABLED: 3256 return "disabled"; 3257 case DEVICE_MODE_DIRECT: 3258 return "direct"; 3259 case DEVICE_MODE_UNSCALED: 3260 return "unscaled"; 3261 case DEVICE_MODE_NAVIGATION: 3262 return "navigation"; 3263 case DEVICE_MODE_POINTER: 3264 return "pointer"; 3265 } 3266 return "unknown"; 3267 } 3268 3269 void TouchInputMapper::configure(nsecs_t when, 3270 const InputReaderConfiguration* config, uint32_t changes) { 3271 InputMapper::configure(when, config, changes); 3272 3273 mConfig = *config; 3274 3275 if (!changes) { // first time only 3276 // Configure basic parameters. 3277 configureParameters(); 3278 3279 // Configure common accumulators. 3280 mCursorScrollAccumulator.configure(getDevice()); 3281 mTouchButtonAccumulator.configure(getDevice()); 3282 3283 // Configure absolute axis information. 3284 configureRawPointerAxes(); 3285 3286 // Prepare input device calibration. 3287 parseCalibration(); 3288 resolveCalibration(); 3289 } 3290 3291 if (!changes || (changes & InputReaderConfiguration::CHANGE_TOUCH_AFFINE_TRANSFORMATION)) { 3292 // Update location calibration to reflect current settings 3293 updateAffineTransformation(); 3294 } 3295 3296 if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) { 3297 // Update pointer speed. 3298 mPointerVelocityControl.setParameters(mConfig.pointerVelocityControlParameters); 3299 mWheelXVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); 3300 mWheelYVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); 3301 } 3302 3303 bool resetNeeded = false; 3304 if (!changes || (changes & (InputReaderConfiguration::CHANGE_DISPLAY_INFO 3305 | InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT 3306 | InputReaderConfiguration::CHANGE_SHOW_TOUCHES 3307 | InputReaderConfiguration::CHANGE_EXTERNAL_STYLUS_PRESENCE))) { 3308 // Configure device sources, surface dimensions, orientation and 3309 // scaling factors. 3310 configureSurface(when, &resetNeeded); 3311 } 3312 3313 if (changes && resetNeeded) { 3314 // Send reset, unless this is the first time the device has been configured, 3315 // in which case the reader will call reset itself after all mappers are ready. 3316 getDevice()->notifyReset(when); 3317 } 3318 } 3319 3320 void TouchInputMapper::resolveExternalStylusPresence() { 3321 Vector<InputDeviceInfo> devices; 3322 mContext->getExternalStylusDevices(devices); 3323 mExternalStylusConnected = !devices.isEmpty(); 3324 3325 if (!mExternalStylusConnected) { 3326 resetExternalStylus(); 3327 } 3328 } 3329 3330 void TouchInputMapper::configureParameters() { 3331 // Use the pointer presentation mode for devices that do not support distinct 3332 // multitouch. The spot-based presentation relies on being able to accurately 3333 // locate two or more fingers on the touch pad. 3334 mParameters.gestureMode = getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_SEMI_MT) 3335 ? Parameters::GESTURE_MODE_SINGLE_TOUCH : Parameters::GESTURE_MODE_MULTI_TOUCH; 3336 3337 String8 gestureModeString; 3338 if (getDevice()->getConfiguration().tryGetProperty(String8("touch.gestureMode"), 3339 gestureModeString)) { 3340 if (gestureModeString == "single-touch") { 3341 mParameters.gestureMode = Parameters::GESTURE_MODE_SINGLE_TOUCH; 3342 } else if (gestureModeString == "multi-touch") { 3343 mParameters.gestureMode = Parameters::GESTURE_MODE_MULTI_TOUCH; 3344 } else if (gestureModeString != "default") { 3345 ALOGW("Invalid value for touch.gestureMode: '%s'", gestureModeString.string()); 3346 } 3347 } 3348 3349 if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_DIRECT)) { 3350 // The device is a touch screen. 3351 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN; 3352 } else if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_POINTER)) { 3353 // The device is a pointing device like a track pad. 3354 mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; 3355 } else if (getEventHub()->hasRelativeAxis(getDeviceId(), REL_X) 3356 || getEventHub()->hasRelativeAxis(getDeviceId(), REL_Y)) { 3357 // The device is a cursor device with a touch pad attached. 3358 // By default don't use the touch pad to move the pointer. 3359 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD; 3360 } else { 3361 // The device is a touch pad of unknown purpose. 3362 mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; 3363 } 3364 3365 mParameters.hasButtonUnderPad= 3366 getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_BUTTONPAD); 3367 3368 String8 deviceTypeString; 3369 if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"), 3370 deviceTypeString)) { 3371 if (deviceTypeString == "touchScreen") { 3372 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN; 3373 } else if (deviceTypeString == "touchPad") { 3374 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD; 3375 } else if (deviceTypeString == "touchNavigation") { 3376 mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_NAVIGATION; 3377 } else if (deviceTypeString == "pointer") { 3378 mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; 3379 } else if (deviceTypeString != "default") { 3380 ALOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string()); 3381 } 3382 } 3383 3384 mParameters.orientationAware = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN; 3385 getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"), 3386 mParameters.orientationAware); 3387 3388 mParameters.hasAssociatedDisplay = false; 3389 mParameters.associatedDisplayIsExternal = false; 3390 if (mParameters.orientationAware 3391 || mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN 3392 || mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) { 3393 mParameters.hasAssociatedDisplay = true; 3394 if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) { 3395 mParameters.associatedDisplayIsExternal = getDevice()->isExternal(); 3396 getDevice()->getConfiguration().tryGetProperty(String8("touch.displayId"), 3397 mParameters.uniqueDisplayId); 3398 } 3399 } 3400 3401 // Initial downs on external touch devices should wake the device. 3402 // Normally we don't do this for internal touch screens to prevent them from waking 3403 // up in your pocket but you can enable it using the input device configuration. 3404 mParameters.wake = getDevice()->isExternal(); 3405 getDevice()->getConfiguration().tryGetProperty(String8("touch.wake"), 3406 mParameters.wake); 3407 } 3408 3409 void TouchInputMapper::dumpParameters(std::string& dump) { 3410 dump += INDENT3 "Parameters:\n"; 3411 3412 switch (mParameters.gestureMode) { 3413 case Parameters::GESTURE_MODE_SINGLE_TOUCH: 3414 dump += INDENT4 "GestureMode: single-touch\n"; 3415 break; 3416 case Parameters::GESTURE_MODE_MULTI_TOUCH: 3417 dump += INDENT4 "GestureMode: multi-touch\n"; 3418 break; 3419 default: 3420 assert(false); 3421 } 3422 3423 switch (mParameters.deviceType) { 3424 case Parameters::DEVICE_TYPE_TOUCH_SCREEN: 3425 dump += INDENT4 "DeviceType: touchScreen\n"; 3426 break; 3427 case Parameters::DEVICE_TYPE_TOUCH_PAD: 3428 dump += INDENT4 "DeviceType: touchPad\n"; 3429 break; 3430 case Parameters::DEVICE_TYPE_TOUCH_NAVIGATION: 3431 dump += INDENT4 "DeviceType: touchNavigation\n"; 3432 break; 3433 case Parameters::DEVICE_TYPE_POINTER: 3434 dump += INDENT4 "DeviceType: pointer\n"; 3435 break; 3436 default: 3437 ALOG_ASSERT(false); 3438 } 3439 3440 dump += StringPrintf( 3441 INDENT4 "AssociatedDisplay: hasAssociatedDisplay=%s, isExternal=%s, displayId='%s'\n", 3442 toString(mParameters.hasAssociatedDisplay), 3443 toString(mParameters.associatedDisplayIsExternal), 3444 mParameters.uniqueDisplayId.c_str()); 3445 dump += StringPrintf(INDENT4 "OrientationAware: %s\n", 3446 toString(mParameters.orientationAware)); 3447 } 3448 3449 void TouchInputMapper::configureRawPointerAxes() { 3450 mRawPointerAxes.clear(); 3451 } 3452 3453 void TouchInputMapper::dumpRawPointerAxes(std::string& dump) { 3454 dump += INDENT3 "Raw Touch Axes:\n"; 3455 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.x, "X"); 3456 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.y, "Y"); 3457 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.pressure, "Pressure"); 3458 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMajor, "TouchMajor"); 3459 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMinor, "TouchMinor"); 3460 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMajor, "ToolMajor"); 3461 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMinor, "ToolMinor"); 3462 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.orientation, "Orientation"); 3463 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.distance, "Distance"); 3464 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltX, "TiltX"); 3465 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltY, "TiltY"); 3466 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.trackingId, "TrackingId"); 3467 dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.slot, "Slot"); 3468 } 3469 3470 bool TouchInputMapper::hasExternalStylus() const { 3471 return mExternalStylusConnected; 3472 } 3473 3474 void TouchInputMapper::configureSurface(nsecs_t when, bool* outResetNeeded) { 3475 int32_t oldDeviceMode = mDeviceMode; 3476 3477 resolveExternalStylusPresence(); 3478 3479 // Determine device mode. 3480 if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER 3481 && mConfig.pointerGesturesEnabled) { 3482 mSource = AINPUT_SOURCE_MOUSE; 3483 mDeviceMode = DEVICE_MODE_POINTER; 3484 if (hasStylus()) { 3485 mSource |= AINPUT_SOURCE_STYLUS; 3486 } 3487 } else if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN 3488 && mParameters.hasAssociatedDisplay) { 3489 mSource = AINPUT_SOURCE_TOUCHSCREEN; 3490 mDeviceMode = DEVICE_MODE_DIRECT; 3491 if (hasStylus()) { 3492 mSource |= AINPUT_SOURCE_STYLUS; 3493 } 3494 if (hasExternalStylus()) { 3495 mSource |= AINPUT_SOURCE_BLUETOOTH_STYLUS; 3496 } 3497 } else if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_NAVIGATION) { 3498 mSource = AINPUT_SOURCE_TOUCH_NAVIGATION; 3499 mDeviceMode = DEVICE_MODE_NAVIGATION; 3500 } else { 3501 mSource = AINPUT_SOURCE_TOUCHPAD; 3502 mDeviceMode = DEVICE_MODE_UNSCALED; 3503 } 3504 3505 // Ensure we have valid X and Y axes. 3506 if (!mRawPointerAxes.x.valid || !mRawPointerAxes.y.valid) { 3507 ALOGW(INDENT "Touch device '%s' did not report support for X or Y axis! " 3508 "The device will be inoperable.", getDeviceName().string()); 3509 mDeviceMode = DEVICE_MODE_DISABLED; 3510 return; 3511 } 3512 3513 // Raw width and height in the natural orientation. 3514 int32_t rawWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1; 3515 int32_t rawHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1; 3516 3517 // Get associated display dimensions. 3518 DisplayViewport newViewport; 3519 if (mParameters.hasAssociatedDisplay) { 3520 const String8* uniqueDisplayId = NULL; 3521 ViewportType viewportTypeToUse; 3522 3523 if (mParameters.associatedDisplayIsExternal) { 3524 viewportTypeToUse = ViewportType::VIEWPORT_EXTERNAL; 3525 } else if (!mParameters.uniqueDisplayId.isEmpty()) { 3526 // If the IDC file specified a unique display Id, then it expects to be linked to a 3527 // virtual display with the same unique ID. 3528 uniqueDisplayId = &mParameters.uniqueDisplayId; 3529 viewportTypeToUse = ViewportType::VIEWPORT_VIRTUAL; 3530 } else { 3531 viewportTypeToUse = ViewportType::VIEWPORT_INTERNAL; 3532 } 3533 3534 if (!mConfig.getDisplayViewport(viewportTypeToUse, uniqueDisplayId, &newViewport)) { 3535 ALOGI(INDENT "Touch device '%s' could not query the properties of its associated " 3536 "display. The device will be inoperable until the display size " 3537 "becomes available.", 3538 getDeviceName().string()); 3539 mDeviceMode = DEVICE_MODE_DISABLED; 3540 return; 3541 } 3542 } else { 3543 newViewport.setNonDisplayViewport(rawWidth, rawHeight); 3544 } 3545 bool viewportChanged = mViewport != newViewport; 3546 if (viewportChanged) { 3547 mViewport = newViewport; 3548 3549 if (mDeviceMode == DEVICE_MODE_DIRECT || mDeviceMode == DEVICE_MODE_POINTER) { 3550 // Convert rotated viewport to natural surface coordinates. 3551 int32_t naturalLogicalWidth, naturalLogicalHeight; 3552 int32_t naturalPhysicalWidth, naturalPhysicalHeight; 3553 int32_t naturalPhysicalLeft, naturalPhysicalTop; 3554 int32_t naturalDeviceWidth, naturalDeviceHeight; 3555 switch (mViewport.orientation) { 3556 case DISPLAY_ORIENTATION_90: 3557 naturalLogicalWidth = mViewport.logicalBottom - mViewport.logicalTop; 3558 naturalLogicalHeight = mViewport.logicalRight - mViewport.logicalLeft; 3559 naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop; 3560 naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft; 3561 naturalPhysicalLeft = mViewport.deviceHeight - mViewport.physicalBottom; 3562 naturalPhysicalTop = mViewport.physicalLeft; 3563 naturalDeviceWidth = mViewport.deviceHeight; 3564 naturalDeviceHeight = mViewport.deviceWidth; 3565 break; 3566 case DISPLAY_ORIENTATION_180: 3567 naturalLogicalWidth = mViewport.logicalRight - mViewport.logicalLeft; 3568 naturalLogicalHeight = mViewport.logicalBottom - mViewport.logicalTop; 3569 naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft; 3570 naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop; 3571 naturalPhysicalLeft = mViewport.deviceWidth - mViewport.physicalRight; 3572 naturalPhysicalTop = mViewport.deviceHeight - mViewport.physicalBottom; 3573 naturalDeviceWidth = mViewport.deviceWidth; 3574 naturalDeviceHeight = mViewport.deviceHeight; 3575 break; 3576 case DISPLAY_ORIENTATION_270: 3577 naturalLogicalWidth = mViewport.logicalBottom - mViewport.logicalTop; 3578 naturalLogicalHeight = mViewport.logicalRight - mViewport.logicalLeft; 3579 naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop; 3580 naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft; 3581 naturalPhysicalLeft = mViewport.physicalTop; 3582 naturalPhysicalTop = mViewport.deviceWidth - mViewport.physicalRight; 3583 naturalDeviceWidth = mViewport.deviceHeight; 3584 naturalDeviceHeight = mViewport.deviceWidth; 3585 break; 3586 case DISPLAY_ORIENTATION_0: 3587 default: 3588 naturalLogicalWidth = mViewport.logicalRight - mViewport.logicalLeft; 3589 naturalLogicalHeight = mViewport.logicalBottom - mViewport.logicalTop; 3590 naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft; 3591 naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop; 3592 naturalPhysicalLeft = mViewport.physicalLeft; 3593 naturalPhysicalTop = mViewport.physicalTop; 3594 naturalDeviceWidth = mViewport.deviceWidth; 3595 naturalDeviceHeight = mViewport.deviceHeight; 3596 break; 3597 } 3598 3599 mSurfaceWidth = naturalLogicalWidth * naturalDeviceWidth / naturalPhysicalWidth; 3600 mSurfaceHeight = naturalLogicalHeight * naturalDeviceHeight / naturalPhysicalHeight; 3601 mSurfaceLeft = naturalPhysicalLeft * naturalLogicalWidth / naturalPhysicalWidth; 3602 mSurfaceTop = naturalPhysicalTop * naturalLogicalHeight / naturalPhysicalHeight; 3603 3604 mSurfaceOrientation = mParameters.orientationAware ? 3605 mViewport.orientation : DISPLAY_ORIENTATION_0; 3606 } else { 3607 mSurfaceWidth = rawWidth; 3608 mSurfaceHeight = rawHeight; 3609 mSurfaceLeft = 0; 3610 mSurfaceTop = 0; 3611 mSurfaceOrientation = DISPLAY_ORIENTATION_0; 3612 } 3613 } 3614 3615 // If moving between pointer modes, need to reset some state. 3616 bool deviceModeChanged = mDeviceMode != oldDeviceMode; 3617 if (deviceModeChanged) { 3618 mOrientedRanges.clear(); 3619 } 3620 3621 // Create pointer controller if needed. 3622 if (mDeviceMode == DEVICE_MODE_POINTER || 3623 (mDeviceMode == DEVICE_MODE_DIRECT && mConfig.showTouches)) { 3624 if (mPointerController == NULL) { 3625 mPointerController = getPolicy()->obtainPointerController(getDeviceId()); 3626 } 3627 } else { 3628 mPointerController.clear(); 3629 } 3630 3631 if (viewportChanged || deviceModeChanged) { 3632 ALOGI("Device reconfigured: id=%d, name='%s', size %dx%d, orientation %d, mode %d, " 3633 "display id %d", 3634 getDeviceId(), getDeviceName().string(), mSurfaceWidth, mSurfaceHeight, 3635 mSurfaceOrientation, mDeviceMode, mViewport.displayId); 3636 3637 // Configure X and Y factors. 3638 mXScale = float(mSurfaceWidth) / rawWidth; 3639 mYScale = float(mSurfaceHeight) / rawHeight; 3640 mXTranslate = -mSurfaceLeft; 3641 mYTranslate = -mSurfaceTop; 3642 mXPrecision = 1.0f / mXScale; 3643 mYPrecision = 1.0f / mYScale; 3644 3645 mOrientedRanges.x.axis = AMOTION_EVENT_AXIS_X; 3646 mOrientedRanges.x.source = mSource; 3647 mOrientedRanges.y.axis = AMOTION_EVENT_AXIS_Y; 3648 mOrientedRanges.y.source = mSource; 3649 3650 configureVirtualKeys(); 3651 3652 // Scale factor for terms that are not oriented in a particular axis. 3653 // If the pixels are square then xScale == yScale otherwise we fake it 3654 // by choosing an average. 3655 mGeometricScale = avg(mXScale, mYScale); 3656 3657 // Size of diagonal axis. 3658 float diagonalSize = hypotf(mSurfaceWidth, mSurfaceHeight); 3659 3660 // Size factors. 3661 if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) { 3662 if (mRawPointerAxes.touchMajor.valid 3663 && mRawPointerAxes.touchMajor.maxValue != 0) { 3664 mSizeScale = 1.0f / mRawPointerAxes.touchMajor.maxValue; 3665 } else if (mRawPointerAxes.toolMajor.valid 3666 && mRawPointerAxes.toolMajor.maxValue != 0) { 3667 mSizeScale = 1.0f / mRawPointerAxes.toolMajor.maxValue; 3668 } else { 3669 mSizeScale = 0.0f; 3670 } 3671 3672 mOrientedRanges.haveTouchSize = true; 3673 mOrientedRanges.haveToolSize = true; 3674 mOrientedRanges.haveSize = true; 3675 3676 mOrientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR; 3677 mOrientedRanges.touchMajor.source = mSource; 3678 mOrientedRanges.touchMajor.min = 0; 3679 mOrientedRanges.touchMajor.max = diagonalSize; 3680 mOrientedRanges.touchMajor.flat = 0; 3681 mOrientedRanges.touchMajor.fuzz = 0; 3682 mOrientedRanges.touchMajor.resolution = 0; 3683 3684 mOrientedRanges.touchMinor = mOrientedRanges.touchMajor; 3685 mOrientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR; 3686 3687 mOrientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR; 3688 mOrientedRanges.toolMajor.source = mSource; 3689 mOrientedRanges.toolMajor.min = 0; 3690 mOrientedRanges.toolMajor.max = diagonalSize; 3691 mOrientedRanges.toolMajor.flat = 0; 3692 mOrientedRanges.toolMajor.fuzz = 0; 3693 mOrientedRanges.toolMajor.resolution = 0; 3694 3695 mOrientedRanges.toolMinor = mOrientedRanges.toolMajor; 3696 mOrientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR; 3697 3698 mOrientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE; 3699 mOrientedRanges.size.source = mSource; 3700 mOrientedRanges.size.min = 0; 3701 mOrientedRanges.size.max = 1.0; 3702 mOrientedRanges.size.flat = 0; 3703 mOrientedRanges.size.fuzz = 0; 3704 mOrientedRanges.size.resolution = 0; 3705 } else { 3706 mSizeScale = 0.0f; 3707 } 3708 3709 // Pressure factors. 3710 mPressureScale = 0; 3711 float pressureMax = 1.0; 3712 if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL 3713 || mCalibration.pressureCalibration 3714 == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) { 3715 if (mCalibration.havePressureScale) { 3716 mPressureScale = mCalibration.pressureScale; 3717 pressureMax = mPressureScale * mRawPointerAxes.pressure.maxValue; 3718 } else if (mRawPointerAxes.pressure.valid 3719 && mRawPointerAxes.pressure.maxValue != 0) { 3720 mPressureScale = 1.0f / mRawPointerAxes.pressure.maxValue; 3721 } 3722 } 3723 3724 mOrientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE; 3725 mOrientedRanges.pressure.source = mSource; 3726 mOrientedRanges.pressure.min = 0; 3727 mOrientedRanges.pressure.max = pressureMax; 3728 mOrientedRanges.pressure.flat = 0; 3729 mOrientedRanges.pressure.fuzz = 0; 3730 mOrientedRanges.pressure.resolution = 0; 3731 3732 // Tilt 3733 mTiltXCenter = 0; 3734 mTiltXScale = 0; 3735 mTiltYCenter = 0; 3736 mTiltYScale = 0; 3737 mHaveTilt = mRawPointerAxes.tiltX.valid && mRawPointerAxes.tiltY.valid; 3738 if (mHaveTilt) { 3739 mTiltXCenter = avg(mRawPointerAxes.tiltX.minValue, 3740 mRawPointerAxes.tiltX.maxValue); 3741 mTiltYCenter = avg(mRawPointerAxes.tiltY.minValue, 3742 mRawPointerAxes.tiltY.maxValue); 3743 mTiltXScale = M_PI / 180; 3744 mTiltYScale = M_PI / 180; 3745 3746 mOrientedRanges.haveTilt = true; 3747 3748 mOrientedRanges.tilt.axis = AMOTION_EVENT_AXIS_TILT; 3749 mOrientedRanges.tilt.source = mSource; 3750 mOrientedRanges.tilt.min = 0; 3751 mOrientedRanges.tilt.max = M_PI_2; 3752 mOrientedRanges.tilt.flat = 0; 3753 mOrientedRanges.tilt.fuzz = 0; 3754 mOrientedRanges.tilt.resolution = 0; 3755 } 3756 3757 // Orientation 3758 mOrientationScale = 0; 3759 if (mHaveTilt) { 3760 mOrientedRanges.haveOrientation = true; 3761 3762 mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION; 3763 mOrientedRanges.orientation.source = mSource; 3764 mOrientedRanges.orientation.min = -M_PI; 3765 mOrientedRanges.orientation.max = M_PI; 3766 mOrientedRanges.orientation.flat = 0; 3767 mOrientedRanges.orientation.fuzz = 0; 3768 mOrientedRanges.orientation.resolution = 0; 3769 } else if (mCalibration.orientationCalibration != 3770 Calibration::ORIENTATION_CALIBRATION_NONE) { 3771 if (mCalibration.orientationCalibration 3772 == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) { 3773 if (mRawPointerAxes.orientation.valid) { 3774 if (mRawPointerAxes.orientation.maxValue > 0) { 3775 mOrientationScale = M_PI_2 / mRawPointerAxes.orientation.maxValue; 3776 } else if (mRawPointerAxes.orientation.minValue < 0) { 3777 mOrientationScale = -M_PI_2 / mRawPointerAxes.orientation.minValue; 3778 } else { 3779 mOrientationScale = 0; 3780 } 3781 } 3782 } 3783 3784 mOrientedRanges.haveOrientation = true; 3785 3786 mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION; 3787 mOrientedRanges.orientation.source = mSource; 3788 mOrientedRanges.orientation.min = -M_PI_2; 3789 mOrientedRanges.orientation.max = M_PI_2; 3790 mOrientedRanges.orientation.flat = 0; 3791 mOrientedRanges.orientation.fuzz = 0; 3792 mOrientedRanges.orientation.resolution = 0; 3793 } 3794 3795 // Distance 3796 mDistanceScale = 0; 3797 if (mCalibration.distanceCalibration != Calibration::DISTANCE_CALIBRATION_NONE) { 3798 if (mCalibration.distanceCalibration 3799 == Calibration::DISTANCE_CALIBRATION_SCALED) { 3800 if (mCalibration.haveDistanceScale) { 3801 mDistanceScale = mCalibration.distanceScale; 3802 } else { 3803 mDistanceScale = 1.0f; 3804 } 3805 } 3806 3807 mOrientedRanges.haveDistance = true; 3808 3809 mOrientedRanges.distance.axis = AMOTION_EVENT_AXIS_DISTANCE; 3810 mOrientedRanges.distance.source = mSource; 3811 mOrientedRanges.distance.min = 3812 mRawPointerAxes.distance.minValue * mDistanceScale; 3813 mOrientedRanges.distance.max = 3814 mRawPointerAxes.distance.maxValue * mDistanceScale; 3815 mOrientedRanges.distance.flat = 0; 3816 mOrientedRanges.distance.fuzz = 3817 mRawPointerAxes.distance.fuzz * mDistanceScale; 3818 mOrientedRanges.distance.resolution = 0; 3819 } 3820 3821 // Compute oriented precision, scales and ranges. 3822 // Note that the maximum value reported is an inclusive maximum value so it is one 3823 // unit less than the total width or height of surface. 3824 switch (mSurfaceOrientation) { 3825 case DISPLAY_ORIENTATION_90: 3826 case DISPLAY_ORIENTATION_270: 3827 mOrientedXPrecision = mYPrecision; 3828 mOrientedYPrecision = mXPrecision; 3829 3830 mOrientedRanges.x.min = mYTranslate; 3831 mOrientedRanges.x.max = mSurfaceHeight + mYTranslate - 1; 3832 mOrientedRanges.x.flat = 0; 3833 mOrientedRanges.x.fuzz = 0; 3834 mOrientedRanges.x.resolution = mRawPointerAxes.y.resolution * mYScale; 3835 3836 mOrientedRanges.y.min = mXTranslate; 3837 mOrientedRanges.y.max = mSurfaceWidth + mXTranslate - 1; 3838 mOrientedRanges.y.flat = 0; 3839 mOrientedRanges.y.fuzz = 0; 3840 mOrientedRanges.y.resolution = mRawPointerAxes.x.resolution * mXScale; 3841 break; 3842 3843 default: 3844 mOrientedXPrecision = mXPrecision; 3845 mOrientedYPrecision = mYPrecision; 3846 3847 mOrientedRanges.x.min = mXTranslate; 3848 mOrientedRanges.x.max = mSurfaceWidth + mXTranslate - 1; 3849 mOrientedRanges.x.flat = 0; 3850 mOrientedRanges.x.fuzz = 0; 3851 mOrientedRanges.x.resolution = mRawPointerAxes.x.resolution * mXScale; 3852 3853 mOrientedRanges.y.min = mYTranslate; 3854 mOrientedRanges.y.max = mSurfaceHeight + mYTranslate - 1; 3855 mOrientedRanges.y.flat = 0; 3856 mOrientedRanges.y.fuzz = 0; 3857 mOrientedRanges.y.resolution = mRawPointerAxes.y.resolution * mYScale; 3858 break; 3859 } 3860 3861 // Location 3862 updateAffineTransformation(); 3863 3864 if (mDeviceMode == DEVICE_MODE_POINTER) { 3865 // Compute pointer gesture detection parameters. 3866 float rawDiagonal = hypotf(rawWidth, rawHeight); 3867 float displayDiagonal = hypotf(mSurfaceWidth, mSurfaceHeight); 3868 3869 // Scale movements such that one whole swipe of the touch pad covers a 3870 // given area relative to the diagonal size of the display when no acceleration 3871 // is applied. 3872 // Assume that the touch pad has a square aspect ratio such that movements in 3873 // X and Y of the same number of raw units cover the same physical distance. 3874 mPointerXMovementScale = mConfig.pointerGestureMovementSpeedRatio 3875 * displayDiagonal / rawDiagonal; 3876 mPointerYMovementScale = mPointerXMovementScale; 3877 3878 // Scale zooms to cover a smaller range of the display than movements do. 3879 // This value determines the area around the pointer that is affected by freeform 3880 // pointer gestures. 3881 mPointerXZoomScale = mConfig.pointerGestureZoomSpeedRatio 3882 * displayDiagonal / rawDiagonal; 3883 mPointerYZoomScale = mPointerXZoomScale; 3884 3885 // Max width between pointers to detect a swipe gesture is more than some fraction 3886 // of the diagonal axis of the touch pad. Touches that are wider than this are 3887 // translated into freeform gestures. 3888 mPointerGestureMaxSwipeWidth = 3889 mConfig.pointerGestureSwipeMaxWidthRatio * rawDiagonal; 3890 3891 // Abort current pointer usages because the state has changed. 3892 abortPointerUsage(when, 0 /*policyFlags*/); 3893 } 3894 3895 // Inform the dispatcher about the changes. 3896 *outResetNeeded = true; 3897 bumpGeneration(); 3898 } 3899 } 3900 3901 void TouchInputMapper::dumpSurface(std::string& dump) { 3902 dump += StringPrintf(INDENT3 "Viewport: displayId=%d, orientation=%d, " 3903 "logicalFrame=[%d, %d, %d, %d], " 3904 "physicalFrame=[%d, %d, %d, %d], " 3905 "deviceSize=[%d, %d]\n", 3906 mViewport.displayId, mViewport.orientation, 3907 mViewport.logicalLeft, mViewport.logicalTop, 3908 mViewport.logicalRight, mViewport.logicalBottom, 3909 mViewport.physicalLeft, mViewport.physicalTop, 3910 mViewport.physicalRight, mViewport.physicalBottom, 3911 mViewport.deviceWidth, mViewport.deviceHeight); 3912 3913 dump += StringPrintf(INDENT3 "SurfaceWidth: %dpx\n", mSurfaceWidth); 3914 dump += StringPrintf(INDENT3 "SurfaceHeight: %dpx\n", mSurfaceHeight); 3915 dump += StringPrintf(INDENT3 "SurfaceLeft: %d\n", mSurfaceLeft); 3916 dump += StringPrintf(INDENT3 "SurfaceTop: %d\n", mSurfaceTop); 3917 dump += StringPrintf(INDENT3 "SurfaceOrientation: %d\n", mSurfaceOrientation); 3918 } 3919 3920 void TouchInputMapper::configureVirtualKeys() { 3921 Vector<VirtualKeyDefinition> virtualKeyDefinitions; 3922 getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions); 3923 3924 mVirtualKeys.clear(); 3925 3926 if (virtualKeyDefinitions.size() == 0) { 3927 return; 3928 } 3929 3930 mVirtualKeys.setCapacity(virtualKeyDefinitions.size()); 3931 3932 int32_t touchScreenLeft = mRawPointerAxes.x.minValue; 3933 int32_t touchScreenTop = mRawPointerAxes.y.minValue; 3934 int32_t touchScreenWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1; 3935 int32_t touchScreenHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1; 3936 3937 for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) { 3938 const VirtualKeyDefinition& virtualKeyDefinition = 3939 virtualKeyDefinitions[i]; 3940 3941 mVirtualKeys.add(); 3942 VirtualKey& virtualKey = mVirtualKeys.editTop(); 3943 3944 virtualKey.scanCode = virtualKeyDefinition.scanCode; 3945 int32_t keyCode; 3946 int32_t dummyKeyMetaState; 3947 uint32_t flags; 3948 if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode, 0, 0, 3949 &keyCode, &dummyKeyMetaState, &flags)) { 3950 ALOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring", 3951 virtualKey.scanCode); 3952 mVirtualKeys.pop(); // drop the key 3953 continue; 3954 } 3955 3956 virtualKey.keyCode = keyCode; 3957 virtualKey.flags = flags; 3958 3959 // convert the key definition's display coordinates into touch coordinates for a hit box 3960 int32_t halfWidth = virtualKeyDefinition.width / 2; 3961 int32_t halfHeight = virtualKeyDefinition.height / 2; 3962 3963 virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth) 3964 * touchScreenWidth / mSurfaceWidth + touchScreenLeft; 3965 virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth) 3966 * touchScreenWidth / mSurfaceWidth + touchScreenLeft; 3967 virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight) 3968 * touchScreenHeight / mSurfaceHeight + touchScreenTop; 3969 virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight) 3970 * touchScreenHeight / mSurfaceHeight + touchScreenTop; 3971 } 3972 } 3973 3974 void TouchInputMapper::dumpVirtualKeys(std::string& dump) { 3975 if (!mVirtualKeys.isEmpty()) { 3976 dump += INDENT3 "Virtual Keys:\n"; 3977 3978 for (size_t i = 0; i < mVirtualKeys.size(); i++) { 3979 const VirtualKey& virtualKey = mVirtualKeys.itemAt(i); 3980 dump += StringPrintf(INDENT4 "%zu: scanCode=%d, keyCode=%d, " 3981 "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n", 3982 i, virtualKey.scanCode, virtualKey.keyCode, 3983 virtualKey.hitLeft, virtualKey.hitRight, 3984 virtualKey.hitTop, virtualKey.hitBottom); 3985 } 3986 } 3987 } 3988 3989 void TouchInputMapper::parseCalibration() { 3990 const PropertyMap& in = getDevice()->getConfiguration(); 3991 Calibration& out = mCalibration; 3992 3993 // Size 3994 out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT; 3995 String8 sizeCalibrationString; 3996 if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) { 3997 if (sizeCalibrationString == "none") { 3998 out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; 3999 } else if (sizeCalibrationString == "geometric") { 4000 out.sizeCalibration = Calibration::SIZE_CALIBRATION_GEOMETRIC; 4001 } else if (sizeCalibrationString == "diameter") { 4002 out.sizeCalibration = Calibration::SIZE_CALIBRATION_DIAMETER; 4003 } else if (sizeCalibrationString == "box") { 4004 out.sizeCalibration = Calibration::SIZE_CALIBRATION_BOX; 4005 } else if (sizeCalibrationString == "area") { 4006 out.sizeCalibration = Calibration::SIZE_CALIBRATION_AREA; 4007 } else if (sizeCalibrationString != "default") { 4008 ALOGW("Invalid value for touch.size.calibration: '%s'", 4009 sizeCalibrationString.string()); 4010 } 4011 } 4012 4013 out.haveSizeScale = in.tryGetProperty(String8("touch.size.scale"), 4014 out.sizeScale); 4015 out.haveSizeBias = in.tryGetProperty(String8("touch.size.bias"), 4016 out.sizeBias); 4017 out.haveSizeIsSummed = in.tryGetProperty(String8("touch.size.isSummed"), 4018 out.sizeIsSummed); 4019 4020 // Pressure 4021 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT; 4022 String8 pressureCalibrationString; 4023 if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) { 4024 if (pressureCalibrationString == "none") { 4025 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; 4026 } else if (pressureCalibrationString == "physical") { 4027 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL; 4028 } else if (pressureCalibrationString == "amplitude") { 4029 out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE; 4030 } else if (pressureCalibrationString != "default") { 4031 ALOGW("Invalid value for touch.pressure.calibration: '%s'", 4032 pressureCalibrationString.string()); 4033 } 4034 } 4035 4036 out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"), 4037 out.pressureScale); 4038 4039 // Orientation 4040 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT; 4041 String8 orientationCalibrationString; 4042 if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) { 4043 if (orientationCalibrationString == "none") { 4044 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; 4045 } else if (orientationCalibrationString == "interpolated") { 4046 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; 4047 } else if (orientationCalibrationString == "vector") { 4048 out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR; 4049 } else if (orientationCalibrationString != "default") { 4050 ALOGW("Invalid value for touch.orientation.calibration: '%s'", 4051 orientationCalibrationString.string()); 4052 } 4053 } 4054 4055 // Distance 4056 out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_DEFAULT; 4057 String8 distanceCalibrationString; 4058 if (in.tryGetProperty(String8("touch.distance.calibration"), distanceCalibrationString)) { 4059 if (distanceCalibrationString == "none") { 4060 out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE; 4061 } else if (distanceCalibrationString == "scaled") { 4062 out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED; 4063 } else if (distanceCalibrationString != "default") { 4064 ALOGW("Invalid value for touch.distance.calibration: '%s'", 4065 distanceCalibrationString.string()); 4066 } 4067 } 4068 4069 out.haveDistanceScale = in.tryGetProperty(String8("touch.distance.scale"), 4070 out.distanceScale); 4071 4072 out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_DEFAULT; 4073 String8 coverageCalibrationString; 4074 if (in.tryGetProperty(String8("touch.coverage.calibration"), coverageCalibrationString)) { 4075 if (coverageCalibrationString == "none") { 4076 out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_NONE; 4077 } else if (coverageCalibrationString == "box") { 4078 out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_BOX; 4079 } else if (coverageCalibrationString != "default") { 4080 ALOGW("Invalid value for touch.coverage.calibration: '%s'", 4081 coverageCalibrationString.string()); 4082 } 4083 } 4084 } 4085 4086 void TouchInputMapper::resolveCalibration() { 4087 // Size 4088 if (mRawPointerAxes.touchMajor.valid || mRawPointerAxes.toolMajor.valid) { 4089 if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DEFAULT) { 4090 mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_GEOMETRIC; 4091 } 4092 } else { 4093 mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; 4094 } 4095 4096 // Pressure 4097 if (mRawPointerAxes.pressure.valid) { 4098 if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_DEFAULT) { 4099 mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL; 4100 } 4101 } else { 4102 mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; 4103 } 4104 4105 // Orientation 4106 if (mRawPointerAxes.orientation.valid) { 4107 if (mCalibration.orientationCalibration == Calibration::ORIENTATION_CALIBRATION_DEFAULT) { 4108 mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; 4109 } 4110 } else { 4111 mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; 4112 } 4113 4114 // Distance 4115 if (mRawPointerAxes.distance.valid) { 4116 if (mCalibration.distanceCalibration == Calibration::DISTANCE_CALIBRATION_DEFAULT) { 4117 mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED; 4118 } 4119 } else { 4120 mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE; 4121 } 4122 4123 // Coverage 4124 if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_DEFAULT) { 4125 mCalibration.coverageCalibration = Calibration::COVERAGE_CALIBRATION_NONE; 4126 } 4127 } 4128 4129 void TouchInputMapper::dumpCalibration(std::string& dump) { 4130 dump += INDENT3 "Calibration:\n"; 4131 4132 // Size 4133 switch (mCalibration.sizeCalibration) { 4134 case Calibration::SIZE_CALIBRATION_NONE: 4135 dump += INDENT4 "touch.size.calibration: none\n"; 4136 break; 4137 case Calibration::SIZE_CALIBRATION_GEOMETRIC: 4138 dump += INDENT4 "touch.size.calibration: geometric\n"; 4139 break; 4140 case Calibration::SIZE_CALIBRATION_DIAMETER: 4141 dump += INDENT4 "touch.size.calibration: diameter\n"; 4142 break; 4143 case Calibration::SIZE_CALIBRATION_BOX: 4144 dump += INDENT4 "touch.size.calibration: box\n"; 4145 break; 4146 case Calibration::SIZE_CALIBRATION_AREA: 4147 dump += INDENT4 "touch.size.calibration: area\n"; 4148 break; 4149 default: 4150 ALOG_ASSERT(false); 4151 } 4152 4153 if (mCalibration.haveSizeScale) { 4154 dump += StringPrintf(INDENT4 "touch.size.scale: %0.3f\n", 4155 mCalibration.sizeScale); 4156 } 4157 4158 if (mCalibration.haveSizeBias) { 4159 dump += StringPrintf(INDENT4 "touch.size.bias: %0.3f\n", 4160 mCalibration.sizeBias); 4161 } 4162 4163 if (mCalibration.haveSizeIsSummed) { 4164 dump += StringPrintf(INDENT4 "touch.size.isSummed: %s\n", 4165 toString(mCalibration.sizeIsSummed)); 4166 } 4167 4168 // Pressure 4169 switch (mCalibration.pressureCalibration) { 4170 case Calibration::PRESSURE_CALIBRATION_NONE: 4171 dump += INDENT4 "touch.pressure.calibration: none\n"; 4172 break; 4173 case Calibration::PRESSURE_CALIBRATION_PHYSICAL: 4174 dump += INDENT4 "touch.pressure.calibration: physical\n"; 4175 break; 4176 case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: 4177 dump += INDENT4 "touch.pressure.calibration: amplitude\n"; 4178 break; 4179 default: 4180 ALOG_ASSERT(false); 4181 } 4182 4183 if (mCalibration.havePressureScale) { 4184 dump += StringPrintf(INDENT4 "touch.pressure.scale: %0.3f\n", 4185 mCalibration.pressureScale); 4186 } 4187 4188 // Orientation 4189 switch (mCalibration.orientationCalibration) { 4190 case Calibration::ORIENTATION_CALIBRATION_NONE: 4191 dump += INDENT4 "touch.orientation.calibration: none\n"; 4192 break; 4193 case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: 4194 dump += INDENT4 "touch.orientation.calibration: interpolated\n"; 4195 break; 4196 case Calibration::ORIENTATION_CALIBRATION_VECTOR: 4197 dump += INDENT4 "touch.orientation.calibration: vector\n"; 4198 break; 4199 default: 4200 ALOG_ASSERT(false); 4201 } 4202 4203 // Distance 4204 switch (mCalibration.distanceCalibration) { 4205 case Calibration::DISTANCE_CALIBRATION_NONE: 4206 dump += INDENT4 "touch.distance.calibration: none\n"; 4207 break; 4208 case Calibration::DISTANCE_CALIBRATION_SCALED: 4209 dump += INDENT4 "touch.distance.calibration: scaled\n"; 4210 break; 4211 default: 4212 ALOG_ASSERT(false); 4213 } 4214 4215 if (mCalibration.haveDistanceScale) { 4216 dump += StringPrintf(INDENT4 "touch.distance.scale: %0.3f\n", 4217 mCalibration.distanceScale); 4218 } 4219 4220 switch (mCalibration.coverageCalibration) { 4221 case Calibration::COVERAGE_CALIBRATION_NONE: 4222 dump += INDENT4 "touch.coverage.calibration: none\n"; 4223 break; 4224 case Calibration::COVERAGE_CALIBRATION_BOX: 4225 dump += INDENT4 "touch.coverage.calibration: box\n"; 4226 break; 4227 default: 4228 ALOG_ASSERT(false); 4229 } 4230 } 4231 4232 void TouchInputMapper::dumpAffineTransformation(std::string& dump) { 4233 dump += INDENT3 "Affine Transformation:\n"; 4234 4235 dump += StringPrintf(INDENT4 "X scale: %0.3f\n", mAffineTransform.x_scale); 4236 dump += StringPrintf(INDENT4 "X ymix: %0.3f\n", mAffineTransform.x_ymix); 4237 dump += StringPrintf(INDENT4 "X offset: %0.3f\n", mAffineTransform.x_offset); 4238 dump += StringPrintf(INDENT4 "Y xmix: %0.3f\n", mAffineTransform.y_xmix); 4239 dump += StringPrintf(INDENT4 "Y scale: %0.3f\n", mAffineTransform.y_scale); 4240 dump += StringPrintf(INDENT4 "Y offset: %0.3f\n", mAffineTransform.y_offset); 4241 } 4242 4243 void TouchInputMapper::updateAffineTransformation() { 4244 mAffineTransform = getPolicy()->getTouchAffineTransformation(mDevice->getDescriptor(), 4245 mSurfaceOrientation); 4246 } 4247 4248 void TouchInputMapper::reset(nsecs_t when) { 4249 mCursorButtonAccumulator.reset(getDevice()); 4250 mCursorScrollAccumulator.reset(getDevice()); 4251 mTouchButtonAccumulator.reset(getDevice()); 4252 4253 mPointerVelocityControl.reset(); 4254 mWheelXVelocityControl.reset(); 4255 mWheelYVelocityControl.reset(); 4256 4257 mRawStatesPending.clear(); 4258 mCurrentRawState.clear(); 4259 mCurrentCookedState.clear(); 4260 mLastRawState.clear(); 4261 mLastCookedState.clear(); 4262 mPointerUsage = POINTER_USAGE_NONE; 4263 mSentHoverEnter = false; 4264 mHavePointerIds = false; 4265 mCurrentMotionAborted = false; 4266 mDownTime = 0; 4267 4268 mCurrentVirtualKey.down = false; 4269 4270 mPointerGesture.reset(); 4271 mPointerSimple.reset(); 4272 resetExternalStylus(); 4273 4274 if (mPointerController != NULL) { 4275 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 4276 mPointerController->clearSpots(); 4277 } 4278 4279 InputMapper::reset(when); 4280 } 4281 4282 void TouchInputMapper::resetExternalStylus() { 4283 mExternalStylusState.clear(); 4284 mExternalStylusId = -1; 4285 mExternalStylusFusionTimeout = LLONG_MAX; 4286 mExternalStylusDataPending = false; 4287 } 4288 4289 void TouchInputMapper::clearStylusDataPendingFlags() { 4290 mExternalStylusDataPending = false; 4291 mExternalStylusFusionTimeout = LLONG_MAX; 4292 } 4293 4294 void TouchInputMapper::process(const RawEvent* rawEvent) { 4295 mCursorButtonAccumulator.process(rawEvent); 4296 mCursorScrollAccumulator.process(rawEvent); 4297 mTouchButtonAccumulator.process(rawEvent); 4298 4299 if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { 4300 sync(rawEvent->when); 4301 } 4302 } 4303 4304 void TouchInputMapper::sync(nsecs_t when) { 4305 const RawState* last = mRawStatesPending.isEmpty() ? 4306 &mCurrentRawState : &mRawStatesPending.top(); 4307 4308 // Push a new state. 4309 mRawStatesPending.push(); 4310 RawState* next = &mRawStatesPending.editTop(); 4311 next->clear(); 4312 next->when = when; 4313 4314 // Sync button state. 4315 next->buttonState = mTouchButtonAccumulator.getButtonState() 4316 | mCursorButtonAccumulator.getButtonState(); 4317 4318 // Sync scroll 4319 next->rawVScroll = mCursorScrollAccumulator.getRelativeVWheel(); 4320 next->rawHScroll = mCursorScrollAccumulator.getRelativeHWheel(); 4321 mCursorScrollAccumulator.finishSync(); 4322 4323 // Sync touch 4324 syncTouch(when, next); 4325 4326 // Assign pointer ids. 4327 if (!mHavePointerIds) { 4328 assignPointerIds(last, next); 4329 } 4330 4331 #if DEBUG_RAW_EVENTS 4332 ALOGD("syncTouch: pointerCount %d -> %d, touching ids 0x%08x -> 0x%08x, " 4333 "hovering ids 0x%08x -> 0x%08x", 4334 last->rawPointerData.pointerCount, 4335 next->rawPointerData.pointerCount, 4336 last->rawPointerData.touchingIdBits.value, 4337 next->rawPointerData.touchingIdBits.value, 4338 last->rawPointerData.hoveringIdBits.value, 4339 next->rawPointerData.hoveringIdBits.value); 4340 #endif 4341 4342 processRawTouches(false /*timeout*/); 4343 } 4344 4345 void TouchInputMapper::processRawTouches(bool timeout) { 4346 if (mDeviceMode == DEVICE_MODE_DISABLED) { 4347 // Drop all input if the device is disabled. 4348 mCurrentRawState.clear(); 4349 mRawStatesPending.clear(); 4350 return; 4351 } 4352 4353 // Drain any pending touch states. The invariant here is that the mCurrentRawState is always 4354 // valid and must go through the full cook and dispatch cycle. This ensures that anything 4355 // touching the current state will only observe the events that have been dispatched to the 4356 // rest of the pipeline. 4357 const size_t N = mRawStatesPending.size(); 4358 size_t count; 4359 for(count = 0; count < N; count++) { 4360 const RawState& next = mRawStatesPending[count]; 4361 4362 // A failure to assign the stylus id means that we're waiting on stylus data 4363 // and so should defer the rest of the pipeline. 4364 if (assignExternalStylusId(next, timeout)) { 4365 break; 4366 } 4367 4368 // All ready to go. 4369 clearStylusDataPendingFlags(); 4370 mCurrentRawState.copyFrom(next); 4371 if (mCurrentRawState.when < mLastRawState.when) { 4372 mCurrentRawState.when = mLastRawState.when; 4373 } 4374 cookAndDispatch(mCurrentRawState.when); 4375 } 4376 if (count != 0) { 4377 mRawStatesPending.removeItemsAt(0, count); 4378 } 4379 4380 if (mExternalStylusDataPending) { 4381 if (timeout) { 4382 nsecs_t when = mExternalStylusFusionTimeout - STYLUS_DATA_LATENCY; 4383 clearStylusDataPendingFlags(); 4384 mCurrentRawState.copyFrom(mLastRawState); 4385 #if DEBUG_STYLUS_FUSION 4386 ALOGD("Timeout expired, synthesizing event with new stylus data"); 4387 #endif 4388 cookAndDispatch(when); 4389 } else if (mExternalStylusFusionTimeout == LLONG_MAX) { 4390 mExternalStylusFusionTimeout = mExternalStylusState.when + TOUCH_DATA_TIMEOUT; 4391 getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); 4392 } 4393 } 4394 } 4395 4396 void TouchInputMapper::cookAndDispatch(nsecs_t when) { 4397 // Always start with a clean state. 4398 mCurrentCookedState.clear(); 4399 4400 // Apply stylus buttons to current raw state. 4401 applyExternalStylusButtonState(when); 4402 4403 // Handle policy on initial down or hover events. 4404 bool initialDown = mLastRawState.rawPointerData.pointerCount == 0 4405 && mCurrentRawState.rawPointerData.pointerCount != 0; 4406 4407 uint32_t policyFlags = 0; 4408 bool buttonsPressed = mCurrentRawState.buttonState & ~mLastRawState.buttonState; 4409 if (initialDown || buttonsPressed) { 4410 // If this is a touch screen, hide the pointer on an initial down. 4411 if (mDeviceMode == DEVICE_MODE_DIRECT) { 4412 getContext()->fadePointer(); 4413 } 4414 4415 if (mParameters.wake) { 4416 policyFlags |= POLICY_FLAG_WAKE; 4417 } 4418 } 4419 4420 // Consume raw off-screen touches before cooking pointer data. 4421 // If touches are consumed, subsequent code will not receive any pointer data. 4422 if (consumeRawTouches(when, policyFlags)) { 4423 mCurrentRawState.rawPointerData.clear(); 4424 } 4425 4426 // Cook pointer data. This call populates the mCurrentCookedState.cookedPointerData structure 4427 // with cooked pointer data that has the same ids and indices as the raw data. 4428 // The following code can use either the raw or cooked data, as needed. 4429 cookPointerData(); 4430 4431 // Apply stylus pressure to current cooked state. 4432 applyExternalStylusTouchState(when); 4433 4434 // Synthesize key down from raw buttons if needed. 4435 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource, 4436 policyFlags, mLastCookedState.buttonState, mCurrentCookedState.buttonState); 4437 4438 // Dispatch the touches either directly or by translation through a pointer on screen. 4439 if (mDeviceMode == DEVICE_MODE_POINTER) { 4440 for (BitSet32 idBits(mCurrentRawState.rawPointerData.touchingIdBits); 4441 !idBits.isEmpty(); ) { 4442 uint32_t id = idBits.clearFirstMarkedBit(); 4443 const RawPointerData::Pointer& pointer = 4444 mCurrentRawState.rawPointerData.pointerForId(id); 4445 if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS 4446 || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { 4447 mCurrentCookedState.stylusIdBits.markBit(id); 4448 } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_FINGER 4449 || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { 4450 mCurrentCookedState.fingerIdBits.markBit(id); 4451 } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_MOUSE) { 4452 mCurrentCookedState.mouseIdBits.markBit(id); 4453 } 4454 } 4455 for (BitSet32 idBits(mCurrentRawState.rawPointerData.hoveringIdBits); 4456 !idBits.isEmpty(); ) { 4457 uint32_t id = idBits.clearFirstMarkedBit(); 4458 const RawPointerData::Pointer& pointer = 4459 mCurrentRawState.rawPointerData.pointerForId(id); 4460 if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS 4461 || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { 4462 mCurrentCookedState.stylusIdBits.markBit(id); 4463 } 4464 } 4465 4466 // Stylus takes precedence over all tools, then mouse, then finger. 4467 PointerUsage pointerUsage = mPointerUsage; 4468 if (!mCurrentCookedState.stylusIdBits.isEmpty()) { 4469 mCurrentCookedState.mouseIdBits.clear(); 4470 mCurrentCookedState.fingerIdBits.clear(); 4471 pointerUsage = POINTER_USAGE_STYLUS; 4472 } else if (!mCurrentCookedState.mouseIdBits.isEmpty()) { 4473 mCurrentCookedState.fingerIdBits.clear(); 4474 pointerUsage = POINTER_USAGE_MOUSE; 4475 } else if (!mCurrentCookedState.fingerIdBits.isEmpty() || 4476 isPointerDown(mCurrentRawState.buttonState)) { 4477 pointerUsage = POINTER_USAGE_GESTURES; 4478 } 4479 4480 dispatchPointerUsage(when, policyFlags, pointerUsage); 4481 } else { 4482 if (mDeviceMode == DEVICE_MODE_DIRECT 4483 && mConfig.showTouches && mPointerController != NULL) { 4484 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT); 4485 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 4486 4487 mPointerController->setButtonState(mCurrentRawState.buttonState); 4488 mPointerController->setSpots(mCurrentCookedState.cookedPointerData.pointerCoords, 4489 mCurrentCookedState.cookedPointerData.idToIndex, 4490 mCurrentCookedState.cookedPointerData.touchingIdBits); 4491 } 4492 4493 if (!mCurrentMotionAborted) { 4494 dispatchButtonRelease(when, policyFlags); 4495 dispatchHoverExit(when, policyFlags); 4496 dispatchTouches(when, policyFlags); 4497 dispatchHoverEnterAndMove(when, policyFlags); 4498 dispatchButtonPress(when, policyFlags); 4499 } 4500 4501 if (mCurrentCookedState.cookedPointerData.pointerCount == 0) { 4502 mCurrentMotionAborted = false; 4503 } 4504 } 4505 4506 // Synthesize key up from raw buttons if needed. 4507 synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource, 4508 policyFlags, mLastCookedState.buttonState, mCurrentCookedState.buttonState); 4509 4510 // Clear some transient state. 4511 mCurrentRawState.rawVScroll = 0; 4512 mCurrentRawState.rawHScroll = 0; 4513 4514 // Copy current touch to last touch in preparation for the next cycle. 4515 mLastRawState.copyFrom(mCurrentRawState); 4516 mLastCookedState.copyFrom(mCurrentCookedState); 4517 } 4518 4519 void TouchInputMapper::applyExternalStylusButtonState(nsecs_t when) { 4520 if (mDeviceMode == DEVICE_MODE_DIRECT && hasExternalStylus() && mExternalStylusId != -1) { 4521 mCurrentRawState.buttonState |= mExternalStylusState.buttons; 4522 } 4523 } 4524 4525 void TouchInputMapper::applyExternalStylusTouchState(nsecs_t when) { 4526 CookedPointerData& currentPointerData = mCurrentCookedState.cookedPointerData; 4527 const CookedPointerData& lastPointerData = mLastCookedState.cookedPointerData; 4528 4529 if (mExternalStylusId != -1 && currentPointerData.isTouching(mExternalStylusId)) { 4530 float pressure = mExternalStylusState.pressure; 4531 if (pressure == 0.0f && lastPointerData.isTouching(mExternalStylusId)) { 4532 const PointerCoords& coords = lastPointerData.pointerCoordsForId(mExternalStylusId); 4533 pressure = coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE); 4534 } 4535 PointerCoords& coords = currentPointerData.editPointerCoordsWithId(mExternalStylusId); 4536 coords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); 4537 4538 PointerProperties& properties = 4539 currentPointerData.editPointerPropertiesWithId(mExternalStylusId); 4540 if (mExternalStylusState.toolType != AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { 4541 properties.toolType = mExternalStylusState.toolType; 4542 } 4543 } 4544 } 4545 4546 bool TouchInputMapper::assignExternalStylusId(const RawState& state, bool timeout) { 4547 if (mDeviceMode != DEVICE_MODE_DIRECT || !hasExternalStylus()) { 4548 return false; 4549 } 4550 4551 const bool initialDown = mLastRawState.rawPointerData.pointerCount == 0 4552 && state.rawPointerData.pointerCount != 0; 4553 if (initialDown) { 4554 if (mExternalStylusState.pressure != 0.0f) { 4555 #if DEBUG_STYLUS_FUSION 4556 ALOGD("Have both stylus and touch data, beginning fusion"); 4557 #endif 4558 mExternalStylusId = state.rawPointerData.touchingIdBits.firstMarkedBit(); 4559 } else if (timeout) { 4560 #if DEBUG_STYLUS_FUSION 4561 ALOGD("Timeout expired, assuming touch is not a stylus."); 4562 #endif 4563 resetExternalStylus(); 4564 } else { 4565 if (mExternalStylusFusionTimeout == LLONG_MAX) { 4566 mExternalStylusFusionTimeout = state.when + EXTERNAL_STYLUS_DATA_TIMEOUT; 4567 } 4568 #if DEBUG_STYLUS_FUSION 4569 ALOGD("No stylus data but stylus is connected, requesting timeout " 4570 "(%" PRId64 "ms)", mExternalStylusFusionTimeout); 4571 #endif 4572 getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); 4573 return true; 4574 } 4575 } 4576 4577 // Check if the stylus pointer has gone up. 4578 if (mExternalStylusId != -1 && 4579 !state.rawPointerData.touchingIdBits.hasBit(mExternalStylusId)) { 4580 #if DEBUG_STYLUS_FUSION 4581 ALOGD("Stylus pointer is going up"); 4582 #endif 4583 mExternalStylusId = -1; 4584 } 4585 4586 return false; 4587 } 4588 4589 void TouchInputMapper::timeoutExpired(nsecs_t when) { 4590 if (mDeviceMode == DEVICE_MODE_POINTER) { 4591 if (mPointerUsage == POINTER_USAGE_GESTURES) { 4592 dispatchPointerGestures(when, 0 /*policyFlags*/, true /*isTimeout*/); 4593 } 4594 } else if (mDeviceMode == DEVICE_MODE_DIRECT) { 4595 if (mExternalStylusFusionTimeout < when) { 4596 processRawTouches(true /*timeout*/); 4597 } else if (mExternalStylusFusionTimeout != LLONG_MAX) { 4598 getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); 4599 } 4600 } 4601 } 4602 4603 void TouchInputMapper::updateExternalStylusState(const StylusState& state) { 4604 mExternalStylusState.copyFrom(state); 4605 if (mExternalStylusId != -1 || mExternalStylusFusionTimeout != LLONG_MAX) { 4606 // We're either in the middle of a fused stream of data or we're waiting on data before 4607 // dispatching the initial down, so go ahead and dispatch now that we have fresh stylus 4608 // data. 4609 mExternalStylusDataPending = true; 4610 processRawTouches(false /*timeout*/); 4611 } 4612 } 4613 4614 bool TouchInputMapper::consumeRawTouches(nsecs_t when, uint32_t policyFlags) { 4615 // Check for release of a virtual key. 4616 if (mCurrentVirtualKey.down) { 4617 if (mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { 4618 // Pointer went up while virtual key was down. 4619 mCurrentVirtualKey.down = false; 4620 if (!mCurrentVirtualKey.ignored) { 4621 #if DEBUG_VIRTUAL_KEYS 4622 ALOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d", 4623 mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); 4624 #endif 4625 dispatchVirtualKey(when, policyFlags, 4626 AKEY_EVENT_ACTION_UP, 4627 AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY); 4628 } 4629 return true; 4630 } 4631 4632 if (mCurrentRawState.rawPointerData.touchingIdBits.count() == 1) { 4633 uint32_t id = mCurrentRawState.rawPointerData.touchingIdBits.firstMarkedBit(); 4634 const RawPointerData::Pointer& pointer = 4635 mCurrentRawState.rawPointerData.pointerForId(id); 4636 const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); 4637 if (virtualKey && virtualKey->keyCode == mCurrentVirtualKey.keyCode) { 4638 // Pointer is still within the space of the virtual key. 4639 return true; 4640 } 4641 } 4642 4643 // Pointer left virtual key area or another pointer also went down. 4644 // Send key cancellation but do not consume the touch yet. 4645 // This is useful when the user swipes through from the virtual key area 4646 // into the main display surface. 4647 mCurrentVirtualKey.down = false; 4648 if (!mCurrentVirtualKey.ignored) { 4649 #if DEBUG_VIRTUAL_KEYS 4650 ALOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d", 4651 mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); 4652 #endif 4653 dispatchVirtualKey(when, policyFlags, 4654 AKEY_EVENT_ACTION_UP, 4655 AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY 4656 | AKEY_EVENT_FLAG_CANCELED); 4657 } 4658 } 4659 4660 if (mLastRawState.rawPointerData.touchingIdBits.isEmpty() 4661 && !mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { 4662 // Pointer just went down. Check for virtual key press or off-screen touches. 4663 uint32_t id = mCurrentRawState.rawPointerData.touchingIdBits.firstMarkedBit(); 4664 const RawPointerData::Pointer& pointer = mCurrentRawState.rawPointerData.pointerForId(id); 4665 if (!isPointInsideSurface(pointer.x, pointer.y)) { 4666 // If exactly one pointer went down, check for virtual key hit. 4667 // Otherwise we will drop the entire stroke. 4668 if (mCurrentRawState.rawPointerData.touchingIdBits.count() == 1) { 4669 const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); 4670 if (virtualKey) { 4671 mCurrentVirtualKey.down = true; 4672 mCurrentVirtualKey.downTime = when; 4673 mCurrentVirtualKey.keyCode = virtualKey->keyCode; 4674 mCurrentVirtualKey.scanCode = virtualKey->scanCode; 4675 mCurrentVirtualKey.ignored = mContext->shouldDropVirtualKey( 4676 when, getDevice(), virtualKey->keyCode, virtualKey->scanCode); 4677 4678 if (!mCurrentVirtualKey.ignored) { 4679 #if DEBUG_VIRTUAL_KEYS 4680 ALOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d", 4681 mCurrentVirtualKey.keyCode, 4682 mCurrentVirtualKey.scanCode); 4683 #endif 4684 dispatchVirtualKey(when, policyFlags, 4685 AKEY_EVENT_ACTION_DOWN, 4686 AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY); 4687 } 4688 } 4689 } 4690 return true; 4691 } 4692 } 4693 4694 // Disable all virtual key touches that happen within a short time interval of the 4695 // most recent touch within the screen area. The idea is to filter out stray 4696 // virtual key presses when interacting with the touch screen. 4697 // 4698 // Problems we're trying to solve: 4699 // 4700 // 1. While scrolling a list or dragging the window shade, the user swipes down into a 4701 // virtual key area that is implemented by a separate touch panel and accidentally 4702 // triggers a virtual key. 4703 // 4704 // 2. While typing in the on screen keyboard, the user taps slightly outside the screen 4705 // area and accidentally triggers a virtual key. This often happens when virtual keys 4706 // are layed out below the screen near to where the on screen keyboard's space bar 4707 // is displayed. 4708 if (mConfig.virtualKeyQuietTime > 0 && 4709 !mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { 4710 mContext->disableVirtualKeysUntil(when + mConfig.virtualKeyQuietTime); 4711 } 4712 return false; 4713 } 4714 4715 void TouchInputMapper::dispatchVirtualKey(nsecs_t when, uint32_t policyFlags, 4716 int32_t keyEventAction, int32_t keyEventFlags) { 4717 int32_t keyCode = mCurrentVirtualKey.keyCode; 4718 int32_t scanCode = mCurrentVirtualKey.scanCode; 4719 nsecs_t downTime = mCurrentVirtualKey.downTime; 4720 int32_t metaState = mContext->getGlobalMetaState(); 4721 policyFlags |= POLICY_FLAG_VIRTUAL; 4722 4723 NotifyKeyArgs args(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags, 4724 keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime); 4725 getListener()->notifyKey(&args); 4726 } 4727 4728 void TouchInputMapper::abortTouches(nsecs_t when, uint32_t policyFlags) { 4729 BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits; 4730 if (!currentIdBits.isEmpty()) { 4731 int32_t metaState = getContext()->getGlobalMetaState(); 4732 int32_t buttonState = mCurrentCookedState.buttonState; 4733 dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_CANCEL, 0, 0, 4734 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, 4735 mCurrentCookedState.deviceTimestamp, 4736 mCurrentCookedState.cookedPointerData.pointerProperties, 4737 mCurrentCookedState.cookedPointerData.pointerCoords, 4738 mCurrentCookedState.cookedPointerData.idToIndex, 4739 currentIdBits, -1, 4740 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 4741 mCurrentMotionAborted = true; 4742 } 4743 } 4744 4745 void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) { 4746 BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits; 4747 BitSet32 lastIdBits = mLastCookedState.cookedPointerData.touchingIdBits; 4748 int32_t metaState = getContext()->getGlobalMetaState(); 4749 int32_t buttonState = mCurrentCookedState.buttonState; 4750 4751 if (currentIdBits == lastIdBits) { 4752 if (!currentIdBits.isEmpty()) { 4753 // No pointer id changes so this is a move event. 4754 // The listener takes care of batching moves so we don't have to deal with that here. 4755 dispatchMotion(when, policyFlags, mSource, 4756 AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, 4757 AMOTION_EVENT_EDGE_FLAG_NONE, 4758 mCurrentCookedState.deviceTimestamp, 4759 mCurrentCookedState.cookedPointerData.pointerProperties, 4760 mCurrentCookedState.cookedPointerData.pointerCoords, 4761 mCurrentCookedState.cookedPointerData.idToIndex, 4762 currentIdBits, -1, 4763 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 4764 } 4765 } else { 4766 // There may be pointers going up and pointers going down and pointers moving 4767 // all at the same time. 4768 BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value); 4769 BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value); 4770 BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value); 4771 BitSet32 dispatchedIdBits(lastIdBits.value); 4772 4773 // Update last coordinates of pointers that have moved so that we observe the new 4774 // pointer positions at the same time as other pointers that have just gone up. 4775 bool moveNeeded = updateMovedPointers( 4776 mCurrentCookedState.cookedPointerData.pointerProperties, 4777 mCurrentCookedState.cookedPointerData.pointerCoords, 4778 mCurrentCookedState.cookedPointerData.idToIndex, 4779 mLastCookedState.cookedPointerData.pointerProperties, 4780 mLastCookedState.cookedPointerData.pointerCoords, 4781 mLastCookedState.cookedPointerData.idToIndex, 4782 moveIdBits); 4783 if (buttonState != mLastCookedState.buttonState) { 4784 moveNeeded = true; 4785 } 4786 4787 // Dispatch pointer up events. 4788 while (!upIdBits.isEmpty()) { 4789 uint32_t upId = upIdBits.clearFirstMarkedBit(); 4790 4791 dispatchMotion(when, policyFlags, mSource, 4792 AMOTION_EVENT_ACTION_POINTER_UP, 0, 0, metaState, buttonState, 0, 4793 mCurrentCookedState.deviceTimestamp, 4794 mLastCookedState.cookedPointerData.pointerProperties, 4795 mLastCookedState.cookedPointerData.pointerCoords, 4796 mLastCookedState.cookedPointerData.idToIndex, 4797 dispatchedIdBits, upId, mOrientedXPrecision, mOrientedYPrecision, mDownTime); 4798 dispatchedIdBits.clearBit(upId); 4799 } 4800 4801 // Dispatch move events if any of the remaining pointers moved from their old locations. 4802 // Although applications receive new locations as part of individual pointer up 4803 // events, they do not generally handle them except when presented in a move event. 4804 if (moveNeeded && !moveIdBits.isEmpty()) { 4805 ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value); 4806 dispatchMotion(when, policyFlags, mSource, 4807 AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, 0, 4808 mCurrentCookedState.deviceTimestamp, 4809 mCurrentCookedState.cookedPointerData.pointerProperties, 4810 mCurrentCookedState.cookedPointerData.pointerCoords, 4811 mCurrentCookedState.cookedPointerData.idToIndex, 4812 dispatchedIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); 4813 } 4814 4815 // Dispatch pointer down events using the new pointer locations. 4816 while (!downIdBits.isEmpty()) { 4817 uint32_t downId = downIdBits.clearFirstMarkedBit(); 4818 dispatchedIdBits.markBit(downId); 4819 4820 if (dispatchedIdBits.count() == 1) { 4821 // First pointer is going down. Set down time. 4822 mDownTime = when; 4823 } 4824 4825 dispatchMotion(when, policyFlags, mSource, 4826 AMOTION_EVENT_ACTION_POINTER_DOWN, 0, 0, metaState, buttonState, 0, 4827 mCurrentCookedState.deviceTimestamp, 4828 mCurrentCookedState.cookedPointerData.pointerProperties, 4829 mCurrentCookedState.cookedPointerData.pointerCoords, 4830 mCurrentCookedState.cookedPointerData.idToIndex, 4831 dispatchedIdBits, downId, mOrientedXPrecision, mOrientedYPrecision, mDownTime); 4832 } 4833 } 4834 } 4835 4836 void TouchInputMapper::dispatchHoverExit(nsecs_t when, uint32_t policyFlags) { 4837 if (mSentHoverEnter && 4838 (mCurrentCookedState.cookedPointerData.hoveringIdBits.isEmpty() 4839 || !mCurrentCookedState.cookedPointerData.touchingIdBits.isEmpty())) { 4840 int32_t metaState = getContext()->getGlobalMetaState(); 4841 dispatchMotion(when, policyFlags, mSource, 4842 AMOTION_EVENT_ACTION_HOVER_EXIT, 0, 0, metaState, mLastCookedState.buttonState, 0, 4843 mLastCookedState.deviceTimestamp, 4844 mLastCookedState.cookedPointerData.pointerProperties, 4845 mLastCookedState.cookedPointerData.pointerCoords, 4846 mLastCookedState.cookedPointerData.idToIndex, 4847 mLastCookedState.cookedPointerData.hoveringIdBits, -1, 4848 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 4849 mSentHoverEnter = false; 4850 } 4851 } 4852 4853 void TouchInputMapper::dispatchHoverEnterAndMove(nsecs_t when, uint32_t policyFlags) { 4854 if (mCurrentCookedState.cookedPointerData.touchingIdBits.isEmpty() 4855 && !mCurrentCookedState.cookedPointerData.hoveringIdBits.isEmpty()) { 4856 int32_t metaState = getContext()->getGlobalMetaState(); 4857 if (!mSentHoverEnter) { 4858 dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_HOVER_ENTER, 4859 0, 0, metaState, mCurrentRawState.buttonState, 0, 4860 mCurrentCookedState.deviceTimestamp, 4861 mCurrentCookedState.cookedPointerData.pointerProperties, 4862 mCurrentCookedState.cookedPointerData.pointerCoords, 4863 mCurrentCookedState.cookedPointerData.idToIndex, 4864 mCurrentCookedState.cookedPointerData.hoveringIdBits, -1, 4865 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 4866 mSentHoverEnter = true; 4867 } 4868 4869 dispatchMotion(when, policyFlags, mSource, 4870 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, metaState, 4871 mCurrentRawState.buttonState, 0, 4872 mCurrentCookedState.deviceTimestamp, 4873 mCurrentCookedState.cookedPointerData.pointerProperties, 4874 mCurrentCookedState.cookedPointerData.pointerCoords, 4875 mCurrentCookedState.cookedPointerData.idToIndex, 4876 mCurrentCookedState.cookedPointerData.hoveringIdBits, -1, 4877 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 4878 } 4879 } 4880 4881 void TouchInputMapper::dispatchButtonRelease(nsecs_t when, uint32_t policyFlags) { 4882 BitSet32 releasedButtons(mLastCookedState.buttonState & ~mCurrentCookedState.buttonState); 4883 const BitSet32& idBits = findActiveIdBits(mLastCookedState.cookedPointerData); 4884 const int32_t metaState = getContext()->getGlobalMetaState(); 4885 int32_t buttonState = mLastCookedState.buttonState; 4886 while (!releasedButtons.isEmpty()) { 4887 int32_t actionButton = BitSet32::valueForBit(releasedButtons.clearFirstMarkedBit()); 4888 buttonState &= ~actionButton; 4889 dispatchMotion(when, policyFlags, mSource, 4890 AMOTION_EVENT_ACTION_BUTTON_RELEASE, actionButton, 4891 0, metaState, buttonState, 0, 4892 mCurrentCookedState.deviceTimestamp, 4893 mCurrentCookedState.cookedPointerData.pointerProperties, 4894 mCurrentCookedState.cookedPointerData.pointerCoords, 4895 mCurrentCookedState.cookedPointerData.idToIndex, idBits, -1, 4896 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 4897 } 4898 } 4899 4900 void TouchInputMapper::dispatchButtonPress(nsecs_t when, uint32_t policyFlags) { 4901 BitSet32 pressedButtons(mCurrentCookedState.buttonState & ~mLastCookedState.buttonState); 4902 const BitSet32& idBits = findActiveIdBits(mCurrentCookedState.cookedPointerData); 4903 const int32_t metaState = getContext()->getGlobalMetaState(); 4904 int32_t buttonState = mLastCookedState.buttonState; 4905 while (!pressedButtons.isEmpty()) { 4906 int32_t actionButton = BitSet32::valueForBit(pressedButtons.clearFirstMarkedBit()); 4907 buttonState |= actionButton; 4908 dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_BUTTON_PRESS, actionButton, 4909 0, metaState, buttonState, 0, 4910 mCurrentCookedState.deviceTimestamp, 4911 mCurrentCookedState.cookedPointerData.pointerProperties, 4912 mCurrentCookedState.cookedPointerData.pointerCoords, 4913 mCurrentCookedState.cookedPointerData.idToIndex, idBits, -1, 4914 mOrientedXPrecision, mOrientedYPrecision, mDownTime); 4915 } 4916 } 4917 4918 const BitSet32& TouchInputMapper::findActiveIdBits(const CookedPointerData& cookedPointerData) { 4919 if (!cookedPointerData.touchingIdBits.isEmpty()) { 4920 return cookedPointerData.touchingIdBits; 4921 } 4922 return cookedPointerData.hoveringIdBits; 4923 } 4924 4925 void TouchInputMapper::cookPointerData() { 4926 uint32_t currentPointerCount = mCurrentRawState.rawPointerData.pointerCount; 4927 4928 mCurrentCookedState.cookedPointerData.clear(); 4929 mCurrentCookedState.deviceTimestamp = 4930 mCurrentRawState.deviceTimestamp; 4931 mCurrentCookedState.cookedPointerData.pointerCount = currentPointerCount; 4932 mCurrentCookedState.cookedPointerData.hoveringIdBits = 4933 mCurrentRawState.rawPointerData.hoveringIdBits; 4934 mCurrentCookedState.cookedPointerData.touchingIdBits = 4935 mCurrentRawState.rawPointerData.touchingIdBits; 4936 4937 if (mCurrentCookedState.cookedPointerData.pointerCount == 0) { 4938 mCurrentCookedState.buttonState = 0; 4939 } else { 4940 mCurrentCookedState.buttonState = mCurrentRawState.buttonState; 4941 } 4942 4943 // Walk through the the active pointers and map device coordinates onto 4944 // surface coordinates and adjust for display orientation. 4945 for (uint32_t i = 0; i < currentPointerCount; i++) { 4946 const RawPointerData::Pointer& in = mCurrentRawState.rawPointerData.pointers[i]; 4947 4948 // Size 4949 float touchMajor, touchMinor, toolMajor, toolMinor, size; 4950 switch (mCalibration.sizeCalibration) { 4951 case Calibration::SIZE_CALIBRATION_GEOMETRIC: 4952 case Calibration::SIZE_CALIBRATION_DIAMETER: 4953 case Calibration::SIZE_CALIBRATION_BOX: 4954 case Calibration::SIZE_CALIBRATION_AREA: 4955 if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.toolMajor.valid) { 4956 touchMajor = in.touchMajor; 4957 touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor; 4958 toolMajor = in.toolMajor; 4959 toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor; 4960 size = mRawPointerAxes.touchMinor.valid 4961 ? avg(in.touchMajor, in.touchMinor) : in.touchMajor; 4962 } else if (mRawPointerAxes.touchMajor.valid) { 4963 toolMajor = touchMajor = in.touchMajor; 4964 toolMinor = touchMinor = mRawPointerAxes.touchMinor.valid 4965 ? in.touchMinor : in.touchMajor; 4966 size = mRawPointerAxes.touchMinor.valid 4967 ? avg(in.touchMajor, in.touchMinor) : in.touchMajor; 4968 } else if (mRawPointerAxes.toolMajor.valid) { 4969 touchMajor = toolMajor = in.toolMajor; 4970 touchMinor = toolMinor = mRawPointerAxes.toolMinor.valid 4971 ? in.toolMinor : in.toolMajor; 4972 size = mRawPointerAxes.toolMinor.valid 4973 ? avg(in.toolMajor, in.toolMinor) : in.toolMajor; 4974 } else { 4975 ALOG_ASSERT(false, "No touch or tool axes. " 4976 "Size calibration should have been resolved to NONE."); 4977 touchMajor = 0; 4978 touchMinor = 0; 4979 toolMajor = 0; 4980 toolMinor = 0; 4981 size = 0; 4982 } 4983 4984 if (mCalibration.haveSizeIsSummed && mCalibration.sizeIsSummed) { 4985 uint32_t touchingCount = 4986 mCurrentRawState.rawPointerData.touchingIdBits.count(); 4987 if (touchingCount > 1) { 4988 touchMajor /= touchingCount; 4989 touchMinor /= touchingCount; 4990 toolMajor /= touchingCount; 4991 toolMinor /= touchingCount; 4992 size /= touchingCount; 4993 } 4994 } 4995 4996 if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_GEOMETRIC) { 4997 touchMajor *= mGeometricScale; 4998 touchMinor *= mGeometricScale; 4999 toolMajor *= mGeometricScale; 5000 toolMinor *= mGeometricScale; 5001 } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_AREA) { 5002 touchMajor = touchMajor > 0 ? sqrtf(touchMajor) : 0; 5003 touchMinor = touchMajor; 5004 toolMajor = toolMajor > 0 ? sqrtf(toolMajor) : 0; 5005 toolMinor = toolMajor; 5006 } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DIAMETER) { 5007 touchMinor = touchMajor; 5008 toolMinor = toolMajor; 5009 } 5010 5011 mCalibration.applySizeScaleAndBias(&touchMajor); 5012 mCalibration.applySizeScaleAndBias(&touchMinor); 5013 mCalibration.applySizeScaleAndBias(&toolMajor); 5014 mCalibration.applySizeScaleAndBias(&toolMinor); 5015 size *= mSizeScale; 5016 break; 5017 default: 5018 touchMajor = 0; 5019 touchMinor = 0; 5020 toolMajor = 0; 5021 toolMinor = 0; 5022 size = 0; 5023 break; 5024 } 5025 5026 // Pressure 5027 float pressure; 5028 switch (mCalibration.pressureCalibration) { 5029 case Calibration::PRESSURE_CALIBRATION_PHYSICAL: 5030 case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: 5031 pressure = in.pressure * mPressureScale; 5032 break; 5033 default: 5034 pressure = in.isHovering ? 0 : 1; 5035 break; 5036 } 5037 5038 // Tilt and Orientation 5039 float tilt; 5040 float orientation; 5041 if (mHaveTilt) { 5042 float tiltXAngle = (in.tiltX - mTiltXCenter) * mTiltXScale; 5043 float tiltYAngle = (in.tiltY - mTiltYCenter) * mTiltYScale; 5044 orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle)); 5045 tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle)); 5046 } else { 5047 tilt = 0; 5048 5049 switch (mCalibration.orientationCalibration) { 5050 case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: 5051 orientation = in.orientation * mOrientationScale; 5052 break; 5053 case Calibration::ORIENTATION_CALIBRATION_VECTOR: { 5054 int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4); 5055 int32_t c2 = signExtendNybble(in.orientation & 0x0f); 5056 if (c1 != 0 || c2 != 0) { 5057 orientation = atan2f(c1, c2) * 0.5f; 5058 float confidence = hypotf(c1, c2); 5059 float scale = 1.0f + confidence / 16.0f; 5060 touchMajor *= scale; 5061 touchMinor /= scale; 5062 toolMajor *= scale; 5063 toolMinor /= scale; 5064 } else { 5065 orientation = 0; 5066 } 5067 break; 5068 } 5069 default: 5070 orientation = 0; 5071 } 5072 } 5073 5074 // Distance 5075 float distance; 5076 switch (mCalibration.distanceCalibration) { 5077 case Calibration::DISTANCE_CALIBRATION_SCALED: 5078 distance = in.distance * mDistanceScale; 5079 break; 5080 default: 5081 distance = 0; 5082 } 5083 5084 // Coverage 5085 int32_t rawLeft, rawTop, rawRight, rawBottom; 5086 switch (mCalibration.coverageCalibration) { 5087 case Calibration::COVERAGE_CALIBRATION_BOX: 5088 rawLeft = (in.toolMinor & 0xffff0000) >> 16; 5089 rawRight = in.toolMinor & 0x0000ffff; 5090 rawBottom = in.toolMajor & 0x0000ffff; 5091 rawTop = (in.toolMajor & 0xffff0000) >> 16; 5092 break; 5093 default: 5094 rawLeft = rawTop = rawRight = rawBottom = 0; 5095 break; 5096 } 5097 5098 // Adjust X,Y coords for device calibration 5099 // TODO: Adjust coverage coords? 5100 float xTransformed = in.x, yTransformed = in.y; 5101 mAffineTransform.applyTo(xTransformed, yTransformed); 5102 5103 // Adjust X, Y, and coverage coords for surface orientation. 5104 float x, y; 5105 float left, top, right, bottom; 5106 5107 switch (mSurfaceOrientation) { 5108 case DISPLAY_ORIENTATION_90: 5109 x = float(yTransformed - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; 5110 y = float(mRawPointerAxes.x.maxValue - xTransformed) * mXScale + mXTranslate; 5111 left = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; 5112 right = float(rawBottom- mRawPointerAxes.y.minValue) * mYScale + mYTranslate; 5113 bottom = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale + mXTranslate; 5114 top = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale + mXTranslate; 5115 orientation -= M_PI_2; 5116 if (mOrientedRanges.haveOrientation && orientation < mOrientedRanges.orientation.min) { 5117 orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); 5118 } 5119 break; 5120 case DISPLAY_ORIENTATION_180: 5121 x = float(mRawPointerAxes.x.maxValue - xTransformed) * mXScale + mXTranslate; 5122 y = float(mRawPointerAxes.y.maxValue - yTransformed) * mYScale + mYTranslate; 5123 left = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale + mXTranslate; 5124 right = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale + mXTranslate; 5125 bottom = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale + mYTranslate; 5126 top = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale + mYTranslate; 5127 orientation -= M_PI; 5128 if (mOrientedRanges.haveOrientation && orientation < mOrientedRanges.orientation.min) { 5129 orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); 5130 } 5131 break; 5132 case DISPLAY_ORIENTATION_270: 5133 x = float(mRawPointerAxes.y.maxValue - yTransformed) * mYScale + mYTranslate; 5134 y = float(xTransformed - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; 5135 left = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale + mYTranslate; 5136 right = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale + mYTranslate; 5137 bottom = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; 5138 top = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; 5139 orientation += M_PI_2; 5140 if (mOrientedRanges.haveOrientation && orientation > mOrientedRanges.orientation.max) { 5141 orientation -= (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); 5142 } 5143 break; 5144 default: 5145 x = float(xTransformed - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; 5146 y = float(yTransformed - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; 5147 left = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; 5148 right = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; 5149 bottom = float(rawBottom - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; 5150 top = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; 5151 break; 5152 } 5153 5154 // Write output coords. 5155 PointerCoords& out = mCurrentCookedState.cookedPointerData.pointerCoords[i]; 5156 out.clear(); 5157 out.setAxisValue(AMOTION_EVENT_AXIS_X, x); 5158 out.setAxisValue(AMOTION_EVENT_AXIS_Y, y); 5159 out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); 5160 out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size); 5161 out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor); 5162 out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor); 5163 out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation); 5164 out.setAxisValue(AMOTION_EVENT_AXIS_TILT, tilt); 5165 out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance); 5166 if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_BOX) { 5167 out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_1, left); 5168 out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_2, top); 5169 out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_3, right); 5170 out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_4, bottom); 5171 } else { 5172 out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor); 5173 out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor); 5174 } 5175 5176 // Write output properties. 5177 PointerProperties& properties = 5178 mCurrentCookedState.cookedPointerData.pointerProperties[i]; 5179 uint32_t id = in.id; 5180 properties.clear(); 5181 properties.id = id; 5182 properties.toolType = in.toolType; 5183 5184 // Write id index. 5185 mCurrentCookedState.cookedPointerData.idToIndex[id] = i; 5186 } 5187 } 5188 5189 void TouchInputMapper::dispatchPointerUsage(nsecs_t when, uint32_t policyFlags, 5190 PointerUsage pointerUsage) { 5191 if (pointerUsage != mPointerUsage) { 5192 abortPointerUsage(when, policyFlags); 5193 mPointerUsage = pointerUsage; 5194 } 5195 5196 switch (mPointerUsage) { 5197 case POINTER_USAGE_GESTURES: 5198 dispatchPointerGestures(when, policyFlags, false /*isTimeout*/); 5199 break; 5200 case POINTER_USAGE_STYLUS: 5201 dispatchPointerStylus(when, policyFlags); 5202 break; 5203 case POINTER_USAGE_MOUSE: 5204 dispatchPointerMouse(when, policyFlags); 5205 break; 5206 default: 5207 break; 5208 } 5209 } 5210 5211 void TouchInputMapper::abortPointerUsage(nsecs_t when, uint32_t policyFlags) { 5212 switch (mPointerUsage) { 5213 case POINTER_USAGE_GESTURES: 5214 abortPointerGestures(when, policyFlags); 5215 break; 5216 case POINTER_USAGE_STYLUS: 5217 abortPointerStylus(when, policyFlags); 5218 break; 5219 case POINTER_USAGE_MOUSE: 5220 abortPointerMouse(when, policyFlags); 5221 break; 5222 default: 5223 break; 5224 } 5225 5226 mPointerUsage = POINTER_USAGE_NONE; 5227 } 5228 5229 void TouchInputMapper::dispatchPointerGestures(nsecs_t when, uint32_t policyFlags, 5230 bool isTimeout) { 5231 // Update current gesture coordinates. 5232 bool cancelPreviousGesture, finishPreviousGesture; 5233 bool sendEvents = preparePointerGestures(when, 5234 &cancelPreviousGesture, &finishPreviousGesture, isTimeout); 5235 if (!sendEvents) { 5236 return; 5237 } 5238 if (finishPreviousGesture) { 5239 cancelPreviousGesture = false; 5240 } 5241 5242 // Update the pointer presentation and spots. 5243 if (mParameters.gestureMode == Parameters::GESTURE_MODE_MULTI_TOUCH) { 5244 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER); 5245 if (finishPreviousGesture || cancelPreviousGesture) { 5246 mPointerController->clearSpots(); 5247 } 5248 5249 if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) { 5250 mPointerController->setSpots(mPointerGesture.currentGestureCoords, 5251 mPointerGesture.currentGestureIdToIndex, 5252 mPointerGesture.currentGestureIdBits); 5253 } 5254 } else { 5255 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER); 5256 } 5257 5258 // Show or hide the pointer if needed. 5259 switch (mPointerGesture.currentGestureMode) { 5260 case PointerGesture::NEUTRAL: 5261 case PointerGesture::QUIET: 5262 if (mParameters.gestureMode == Parameters::GESTURE_MODE_MULTI_TOUCH 5263 && mPointerGesture.lastGestureMode == PointerGesture::FREEFORM) { 5264 // Remind the user of where the pointer is after finishing a gesture with spots. 5265 mPointerController->unfade(PointerControllerInterface::TRANSITION_GRADUAL); 5266 } 5267 break; 5268 case PointerGesture::TAP: 5269 case PointerGesture::TAP_DRAG: 5270 case PointerGesture::BUTTON_CLICK_OR_DRAG: 5271 case PointerGesture::HOVER: 5272 case PointerGesture::PRESS: 5273 case PointerGesture::SWIPE: 5274 // Unfade the pointer when the current gesture manipulates the 5275 // area directly under the pointer. 5276 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); 5277 break; 5278 case PointerGesture::FREEFORM: 5279 // Fade the pointer when the current gesture manipulates a different 5280 // area and there are spots to guide the user experience. 5281 if (mParameters.gestureMode == Parameters::GESTURE_MODE_MULTI_TOUCH) { 5282 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 5283 } else { 5284 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); 5285 } 5286 break; 5287 } 5288 5289 // Send events! 5290 int32_t metaState = getContext()->getGlobalMetaState(); 5291 int32_t buttonState = mCurrentCookedState.buttonState; 5292 5293 // Update last coordinates of pointers that have moved so that we observe the new 5294 // pointer positions at the same time as other pointers that have just gone up. 5295 bool down = mPointerGesture.currentGestureMode == PointerGesture::TAP 5296 || mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG 5297 || mPointerGesture.currentGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG 5298 || mPointerGesture.currentGestureMode == PointerGesture::PRESS 5299 || mPointerGesture.currentGestureMode == PointerGesture::SWIPE 5300 || mPointerGesture.currentGestureMode == PointerGesture::FREEFORM; 5301 bool moveNeeded = false; 5302 if (down && !cancelPreviousGesture && !finishPreviousGesture 5303 && !mPointerGesture.lastGestureIdBits.isEmpty() 5304 && !mPointerGesture.currentGestureIdBits.isEmpty()) { 5305 BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value 5306 & mPointerGesture.lastGestureIdBits.value); 5307 moveNeeded = updateMovedPointers(mPointerGesture.currentGestureProperties, 5308 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, 5309 mPointerGesture.lastGestureProperties, 5310 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, 5311 movedGestureIdBits); 5312 if (buttonState != mLastCookedState.buttonState) { 5313 moveNeeded = true; 5314 } 5315 } 5316 5317 // Send motion events for all pointers that went up or were canceled. 5318 BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits); 5319 if (!dispatchedGestureIdBits.isEmpty()) { 5320 if (cancelPreviousGesture) { 5321 dispatchMotion(when, policyFlags, mSource, 5322 AMOTION_EVENT_ACTION_CANCEL, 0, 0, metaState, buttonState, 5323 AMOTION_EVENT_EDGE_FLAG_NONE, /* deviceTimestamp */ 0, 5324 mPointerGesture.lastGestureProperties, 5325 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, 5326 dispatchedGestureIdBits, -1, 0, 5327 0, mPointerGesture.downTime); 5328 5329 dispatchedGestureIdBits.clear(); 5330 } else { 5331 BitSet32 upGestureIdBits; 5332 if (finishPreviousGesture) { 5333 upGestureIdBits = dispatchedGestureIdBits; 5334 } else { 5335 upGestureIdBits.value = dispatchedGestureIdBits.value 5336 & ~mPointerGesture.currentGestureIdBits.value; 5337 } 5338 while (!upGestureIdBits.isEmpty()) { 5339 uint32_t id = upGestureIdBits.clearFirstMarkedBit(); 5340 5341 dispatchMotion(when, policyFlags, mSource, 5342 AMOTION_EVENT_ACTION_POINTER_UP, 0, 0, 5343 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, 5344 /* deviceTimestamp */ 0, 5345 mPointerGesture.lastGestureProperties, 5346 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, 5347 dispatchedGestureIdBits, id, 5348 0, 0, mPointerGesture.downTime); 5349 5350 dispatchedGestureIdBits.clearBit(id); 5351 } 5352 } 5353 } 5354 5355 // Send motion events for all pointers that moved. 5356 if (moveNeeded) { 5357 dispatchMotion(when, policyFlags, mSource, 5358 AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, 5359 AMOTION_EVENT_EDGE_FLAG_NONE, /* deviceTimestamp */ 0, 5360 mPointerGesture.currentGestureProperties, 5361 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, 5362 dispatchedGestureIdBits, -1, 5363 0, 0, mPointerGesture.downTime); 5364 } 5365 5366 // Send motion events for all pointers that went down. 5367 if (down) { 5368 BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value 5369 & ~dispatchedGestureIdBits.value); 5370 while (!downGestureIdBits.isEmpty()) { 5371 uint32_t id = downGestureIdBits.clearFirstMarkedBit(); 5372 dispatchedGestureIdBits.markBit(id); 5373 5374 if (dispatchedGestureIdBits.count() == 1) { 5375 mPointerGesture.downTime = when; 5376 } 5377 5378 dispatchMotion(when, policyFlags, mSource, 5379 AMOTION_EVENT_ACTION_POINTER_DOWN, 0, 0, metaState, buttonState, 0, 5380 /* deviceTimestamp */ 0, 5381 mPointerGesture.currentGestureProperties, 5382 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, 5383 dispatchedGestureIdBits, id, 5384 0, 0, mPointerGesture.downTime); 5385 } 5386 } 5387 5388 // Send motion events for hover. 5389 if (mPointerGesture.currentGestureMode == PointerGesture::HOVER) { 5390 dispatchMotion(when, policyFlags, mSource, 5391 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, 5392 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, /* deviceTimestamp */ 0, 5393 mPointerGesture.currentGestureProperties, 5394 mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, 5395 mPointerGesture.currentGestureIdBits, -1, 5396 0, 0, mPointerGesture.downTime); 5397 } else if (dispatchedGestureIdBits.isEmpty() 5398 && !mPointerGesture.lastGestureIdBits.isEmpty()) { 5399 // Synthesize a hover move event after all pointers go up to indicate that 5400 // the pointer is hovering again even if the user is not currently touching 5401 // the touch pad. This ensures that a view will receive a fresh hover enter 5402 // event after a tap. 5403 float x, y; 5404 mPointerController->getPosition(&x, &y); 5405 5406 PointerProperties pointerProperties; 5407 pointerProperties.clear(); 5408 pointerProperties.id = 0; 5409 pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; 5410 5411 PointerCoords pointerCoords; 5412 pointerCoords.clear(); 5413 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); 5414 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); 5415 5416 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 5417 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, 5418 metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, 5419 mViewport.displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, 5420 0, 0, mPointerGesture.downTime); 5421 getListener()->notifyMotion(&args); 5422 } 5423 5424 // Update state. 5425 mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode; 5426 if (!down) { 5427 mPointerGesture.lastGestureIdBits.clear(); 5428 } else { 5429 mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits; 5430 for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) { 5431 uint32_t id = idBits.clearFirstMarkedBit(); 5432 uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; 5433 mPointerGesture.lastGestureProperties[index].copyFrom( 5434 mPointerGesture.currentGestureProperties[index]); 5435 mPointerGesture.lastGestureCoords[index].copyFrom( 5436 mPointerGesture.currentGestureCoords[index]); 5437 mPointerGesture.lastGestureIdToIndex[id] = index; 5438 } 5439 } 5440 } 5441 5442 void TouchInputMapper::abortPointerGestures(nsecs_t when, uint32_t policyFlags) { 5443 // Cancel previously dispatches pointers. 5444 if (!mPointerGesture.lastGestureIdBits.isEmpty()) { 5445 int32_t metaState = getContext()->getGlobalMetaState(); 5446 int32_t buttonState = mCurrentRawState.buttonState; 5447 dispatchMotion(when, policyFlags, mSource, 5448 AMOTION_EVENT_ACTION_CANCEL, 0, 0, metaState, buttonState, 5449 AMOTION_EVENT_EDGE_FLAG_NONE, /* deviceTimestamp */ 0, 5450 mPointerGesture.lastGestureProperties, 5451 mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, 5452 mPointerGesture.lastGestureIdBits, -1, 5453 0, 0, mPointerGesture.downTime); 5454 } 5455 5456 // Reset the current pointer gesture. 5457 mPointerGesture.reset(); 5458 mPointerVelocityControl.reset(); 5459 5460 // Remove any current spots. 5461 if (mPointerController != NULL) { 5462 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 5463 mPointerController->clearSpots(); 5464 } 5465 } 5466 5467 bool TouchInputMapper::preparePointerGestures(nsecs_t when, 5468 bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout) { 5469 *outCancelPreviousGesture = false; 5470 *outFinishPreviousGesture = false; 5471 5472 // Handle TAP timeout. 5473 if (isTimeout) { 5474 #if DEBUG_GESTURES 5475 ALOGD("Gestures: Processing timeout"); 5476 #endif 5477 5478 if (mPointerGesture.lastGestureMode == PointerGesture::TAP) { 5479 if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { 5480 // The tap/drag timeout has not yet expired. 5481 getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime 5482 + mConfig.pointerGestureTapDragInterval); 5483 } else { 5484 // The tap is finished. 5485 #if DEBUG_GESTURES 5486 ALOGD("Gestures: TAP finished"); 5487 #endif 5488 *outFinishPreviousGesture = true; 5489 5490 mPointerGesture.activeGestureId = -1; 5491 mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL; 5492 mPointerGesture.currentGestureIdBits.clear(); 5493 5494 mPointerVelocityControl.reset(); 5495 return true; 5496 } 5497 } 5498 5499 // We did not handle this timeout. 5500 return false; 5501 } 5502 5503 const uint32_t currentFingerCount = mCurrentCookedState.fingerIdBits.count(); 5504 const uint32_t lastFingerCount = mLastCookedState.fingerIdBits.count(); 5505 5506 // Update the velocity tracker. 5507 { 5508 VelocityTracker::Position positions[MAX_POINTERS]; 5509 uint32_t count = 0; 5510 for (BitSet32 idBits(mCurrentCookedState.fingerIdBits); !idBits.isEmpty(); count++) { 5511 uint32_t id = idBits.clearFirstMarkedBit(); 5512 const RawPointerData::Pointer& pointer = 5513 mCurrentRawState.rawPointerData.pointerForId(id); 5514 positions[count].x = pointer.x * mPointerXMovementScale; 5515 positions[count].y = pointer.y * mPointerYMovementScale; 5516 } 5517 mPointerGesture.velocityTracker.addMovement(when, 5518 mCurrentCookedState.fingerIdBits, positions); 5519 } 5520 5521 // If the gesture ever enters a mode other than TAP, HOVER or TAP_DRAG, without first returning 5522 // to NEUTRAL, then we should not generate tap event. 5523 if (mPointerGesture.lastGestureMode != PointerGesture::HOVER 5524 && mPointerGesture.lastGestureMode != PointerGesture::TAP 5525 && mPointerGesture.lastGestureMode != PointerGesture::TAP_DRAG) { 5526 mPointerGesture.resetTap(); 5527 } 5528 5529 // Pick a new active touch id if needed. 5530 // Choose an arbitrary pointer that just went down, if there is one. 5531 // Otherwise choose an arbitrary remaining pointer. 5532 // This guarantees we always have an active touch id when there is at least one pointer. 5533 // We keep the same active touch id for as long as possible. 5534 int32_t lastActiveTouchId = mPointerGesture.activeTouchId; 5535 int32_t activeTouchId = lastActiveTouchId; 5536 if (activeTouchId < 0) { 5537 if (!mCurrentCookedState.fingerIdBits.isEmpty()) { 5538 activeTouchId = mPointerGesture.activeTouchId = 5539 mCurrentCookedState.fingerIdBits.firstMarkedBit(); 5540 mPointerGesture.firstTouchTime = when; 5541 } 5542 } else if (!mCurrentCookedState.fingerIdBits.hasBit(activeTouchId)) { 5543 if (!mCurrentCookedState.fingerIdBits.isEmpty()) { 5544 activeTouchId = mPointerGesture.activeTouchId = 5545 mCurrentCookedState.fingerIdBits.firstMarkedBit(); 5546 } else { 5547 activeTouchId = mPointerGesture.activeTouchId = -1; 5548 } 5549 } 5550 5551 // Determine whether we are in quiet time. 5552 bool isQuietTime = false; 5553 if (activeTouchId < 0) { 5554 mPointerGesture.resetQuietTime(); 5555 } else { 5556 isQuietTime = when < mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval; 5557 if (!isQuietTime) { 5558 if ((mPointerGesture.lastGestureMode == PointerGesture::PRESS 5559 || mPointerGesture.lastGestureMode == PointerGesture::SWIPE 5560 || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM) 5561 && currentFingerCount < 2) { 5562 // Enter quiet time when exiting swipe or freeform state. 5563 // This is to prevent accidentally entering the hover state and flinging the 5564 // pointer when finishing a swipe and there is still one pointer left onscreen. 5565 isQuietTime = true; 5566 } else if (mPointerGesture.lastGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG 5567 && currentFingerCount >= 2 5568 && !isPointerDown(mCurrentRawState.buttonState)) { 5569 // Enter quiet time when releasing the button and there are still two or more 5570 // fingers down. This may indicate that one finger was used to press the button 5571 // but it has not gone up yet. 5572 isQuietTime = true; 5573 } 5574 if (isQuietTime) { 5575 mPointerGesture.quietTime = when; 5576 } 5577 } 5578 } 5579 5580 // Switch states based on button and pointer state. 5581 if (isQuietTime) { 5582 // Case 1: Quiet time. (QUIET) 5583 #if DEBUG_GESTURES 5584 ALOGD("Gestures: QUIET for next %0.3fms", (mPointerGesture.quietTime 5585 + mConfig.pointerGestureQuietInterval - when) * 0.000001f); 5586 #endif 5587 if (mPointerGesture.lastGestureMode != PointerGesture::QUIET) { 5588 *outFinishPreviousGesture = true; 5589 } 5590 5591 mPointerGesture.activeGestureId = -1; 5592 mPointerGesture.currentGestureMode = PointerGesture::QUIET; 5593 mPointerGesture.currentGestureIdBits.clear(); 5594 5595 mPointerVelocityControl.reset(); 5596 } else if (isPointerDown(mCurrentRawState.buttonState)) { 5597 // Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG) 5598 // The pointer follows the active touch point. 5599 // Emit DOWN, MOVE, UP events at the pointer location. 5600 // 5601 // Only the active touch matters; other fingers are ignored. This policy helps 5602 // to handle the case where the user places a second finger on the touch pad 5603 // to apply the necessary force to depress an integrated button below the surface. 5604 // We don't want the second finger to be delivered to applications. 5605 // 5606 // For this to work well, we need to make sure to track the pointer that is really 5607 // active. If the user first puts one finger down to click then adds another 5608 // finger to drag then the active pointer should switch to the finger that is 5609 // being dragged. 5610 #if DEBUG_GESTURES 5611 ALOGD("Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, " 5612 "currentFingerCount=%d", activeTouchId, currentFingerCount); 5613 #endif 5614 // Reset state when just starting. 5615 if (mPointerGesture.lastGestureMode != PointerGesture::BUTTON_CLICK_OR_DRAG) { 5616 *outFinishPreviousGesture = true; 5617 mPointerGesture.activeGestureId = 0; 5618 } 5619 5620 // Switch pointers if needed. 5621 // Find the fastest pointer and follow it. 5622 if (activeTouchId >= 0 && currentFingerCount > 1) { 5623 int32_t bestId = -1; 5624 float bestSpeed = mConfig.pointerGestureDragMinSwitchSpeed; 5625 for (BitSet32 idBits(mCurrentCookedState.fingerIdBits); !idBits.isEmpty(); ) { 5626 uint32_t id = idBits.clearFirstMarkedBit(); 5627 float vx, vy; 5628 if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) { 5629 float speed = hypotf(vx, vy); 5630 if (speed > bestSpeed) { 5631 bestId = id; 5632 bestSpeed = speed; 5633 } 5634 } 5635 } 5636 if (bestId >= 0 && bestId != activeTouchId) { 5637 mPointerGesture.activeTouchId = activeTouchId = bestId; 5638 #if DEBUG_GESTURES 5639 ALOGD("Gestures: BUTTON_CLICK_OR_DRAG switched pointers, " 5640 "bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed); 5641 #endif 5642 } 5643 } 5644 5645 float deltaX = 0, deltaY = 0; 5646 if (activeTouchId >= 0 && mLastCookedState.fingerIdBits.hasBit(activeTouchId)) { 5647 const RawPointerData::Pointer& currentPointer = 5648 mCurrentRawState.rawPointerData.pointerForId(activeTouchId); 5649 const RawPointerData::Pointer& lastPointer = 5650 mLastRawState.rawPointerData.pointerForId(activeTouchId); 5651 deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale; 5652 deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale; 5653 5654 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); 5655 mPointerVelocityControl.move(when, &deltaX, &deltaY); 5656 5657 // Move the pointer using a relative motion. 5658 // When using spots, the click will occur at the position of the anchor 5659 // spot and all other spots will move there. 5660 mPointerController->move(deltaX, deltaY); 5661 } else { 5662 mPointerVelocityControl.reset(); 5663 } 5664 5665 float x, y; 5666 mPointerController->getPosition(&x, &y); 5667 5668 mPointerGesture.currentGestureMode = PointerGesture::BUTTON_CLICK_OR_DRAG; 5669 mPointerGesture.currentGestureIdBits.clear(); 5670 mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); 5671 mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; 5672 mPointerGesture.currentGestureProperties[0].clear(); 5673 mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; 5674 mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; 5675 mPointerGesture.currentGestureCoords[0].clear(); 5676 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); 5677 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); 5678 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); 5679 } else if (currentFingerCount == 0) { 5680 // Case 3. No fingers down and button is not pressed. (NEUTRAL) 5681 if (mPointerGesture.lastGestureMode != PointerGesture::NEUTRAL) { 5682 *outFinishPreviousGesture = true; 5683 } 5684 5685 // Watch for taps coming out of HOVER or TAP_DRAG mode. 5686 // Checking for taps after TAP_DRAG allows us to detect double-taps. 5687 bool tapped = false; 5688 if ((mPointerGesture.lastGestureMode == PointerGesture::HOVER 5689 || mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) 5690 && lastFingerCount == 1) { 5691 if (when <= mPointerGesture.tapDownTime + mConfig.pointerGestureTapInterval) { 5692 float x, y; 5693 mPointerController->getPosition(&x, &y); 5694 if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop 5695 && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { 5696 #if DEBUG_GESTURES 5697 ALOGD("Gestures: TAP"); 5698 #endif 5699 5700 mPointerGesture.tapUpTime = when; 5701 getContext()->requestTimeoutAtTime(when 5702 + mConfig.pointerGestureTapDragInterval); 5703 5704 mPointerGesture.activeGestureId = 0; 5705 mPointerGesture.currentGestureMode = PointerGesture::TAP; 5706 mPointerGesture.currentGestureIdBits.clear(); 5707 mPointerGesture.currentGestureIdBits.markBit( 5708 mPointerGesture.activeGestureId); 5709 mPointerGesture.currentGestureIdToIndex[ 5710 mPointerGesture.activeGestureId] = 0; 5711 mPointerGesture.currentGestureProperties[0].clear(); 5712 mPointerGesture.currentGestureProperties[0].id = 5713 mPointerGesture.activeGestureId; 5714 mPointerGesture.currentGestureProperties[0].toolType = 5715 AMOTION_EVENT_TOOL_TYPE_FINGER; 5716 mPointerGesture.currentGestureCoords[0].clear(); 5717 mPointerGesture.currentGestureCoords[0].setAxisValue( 5718 AMOTION_EVENT_AXIS_X, mPointerGesture.tapX); 5719 mPointerGesture.currentGestureCoords[0].setAxisValue( 5720 AMOTION_EVENT_AXIS_Y, mPointerGesture.tapY); 5721 mPointerGesture.currentGestureCoords[0].setAxisValue( 5722 AMOTION_EVENT_AXIS_PRESSURE, 1.0f); 5723 5724 tapped = true; 5725 } else { 5726 #if DEBUG_GESTURES 5727 ALOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f", 5728 x - mPointerGesture.tapX, 5729 y - mPointerGesture.tapY); 5730 #endif 5731 } 5732 } else { 5733 #if DEBUG_GESTURES 5734 if (mPointerGesture.tapDownTime != LLONG_MIN) { 5735 ALOGD("Gestures: Not a TAP, %0.3fms since down", 5736 (when - mPointerGesture.tapDownTime) * 0.000001f); 5737 } else { 5738 ALOGD("Gestures: Not a TAP, incompatible mode transitions"); 5739 } 5740 #endif 5741 } 5742 } 5743 5744 mPointerVelocityControl.reset(); 5745 5746 if (!tapped) { 5747 #if DEBUG_GESTURES 5748 ALOGD("Gestures: NEUTRAL"); 5749 #endif 5750 mPointerGesture.activeGestureId = -1; 5751 mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL; 5752 mPointerGesture.currentGestureIdBits.clear(); 5753 } 5754 } else if (currentFingerCount == 1) { 5755 // Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG) 5756 // The pointer follows the active touch point. 5757 // When in HOVER, emit HOVER_MOVE events at the pointer location. 5758 // When in TAP_DRAG, emit MOVE events at the pointer location. 5759 ALOG_ASSERT(activeTouchId >= 0); 5760 5761 mPointerGesture.currentGestureMode = PointerGesture::HOVER; 5762 if (mPointerGesture.lastGestureMode == PointerGesture::TAP) { 5763 if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { 5764 float x, y; 5765 mPointerController->getPosition(&x, &y); 5766 if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop 5767 && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { 5768 mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG; 5769 } else { 5770 #if DEBUG_GESTURES 5771 ALOGD("Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f", 5772 x - mPointerGesture.tapX, 5773 y - mPointerGesture.tapY); 5774 #endif 5775 } 5776 } else { 5777 #if DEBUG_GESTURES 5778 ALOGD("Gestures: Not a TAP_DRAG, %0.3fms time since up", 5779 (when - mPointerGesture.tapUpTime) * 0.000001f); 5780 #endif 5781 } 5782 } else if (mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) { 5783 mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG; 5784 } 5785 5786 float deltaX = 0, deltaY = 0; 5787 if (mLastCookedState.fingerIdBits.hasBit(activeTouchId)) { 5788 const RawPointerData::Pointer& currentPointer = 5789 mCurrentRawState.rawPointerData.pointerForId(activeTouchId); 5790 const RawPointerData::Pointer& lastPointer = 5791 mLastRawState.rawPointerData.pointerForId(activeTouchId); 5792 deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale; 5793 deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale; 5794 5795 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); 5796 mPointerVelocityControl.move(when, &deltaX, &deltaY); 5797 5798 // Move the pointer using a relative motion. 5799 // When using spots, the hover or drag will occur at the position of the anchor spot. 5800 mPointerController->move(deltaX, deltaY); 5801 } else { 5802 mPointerVelocityControl.reset(); 5803 } 5804 5805 bool down; 5806 if (mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG) { 5807 #if DEBUG_GESTURES 5808 ALOGD("Gestures: TAP_DRAG"); 5809 #endif 5810 down = true; 5811 } else { 5812 #if DEBUG_GESTURES 5813 ALOGD("Gestures: HOVER"); 5814 #endif 5815 if (mPointerGesture.lastGestureMode != PointerGesture::HOVER) { 5816 *outFinishPreviousGesture = true; 5817 } 5818 mPointerGesture.activeGestureId = 0; 5819 down = false; 5820 } 5821 5822 float x, y; 5823 mPointerController->getPosition(&x, &y); 5824 5825 mPointerGesture.currentGestureIdBits.clear(); 5826 mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); 5827 mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; 5828 mPointerGesture.currentGestureProperties[0].clear(); 5829 mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; 5830 mPointerGesture.currentGestureProperties[0].toolType = 5831 AMOTION_EVENT_TOOL_TYPE_FINGER; 5832 mPointerGesture.currentGestureCoords[0].clear(); 5833 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); 5834 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); 5835 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 5836 down ? 1.0f : 0.0f); 5837 5838 if (lastFingerCount == 0 && currentFingerCount != 0) { 5839 mPointerGesture.resetTap(); 5840 mPointerGesture.tapDownTime = when; 5841 mPointerGesture.tapX = x; 5842 mPointerGesture.tapY = y; 5843 } 5844 } else { 5845 // Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM) 5846 // We need to provide feedback for each finger that goes down so we cannot wait 5847 // for the fingers to move before deciding what to do. 5848 // 5849 // The ambiguous case is deciding what to do when there are two fingers down but they 5850 // have not moved enough to determine whether they are part of a drag or part of a 5851 // freeform gesture, or just a press or long-press at the pointer location. 5852 // 5853 // When there are two fingers we start with the PRESS hypothesis and we generate a 5854 // down at the pointer location. 5855 // 5856 // When the two fingers move enough or when additional fingers are added, we make 5857 // a decision to transition into SWIPE or FREEFORM mode accordingly. 5858 ALOG_ASSERT(activeTouchId >= 0); 5859 5860 bool settled = when >= mPointerGesture.firstTouchTime 5861 + mConfig.pointerGestureMultitouchSettleInterval; 5862 if (mPointerGesture.lastGestureMode != PointerGesture::PRESS 5863 && mPointerGesture.lastGestureMode != PointerGesture::SWIPE 5864 && mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) { 5865 *outFinishPreviousGesture = true; 5866 } else if (!settled && currentFingerCount > lastFingerCount) { 5867 // Additional pointers have gone down but not yet settled. 5868 // Reset the gesture. 5869 #if DEBUG_GESTURES 5870 ALOGD("Gestures: Resetting gesture since additional pointers went down for MULTITOUCH, " 5871 "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime 5872 + mConfig.pointerGestureMultitouchSettleInterval - when) 5873 * 0.000001f); 5874 #endif 5875 *outCancelPreviousGesture = true; 5876 } else { 5877 // Continue previous gesture. 5878 mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode; 5879 } 5880 5881 if (*outFinishPreviousGesture || *outCancelPreviousGesture) { 5882 mPointerGesture.currentGestureMode = PointerGesture::PRESS; 5883 mPointerGesture.activeGestureId = 0; 5884 mPointerGesture.referenceIdBits.clear(); 5885 mPointerVelocityControl.reset(); 5886 5887 // Use the centroid and pointer location as the reference points for the gesture. 5888 #if DEBUG_GESTURES 5889 ALOGD("Gestures: Using centroid as reference for MULTITOUCH, " 5890 "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime 5891 + mConfig.pointerGestureMultitouchSettleInterval - when) 5892 * 0.000001f); 5893 #endif 5894 mCurrentRawState.rawPointerData.getCentroidOfTouchingPointers( 5895 &mPointerGesture.referenceTouchX, 5896 &mPointerGesture.referenceTouchY); 5897 mPointerController->getPosition(&mPointerGesture.referenceGestureX, 5898 &mPointerGesture.referenceGestureY); 5899 } 5900 5901 // Clear the reference deltas for fingers not yet included in the reference calculation. 5902 for (BitSet32 idBits(mCurrentCookedState.fingerIdBits.value 5903 & ~mPointerGesture.referenceIdBits.value); !idBits.isEmpty(); ) { 5904 uint32_t id = idBits.clearFirstMarkedBit(); 5905 mPointerGesture.referenceDeltas[id].dx = 0; 5906 mPointerGesture.referenceDeltas[id].dy = 0; 5907 } 5908 mPointerGesture.referenceIdBits = mCurrentCookedState.fingerIdBits; 5909 5910 // Add delta for all fingers and calculate a common movement delta. 5911 float commonDeltaX = 0, commonDeltaY = 0; 5912 BitSet32 commonIdBits(mLastCookedState.fingerIdBits.value 5913 & mCurrentCookedState.fingerIdBits.value); 5914 for (BitSet32 idBits(commonIdBits); !idBits.isEmpty(); ) { 5915 bool first = (idBits == commonIdBits); 5916 uint32_t id = idBits.clearFirstMarkedBit(); 5917 const RawPointerData::Pointer& cpd = mCurrentRawState.rawPointerData.pointerForId(id); 5918 const RawPointerData::Pointer& lpd = mLastRawState.rawPointerData.pointerForId(id); 5919 PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; 5920 delta.dx += cpd.x - lpd.x; 5921 delta.dy += cpd.y - lpd.y; 5922 5923 if (first) { 5924 commonDeltaX = delta.dx; 5925 commonDeltaY = delta.dy; 5926 } else { 5927 commonDeltaX = calculateCommonVector(commonDeltaX, delta.dx); 5928 commonDeltaY = calculateCommonVector(commonDeltaY, delta.dy); 5929 } 5930 } 5931 5932 // Consider transitions from PRESS to SWIPE or MULTITOUCH. 5933 if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) { 5934 float dist[MAX_POINTER_ID + 1]; 5935 int32_t distOverThreshold = 0; 5936 for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) { 5937 uint32_t id = idBits.clearFirstMarkedBit(); 5938 PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; 5939 dist[id] = hypotf(delta.dx * mPointerXZoomScale, 5940 delta.dy * mPointerYZoomScale); 5941 if (dist[id] > mConfig.pointerGestureMultitouchMinDistance) { 5942 distOverThreshold += 1; 5943 } 5944 } 5945 5946 // Only transition when at least two pointers have moved further than 5947 // the minimum distance threshold. 5948 if (distOverThreshold >= 2) { 5949 if (currentFingerCount > 2) { 5950 // There are more than two pointers, switch to FREEFORM. 5951 #if DEBUG_GESTURES 5952 ALOGD("Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2", 5953 currentFingerCount); 5954 #endif 5955 *outCancelPreviousGesture = true; 5956 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; 5957 } else { 5958 // There are exactly two pointers. 5959 BitSet32 idBits(mCurrentCookedState.fingerIdBits); 5960 uint32_t id1 = idBits.clearFirstMarkedBit(); 5961 uint32_t id2 = idBits.firstMarkedBit(); 5962 const RawPointerData::Pointer& p1 = 5963 mCurrentRawState.rawPointerData.pointerForId(id1); 5964 const RawPointerData::Pointer& p2 = 5965 mCurrentRawState.rawPointerData.pointerForId(id2); 5966 float mutualDistance = distance(p1.x, p1.y, p2.x, p2.y); 5967 if (mutualDistance > mPointerGestureMaxSwipeWidth) { 5968 // There are two pointers but they are too far apart for a SWIPE, 5969 // switch to FREEFORM. 5970 #if DEBUG_GESTURES 5971 ALOGD("Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f", 5972 mutualDistance, mPointerGestureMaxSwipeWidth); 5973 #endif 5974 *outCancelPreviousGesture = true; 5975 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; 5976 } else { 5977 // There are two pointers. Wait for both pointers to start moving 5978 // before deciding whether this is a SWIPE or FREEFORM gesture. 5979 float dist1 = dist[id1]; 5980 float dist2 = dist[id2]; 5981 if (dist1 >= mConfig.pointerGestureMultitouchMinDistance 5982 && dist2 >= mConfig.pointerGestureMultitouchMinDistance) { 5983 // Calculate the dot product of the displacement vectors. 5984 // When the vectors are oriented in approximately the same direction, 5985 // the angle betweeen them is near zero and the cosine of the angle 5986 // approches 1.0. Recall that dot(v1, v2) = cos(angle) * mag(v1) * mag(v2). 5987 PointerGesture::Delta& delta1 = mPointerGesture.referenceDeltas[id1]; 5988 PointerGesture::Delta& delta2 = mPointerGesture.referenceDeltas[id2]; 5989 float dx1 = delta1.dx * mPointerXZoomScale; 5990 float dy1 = delta1.dy * mPointerYZoomScale; 5991 float dx2 = delta2.dx * mPointerXZoomScale; 5992 float dy2 = delta2.dy * mPointerYZoomScale; 5993 float dot = dx1 * dx2 + dy1 * dy2; 5994 float cosine = dot / (dist1 * dist2); // denominator always > 0 5995 if (cosine >= mConfig.pointerGestureSwipeTransitionAngleCosine) { 5996 // Pointers are moving in the same direction. Switch to SWIPE. 5997 #if DEBUG_GESTURES 5998 ALOGD("Gestures: PRESS transitioned to SWIPE, " 5999 "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " 6000 "cosine %0.3f >= %0.3f", 6001 dist1, mConfig.pointerGestureMultitouchMinDistance, 6002 dist2, mConfig.pointerGestureMultitouchMinDistance, 6003 cosine, mConfig.pointerGestureSwipeTransitionAngleCosine); 6004 #endif 6005 mPointerGesture.currentGestureMode = PointerGesture::SWIPE; 6006 } else { 6007 // Pointers are moving in different directions. Switch to FREEFORM. 6008 #if DEBUG_GESTURES 6009 ALOGD("Gestures: PRESS transitioned to FREEFORM, " 6010 "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " 6011 "cosine %0.3f < %0.3f", 6012 dist1, mConfig.pointerGestureMultitouchMinDistance, 6013 dist2, mConfig.pointerGestureMultitouchMinDistance, 6014 cosine, mConfig.pointerGestureSwipeTransitionAngleCosine); 6015 #endif 6016 *outCancelPreviousGesture = true; 6017 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; 6018 } 6019 } 6020 } 6021 } 6022 } 6023 } else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) { 6024 // Switch from SWIPE to FREEFORM if additional pointers go down. 6025 // Cancel previous gesture. 6026 if (currentFingerCount > 2) { 6027 #if DEBUG_GESTURES 6028 ALOGD("Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2", 6029 currentFingerCount); 6030 #endif 6031 *outCancelPreviousGesture = true; 6032 mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; 6033 } 6034 } 6035 6036 // Move the reference points based on the overall group motion of the fingers 6037 // except in PRESS mode while waiting for a transition to occur. 6038 if (mPointerGesture.currentGestureMode != PointerGesture::PRESS 6039 && (commonDeltaX || commonDeltaY)) { 6040 for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) { 6041 uint32_t id = idBits.clearFirstMarkedBit(); 6042 PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; 6043 delta.dx = 0; 6044 delta.dy = 0; 6045 } 6046 6047 mPointerGesture.referenceTouchX += commonDeltaX; 6048 mPointerGesture.referenceTouchY += commonDeltaY; 6049 6050 commonDeltaX *= mPointerXMovementScale; 6051 commonDeltaY *= mPointerYMovementScale; 6052 6053 rotateDelta(mSurfaceOrientation, &commonDeltaX, &commonDeltaY); 6054 mPointerVelocityControl.move(when, &commonDeltaX, &commonDeltaY); 6055 6056 mPointerGesture.referenceGestureX += commonDeltaX; 6057 mPointerGesture.referenceGestureY += commonDeltaY; 6058 } 6059 6060 // Report gestures. 6061 if (mPointerGesture.currentGestureMode == PointerGesture::PRESS 6062 || mPointerGesture.currentGestureMode == PointerGesture::SWIPE) { 6063 // PRESS or SWIPE mode. 6064 #if DEBUG_GESTURES 6065 ALOGD("Gestures: PRESS or SWIPE activeTouchId=%d," 6066 "activeGestureId=%d, currentTouchPointerCount=%d", 6067 activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); 6068 #endif 6069 ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); 6070 6071 mPointerGesture.currentGestureIdBits.clear(); 6072 mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); 6073 mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; 6074 mPointerGesture.currentGestureProperties[0].clear(); 6075 mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; 6076 mPointerGesture.currentGestureProperties[0].toolType = 6077 AMOTION_EVENT_TOOL_TYPE_FINGER; 6078 mPointerGesture.currentGestureCoords[0].clear(); 6079 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 6080 mPointerGesture.referenceGestureX); 6081 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 6082 mPointerGesture.referenceGestureY); 6083 mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); 6084 } else if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) { 6085 // FREEFORM mode. 6086 #if DEBUG_GESTURES 6087 ALOGD("Gestures: FREEFORM activeTouchId=%d," 6088 "activeGestureId=%d, currentTouchPointerCount=%d", 6089 activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); 6090 #endif 6091 ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); 6092 6093 mPointerGesture.currentGestureIdBits.clear(); 6094 6095 BitSet32 mappedTouchIdBits; 6096 BitSet32 usedGestureIdBits; 6097 if (mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) { 6098 // Initially, assign the active gesture id to the active touch point 6099 // if there is one. No other touch id bits are mapped yet. 6100 if (!*outCancelPreviousGesture) { 6101 mappedTouchIdBits.markBit(activeTouchId); 6102 usedGestureIdBits.markBit(mPointerGesture.activeGestureId); 6103 mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] = 6104 mPointerGesture.activeGestureId; 6105 } else { 6106 mPointerGesture.activeGestureId = -1; 6107 } 6108 } else { 6109 // Otherwise, assume we mapped all touches from the previous frame. 6110 // Reuse all mappings that are still applicable. 6111 mappedTouchIdBits.value = mLastCookedState.fingerIdBits.value 6112 & mCurrentCookedState.fingerIdBits.value; 6113 usedGestureIdBits = mPointerGesture.lastGestureIdBits; 6114 6115 // Check whether we need to choose a new active gesture id because the 6116 // current went went up. 6117 for (BitSet32 upTouchIdBits(mLastCookedState.fingerIdBits.value 6118 & ~mCurrentCookedState.fingerIdBits.value); 6119 !upTouchIdBits.isEmpty(); ) { 6120 uint32_t upTouchId = upTouchIdBits.clearFirstMarkedBit(); 6121 uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId]; 6122 if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) { 6123 mPointerGesture.activeGestureId = -1; 6124 break; 6125 } 6126 } 6127 } 6128 6129 #if DEBUG_GESTURES 6130 ALOGD("Gestures: FREEFORM follow up " 6131 "mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, " 6132 "activeGestureId=%d", 6133 mappedTouchIdBits.value, usedGestureIdBits.value, 6134 mPointerGesture.activeGestureId); 6135 #endif 6136 6137 BitSet32 idBits(mCurrentCookedState.fingerIdBits); 6138 for (uint32_t i = 0; i < currentFingerCount; i++) { 6139 uint32_t touchId = idBits.clearFirstMarkedBit(); 6140 uint32_t gestureId; 6141 if (!mappedTouchIdBits.hasBit(touchId)) { 6142 gestureId = usedGestureIdBits.markFirstUnmarkedBit(); 6143 mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId; 6144 #if DEBUG_GESTURES 6145 ALOGD("Gestures: FREEFORM " 6146 "new mapping for touch id %d -> gesture id %d", 6147 touchId, gestureId); 6148 #endif 6149 } else { 6150 gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId]; 6151 #if DEBUG_GESTURES 6152 ALOGD("Gestures: FREEFORM " 6153 "existing mapping for touch id %d -> gesture id %d", 6154 touchId, gestureId); 6155 #endif 6156 } 6157 mPointerGesture.currentGestureIdBits.markBit(gestureId); 6158 mPointerGesture.currentGestureIdToIndex[gestureId] = i; 6159 6160 const RawPointerData::Pointer& pointer = 6161 mCurrentRawState.rawPointerData.pointerForId(touchId); 6162 float deltaX = (pointer.x - mPointerGesture.referenceTouchX) 6163 * mPointerXZoomScale; 6164 float deltaY = (pointer.y - mPointerGesture.referenceTouchY) 6165 * mPointerYZoomScale; 6166 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); 6167 6168 mPointerGesture.currentGestureProperties[i].clear(); 6169 mPointerGesture.currentGestureProperties[i].id = gestureId; 6170 mPointerGesture.currentGestureProperties[i].toolType = 6171 AMOTION_EVENT_TOOL_TYPE_FINGER; 6172 mPointerGesture.currentGestureCoords[i].clear(); 6173 mPointerGesture.currentGestureCoords[i].setAxisValue( 6174 AMOTION_EVENT_AXIS_X, mPointerGesture.referenceGestureX + deltaX); 6175 mPointerGesture.currentGestureCoords[i].setAxisValue( 6176 AMOTION_EVENT_AXIS_Y, mPointerGesture.referenceGestureY + deltaY); 6177 mPointerGesture.currentGestureCoords[i].setAxisValue( 6178 AMOTION_EVENT_AXIS_PRESSURE, 1.0f); 6179 } 6180 6181 if (mPointerGesture.activeGestureId < 0) { 6182 mPointerGesture.activeGestureId = 6183 mPointerGesture.currentGestureIdBits.firstMarkedBit(); 6184 #if DEBUG_GESTURES 6185 ALOGD("Gestures: FREEFORM new " 6186 "activeGestureId=%d", mPointerGesture.activeGestureId); 6187 #endif 6188 } 6189 } 6190 } 6191 6192 mPointerController->setButtonState(mCurrentRawState.buttonState); 6193 6194 #if DEBUG_GESTURES 6195 ALOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, " 6196 "currentGestureMode=%d, currentGestureIdBits=0x%08x, " 6197 "lastGestureMode=%d, lastGestureIdBits=0x%08x", 6198 toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture), 6199 mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value, 6200 mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value); 6201 for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty(); ) { 6202 uint32_t id = idBits.clearFirstMarkedBit(); 6203 uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; 6204 const PointerProperties& properties = mPointerGesture.currentGestureProperties[index]; 6205 const PointerCoords& coords = mPointerGesture.currentGestureCoords[index]; 6206 ALOGD(" currentGesture[%d]: index=%d, toolType=%d, " 6207 "x=%0.3f, y=%0.3f, pressure=%0.3f", 6208 id, index, properties.toolType, 6209 coords.getAxisValue(AMOTION_EVENT_AXIS_X), 6210 coords.getAxisValue(AMOTION_EVENT_AXIS_Y), 6211 coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); 6212 } 6213 for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty(); ) { 6214 uint32_t id = idBits.clearFirstMarkedBit(); 6215 uint32_t index = mPointerGesture.lastGestureIdToIndex[id]; 6216 const PointerProperties& properties = mPointerGesture.lastGestureProperties[index]; 6217 const PointerCoords& coords = mPointerGesture.lastGestureCoords[index]; 6218 ALOGD(" lastGesture[%d]: index=%d, toolType=%d, " 6219 "x=%0.3f, y=%0.3f, pressure=%0.3f", 6220 id, index, properties.toolType, 6221 coords.getAxisValue(AMOTION_EVENT_AXIS_X), 6222 coords.getAxisValue(AMOTION_EVENT_AXIS_Y), 6223 coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); 6224 } 6225 #endif 6226 return true; 6227 } 6228 6229 void TouchInputMapper::dispatchPointerStylus(nsecs_t when, uint32_t policyFlags) { 6230 mPointerSimple.currentCoords.clear(); 6231 mPointerSimple.currentProperties.clear(); 6232 6233 bool down, hovering; 6234 if (!mCurrentCookedState.stylusIdBits.isEmpty()) { 6235 uint32_t id = mCurrentCookedState.stylusIdBits.firstMarkedBit(); 6236 uint32_t index = mCurrentCookedState.cookedPointerData.idToIndex[id]; 6237 float x = mCurrentCookedState.cookedPointerData.pointerCoords[index].getX(); 6238 float y = mCurrentCookedState.cookedPointerData.pointerCoords[index].getY(); 6239 mPointerController->setPosition(x, y); 6240 6241 hovering = mCurrentCookedState.cookedPointerData.hoveringIdBits.hasBit(id); 6242 down = !hovering; 6243 6244 mPointerController->getPosition(&x, &y); 6245 mPointerSimple.currentCoords.copyFrom( 6246 mCurrentCookedState.cookedPointerData.pointerCoords[index]); 6247 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); 6248 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); 6249 mPointerSimple.currentProperties.id = 0; 6250 mPointerSimple.currentProperties.toolType = 6251 mCurrentCookedState.cookedPointerData.pointerProperties[index].toolType; 6252 } else { 6253 down = false; 6254 hovering = false; 6255 } 6256 6257 dispatchPointerSimple(when, policyFlags, down, hovering); 6258 } 6259 6260 void TouchInputMapper::abortPointerStylus(nsecs_t when, uint32_t policyFlags) { 6261 abortPointerSimple(when, policyFlags); 6262 } 6263 6264 void TouchInputMapper::dispatchPointerMouse(nsecs_t when, uint32_t policyFlags) { 6265 mPointerSimple.currentCoords.clear(); 6266 mPointerSimple.currentProperties.clear(); 6267 6268 bool down, hovering; 6269 if (!mCurrentCookedState.mouseIdBits.isEmpty()) { 6270 uint32_t id = mCurrentCookedState.mouseIdBits.firstMarkedBit(); 6271 uint32_t currentIndex = mCurrentRawState.rawPointerData.idToIndex[id]; 6272 float deltaX = 0, deltaY = 0; 6273 if (mLastCookedState.mouseIdBits.hasBit(id)) { 6274 uint32_t lastIndex = mCurrentRawState.rawPointerData.idToIndex[id]; 6275 deltaX = (mCurrentRawState.rawPointerData.pointers[currentIndex].x 6276 - mLastRawState.rawPointerData.pointers[lastIndex].x) 6277 * mPointerXMovementScale; 6278 deltaY = (mCurrentRawState.rawPointerData.pointers[currentIndex].y 6279 - mLastRawState.rawPointerData.pointers[lastIndex].y) 6280 * mPointerYMovementScale; 6281 6282 rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); 6283 mPointerVelocityControl.move(when, &deltaX, &deltaY); 6284 6285 mPointerController->move(deltaX, deltaY); 6286 } else { 6287 mPointerVelocityControl.reset(); 6288 } 6289 6290 down = isPointerDown(mCurrentRawState.buttonState); 6291 hovering = !down; 6292 6293 float x, y; 6294 mPointerController->getPosition(&x, &y); 6295 mPointerSimple.currentCoords.copyFrom( 6296 mCurrentCookedState.cookedPointerData.pointerCoords[currentIndex]); 6297 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); 6298 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); 6299 mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 6300 hovering ? 0.0f : 1.0f); 6301 mPointerSimple.currentProperties.id = 0; 6302 mPointerSimple.currentProperties.toolType = 6303 mCurrentCookedState.cookedPointerData.pointerProperties[currentIndex].toolType; 6304 } else { 6305 mPointerVelocityControl.reset(); 6306 6307 down = false; 6308 hovering = false; 6309 } 6310 6311 dispatchPointerSimple(when, policyFlags, down, hovering); 6312 } 6313 6314 void TouchInputMapper::abortPointerMouse(nsecs_t when, uint32_t policyFlags) { 6315 abortPointerSimple(when, policyFlags); 6316 6317 mPointerVelocityControl.reset(); 6318 } 6319 6320 void TouchInputMapper::dispatchPointerSimple(nsecs_t when, uint32_t policyFlags, 6321 bool down, bool hovering) { 6322 int32_t metaState = getContext()->getGlobalMetaState(); 6323 6324 if (mPointerController != NULL) { 6325 if (down || hovering) { 6326 mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER); 6327 mPointerController->clearSpots(); 6328 mPointerController->setButtonState(mCurrentRawState.buttonState); 6329 mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); 6330 } else if (!down && !hovering && (mPointerSimple.down || mPointerSimple.hovering)) { 6331 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 6332 } 6333 } 6334 6335 if (mPointerSimple.down && !down) { 6336 mPointerSimple.down = false; 6337 6338 // Send up. 6339 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 6340 AMOTION_EVENT_ACTION_UP, 0, 0, metaState, mLastRawState.buttonState, 0, 6341 mViewport.displayId, /* deviceTimestamp */ 0, 6342 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, 6343 mOrientedXPrecision, mOrientedYPrecision, 6344 mPointerSimple.downTime); 6345 getListener()->notifyMotion(&args); 6346 } 6347 6348 if (mPointerSimple.hovering && !hovering) { 6349 mPointerSimple.hovering = false; 6350 6351 // Send hover exit. 6352 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 6353 AMOTION_EVENT_ACTION_HOVER_EXIT, 0, 0, metaState, mLastRawState.buttonState, 0, 6354 mViewport.displayId, /* deviceTimestamp */ 0, 6355 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, 6356 mOrientedXPrecision, mOrientedYPrecision, 6357 mPointerSimple.downTime); 6358 getListener()->notifyMotion(&args); 6359 } 6360 6361 if (down) { 6362 if (!mPointerSimple.down) { 6363 mPointerSimple.down = true; 6364 mPointerSimple.downTime = when; 6365 6366 // Send down. 6367 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 6368 AMOTION_EVENT_ACTION_DOWN, 0, 0, metaState, mCurrentRawState.buttonState, 0, 6369 mViewport.displayId, /* deviceTimestamp */ 0, 6370 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, 6371 mOrientedXPrecision, mOrientedYPrecision, 6372 mPointerSimple.downTime); 6373 getListener()->notifyMotion(&args); 6374 } 6375 6376 // Send move. 6377 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 6378 AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, mCurrentRawState.buttonState, 0, 6379 mViewport.displayId, /* deviceTimestamp */ 0, 6380 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, 6381 mOrientedXPrecision, mOrientedYPrecision, 6382 mPointerSimple.downTime); 6383 getListener()->notifyMotion(&args); 6384 } 6385 6386 if (hovering) { 6387 if (!mPointerSimple.hovering) { 6388 mPointerSimple.hovering = true; 6389 6390 // Send hover enter. 6391 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 6392 AMOTION_EVENT_ACTION_HOVER_ENTER, 0, 0, metaState, 6393 mCurrentRawState.buttonState, 0, 6394 mViewport.displayId, /* deviceTimestamp */ 0, 6395 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, 6396 mOrientedXPrecision, mOrientedYPrecision, 6397 mPointerSimple.downTime); 6398 getListener()->notifyMotion(&args); 6399 } 6400 6401 // Send hover move. 6402 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 6403 AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, metaState, 6404 mCurrentRawState.buttonState, 0, 6405 mViewport.displayId, /* deviceTimestamp */ 0, 6406 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, 6407 mOrientedXPrecision, mOrientedYPrecision, 6408 mPointerSimple.downTime); 6409 getListener()->notifyMotion(&args); 6410 } 6411 6412 if (mCurrentRawState.rawVScroll || mCurrentRawState.rawHScroll) { 6413 float vscroll = mCurrentRawState.rawVScroll; 6414 float hscroll = mCurrentRawState.rawHScroll; 6415 mWheelYVelocityControl.move(when, NULL, &vscroll); 6416 mWheelXVelocityControl.move(when, &hscroll, NULL); 6417 6418 // Send scroll. 6419 PointerCoords pointerCoords; 6420 pointerCoords.copyFrom(mPointerSimple.currentCoords); 6421 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); 6422 pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); 6423 6424 NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, 6425 AMOTION_EVENT_ACTION_SCROLL, 0, 0, metaState, mCurrentRawState.buttonState, 0, 6426 mViewport.displayId, /* deviceTimestamp */ 0, 6427 1, &mPointerSimple.currentProperties, &pointerCoords, 6428 mOrientedXPrecision, mOrientedYPrecision, 6429 mPointerSimple.downTime); 6430 getListener()->notifyMotion(&args); 6431 } 6432 6433 // Save state. 6434 if (down || hovering) { 6435 mPointerSimple.lastCoords.copyFrom(mPointerSimple.currentCoords); 6436 mPointerSimple.lastProperties.copyFrom(mPointerSimple.currentProperties); 6437 } else { 6438 mPointerSimple.reset(); 6439 } 6440 } 6441 6442 void TouchInputMapper::abortPointerSimple(nsecs_t when, uint32_t policyFlags) { 6443 mPointerSimple.currentCoords.clear(); 6444 mPointerSimple.currentProperties.clear(); 6445 6446 dispatchPointerSimple(when, policyFlags, false, false); 6447 } 6448 6449 void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source, 6450 int32_t action, int32_t actionButton, int32_t flags, 6451 int32_t metaState, int32_t buttonState, int32_t edgeFlags, uint32_t deviceTimestamp, 6452 const PointerProperties* properties, const PointerCoords* coords, 6453 const uint32_t* idToIndex, BitSet32 idBits, int32_t changedId, 6454 float xPrecision, float yPrecision, nsecs_t downTime) { 6455 PointerCoords pointerCoords[MAX_POINTERS]; 6456 PointerProperties pointerProperties[MAX_POINTERS]; 6457 uint32_t pointerCount = 0; 6458 while (!idBits.isEmpty()) { 6459 uint32_t id = idBits.clearFirstMarkedBit(); 6460 uint32_t index = idToIndex[id]; 6461 pointerProperties[pointerCount].copyFrom(properties[index]); 6462 pointerCoords[pointerCount].copyFrom(coords[index]); 6463 6464 if (changedId >= 0 && id == uint32_t(changedId)) { 6465 action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; 6466 } 6467 6468 pointerCount += 1; 6469 } 6470 6471 ALOG_ASSERT(pointerCount != 0); 6472 6473 if (changedId >= 0 && pointerCount == 1) { 6474 // Replace initial down and final up action. 6475 // We can compare the action without masking off the changed pointer index 6476 // because we know the index is 0. 6477 if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) { 6478 action = AMOTION_EVENT_ACTION_DOWN; 6479 } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) { 6480 action = AMOTION_EVENT_ACTION_UP; 6481 } else { 6482 // Can't happen. 6483 ALOG_ASSERT(false); 6484 } 6485 } 6486 6487 NotifyMotionArgs args(when, getDeviceId(), source, policyFlags, 6488 action, actionButton, flags, metaState, buttonState, edgeFlags, 6489 mViewport.displayId, deviceTimestamp, pointerCount, pointerProperties, pointerCoords, 6490 xPrecision, yPrecision, downTime); 6491 getListener()->notifyMotion(&args); 6492 } 6493 6494 bool TouchInputMapper::updateMovedPointers(const PointerProperties* inProperties, 6495 const PointerCoords* inCoords, const uint32_t* inIdToIndex, 6496 PointerProperties* outProperties, PointerCoords* outCoords, const uint32_t* outIdToIndex, 6497 BitSet32 idBits) const { 6498 bool changed = false; 6499 while (!idBits.isEmpty()) { 6500 uint32_t id = idBits.clearFirstMarkedBit(); 6501 uint32_t inIndex = inIdToIndex[id]; 6502 uint32_t outIndex = outIdToIndex[id]; 6503 6504 const PointerProperties& curInProperties = inProperties[inIndex]; 6505 const PointerCoords& curInCoords = inCoords[inIndex]; 6506 PointerProperties& curOutProperties = outProperties[outIndex]; 6507 PointerCoords& curOutCoords = outCoords[outIndex]; 6508 6509 if (curInProperties != curOutProperties) { 6510 curOutProperties.copyFrom(curInProperties); 6511 changed = true; 6512 } 6513 6514 if (curInCoords != curOutCoords) { 6515 curOutCoords.copyFrom(curInCoords); 6516 changed = true; 6517 } 6518 } 6519 return changed; 6520 } 6521 6522 void TouchInputMapper::fadePointer() { 6523 if (mPointerController != NULL) { 6524 mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); 6525 } 6526 } 6527 6528 void TouchInputMapper::cancelTouch(nsecs_t when) { 6529 abortPointerUsage(when, 0 /*policyFlags*/); 6530 abortTouches(when, 0 /* policyFlags*/); 6531 } 6532 6533 bool TouchInputMapper::isPointInsideSurface(int32_t x, int32_t y) { 6534 return x >= mRawPointerAxes.x.minValue && x <= mRawPointerAxes.x.maxValue 6535 && y >= mRawPointerAxes.y.minValue && y <= mRawPointerAxes.y.maxValue; 6536 } 6537 6538 const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHit( 6539 int32_t x, int32_t y) { 6540 size_t numVirtualKeys = mVirtualKeys.size(); 6541 for (size_t i = 0; i < numVirtualKeys; i++) { 6542 const VirtualKey& virtualKey = mVirtualKeys[i]; 6543 6544 #if DEBUG_VIRTUAL_KEYS 6545 ALOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " 6546 "left=%d, top=%d, right=%d, bottom=%d", 6547 x, y, 6548 virtualKey.keyCode, virtualKey.scanCode, 6549 virtualKey.hitLeft, virtualKey.hitTop, 6550 virtualKey.hitRight, virtualKey.hitBottom); 6551 #endif 6552 6553 if (virtualKey.isHit(x, y)) { 6554 return & virtualKey; 6555 } 6556 } 6557 6558 return NULL; 6559 } 6560 6561 void TouchInputMapper::assignPointerIds(const RawState* last, RawState* current) { 6562 uint32_t currentPointerCount = current->rawPointerData.pointerCount; 6563 uint32_t lastPointerCount = last->rawPointerData.pointerCount; 6564 6565 current->rawPointerData.clearIdBits(); 6566 6567 if (currentPointerCount == 0) { 6568 // No pointers to assign. 6569 return; 6570 } 6571 6572 if (lastPointerCount == 0) { 6573 // All pointers are new. 6574 for (uint32_t i = 0; i < currentPointerCount; i++) { 6575 uint32_t id = i; 6576 current->rawPointerData.pointers[i].id = id; 6577 current->rawPointerData.idToIndex[id] = i; 6578 current->rawPointerData.markIdBit(id, current->rawPointerData.isHovering(i)); 6579 } 6580 return; 6581 } 6582 6583 if (currentPointerCount == 1 && lastPointerCount == 1 6584 && current->rawPointerData.pointers[0].toolType 6585 == last->rawPointerData.pointers[0].toolType) { 6586 // Only one pointer and no change in count so it must have the same id as before. 6587 uint32_t id = last->rawPointerData.pointers[0].id; 6588 current->rawPointerData.pointers[0].id = id; 6589 current->rawPointerData.idToIndex[id] = 0; 6590 current->rawPointerData.markIdBit(id, current->rawPointerData.isHovering(0)); 6591 return; 6592 } 6593 6594 // General case. 6595 // We build a heap of squared euclidean distances between current and last pointers 6596 // associated with the current and last pointer indices. Then, we find the best 6597 // match (by distance) for each current pointer. 6598 // The pointers must have the same tool type but it is possible for them to 6599 // transition from hovering to touching or vice-versa while retaining the same id. 6600 PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; 6601 6602 uint32_t heapSize = 0; 6603 for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; 6604 currentPointerIndex++) { 6605 for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; 6606 lastPointerIndex++) { 6607 const RawPointerData::Pointer& currentPointer = 6608 current->rawPointerData.pointers[currentPointerIndex]; 6609 const RawPointerData::Pointer& lastPointer = 6610 last->rawPointerData.pointers[lastPointerIndex]; 6611 if (currentPointer.toolType == lastPointer.toolType) { 6612 int64_t deltaX = currentPointer.x - lastPointer.x; 6613 int64_t deltaY = currentPointer.y - lastPointer.y; 6614 6615 uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); 6616 6617 // Insert new element into the heap (sift up). 6618 heap[heapSize].currentPointerIndex = currentPointerIndex; 6619 heap[heapSize].lastPointerIndex = lastPointerIndex; 6620 heap[heapSize].distance = distance; 6621 heapSize += 1; 6622 } 6623 } 6624 } 6625 6626 // Heapify 6627 for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) { 6628 startIndex -= 1; 6629 for (uint32_t parentIndex = startIndex; ;) { 6630 uint32_t childIndex = parentIndex * 2 + 1; 6631 if (childIndex >= heapSize) { 6632 break; 6633 } 6634 6635 if (childIndex + 1 < heapSize 6636 && heap[childIndex + 1].distance < heap[childIndex].distance) { 6637 childIndex += 1; 6638 } 6639 6640 if (heap[parentIndex].distance <= heap[childIndex].distance) { 6641 break; 6642 } 6643 6644 swap(heap[parentIndex], heap[childIndex]); 6645 parentIndex = childIndex; 6646 } 6647 } 6648 6649 #if DEBUG_POINTER_ASSIGNMENT 6650 ALOGD("assignPointerIds - initial distance min-heap: size=%d", heapSize); 6651 for (size_t i = 0; i < heapSize; i++) { 6652 ALOGD(" heap[%zu]: cur=%" PRIu32 ", last=%" PRIu32 ", distance=%" PRIu64, 6653 i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, 6654 heap[i].distance); 6655 } 6656 #endif 6657 6658 // Pull matches out by increasing order of distance. 6659 // To avoid reassigning pointers that have already been matched, the loop keeps track 6660 // of which last and current pointers have been matched using the matchedXXXBits variables. 6661 // It also tracks the used pointer id bits. 6662 BitSet32 matchedLastBits(0); 6663 BitSet32 matchedCurrentBits(0); 6664 BitSet32 usedIdBits(0); 6665 bool first = true; 6666 for (uint32_t i = min(currentPointerCount, lastPointerCount); heapSize > 0 && i > 0; i--) { 6667 while (heapSize > 0) { 6668 if (first) { 6669 // The first time through the loop, we just consume the root element of 6670 // the heap (the one with smallest distance). 6671 first = false; 6672 } else { 6673 // Previous iterations consumed the root element of the heap. 6674 // Pop root element off of the heap (sift down). 6675 heap[0] = heap[heapSize]; 6676 for (uint32_t parentIndex = 0; ;) { 6677 uint32_t childIndex = parentIndex * 2 + 1; 6678 if (childIndex >= heapSize) { 6679 break; 6680 } 6681 6682 if (childIndex + 1 < heapSize 6683 && heap[childIndex + 1].distance < heap[childIndex].distance) { 6684 childIndex += 1; 6685 } 6686 6687 if (heap[parentIndex].distance <= heap[childIndex].distance) { 6688 break; 6689 } 6690 6691 swap(heap[parentIndex], heap[childIndex]); 6692 parentIndex = childIndex; 6693 } 6694 6695 #if DEBUG_POINTER_ASSIGNMENT 6696 ALOGD("assignPointerIds - reduced distance min-heap: size=%d", heapSize); 6697 for (size_t i = 0; i < heapSize; i++) { 6698 ALOGD(" heap[%zu]: cur=%" PRIu32 ", last=%" PRIu32 ", distance=%" PRIu64, 6699 i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, 6700 heap[i].distance); 6701 } 6702 #endif 6703 } 6704 6705 heapSize -= 1; 6706 6707 uint32_t currentPointerIndex = heap[0].currentPointerIndex; 6708 if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched 6709 6710 uint32_t lastPointerIndex = heap[0].lastPointerIndex; 6711 if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched 6712 6713 matchedCurrentBits.markBit(currentPointerIndex); 6714 matchedLastBits.markBit(lastPointerIndex); 6715 6716 uint32_t id = last->rawPointerData.pointers[lastPointerIndex].id; 6717 current->rawPointerData.pointers[currentPointerIndex].id = id; 6718 current->rawPointerData.idToIndex[id] = currentPointerIndex; 6719 current->rawPointerData.markIdBit(id, 6720 current->rawPointerData.isHovering(currentPointerIndex)); 6721 usedIdBits.markBit(id); 6722 6723 #if DEBUG_POINTER_ASSIGNMENT 6724 ALOGD("assignPointerIds - matched: cur=%" PRIu32 ", last=%" PRIu32 6725 ", id=%" PRIu32 ", distance=%" PRIu64, 6726 lastPointerIndex, currentPointerIndex, id, heap[0].distance); 6727 #endif 6728 break; 6729 } 6730 } 6731 6732 // Assign fresh ids to pointers that were not matched in the process. 6733 for (uint32_t i = currentPointerCount - matchedCurrentBits.count(); i != 0; i--) { 6734 uint32_t currentPointerIndex = matchedCurrentBits.markFirstUnmarkedBit(); 6735 uint32_t id = usedIdBits.markFirstUnmarkedBit(); 6736 6737 current->rawPointerData.pointers[currentPointerIndex].id = id; 6738 current->rawPointerData.idToIndex[id] = currentPointerIndex; 6739 current->rawPointerData.markIdBit(id, 6740 current->rawPointerData.isHovering(currentPointerIndex)); 6741 6742 #if DEBUG_POINTER_ASSIGNMENT 6743 ALOGD("assignPointerIds - assigned: cur=%" PRIu32 ", id=%" PRIu32, currentPointerIndex, id); 6744 #endif 6745 } 6746 } 6747 6748 int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { 6749 if (mCurrentVirtualKey.down && mCurrentVirtualKey.keyCode == keyCode) { 6750 return AKEY_STATE_VIRTUAL; 6751 } 6752 6753 size_t numVirtualKeys = mVirtualKeys.size(); 6754 for (size_t i = 0; i < numVirtualKeys; i++) { 6755 const VirtualKey& virtualKey = mVirtualKeys[i]; 6756 if (virtualKey.keyCode == keyCode) { 6757 return AKEY_STATE_UP; 6758 } 6759 } 6760 6761 return AKEY_STATE_UNKNOWN; 6762 } 6763 6764 int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { 6765 if (mCurrentVirtualKey.down && mCurrentVirtualKey.scanCode == scanCode) { 6766 return AKEY_STATE_VIRTUAL; 6767 } 6768 6769 size_t numVirtualKeys = mVirtualKeys.size(); 6770 for (size_t i = 0; i < numVirtualKeys; i++) { 6771 const VirtualKey& virtualKey = mVirtualKeys[i]; 6772 if (virtualKey.scanCode == scanCode) { 6773 return AKEY_STATE_UP; 6774 } 6775 } 6776 6777 return AKEY_STATE_UNKNOWN; 6778 } 6779 6780 bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, 6781 const int32_t* keyCodes, uint8_t* outFlags) { 6782 size_t numVirtualKeys = mVirtualKeys.size(); 6783 for (size_t i = 0; i < numVirtualKeys; i++) { 6784 const VirtualKey& virtualKey = mVirtualKeys[i]; 6785 6786 for (size_t i = 0; i < numCodes; i++) { 6787 if (virtualKey.keyCode == keyCodes[i]) { 6788 outFlags[i] = 1; 6789 } 6790 } 6791 } 6792 6793 return true; 6794 } 6795 6796 6797 // --- SingleTouchInputMapper --- 6798 6799 SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) : 6800 TouchInputMapper(device) { 6801 } 6802 6803 SingleTouchInputMapper::~SingleTouchInputMapper() { 6804 } 6805 6806 void SingleTouchInputMapper::reset(nsecs_t when) { 6807 mSingleTouchMotionAccumulator.reset(getDevice()); 6808 6809 TouchInputMapper::reset(when); 6810 } 6811 6812 void SingleTouchInputMapper::process(const RawEvent* rawEvent) { 6813 TouchInputMapper::process(rawEvent); 6814 6815 mSingleTouchMotionAccumulator.process(rawEvent); 6816 } 6817 6818 void SingleTouchInputMapper::syncTouch(nsecs_t when, RawState* outState) { 6819 if (mTouchButtonAccumulator.isToolActive()) { 6820 outState->rawPointerData.pointerCount = 1; 6821 outState->rawPointerData.idToIndex[0] = 0; 6822 6823 bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE 6824 && (mTouchButtonAccumulator.isHovering() 6825 || (mRawPointerAxes.pressure.valid 6826 && mSingleTouchMotionAccumulator.getAbsolutePressure() <= 0)); 6827 outState->rawPointerData.markIdBit(0, isHovering); 6828 6829 RawPointerData::Pointer& outPointer = outState->rawPointerData.pointers[0]; 6830 outPointer.id = 0; 6831 outPointer.x = mSingleTouchMotionAccumulator.getAbsoluteX(); 6832 outPointer.y = mSingleTouchMotionAccumulator.getAbsoluteY(); 6833 outPointer.pressure = mSingleTouchMotionAccumulator.getAbsolutePressure(); 6834 outPointer.touchMajor = 0; 6835 outPointer.touchMinor = 0; 6836 outPointer.toolMajor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth(); 6837 outPointer.toolMinor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth(); 6838 outPointer.orientation = 0; 6839 outPointer.distance = mSingleTouchMotionAccumulator.getAbsoluteDistance(); 6840 outPointer.tiltX = mSingleTouchMotionAccumulator.getAbsoluteTiltX(); 6841 outPointer.tiltY = mSingleTouchMotionAccumulator.getAbsoluteTiltY(); 6842 outPointer.toolType = mTouchButtonAccumulator.getToolType(); 6843 if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { 6844 outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; 6845 } 6846 outPointer.isHovering = isHovering; 6847 } 6848 } 6849 6850 void SingleTouchInputMapper::configureRawPointerAxes() { 6851 TouchInputMapper::configureRawPointerAxes(); 6852 6853 getAbsoluteAxisInfo(ABS_X, &mRawPointerAxes.x); 6854 getAbsoluteAxisInfo(ABS_Y, &mRawPointerAxes.y); 6855 getAbsoluteAxisInfo(ABS_PRESSURE, &mRawPointerAxes.pressure); 6856 getAbsoluteAxisInfo(ABS_TOOL_WIDTH, &mRawPointerAxes.toolMajor); 6857 getAbsoluteAxisInfo(ABS_DISTANCE, &mRawPointerAxes.distance); 6858 getAbsoluteAxisInfo(ABS_TILT_X, &mRawPointerAxes.tiltX); 6859 getAbsoluteAxisInfo(ABS_TILT_Y, &mRawPointerAxes.tiltY); 6860 } 6861 6862 bool SingleTouchInputMapper::hasStylus() const { 6863 return mTouchButtonAccumulator.hasStylus(); 6864 } 6865 6866 6867 // --- MultiTouchInputMapper --- 6868 6869 MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) : 6870 TouchInputMapper(device) { 6871 } 6872 6873 MultiTouchInputMapper::~MultiTouchInputMapper() { 6874 } 6875 6876 void MultiTouchInputMapper::reset(nsecs_t when) { 6877 mMultiTouchMotionAccumulator.reset(getDevice()); 6878 6879 mPointerIdBits.clear(); 6880 6881 TouchInputMapper::reset(when); 6882 } 6883 6884 void MultiTouchInputMapper::process(const RawEvent* rawEvent) { 6885 TouchInputMapper::process(rawEvent); 6886 6887 mMultiTouchMotionAccumulator.process(rawEvent); 6888 } 6889 6890 void MultiTouchInputMapper::syncTouch(nsecs_t when, RawState* outState) { 6891 size_t inCount = mMultiTouchMotionAccumulator.getSlotCount(); 6892 size_t outCount = 0; 6893 BitSet32 newPointerIdBits; 6894 mHavePointerIds = true; 6895 6896 for (size_t inIndex = 0; inIndex < inCount; inIndex++) { 6897 const MultiTouchMotionAccumulator::Slot* inSlot = 6898 mMultiTouchMotionAccumulator.getSlot(inIndex); 6899 if (!inSlot->isInUse()) { 6900 continue; 6901 } 6902 6903 if (outCount >= MAX_POINTERS) { 6904 #if DEBUG_POINTERS 6905 ALOGD("MultiTouch device %s emitted more than maximum of %d pointers; " 6906 "ignoring the rest.", 6907 getDeviceName().string(), MAX_POINTERS); 6908 #endif 6909 break; // too many fingers! 6910 } 6911 6912 RawPointerData::Pointer& outPointer = outState->rawPointerData.pointers[outCount]; 6913 outPointer.x = inSlot->getX(); 6914 outPointer.y = inSlot->getY(); 6915 outPointer.pressure = inSlot->getPressure(); 6916 outPointer.touchMajor = inSlot->getTouchMajor(); 6917 outPointer.touchMinor = inSlot->getTouchMinor(); 6918 outPointer.toolMajor = inSlot->getToolMajor(); 6919 outPointer.toolMinor = inSlot->getToolMinor(); 6920 outPointer.orientation = inSlot->getOrientation(); 6921 outPointer.distance = inSlot->getDistance(); 6922 outPointer.tiltX = 0; 6923 outPointer.tiltY = 0; 6924 6925 outPointer.toolType = inSlot->getToolType(); 6926 if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { 6927 outPointer.toolType = mTouchButtonAccumulator.getToolType(); 6928 if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { 6929 outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; 6930 } 6931 } 6932 6933 bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE 6934 && (mTouchButtonAccumulator.isHovering() 6935 || (mRawPointerAxes.pressure.valid && inSlot->getPressure() <= 0)); 6936 outPointer.isHovering = isHovering; 6937 6938 // Assign pointer id using tracking id if available. 6939 if (mHavePointerIds) { 6940 int32_t trackingId = inSlot->getTrackingId(); 6941 int32_t id = -1; 6942 if (trackingId >= 0) { 6943 for (BitSet32 idBits(mPointerIdBits); !idBits.isEmpty(); ) { 6944 uint32_t n = idBits.clearFirstMarkedBit(); 6945 if (mPointerTrackingIdMap[n] == trackingId) { 6946 id = n; 6947 } 6948 } 6949 6950 if (id < 0 && !mPointerIdBits.isFull()) { 6951 id = mPointerIdBits.markFirstUnmarkedBit(); 6952 mPointerTrackingIdMap[id] = trackingId; 6953 } 6954 } 6955 if (id < 0) { 6956 mHavePointerIds = false; 6957 outState->rawPointerData.clearIdBits(); 6958 newPointerIdBits.clear(); 6959 } else { 6960 outPointer.id = id; 6961 outState->rawPointerData.idToIndex[id] = outCount; 6962 outState->rawPointerData.markIdBit(id, isHovering); 6963 newPointerIdBits.markBit(id); 6964 } 6965 } 6966 outCount += 1; 6967 } 6968 6969 outState->deviceTimestamp = mMultiTouchMotionAccumulator.getDeviceTimestamp(); 6970 outState->rawPointerData.pointerCount = outCount; 6971 mPointerIdBits = newPointerIdBits; 6972 6973 mMultiTouchMotionAccumulator.finishSync(); 6974 } 6975 6976 void MultiTouchInputMapper::configureRawPointerAxes() { 6977 TouchInputMapper::configureRawPointerAxes(); 6978 6979 getAbsoluteAxisInfo(ABS_MT_POSITION_X, &mRawPointerAxes.x); 6980 getAbsoluteAxisInfo(ABS_MT_POSITION_Y, &mRawPointerAxes.y); 6981 getAbsoluteAxisInfo(ABS_MT_TOUCH_MAJOR, &mRawPointerAxes.touchMajor); 6982 getAbsoluteAxisInfo(ABS_MT_TOUCH_MINOR, &mRawPointerAxes.touchMinor); 6983 getAbsoluteAxisInfo(ABS_MT_WIDTH_MAJOR, &mRawPointerAxes.toolMajor); 6984 getAbsoluteAxisInfo(ABS_MT_WIDTH_MINOR, &mRawPointerAxes.toolMinor); 6985 getAbsoluteAxisInfo(ABS_MT_ORIENTATION, &mRawPointerAxes.orientation); 6986 getAbsoluteAxisInfo(ABS_MT_PRESSURE, &mRawPointerAxes.pressure); 6987 getAbsoluteAxisInfo(ABS_MT_DISTANCE, &mRawPointerAxes.distance); 6988 getAbsoluteAxisInfo(ABS_MT_TRACKING_ID, &mRawPointerAxes.trackingId); 6989 getAbsoluteAxisInfo(ABS_MT_SLOT, &mRawPointerAxes.slot); 6990 6991 if (mRawPointerAxes.trackingId.valid 6992 && mRawPointerAxes.slot.valid 6993 && mRawPointerAxes.slot.minValue == 0 && mRawPointerAxes.slot.maxValue > 0) { 6994 size_t slotCount = mRawPointerAxes.slot.maxValue + 1; 6995 if (slotCount > MAX_SLOTS) { 6996 ALOGW("MultiTouch Device %s reported %zu slots but the framework " 6997 "only supports a maximum of %zu slots at this time.", 6998 getDeviceName().string(), slotCount, MAX_SLOTS); 6999 slotCount = MAX_SLOTS; 7000 } 7001 mMultiTouchMotionAccumulator.configure(getDevice(), 7002 slotCount, true /*usingSlotsProtocol*/); 7003 } else { 7004 mMultiTouchMotionAccumulator.configure(getDevice(), 7005 MAX_POINTERS, false /*usingSlotsProtocol*/); 7006 } 7007 } 7008 7009 bool MultiTouchInputMapper::hasStylus() const { 7010 return mMultiTouchMotionAccumulator.hasStylus() 7011 || mTouchButtonAccumulator.hasStylus(); 7012 } 7013 7014 // --- ExternalStylusInputMapper 7015 7016 ExternalStylusInputMapper::ExternalStylusInputMapper(InputDevice* device) : 7017 InputMapper(device) { 7018 7019 } 7020 7021 uint32_t ExternalStylusInputMapper::getSources() { 7022 return AINPUT_SOURCE_STYLUS; 7023 } 7024 7025 void ExternalStylusInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 7026 InputMapper::populateDeviceInfo(info); 7027 info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, AINPUT_SOURCE_STYLUS, 7028 0.0f, 1.0f, 0.0f, 0.0f, 0.0f); 7029 } 7030 7031 void ExternalStylusInputMapper::dump(std::string& dump) { 7032 dump += INDENT2 "External Stylus Input Mapper:\n"; 7033 dump += INDENT3 "Raw Stylus Axes:\n"; 7034 dumpRawAbsoluteAxisInfo(dump, mRawPressureAxis, "Pressure"); 7035 dump += INDENT3 "Stylus State:\n"; 7036 dumpStylusState(dump, mStylusState); 7037 } 7038 7039 void ExternalStylusInputMapper::configure(nsecs_t when, 7040 const InputReaderConfiguration* config, uint32_t changes) { 7041 getAbsoluteAxisInfo(ABS_PRESSURE, &mRawPressureAxis); 7042 mTouchButtonAccumulator.configure(getDevice()); 7043 } 7044 7045 void ExternalStylusInputMapper::reset(nsecs_t when) { 7046 InputDevice* device = getDevice(); 7047 mSingleTouchMotionAccumulator.reset(device); 7048 mTouchButtonAccumulator.reset(device); 7049 InputMapper::reset(when); 7050 } 7051 7052 void ExternalStylusInputMapper::process(const RawEvent* rawEvent) { 7053 mSingleTouchMotionAccumulator.process(rawEvent); 7054 mTouchButtonAccumulator.process(rawEvent); 7055 7056 if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { 7057 sync(rawEvent->when); 7058 } 7059 } 7060 7061 void ExternalStylusInputMapper::sync(nsecs_t when) { 7062 mStylusState.clear(); 7063 7064 mStylusState.when = when; 7065 7066 mStylusState.toolType = mTouchButtonAccumulator.getToolType(); 7067 if (mStylusState.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { 7068 mStylusState.toolType = AMOTION_EVENT_TOOL_TYPE_STYLUS; 7069 } 7070 7071 int32_t pressure = mSingleTouchMotionAccumulator.getAbsolutePressure(); 7072 if (mRawPressureAxis.valid) { 7073 mStylusState.pressure = float(pressure) / mRawPressureAxis.maxValue; 7074 } else if (mTouchButtonAccumulator.isToolActive()) { 7075 mStylusState.pressure = 1.0f; 7076 } else { 7077 mStylusState.pressure = 0.0f; 7078 } 7079 7080 mStylusState.buttons = mTouchButtonAccumulator.getButtonState(); 7081 7082 mContext->dispatchExternalStylusState(mStylusState); 7083 } 7084 7085 7086 // --- JoystickInputMapper --- 7087 7088 JoystickInputMapper::JoystickInputMapper(InputDevice* device) : 7089 InputMapper(device) { 7090 } 7091 7092 JoystickInputMapper::~JoystickInputMapper() { 7093 } 7094 7095 uint32_t JoystickInputMapper::getSources() { 7096 return AINPUT_SOURCE_JOYSTICK; 7097 } 7098 7099 void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) { 7100 InputMapper::populateDeviceInfo(info); 7101 7102 for (size_t i = 0; i < mAxes.size(); i++) { 7103 const Axis& axis = mAxes.valueAt(i); 7104 addMotionRange(axis.axisInfo.axis, axis, info); 7105 7106 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { 7107 addMotionRange(axis.axisInfo.highAxis, axis, info); 7108 7109 } 7110 } 7111 } 7112 7113 void JoystickInputMapper::addMotionRange(int32_t axisId, const Axis& axis, 7114 InputDeviceInfo* info) { 7115 info->addMotionRange(axisId, AINPUT_SOURCE_JOYSTICK, 7116 axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution); 7117 /* In order to ease the transition for developers from using the old axes 7118 * to the newer, more semantically correct axes, we'll continue to register 7119 * the old axes as duplicates of their corresponding new ones. */ 7120 int32_t compatAxis = getCompatAxis(axisId); 7121 if (compatAxis >= 0) { 7122 info->addMotionRange(compatAxis, AINPUT_SOURCE_JOYSTICK, 7123 axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution); 7124 } 7125 } 7126 7127 /* A mapping from axes the joystick actually has to the axes that should be 7128 * artificially created for compatibility purposes. 7129 * Returns -1 if no compatibility axis is needed. */ 7130 int32_t JoystickInputMapper::getCompatAxis(int32_t axis) { 7131 switch(axis) { 7132 case AMOTION_EVENT_AXIS_LTRIGGER: 7133 return AMOTION_EVENT_AXIS_BRAKE; 7134 case AMOTION_EVENT_AXIS_RTRIGGER: 7135 return AMOTION_EVENT_AXIS_GAS; 7136 } 7137 return -1; 7138 } 7139 7140 void JoystickInputMapper::dump(std::string& dump) { 7141 dump += INDENT2 "Joystick Input Mapper:\n"; 7142 7143 dump += INDENT3 "Axes:\n"; 7144 size_t numAxes = mAxes.size(); 7145 for (size_t i = 0; i < numAxes; i++) { 7146 const Axis& axis = mAxes.valueAt(i); 7147 const char* label = getAxisLabel(axis.axisInfo.axis); 7148 if (label) { 7149 dump += StringPrintf(INDENT4 "%s", label); 7150 } else { 7151 dump += StringPrintf(INDENT4 "%d", axis.axisInfo.axis); 7152 } 7153 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { 7154 label = getAxisLabel(axis.axisInfo.highAxis); 7155 if (label) { 7156 dump += StringPrintf(" / %s (split at %d)", label, axis.axisInfo.splitValue); 7157 } else { 7158 dump += StringPrintf(" / %d (split at %d)", axis.axisInfo.highAxis, 7159 axis.axisInfo.splitValue); 7160 } 7161 } else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) { 7162 dump += " (invert)"; 7163 } 7164 7165 dump += StringPrintf(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f, resolution=%0.5f\n", 7166 axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution); 7167 dump += StringPrintf(INDENT4 " scale=%0.5f, offset=%0.5f, " 7168 "highScale=%0.5f, highOffset=%0.5f\n", 7169 axis.scale, axis.offset, axis.highScale, axis.highOffset); 7170 dump += StringPrintf(INDENT4 " rawAxis=%d, rawMin=%d, rawMax=%d, " 7171 "rawFlat=%d, rawFuzz=%d, rawResolution=%d\n", 7172 mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue, 7173 axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz, axis.rawAxisInfo.resolution); 7174 } 7175 } 7176 7177 void JoystickInputMapper::configure(nsecs_t when, 7178 const InputReaderConfiguration* config, uint32_t changes) { 7179 InputMapper::configure(when, config, changes); 7180 7181 if (!changes) { // first time only 7182 // Collect all axes. 7183 for (int32_t abs = 0; abs <= ABS_MAX; abs++) { 7184 if (!(getAbsAxisUsage(abs, getDevice()->getClasses()) 7185 & INPUT_DEVICE_CLASS_JOYSTICK)) { 7186 continue; // axis must be claimed by a different device 7187 } 7188 7189 RawAbsoluteAxisInfo rawAxisInfo; 7190 getAbsoluteAxisInfo(abs, &rawAxisInfo); 7191 if (rawAxisInfo.valid) { 7192 // Map axis. 7193 AxisInfo axisInfo; 7194 bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo); 7195 if (!explicitlyMapped) { 7196 // Axis is not explicitly mapped, will choose a generic axis later. 7197 axisInfo.mode = AxisInfo::MODE_NORMAL; 7198 axisInfo.axis = -1; 7199 } 7200 7201 // Apply flat override. 7202 int32_t rawFlat = axisInfo.flatOverride < 0 7203 ? rawAxisInfo.flat : axisInfo.flatOverride; 7204 7205 // Calculate scaling factors and limits. 7206 Axis axis; 7207 if (axisInfo.mode == AxisInfo::MODE_SPLIT) { 7208 float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue); 7209 float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue); 7210 axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, 7211 scale, 0.0f, highScale, 0.0f, 7212 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale, 7213 rawAxisInfo.resolution * scale); 7214 } else if (isCenteredAxis(axisInfo.axis)) { 7215 float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue); 7216 float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale; 7217 axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, 7218 scale, offset, scale, offset, 7219 -1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale, 7220 rawAxisInfo.resolution * scale); 7221 } else { 7222 float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue); 7223 axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, 7224 scale, 0.0f, scale, 0.0f, 7225 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale, 7226 rawAxisInfo.resolution * scale); 7227 } 7228 7229 // To eliminate noise while the joystick is at rest, filter out small variations 7230 // in axis values up front. 7231 axis.filter = axis.fuzz ? axis.fuzz : axis.flat * 0.25f; 7232 7233 mAxes.add(abs, axis); 7234 } 7235 } 7236 7237 // If there are too many axes, start dropping them. 7238 // Prefer to keep explicitly mapped axes. 7239 if (mAxes.size() > PointerCoords::MAX_AXES) { 7240 ALOGI("Joystick '%s' has %zu axes but the framework only supports a maximum of %d.", 7241 getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES); 7242 pruneAxes(true); 7243 pruneAxes(false); 7244 } 7245 7246 // Assign generic axis ids to remaining axes. 7247 int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1; 7248 size_t numAxes = mAxes.size(); 7249 for (size_t i = 0; i < numAxes; i++) { 7250 Axis& axis = mAxes.editValueAt(i); 7251 if (axis.axisInfo.axis < 0) { 7252 while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16 7253 && haveAxis(nextGenericAxisId)) { 7254 nextGenericAxisId += 1; 7255 } 7256 7257 if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) { 7258 axis.axisInfo.axis = nextGenericAxisId; 7259 nextGenericAxisId += 1; 7260 } else { 7261 ALOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids " 7262 "have already been assigned to other axes.", 7263 getDeviceName().string(), mAxes.keyAt(i)); 7264 mAxes.removeItemsAt(i--); 7265 numAxes -= 1; 7266 } 7267 } 7268 } 7269 } 7270 } 7271 7272 bool JoystickInputMapper::haveAxis(int32_t axisId) { 7273 size_t numAxes = mAxes.size(); 7274 for (size_t i = 0; i < numAxes; i++) { 7275 const Axis& axis = mAxes.valueAt(i); 7276 if (axis.axisInfo.axis == axisId 7277 || (axis.axisInfo.mode == AxisInfo::MODE_SPLIT 7278 && axis.axisInfo.highAxis == axisId)) { 7279 return true; 7280 } 7281 } 7282 return false; 7283 } 7284 7285 void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) { 7286 size_t i = mAxes.size(); 7287 while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) { 7288 if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) { 7289 continue; 7290 } 7291 ALOGI("Discarding joystick '%s' axis %d because there are too many axes.", 7292 getDeviceName().string(), mAxes.keyAt(i)); 7293 mAxes.removeItemsAt(i); 7294 } 7295 } 7296 7297 bool JoystickInputMapper::isCenteredAxis(int32_t axis) { 7298 switch (axis) { 7299 case AMOTION_EVENT_AXIS_X: 7300 case AMOTION_EVENT_AXIS_Y: 7301 case AMOTION_EVENT_AXIS_Z: 7302 case AMOTION_EVENT_AXIS_RX: 7303 case AMOTION_EVENT_AXIS_RY: 7304 case AMOTION_EVENT_AXIS_RZ: 7305 case AMOTION_EVENT_AXIS_HAT_X: 7306 case AMOTION_EVENT_AXIS_HAT_Y: 7307 case AMOTION_EVENT_AXIS_ORIENTATION: 7308 case AMOTION_EVENT_AXIS_RUDDER: 7309 case AMOTION_EVENT_AXIS_WHEEL: 7310 return true; 7311 default: 7312 return false; 7313 } 7314 } 7315 7316 void JoystickInputMapper::reset(nsecs_t when) { 7317 // Recenter all axes. 7318 size_t numAxes = mAxes.size(); 7319 for (size_t i = 0; i < numAxes; i++) { 7320 Axis& axis = mAxes.editValueAt(i); 7321 axis.resetValue(); 7322 } 7323 7324 InputMapper::reset(when); 7325 } 7326 7327 void JoystickInputMapper::process(const RawEvent* rawEvent) { 7328 switch (rawEvent->type) { 7329 case EV_ABS: { 7330 ssize_t index = mAxes.indexOfKey(rawEvent->code); 7331 if (index >= 0) { 7332 Axis& axis = mAxes.editValueAt(index); 7333 float newValue, highNewValue; 7334 switch (axis.axisInfo.mode) { 7335 case AxisInfo::MODE_INVERT: 7336 newValue = (axis.rawAxisInfo.maxValue - rawEvent->value) 7337 * axis.scale + axis.offset; 7338 highNewValue = 0.0f; 7339 break; 7340 case AxisInfo::MODE_SPLIT: 7341 if (rawEvent->value < axis.axisInfo.splitValue) { 7342 newValue = (axis.axisInfo.splitValue - rawEvent->value) 7343 * axis.scale + axis.offset; 7344 highNewValue = 0.0f; 7345 } else if (rawEvent->value > axis.axisInfo.splitValue) { 7346 newValue = 0.0f; 7347 highNewValue = (rawEvent->value - axis.axisInfo.splitValue) 7348 * axis.highScale + axis.highOffset; 7349 } else { 7350 newValue = 0.0f; 7351 highNewValue = 0.0f; 7352 } 7353 break; 7354 default: 7355 newValue = rawEvent->value * axis.scale + axis.offset; 7356 highNewValue = 0.0f; 7357 break; 7358 } 7359 axis.newValue = newValue; 7360 axis.highNewValue = highNewValue; 7361 } 7362 break; 7363 } 7364 7365 case EV_SYN: 7366 switch (rawEvent->code) { 7367 case SYN_REPORT: 7368 sync(rawEvent->when, false /*force*/); 7369 break; 7370 } 7371 break; 7372 } 7373 } 7374 7375 void JoystickInputMapper::sync(nsecs_t when, bool force) { 7376 if (!filterAxes(force)) { 7377 return; 7378 } 7379 7380 int32_t metaState = mContext->getGlobalMetaState(); 7381 int32_t buttonState = 0; 7382 7383 PointerProperties pointerProperties; 7384 pointerProperties.clear(); 7385 pointerProperties.id = 0; 7386 pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_UNKNOWN; 7387 7388 PointerCoords pointerCoords; 7389 pointerCoords.clear(); 7390 7391 size_t numAxes = mAxes.size(); 7392 for (size_t i = 0; i < numAxes; i++) { 7393 const Axis& axis = mAxes.valueAt(i); 7394 setPointerCoordsAxisValue(&pointerCoords, axis.axisInfo.axis, axis.currentValue); 7395 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { 7396 setPointerCoordsAxisValue(&pointerCoords, axis.axisInfo.highAxis, 7397 axis.highCurrentValue); 7398 } 7399 } 7400 7401 // Moving a joystick axis should not wake the device because joysticks can 7402 // be fairly noisy even when not in use. On the other hand, pushing a gamepad 7403 // button will likely wake the device. 7404 // TODO: Use the input device configuration to control this behavior more finely. 7405 uint32_t policyFlags = 0; 7406 7407 NotifyMotionArgs args(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags, 7408 AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, 7409 ADISPLAY_ID_NONE, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, 7410 0, 0, 0); 7411 getListener()->notifyMotion(&args); 7412 } 7413 7414 void JoystickInputMapper::setPointerCoordsAxisValue(PointerCoords* pointerCoords, 7415 int32_t axis, float value) { 7416 pointerCoords->setAxisValue(axis, value); 7417 /* In order to ease the transition for developers from using the old axes 7418 * to the newer, more semantically correct axes, we'll continue to produce 7419 * values for the old axes as mirrors of the value of their corresponding 7420 * new axes. */ 7421 int32_t compatAxis = getCompatAxis(axis); 7422 if (compatAxis >= 0) { 7423 pointerCoords->setAxisValue(compatAxis, value); 7424 } 7425 } 7426 7427 bool JoystickInputMapper::filterAxes(bool force) { 7428 bool atLeastOneSignificantChange = force; 7429 size_t numAxes = mAxes.size(); 7430 for (size_t i = 0; i < numAxes; i++) { 7431 Axis& axis = mAxes.editValueAt(i); 7432 if (force || hasValueChangedSignificantly(axis.filter, 7433 axis.newValue, axis.currentValue, axis.min, axis.max)) { 7434 axis.currentValue = axis.newValue; 7435 atLeastOneSignificantChange = true; 7436 } 7437 if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { 7438 if (force || hasValueChangedSignificantly(axis.filter, 7439 axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) { 7440 axis.highCurrentValue = axis.highNewValue; 7441 atLeastOneSignificantChange = true; 7442 } 7443 } 7444 } 7445 return atLeastOneSignificantChange; 7446 } 7447 7448 bool JoystickInputMapper::hasValueChangedSignificantly( 7449 float filter, float newValue, float currentValue, float min, float max) { 7450 if (newValue != currentValue) { 7451 // Filter out small changes in value unless the value is converging on the axis 7452 // bounds or center point. This is intended to reduce the amount of information 7453 // sent to applications by particularly noisy joysticks (such as PS3). 7454 if (fabs(newValue - currentValue) > filter 7455 || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min) 7456 || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max) 7457 || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) { 7458 return true; 7459 } 7460 } 7461 return false; 7462 } 7463 7464 bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange( 7465 float filter, float newValue, float currentValue, float thresholdValue) { 7466 float newDistance = fabs(newValue - thresholdValue); 7467 if (newDistance < filter) { 7468 float oldDistance = fabs(currentValue - thresholdValue); 7469 if (newDistance < oldDistance) { 7470 return true; 7471 } 7472 } 7473 return false; 7474 } 7475 7476 } // namespace android 7477