Home | History | Annotate | Download | only in Sema
      1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides Sema routines for C++ overloading.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/Overload.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/Expr.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/AST/ExprObjC.h"
     21 #include "clang/AST/TypeOrdering.h"
     22 #include "clang/Basic/Diagnostic.h"
     23 #include "clang/Basic/DiagnosticOptions.h"
     24 #include "clang/Basic/PartialDiagnostic.h"
     25 #include "clang/Basic/TargetInfo.h"
     26 #include "clang/Sema/Initialization.h"
     27 #include "clang/Sema/Lookup.h"
     28 #include "clang/Sema/SemaInternal.h"
     29 #include "clang/Sema/Template.h"
     30 #include "clang/Sema/TemplateDeduction.h"
     31 #include "llvm/ADT/DenseSet.h"
     32 #include "llvm/ADT/STLExtras.h"
     33 #include "llvm/ADT/SmallPtrSet.h"
     34 #include "llvm/ADT/SmallString.h"
     35 #include <algorithm>
     36 #include <cstdlib>
     37 
     38 using namespace clang;
     39 using namespace sema;
     40 
     41 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
     42   return llvm::any_of(FD->parameters(),
     43                       std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>));
     44 }
     45 
     46 /// A convenience routine for creating a decayed reference to a function.
     47 static ExprResult
     48 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
     49                       bool HadMultipleCandidates,
     50                       SourceLocation Loc = SourceLocation(),
     51                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
     52   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
     53     return ExprError();
     54   // If FoundDecl is different from Fn (such as if one is a template
     55   // and the other a specialization), make sure DiagnoseUseOfDecl is
     56   // called on both.
     57   // FIXME: This would be more comprehensively addressed by modifying
     58   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
     59   // being used.
     60   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
     61     return ExprError();
     62   DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
     63                                                  VK_LValue, Loc, LocInfo);
     64   if (HadMultipleCandidates)
     65     DRE->setHadMultipleCandidates(true);
     66 
     67   S.MarkDeclRefReferenced(DRE);
     68   return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
     69                              CK_FunctionToPointerDecay);
     70 }
     71 
     72 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
     73                                  bool InOverloadResolution,
     74                                  StandardConversionSequence &SCS,
     75                                  bool CStyle,
     76                                  bool AllowObjCWritebackConversion);
     77 
     78 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
     79                                                  QualType &ToType,
     80                                                  bool InOverloadResolution,
     81                                                  StandardConversionSequence &SCS,
     82                                                  bool CStyle);
     83 static OverloadingResult
     84 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
     85                         UserDefinedConversionSequence& User,
     86                         OverloadCandidateSet& Conversions,
     87                         bool AllowExplicit,
     88                         bool AllowObjCConversionOnExplicit);
     89 
     90 
     91 static ImplicitConversionSequence::CompareKind
     92 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
     93                                    const StandardConversionSequence& SCS1,
     94                                    const StandardConversionSequence& SCS2);
     95 
     96 static ImplicitConversionSequence::CompareKind
     97 CompareQualificationConversions(Sema &S,
     98                                 const StandardConversionSequence& SCS1,
     99                                 const StandardConversionSequence& SCS2);
    100 
    101 static ImplicitConversionSequence::CompareKind
    102 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
    103                                 const StandardConversionSequence& SCS1,
    104                                 const StandardConversionSequence& SCS2);
    105 
    106 /// GetConversionRank - Retrieve the implicit conversion rank
    107 /// corresponding to the given implicit conversion kind.
    108 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
    109   static const ImplicitConversionRank
    110     Rank[(int)ICK_Num_Conversion_Kinds] = {
    111     ICR_Exact_Match,
    112     ICR_Exact_Match,
    113     ICR_Exact_Match,
    114     ICR_Exact_Match,
    115     ICR_Exact_Match,
    116     ICR_Exact_Match,
    117     ICR_Promotion,
    118     ICR_Promotion,
    119     ICR_Promotion,
    120     ICR_Conversion,
    121     ICR_Conversion,
    122     ICR_Conversion,
    123     ICR_Conversion,
    124     ICR_Conversion,
    125     ICR_Conversion,
    126     ICR_Conversion,
    127     ICR_Conversion,
    128     ICR_Conversion,
    129     ICR_Conversion,
    130     ICR_Conversion,
    131     ICR_Complex_Real_Conversion,
    132     ICR_Conversion,
    133     ICR_Conversion,
    134     ICR_Writeback_Conversion,
    135     ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
    136                      // it was omitted by the patch that added
    137                      // ICK_Zero_Event_Conversion
    138     ICR_C_Conversion
    139   };
    140   return Rank[(int)Kind];
    141 }
    142 
    143 /// GetImplicitConversionName - Return the name of this kind of
    144 /// implicit conversion.
    145 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
    146   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
    147     "No conversion",
    148     "Lvalue-to-rvalue",
    149     "Array-to-pointer",
    150     "Function-to-pointer",
    151     "Noreturn adjustment",
    152     "Qualification",
    153     "Integral promotion",
    154     "Floating point promotion",
    155     "Complex promotion",
    156     "Integral conversion",
    157     "Floating conversion",
    158     "Complex conversion",
    159     "Floating-integral conversion",
    160     "Pointer conversion",
    161     "Pointer-to-member conversion",
    162     "Boolean conversion",
    163     "Compatible-types conversion",
    164     "Derived-to-base conversion",
    165     "Vector conversion",
    166     "Vector splat",
    167     "Complex-real conversion",
    168     "Block Pointer conversion",
    169     "Transparent Union Conversion",
    170     "Writeback conversion",
    171     "OpenCL Zero Event Conversion",
    172     "C specific type conversion"
    173   };
    174   return Name[Kind];
    175 }
    176 
    177 /// StandardConversionSequence - Set the standard conversion
    178 /// sequence to the identity conversion.
    179 void StandardConversionSequence::setAsIdentityConversion() {
    180   First = ICK_Identity;
    181   Second = ICK_Identity;
    182   Third = ICK_Identity;
    183   DeprecatedStringLiteralToCharPtr = false;
    184   QualificationIncludesObjCLifetime = false;
    185   ReferenceBinding = false;
    186   DirectBinding = false;
    187   IsLvalueReference = true;
    188   BindsToFunctionLvalue = false;
    189   BindsToRvalue = false;
    190   BindsImplicitObjectArgumentWithoutRefQualifier = false;
    191   ObjCLifetimeConversionBinding = false;
    192   CopyConstructor = nullptr;
    193 }
    194 
    195 /// getRank - Retrieve the rank of this standard conversion sequence
    196 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
    197 /// implicit conversions.
    198 ImplicitConversionRank StandardConversionSequence::getRank() const {
    199   ImplicitConversionRank Rank = ICR_Exact_Match;
    200   if  (GetConversionRank(First) > Rank)
    201     Rank = GetConversionRank(First);
    202   if  (GetConversionRank(Second) > Rank)
    203     Rank = GetConversionRank(Second);
    204   if  (GetConversionRank(Third) > Rank)
    205     Rank = GetConversionRank(Third);
    206   return Rank;
    207 }
    208 
    209 /// isPointerConversionToBool - Determines whether this conversion is
    210 /// a conversion of a pointer or pointer-to-member to bool. This is
    211 /// used as part of the ranking of standard conversion sequences
    212 /// (C++ 13.3.3.2p4).
    213 bool StandardConversionSequence::isPointerConversionToBool() const {
    214   // Note that FromType has not necessarily been transformed by the
    215   // array-to-pointer or function-to-pointer implicit conversions, so
    216   // check for their presence as well as checking whether FromType is
    217   // a pointer.
    218   if (getToType(1)->isBooleanType() &&
    219       (getFromType()->isPointerType() ||
    220        getFromType()->isObjCObjectPointerType() ||
    221        getFromType()->isBlockPointerType() ||
    222        getFromType()->isNullPtrType() ||
    223        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
    224     return true;
    225 
    226   return false;
    227 }
    228 
    229 /// isPointerConversionToVoidPointer - Determines whether this
    230 /// conversion is a conversion of a pointer to a void pointer. This is
    231 /// used as part of the ranking of standard conversion sequences (C++
    232 /// 13.3.3.2p4).
    233 bool
    234 StandardConversionSequence::
    235 isPointerConversionToVoidPointer(ASTContext& Context) const {
    236   QualType FromType = getFromType();
    237   QualType ToType = getToType(1);
    238 
    239   // Note that FromType has not necessarily been transformed by the
    240   // array-to-pointer implicit conversion, so check for its presence
    241   // and redo the conversion to get a pointer.
    242   if (First == ICK_Array_To_Pointer)
    243     FromType = Context.getArrayDecayedType(FromType);
    244 
    245   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
    246     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
    247       return ToPtrType->getPointeeType()->isVoidType();
    248 
    249   return false;
    250 }
    251 
    252 /// Skip any implicit casts which could be either part of a narrowing conversion
    253 /// or after one in an implicit conversion.
    254 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
    255   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
    256     switch (ICE->getCastKind()) {
    257     case CK_NoOp:
    258     case CK_IntegralCast:
    259     case CK_IntegralToBoolean:
    260     case CK_IntegralToFloating:
    261     case CK_BooleanToSignedIntegral:
    262     case CK_FloatingToIntegral:
    263     case CK_FloatingToBoolean:
    264     case CK_FloatingCast:
    265       Converted = ICE->getSubExpr();
    266       continue;
    267 
    268     default:
    269       return Converted;
    270     }
    271   }
    272 
    273   return Converted;
    274 }
    275 
    276 /// Check if this standard conversion sequence represents a narrowing
    277 /// conversion, according to C++11 [dcl.init.list]p7.
    278 ///
    279 /// \param Ctx  The AST context.
    280 /// \param Converted  The result of applying this standard conversion sequence.
    281 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
    282 ///        value of the expression prior to the narrowing conversion.
    283 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
    284 ///        type of the expression prior to the narrowing conversion.
    285 NarrowingKind
    286 StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
    287                                              const Expr *Converted,
    288                                              APValue &ConstantValue,
    289                                              QualType &ConstantType) const {
    290   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
    291 
    292   // C++11 [dcl.init.list]p7:
    293   //   A narrowing conversion is an implicit conversion ...
    294   QualType FromType = getToType(0);
    295   QualType ToType = getToType(1);
    296 
    297   // A conversion to an enumeration type is narrowing if the conversion to
    298   // the underlying type is narrowing. This only arises for expressions of
    299   // the form 'Enum{init}'.
    300   if (auto *ET = ToType->getAs<EnumType>())
    301     ToType = ET->getDecl()->getIntegerType();
    302 
    303   switch (Second) {
    304   // 'bool' is an integral type; dispatch to the right place to handle it.
    305   case ICK_Boolean_Conversion:
    306     if (FromType->isRealFloatingType())
    307       goto FloatingIntegralConversion;
    308     if (FromType->isIntegralOrUnscopedEnumerationType())
    309       goto IntegralConversion;
    310     // Boolean conversions can be from pointers and pointers to members
    311     // [conv.bool], and those aren't considered narrowing conversions.
    312     return NK_Not_Narrowing;
    313 
    314   // -- from a floating-point type to an integer type, or
    315   //
    316   // -- from an integer type or unscoped enumeration type to a floating-point
    317   //    type, except where the source is a constant expression and the actual
    318   //    value after conversion will fit into the target type and will produce
    319   //    the original value when converted back to the original type, or
    320   case ICK_Floating_Integral:
    321   FloatingIntegralConversion:
    322     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
    323       return NK_Type_Narrowing;
    324     } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
    325       llvm::APSInt IntConstantValue;
    326       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    327       if (Initializer &&
    328           Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
    329         // Convert the integer to the floating type.
    330         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
    331         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
    332                                 llvm::APFloat::rmNearestTiesToEven);
    333         // And back.
    334         llvm::APSInt ConvertedValue = IntConstantValue;
    335         bool ignored;
    336         Result.convertToInteger(ConvertedValue,
    337                                 llvm::APFloat::rmTowardZero, &ignored);
    338         // If the resulting value is different, this was a narrowing conversion.
    339         if (IntConstantValue != ConvertedValue) {
    340           ConstantValue = APValue(IntConstantValue);
    341           ConstantType = Initializer->getType();
    342           return NK_Constant_Narrowing;
    343         }
    344       } else {
    345         // Variables are always narrowings.
    346         return NK_Variable_Narrowing;
    347       }
    348     }
    349     return NK_Not_Narrowing;
    350 
    351   // -- from long double to double or float, or from double to float, except
    352   //    where the source is a constant expression and the actual value after
    353   //    conversion is within the range of values that can be represented (even
    354   //    if it cannot be represented exactly), or
    355   case ICK_Floating_Conversion:
    356     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
    357         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
    358       // FromType is larger than ToType.
    359       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    360       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
    361         // Constant!
    362         assert(ConstantValue.isFloat());
    363         llvm::APFloat FloatVal = ConstantValue.getFloat();
    364         // Convert the source value into the target type.
    365         bool ignored;
    366         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
    367           Ctx.getFloatTypeSemantics(ToType),
    368           llvm::APFloat::rmNearestTiesToEven, &ignored);
    369         // If there was no overflow, the source value is within the range of
    370         // values that can be represented.
    371         if (ConvertStatus & llvm::APFloat::opOverflow) {
    372           ConstantType = Initializer->getType();
    373           return NK_Constant_Narrowing;
    374         }
    375       } else {
    376         return NK_Variable_Narrowing;
    377       }
    378     }
    379     return NK_Not_Narrowing;
    380 
    381   // -- from an integer type or unscoped enumeration type to an integer type
    382   //    that cannot represent all the values of the original type, except where
    383   //    the source is a constant expression and the actual value after
    384   //    conversion will fit into the target type and will produce the original
    385   //    value when converted back to the original type.
    386   case ICK_Integral_Conversion:
    387   IntegralConversion: {
    388     assert(FromType->isIntegralOrUnscopedEnumerationType());
    389     assert(ToType->isIntegralOrUnscopedEnumerationType());
    390     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
    391     const unsigned FromWidth = Ctx.getIntWidth(FromType);
    392     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
    393     const unsigned ToWidth = Ctx.getIntWidth(ToType);
    394 
    395     if (FromWidth > ToWidth ||
    396         (FromWidth == ToWidth && FromSigned != ToSigned) ||
    397         (FromSigned && !ToSigned)) {
    398       // Not all values of FromType can be represented in ToType.
    399       llvm::APSInt InitializerValue;
    400       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    401       if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
    402         // Such conversions on variables are always narrowing.
    403         return NK_Variable_Narrowing;
    404       }
    405       bool Narrowing = false;
    406       if (FromWidth < ToWidth) {
    407         // Negative -> unsigned is narrowing. Otherwise, more bits is never
    408         // narrowing.
    409         if (InitializerValue.isSigned() && InitializerValue.isNegative())
    410           Narrowing = true;
    411       } else {
    412         // Add a bit to the InitializerValue so we don't have to worry about
    413         // signed vs. unsigned comparisons.
    414         InitializerValue = InitializerValue.extend(
    415           InitializerValue.getBitWidth() + 1);
    416         // Convert the initializer to and from the target width and signed-ness.
    417         llvm::APSInt ConvertedValue = InitializerValue;
    418         ConvertedValue = ConvertedValue.trunc(ToWidth);
    419         ConvertedValue.setIsSigned(ToSigned);
    420         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
    421         ConvertedValue.setIsSigned(InitializerValue.isSigned());
    422         // If the result is different, this was a narrowing conversion.
    423         if (ConvertedValue != InitializerValue)
    424           Narrowing = true;
    425       }
    426       if (Narrowing) {
    427         ConstantType = Initializer->getType();
    428         ConstantValue = APValue(InitializerValue);
    429         return NK_Constant_Narrowing;
    430       }
    431     }
    432     return NK_Not_Narrowing;
    433   }
    434 
    435   default:
    436     // Other kinds of conversions are not narrowings.
    437     return NK_Not_Narrowing;
    438   }
    439 }
    440 
    441 /// dump - Print this standard conversion sequence to standard
    442 /// error. Useful for debugging overloading issues.
    443 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
    444   raw_ostream &OS = llvm::errs();
    445   bool PrintedSomething = false;
    446   if (First != ICK_Identity) {
    447     OS << GetImplicitConversionName(First);
    448     PrintedSomething = true;
    449   }
    450 
    451   if (Second != ICK_Identity) {
    452     if (PrintedSomething) {
    453       OS << " -> ";
    454     }
    455     OS << GetImplicitConversionName(Second);
    456 
    457     if (CopyConstructor) {
    458       OS << " (by copy constructor)";
    459     } else if (DirectBinding) {
    460       OS << " (direct reference binding)";
    461     } else if (ReferenceBinding) {
    462       OS << " (reference binding)";
    463     }
    464     PrintedSomething = true;
    465   }
    466 
    467   if (Third != ICK_Identity) {
    468     if (PrintedSomething) {
    469       OS << " -> ";
    470     }
    471     OS << GetImplicitConversionName(Third);
    472     PrintedSomething = true;
    473   }
    474 
    475   if (!PrintedSomething) {
    476     OS << "No conversions required";
    477   }
    478 }
    479 
    480 /// dump - Print this user-defined conversion sequence to standard
    481 /// error. Useful for debugging overloading issues.
    482 void UserDefinedConversionSequence::dump() const {
    483   raw_ostream &OS = llvm::errs();
    484   if (Before.First || Before.Second || Before.Third) {
    485     Before.dump();
    486     OS << " -> ";
    487   }
    488   if (ConversionFunction)
    489     OS << '\'' << *ConversionFunction << '\'';
    490   else
    491     OS << "aggregate initialization";
    492   if (After.First || After.Second || After.Third) {
    493     OS << " -> ";
    494     After.dump();
    495   }
    496 }
    497 
    498 /// dump - Print this implicit conversion sequence to standard
    499 /// error. Useful for debugging overloading issues.
    500 void ImplicitConversionSequence::dump() const {
    501   raw_ostream &OS = llvm::errs();
    502   if (isStdInitializerListElement())
    503     OS << "Worst std::initializer_list element conversion: ";
    504   switch (ConversionKind) {
    505   case StandardConversion:
    506     OS << "Standard conversion: ";
    507     Standard.dump();
    508     break;
    509   case UserDefinedConversion:
    510     OS << "User-defined conversion: ";
    511     UserDefined.dump();
    512     break;
    513   case EllipsisConversion:
    514     OS << "Ellipsis conversion";
    515     break;
    516   case AmbiguousConversion:
    517     OS << "Ambiguous conversion";
    518     break;
    519   case BadConversion:
    520     OS << "Bad conversion";
    521     break;
    522   }
    523 
    524   OS << "\n";
    525 }
    526 
    527 void AmbiguousConversionSequence::construct() {
    528   new (&conversions()) ConversionSet();
    529 }
    530 
    531 void AmbiguousConversionSequence::destruct() {
    532   conversions().~ConversionSet();
    533 }
    534 
    535 void
    536 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
    537   FromTypePtr = O.FromTypePtr;
    538   ToTypePtr = O.ToTypePtr;
    539   new (&conversions()) ConversionSet(O.conversions());
    540 }
    541 
    542 namespace {
    543   // Structure used by DeductionFailureInfo to store
    544   // template argument information.
    545   struct DFIArguments {
    546     TemplateArgument FirstArg;
    547     TemplateArgument SecondArg;
    548   };
    549   // Structure used by DeductionFailureInfo to store
    550   // template parameter and template argument information.
    551   struct DFIParamWithArguments : DFIArguments {
    552     TemplateParameter Param;
    553   };
    554   // Structure used by DeductionFailureInfo to store template argument
    555   // information and the index of the problematic call argument.
    556   struct DFIDeducedMismatchArgs : DFIArguments {
    557     TemplateArgumentList *TemplateArgs;
    558     unsigned CallArgIndex;
    559   };
    560 }
    561 
    562 /// \brief Convert from Sema's representation of template deduction information
    563 /// to the form used in overload-candidate information.
    564 DeductionFailureInfo
    565 clang::MakeDeductionFailureInfo(ASTContext &Context,
    566                                 Sema::TemplateDeductionResult TDK,
    567                                 TemplateDeductionInfo &Info) {
    568   DeductionFailureInfo Result;
    569   Result.Result = static_cast<unsigned>(TDK);
    570   Result.HasDiagnostic = false;
    571   switch (TDK) {
    572   case Sema::TDK_Success:
    573   case Sema::TDK_Invalid:
    574   case Sema::TDK_InstantiationDepth:
    575   case Sema::TDK_TooManyArguments:
    576   case Sema::TDK_TooFewArguments:
    577   case Sema::TDK_MiscellaneousDeductionFailure:
    578     Result.Data = nullptr;
    579     break;
    580 
    581   case Sema::TDK_Incomplete:
    582   case Sema::TDK_InvalidExplicitArguments:
    583     Result.Data = Info.Param.getOpaqueValue();
    584     break;
    585 
    586   case Sema::TDK_DeducedMismatch: {
    587     // FIXME: Should allocate from normal heap so that we can free this later.
    588     auto *Saved = new (Context) DFIDeducedMismatchArgs;
    589     Saved->FirstArg = Info.FirstArg;
    590     Saved->SecondArg = Info.SecondArg;
    591     Saved->TemplateArgs = Info.take();
    592     Saved->CallArgIndex = Info.CallArgIndex;
    593     Result.Data = Saved;
    594     break;
    595   }
    596 
    597   case Sema::TDK_NonDeducedMismatch: {
    598     // FIXME: Should allocate from normal heap so that we can free this later.
    599     DFIArguments *Saved = new (Context) DFIArguments;
    600     Saved->FirstArg = Info.FirstArg;
    601     Saved->SecondArg = Info.SecondArg;
    602     Result.Data = Saved;
    603     break;
    604   }
    605 
    606   case Sema::TDK_Inconsistent:
    607   case Sema::TDK_Underqualified: {
    608     // FIXME: Should allocate from normal heap so that we can free this later.
    609     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
    610     Saved->Param = Info.Param;
    611     Saved->FirstArg = Info.FirstArg;
    612     Saved->SecondArg = Info.SecondArg;
    613     Result.Data = Saved;
    614     break;
    615   }
    616 
    617   case Sema::TDK_SubstitutionFailure:
    618     Result.Data = Info.take();
    619     if (Info.hasSFINAEDiagnostic()) {
    620       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
    621           SourceLocation(), PartialDiagnostic::NullDiagnostic());
    622       Info.takeSFINAEDiagnostic(*Diag);
    623       Result.HasDiagnostic = true;
    624     }
    625     break;
    626 
    627   case Sema::TDK_FailedOverloadResolution:
    628     Result.Data = Info.Expression;
    629     break;
    630   }
    631 
    632   return Result;
    633 }
    634 
    635 void DeductionFailureInfo::Destroy() {
    636   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    637   case Sema::TDK_Success:
    638   case Sema::TDK_Invalid:
    639   case Sema::TDK_InstantiationDepth:
    640   case Sema::TDK_Incomplete:
    641   case Sema::TDK_TooManyArguments:
    642   case Sema::TDK_TooFewArguments:
    643   case Sema::TDK_InvalidExplicitArguments:
    644   case Sema::TDK_FailedOverloadResolution:
    645     break;
    646 
    647   case Sema::TDK_Inconsistent:
    648   case Sema::TDK_Underqualified:
    649   case Sema::TDK_DeducedMismatch:
    650   case Sema::TDK_NonDeducedMismatch:
    651     // FIXME: Destroy the data?
    652     Data = nullptr;
    653     break;
    654 
    655   case Sema::TDK_SubstitutionFailure:
    656     // FIXME: Destroy the template argument list?
    657     Data = nullptr;
    658     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
    659       Diag->~PartialDiagnosticAt();
    660       HasDiagnostic = false;
    661     }
    662     break;
    663 
    664   // Unhandled
    665   case Sema::TDK_MiscellaneousDeductionFailure:
    666     break;
    667   }
    668 }
    669 
    670 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
    671   if (HasDiagnostic)
    672     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
    673   return nullptr;
    674 }
    675 
    676 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
    677   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    678   case Sema::TDK_Success:
    679   case Sema::TDK_Invalid:
    680   case Sema::TDK_InstantiationDepth:
    681   case Sema::TDK_TooManyArguments:
    682   case Sema::TDK_TooFewArguments:
    683   case Sema::TDK_SubstitutionFailure:
    684   case Sema::TDK_DeducedMismatch:
    685   case Sema::TDK_NonDeducedMismatch:
    686   case Sema::TDK_FailedOverloadResolution:
    687     return TemplateParameter();
    688 
    689   case Sema::TDK_Incomplete:
    690   case Sema::TDK_InvalidExplicitArguments:
    691     return TemplateParameter::getFromOpaqueValue(Data);
    692 
    693   case Sema::TDK_Inconsistent:
    694   case Sema::TDK_Underqualified:
    695     return static_cast<DFIParamWithArguments*>(Data)->Param;
    696 
    697   // Unhandled
    698   case Sema::TDK_MiscellaneousDeductionFailure:
    699     break;
    700   }
    701 
    702   return TemplateParameter();
    703 }
    704 
    705 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
    706   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    707   case Sema::TDK_Success:
    708   case Sema::TDK_Invalid:
    709   case Sema::TDK_InstantiationDepth:
    710   case Sema::TDK_TooManyArguments:
    711   case Sema::TDK_TooFewArguments:
    712   case Sema::TDK_Incomplete:
    713   case Sema::TDK_InvalidExplicitArguments:
    714   case Sema::TDK_Inconsistent:
    715   case Sema::TDK_Underqualified:
    716   case Sema::TDK_NonDeducedMismatch:
    717   case Sema::TDK_FailedOverloadResolution:
    718     return nullptr;
    719 
    720   case Sema::TDK_DeducedMismatch:
    721     return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
    722 
    723   case Sema::TDK_SubstitutionFailure:
    724     return static_cast<TemplateArgumentList*>(Data);
    725 
    726   // Unhandled
    727   case Sema::TDK_MiscellaneousDeductionFailure:
    728     break;
    729   }
    730 
    731   return nullptr;
    732 }
    733 
    734 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
    735   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    736   case Sema::TDK_Success:
    737   case Sema::TDK_Invalid:
    738   case Sema::TDK_InstantiationDepth:
    739   case Sema::TDK_Incomplete:
    740   case Sema::TDK_TooManyArguments:
    741   case Sema::TDK_TooFewArguments:
    742   case Sema::TDK_InvalidExplicitArguments:
    743   case Sema::TDK_SubstitutionFailure:
    744   case Sema::TDK_FailedOverloadResolution:
    745     return nullptr;
    746 
    747   case Sema::TDK_Inconsistent:
    748   case Sema::TDK_Underqualified:
    749   case Sema::TDK_DeducedMismatch:
    750   case Sema::TDK_NonDeducedMismatch:
    751     return &static_cast<DFIArguments*>(Data)->FirstArg;
    752 
    753   // Unhandled
    754   case Sema::TDK_MiscellaneousDeductionFailure:
    755     break;
    756   }
    757 
    758   return nullptr;
    759 }
    760 
    761 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
    762   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    763   case Sema::TDK_Success:
    764   case Sema::TDK_Invalid:
    765   case Sema::TDK_InstantiationDepth:
    766   case Sema::TDK_Incomplete:
    767   case Sema::TDK_TooManyArguments:
    768   case Sema::TDK_TooFewArguments:
    769   case Sema::TDK_InvalidExplicitArguments:
    770   case Sema::TDK_SubstitutionFailure:
    771   case Sema::TDK_FailedOverloadResolution:
    772     return nullptr;
    773 
    774   case Sema::TDK_Inconsistent:
    775   case Sema::TDK_Underqualified:
    776   case Sema::TDK_DeducedMismatch:
    777   case Sema::TDK_NonDeducedMismatch:
    778     return &static_cast<DFIArguments*>(Data)->SecondArg;
    779 
    780   // Unhandled
    781   case Sema::TDK_MiscellaneousDeductionFailure:
    782     break;
    783   }
    784 
    785   return nullptr;
    786 }
    787 
    788 Expr *DeductionFailureInfo::getExpr() {
    789   if (static_cast<Sema::TemplateDeductionResult>(Result) ==
    790         Sema::TDK_FailedOverloadResolution)
    791     return static_cast<Expr*>(Data);
    792 
    793   return nullptr;
    794 }
    795 
    796 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
    797   if (static_cast<Sema::TemplateDeductionResult>(Result) ==
    798         Sema::TDK_DeducedMismatch)
    799     return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
    800 
    801   return llvm::None;
    802 }
    803 
    804 void OverloadCandidateSet::destroyCandidates() {
    805   for (iterator i = begin(), e = end(); i != e; ++i) {
    806     for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
    807       i->Conversions[ii].~ImplicitConversionSequence();
    808     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
    809       i->DeductionFailure.Destroy();
    810   }
    811 }
    812 
    813 void OverloadCandidateSet::clear() {
    814   destroyCandidates();
    815   NumInlineSequences = 0;
    816   Candidates.clear();
    817   Functions.clear();
    818 }
    819 
    820 namespace {
    821   class UnbridgedCastsSet {
    822     struct Entry {
    823       Expr **Addr;
    824       Expr *Saved;
    825     };
    826     SmallVector<Entry, 2> Entries;
    827 
    828   public:
    829     void save(Sema &S, Expr *&E) {
    830       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
    831       Entry entry = { &E, E };
    832       Entries.push_back(entry);
    833       E = S.stripARCUnbridgedCast(E);
    834     }
    835 
    836     void restore() {
    837       for (SmallVectorImpl<Entry>::iterator
    838              i = Entries.begin(), e = Entries.end(); i != e; ++i)
    839         *i->Addr = i->Saved;
    840     }
    841   };
    842 }
    843 
    844 /// checkPlaceholderForOverload - Do any interesting placeholder-like
    845 /// preprocessing on the given expression.
    846 ///
    847 /// \param unbridgedCasts a collection to which to add unbridged casts;
    848 ///   without this, they will be immediately diagnosed as errors
    849 ///
    850 /// Return true on unrecoverable error.
    851 static bool
    852 checkPlaceholderForOverload(Sema &S, Expr *&E,
    853                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
    854   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
    855     // We can't handle overloaded expressions here because overload
    856     // resolution might reasonably tweak them.
    857     if (placeholder->getKind() == BuiltinType::Overload) return false;
    858 
    859     // If the context potentially accepts unbridged ARC casts, strip
    860     // the unbridged cast and add it to the collection for later restoration.
    861     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
    862         unbridgedCasts) {
    863       unbridgedCasts->save(S, E);
    864       return false;
    865     }
    866 
    867     // Go ahead and check everything else.
    868     ExprResult result = S.CheckPlaceholderExpr(E);
    869     if (result.isInvalid())
    870       return true;
    871 
    872     E = result.get();
    873     return false;
    874   }
    875 
    876   // Nothing to do.
    877   return false;
    878 }
    879 
    880 /// checkArgPlaceholdersForOverload - Check a set of call operands for
    881 /// placeholders.
    882 static bool checkArgPlaceholdersForOverload(Sema &S,
    883                                             MultiExprArg Args,
    884                                             UnbridgedCastsSet &unbridged) {
    885   for (unsigned i = 0, e = Args.size(); i != e; ++i)
    886     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
    887       return true;
    888 
    889   return false;
    890 }
    891 
    892 // IsOverload - Determine whether the given New declaration is an
    893 // overload of the declarations in Old. This routine returns false if
    894 // New and Old cannot be overloaded, e.g., if New has the same
    895 // signature as some function in Old (C++ 1.3.10) or if the Old
    896 // declarations aren't functions (or function templates) at all. When
    897 // it does return false, MatchedDecl will point to the decl that New
    898 // cannot be overloaded with.  This decl may be a UsingShadowDecl on
    899 // top of the underlying declaration.
    900 //
    901 // Example: Given the following input:
    902 //
    903 //   void f(int, float); // #1
    904 //   void f(int, int); // #2
    905 //   int f(int, int); // #3
    906 //
    907 // When we process #1, there is no previous declaration of "f",
    908 // so IsOverload will not be used.
    909 //
    910 // When we process #2, Old contains only the FunctionDecl for #1.  By
    911 // comparing the parameter types, we see that #1 and #2 are overloaded
    912 // (since they have different signatures), so this routine returns
    913 // false; MatchedDecl is unchanged.
    914 //
    915 // When we process #3, Old is an overload set containing #1 and #2. We
    916 // compare the signatures of #3 to #1 (they're overloaded, so we do
    917 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
    918 // identical (return types of functions are not part of the
    919 // signature), IsOverload returns false and MatchedDecl will be set to
    920 // point to the FunctionDecl for #2.
    921 //
    922 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
    923 // into a class by a using declaration.  The rules for whether to hide
    924 // shadow declarations ignore some properties which otherwise figure
    925 // into a function template's signature.
    926 Sema::OverloadKind
    927 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
    928                     NamedDecl *&Match, bool NewIsUsingDecl) {
    929   for (LookupResult::iterator I = Old.begin(), E = Old.end();
    930          I != E; ++I) {
    931     NamedDecl *OldD = *I;
    932 
    933     bool OldIsUsingDecl = false;
    934     if (isa<UsingShadowDecl>(OldD)) {
    935       OldIsUsingDecl = true;
    936 
    937       // We can always introduce two using declarations into the same
    938       // context, even if they have identical signatures.
    939       if (NewIsUsingDecl) continue;
    940 
    941       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
    942     }
    943 
    944     // A using-declaration does not conflict with another declaration
    945     // if one of them is hidden.
    946     if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
    947       continue;
    948 
    949     // If either declaration was introduced by a using declaration,
    950     // we'll need to use slightly different rules for matching.
    951     // Essentially, these rules are the normal rules, except that
    952     // function templates hide function templates with different
    953     // return types or template parameter lists.
    954     bool UseMemberUsingDeclRules =
    955       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
    956       !New->getFriendObjectKind();
    957 
    958     if (FunctionDecl *OldF = OldD->getAsFunction()) {
    959       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
    960         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
    961           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
    962           continue;
    963         }
    964 
    965         if (!isa<FunctionTemplateDecl>(OldD) &&
    966             !shouldLinkPossiblyHiddenDecl(*I, New))
    967           continue;
    968 
    969         Match = *I;
    970         return Ovl_Match;
    971       }
    972     } else if (isa<UsingDecl>(OldD)) {
    973       // We can overload with these, which can show up when doing
    974       // redeclaration checks for UsingDecls.
    975       assert(Old.getLookupKind() == LookupUsingDeclName);
    976     } else if (isa<TagDecl>(OldD)) {
    977       // We can always overload with tags by hiding them.
    978     } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
    979       // Optimistically assume that an unresolved using decl will
    980       // overload; if it doesn't, we'll have to diagnose during
    981       // template instantiation.
    982     } else {
    983       // (C++ 13p1):
    984       //   Only function declarations can be overloaded; object and type
    985       //   declarations cannot be overloaded.
    986       Match = *I;
    987       return Ovl_NonFunction;
    988     }
    989   }
    990 
    991   return Ovl_Overload;
    992 }
    993 
    994 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
    995                       bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
    996   // C++ [basic.start.main]p2: This function shall not be overloaded.
    997   if (New->isMain())
    998     return false;
    999 
   1000   // MSVCRT user defined entry points cannot be overloaded.
   1001   if (New->isMSVCRTEntryPoint())
   1002     return false;
   1003 
   1004   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
   1005   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
   1006 
   1007   // C++ [temp.fct]p2:
   1008   //   A function template can be overloaded with other function templates
   1009   //   and with normal (non-template) functions.
   1010   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
   1011     return true;
   1012 
   1013   // Is the function New an overload of the function Old?
   1014   QualType OldQType = Context.getCanonicalType(Old->getType());
   1015   QualType NewQType = Context.getCanonicalType(New->getType());
   1016 
   1017   // Compare the signatures (C++ 1.3.10) of the two functions to
   1018   // determine whether they are overloads. If we find any mismatch
   1019   // in the signature, they are overloads.
   1020 
   1021   // If either of these functions is a K&R-style function (no
   1022   // prototype), then we consider them to have matching signatures.
   1023   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
   1024       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
   1025     return false;
   1026 
   1027   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
   1028   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
   1029 
   1030   // The signature of a function includes the types of its
   1031   // parameters (C++ 1.3.10), which includes the presence or absence
   1032   // of the ellipsis; see C++ DR 357).
   1033   if (OldQType != NewQType &&
   1034       (OldType->getNumParams() != NewType->getNumParams() ||
   1035        OldType->isVariadic() != NewType->isVariadic() ||
   1036        !FunctionParamTypesAreEqual(OldType, NewType)))
   1037     return true;
   1038 
   1039   // C++ [temp.over.link]p4:
   1040   //   The signature of a function template consists of its function
   1041   //   signature, its return type and its template parameter list. The names
   1042   //   of the template parameters are significant only for establishing the
   1043   //   relationship between the template parameters and the rest of the
   1044   //   signature.
   1045   //
   1046   // We check the return type and template parameter lists for function
   1047   // templates first; the remaining checks follow.
   1048   //
   1049   // However, we don't consider either of these when deciding whether
   1050   // a member introduced by a shadow declaration is hidden.
   1051   if (!UseMemberUsingDeclRules && NewTemplate &&
   1052       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
   1053                                        OldTemplate->getTemplateParameters(),
   1054                                        false, TPL_TemplateMatch) ||
   1055        OldType->getReturnType() != NewType->getReturnType()))
   1056     return true;
   1057 
   1058   // If the function is a class member, its signature includes the
   1059   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
   1060   //
   1061   // As part of this, also check whether one of the member functions
   1062   // is static, in which case they are not overloads (C++
   1063   // 13.1p2). While not part of the definition of the signature,
   1064   // this check is important to determine whether these functions
   1065   // can be overloaded.
   1066   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
   1067   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
   1068   if (OldMethod && NewMethod &&
   1069       !OldMethod->isStatic() && !NewMethod->isStatic()) {
   1070     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
   1071       if (!UseMemberUsingDeclRules &&
   1072           (OldMethod->getRefQualifier() == RQ_None ||
   1073            NewMethod->getRefQualifier() == RQ_None)) {
   1074         // C++0x [over.load]p2:
   1075         //   - Member function declarations with the same name and the same
   1076         //     parameter-type-list as well as member function template
   1077         //     declarations with the same name, the same parameter-type-list, and
   1078         //     the same template parameter lists cannot be overloaded if any of
   1079         //     them, but not all, have a ref-qualifier (8.3.5).
   1080         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
   1081           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
   1082         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
   1083       }
   1084       return true;
   1085     }
   1086 
   1087     // We may not have applied the implicit const for a constexpr member
   1088     // function yet (because we haven't yet resolved whether this is a static
   1089     // or non-static member function). Add it now, on the assumption that this
   1090     // is a redeclaration of OldMethod.
   1091     unsigned OldQuals = OldMethod->getTypeQualifiers();
   1092     unsigned NewQuals = NewMethod->getTypeQualifiers();
   1093     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
   1094         !isa<CXXConstructorDecl>(NewMethod))
   1095       NewQuals |= Qualifiers::Const;
   1096 
   1097     // We do not allow overloading based off of '__restrict'.
   1098     OldQuals &= ~Qualifiers::Restrict;
   1099     NewQuals &= ~Qualifiers::Restrict;
   1100     if (OldQuals != NewQuals)
   1101       return true;
   1102   }
   1103 
   1104   // Though pass_object_size is placed on parameters and takes an argument, we
   1105   // consider it to be a function-level modifier for the sake of function
   1106   // identity. Either the function has one or more parameters with
   1107   // pass_object_size or it doesn't.
   1108   if (functionHasPassObjectSizeParams(New) !=
   1109       functionHasPassObjectSizeParams(Old))
   1110     return true;
   1111 
   1112   // enable_if attributes are an order-sensitive part of the signature.
   1113   for (specific_attr_iterator<EnableIfAttr>
   1114          NewI = New->specific_attr_begin<EnableIfAttr>(),
   1115          NewE = New->specific_attr_end<EnableIfAttr>(),
   1116          OldI = Old->specific_attr_begin<EnableIfAttr>(),
   1117          OldE = Old->specific_attr_end<EnableIfAttr>();
   1118        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
   1119     if (NewI == NewE || OldI == OldE)
   1120       return true;
   1121     llvm::FoldingSetNodeID NewID, OldID;
   1122     NewI->getCond()->Profile(NewID, Context, true);
   1123     OldI->getCond()->Profile(OldID, Context, true);
   1124     if (NewID != OldID)
   1125       return true;
   1126   }
   1127 
   1128   if (getLangOpts().CUDA && ConsiderCudaAttrs) {
   1129     CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
   1130                        OldTarget = IdentifyCUDATarget(Old);
   1131     if (NewTarget == CFT_InvalidTarget || NewTarget == CFT_Global)
   1132       return false;
   1133 
   1134     assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.");
   1135 
   1136     // Don't allow mixing of HD with other kinds. This guarantees that
   1137     // we have only one viable function with this signature on any
   1138     // side of CUDA compilation .
   1139     // __global__ functions can't be overloaded based on attribute
   1140     // difference because, like HD, they also exist on both sides.
   1141     if ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
   1142         (NewTarget == CFT_Global) || (OldTarget == CFT_Global))
   1143       return false;
   1144 
   1145     // Allow overloading of functions with same signature, but
   1146     // different CUDA target attributes.
   1147     return NewTarget != OldTarget;
   1148   }
   1149 
   1150   // The signatures match; this is not an overload.
   1151   return false;
   1152 }
   1153 
   1154 /// \brief Checks availability of the function depending on the current
   1155 /// function context. Inside an unavailable function, unavailability is ignored.
   1156 ///
   1157 /// \returns true if \arg FD is unavailable and current context is inside
   1158 /// an available function, false otherwise.
   1159 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
   1160   if (!FD->isUnavailable())
   1161     return false;
   1162 
   1163   // Walk up the context of the caller.
   1164   Decl *C = cast<Decl>(CurContext);
   1165   do {
   1166     if (C->isUnavailable())
   1167       return false;
   1168   } while ((C = cast_or_null<Decl>(C->getDeclContext())));
   1169   return true;
   1170 }
   1171 
   1172 /// \brief Tries a user-defined conversion from From to ToType.
   1173 ///
   1174 /// Produces an implicit conversion sequence for when a standard conversion
   1175 /// is not an option. See TryImplicitConversion for more information.
   1176 static ImplicitConversionSequence
   1177 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
   1178                          bool SuppressUserConversions,
   1179                          bool AllowExplicit,
   1180                          bool InOverloadResolution,
   1181                          bool CStyle,
   1182                          bool AllowObjCWritebackConversion,
   1183                          bool AllowObjCConversionOnExplicit) {
   1184   ImplicitConversionSequence ICS;
   1185 
   1186   if (SuppressUserConversions) {
   1187     // We're not in the case above, so there is no conversion that
   1188     // we can perform.
   1189     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1190     return ICS;
   1191   }
   1192 
   1193   // Attempt user-defined conversion.
   1194   OverloadCandidateSet Conversions(From->getExprLoc(),
   1195                                    OverloadCandidateSet::CSK_Normal);
   1196   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
   1197                                   Conversions, AllowExplicit,
   1198                                   AllowObjCConversionOnExplicit)) {
   1199   case OR_Success:
   1200   case OR_Deleted:
   1201     ICS.setUserDefined();
   1202     ICS.UserDefined.Before.setAsIdentityConversion();
   1203     // C++ [over.ics.user]p4:
   1204     //   A conversion of an expression of class type to the same class
   1205     //   type is given Exact Match rank, and a conversion of an
   1206     //   expression of class type to a base class of that type is
   1207     //   given Conversion rank, in spite of the fact that a copy
   1208     //   constructor (i.e., a user-defined conversion function) is
   1209     //   called for those cases.
   1210     if (CXXConstructorDecl *Constructor
   1211           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
   1212       QualType FromCanon
   1213         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
   1214       QualType ToCanon
   1215         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
   1216       if (Constructor->isCopyConstructor() &&
   1217           (FromCanon == ToCanon ||
   1218            S.IsDerivedFrom(From->getLocStart(), FromCanon, ToCanon))) {
   1219         // Turn this into a "standard" conversion sequence, so that it
   1220         // gets ranked with standard conversion sequences.
   1221         DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
   1222         ICS.setStandard();
   1223         ICS.Standard.setAsIdentityConversion();
   1224         ICS.Standard.setFromType(From->getType());
   1225         ICS.Standard.setAllToTypes(ToType);
   1226         ICS.Standard.CopyConstructor = Constructor;
   1227         ICS.Standard.FoundCopyConstructor = Found;
   1228         if (ToCanon != FromCanon)
   1229           ICS.Standard.Second = ICK_Derived_To_Base;
   1230       }
   1231     }
   1232     break;
   1233 
   1234   case OR_Ambiguous:
   1235     ICS.setAmbiguous();
   1236     ICS.Ambiguous.setFromType(From->getType());
   1237     ICS.Ambiguous.setToType(ToType);
   1238     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
   1239          Cand != Conversions.end(); ++Cand)
   1240       if (Cand->Viable)
   1241         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
   1242     break;
   1243 
   1244     // Fall through.
   1245   case OR_No_Viable_Function:
   1246     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1247     break;
   1248   }
   1249 
   1250   return ICS;
   1251 }
   1252 
   1253 /// TryImplicitConversion - Attempt to perform an implicit conversion
   1254 /// from the given expression (Expr) to the given type (ToType). This
   1255 /// function returns an implicit conversion sequence that can be used
   1256 /// to perform the initialization. Given
   1257 ///
   1258 ///   void f(float f);
   1259 ///   void g(int i) { f(i); }
   1260 ///
   1261 /// this routine would produce an implicit conversion sequence to
   1262 /// describe the initialization of f from i, which will be a standard
   1263 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
   1264 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
   1265 //
   1266 /// Note that this routine only determines how the conversion can be
   1267 /// performed; it does not actually perform the conversion. As such,
   1268 /// it will not produce any diagnostics if no conversion is available,
   1269 /// but will instead return an implicit conversion sequence of kind
   1270 /// "BadConversion".
   1271 ///
   1272 /// If @p SuppressUserConversions, then user-defined conversions are
   1273 /// not permitted.
   1274 /// If @p AllowExplicit, then explicit user-defined conversions are
   1275 /// permitted.
   1276 ///
   1277 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
   1278 /// writeback conversion, which allows __autoreleasing id* parameters to
   1279 /// be initialized with __strong id* or __weak id* arguments.
   1280 static ImplicitConversionSequence
   1281 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
   1282                       bool SuppressUserConversions,
   1283                       bool AllowExplicit,
   1284                       bool InOverloadResolution,
   1285                       bool CStyle,
   1286                       bool AllowObjCWritebackConversion,
   1287                       bool AllowObjCConversionOnExplicit) {
   1288   ImplicitConversionSequence ICS;
   1289   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
   1290                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
   1291     ICS.setStandard();
   1292     return ICS;
   1293   }
   1294 
   1295   if (!S.getLangOpts().CPlusPlus) {
   1296     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1297     return ICS;
   1298   }
   1299 
   1300   // C++ [over.ics.user]p4:
   1301   //   A conversion of an expression of class type to the same class
   1302   //   type is given Exact Match rank, and a conversion of an
   1303   //   expression of class type to a base class of that type is
   1304   //   given Conversion rank, in spite of the fact that a copy/move
   1305   //   constructor (i.e., a user-defined conversion function) is
   1306   //   called for those cases.
   1307   QualType FromType = From->getType();
   1308   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
   1309       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
   1310        S.IsDerivedFrom(From->getLocStart(), FromType, ToType))) {
   1311     ICS.setStandard();
   1312     ICS.Standard.setAsIdentityConversion();
   1313     ICS.Standard.setFromType(FromType);
   1314     ICS.Standard.setAllToTypes(ToType);
   1315 
   1316     // We don't actually check at this point whether there is a valid
   1317     // copy/move constructor, since overloading just assumes that it
   1318     // exists. When we actually perform initialization, we'll find the
   1319     // appropriate constructor to copy the returned object, if needed.
   1320     ICS.Standard.CopyConstructor = nullptr;
   1321 
   1322     // Determine whether this is considered a derived-to-base conversion.
   1323     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
   1324       ICS.Standard.Second = ICK_Derived_To_Base;
   1325 
   1326     return ICS;
   1327   }
   1328 
   1329   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
   1330                                   AllowExplicit, InOverloadResolution, CStyle,
   1331                                   AllowObjCWritebackConversion,
   1332                                   AllowObjCConversionOnExplicit);
   1333 }
   1334 
   1335 ImplicitConversionSequence
   1336 Sema::TryImplicitConversion(Expr *From, QualType ToType,
   1337                             bool SuppressUserConversions,
   1338                             bool AllowExplicit,
   1339                             bool InOverloadResolution,
   1340                             bool CStyle,
   1341                             bool AllowObjCWritebackConversion) {
   1342   return ::TryImplicitConversion(*this, From, ToType,
   1343                                  SuppressUserConversions, AllowExplicit,
   1344                                  InOverloadResolution, CStyle,
   1345                                  AllowObjCWritebackConversion,
   1346                                  /*AllowObjCConversionOnExplicit=*/false);
   1347 }
   1348 
   1349 /// PerformImplicitConversion - Perform an implicit conversion of the
   1350 /// expression From to the type ToType. Returns the
   1351 /// converted expression. Flavor is the kind of conversion we're
   1352 /// performing, used in the error message. If @p AllowExplicit,
   1353 /// explicit user-defined conversions are permitted.
   1354 ExprResult
   1355 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   1356                                 AssignmentAction Action, bool AllowExplicit) {
   1357   ImplicitConversionSequence ICS;
   1358   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
   1359 }
   1360 
   1361 ExprResult
   1362 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   1363                                 AssignmentAction Action, bool AllowExplicit,
   1364                                 ImplicitConversionSequence& ICS) {
   1365   if (checkPlaceholderForOverload(*this, From))
   1366     return ExprError();
   1367 
   1368   // Objective-C ARC: Determine whether we will allow the writeback conversion.
   1369   bool AllowObjCWritebackConversion
   1370     = getLangOpts().ObjCAutoRefCount &&
   1371       (Action == AA_Passing || Action == AA_Sending);
   1372   if (getLangOpts().ObjC1)
   1373     CheckObjCBridgeRelatedConversions(From->getLocStart(),
   1374                                       ToType, From->getType(), From);
   1375   ICS = ::TryImplicitConversion(*this, From, ToType,
   1376                                 /*SuppressUserConversions=*/false,
   1377                                 AllowExplicit,
   1378                                 /*InOverloadResolution=*/false,
   1379                                 /*CStyle=*/false,
   1380                                 AllowObjCWritebackConversion,
   1381                                 /*AllowObjCConversionOnExplicit=*/false);
   1382   return PerformImplicitConversion(From, ToType, ICS, Action);
   1383 }
   1384 
   1385 /// \brief Determine whether the conversion from FromType to ToType is a valid
   1386 /// conversion that strips "noreturn" off the nested function type.
   1387 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
   1388                                 QualType &ResultTy) {
   1389   if (Context.hasSameUnqualifiedType(FromType, ToType))
   1390     return false;
   1391 
   1392   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
   1393   // where F adds one of the following at most once:
   1394   //   - a pointer
   1395   //   - a member pointer
   1396   //   - a block pointer
   1397   CanQualType CanTo = Context.getCanonicalType(ToType);
   1398   CanQualType CanFrom = Context.getCanonicalType(FromType);
   1399   Type::TypeClass TyClass = CanTo->getTypeClass();
   1400   if (TyClass != CanFrom->getTypeClass()) return false;
   1401   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
   1402     if (TyClass == Type::Pointer) {
   1403       CanTo = CanTo.getAs<PointerType>()->getPointeeType();
   1404       CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
   1405     } else if (TyClass == Type::BlockPointer) {
   1406       CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
   1407       CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
   1408     } else if (TyClass == Type::MemberPointer) {
   1409       CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
   1410       CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
   1411     } else {
   1412       return false;
   1413     }
   1414 
   1415     TyClass = CanTo->getTypeClass();
   1416     if (TyClass != CanFrom->getTypeClass()) return false;
   1417     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
   1418       return false;
   1419   }
   1420 
   1421   const FunctionType *FromFn = cast<FunctionType>(CanFrom);
   1422   FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
   1423   if (!EInfo.getNoReturn()) return false;
   1424 
   1425   FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
   1426   assert(QualType(FromFn, 0).isCanonical());
   1427   if (QualType(FromFn, 0) != CanTo) return false;
   1428 
   1429   ResultTy = ToType;
   1430   return true;
   1431 }
   1432 
   1433 /// \brief Determine whether the conversion from FromType to ToType is a valid
   1434 /// vector conversion.
   1435 ///
   1436 /// \param ICK Will be set to the vector conversion kind, if this is a vector
   1437 /// conversion.
   1438 static bool IsVectorConversion(Sema &S, QualType FromType,
   1439                                QualType ToType, ImplicitConversionKind &ICK) {
   1440   // We need at least one of these types to be a vector type to have a vector
   1441   // conversion.
   1442   if (!ToType->isVectorType() && !FromType->isVectorType())
   1443     return false;
   1444 
   1445   // Identical types require no conversions.
   1446   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
   1447     return false;
   1448 
   1449   // There are no conversions between extended vector types, only identity.
   1450   if (ToType->isExtVectorType()) {
   1451     // There are no conversions between extended vector types other than the
   1452     // identity conversion.
   1453     if (FromType->isExtVectorType())
   1454       return false;
   1455 
   1456     // Vector splat from any arithmetic type to a vector.
   1457     if (FromType->isArithmeticType()) {
   1458       ICK = ICK_Vector_Splat;
   1459       return true;
   1460     }
   1461   }
   1462 
   1463   // We can perform the conversion between vector types in the following cases:
   1464   // 1)vector types are equivalent AltiVec and GCC vector types
   1465   // 2)lax vector conversions are permitted and the vector types are of the
   1466   //   same size
   1467   if (ToType->isVectorType() && FromType->isVectorType()) {
   1468     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
   1469         S.isLaxVectorConversion(FromType, ToType)) {
   1470       ICK = ICK_Vector_Conversion;
   1471       return true;
   1472     }
   1473   }
   1474 
   1475   return false;
   1476 }
   1477 
   1478 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
   1479                                 bool InOverloadResolution,
   1480                                 StandardConversionSequence &SCS,
   1481                                 bool CStyle);
   1482 
   1483 /// IsStandardConversion - Determines whether there is a standard
   1484 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
   1485 /// expression From to the type ToType. Standard conversion sequences
   1486 /// only consider non-class types; for conversions that involve class
   1487 /// types, use TryImplicitConversion. If a conversion exists, SCS will
   1488 /// contain the standard conversion sequence required to perform this
   1489 /// conversion and this routine will return true. Otherwise, this
   1490 /// routine will return false and the value of SCS is unspecified.
   1491 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
   1492                                  bool InOverloadResolution,
   1493                                  StandardConversionSequence &SCS,
   1494                                  bool CStyle,
   1495                                  bool AllowObjCWritebackConversion) {
   1496   QualType FromType = From->getType();
   1497 
   1498   // Standard conversions (C++ [conv])
   1499   SCS.setAsIdentityConversion();
   1500   SCS.IncompatibleObjC = false;
   1501   SCS.setFromType(FromType);
   1502   SCS.CopyConstructor = nullptr;
   1503 
   1504   // There are no standard conversions for class types in C++, so
   1505   // abort early. When overloading in C, however, we do permit them.
   1506   if (S.getLangOpts().CPlusPlus &&
   1507       (FromType->isRecordType() || ToType->isRecordType()))
   1508     return false;
   1509 
   1510   // The first conversion can be an lvalue-to-rvalue conversion,
   1511   // array-to-pointer conversion, or function-to-pointer conversion
   1512   // (C++ 4p1).
   1513 
   1514   if (FromType == S.Context.OverloadTy) {
   1515     DeclAccessPair AccessPair;
   1516     if (FunctionDecl *Fn
   1517           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
   1518                                                  AccessPair)) {
   1519       // We were able to resolve the address of the overloaded function,
   1520       // so we can convert to the type of that function.
   1521       FromType = Fn->getType();
   1522       SCS.setFromType(FromType);
   1523 
   1524       // we can sometimes resolve &foo<int> regardless of ToType, so check
   1525       // if the type matches (identity) or we are converting to bool
   1526       if (!S.Context.hasSameUnqualifiedType(
   1527                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
   1528         QualType resultTy;
   1529         // if the function type matches except for [[noreturn]], it's ok
   1530         if (!S.IsNoReturnConversion(FromType,
   1531               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
   1532           // otherwise, only a boolean conversion is standard
   1533           if (!ToType->isBooleanType())
   1534             return false;
   1535       }
   1536 
   1537       // Check if the "from" expression is taking the address of an overloaded
   1538       // function and recompute the FromType accordingly. Take advantage of the
   1539       // fact that non-static member functions *must* have such an address-of
   1540       // expression.
   1541       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
   1542       if (Method && !Method->isStatic()) {
   1543         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
   1544                "Non-unary operator on non-static member address");
   1545         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
   1546                == UO_AddrOf &&
   1547                "Non-address-of operator on non-static member address");
   1548         const Type *ClassType
   1549           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
   1550         FromType = S.Context.getMemberPointerType(FromType, ClassType);
   1551       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
   1552         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
   1553                UO_AddrOf &&
   1554                "Non-address-of operator for overloaded function expression");
   1555         FromType = S.Context.getPointerType(FromType);
   1556       }
   1557 
   1558       // Check that we've computed the proper type after overload resolution.
   1559       assert(S.Context.hasSameType(
   1560         FromType,
   1561         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
   1562     } else {
   1563       return false;
   1564     }
   1565   }
   1566   // Lvalue-to-rvalue conversion (C++11 4.1):
   1567   //   A glvalue (3.10) of a non-function, non-array type T can
   1568   //   be converted to a prvalue.
   1569   bool argIsLValue = From->isGLValue();
   1570   if (argIsLValue &&
   1571       !FromType->isFunctionType() && !FromType->isArrayType() &&
   1572       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
   1573     SCS.First = ICK_Lvalue_To_Rvalue;
   1574 
   1575     // C11 6.3.2.1p2:
   1576     //   ... if the lvalue has atomic type, the value has the non-atomic version
   1577     //   of the type of the lvalue ...
   1578     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
   1579       FromType = Atomic->getValueType();
   1580 
   1581     // If T is a non-class type, the type of the rvalue is the
   1582     // cv-unqualified version of T. Otherwise, the type of the rvalue
   1583     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
   1584     // just strip the qualifiers because they don't matter.
   1585     FromType = FromType.getUnqualifiedType();
   1586   } else if (FromType->isArrayType()) {
   1587     // Array-to-pointer conversion (C++ 4.2)
   1588     SCS.First = ICK_Array_To_Pointer;
   1589 
   1590     // An lvalue or rvalue of type "array of N T" or "array of unknown
   1591     // bound of T" can be converted to an rvalue of type "pointer to
   1592     // T" (C++ 4.2p1).
   1593     FromType = S.Context.getArrayDecayedType(FromType);
   1594 
   1595     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
   1596       // This conversion is deprecated in C++03 (D.4)
   1597       SCS.DeprecatedStringLiteralToCharPtr = true;
   1598 
   1599       // For the purpose of ranking in overload resolution
   1600       // (13.3.3.1.1), this conversion is considered an
   1601       // array-to-pointer conversion followed by a qualification
   1602       // conversion (4.4). (C++ 4.2p2)
   1603       SCS.Second = ICK_Identity;
   1604       SCS.Third = ICK_Qualification;
   1605       SCS.QualificationIncludesObjCLifetime = false;
   1606       SCS.setAllToTypes(FromType);
   1607       return true;
   1608     }
   1609   } else if (FromType->isFunctionType() && argIsLValue) {
   1610     // Function-to-pointer conversion (C++ 4.3).
   1611     SCS.First = ICK_Function_To_Pointer;
   1612 
   1613     if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
   1614       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
   1615         if (!S.checkAddressOfFunctionIsAvailable(FD))
   1616           return false;
   1617 
   1618     // An lvalue of function type T can be converted to an rvalue of
   1619     // type "pointer to T." The result is a pointer to the
   1620     // function. (C++ 4.3p1).
   1621     FromType = S.Context.getPointerType(FromType);
   1622   } else {
   1623     // We don't require any conversions for the first step.
   1624     SCS.First = ICK_Identity;
   1625   }
   1626   SCS.setToType(0, FromType);
   1627 
   1628   // The second conversion can be an integral promotion, floating
   1629   // point promotion, integral conversion, floating point conversion,
   1630   // floating-integral conversion, pointer conversion,
   1631   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
   1632   // For overloading in C, this can also be a "compatible-type"
   1633   // conversion.
   1634   bool IncompatibleObjC = false;
   1635   ImplicitConversionKind SecondICK = ICK_Identity;
   1636   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
   1637     // The unqualified versions of the types are the same: there's no
   1638     // conversion to do.
   1639     SCS.Second = ICK_Identity;
   1640   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
   1641     // Integral promotion (C++ 4.5).
   1642     SCS.Second = ICK_Integral_Promotion;
   1643     FromType = ToType.getUnqualifiedType();
   1644   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
   1645     // Floating point promotion (C++ 4.6).
   1646     SCS.Second = ICK_Floating_Promotion;
   1647     FromType = ToType.getUnqualifiedType();
   1648   } else if (S.IsComplexPromotion(FromType, ToType)) {
   1649     // Complex promotion (Clang extension)
   1650     SCS.Second = ICK_Complex_Promotion;
   1651     FromType = ToType.getUnqualifiedType();
   1652   } else if (ToType->isBooleanType() &&
   1653              (FromType->isArithmeticType() ||
   1654               FromType->isAnyPointerType() ||
   1655               FromType->isBlockPointerType() ||
   1656               FromType->isMemberPointerType() ||
   1657               FromType->isNullPtrType())) {
   1658     // Boolean conversions (C++ 4.12).
   1659     SCS.Second = ICK_Boolean_Conversion;
   1660     FromType = S.Context.BoolTy;
   1661   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
   1662              ToType->isIntegralType(S.Context)) {
   1663     // Integral conversions (C++ 4.7).
   1664     SCS.Second = ICK_Integral_Conversion;
   1665     FromType = ToType.getUnqualifiedType();
   1666   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
   1667     // Complex conversions (C99 6.3.1.6)
   1668     SCS.Second = ICK_Complex_Conversion;
   1669     FromType = ToType.getUnqualifiedType();
   1670   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
   1671              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
   1672     // Complex-real conversions (C99 6.3.1.7)
   1673     SCS.Second = ICK_Complex_Real;
   1674     FromType = ToType.getUnqualifiedType();
   1675   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
   1676     // FIXME: disable conversions between long double and __float128 if
   1677     // their representation is different until there is back end support
   1678     // We of course allow this conversion if long double is really double.
   1679     if (&S.Context.getFloatTypeSemantics(FromType) !=
   1680         &S.Context.getFloatTypeSemantics(ToType)) {
   1681       bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
   1682                                     ToType == S.Context.LongDoubleTy) ||
   1683                                    (FromType == S.Context.LongDoubleTy &&
   1684                                     ToType == S.Context.Float128Ty));
   1685       if (Float128AndLongDouble &&
   1686           (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) !=
   1687            &llvm::APFloat::IEEEdouble))
   1688         return false;
   1689     }
   1690     // Floating point conversions (C++ 4.8).
   1691     SCS.Second = ICK_Floating_Conversion;
   1692     FromType = ToType.getUnqualifiedType();
   1693   } else if ((FromType->isRealFloatingType() &&
   1694               ToType->isIntegralType(S.Context)) ||
   1695              (FromType->isIntegralOrUnscopedEnumerationType() &&
   1696               ToType->isRealFloatingType())) {
   1697     // Floating-integral conversions (C++ 4.9).
   1698     SCS.Second = ICK_Floating_Integral;
   1699     FromType = ToType.getUnqualifiedType();
   1700   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
   1701     SCS.Second = ICK_Block_Pointer_Conversion;
   1702   } else if (AllowObjCWritebackConversion &&
   1703              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
   1704     SCS.Second = ICK_Writeback_Conversion;
   1705   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
   1706                                    FromType, IncompatibleObjC)) {
   1707     // Pointer conversions (C++ 4.10).
   1708     SCS.Second = ICK_Pointer_Conversion;
   1709     SCS.IncompatibleObjC = IncompatibleObjC;
   1710     FromType = FromType.getUnqualifiedType();
   1711   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
   1712                                          InOverloadResolution, FromType)) {
   1713     // Pointer to member conversions (4.11).
   1714     SCS.Second = ICK_Pointer_Member;
   1715   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
   1716     SCS.Second = SecondICK;
   1717     FromType = ToType.getUnqualifiedType();
   1718   } else if (!S.getLangOpts().CPlusPlus &&
   1719              S.Context.typesAreCompatible(ToType, FromType)) {
   1720     // Compatible conversions (Clang extension for C function overloading)
   1721     SCS.Second = ICK_Compatible_Conversion;
   1722     FromType = ToType.getUnqualifiedType();
   1723   } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
   1724     // Treat a conversion that strips "noreturn" as an identity conversion.
   1725     SCS.Second = ICK_NoReturn_Adjustment;
   1726   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
   1727                                              InOverloadResolution,
   1728                                              SCS, CStyle)) {
   1729     SCS.Second = ICK_TransparentUnionConversion;
   1730     FromType = ToType;
   1731   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
   1732                                  CStyle)) {
   1733     // tryAtomicConversion has updated the standard conversion sequence
   1734     // appropriately.
   1735     return true;
   1736   } else if (ToType->isEventT() &&
   1737              From->isIntegerConstantExpr(S.getASTContext()) &&
   1738              From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
   1739     SCS.Second = ICK_Zero_Event_Conversion;
   1740     FromType = ToType;
   1741   } else {
   1742     // No second conversion required.
   1743     SCS.Second = ICK_Identity;
   1744   }
   1745   SCS.setToType(1, FromType);
   1746 
   1747   QualType CanonFrom;
   1748   QualType CanonTo;
   1749   // The third conversion can be a qualification conversion (C++ 4p1).
   1750   bool ObjCLifetimeConversion;
   1751   if (S.IsQualificationConversion(FromType, ToType, CStyle,
   1752                                   ObjCLifetimeConversion)) {
   1753     SCS.Third = ICK_Qualification;
   1754     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
   1755     FromType = ToType;
   1756     CanonFrom = S.Context.getCanonicalType(FromType);
   1757     CanonTo = S.Context.getCanonicalType(ToType);
   1758   } else {
   1759     // No conversion required
   1760     SCS.Third = ICK_Identity;
   1761 
   1762     // C++ [over.best.ics]p6:
   1763     //   [...] Any difference in top-level cv-qualification is
   1764     //   subsumed by the initialization itself and does not constitute
   1765     //   a conversion. [...]
   1766     CanonFrom = S.Context.getCanonicalType(FromType);
   1767     CanonTo = S.Context.getCanonicalType(ToType);
   1768     if (CanonFrom.getLocalUnqualifiedType()
   1769                                        == CanonTo.getLocalUnqualifiedType() &&
   1770         CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
   1771       FromType = ToType;
   1772       CanonFrom = CanonTo;
   1773     }
   1774   }
   1775   SCS.setToType(2, FromType);
   1776 
   1777   if (CanonFrom == CanonTo)
   1778     return true;
   1779 
   1780   // If we have not converted the argument type to the parameter type,
   1781   // this is a bad conversion sequence, unless we're resolving an overload in C.
   1782   if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
   1783     return false;
   1784 
   1785   ExprResult ER = ExprResult{From};
   1786   auto Conv = S.CheckSingleAssignmentConstraints(ToType, ER,
   1787                                                  /*Diagnose=*/false,
   1788                                                  /*DiagnoseCFAudited=*/false,
   1789                                                  /*ConvertRHS=*/false);
   1790   if (Conv != Sema::Compatible)
   1791     return false;
   1792 
   1793   SCS.setAllToTypes(ToType);
   1794   // We need to set all three because we want this conversion to rank terribly,
   1795   // and we don't know what conversions it may overlap with.
   1796   SCS.First = ICK_C_Only_Conversion;
   1797   SCS.Second = ICK_C_Only_Conversion;
   1798   SCS.Third = ICK_C_Only_Conversion;
   1799   return true;
   1800 }
   1801 
   1802 static bool
   1803 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
   1804                                      QualType &ToType,
   1805                                      bool InOverloadResolution,
   1806                                      StandardConversionSequence &SCS,
   1807                                      bool CStyle) {
   1808 
   1809   const RecordType *UT = ToType->getAsUnionType();
   1810   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
   1811     return false;
   1812   // The field to initialize within the transparent union.
   1813   RecordDecl *UD = UT->getDecl();
   1814   // It's compatible if the expression matches any of the fields.
   1815   for (const auto *it : UD->fields()) {
   1816     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
   1817                              CStyle, /*ObjCWritebackConversion=*/false)) {
   1818       ToType = it->getType();
   1819       return true;
   1820     }
   1821   }
   1822   return false;
   1823 }
   1824 
   1825 /// IsIntegralPromotion - Determines whether the conversion from the
   1826 /// expression From (whose potentially-adjusted type is FromType) to
   1827 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
   1828 /// sets PromotedType to the promoted type.
   1829 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
   1830   const BuiltinType *To = ToType->getAs<BuiltinType>();
   1831   // All integers are built-in.
   1832   if (!To) {
   1833     return false;
   1834   }
   1835 
   1836   // An rvalue of type char, signed char, unsigned char, short int, or
   1837   // unsigned short int can be converted to an rvalue of type int if
   1838   // int can represent all the values of the source type; otherwise,
   1839   // the source rvalue can be converted to an rvalue of type unsigned
   1840   // int (C++ 4.5p1).
   1841   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
   1842       !FromType->isEnumeralType()) {
   1843     if (// We can promote any signed, promotable integer type to an int
   1844         (FromType->isSignedIntegerType() ||
   1845          // We can promote any unsigned integer type whose size is
   1846          // less than int to an int.
   1847          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
   1848       return To->getKind() == BuiltinType::Int;
   1849     }
   1850 
   1851     return To->getKind() == BuiltinType::UInt;
   1852   }
   1853 
   1854   // C++11 [conv.prom]p3:
   1855   //   A prvalue of an unscoped enumeration type whose underlying type is not
   1856   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
   1857   //   following types that can represent all the values of the enumeration
   1858   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
   1859   //   unsigned int, long int, unsigned long int, long long int, or unsigned
   1860   //   long long int. If none of the types in that list can represent all the
   1861   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
   1862   //   type can be converted to an rvalue a prvalue of the extended integer type
   1863   //   with lowest integer conversion rank (4.13) greater than the rank of long
   1864   //   long in which all the values of the enumeration can be represented. If
   1865   //   there are two such extended types, the signed one is chosen.
   1866   // C++11 [conv.prom]p4:
   1867   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
   1868   //   can be converted to a prvalue of its underlying type. Moreover, if
   1869   //   integral promotion can be applied to its underlying type, a prvalue of an
   1870   //   unscoped enumeration type whose underlying type is fixed can also be
   1871   //   converted to a prvalue of the promoted underlying type.
   1872   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
   1873     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
   1874     // provided for a scoped enumeration.
   1875     if (FromEnumType->getDecl()->isScoped())
   1876       return false;
   1877 
   1878     // We can perform an integral promotion to the underlying type of the enum,
   1879     // even if that's not the promoted type. Note that the check for promoting
   1880     // the underlying type is based on the type alone, and does not consider
   1881     // the bitfield-ness of the actual source expression.
   1882     if (FromEnumType->getDecl()->isFixed()) {
   1883       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
   1884       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
   1885              IsIntegralPromotion(nullptr, Underlying, ToType);
   1886     }
   1887 
   1888     // We have already pre-calculated the promotion type, so this is trivial.
   1889     if (ToType->isIntegerType() &&
   1890         isCompleteType(From->getLocStart(), FromType))
   1891       return Context.hasSameUnqualifiedType(
   1892           ToType, FromEnumType->getDecl()->getPromotionType());
   1893   }
   1894 
   1895   // C++0x [conv.prom]p2:
   1896   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
   1897   //   to an rvalue a prvalue of the first of the following types that can
   1898   //   represent all the values of its underlying type: int, unsigned int,
   1899   //   long int, unsigned long int, long long int, or unsigned long long int.
   1900   //   If none of the types in that list can represent all the values of its
   1901   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
   1902   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
   1903   //   type.
   1904   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
   1905       ToType->isIntegerType()) {
   1906     // Determine whether the type we're converting from is signed or
   1907     // unsigned.
   1908     bool FromIsSigned = FromType->isSignedIntegerType();
   1909     uint64_t FromSize = Context.getTypeSize(FromType);
   1910 
   1911     // The types we'll try to promote to, in the appropriate
   1912     // order. Try each of these types.
   1913     QualType PromoteTypes[6] = {
   1914       Context.IntTy, Context.UnsignedIntTy,
   1915       Context.LongTy, Context.UnsignedLongTy ,
   1916       Context.LongLongTy, Context.UnsignedLongLongTy
   1917     };
   1918     for (int Idx = 0; Idx < 6; ++Idx) {
   1919       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
   1920       if (FromSize < ToSize ||
   1921           (FromSize == ToSize &&
   1922            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
   1923         // We found the type that we can promote to. If this is the
   1924         // type we wanted, we have a promotion. Otherwise, no
   1925         // promotion.
   1926         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
   1927       }
   1928     }
   1929   }
   1930 
   1931   // An rvalue for an integral bit-field (9.6) can be converted to an
   1932   // rvalue of type int if int can represent all the values of the
   1933   // bit-field; otherwise, it can be converted to unsigned int if
   1934   // unsigned int can represent all the values of the bit-field. If
   1935   // the bit-field is larger yet, no integral promotion applies to
   1936   // it. If the bit-field has an enumerated type, it is treated as any
   1937   // other value of that type for promotion purposes (C++ 4.5p3).
   1938   // FIXME: We should delay checking of bit-fields until we actually perform the
   1939   // conversion.
   1940   if (From) {
   1941     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
   1942       llvm::APSInt BitWidth;
   1943       if (FromType->isIntegralType(Context) &&
   1944           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
   1945         llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
   1946         ToSize = Context.getTypeSize(ToType);
   1947 
   1948         // Are we promoting to an int from a bitfield that fits in an int?
   1949         if (BitWidth < ToSize ||
   1950             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
   1951           return To->getKind() == BuiltinType::Int;
   1952         }
   1953 
   1954         // Are we promoting to an unsigned int from an unsigned bitfield
   1955         // that fits into an unsigned int?
   1956         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
   1957           return To->getKind() == BuiltinType::UInt;
   1958         }
   1959 
   1960         return false;
   1961       }
   1962     }
   1963   }
   1964 
   1965   // An rvalue of type bool can be converted to an rvalue of type int,
   1966   // with false becoming zero and true becoming one (C++ 4.5p4).
   1967   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
   1968     return true;
   1969   }
   1970 
   1971   return false;
   1972 }
   1973 
   1974 /// IsFloatingPointPromotion - Determines whether the conversion from
   1975 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
   1976 /// returns true and sets PromotedType to the promoted type.
   1977 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
   1978   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
   1979     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
   1980       /// An rvalue of type float can be converted to an rvalue of type
   1981       /// double. (C++ 4.6p1).
   1982       if (FromBuiltin->getKind() == BuiltinType::Float &&
   1983           ToBuiltin->getKind() == BuiltinType::Double)
   1984         return true;
   1985 
   1986       // C99 6.3.1.5p1:
   1987       //   When a float is promoted to double or long double, or a
   1988       //   double is promoted to long double [...].
   1989       if (!getLangOpts().CPlusPlus &&
   1990           (FromBuiltin->getKind() == BuiltinType::Float ||
   1991            FromBuiltin->getKind() == BuiltinType::Double) &&
   1992           (ToBuiltin->getKind() == BuiltinType::LongDouble ||
   1993            ToBuiltin->getKind() == BuiltinType::Float128))
   1994         return true;
   1995 
   1996       // Half can be promoted to float.
   1997       if (!getLangOpts().NativeHalfType &&
   1998            FromBuiltin->getKind() == BuiltinType::Half &&
   1999           ToBuiltin->getKind() == BuiltinType::Float)
   2000         return true;
   2001     }
   2002 
   2003   return false;
   2004 }
   2005 
   2006 /// \brief Determine if a conversion is a complex promotion.
   2007 ///
   2008 /// A complex promotion is defined as a complex -> complex conversion
   2009 /// where the conversion between the underlying real types is a
   2010 /// floating-point or integral promotion.
   2011 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
   2012   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
   2013   if (!FromComplex)
   2014     return false;
   2015 
   2016   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
   2017   if (!ToComplex)
   2018     return false;
   2019 
   2020   return IsFloatingPointPromotion(FromComplex->getElementType(),
   2021                                   ToComplex->getElementType()) ||
   2022     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
   2023                         ToComplex->getElementType());
   2024 }
   2025 
   2026 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
   2027 /// the pointer type FromPtr to a pointer to type ToPointee, with the
   2028 /// same type qualifiers as FromPtr has on its pointee type. ToType,
   2029 /// if non-empty, will be a pointer to ToType that may or may not have
   2030 /// the right set of qualifiers on its pointee.
   2031 ///
   2032 static QualType
   2033 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
   2034                                    QualType ToPointee, QualType ToType,
   2035                                    ASTContext &Context,
   2036                                    bool StripObjCLifetime = false) {
   2037   assert((FromPtr->getTypeClass() == Type::Pointer ||
   2038           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
   2039          "Invalid similarly-qualified pointer type");
   2040 
   2041   /// Conversions to 'id' subsume cv-qualifier conversions.
   2042   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
   2043     return ToType.getUnqualifiedType();
   2044 
   2045   QualType CanonFromPointee
   2046     = Context.getCanonicalType(FromPtr->getPointeeType());
   2047   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
   2048   Qualifiers Quals = CanonFromPointee.getQualifiers();
   2049 
   2050   if (StripObjCLifetime)
   2051     Quals.removeObjCLifetime();
   2052 
   2053   // Exact qualifier match -> return the pointer type we're converting to.
   2054   if (CanonToPointee.getLocalQualifiers() == Quals) {
   2055     // ToType is exactly what we need. Return it.
   2056     if (!ToType.isNull())
   2057       return ToType.getUnqualifiedType();
   2058 
   2059     // Build a pointer to ToPointee. It has the right qualifiers
   2060     // already.
   2061     if (isa<ObjCObjectPointerType>(ToType))
   2062       return Context.getObjCObjectPointerType(ToPointee);
   2063     return Context.getPointerType(ToPointee);
   2064   }
   2065 
   2066   // Just build a canonical type that has the right qualifiers.
   2067   QualType QualifiedCanonToPointee
   2068     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
   2069 
   2070   if (isa<ObjCObjectPointerType>(ToType))
   2071     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
   2072   return Context.getPointerType(QualifiedCanonToPointee);
   2073 }
   2074 
   2075 static bool isNullPointerConstantForConversion(Expr *Expr,
   2076                                                bool InOverloadResolution,
   2077                                                ASTContext &Context) {
   2078   // Handle value-dependent integral null pointer constants correctly.
   2079   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
   2080   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
   2081       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
   2082     return !InOverloadResolution;
   2083 
   2084   return Expr->isNullPointerConstant(Context,
   2085                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
   2086                                         : Expr::NPC_ValueDependentIsNull);
   2087 }
   2088 
   2089 /// IsPointerConversion - Determines whether the conversion of the
   2090 /// expression From, which has the (possibly adjusted) type FromType,
   2091 /// can be converted to the type ToType via a pointer conversion (C++
   2092 /// 4.10). If so, returns true and places the converted type (that
   2093 /// might differ from ToType in its cv-qualifiers at some level) into
   2094 /// ConvertedType.
   2095 ///
   2096 /// This routine also supports conversions to and from block pointers
   2097 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
   2098 /// pointers to interfaces. FIXME: Once we've determined the
   2099 /// appropriate overloading rules for Objective-C, we may want to
   2100 /// split the Objective-C checks into a different routine; however,
   2101 /// GCC seems to consider all of these conversions to be pointer
   2102 /// conversions, so for now they live here. IncompatibleObjC will be
   2103 /// set if the conversion is an allowed Objective-C conversion that
   2104 /// should result in a warning.
   2105 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
   2106                                bool InOverloadResolution,
   2107                                QualType& ConvertedType,
   2108                                bool &IncompatibleObjC) {
   2109   IncompatibleObjC = false;
   2110   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
   2111                               IncompatibleObjC))
   2112     return true;
   2113 
   2114   // Conversion from a null pointer constant to any Objective-C pointer type.
   2115   if (ToType->isObjCObjectPointerType() &&
   2116       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2117     ConvertedType = ToType;
   2118     return true;
   2119   }
   2120 
   2121   // Blocks: Block pointers can be converted to void*.
   2122   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
   2123       ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
   2124     ConvertedType = ToType;
   2125     return true;
   2126   }
   2127   // Blocks: A null pointer constant can be converted to a block
   2128   // pointer type.
   2129   if (ToType->isBlockPointerType() &&
   2130       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2131     ConvertedType = ToType;
   2132     return true;
   2133   }
   2134 
   2135   // If the left-hand-side is nullptr_t, the right side can be a null
   2136   // pointer constant.
   2137   if (ToType->isNullPtrType() &&
   2138       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2139     ConvertedType = ToType;
   2140     return true;
   2141   }
   2142 
   2143   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
   2144   if (!ToTypePtr)
   2145     return false;
   2146 
   2147   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
   2148   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2149     ConvertedType = ToType;
   2150     return true;
   2151   }
   2152 
   2153   // Beyond this point, both types need to be pointers
   2154   // , including objective-c pointers.
   2155   QualType ToPointeeType = ToTypePtr->getPointeeType();
   2156   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
   2157       !getLangOpts().ObjCAutoRefCount) {
   2158     ConvertedType = BuildSimilarlyQualifiedPointerType(
   2159                                       FromType->getAs<ObjCObjectPointerType>(),
   2160                                                        ToPointeeType,
   2161                                                        ToType, Context);
   2162     return true;
   2163   }
   2164   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
   2165   if (!FromTypePtr)
   2166     return false;
   2167 
   2168   QualType FromPointeeType = FromTypePtr->getPointeeType();
   2169 
   2170   // If the unqualified pointee types are the same, this can't be a
   2171   // pointer conversion, so don't do all of the work below.
   2172   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
   2173     return false;
   2174 
   2175   // An rvalue of type "pointer to cv T," where T is an object type,
   2176   // can be converted to an rvalue of type "pointer to cv void" (C++
   2177   // 4.10p2).
   2178   if (FromPointeeType->isIncompleteOrObjectType() &&
   2179       ToPointeeType->isVoidType()) {
   2180     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2181                                                        ToPointeeType,
   2182                                                        ToType, Context,
   2183                                                    /*StripObjCLifetime=*/true);
   2184     return true;
   2185   }
   2186 
   2187   // MSVC allows implicit function to void* type conversion.
   2188   if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
   2189       ToPointeeType->isVoidType()) {
   2190     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2191                                                        ToPointeeType,
   2192                                                        ToType, Context);
   2193     return true;
   2194   }
   2195 
   2196   // When we're overloading in C, we allow a special kind of pointer
   2197   // conversion for compatible-but-not-identical pointee types.
   2198   if (!getLangOpts().CPlusPlus &&
   2199       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
   2200     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2201                                                        ToPointeeType,
   2202                                                        ToType, Context);
   2203     return true;
   2204   }
   2205 
   2206   // C++ [conv.ptr]p3:
   2207   //
   2208   //   An rvalue of type "pointer to cv D," where D is a class type,
   2209   //   can be converted to an rvalue of type "pointer to cv B," where
   2210   //   B is a base class (clause 10) of D. If B is an inaccessible
   2211   //   (clause 11) or ambiguous (10.2) base class of D, a program that
   2212   //   necessitates this conversion is ill-formed. The result of the
   2213   //   conversion is a pointer to the base class sub-object of the
   2214   //   derived class object. The null pointer value is converted to
   2215   //   the null pointer value of the destination type.
   2216   //
   2217   // Note that we do not check for ambiguity or inaccessibility
   2218   // here. That is handled by CheckPointerConversion.
   2219   if (getLangOpts().CPlusPlus &&
   2220       FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
   2221       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
   2222       IsDerivedFrom(From->getLocStart(), FromPointeeType, ToPointeeType)) {
   2223     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2224                                                        ToPointeeType,
   2225                                                        ToType, Context);
   2226     return true;
   2227   }
   2228 
   2229   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
   2230       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
   2231     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2232                                                        ToPointeeType,
   2233                                                        ToType, Context);
   2234     return true;
   2235   }
   2236 
   2237   return false;
   2238 }
   2239 
   2240 /// \brief Adopt the given qualifiers for the given type.
   2241 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
   2242   Qualifiers TQs = T.getQualifiers();
   2243 
   2244   // Check whether qualifiers already match.
   2245   if (TQs == Qs)
   2246     return T;
   2247 
   2248   if (Qs.compatiblyIncludes(TQs))
   2249     return Context.getQualifiedType(T, Qs);
   2250 
   2251   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
   2252 }
   2253 
   2254 /// isObjCPointerConversion - Determines whether this is an
   2255 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
   2256 /// with the same arguments and return values.
   2257 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
   2258                                    QualType& ConvertedType,
   2259                                    bool &IncompatibleObjC) {
   2260   if (!getLangOpts().ObjC1)
   2261     return false;
   2262 
   2263   // The set of qualifiers on the type we're converting from.
   2264   Qualifiers FromQualifiers = FromType.getQualifiers();
   2265 
   2266   // First, we handle all conversions on ObjC object pointer types.
   2267   const ObjCObjectPointerType* ToObjCPtr =
   2268     ToType->getAs<ObjCObjectPointerType>();
   2269   const ObjCObjectPointerType *FromObjCPtr =
   2270     FromType->getAs<ObjCObjectPointerType>();
   2271 
   2272   if (ToObjCPtr && FromObjCPtr) {
   2273     // If the pointee types are the same (ignoring qualifications),
   2274     // then this is not a pointer conversion.
   2275     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
   2276                                        FromObjCPtr->getPointeeType()))
   2277       return false;
   2278 
   2279     // Conversion between Objective-C pointers.
   2280     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
   2281       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
   2282       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
   2283       if (getLangOpts().CPlusPlus && LHS && RHS &&
   2284           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
   2285                                                 FromObjCPtr->getPointeeType()))
   2286         return false;
   2287       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
   2288                                                    ToObjCPtr->getPointeeType(),
   2289                                                          ToType, Context);
   2290       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2291       return true;
   2292     }
   2293 
   2294     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
   2295       // Okay: this is some kind of implicit downcast of Objective-C
   2296       // interfaces, which is permitted. However, we're going to
   2297       // complain about it.
   2298       IncompatibleObjC = true;
   2299       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
   2300                                                    ToObjCPtr->getPointeeType(),
   2301                                                          ToType, Context);
   2302       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2303       return true;
   2304     }
   2305   }
   2306   // Beyond this point, both types need to be C pointers or block pointers.
   2307   QualType ToPointeeType;
   2308   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
   2309     ToPointeeType = ToCPtr->getPointeeType();
   2310   else if (const BlockPointerType *ToBlockPtr =
   2311             ToType->getAs<BlockPointerType>()) {
   2312     // Objective C++: We're able to convert from a pointer to any object
   2313     // to a block pointer type.
   2314     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
   2315       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2316       return true;
   2317     }
   2318     ToPointeeType = ToBlockPtr->getPointeeType();
   2319   }
   2320   else if (FromType->getAs<BlockPointerType>() &&
   2321            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
   2322     // Objective C++: We're able to convert from a block pointer type to a
   2323     // pointer to any object.
   2324     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2325     return true;
   2326   }
   2327   else
   2328     return false;
   2329 
   2330   QualType FromPointeeType;
   2331   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
   2332     FromPointeeType = FromCPtr->getPointeeType();
   2333   else if (const BlockPointerType *FromBlockPtr =
   2334            FromType->getAs<BlockPointerType>())
   2335     FromPointeeType = FromBlockPtr->getPointeeType();
   2336   else
   2337     return false;
   2338 
   2339   // If we have pointers to pointers, recursively check whether this
   2340   // is an Objective-C conversion.
   2341   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
   2342       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
   2343                               IncompatibleObjC)) {
   2344     // We always complain about this conversion.
   2345     IncompatibleObjC = true;
   2346     ConvertedType = Context.getPointerType(ConvertedType);
   2347     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2348     return true;
   2349   }
   2350   // Allow conversion of pointee being objective-c pointer to another one;
   2351   // as in I* to id.
   2352   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
   2353       ToPointeeType->getAs<ObjCObjectPointerType>() &&
   2354       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
   2355                               IncompatibleObjC)) {
   2356 
   2357     ConvertedType = Context.getPointerType(ConvertedType);
   2358     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2359     return true;
   2360   }
   2361 
   2362   // If we have pointers to functions or blocks, check whether the only
   2363   // differences in the argument and result types are in Objective-C
   2364   // pointer conversions. If so, we permit the conversion (but
   2365   // complain about it).
   2366   const FunctionProtoType *FromFunctionType
   2367     = FromPointeeType->getAs<FunctionProtoType>();
   2368   const FunctionProtoType *ToFunctionType
   2369     = ToPointeeType->getAs<FunctionProtoType>();
   2370   if (FromFunctionType && ToFunctionType) {
   2371     // If the function types are exactly the same, this isn't an
   2372     // Objective-C pointer conversion.
   2373     if (Context.getCanonicalType(FromPointeeType)
   2374           == Context.getCanonicalType(ToPointeeType))
   2375       return false;
   2376 
   2377     // Perform the quick checks that will tell us whether these
   2378     // function types are obviously different.
   2379     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
   2380         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
   2381         FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
   2382       return false;
   2383 
   2384     bool HasObjCConversion = false;
   2385     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
   2386         Context.getCanonicalType(ToFunctionType->getReturnType())) {
   2387       // Okay, the types match exactly. Nothing to do.
   2388     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
   2389                                        ToFunctionType->getReturnType(),
   2390                                        ConvertedType, IncompatibleObjC)) {
   2391       // Okay, we have an Objective-C pointer conversion.
   2392       HasObjCConversion = true;
   2393     } else {
   2394       // Function types are too different. Abort.
   2395       return false;
   2396     }
   2397 
   2398     // Check argument types.
   2399     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
   2400          ArgIdx != NumArgs; ++ArgIdx) {
   2401       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
   2402       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
   2403       if (Context.getCanonicalType(FromArgType)
   2404             == Context.getCanonicalType(ToArgType)) {
   2405         // Okay, the types match exactly. Nothing to do.
   2406       } else if (isObjCPointerConversion(FromArgType, ToArgType,
   2407                                          ConvertedType, IncompatibleObjC)) {
   2408         // Okay, we have an Objective-C pointer conversion.
   2409         HasObjCConversion = true;
   2410       } else {
   2411         // Argument types are too different. Abort.
   2412         return false;
   2413       }
   2414     }
   2415 
   2416     if (HasObjCConversion) {
   2417       // We had an Objective-C conversion. Allow this pointer
   2418       // conversion, but complain about it.
   2419       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2420       IncompatibleObjC = true;
   2421       return true;
   2422     }
   2423   }
   2424 
   2425   return false;
   2426 }
   2427 
   2428 /// \brief Determine whether this is an Objective-C writeback conversion,
   2429 /// used for parameter passing when performing automatic reference counting.
   2430 ///
   2431 /// \param FromType The type we're converting form.
   2432 ///
   2433 /// \param ToType The type we're converting to.
   2434 ///
   2435 /// \param ConvertedType The type that will be produced after applying
   2436 /// this conversion.
   2437 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
   2438                                      QualType &ConvertedType) {
   2439   if (!getLangOpts().ObjCAutoRefCount ||
   2440       Context.hasSameUnqualifiedType(FromType, ToType))
   2441     return false;
   2442 
   2443   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
   2444   QualType ToPointee;
   2445   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
   2446     ToPointee = ToPointer->getPointeeType();
   2447   else
   2448     return false;
   2449 
   2450   Qualifiers ToQuals = ToPointee.getQualifiers();
   2451   if (!ToPointee->isObjCLifetimeType() ||
   2452       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
   2453       !ToQuals.withoutObjCLifetime().empty())
   2454     return false;
   2455 
   2456   // Argument must be a pointer to __strong to __weak.
   2457   QualType FromPointee;
   2458   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
   2459     FromPointee = FromPointer->getPointeeType();
   2460   else
   2461     return false;
   2462 
   2463   Qualifiers FromQuals = FromPointee.getQualifiers();
   2464   if (!FromPointee->isObjCLifetimeType() ||
   2465       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
   2466        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
   2467     return false;
   2468 
   2469   // Make sure that we have compatible qualifiers.
   2470   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
   2471   if (!ToQuals.compatiblyIncludes(FromQuals))
   2472     return false;
   2473 
   2474   // Remove qualifiers from the pointee type we're converting from; they
   2475   // aren't used in the compatibility check belong, and we'll be adding back
   2476   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
   2477   FromPointee = FromPointee.getUnqualifiedType();
   2478 
   2479   // The unqualified form of the pointee types must be compatible.
   2480   ToPointee = ToPointee.getUnqualifiedType();
   2481   bool IncompatibleObjC;
   2482   if (Context.typesAreCompatible(FromPointee, ToPointee))
   2483     FromPointee = ToPointee;
   2484   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
   2485                                     IncompatibleObjC))
   2486     return false;
   2487 
   2488   /// \brief Construct the type we're converting to, which is a pointer to
   2489   /// __autoreleasing pointee.
   2490   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
   2491   ConvertedType = Context.getPointerType(FromPointee);
   2492   return true;
   2493 }
   2494 
   2495 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
   2496                                     QualType& ConvertedType) {
   2497   QualType ToPointeeType;
   2498   if (const BlockPointerType *ToBlockPtr =
   2499         ToType->getAs<BlockPointerType>())
   2500     ToPointeeType = ToBlockPtr->getPointeeType();
   2501   else
   2502     return false;
   2503 
   2504   QualType FromPointeeType;
   2505   if (const BlockPointerType *FromBlockPtr =
   2506       FromType->getAs<BlockPointerType>())
   2507     FromPointeeType = FromBlockPtr->getPointeeType();
   2508   else
   2509     return false;
   2510   // We have pointer to blocks, check whether the only
   2511   // differences in the argument and result types are in Objective-C
   2512   // pointer conversions. If so, we permit the conversion.
   2513 
   2514   const FunctionProtoType *FromFunctionType
   2515     = FromPointeeType->getAs<FunctionProtoType>();
   2516   const FunctionProtoType *ToFunctionType
   2517     = ToPointeeType->getAs<FunctionProtoType>();
   2518 
   2519   if (!FromFunctionType || !ToFunctionType)
   2520     return false;
   2521 
   2522   if (Context.hasSameType(FromPointeeType, ToPointeeType))
   2523     return true;
   2524 
   2525   // Perform the quick checks that will tell us whether these
   2526   // function types are obviously different.
   2527   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
   2528       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
   2529     return false;
   2530 
   2531   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
   2532   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
   2533   if (FromEInfo != ToEInfo)
   2534     return false;
   2535 
   2536   bool IncompatibleObjC = false;
   2537   if (Context.hasSameType(FromFunctionType->getReturnType(),
   2538                           ToFunctionType->getReturnType())) {
   2539     // Okay, the types match exactly. Nothing to do.
   2540   } else {
   2541     QualType RHS = FromFunctionType->getReturnType();
   2542     QualType LHS = ToFunctionType->getReturnType();
   2543     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
   2544         !RHS.hasQualifiers() && LHS.hasQualifiers())
   2545        LHS = LHS.getUnqualifiedType();
   2546 
   2547      if (Context.hasSameType(RHS,LHS)) {
   2548        // OK exact match.
   2549      } else if (isObjCPointerConversion(RHS, LHS,
   2550                                         ConvertedType, IncompatibleObjC)) {
   2551      if (IncompatibleObjC)
   2552        return false;
   2553      // Okay, we have an Objective-C pointer conversion.
   2554      }
   2555      else
   2556        return false;
   2557    }
   2558 
   2559    // Check argument types.
   2560    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
   2561         ArgIdx != NumArgs; ++ArgIdx) {
   2562      IncompatibleObjC = false;
   2563      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
   2564      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
   2565      if (Context.hasSameType(FromArgType, ToArgType)) {
   2566        // Okay, the types match exactly. Nothing to do.
   2567      } else if (isObjCPointerConversion(ToArgType, FromArgType,
   2568                                         ConvertedType, IncompatibleObjC)) {
   2569        if (IncompatibleObjC)
   2570          return false;
   2571        // Okay, we have an Objective-C pointer conversion.
   2572      } else
   2573        // Argument types are too different. Abort.
   2574        return false;
   2575    }
   2576    if (!Context.doFunctionTypesMatchOnExtParameterInfos(FromFunctionType,
   2577                                                         ToFunctionType))
   2578      return false;
   2579 
   2580    ConvertedType = ToType;
   2581    return true;
   2582 }
   2583 
   2584 enum {
   2585   ft_default,
   2586   ft_different_class,
   2587   ft_parameter_arity,
   2588   ft_parameter_mismatch,
   2589   ft_return_type,
   2590   ft_qualifer_mismatch
   2591 };
   2592 
   2593 /// Attempts to get the FunctionProtoType from a Type. Handles
   2594 /// MemberFunctionPointers properly.
   2595 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
   2596   if (auto *FPT = FromType->getAs<FunctionProtoType>())
   2597     return FPT;
   2598 
   2599   if (auto *MPT = FromType->getAs<MemberPointerType>())
   2600     return MPT->getPointeeType()->getAs<FunctionProtoType>();
   2601 
   2602   return nullptr;
   2603 }
   2604 
   2605 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
   2606 /// function types.  Catches different number of parameter, mismatch in
   2607 /// parameter types, and different return types.
   2608 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
   2609                                       QualType FromType, QualType ToType) {
   2610   // If either type is not valid, include no extra info.
   2611   if (FromType.isNull() || ToType.isNull()) {
   2612     PDiag << ft_default;
   2613     return;
   2614   }
   2615 
   2616   // Get the function type from the pointers.
   2617   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
   2618     const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
   2619                             *ToMember = ToType->getAs<MemberPointerType>();
   2620     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
   2621       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
   2622             << QualType(FromMember->getClass(), 0);
   2623       return;
   2624     }
   2625     FromType = FromMember->getPointeeType();
   2626     ToType = ToMember->getPointeeType();
   2627   }
   2628 
   2629   if (FromType->isPointerType())
   2630     FromType = FromType->getPointeeType();
   2631   if (ToType->isPointerType())
   2632     ToType = ToType->getPointeeType();
   2633 
   2634   // Remove references.
   2635   FromType = FromType.getNonReferenceType();
   2636   ToType = ToType.getNonReferenceType();
   2637 
   2638   // Don't print extra info for non-specialized template functions.
   2639   if (FromType->isInstantiationDependentType() &&
   2640       !FromType->getAs<TemplateSpecializationType>()) {
   2641     PDiag << ft_default;
   2642     return;
   2643   }
   2644 
   2645   // No extra info for same types.
   2646   if (Context.hasSameType(FromType, ToType)) {
   2647     PDiag << ft_default;
   2648     return;
   2649   }
   2650 
   2651   const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
   2652                           *ToFunction = tryGetFunctionProtoType(ToType);
   2653 
   2654   // Both types need to be function types.
   2655   if (!FromFunction || !ToFunction) {
   2656     PDiag << ft_default;
   2657     return;
   2658   }
   2659 
   2660   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
   2661     PDiag << ft_parameter_arity << ToFunction->getNumParams()
   2662           << FromFunction->getNumParams();
   2663     return;
   2664   }
   2665 
   2666   // Handle different parameter types.
   2667   unsigned ArgPos;
   2668   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
   2669     PDiag << ft_parameter_mismatch << ArgPos + 1
   2670           << ToFunction->getParamType(ArgPos)
   2671           << FromFunction->getParamType(ArgPos);
   2672     return;
   2673   }
   2674 
   2675   // Handle different return type.
   2676   if (!Context.hasSameType(FromFunction->getReturnType(),
   2677                            ToFunction->getReturnType())) {
   2678     PDiag << ft_return_type << ToFunction->getReturnType()
   2679           << FromFunction->getReturnType();
   2680     return;
   2681   }
   2682 
   2683   unsigned FromQuals = FromFunction->getTypeQuals(),
   2684            ToQuals = ToFunction->getTypeQuals();
   2685   if (FromQuals != ToQuals) {
   2686     PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
   2687     return;
   2688   }
   2689 
   2690   // Unable to find a difference, so add no extra info.
   2691   PDiag << ft_default;
   2692 }
   2693 
   2694 /// FunctionParamTypesAreEqual - This routine checks two function proto types
   2695 /// for equality of their argument types. Caller has already checked that
   2696 /// they have same number of arguments.  If the parameters are different,
   2697 /// ArgPos will have the parameter index of the first different parameter.
   2698 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
   2699                                       const FunctionProtoType *NewType,
   2700                                       unsigned *ArgPos) {
   2701   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
   2702                                               N = NewType->param_type_begin(),
   2703                                               E = OldType->param_type_end();
   2704        O && (O != E); ++O, ++N) {
   2705     if (!Context.hasSameType(O->getUnqualifiedType(),
   2706                              N->getUnqualifiedType())) {
   2707       if (ArgPos)
   2708         *ArgPos = O - OldType->param_type_begin();
   2709       return false;
   2710     }
   2711   }
   2712   return true;
   2713 }
   2714 
   2715 /// CheckPointerConversion - Check the pointer conversion from the
   2716 /// expression From to the type ToType. This routine checks for
   2717 /// ambiguous or inaccessible derived-to-base pointer
   2718 /// conversions for which IsPointerConversion has already returned
   2719 /// true. It returns true and produces a diagnostic if there was an
   2720 /// error, or returns false otherwise.
   2721 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
   2722                                   CastKind &Kind,
   2723                                   CXXCastPath& BasePath,
   2724                                   bool IgnoreBaseAccess,
   2725                                   bool Diagnose) {
   2726   QualType FromType = From->getType();
   2727   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
   2728 
   2729   Kind = CK_BitCast;
   2730 
   2731   if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
   2732       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
   2733           Expr::NPCK_ZeroExpression) {
   2734     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
   2735       DiagRuntimeBehavior(From->getExprLoc(), From,
   2736                           PDiag(diag::warn_impcast_bool_to_null_pointer)
   2737                             << ToType << From->getSourceRange());
   2738     else if (!isUnevaluatedContext())
   2739       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
   2740         << ToType << From->getSourceRange();
   2741   }
   2742   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
   2743     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
   2744       QualType FromPointeeType = FromPtrType->getPointeeType(),
   2745                ToPointeeType   = ToPtrType->getPointeeType();
   2746 
   2747       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
   2748           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
   2749         // We must have a derived-to-base conversion. Check an
   2750         // ambiguous or inaccessible conversion.
   2751         unsigned InaccessibleID = 0;
   2752         unsigned AmbigiousID = 0;
   2753         if (Diagnose) {
   2754           InaccessibleID = diag::err_upcast_to_inaccessible_base;
   2755           AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
   2756         }
   2757         if (CheckDerivedToBaseConversion(
   2758                 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
   2759                 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
   2760                 &BasePath, IgnoreBaseAccess))
   2761           return true;
   2762 
   2763         // The conversion was successful.
   2764         Kind = CK_DerivedToBase;
   2765       }
   2766 
   2767       if (Diagnose && !IsCStyleOrFunctionalCast &&
   2768           FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
   2769         assert(getLangOpts().MSVCCompat &&
   2770                "this should only be possible with MSVCCompat!");
   2771         Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
   2772             << From->getSourceRange();
   2773       }
   2774     }
   2775   } else if (const ObjCObjectPointerType *ToPtrType =
   2776                ToType->getAs<ObjCObjectPointerType>()) {
   2777     if (const ObjCObjectPointerType *FromPtrType =
   2778           FromType->getAs<ObjCObjectPointerType>()) {
   2779       // Objective-C++ conversions are always okay.
   2780       // FIXME: We should have a different class of conversions for the
   2781       // Objective-C++ implicit conversions.
   2782       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
   2783         return false;
   2784     } else if (FromType->isBlockPointerType()) {
   2785       Kind = CK_BlockPointerToObjCPointerCast;
   2786     } else {
   2787       Kind = CK_CPointerToObjCPointerCast;
   2788     }
   2789   } else if (ToType->isBlockPointerType()) {
   2790     if (!FromType->isBlockPointerType())
   2791       Kind = CK_AnyPointerToBlockPointerCast;
   2792   }
   2793 
   2794   // We shouldn't fall into this case unless it's valid for other
   2795   // reasons.
   2796   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
   2797     Kind = CK_NullToPointer;
   2798 
   2799   return false;
   2800 }
   2801 
   2802 /// IsMemberPointerConversion - Determines whether the conversion of the
   2803 /// expression From, which has the (possibly adjusted) type FromType, can be
   2804 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
   2805 /// If so, returns true and places the converted type (that might differ from
   2806 /// ToType in its cv-qualifiers at some level) into ConvertedType.
   2807 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
   2808                                      QualType ToType,
   2809                                      bool InOverloadResolution,
   2810                                      QualType &ConvertedType) {
   2811   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
   2812   if (!ToTypePtr)
   2813     return false;
   2814 
   2815   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
   2816   if (From->isNullPointerConstant(Context,
   2817                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
   2818                                         : Expr::NPC_ValueDependentIsNull)) {
   2819     ConvertedType = ToType;
   2820     return true;
   2821   }
   2822 
   2823   // Otherwise, both types have to be member pointers.
   2824   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
   2825   if (!FromTypePtr)
   2826     return false;
   2827 
   2828   // A pointer to member of B can be converted to a pointer to member of D,
   2829   // where D is derived from B (C++ 4.11p2).
   2830   QualType FromClass(FromTypePtr->getClass(), 0);
   2831   QualType ToClass(ToTypePtr->getClass(), 0);
   2832 
   2833   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
   2834       IsDerivedFrom(From->getLocStart(), ToClass, FromClass)) {
   2835     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
   2836                                                  ToClass.getTypePtr());
   2837     return true;
   2838   }
   2839 
   2840   return false;
   2841 }
   2842 
   2843 /// CheckMemberPointerConversion - Check the member pointer conversion from the
   2844 /// expression From to the type ToType. This routine checks for ambiguous or
   2845 /// virtual or inaccessible base-to-derived member pointer conversions
   2846 /// for which IsMemberPointerConversion has already returned true. It returns
   2847 /// true and produces a diagnostic if there was an error, or returns false
   2848 /// otherwise.
   2849 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
   2850                                         CastKind &Kind,
   2851                                         CXXCastPath &BasePath,
   2852                                         bool IgnoreBaseAccess) {
   2853   QualType FromType = From->getType();
   2854   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
   2855   if (!FromPtrType) {
   2856     // This must be a null pointer to member pointer conversion
   2857     assert(From->isNullPointerConstant(Context,
   2858                                        Expr::NPC_ValueDependentIsNull) &&
   2859            "Expr must be null pointer constant!");
   2860     Kind = CK_NullToMemberPointer;
   2861     return false;
   2862   }
   2863 
   2864   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
   2865   assert(ToPtrType && "No member pointer cast has a target type "
   2866                       "that is not a member pointer.");
   2867 
   2868   QualType FromClass = QualType(FromPtrType->getClass(), 0);
   2869   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
   2870 
   2871   // FIXME: What about dependent types?
   2872   assert(FromClass->isRecordType() && "Pointer into non-class.");
   2873   assert(ToClass->isRecordType() && "Pointer into non-class.");
   2874 
   2875   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   2876                      /*DetectVirtual=*/true);
   2877   bool DerivationOkay =
   2878       IsDerivedFrom(From->getLocStart(), ToClass, FromClass, Paths);
   2879   assert(DerivationOkay &&
   2880          "Should not have been called if derivation isn't OK.");
   2881   (void)DerivationOkay;
   2882 
   2883   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
   2884                                   getUnqualifiedType())) {
   2885     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
   2886     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
   2887       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
   2888     return true;
   2889   }
   2890 
   2891   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
   2892     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
   2893       << FromClass << ToClass << QualType(VBase, 0)
   2894       << From->getSourceRange();
   2895     return true;
   2896   }
   2897 
   2898   if (!IgnoreBaseAccess)
   2899     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
   2900                          Paths.front(),
   2901                          diag::err_downcast_from_inaccessible_base);
   2902 
   2903   // Must be a base to derived member conversion.
   2904   BuildBasePathArray(Paths, BasePath);
   2905   Kind = CK_BaseToDerivedMemberPointer;
   2906   return false;
   2907 }
   2908 
   2909 /// Determine whether the lifetime conversion between the two given
   2910 /// qualifiers sets is nontrivial.
   2911 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
   2912                                                Qualifiers ToQuals) {
   2913   // Converting anything to const __unsafe_unretained is trivial.
   2914   if (ToQuals.hasConst() &&
   2915       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
   2916     return false;
   2917 
   2918   return true;
   2919 }
   2920 
   2921 /// IsQualificationConversion - Determines whether the conversion from
   2922 /// an rvalue of type FromType to ToType is a qualification conversion
   2923 /// (C++ 4.4).
   2924 ///
   2925 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
   2926 /// when the qualification conversion involves a change in the Objective-C
   2927 /// object lifetime.
   2928 bool
   2929 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
   2930                                 bool CStyle, bool &ObjCLifetimeConversion) {
   2931   FromType = Context.getCanonicalType(FromType);
   2932   ToType = Context.getCanonicalType(ToType);
   2933   ObjCLifetimeConversion = false;
   2934 
   2935   // If FromType and ToType are the same type, this is not a
   2936   // qualification conversion.
   2937   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
   2938     return false;
   2939 
   2940   // (C++ 4.4p4):
   2941   //   A conversion can add cv-qualifiers at levels other than the first
   2942   //   in multi-level pointers, subject to the following rules: [...]
   2943   bool PreviousToQualsIncludeConst = true;
   2944   bool UnwrappedAnyPointer = false;
   2945   while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
   2946     // Within each iteration of the loop, we check the qualifiers to
   2947     // determine if this still looks like a qualification
   2948     // conversion. Then, if all is well, we unwrap one more level of
   2949     // pointers or pointers-to-members and do it all again
   2950     // until there are no more pointers or pointers-to-members left to
   2951     // unwrap.
   2952     UnwrappedAnyPointer = true;
   2953 
   2954     Qualifiers FromQuals = FromType.getQualifiers();
   2955     Qualifiers ToQuals = ToType.getQualifiers();
   2956 
   2957     // Ignore __unaligned qualifier if this type is void.
   2958     if (ToType.getUnqualifiedType()->isVoidType())
   2959       FromQuals.removeUnaligned();
   2960 
   2961     // Objective-C ARC:
   2962     //   Check Objective-C lifetime conversions.
   2963     if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
   2964         UnwrappedAnyPointer) {
   2965       if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
   2966         if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
   2967           ObjCLifetimeConversion = true;
   2968         FromQuals.removeObjCLifetime();
   2969         ToQuals.removeObjCLifetime();
   2970       } else {
   2971         // Qualification conversions cannot cast between different
   2972         // Objective-C lifetime qualifiers.
   2973         return false;
   2974       }
   2975     }
   2976 
   2977     // Allow addition/removal of GC attributes but not changing GC attributes.
   2978     if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
   2979         (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
   2980       FromQuals.removeObjCGCAttr();
   2981       ToQuals.removeObjCGCAttr();
   2982     }
   2983 
   2984     //   -- for every j > 0, if const is in cv 1,j then const is in cv
   2985     //      2,j, and similarly for volatile.
   2986     if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
   2987       return false;
   2988 
   2989     //   -- if the cv 1,j and cv 2,j are different, then const is in
   2990     //      every cv for 0 < k < j.
   2991     if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
   2992         && !PreviousToQualsIncludeConst)
   2993       return false;
   2994 
   2995     // Keep track of whether all prior cv-qualifiers in the "to" type
   2996     // include const.
   2997     PreviousToQualsIncludeConst
   2998       = PreviousToQualsIncludeConst && ToQuals.hasConst();
   2999   }
   3000 
   3001   // We are left with FromType and ToType being the pointee types
   3002   // after unwrapping the original FromType and ToType the same number
   3003   // of types. If we unwrapped any pointers, and if FromType and
   3004   // ToType have the same unqualified type (since we checked
   3005   // qualifiers above), then this is a qualification conversion.
   3006   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
   3007 }
   3008 
   3009 /// \brief - Determine whether this is a conversion from a scalar type to an
   3010 /// atomic type.
   3011 ///
   3012 /// If successful, updates \c SCS's second and third steps in the conversion
   3013 /// sequence to finish the conversion.
   3014 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
   3015                                 bool InOverloadResolution,
   3016                                 StandardConversionSequence &SCS,
   3017                                 bool CStyle) {
   3018   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
   3019   if (!ToAtomic)
   3020     return false;
   3021 
   3022   StandardConversionSequence InnerSCS;
   3023   if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
   3024                             InOverloadResolution, InnerSCS,
   3025                             CStyle, /*AllowObjCWritebackConversion=*/false))
   3026     return false;
   3027 
   3028   SCS.Second = InnerSCS.Second;
   3029   SCS.setToType(1, InnerSCS.getToType(1));
   3030   SCS.Third = InnerSCS.Third;
   3031   SCS.QualificationIncludesObjCLifetime
   3032     = InnerSCS.QualificationIncludesObjCLifetime;
   3033   SCS.setToType(2, InnerSCS.getToType(2));
   3034   return true;
   3035 }
   3036 
   3037 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
   3038                                               CXXConstructorDecl *Constructor,
   3039                                               QualType Type) {
   3040   const FunctionProtoType *CtorType =
   3041       Constructor->getType()->getAs<FunctionProtoType>();
   3042   if (CtorType->getNumParams() > 0) {
   3043     QualType FirstArg = CtorType->getParamType(0);
   3044     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
   3045       return true;
   3046   }
   3047   return false;
   3048 }
   3049 
   3050 static OverloadingResult
   3051 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
   3052                                        CXXRecordDecl *To,
   3053                                        UserDefinedConversionSequence &User,
   3054                                        OverloadCandidateSet &CandidateSet,
   3055                                        bool AllowExplicit) {
   3056   for (auto *D : S.LookupConstructors(To)) {
   3057     auto Info = getConstructorInfo(D);
   3058     if (!Info)
   3059       continue;
   3060 
   3061     bool Usable = !Info.Constructor->isInvalidDecl() &&
   3062                   S.isInitListConstructor(Info.Constructor) &&
   3063                   (AllowExplicit || !Info.Constructor->isExplicit());
   3064     if (Usable) {
   3065       // If the first argument is (a reference to) the target type,
   3066       // suppress conversions.
   3067       bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
   3068           S.Context, Info.Constructor, ToType);
   3069       if (Info.ConstructorTmpl)
   3070         S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
   3071                                        /*ExplicitArgs*/ nullptr, From,
   3072                                        CandidateSet, SuppressUserConversions);
   3073       else
   3074         S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
   3075                                CandidateSet, SuppressUserConversions);
   3076     }
   3077   }
   3078 
   3079   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   3080 
   3081   OverloadCandidateSet::iterator Best;
   3082   switch (auto Result =
   3083             CandidateSet.BestViableFunction(S, From->getLocStart(),
   3084                                             Best, true)) {
   3085   case OR_Deleted:
   3086   case OR_Success: {
   3087     // Record the standard conversion we used and the conversion function.
   3088     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
   3089     QualType ThisType = Constructor->getThisType(S.Context);
   3090     // Initializer lists don't have conversions as such.
   3091     User.Before.setAsIdentityConversion();
   3092     User.HadMultipleCandidates = HadMultipleCandidates;
   3093     User.ConversionFunction = Constructor;
   3094     User.FoundConversionFunction = Best->FoundDecl;
   3095     User.After.setAsIdentityConversion();
   3096     User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
   3097     User.After.setAllToTypes(ToType);
   3098     return Result;
   3099   }
   3100 
   3101   case OR_No_Viable_Function:
   3102     return OR_No_Viable_Function;
   3103   case OR_Ambiguous:
   3104     return OR_Ambiguous;
   3105   }
   3106 
   3107   llvm_unreachable("Invalid OverloadResult!");
   3108 }
   3109 
   3110 /// Determines whether there is a user-defined conversion sequence
   3111 /// (C++ [over.ics.user]) that converts expression From to the type
   3112 /// ToType. If such a conversion exists, User will contain the
   3113 /// user-defined conversion sequence that performs such a conversion
   3114 /// and this routine will return true. Otherwise, this routine returns
   3115 /// false and User is unspecified.
   3116 ///
   3117 /// \param AllowExplicit  true if the conversion should consider C++0x
   3118 /// "explicit" conversion functions as well as non-explicit conversion
   3119 /// functions (C++0x [class.conv.fct]p2).
   3120 ///
   3121 /// \param AllowObjCConversionOnExplicit true if the conversion should
   3122 /// allow an extra Objective-C pointer conversion on uses of explicit
   3123 /// constructors. Requires \c AllowExplicit to also be set.
   3124 static OverloadingResult
   3125 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
   3126                         UserDefinedConversionSequence &User,
   3127                         OverloadCandidateSet &CandidateSet,
   3128                         bool AllowExplicit,
   3129                         bool AllowObjCConversionOnExplicit) {
   3130   assert(AllowExplicit || !AllowObjCConversionOnExplicit);
   3131 
   3132   // Whether we will only visit constructors.
   3133   bool ConstructorsOnly = false;
   3134 
   3135   // If the type we are conversion to is a class type, enumerate its
   3136   // constructors.
   3137   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
   3138     // C++ [over.match.ctor]p1:
   3139     //   When objects of class type are direct-initialized (8.5), or
   3140     //   copy-initialized from an expression of the same or a
   3141     //   derived class type (8.5), overload resolution selects the
   3142     //   constructor. [...] For copy-initialization, the candidate
   3143     //   functions are all the converting constructors (12.3.1) of
   3144     //   that class. The argument list is the expression-list within
   3145     //   the parentheses of the initializer.
   3146     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
   3147         (From->getType()->getAs<RecordType>() &&
   3148          S.IsDerivedFrom(From->getLocStart(), From->getType(), ToType)))
   3149       ConstructorsOnly = true;
   3150 
   3151     if (!S.isCompleteType(From->getExprLoc(), ToType)) {
   3152       // We're not going to find any constructors.
   3153     } else if (CXXRecordDecl *ToRecordDecl
   3154                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
   3155 
   3156       Expr **Args = &From;
   3157       unsigned NumArgs = 1;
   3158       bool ListInitializing = false;
   3159       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
   3160         // But first, see if there is an init-list-constructor that will work.
   3161         OverloadingResult Result = IsInitializerListConstructorConversion(
   3162             S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
   3163         if (Result != OR_No_Viable_Function)
   3164           return Result;
   3165         // Never mind.
   3166         CandidateSet.clear();
   3167 
   3168         // If we're list-initializing, we pass the individual elements as
   3169         // arguments, not the entire list.
   3170         Args = InitList->getInits();
   3171         NumArgs = InitList->getNumInits();
   3172         ListInitializing = true;
   3173       }
   3174 
   3175       for (auto *D : S.LookupConstructors(ToRecordDecl)) {
   3176         auto Info = getConstructorInfo(D);
   3177         if (!Info)
   3178           continue;
   3179 
   3180         bool Usable = !Info.Constructor->isInvalidDecl();
   3181         if (ListInitializing)
   3182           Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
   3183         else
   3184           Usable = Usable &&
   3185                    Info.Constructor->isConvertingConstructor(AllowExplicit);
   3186         if (Usable) {
   3187           bool SuppressUserConversions = !ConstructorsOnly;
   3188           if (SuppressUserConversions && ListInitializing) {
   3189             SuppressUserConversions = false;
   3190             if (NumArgs == 1) {
   3191               // If the first argument is (a reference to) the target type,
   3192               // suppress conversions.
   3193               SuppressUserConversions = isFirstArgumentCompatibleWithType(
   3194                   S.Context, Info.Constructor, ToType);
   3195             }
   3196           }
   3197           if (Info.ConstructorTmpl)
   3198             S.AddTemplateOverloadCandidate(
   3199                 Info.ConstructorTmpl, Info.FoundDecl,
   3200                 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
   3201                 CandidateSet, SuppressUserConversions);
   3202           else
   3203             // Allow one user-defined conversion when user specifies a
   3204             // From->ToType conversion via an static cast (c-style, etc).
   3205             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
   3206                                    llvm::makeArrayRef(Args, NumArgs),
   3207                                    CandidateSet, SuppressUserConversions);
   3208         }
   3209       }
   3210     }
   3211   }
   3212 
   3213   // Enumerate conversion functions, if we're allowed to.
   3214   if (ConstructorsOnly || isa<InitListExpr>(From)) {
   3215   } else if (!S.isCompleteType(From->getLocStart(), From->getType())) {
   3216     // No conversion functions from incomplete types.
   3217   } else if (const RecordType *FromRecordType
   3218                                    = From->getType()->getAs<RecordType>()) {
   3219     if (CXXRecordDecl *FromRecordDecl
   3220          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
   3221       // Add all of the conversion functions as candidates.
   3222       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
   3223       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   3224         DeclAccessPair FoundDecl = I.getPair();
   3225         NamedDecl *D = FoundDecl.getDecl();
   3226         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   3227         if (isa<UsingShadowDecl>(D))
   3228           D = cast<UsingShadowDecl>(D)->getTargetDecl();
   3229 
   3230         CXXConversionDecl *Conv;
   3231         FunctionTemplateDecl *ConvTemplate;
   3232         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
   3233           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   3234         else
   3235           Conv = cast<CXXConversionDecl>(D);
   3236 
   3237         if (AllowExplicit || !Conv->isExplicit()) {
   3238           if (ConvTemplate)
   3239             S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
   3240                                              ActingContext, From, ToType,
   3241                                              CandidateSet,
   3242                                              AllowObjCConversionOnExplicit);
   3243           else
   3244             S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
   3245                                      From, ToType, CandidateSet,
   3246                                      AllowObjCConversionOnExplicit);
   3247         }
   3248       }
   3249     }
   3250   }
   3251 
   3252   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   3253 
   3254   OverloadCandidateSet::iterator Best;
   3255   switch (auto Result = CandidateSet.BestViableFunction(S, From->getLocStart(),
   3256                                                         Best, true)) {
   3257   case OR_Success:
   3258   case OR_Deleted:
   3259     // Record the standard conversion we used and the conversion function.
   3260     if (CXXConstructorDecl *Constructor
   3261           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
   3262       // C++ [over.ics.user]p1:
   3263       //   If the user-defined conversion is specified by a
   3264       //   constructor (12.3.1), the initial standard conversion
   3265       //   sequence converts the source type to the type required by
   3266       //   the argument of the constructor.
   3267       //
   3268       QualType ThisType = Constructor->getThisType(S.Context);
   3269       if (isa<InitListExpr>(From)) {
   3270         // Initializer lists don't have conversions as such.
   3271         User.Before.setAsIdentityConversion();
   3272       } else {
   3273         if (Best->Conversions[0].isEllipsis())
   3274           User.EllipsisConversion = true;
   3275         else {
   3276           User.Before = Best->Conversions[0].Standard;
   3277           User.EllipsisConversion = false;
   3278         }
   3279       }
   3280       User.HadMultipleCandidates = HadMultipleCandidates;
   3281       User.ConversionFunction = Constructor;
   3282       User.FoundConversionFunction = Best->FoundDecl;
   3283       User.After.setAsIdentityConversion();
   3284       User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
   3285       User.After.setAllToTypes(ToType);
   3286       return Result;
   3287     }
   3288     if (CXXConversionDecl *Conversion
   3289                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
   3290       // C++ [over.ics.user]p1:
   3291       //
   3292       //   [...] If the user-defined conversion is specified by a
   3293       //   conversion function (12.3.2), the initial standard
   3294       //   conversion sequence converts the source type to the
   3295       //   implicit object parameter of the conversion function.
   3296       User.Before = Best->Conversions[0].Standard;
   3297       User.HadMultipleCandidates = HadMultipleCandidates;
   3298       User.ConversionFunction = Conversion;
   3299       User.FoundConversionFunction = Best->FoundDecl;
   3300       User.EllipsisConversion = false;
   3301 
   3302       // C++ [over.ics.user]p2:
   3303       //   The second standard conversion sequence converts the
   3304       //   result of the user-defined conversion to the target type
   3305       //   for the sequence. Since an implicit conversion sequence
   3306       //   is an initialization, the special rules for
   3307       //   initialization by user-defined conversion apply when
   3308       //   selecting the best user-defined conversion for a
   3309       //   user-defined conversion sequence (see 13.3.3 and
   3310       //   13.3.3.1).
   3311       User.After = Best->FinalConversion;
   3312       return Result;
   3313     }
   3314     llvm_unreachable("Not a constructor or conversion function?");
   3315 
   3316   case OR_No_Viable_Function:
   3317     return OR_No_Viable_Function;
   3318 
   3319   case OR_Ambiguous:
   3320     return OR_Ambiguous;
   3321   }
   3322 
   3323   llvm_unreachable("Invalid OverloadResult!");
   3324 }
   3325 
   3326 bool
   3327 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
   3328   ImplicitConversionSequence ICS;
   3329   OverloadCandidateSet CandidateSet(From->getExprLoc(),
   3330                                     OverloadCandidateSet::CSK_Normal);
   3331   OverloadingResult OvResult =
   3332     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
   3333                             CandidateSet, false, false);
   3334   if (OvResult == OR_Ambiguous)
   3335     Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
   3336         << From->getType() << ToType << From->getSourceRange();
   3337   else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
   3338     if (!RequireCompleteType(From->getLocStart(), ToType,
   3339                              diag::err_typecheck_nonviable_condition_incomplete,
   3340                              From->getType(), From->getSourceRange()))
   3341       Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
   3342           << false << From->getType() << From->getSourceRange() << ToType;
   3343   } else
   3344     return false;
   3345   CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
   3346   return true;
   3347 }
   3348 
   3349 /// \brief Compare the user-defined conversion functions or constructors
   3350 /// of two user-defined conversion sequences to determine whether any ordering
   3351 /// is possible.
   3352 static ImplicitConversionSequence::CompareKind
   3353 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
   3354                            FunctionDecl *Function2) {
   3355   if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
   3356     return ImplicitConversionSequence::Indistinguishable;
   3357 
   3358   // Objective-C++:
   3359   //   If both conversion functions are implicitly-declared conversions from
   3360   //   a lambda closure type to a function pointer and a block pointer,
   3361   //   respectively, always prefer the conversion to a function pointer,
   3362   //   because the function pointer is more lightweight and is more likely
   3363   //   to keep code working.
   3364   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
   3365   if (!Conv1)
   3366     return ImplicitConversionSequence::Indistinguishable;
   3367 
   3368   CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
   3369   if (!Conv2)
   3370     return ImplicitConversionSequence::Indistinguishable;
   3371 
   3372   if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
   3373     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
   3374     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
   3375     if (Block1 != Block2)
   3376       return Block1 ? ImplicitConversionSequence::Worse
   3377                     : ImplicitConversionSequence::Better;
   3378   }
   3379 
   3380   return ImplicitConversionSequence::Indistinguishable;
   3381 }
   3382 
   3383 static bool hasDeprecatedStringLiteralToCharPtrConversion(
   3384     const ImplicitConversionSequence &ICS) {
   3385   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
   3386          (ICS.isUserDefined() &&
   3387           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
   3388 }
   3389 
   3390 /// CompareImplicitConversionSequences - Compare two implicit
   3391 /// conversion sequences to determine whether one is better than the
   3392 /// other or if they are indistinguishable (C++ 13.3.3.2).
   3393 static ImplicitConversionSequence::CompareKind
   3394 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
   3395                                    const ImplicitConversionSequence& ICS1,
   3396                                    const ImplicitConversionSequence& ICS2)
   3397 {
   3398   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
   3399   // conversion sequences (as defined in 13.3.3.1)
   3400   //   -- a standard conversion sequence (13.3.3.1.1) is a better
   3401   //      conversion sequence than a user-defined conversion sequence or
   3402   //      an ellipsis conversion sequence, and
   3403   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
   3404   //      conversion sequence than an ellipsis conversion sequence
   3405   //      (13.3.3.1.3).
   3406   //
   3407   // C++0x [over.best.ics]p10:
   3408   //   For the purpose of ranking implicit conversion sequences as
   3409   //   described in 13.3.3.2, the ambiguous conversion sequence is
   3410   //   treated as a user-defined sequence that is indistinguishable
   3411   //   from any other user-defined conversion sequence.
   3412 
   3413   // String literal to 'char *' conversion has been deprecated in C++03. It has
   3414   // been removed from C++11. We still accept this conversion, if it happens at
   3415   // the best viable function. Otherwise, this conversion is considered worse
   3416   // than ellipsis conversion. Consider this as an extension; this is not in the
   3417   // standard. For example:
   3418   //
   3419   // int &f(...);    // #1
   3420   // void f(char*);  // #2
   3421   // void g() { int &r = f("foo"); }
   3422   //
   3423   // In C++03, we pick #2 as the best viable function.
   3424   // In C++11, we pick #1 as the best viable function, because ellipsis
   3425   // conversion is better than string-literal to char* conversion (since there
   3426   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
   3427   // convert arguments, #2 would be the best viable function in C++11.
   3428   // If the best viable function has this conversion, a warning will be issued
   3429   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
   3430 
   3431   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
   3432       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
   3433       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
   3434     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
   3435                ? ImplicitConversionSequence::Worse
   3436                : ImplicitConversionSequence::Better;
   3437 
   3438   if (ICS1.getKindRank() < ICS2.getKindRank())
   3439     return ImplicitConversionSequence::Better;
   3440   if (ICS2.getKindRank() < ICS1.getKindRank())
   3441     return ImplicitConversionSequence::Worse;
   3442 
   3443   // The following checks require both conversion sequences to be of
   3444   // the same kind.
   3445   if (ICS1.getKind() != ICS2.getKind())
   3446     return ImplicitConversionSequence::Indistinguishable;
   3447 
   3448   ImplicitConversionSequence::CompareKind Result =
   3449       ImplicitConversionSequence::Indistinguishable;
   3450 
   3451   // Two implicit conversion sequences of the same form are
   3452   // indistinguishable conversion sequences unless one of the
   3453   // following rules apply: (C++ 13.3.3.2p3):
   3454 
   3455   // List-initialization sequence L1 is a better conversion sequence than
   3456   // list-initialization sequence L2 if:
   3457   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
   3458   //   if not that,
   3459   // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
   3460   //   and N1 is smaller than N2.,
   3461   // even if one of the other rules in this paragraph would otherwise apply.
   3462   if (!ICS1.isBad()) {
   3463     if (ICS1.isStdInitializerListElement() &&
   3464         !ICS2.isStdInitializerListElement())
   3465       return ImplicitConversionSequence::Better;
   3466     if (!ICS1.isStdInitializerListElement() &&
   3467         ICS2.isStdInitializerListElement())
   3468       return ImplicitConversionSequence::Worse;
   3469   }
   3470 
   3471   if (ICS1.isStandard())
   3472     // Standard conversion sequence S1 is a better conversion sequence than
   3473     // standard conversion sequence S2 if [...]
   3474     Result = CompareStandardConversionSequences(S, Loc,
   3475                                                 ICS1.Standard, ICS2.Standard);
   3476   else if (ICS1.isUserDefined()) {
   3477     // User-defined conversion sequence U1 is a better conversion
   3478     // sequence than another user-defined conversion sequence U2 if
   3479     // they contain the same user-defined conversion function or
   3480     // constructor and if the second standard conversion sequence of
   3481     // U1 is better than the second standard conversion sequence of
   3482     // U2 (C++ 13.3.3.2p3).
   3483     if (ICS1.UserDefined.ConversionFunction ==
   3484           ICS2.UserDefined.ConversionFunction)
   3485       Result = CompareStandardConversionSequences(S, Loc,
   3486                                                   ICS1.UserDefined.After,
   3487                                                   ICS2.UserDefined.After);
   3488     else
   3489       Result = compareConversionFunctions(S,
   3490                                           ICS1.UserDefined.ConversionFunction,
   3491                                           ICS2.UserDefined.ConversionFunction);
   3492   }
   3493 
   3494   return Result;
   3495 }
   3496 
   3497 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
   3498   while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
   3499     Qualifiers Quals;
   3500     T1 = Context.getUnqualifiedArrayType(T1, Quals);
   3501     T2 = Context.getUnqualifiedArrayType(T2, Quals);
   3502   }
   3503 
   3504   return Context.hasSameUnqualifiedType(T1, T2);
   3505 }
   3506 
   3507 // Per 13.3.3.2p3, compare the given standard conversion sequences to
   3508 // determine if one is a proper subset of the other.
   3509 static ImplicitConversionSequence::CompareKind
   3510 compareStandardConversionSubsets(ASTContext &Context,
   3511                                  const StandardConversionSequence& SCS1,
   3512                                  const StandardConversionSequence& SCS2) {
   3513   ImplicitConversionSequence::CompareKind Result
   3514     = ImplicitConversionSequence::Indistinguishable;
   3515 
   3516   // the identity conversion sequence is considered to be a subsequence of
   3517   // any non-identity conversion sequence
   3518   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
   3519     return ImplicitConversionSequence::Better;
   3520   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
   3521     return ImplicitConversionSequence::Worse;
   3522 
   3523   if (SCS1.Second != SCS2.Second) {
   3524     if (SCS1.Second == ICK_Identity)
   3525       Result = ImplicitConversionSequence::Better;
   3526     else if (SCS2.Second == ICK_Identity)
   3527       Result = ImplicitConversionSequence::Worse;
   3528     else
   3529       return ImplicitConversionSequence::Indistinguishable;
   3530   } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
   3531     return ImplicitConversionSequence::Indistinguishable;
   3532 
   3533   if (SCS1.Third == SCS2.Third) {
   3534     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
   3535                              : ImplicitConversionSequence::Indistinguishable;
   3536   }
   3537 
   3538   if (SCS1.Third == ICK_Identity)
   3539     return Result == ImplicitConversionSequence::Worse
   3540              ? ImplicitConversionSequence::Indistinguishable
   3541              : ImplicitConversionSequence::Better;
   3542 
   3543   if (SCS2.Third == ICK_Identity)
   3544     return Result == ImplicitConversionSequence::Better
   3545              ? ImplicitConversionSequence::Indistinguishable
   3546              : ImplicitConversionSequence::Worse;
   3547 
   3548   return ImplicitConversionSequence::Indistinguishable;
   3549 }
   3550 
   3551 /// \brief Determine whether one of the given reference bindings is better
   3552 /// than the other based on what kind of bindings they are.
   3553 static bool
   3554 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
   3555                              const StandardConversionSequence &SCS2) {
   3556   // C++0x [over.ics.rank]p3b4:
   3557   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
   3558   //      implicit object parameter of a non-static member function declared
   3559   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
   3560   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
   3561   //      lvalue reference to a function lvalue and S2 binds an rvalue
   3562   //      reference*.
   3563   //
   3564   // FIXME: Rvalue references. We're going rogue with the above edits,
   3565   // because the semantics in the current C++0x working paper (N3225 at the
   3566   // time of this writing) break the standard definition of std::forward
   3567   // and std::reference_wrapper when dealing with references to functions.
   3568   // Proposed wording changes submitted to CWG for consideration.
   3569   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
   3570       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
   3571     return false;
   3572 
   3573   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
   3574           SCS2.IsLvalueReference) ||
   3575          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
   3576           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
   3577 }
   3578 
   3579 /// CompareStandardConversionSequences - Compare two standard
   3580 /// conversion sequences to determine whether one is better than the
   3581 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
   3582 static ImplicitConversionSequence::CompareKind
   3583 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
   3584                                    const StandardConversionSequence& SCS1,
   3585                                    const StandardConversionSequence& SCS2)
   3586 {
   3587   // Standard conversion sequence S1 is a better conversion sequence
   3588   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
   3589 
   3590   //  -- S1 is a proper subsequence of S2 (comparing the conversion
   3591   //     sequences in the canonical form defined by 13.3.3.1.1,
   3592   //     excluding any Lvalue Transformation; the identity conversion
   3593   //     sequence is considered to be a subsequence of any
   3594   //     non-identity conversion sequence) or, if not that,
   3595   if (ImplicitConversionSequence::CompareKind CK
   3596         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
   3597     return CK;
   3598 
   3599   //  -- the rank of S1 is better than the rank of S2 (by the rules
   3600   //     defined below), or, if not that,
   3601   ImplicitConversionRank Rank1 = SCS1.getRank();
   3602   ImplicitConversionRank Rank2 = SCS2.getRank();
   3603   if (Rank1 < Rank2)
   3604     return ImplicitConversionSequence::Better;
   3605   else if (Rank2 < Rank1)
   3606     return ImplicitConversionSequence::Worse;
   3607 
   3608   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
   3609   // are indistinguishable unless one of the following rules
   3610   // applies:
   3611 
   3612   //   A conversion that is not a conversion of a pointer, or
   3613   //   pointer to member, to bool is better than another conversion
   3614   //   that is such a conversion.
   3615   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
   3616     return SCS2.isPointerConversionToBool()
   3617              ? ImplicitConversionSequence::Better
   3618              : ImplicitConversionSequence::Worse;
   3619 
   3620   // C++ [over.ics.rank]p4b2:
   3621   //
   3622   //   If class B is derived directly or indirectly from class A,
   3623   //   conversion of B* to A* is better than conversion of B* to
   3624   //   void*, and conversion of A* to void* is better than conversion
   3625   //   of B* to void*.
   3626   bool SCS1ConvertsToVoid
   3627     = SCS1.isPointerConversionToVoidPointer(S.Context);
   3628   bool SCS2ConvertsToVoid
   3629     = SCS2.isPointerConversionToVoidPointer(S.Context);
   3630   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
   3631     // Exactly one of the conversion sequences is a conversion to
   3632     // a void pointer; it's the worse conversion.
   3633     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
   3634                               : ImplicitConversionSequence::Worse;
   3635   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
   3636     // Neither conversion sequence converts to a void pointer; compare
   3637     // their derived-to-base conversions.
   3638     if (ImplicitConversionSequence::CompareKind DerivedCK
   3639           = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
   3640       return DerivedCK;
   3641   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
   3642              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
   3643     // Both conversion sequences are conversions to void
   3644     // pointers. Compare the source types to determine if there's an
   3645     // inheritance relationship in their sources.
   3646     QualType FromType1 = SCS1.getFromType();
   3647     QualType FromType2 = SCS2.getFromType();
   3648 
   3649     // Adjust the types we're converting from via the array-to-pointer
   3650     // conversion, if we need to.
   3651     if (SCS1.First == ICK_Array_To_Pointer)
   3652       FromType1 = S.Context.getArrayDecayedType(FromType1);
   3653     if (SCS2.First == ICK_Array_To_Pointer)
   3654       FromType2 = S.Context.getArrayDecayedType(FromType2);
   3655 
   3656     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
   3657     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
   3658 
   3659     if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
   3660       return ImplicitConversionSequence::Better;
   3661     else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
   3662       return ImplicitConversionSequence::Worse;
   3663 
   3664     // Objective-C++: If one interface is more specific than the
   3665     // other, it is the better one.
   3666     const ObjCObjectPointerType* FromObjCPtr1
   3667       = FromType1->getAs<ObjCObjectPointerType>();
   3668     const ObjCObjectPointerType* FromObjCPtr2
   3669       = FromType2->getAs<ObjCObjectPointerType>();
   3670     if (FromObjCPtr1 && FromObjCPtr2) {
   3671       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
   3672                                                           FromObjCPtr2);
   3673       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
   3674                                                            FromObjCPtr1);
   3675       if (AssignLeft != AssignRight) {
   3676         return AssignLeft? ImplicitConversionSequence::Better
   3677                          : ImplicitConversionSequence::Worse;
   3678       }
   3679     }
   3680   }
   3681 
   3682   // Compare based on qualification conversions (C++ 13.3.3.2p3,
   3683   // bullet 3).
   3684   if (ImplicitConversionSequence::CompareKind QualCK
   3685         = CompareQualificationConversions(S, SCS1, SCS2))
   3686     return QualCK;
   3687 
   3688   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
   3689     // Check for a better reference binding based on the kind of bindings.
   3690     if (isBetterReferenceBindingKind(SCS1, SCS2))
   3691       return ImplicitConversionSequence::Better;
   3692     else if (isBetterReferenceBindingKind(SCS2, SCS1))
   3693       return ImplicitConversionSequence::Worse;
   3694 
   3695     // C++ [over.ics.rank]p3b4:
   3696     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
   3697     //      which the references refer are the same type except for
   3698     //      top-level cv-qualifiers, and the type to which the reference
   3699     //      initialized by S2 refers is more cv-qualified than the type
   3700     //      to which the reference initialized by S1 refers.
   3701     QualType T1 = SCS1.getToType(2);
   3702     QualType T2 = SCS2.getToType(2);
   3703     T1 = S.Context.getCanonicalType(T1);
   3704     T2 = S.Context.getCanonicalType(T2);
   3705     Qualifiers T1Quals, T2Quals;
   3706     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
   3707     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
   3708     if (UnqualT1 == UnqualT2) {
   3709       // Objective-C++ ARC: If the references refer to objects with different
   3710       // lifetimes, prefer bindings that don't change lifetime.
   3711       if (SCS1.ObjCLifetimeConversionBinding !=
   3712                                           SCS2.ObjCLifetimeConversionBinding) {
   3713         return SCS1.ObjCLifetimeConversionBinding
   3714                                            ? ImplicitConversionSequence::Worse
   3715                                            : ImplicitConversionSequence::Better;
   3716       }
   3717 
   3718       // If the type is an array type, promote the element qualifiers to the
   3719       // type for comparison.
   3720       if (isa<ArrayType>(T1) && T1Quals)
   3721         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
   3722       if (isa<ArrayType>(T2) && T2Quals)
   3723         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
   3724       if (T2.isMoreQualifiedThan(T1))
   3725         return ImplicitConversionSequence::Better;
   3726       else if (T1.isMoreQualifiedThan(T2))
   3727         return ImplicitConversionSequence::Worse;
   3728     }
   3729   }
   3730 
   3731   // In Microsoft mode, prefer an integral conversion to a
   3732   // floating-to-integral conversion if the integral conversion
   3733   // is between types of the same size.
   3734   // For example:
   3735   // void f(float);
   3736   // void f(int);
   3737   // int main {
   3738   //    long a;
   3739   //    f(a);
   3740   // }
   3741   // Here, MSVC will call f(int) instead of generating a compile error
   3742   // as clang will do in standard mode.
   3743   if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
   3744       SCS2.Second == ICK_Floating_Integral &&
   3745       S.Context.getTypeSize(SCS1.getFromType()) ==
   3746           S.Context.getTypeSize(SCS1.getToType(2)))
   3747     return ImplicitConversionSequence::Better;
   3748 
   3749   return ImplicitConversionSequence::Indistinguishable;
   3750 }
   3751 
   3752 /// CompareQualificationConversions - Compares two standard conversion
   3753 /// sequences to determine whether they can be ranked based on their
   3754 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
   3755 static ImplicitConversionSequence::CompareKind
   3756 CompareQualificationConversions(Sema &S,
   3757                                 const StandardConversionSequence& SCS1,
   3758                                 const StandardConversionSequence& SCS2) {
   3759   // C++ 13.3.3.2p3:
   3760   //  -- S1 and S2 differ only in their qualification conversion and
   3761   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
   3762   //     cv-qualification signature of type T1 is a proper subset of
   3763   //     the cv-qualification signature of type T2, and S1 is not the
   3764   //     deprecated string literal array-to-pointer conversion (4.2).
   3765   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
   3766       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
   3767     return ImplicitConversionSequence::Indistinguishable;
   3768 
   3769   // FIXME: the example in the standard doesn't use a qualification
   3770   // conversion (!)
   3771   QualType T1 = SCS1.getToType(2);
   3772   QualType T2 = SCS2.getToType(2);
   3773   T1 = S.Context.getCanonicalType(T1);
   3774   T2 = S.Context.getCanonicalType(T2);
   3775   Qualifiers T1Quals, T2Quals;
   3776   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
   3777   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
   3778 
   3779   // If the types are the same, we won't learn anything by unwrapped
   3780   // them.
   3781   if (UnqualT1 == UnqualT2)
   3782     return ImplicitConversionSequence::Indistinguishable;
   3783 
   3784   // If the type is an array type, promote the element qualifiers to the type
   3785   // for comparison.
   3786   if (isa<ArrayType>(T1) && T1Quals)
   3787     T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
   3788   if (isa<ArrayType>(T2) && T2Quals)
   3789     T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
   3790 
   3791   ImplicitConversionSequence::CompareKind Result
   3792     = ImplicitConversionSequence::Indistinguishable;
   3793 
   3794   // Objective-C++ ARC:
   3795   //   Prefer qualification conversions not involving a change in lifetime
   3796   //   to qualification conversions that do not change lifetime.
   3797   if (SCS1.QualificationIncludesObjCLifetime !=
   3798                                       SCS2.QualificationIncludesObjCLifetime) {
   3799     Result = SCS1.QualificationIncludesObjCLifetime
   3800                ? ImplicitConversionSequence::Worse
   3801                : ImplicitConversionSequence::Better;
   3802   }
   3803 
   3804   while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
   3805     // Within each iteration of the loop, we check the qualifiers to
   3806     // determine if this still looks like a qualification
   3807     // conversion. Then, if all is well, we unwrap one more level of
   3808     // pointers or pointers-to-members and do it all again
   3809     // until there are no more pointers or pointers-to-members left
   3810     // to unwrap. This essentially mimics what
   3811     // IsQualificationConversion does, but here we're checking for a
   3812     // strict subset of qualifiers.
   3813     if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
   3814       // The qualifiers are the same, so this doesn't tell us anything
   3815       // about how the sequences rank.
   3816       ;
   3817     else if (T2.isMoreQualifiedThan(T1)) {
   3818       // T1 has fewer qualifiers, so it could be the better sequence.
   3819       if (Result == ImplicitConversionSequence::Worse)
   3820         // Neither has qualifiers that are a subset of the other's
   3821         // qualifiers.
   3822         return ImplicitConversionSequence::Indistinguishable;
   3823 
   3824       Result = ImplicitConversionSequence::Better;
   3825     } else if (T1.isMoreQualifiedThan(T2)) {
   3826       // T2 has fewer qualifiers, so it could be the better sequence.
   3827       if (Result == ImplicitConversionSequence::Better)
   3828         // Neither has qualifiers that are a subset of the other's
   3829         // qualifiers.
   3830         return ImplicitConversionSequence::Indistinguishable;
   3831 
   3832       Result = ImplicitConversionSequence::Worse;
   3833     } else {
   3834       // Qualifiers are disjoint.
   3835       return ImplicitConversionSequence::Indistinguishable;
   3836     }
   3837 
   3838     // If the types after this point are equivalent, we're done.
   3839     if (S.Context.hasSameUnqualifiedType(T1, T2))
   3840       break;
   3841   }
   3842 
   3843   // Check that the winning standard conversion sequence isn't using
   3844   // the deprecated string literal array to pointer conversion.
   3845   switch (Result) {
   3846   case ImplicitConversionSequence::Better:
   3847     if (SCS1.DeprecatedStringLiteralToCharPtr)
   3848       Result = ImplicitConversionSequence::Indistinguishable;
   3849     break;
   3850 
   3851   case ImplicitConversionSequence::Indistinguishable:
   3852     break;
   3853 
   3854   case ImplicitConversionSequence::Worse:
   3855     if (SCS2.DeprecatedStringLiteralToCharPtr)
   3856       Result = ImplicitConversionSequence::Indistinguishable;
   3857     break;
   3858   }
   3859 
   3860   return Result;
   3861 }
   3862 
   3863 /// CompareDerivedToBaseConversions - Compares two standard conversion
   3864 /// sequences to determine whether they can be ranked based on their
   3865 /// various kinds of derived-to-base conversions (C++
   3866 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
   3867 /// conversions between Objective-C interface types.
   3868 static ImplicitConversionSequence::CompareKind
   3869 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
   3870                                 const StandardConversionSequence& SCS1,
   3871                                 const StandardConversionSequence& SCS2) {
   3872   QualType FromType1 = SCS1.getFromType();
   3873   QualType ToType1 = SCS1.getToType(1);
   3874   QualType FromType2 = SCS2.getFromType();
   3875   QualType ToType2 = SCS2.getToType(1);
   3876 
   3877   // Adjust the types we're converting from via the array-to-pointer
   3878   // conversion, if we need to.
   3879   if (SCS1.First == ICK_Array_To_Pointer)
   3880     FromType1 = S.Context.getArrayDecayedType(FromType1);
   3881   if (SCS2.First == ICK_Array_To_Pointer)
   3882     FromType2 = S.Context.getArrayDecayedType(FromType2);
   3883 
   3884   // Canonicalize all of the types.
   3885   FromType1 = S.Context.getCanonicalType(FromType1);
   3886   ToType1 = S.Context.getCanonicalType(ToType1);
   3887   FromType2 = S.Context.getCanonicalType(FromType2);
   3888   ToType2 = S.Context.getCanonicalType(ToType2);
   3889 
   3890   // C++ [over.ics.rank]p4b3:
   3891   //
   3892   //   If class B is derived directly or indirectly from class A and
   3893   //   class C is derived directly or indirectly from B,
   3894   //
   3895   // Compare based on pointer conversions.
   3896   if (SCS1.Second == ICK_Pointer_Conversion &&
   3897       SCS2.Second == ICK_Pointer_Conversion &&
   3898       /*FIXME: Remove if Objective-C id conversions get their own rank*/
   3899       FromType1->isPointerType() && FromType2->isPointerType() &&
   3900       ToType1->isPointerType() && ToType2->isPointerType()) {
   3901     QualType FromPointee1
   3902       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3903     QualType ToPointee1
   3904       = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3905     QualType FromPointee2
   3906       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3907     QualType ToPointee2
   3908       = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3909 
   3910     //   -- conversion of C* to B* is better than conversion of C* to A*,
   3911     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
   3912       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
   3913         return ImplicitConversionSequence::Better;
   3914       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
   3915         return ImplicitConversionSequence::Worse;
   3916     }
   3917 
   3918     //   -- conversion of B* to A* is better than conversion of C* to A*,
   3919     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
   3920       if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
   3921         return ImplicitConversionSequence::Better;
   3922       else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
   3923         return ImplicitConversionSequence::Worse;
   3924     }
   3925   } else if (SCS1.Second == ICK_Pointer_Conversion &&
   3926              SCS2.Second == ICK_Pointer_Conversion) {
   3927     const ObjCObjectPointerType *FromPtr1
   3928       = FromType1->getAs<ObjCObjectPointerType>();
   3929     const ObjCObjectPointerType *FromPtr2
   3930       = FromType2->getAs<ObjCObjectPointerType>();
   3931     const ObjCObjectPointerType *ToPtr1
   3932       = ToType1->getAs<ObjCObjectPointerType>();
   3933     const ObjCObjectPointerType *ToPtr2
   3934       = ToType2->getAs<ObjCObjectPointerType>();
   3935 
   3936     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
   3937       // Apply the same conversion ranking rules for Objective-C pointer types
   3938       // that we do for C++ pointers to class types. However, we employ the
   3939       // Objective-C pseudo-subtyping relationship used for assignment of
   3940       // Objective-C pointer types.
   3941       bool FromAssignLeft
   3942         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
   3943       bool FromAssignRight
   3944         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
   3945       bool ToAssignLeft
   3946         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
   3947       bool ToAssignRight
   3948         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
   3949 
   3950       // A conversion to an a non-id object pointer type or qualified 'id'
   3951       // type is better than a conversion to 'id'.
   3952       if (ToPtr1->isObjCIdType() &&
   3953           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
   3954         return ImplicitConversionSequence::Worse;
   3955       if (ToPtr2->isObjCIdType() &&
   3956           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
   3957         return ImplicitConversionSequence::Better;
   3958 
   3959       // A conversion to a non-id object pointer type is better than a
   3960       // conversion to a qualified 'id' type
   3961       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
   3962         return ImplicitConversionSequence::Worse;
   3963       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
   3964         return ImplicitConversionSequence::Better;
   3965 
   3966       // A conversion to an a non-Class object pointer type or qualified 'Class'
   3967       // type is better than a conversion to 'Class'.
   3968       if (ToPtr1->isObjCClassType() &&
   3969           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
   3970         return ImplicitConversionSequence::Worse;
   3971       if (ToPtr2->isObjCClassType() &&
   3972           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
   3973         return ImplicitConversionSequence::Better;
   3974 
   3975       // A conversion to a non-Class object pointer type is better than a
   3976       // conversion to a qualified 'Class' type.
   3977       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
   3978         return ImplicitConversionSequence::Worse;
   3979       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
   3980         return ImplicitConversionSequence::Better;
   3981 
   3982       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
   3983       if (S.Context.hasSameType(FromType1, FromType2) &&
   3984           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
   3985           (ToAssignLeft != ToAssignRight))
   3986         return ToAssignLeft? ImplicitConversionSequence::Worse
   3987                            : ImplicitConversionSequence::Better;
   3988 
   3989       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
   3990       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
   3991           (FromAssignLeft != FromAssignRight))
   3992         return FromAssignLeft? ImplicitConversionSequence::Better
   3993         : ImplicitConversionSequence::Worse;
   3994     }
   3995   }
   3996 
   3997   // Ranking of member-pointer types.
   3998   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
   3999       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
   4000       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
   4001     const MemberPointerType * FromMemPointer1 =
   4002                                         FromType1->getAs<MemberPointerType>();
   4003     const MemberPointerType * ToMemPointer1 =
   4004                                           ToType1->getAs<MemberPointerType>();
   4005     const MemberPointerType * FromMemPointer2 =
   4006                                           FromType2->getAs<MemberPointerType>();
   4007     const MemberPointerType * ToMemPointer2 =
   4008                                           ToType2->getAs<MemberPointerType>();
   4009     const Type *FromPointeeType1 = FromMemPointer1->getClass();
   4010     const Type *ToPointeeType1 = ToMemPointer1->getClass();
   4011     const Type *FromPointeeType2 = FromMemPointer2->getClass();
   4012     const Type *ToPointeeType2 = ToMemPointer2->getClass();
   4013     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
   4014     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
   4015     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
   4016     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
   4017     // conversion of A::* to B::* is better than conversion of A::* to C::*,
   4018     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
   4019       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
   4020         return ImplicitConversionSequence::Worse;
   4021       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
   4022         return ImplicitConversionSequence::Better;
   4023     }
   4024     // conversion of B::* to C::* is better than conversion of A::* to C::*
   4025     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
   4026       if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
   4027         return ImplicitConversionSequence::Better;
   4028       else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
   4029         return ImplicitConversionSequence::Worse;
   4030     }
   4031   }
   4032 
   4033   if (SCS1.Second == ICK_Derived_To_Base) {
   4034     //   -- conversion of C to B is better than conversion of C to A,
   4035     //   -- binding of an expression of type C to a reference of type
   4036     //      B& is better than binding an expression of type C to a
   4037     //      reference of type A&,
   4038     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
   4039         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
   4040       if (S.IsDerivedFrom(Loc, ToType1, ToType2))
   4041         return ImplicitConversionSequence::Better;
   4042       else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
   4043         return ImplicitConversionSequence::Worse;
   4044     }
   4045 
   4046     //   -- conversion of B to A is better than conversion of C to A.
   4047     //   -- binding of an expression of type B to a reference of type
   4048     //      A& is better than binding an expression of type C to a
   4049     //      reference of type A&,
   4050     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
   4051         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
   4052       if (S.IsDerivedFrom(Loc, FromType2, FromType1))
   4053         return ImplicitConversionSequence::Better;
   4054       else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
   4055         return ImplicitConversionSequence::Worse;
   4056     }
   4057   }
   4058 
   4059   return ImplicitConversionSequence::Indistinguishable;
   4060 }
   4061 
   4062 /// \brief Determine whether the given type is valid, e.g., it is not an invalid
   4063 /// C++ class.
   4064 static bool isTypeValid(QualType T) {
   4065   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
   4066     return !Record->isInvalidDecl();
   4067 
   4068   return true;
   4069 }
   4070 
   4071 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
   4072 /// determine whether they are reference-related,
   4073 /// reference-compatible, reference-compatible with added
   4074 /// qualification, or incompatible, for use in C++ initialization by
   4075 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
   4076 /// type, and the first type (T1) is the pointee type of the reference
   4077 /// type being initialized.
   4078 Sema::ReferenceCompareResult
   4079 Sema::CompareReferenceRelationship(SourceLocation Loc,
   4080                                    QualType OrigT1, QualType OrigT2,
   4081                                    bool &DerivedToBase,
   4082                                    bool &ObjCConversion,
   4083                                    bool &ObjCLifetimeConversion) {
   4084   assert(!OrigT1->isReferenceType() &&
   4085     "T1 must be the pointee type of the reference type");
   4086   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
   4087 
   4088   QualType T1 = Context.getCanonicalType(OrigT1);
   4089   QualType T2 = Context.getCanonicalType(OrigT2);
   4090   Qualifiers T1Quals, T2Quals;
   4091   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
   4092   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
   4093 
   4094   // C++ [dcl.init.ref]p4:
   4095   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
   4096   //   reference-related to "cv2 T2" if T1 is the same type as T2, or
   4097   //   T1 is a base class of T2.
   4098   DerivedToBase = false;
   4099   ObjCConversion = false;
   4100   ObjCLifetimeConversion = false;
   4101   if (UnqualT1 == UnqualT2) {
   4102     // Nothing to do.
   4103   } else if (isCompleteType(Loc, OrigT2) &&
   4104              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
   4105              IsDerivedFrom(Loc, UnqualT2, UnqualT1))
   4106     DerivedToBase = true;
   4107   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
   4108            UnqualT2->isObjCObjectOrInterfaceType() &&
   4109            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
   4110     ObjCConversion = true;
   4111   else
   4112     return Ref_Incompatible;
   4113 
   4114   // At this point, we know that T1 and T2 are reference-related (at
   4115   // least).
   4116 
   4117   // If the type is an array type, promote the element qualifiers to the type
   4118   // for comparison.
   4119   if (isa<ArrayType>(T1) && T1Quals)
   4120     T1 = Context.getQualifiedType(UnqualT1, T1Quals);
   4121   if (isa<ArrayType>(T2) && T2Quals)
   4122     T2 = Context.getQualifiedType(UnqualT2, T2Quals);
   4123 
   4124   // C++ [dcl.init.ref]p4:
   4125   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
   4126   //   reference-related to T2 and cv1 is the same cv-qualification
   4127   //   as, or greater cv-qualification than, cv2. For purposes of
   4128   //   overload resolution, cases for which cv1 is greater
   4129   //   cv-qualification than cv2 are identified as
   4130   //   reference-compatible with added qualification (see 13.3.3.2).
   4131   //
   4132   // Note that we also require equivalence of Objective-C GC and address-space
   4133   // qualifiers when performing these computations, so that e.g., an int in
   4134   // address space 1 is not reference-compatible with an int in address
   4135   // space 2.
   4136   if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
   4137       T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
   4138     if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
   4139       ObjCLifetimeConversion = true;
   4140 
   4141     T1Quals.removeObjCLifetime();
   4142     T2Quals.removeObjCLifetime();
   4143   }
   4144 
   4145   // MS compiler ignores __unaligned qualifier for references; do the same.
   4146   T1Quals.removeUnaligned();
   4147   T2Quals.removeUnaligned();
   4148 
   4149   if (T1Quals == T2Quals)
   4150     return Ref_Compatible;
   4151   else if (T1Quals.compatiblyIncludes(T2Quals))
   4152     return Ref_Compatible_With_Added_Qualification;
   4153   else
   4154     return Ref_Related;
   4155 }
   4156 
   4157 /// \brief Look for a user-defined conversion to an value reference-compatible
   4158 ///        with DeclType. Return true if something definite is found.
   4159 static bool
   4160 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
   4161                          QualType DeclType, SourceLocation DeclLoc,
   4162                          Expr *Init, QualType T2, bool AllowRvalues,
   4163                          bool AllowExplicit) {
   4164   assert(T2->isRecordType() && "Can only find conversions of record types.");
   4165   CXXRecordDecl *T2RecordDecl
   4166     = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
   4167 
   4168   OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal);
   4169   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
   4170   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   4171     NamedDecl *D = *I;
   4172     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
   4173     if (isa<UsingShadowDecl>(D))
   4174       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   4175 
   4176     FunctionTemplateDecl *ConvTemplate
   4177       = dyn_cast<FunctionTemplateDecl>(D);
   4178     CXXConversionDecl *Conv;
   4179     if (ConvTemplate)
   4180       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   4181     else
   4182       Conv = cast<CXXConversionDecl>(D);
   4183 
   4184     // If this is an explicit conversion, and we're not allowed to consider
   4185     // explicit conversions, skip it.
   4186     if (!AllowExplicit && Conv->isExplicit())
   4187       continue;
   4188 
   4189     if (AllowRvalues) {
   4190       bool DerivedToBase = false;
   4191       bool ObjCConversion = false;
   4192       bool ObjCLifetimeConversion = false;
   4193 
   4194       // If we are initializing an rvalue reference, don't permit conversion
   4195       // functions that return lvalues.
   4196       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
   4197         const ReferenceType *RefType
   4198           = Conv->getConversionType()->getAs<LValueReferenceType>();
   4199         if (RefType && !RefType->getPointeeType()->isFunctionType())
   4200           continue;
   4201       }
   4202 
   4203       if (!ConvTemplate &&
   4204           S.CompareReferenceRelationship(
   4205             DeclLoc,
   4206             Conv->getConversionType().getNonReferenceType()
   4207               .getUnqualifiedType(),
   4208             DeclType.getNonReferenceType().getUnqualifiedType(),
   4209             DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
   4210           Sema::Ref_Incompatible)
   4211         continue;
   4212     } else {
   4213       // If the conversion function doesn't return a reference type,
   4214       // it can't be considered for this conversion. An rvalue reference
   4215       // is only acceptable if its referencee is a function type.
   4216 
   4217       const ReferenceType *RefType =
   4218         Conv->getConversionType()->getAs<ReferenceType>();
   4219       if (!RefType ||
   4220           (!RefType->isLValueReferenceType() &&
   4221            !RefType->getPointeeType()->isFunctionType()))
   4222         continue;
   4223     }
   4224 
   4225     if (ConvTemplate)
   4226       S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
   4227                                        Init, DeclType, CandidateSet,
   4228                                        /*AllowObjCConversionOnExplicit=*/false);
   4229     else
   4230       S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
   4231                                DeclType, CandidateSet,
   4232                                /*AllowObjCConversionOnExplicit=*/false);
   4233   }
   4234 
   4235   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   4236 
   4237   OverloadCandidateSet::iterator Best;
   4238   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
   4239   case OR_Success:
   4240     // C++ [over.ics.ref]p1:
   4241     //
   4242     //   [...] If the parameter binds directly to the result of
   4243     //   applying a conversion function to the argument
   4244     //   expression, the implicit conversion sequence is a
   4245     //   user-defined conversion sequence (13.3.3.1.2), with the
   4246     //   second standard conversion sequence either an identity
   4247     //   conversion or, if the conversion function returns an
   4248     //   entity of a type that is a derived class of the parameter
   4249     //   type, a derived-to-base Conversion.
   4250     if (!Best->FinalConversion.DirectBinding)
   4251       return false;
   4252 
   4253     ICS.setUserDefined();
   4254     ICS.UserDefined.Before = Best->Conversions[0].Standard;
   4255     ICS.UserDefined.After = Best->FinalConversion;
   4256     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
   4257     ICS.UserDefined.ConversionFunction = Best->Function;
   4258     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
   4259     ICS.UserDefined.EllipsisConversion = false;
   4260     assert(ICS.UserDefined.After.ReferenceBinding &&
   4261            ICS.UserDefined.After.DirectBinding &&
   4262            "Expected a direct reference binding!");
   4263     return true;
   4264 
   4265   case OR_Ambiguous:
   4266     ICS.setAmbiguous();
   4267     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
   4268          Cand != CandidateSet.end(); ++Cand)
   4269       if (Cand->Viable)
   4270         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
   4271     return true;
   4272 
   4273   case OR_No_Viable_Function:
   4274   case OR_Deleted:
   4275     // There was no suitable conversion, or we found a deleted
   4276     // conversion; continue with other checks.
   4277     return false;
   4278   }
   4279 
   4280   llvm_unreachable("Invalid OverloadResult!");
   4281 }
   4282 
   4283 /// \brief Compute an implicit conversion sequence for reference
   4284 /// initialization.
   4285 static ImplicitConversionSequence
   4286 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
   4287                  SourceLocation DeclLoc,
   4288                  bool SuppressUserConversions,
   4289                  bool AllowExplicit) {
   4290   assert(DeclType->isReferenceType() && "Reference init needs a reference");
   4291 
   4292   // Most paths end in a failed conversion.
   4293   ImplicitConversionSequence ICS;
   4294   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
   4295 
   4296   QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
   4297   QualType T2 = Init->getType();
   4298 
   4299   // If the initializer is the address of an overloaded function, try
   4300   // to resolve the overloaded function. If all goes well, T2 is the
   4301   // type of the resulting function.
   4302   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
   4303     DeclAccessPair Found;
   4304     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
   4305                                                                 false, Found))
   4306       T2 = Fn->getType();
   4307   }
   4308 
   4309   // Compute some basic properties of the types and the initializer.
   4310   bool isRValRef = DeclType->isRValueReferenceType();
   4311   bool DerivedToBase = false;
   4312   bool ObjCConversion = false;
   4313   bool ObjCLifetimeConversion = false;
   4314   Expr::Classification InitCategory = Init->Classify(S.Context);
   4315   Sema::ReferenceCompareResult RefRelationship
   4316     = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
   4317                                      ObjCConversion, ObjCLifetimeConversion);
   4318 
   4319 
   4320   // C++0x [dcl.init.ref]p5:
   4321   //   A reference to type "cv1 T1" is initialized by an expression
   4322   //   of type "cv2 T2" as follows:
   4323 
   4324   //     -- If reference is an lvalue reference and the initializer expression
   4325   if (!isRValRef) {
   4326     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
   4327     //        reference-compatible with "cv2 T2," or
   4328     //
   4329     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
   4330     if (InitCategory.isLValue() &&
   4331         RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
   4332       // C++ [over.ics.ref]p1:
   4333       //   When a parameter of reference type binds directly (8.5.3)
   4334       //   to an argument expression, the implicit conversion sequence
   4335       //   is the identity conversion, unless the argument expression
   4336       //   has a type that is a derived class of the parameter type,
   4337       //   in which case the implicit conversion sequence is a
   4338       //   derived-to-base Conversion (13.3.3.1).
   4339       ICS.setStandard();
   4340       ICS.Standard.First = ICK_Identity;
   4341       ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
   4342                          : ObjCConversion? ICK_Compatible_Conversion
   4343                          : ICK_Identity;
   4344       ICS.Standard.Third = ICK_Identity;
   4345       ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
   4346       ICS.Standard.setToType(0, T2);
   4347       ICS.Standard.setToType(1, T1);
   4348       ICS.Standard.setToType(2, T1);
   4349       ICS.Standard.ReferenceBinding = true;
   4350       ICS.Standard.DirectBinding = true;
   4351       ICS.Standard.IsLvalueReference = !isRValRef;
   4352       ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
   4353       ICS.Standard.BindsToRvalue = false;
   4354       ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4355       ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
   4356       ICS.Standard.CopyConstructor = nullptr;
   4357       ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
   4358 
   4359       // Nothing more to do: the inaccessibility/ambiguity check for
   4360       // derived-to-base conversions is suppressed when we're
   4361       // computing the implicit conversion sequence (C++
   4362       // [over.best.ics]p2).
   4363       return ICS;
   4364     }
   4365 
   4366     //       -- has a class type (i.e., T2 is a class type), where T1 is
   4367     //          not reference-related to T2, and can be implicitly
   4368     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
   4369     //          is reference-compatible with "cv3 T3" 92) (this
   4370     //          conversion is selected by enumerating the applicable
   4371     //          conversion functions (13.3.1.6) and choosing the best
   4372     //          one through overload resolution (13.3)),
   4373     if (!SuppressUserConversions && T2->isRecordType() &&
   4374         S.isCompleteType(DeclLoc, T2) &&
   4375         RefRelationship == Sema::Ref_Incompatible) {
   4376       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
   4377                                    Init, T2, /*AllowRvalues=*/false,
   4378                                    AllowExplicit))
   4379         return ICS;
   4380     }
   4381   }
   4382 
   4383   //     -- Otherwise, the reference shall be an lvalue reference to a
   4384   //        non-volatile const type (i.e., cv1 shall be const), or the reference
   4385   //        shall be an rvalue reference.
   4386   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
   4387     return ICS;
   4388 
   4389   //       -- If the initializer expression
   4390   //
   4391   //            -- is an xvalue, class prvalue, array prvalue or function
   4392   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
   4393   if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
   4394       (InitCategory.isXValue() ||
   4395       (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
   4396       (InitCategory.isLValue() && T2->isFunctionType()))) {
   4397     ICS.setStandard();
   4398     ICS.Standard.First = ICK_Identity;
   4399     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
   4400                       : ObjCConversion? ICK_Compatible_Conversion
   4401                       : ICK_Identity;
   4402     ICS.Standard.Third = ICK_Identity;
   4403     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
   4404     ICS.Standard.setToType(0, T2);
   4405     ICS.Standard.setToType(1, T1);
   4406     ICS.Standard.setToType(2, T1);
   4407     ICS.Standard.ReferenceBinding = true;
   4408     // In C++0x, this is always a direct binding. In C++98/03, it's a direct
   4409     // binding unless we're binding to a class prvalue.
   4410     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
   4411     // allow the use of rvalue references in C++98/03 for the benefit of
   4412     // standard library implementors; therefore, we need the xvalue check here.
   4413     ICS.Standard.DirectBinding =
   4414       S.getLangOpts().CPlusPlus11 ||
   4415       !(InitCategory.isPRValue() || T2->isRecordType());
   4416     ICS.Standard.IsLvalueReference = !isRValRef;
   4417     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
   4418     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
   4419     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4420     ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
   4421     ICS.Standard.CopyConstructor = nullptr;
   4422     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
   4423     return ICS;
   4424   }
   4425 
   4426   //            -- has a class type (i.e., T2 is a class type), where T1 is not
   4427   //               reference-related to T2, and can be implicitly converted to
   4428   //               an xvalue, class prvalue, or function lvalue of type
   4429   //               "cv3 T3", where "cv1 T1" is reference-compatible with
   4430   //               "cv3 T3",
   4431   //
   4432   //          then the reference is bound to the value of the initializer
   4433   //          expression in the first case and to the result of the conversion
   4434   //          in the second case (or, in either case, to an appropriate base
   4435   //          class subobject).
   4436   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
   4437       T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
   4438       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
   4439                                Init, T2, /*AllowRvalues=*/true,
   4440                                AllowExplicit)) {
   4441     // In the second case, if the reference is an rvalue reference
   4442     // and the second standard conversion sequence of the
   4443     // user-defined conversion sequence includes an lvalue-to-rvalue
   4444     // conversion, the program is ill-formed.
   4445     if (ICS.isUserDefined() && isRValRef &&
   4446         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
   4447       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
   4448 
   4449     return ICS;
   4450   }
   4451 
   4452   // A temporary of function type cannot be created; don't even try.
   4453   if (T1->isFunctionType())
   4454     return ICS;
   4455 
   4456   //       -- Otherwise, a temporary of type "cv1 T1" is created and
   4457   //          initialized from the initializer expression using the
   4458   //          rules for a non-reference copy initialization (8.5). The
   4459   //          reference is then bound to the temporary. If T1 is
   4460   //          reference-related to T2, cv1 must be the same
   4461   //          cv-qualification as, or greater cv-qualification than,
   4462   //          cv2; otherwise, the program is ill-formed.
   4463   if (RefRelationship == Sema::Ref_Related) {
   4464     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
   4465     // we would be reference-compatible or reference-compatible with
   4466     // added qualification. But that wasn't the case, so the reference
   4467     // initialization fails.
   4468     //
   4469     // Note that we only want to check address spaces and cvr-qualifiers here.
   4470     // ObjC GC, lifetime and unaligned qualifiers aren't important.
   4471     Qualifiers T1Quals = T1.getQualifiers();
   4472     Qualifiers T2Quals = T2.getQualifiers();
   4473     T1Quals.removeObjCGCAttr();
   4474     T1Quals.removeObjCLifetime();
   4475     T2Quals.removeObjCGCAttr();
   4476     T2Quals.removeObjCLifetime();
   4477     // MS compiler ignores __unaligned qualifier for references; do the same.
   4478     T1Quals.removeUnaligned();
   4479     T2Quals.removeUnaligned();
   4480     if (!T1Quals.compatiblyIncludes(T2Quals))
   4481       return ICS;
   4482   }
   4483 
   4484   // If at least one of the types is a class type, the types are not
   4485   // related, and we aren't allowed any user conversions, the
   4486   // reference binding fails. This case is important for breaking
   4487   // recursion, since TryImplicitConversion below will attempt to
   4488   // create a temporary through the use of a copy constructor.
   4489   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
   4490       (T1->isRecordType() || T2->isRecordType()))
   4491     return ICS;
   4492 
   4493   // If T1 is reference-related to T2 and the reference is an rvalue
   4494   // reference, the initializer expression shall not be an lvalue.
   4495   if (RefRelationship >= Sema::Ref_Related &&
   4496       isRValRef && Init->Classify(S.Context).isLValue())
   4497     return ICS;
   4498 
   4499   // C++ [over.ics.ref]p2:
   4500   //   When a parameter of reference type is not bound directly to
   4501   //   an argument expression, the conversion sequence is the one
   4502   //   required to convert the argument expression to the
   4503   //   underlying type of the reference according to
   4504   //   13.3.3.1. Conceptually, this conversion sequence corresponds
   4505   //   to copy-initializing a temporary of the underlying type with
   4506   //   the argument expression. Any difference in top-level
   4507   //   cv-qualification is subsumed by the initialization itself
   4508   //   and does not constitute a conversion.
   4509   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
   4510                               /*AllowExplicit=*/false,
   4511                               /*InOverloadResolution=*/false,
   4512                               /*CStyle=*/false,
   4513                               /*AllowObjCWritebackConversion=*/false,
   4514                               /*AllowObjCConversionOnExplicit=*/false);
   4515 
   4516   // Of course, that's still a reference binding.
   4517   if (ICS.isStandard()) {
   4518     ICS.Standard.ReferenceBinding = true;
   4519     ICS.Standard.IsLvalueReference = !isRValRef;
   4520     ICS.Standard.BindsToFunctionLvalue = false;
   4521     ICS.Standard.BindsToRvalue = true;
   4522     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4523     ICS.Standard.ObjCLifetimeConversionBinding = false;
   4524   } else if (ICS.isUserDefined()) {
   4525     const ReferenceType *LValRefType =
   4526         ICS.UserDefined.ConversionFunction->getReturnType()
   4527             ->getAs<LValueReferenceType>();
   4528 
   4529     // C++ [over.ics.ref]p3:
   4530     //   Except for an implicit object parameter, for which see 13.3.1, a
   4531     //   standard conversion sequence cannot be formed if it requires [...]
   4532     //   binding an rvalue reference to an lvalue other than a function
   4533     //   lvalue.
   4534     // Note that the function case is not possible here.
   4535     if (DeclType->isRValueReferenceType() && LValRefType) {
   4536       // FIXME: This is the wrong BadConversionSequence. The problem is binding
   4537       // an rvalue reference to a (non-function) lvalue, not binding an lvalue
   4538       // reference to an rvalue!
   4539       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
   4540       return ICS;
   4541     }
   4542 
   4543     ICS.UserDefined.Before.setAsIdentityConversion();
   4544     ICS.UserDefined.After.ReferenceBinding = true;
   4545     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
   4546     ICS.UserDefined.After.BindsToFunctionLvalue = false;
   4547     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
   4548     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4549     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
   4550   }
   4551 
   4552   return ICS;
   4553 }
   4554 
   4555 static ImplicitConversionSequence
   4556 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
   4557                       bool SuppressUserConversions,
   4558                       bool InOverloadResolution,
   4559                       bool AllowObjCWritebackConversion,
   4560                       bool AllowExplicit = false);
   4561 
   4562 /// TryListConversion - Try to copy-initialize a value of type ToType from the
   4563 /// initializer list From.
   4564 static ImplicitConversionSequence
   4565 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
   4566                   bool SuppressUserConversions,
   4567                   bool InOverloadResolution,
   4568                   bool AllowObjCWritebackConversion) {
   4569   // C++11 [over.ics.list]p1:
   4570   //   When an argument is an initializer list, it is not an expression and
   4571   //   special rules apply for converting it to a parameter type.
   4572 
   4573   ImplicitConversionSequence Result;
   4574   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
   4575 
   4576   // We need a complete type for what follows. Incomplete types can never be
   4577   // initialized from init lists.
   4578   if (!S.isCompleteType(From->getLocStart(), ToType))
   4579     return Result;
   4580 
   4581   // Per DR1467:
   4582   //   If the parameter type is a class X and the initializer list has a single
   4583   //   element of type cv U, where U is X or a class derived from X, the
   4584   //   implicit conversion sequence is the one required to convert the element
   4585   //   to the parameter type.
   4586   //
   4587   //   Otherwise, if the parameter type is a character array [... ]
   4588   //   and the initializer list has a single element that is an
   4589   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
   4590   //   implicit conversion sequence is the identity conversion.
   4591   if (From->getNumInits() == 1) {
   4592     if (ToType->isRecordType()) {
   4593       QualType InitType = From->getInit(0)->getType();
   4594       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
   4595           S.IsDerivedFrom(From->getLocStart(), InitType, ToType))
   4596         return TryCopyInitialization(S, From->getInit(0), ToType,
   4597                                      SuppressUserConversions,
   4598                                      InOverloadResolution,
   4599                                      AllowObjCWritebackConversion);
   4600     }
   4601     // FIXME: Check the other conditions here: array of character type,
   4602     // initializer is a string literal.
   4603     if (ToType->isArrayType()) {
   4604       InitializedEntity Entity =
   4605         InitializedEntity::InitializeParameter(S.Context, ToType,
   4606                                                /*Consumed=*/false);
   4607       if (S.CanPerformCopyInitialization(Entity, From)) {
   4608         Result.setStandard();
   4609         Result.Standard.setAsIdentityConversion();
   4610         Result.Standard.setFromType(ToType);
   4611         Result.Standard.setAllToTypes(ToType);
   4612         return Result;
   4613       }
   4614     }
   4615   }
   4616 
   4617   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
   4618   // C++11 [over.ics.list]p2:
   4619   //   If the parameter type is std::initializer_list<X> or "array of X" and
   4620   //   all the elements can be implicitly converted to X, the implicit
   4621   //   conversion sequence is the worst conversion necessary to convert an
   4622   //   element of the list to X.
   4623   //
   4624   // C++14 [over.ics.list]p3:
   4625   //   Otherwise, if the parameter type is "array of N X", if the initializer
   4626   //   list has exactly N elements or if it has fewer than N elements and X is
   4627   //   default-constructible, and if all the elements of the initializer list
   4628   //   can be implicitly converted to X, the implicit conversion sequence is
   4629   //   the worst conversion necessary to convert an element of the list to X.
   4630   //
   4631   // FIXME: We're missing a lot of these checks.
   4632   bool toStdInitializerList = false;
   4633   QualType X;
   4634   if (ToType->isArrayType())
   4635     X = S.Context.getAsArrayType(ToType)->getElementType();
   4636   else
   4637     toStdInitializerList = S.isStdInitializerList(ToType, &X);
   4638   if (!X.isNull()) {
   4639     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
   4640       Expr *Init = From->getInit(i);
   4641       ImplicitConversionSequence ICS =
   4642           TryCopyInitialization(S, Init, X, SuppressUserConversions,
   4643                                 InOverloadResolution,
   4644                                 AllowObjCWritebackConversion);
   4645       // If a single element isn't convertible, fail.
   4646       if (ICS.isBad()) {
   4647         Result = ICS;
   4648         break;
   4649       }
   4650       // Otherwise, look for the worst conversion.
   4651       if (Result.isBad() ||
   4652           CompareImplicitConversionSequences(S, From->getLocStart(), ICS,
   4653                                              Result) ==
   4654               ImplicitConversionSequence::Worse)
   4655         Result = ICS;
   4656     }
   4657 
   4658     // For an empty list, we won't have computed any conversion sequence.
   4659     // Introduce the identity conversion sequence.
   4660     if (From->getNumInits() == 0) {
   4661       Result.setStandard();
   4662       Result.Standard.setAsIdentityConversion();
   4663       Result.Standard.setFromType(ToType);
   4664       Result.Standard.setAllToTypes(ToType);
   4665     }
   4666 
   4667     Result.setStdInitializerListElement(toStdInitializerList);
   4668     return Result;
   4669   }
   4670 
   4671   // C++14 [over.ics.list]p4:
   4672   // C++11 [over.ics.list]p3:
   4673   //   Otherwise, if the parameter is a non-aggregate class X and overload
   4674   //   resolution chooses a single best constructor [...] the implicit
   4675   //   conversion sequence is a user-defined conversion sequence. If multiple
   4676   //   constructors are viable but none is better than the others, the
   4677   //   implicit conversion sequence is a user-defined conversion sequence.
   4678   if (ToType->isRecordType() && !ToType->isAggregateType()) {
   4679     // This function can deal with initializer lists.
   4680     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
   4681                                     /*AllowExplicit=*/false,
   4682                                     InOverloadResolution, /*CStyle=*/false,
   4683                                     AllowObjCWritebackConversion,
   4684                                     /*AllowObjCConversionOnExplicit=*/false);
   4685   }
   4686 
   4687   // C++14 [over.ics.list]p5:
   4688   // C++11 [over.ics.list]p4:
   4689   //   Otherwise, if the parameter has an aggregate type which can be
   4690   //   initialized from the initializer list [...] the implicit conversion
   4691   //   sequence is a user-defined conversion sequence.
   4692   if (ToType->isAggregateType()) {
   4693     // Type is an aggregate, argument is an init list. At this point it comes
   4694     // down to checking whether the initialization works.
   4695     // FIXME: Find out whether this parameter is consumed or not.
   4696     InitializedEntity Entity =
   4697         InitializedEntity::InitializeParameter(S.Context, ToType,
   4698                                                /*Consumed=*/false);
   4699     if (S.CanPerformCopyInitialization(Entity, From)) {
   4700       Result.setUserDefined();
   4701       Result.UserDefined.Before.setAsIdentityConversion();
   4702       // Initializer lists don't have a type.
   4703       Result.UserDefined.Before.setFromType(QualType());
   4704       Result.UserDefined.Before.setAllToTypes(QualType());
   4705 
   4706       Result.UserDefined.After.setAsIdentityConversion();
   4707       Result.UserDefined.After.setFromType(ToType);
   4708       Result.UserDefined.After.setAllToTypes(ToType);
   4709       Result.UserDefined.ConversionFunction = nullptr;
   4710     }
   4711     return Result;
   4712   }
   4713 
   4714   // C++14 [over.ics.list]p6:
   4715   // C++11 [over.ics.list]p5:
   4716   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
   4717   if (ToType->isReferenceType()) {
   4718     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
   4719     // mention initializer lists in any way. So we go by what list-
   4720     // initialization would do and try to extrapolate from that.
   4721 
   4722     QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
   4723 
   4724     // If the initializer list has a single element that is reference-related
   4725     // to the parameter type, we initialize the reference from that.
   4726     if (From->getNumInits() == 1) {
   4727       Expr *Init = From->getInit(0);
   4728 
   4729       QualType T2 = Init->getType();
   4730 
   4731       // If the initializer is the address of an overloaded function, try
   4732       // to resolve the overloaded function. If all goes well, T2 is the
   4733       // type of the resulting function.
   4734       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
   4735         DeclAccessPair Found;
   4736         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
   4737                                    Init, ToType, false, Found))
   4738           T2 = Fn->getType();
   4739       }
   4740 
   4741       // Compute some basic properties of the types and the initializer.
   4742       bool dummy1 = false;
   4743       bool dummy2 = false;
   4744       bool dummy3 = false;
   4745       Sema::ReferenceCompareResult RefRelationship
   4746         = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
   4747                                          dummy2, dummy3);
   4748 
   4749       if (RefRelationship >= Sema::Ref_Related) {
   4750         return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
   4751                                 SuppressUserConversions,
   4752                                 /*AllowExplicit=*/false);
   4753       }
   4754     }
   4755 
   4756     // Otherwise, we bind the reference to a temporary created from the
   4757     // initializer list.
   4758     Result = TryListConversion(S, From, T1, SuppressUserConversions,
   4759                                InOverloadResolution,
   4760                                AllowObjCWritebackConversion);
   4761     if (Result.isFailure())
   4762       return Result;
   4763     assert(!Result.isEllipsis() &&
   4764            "Sub-initialization cannot result in ellipsis conversion.");
   4765 
   4766     // Can we even bind to a temporary?
   4767     if (ToType->isRValueReferenceType() ||
   4768         (T1.isConstQualified() && !T1.isVolatileQualified())) {
   4769       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
   4770                                             Result.UserDefined.After;
   4771       SCS.ReferenceBinding = true;
   4772       SCS.IsLvalueReference = ToType->isLValueReferenceType();
   4773       SCS.BindsToRvalue = true;
   4774       SCS.BindsToFunctionLvalue = false;
   4775       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4776       SCS.ObjCLifetimeConversionBinding = false;
   4777     } else
   4778       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
   4779                     From, ToType);
   4780     return Result;
   4781   }
   4782 
   4783   // C++14 [over.ics.list]p7:
   4784   // C++11 [over.ics.list]p6:
   4785   //   Otherwise, if the parameter type is not a class:
   4786   if (!ToType->isRecordType()) {
   4787     //    - if the initializer list has one element that is not itself an
   4788     //      initializer list, the implicit conversion sequence is the one
   4789     //      required to convert the element to the parameter type.
   4790     unsigned NumInits = From->getNumInits();
   4791     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
   4792       Result = TryCopyInitialization(S, From->getInit(0), ToType,
   4793                                      SuppressUserConversions,
   4794                                      InOverloadResolution,
   4795                                      AllowObjCWritebackConversion);
   4796     //    - if the initializer list has no elements, the implicit conversion
   4797     //      sequence is the identity conversion.
   4798     else if (NumInits == 0) {
   4799       Result.setStandard();
   4800       Result.Standard.setAsIdentityConversion();
   4801       Result.Standard.setFromType(ToType);
   4802       Result.Standard.setAllToTypes(ToType);
   4803     }
   4804     return Result;
   4805   }
   4806 
   4807   // C++14 [over.ics.list]p8:
   4808   // C++11 [over.ics.list]p7:
   4809   //   In all cases other than those enumerated above, no conversion is possible
   4810   return Result;
   4811 }
   4812 
   4813 /// TryCopyInitialization - Try to copy-initialize a value of type
   4814 /// ToType from the expression From. Return the implicit conversion
   4815 /// sequence required to pass this argument, which may be a bad
   4816 /// conversion sequence (meaning that the argument cannot be passed to
   4817 /// a parameter of this type). If @p SuppressUserConversions, then we
   4818 /// do not permit any user-defined conversion sequences.
   4819 static ImplicitConversionSequence
   4820 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
   4821                       bool SuppressUserConversions,
   4822                       bool InOverloadResolution,
   4823                       bool AllowObjCWritebackConversion,
   4824                       bool AllowExplicit) {
   4825   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
   4826     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
   4827                              InOverloadResolution,AllowObjCWritebackConversion);
   4828 
   4829   if (ToType->isReferenceType())
   4830     return TryReferenceInit(S, From, ToType,
   4831                             /*FIXME:*/From->getLocStart(),
   4832                             SuppressUserConversions,
   4833                             AllowExplicit);
   4834 
   4835   return TryImplicitConversion(S, From, ToType,
   4836                                SuppressUserConversions,
   4837                                /*AllowExplicit=*/false,
   4838                                InOverloadResolution,
   4839                                /*CStyle=*/false,
   4840                                AllowObjCWritebackConversion,
   4841                                /*AllowObjCConversionOnExplicit=*/false);
   4842 }
   4843 
   4844 static bool TryCopyInitialization(const CanQualType FromQTy,
   4845                                   const CanQualType ToQTy,
   4846                                   Sema &S,
   4847                                   SourceLocation Loc,
   4848                                   ExprValueKind FromVK) {
   4849   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
   4850   ImplicitConversionSequence ICS =
   4851     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
   4852 
   4853   return !ICS.isBad();
   4854 }
   4855 
   4856 /// TryObjectArgumentInitialization - Try to initialize the object
   4857 /// parameter of the given member function (@c Method) from the
   4858 /// expression @p From.
   4859 static ImplicitConversionSequence
   4860 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
   4861                                 Expr::Classification FromClassification,
   4862                                 CXXMethodDecl *Method,
   4863                                 CXXRecordDecl *ActingContext) {
   4864   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
   4865   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
   4866   //                 const volatile object.
   4867   unsigned Quals = isa<CXXDestructorDecl>(Method) ?
   4868     Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
   4869   QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
   4870 
   4871   // Set up the conversion sequence as a "bad" conversion, to allow us
   4872   // to exit early.
   4873   ImplicitConversionSequence ICS;
   4874 
   4875   // We need to have an object of class type.
   4876   if (const PointerType *PT = FromType->getAs<PointerType>()) {
   4877     FromType = PT->getPointeeType();
   4878 
   4879     // When we had a pointer, it's implicitly dereferenced, so we
   4880     // better have an lvalue.
   4881     assert(FromClassification.isLValue());
   4882   }
   4883 
   4884   assert(FromType->isRecordType());
   4885 
   4886   // C++0x [over.match.funcs]p4:
   4887   //   For non-static member functions, the type of the implicit object
   4888   //   parameter is
   4889   //
   4890   //     - "lvalue reference to cv X" for functions declared without a
   4891   //        ref-qualifier or with the & ref-qualifier
   4892   //     - "rvalue reference to cv X" for functions declared with the &&
   4893   //        ref-qualifier
   4894   //
   4895   // where X is the class of which the function is a member and cv is the
   4896   // cv-qualification on the member function declaration.
   4897   //
   4898   // However, when finding an implicit conversion sequence for the argument, we
   4899   // are not allowed to create temporaries or perform user-defined conversions
   4900   // (C++ [over.match.funcs]p5). We perform a simplified version of
   4901   // reference binding here, that allows class rvalues to bind to
   4902   // non-constant references.
   4903 
   4904   // First check the qualifiers.
   4905   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
   4906   if (ImplicitParamType.getCVRQualifiers()
   4907                                     != FromTypeCanon.getLocalCVRQualifiers() &&
   4908       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
   4909     ICS.setBad(BadConversionSequence::bad_qualifiers,
   4910                FromType, ImplicitParamType);
   4911     return ICS;
   4912   }
   4913 
   4914   // Check that we have either the same type or a derived type. It
   4915   // affects the conversion rank.
   4916   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
   4917   ImplicitConversionKind SecondKind;
   4918   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
   4919     SecondKind = ICK_Identity;
   4920   } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
   4921     SecondKind = ICK_Derived_To_Base;
   4922   else {
   4923     ICS.setBad(BadConversionSequence::unrelated_class,
   4924                FromType, ImplicitParamType);
   4925     return ICS;
   4926   }
   4927 
   4928   // Check the ref-qualifier.
   4929   switch (Method->getRefQualifier()) {
   4930   case RQ_None:
   4931     // Do nothing; we don't care about lvalueness or rvalueness.
   4932     break;
   4933 
   4934   case RQ_LValue:
   4935     if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
   4936       // non-const lvalue reference cannot bind to an rvalue
   4937       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
   4938                  ImplicitParamType);
   4939       return ICS;
   4940     }
   4941     break;
   4942 
   4943   case RQ_RValue:
   4944     if (!FromClassification.isRValue()) {
   4945       // rvalue reference cannot bind to an lvalue
   4946       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
   4947                  ImplicitParamType);
   4948       return ICS;
   4949     }
   4950     break;
   4951   }
   4952 
   4953   // Success. Mark this as a reference binding.
   4954   ICS.setStandard();
   4955   ICS.Standard.setAsIdentityConversion();
   4956   ICS.Standard.Second = SecondKind;
   4957   ICS.Standard.setFromType(FromType);
   4958   ICS.Standard.setAllToTypes(ImplicitParamType);
   4959   ICS.Standard.ReferenceBinding = true;
   4960   ICS.Standard.DirectBinding = true;
   4961   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
   4962   ICS.Standard.BindsToFunctionLvalue = false;
   4963   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
   4964   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
   4965     = (Method->getRefQualifier() == RQ_None);
   4966   return ICS;
   4967 }
   4968 
   4969 /// PerformObjectArgumentInitialization - Perform initialization of
   4970 /// the implicit object parameter for the given Method with the given
   4971 /// expression.
   4972 ExprResult
   4973 Sema::PerformObjectArgumentInitialization(Expr *From,
   4974                                           NestedNameSpecifier *Qualifier,
   4975                                           NamedDecl *FoundDecl,
   4976                                           CXXMethodDecl *Method) {
   4977   QualType FromRecordType, DestType;
   4978   QualType ImplicitParamRecordType  =
   4979     Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
   4980 
   4981   Expr::Classification FromClassification;
   4982   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
   4983     FromRecordType = PT->getPointeeType();
   4984     DestType = Method->getThisType(Context);
   4985     FromClassification = Expr::Classification::makeSimpleLValue();
   4986   } else {
   4987     FromRecordType = From->getType();
   4988     DestType = ImplicitParamRecordType;
   4989     FromClassification = From->Classify(Context);
   4990   }
   4991 
   4992   // Note that we always use the true parent context when performing
   4993   // the actual argument initialization.
   4994   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
   4995       *this, From->getLocStart(), From->getType(), FromClassification, Method,
   4996       Method->getParent());
   4997   if (ICS.isBad()) {
   4998     if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
   4999       Qualifiers FromQs = FromRecordType.getQualifiers();
   5000       Qualifiers ToQs = DestType.getQualifiers();
   5001       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
   5002       if (CVR) {
   5003         Diag(From->getLocStart(),
   5004              diag::err_member_function_call_bad_cvr)
   5005           << Method->getDeclName() << FromRecordType << (CVR - 1)
   5006           << From->getSourceRange();
   5007         Diag(Method->getLocation(), diag::note_previous_decl)
   5008           << Method->getDeclName();
   5009         return ExprError();
   5010       }
   5011     }
   5012 
   5013     return Diag(From->getLocStart(),
   5014                 diag::err_implicit_object_parameter_init)
   5015        << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
   5016   }
   5017 
   5018   if (ICS.Standard.Second == ICK_Derived_To_Base) {
   5019     ExprResult FromRes =
   5020       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
   5021     if (FromRes.isInvalid())
   5022       return ExprError();
   5023     From = FromRes.get();
   5024   }
   5025 
   5026   if (!Context.hasSameType(From->getType(), DestType))
   5027     From = ImpCastExprToType(From, DestType, CK_NoOp,
   5028                              From->getValueKind()).get();
   5029   return From;
   5030 }
   5031 
   5032 /// TryContextuallyConvertToBool - Attempt to contextually convert the
   5033 /// expression From to bool (C++0x [conv]p3).
   5034 static ImplicitConversionSequence
   5035 TryContextuallyConvertToBool(Sema &S, Expr *From) {
   5036   return TryImplicitConversion(S, From, S.Context.BoolTy,
   5037                                /*SuppressUserConversions=*/false,
   5038                                /*AllowExplicit=*/true,
   5039                                /*InOverloadResolution=*/false,
   5040                                /*CStyle=*/false,
   5041                                /*AllowObjCWritebackConversion=*/false,
   5042                                /*AllowObjCConversionOnExplicit=*/false);
   5043 }
   5044 
   5045 /// PerformContextuallyConvertToBool - Perform a contextual conversion
   5046 /// of the expression From to bool (C++0x [conv]p3).
   5047 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
   5048   if (checkPlaceholderForOverload(*this, From))
   5049     return ExprError();
   5050 
   5051   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
   5052   if (!ICS.isBad())
   5053     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
   5054 
   5055   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
   5056     return Diag(From->getLocStart(),
   5057                 diag::err_typecheck_bool_condition)
   5058                   << From->getType() << From->getSourceRange();
   5059   return ExprError();
   5060 }
   5061 
   5062 /// Check that the specified conversion is permitted in a converted constant
   5063 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
   5064 /// is acceptable.
   5065 static bool CheckConvertedConstantConversions(Sema &S,
   5066                                               StandardConversionSequence &SCS) {
   5067   // Since we know that the target type is an integral or unscoped enumeration
   5068   // type, most conversion kinds are impossible. All possible First and Third
   5069   // conversions are fine.
   5070   switch (SCS.Second) {
   5071   case ICK_Identity:
   5072   case ICK_NoReturn_Adjustment:
   5073   case ICK_Integral_Promotion:
   5074   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
   5075     return true;
   5076 
   5077   case ICK_Boolean_Conversion:
   5078     // Conversion from an integral or unscoped enumeration type to bool is
   5079     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
   5080     // conversion, so we allow it in a converted constant expression.
   5081     //
   5082     // FIXME: Per core issue 1407, we should not allow this, but that breaks
   5083     // a lot of popular code. We should at least add a warning for this
   5084     // (non-conforming) extension.
   5085     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
   5086            SCS.getToType(2)->isBooleanType();
   5087 
   5088   case ICK_Pointer_Conversion:
   5089   case ICK_Pointer_Member:
   5090     // C++1z: null pointer conversions and null member pointer conversions are
   5091     // only permitted if the source type is std::nullptr_t.
   5092     return SCS.getFromType()->isNullPtrType();
   5093 
   5094   case ICK_Floating_Promotion:
   5095   case ICK_Complex_Promotion:
   5096   case ICK_Floating_Conversion:
   5097   case ICK_Complex_Conversion:
   5098   case ICK_Floating_Integral:
   5099   case ICK_Compatible_Conversion:
   5100   case ICK_Derived_To_Base:
   5101   case ICK_Vector_Conversion:
   5102   case ICK_Vector_Splat:
   5103   case ICK_Complex_Real:
   5104   case ICK_Block_Pointer_Conversion:
   5105   case ICK_TransparentUnionConversion:
   5106   case ICK_Writeback_Conversion:
   5107   case ICK_Zero_Event_Conversion:
   5108   case ICK_C_Only_Conversion:
   5109     return false;
   5110 
   5111   case ICK_Lvalue_To_Rvalue:
   5112   case ICK_Array_To_Pointer:
   5113   case ICK_Function_To_Pointer:
   5114     llvm_unreachable("found a first conversion kind in Second");
   5115 
   5116   case ICK_Qualification:
   5117     llvm_unreachable("found a third conversion kind in Second");
   5118 
   5119   case ICK_Num_Conversion_Kinds:
   5120     break;
   5121   }
   5122 
   5123   llvm_unreachable("unknown conversion kind");
   5124 }
   5125 
   5126 /// CheckConvertedConstantExpression - Check that the expression From is a
   5127 /// converted constant expression of type T, perform the conversion and produce
   5128 /// the converted expression, per C++11 [expr.const]p3.
   5129 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
   5130                                                    QualType T, APValue &Value,
   5131                                                    Sema::CCEKind CCE,
   5132                                                    bool RequireInt) {
   5133   assert(S.getLangOpts().CPlusPlus11 &&
   5134          "converted constant expression outside C++11");
   5135 
   5136   if (checkPlaceholderForOverload(S, From))
   5137     return ExprError();
   5138 
   5139   // C++1z [expr.const]p3:
   5140   //  A converted constant expression of type T is an expression,
   5141   //  implicitly converted to type T, where the converted
   5142   //  expression is a constant expression and the implicit conversion
   5143   //  sequence contains only [... list of conversions ...].
   5144   ImplicitConversionSequence ICS =
   5145     TryCopyInitialization(S, From, T,
   5146                           /*SuppressUserConversions=*/false,
   5147                           /*InOverloadResolution=*/false,
   5148                           /*AllowObjcWritebackConversion=*/false,
   5149                           /*AllowExplicit=*/false);
   5150   StandardConversionSequence *SCS = nullptr;
   5151   switch (ICS.getKind()) {
   5152   case ImplicitConversionSequence::StandardConversion:
   5153     SCS = &ICS.Standard;
   5154     break;
   5155   case ImplicitConversionSequence::UserDefinedConversion:
   5156     // We are converting to a non-class type, so the Before sequence
   5157     // must be trivial.
   5158     SCS = &ICS.UserDefined.After;
   5159     break;
   5160   case ImplicitConversionSequence::AmbiguousConversion:
   5161   case ImplicitConversionSequence::BadConversion:
   5162     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
   5163       return S.Diag(From->getLocStart(),
   5164                     diag::err_typecheck_converted_constant_expression)
   5165                 << From->getType() << From->getSourceRange() << T;
   5166     return ExprError();
   5167 
   5168   case ImplicitConversionSequence::EllipsisConversion:
   5169     llvm_unreachable("ellipsis conversion in converted constant expression");
   5170   }
   5171 
   5172   // Check that we would only use permitted conversions.
   5173   if (!CheckConvertedConstantConversions(S, *SCS)) {
   5174     return S.Diag(From->getLocStart(),
   5175                   diag::err_typecheck_converted_constant_expression_disallowed)
   5176              << From->getType() << From->getSourceRange() << T;
   5177   }
   5178   // [...] and where the reference binding (if any) binds directly.
   5179   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
   5180     return S.Diag(From->getLocStart(),
   5181                   diag::err_typecheck_converted_constant_expression_indirect)
   5182              << From->getType() << From->getSourceRange() << T;
   5183   }
   5184 
   5185   ExprResult Result =
   5186       S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
   5187   if (Result.isInvalid())
   5188     return Result;
   5189 
   5190   // Check for a narrowing implicit conversion.
   5191   APValue PreNarrowingValue;
   5192   QualType PreNarrowingType;
   5193   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
   5194                                 PreNarrowingType)) {
   5195   case NK_Variable_Narrowing:
   5196     // Implicit conversion to a narrower type, and the value is not a constant
   5197     // expression. We'll diagnose this in a moment.
   5198   case NK_Not_Narrowing:
   5199     break;
   5200 
   5201   case NK_Constant_Narrowing:
   5202     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
   5203       << CCE << /*Constant*/1
   5204       << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
   5205     break;
   5206 
   5207   case NK_Type_Narrowing:
   5208     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
   5209       << CCE << /*Constant*/0 << From->getType() << T;
   5210     break;
   5211   }
   5212 
   5213   // Check the expression is a constant expression.
   5214   SmallVector<PartialDiagnosticAt, 8> Notes;
   5215   Expr::EvalResult Eval;
   5216   Eval.Diag = &Notes;
   5217 
   5218   if ((T->isReferenceType()
   5219            ? !Result.get()->EvaluateAsLValue(Eval, S.Context)
   5220            : !Result.get()->EvaluateAsRValue(Eval, S.Context)) ||
   5221       (RequireInt && !Eval.Val.isInt())) {
   5222     // The expression can't be folded, so we can't keep it at this position in
   5223     // the AST.
   5224     Result = ExprError();
   5225   } else {
   5226     Value = Eval.Val;
   5227 
   5228     if (Notes.empty()) {
   5229       // It's a constant expression.
   5230       return Result;
   5231     }
   5232   }
   5233 
   5234   // It's not a constant expression. Produce an appropriate diagnostic.
   5235   if (Notes.size() == 1 &&
   5236       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
   5237     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
   5238   else {
   5239     S.Diag(From->getLocStart(), diag::err_expr_not_cce)
   5240       << CCE << From->getSourceRange();
   5241     for (unsigned I = 0; I < Notes.size(); ++I)
   5242       S.Diag(Notes[I].first, Notes[I].second);
   5243   }
   5244   return ExprError();
   5245 }
   5246 
   5247 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
   5248                                                   APValue &Value, CCEKind CCE) {
   5249   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
   5250 }
   5251 
   5252 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
   5253                                                   llvm::APSInt &Value,
   5254                                                   CCEKind CCE) {
   5255   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
   5256 
   5257   APValue V;
   5258   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
   5259   if (!R.isInvalid())
   5260     Value = V.getInt();
   5261   return R;
   5262 }
   5263 
   5264 
   5265 /// dropPointerConversions - If the given standard conversion sequence
   5266 /// involves any pointer conversions, remove them.  This may change
   5267 /// the result type of the conversion sequence.
   5268 static void dropPointerConversion(StandardConversionSequence &SCS) {
   5269   if (SCS.Second == ICK_Pointer_Conversion) {
   5270     SCS.Second = ICK_Identity;
   5271     SCS.Third = ICK_Identity;
   5272     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
   5273   }
   5274 }
   5275 
   5276 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
   5277 /// convert the expression From to an Objective-C pointer type.
   5278 static ImplicitConversionSequence
   5279 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
   5280   // Do an implicit conversion to 'id'.
   5281   QualType Ty = S.Context.getObjCIdType();
   5282   ImplicitConversionSequence ICS
   5283     = TryImplicitConversion(S, From, Ty,
   5284                             // FIXME: Are these flags correct?
   5285                             /*SuppressUserConversions=*/false,
   5286                             /*AllowExplicit=*/true,
   5287                             /*InOverloadResolution=*/false,
   5288                             /*CStyle=*/false,
   5289                             /*AllowObjCWritebackConversion=*/false,
   5290                             /*AllowObjCConversionOnExplicit=*/true);
   5291 
   5292   // Strip off any final conversions to 'id'.
   5293   switch (ICS.getKind()) {
   5294   case ImplicitConversionSequence::BadConversion:
   5295   case ImplicitConversionSequence::AmbiguousConversion:
   5296   case ImplicitConversionSequence::EllipsisConversion:
   5297     break;
   5298 
   5299   case ImplicitConversionSequence::UserDefinedConversion:
   5300     dropPointerConversion(ICS.UserDefined.After);
   5301     break;
   5302 
   5303   case ImplicitConversionSequence::StandardConversion:
   5304     dropPointerConversion(ICS.Standard);
   5305     break;
   5306   }
   5307 
   5308   return ICS;
   5309 }
   5310 
   5311 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
   5312 /// conversion of the expression From to an Objective-C pointer type.
   5313 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
   5314   if (checkPlaceholderForOverload(*this, From))
   5315     return ExprError();
   5316 
   5317   QualType Ty = Context.getObjCIdType();
   5318   ImplicitConversionSequence ICS =
   5319     TryContextuallyConvertToObjCPointer(*this, From);
   5320   if (!ICS.isBad())
   5321     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
   5322   return ExprError();
   5323 }
   5324 
   5325 /// Determine whether the provided type is an integral type, or an enumeration
   5326 /// type of a permitted flavor.
   5327 bool Sema::ICEConvertDiagnoser::match(QualType T) {
   5328   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
   5329                                  : T->isIntegralOrUnscopedEnumerationType();
   5330 }
   5331 
   5332 static ExprResult
   5333 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
   5334                             Sema::ContextualImplicitConverter &Converter,
   5335                             QualType T, UnresolvedSetImpl &ViableConversions) {
   5336 
   5337   if (Converter.Suppress)
   5338     return ExprError();
   5339 
   5340   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
   5341   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
   5342     CXXConversionDecl *Conv =
   5343         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
   5344     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
   5345     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
   5346   }
   5347   return From;
   5348 }
   5349 
   5350 static bool
   5351 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
   5352                            Sema::ContextualImplicitConverter &Converter,
   5353                            QualType T, bool HadMultipleCandidates,
   5354                            UnresolvedSetImpl &ExplicitConversions) {
   5355   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
   5356     DeclAccessPair Found = ExplicitConversions[0];
   5357     CXXConversionDecl *Conversion =
   5358         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
   5359 
   5360     // The user probably meant to invoke the given explicit
   5361     // conversion; use it.
   5362     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
   5363     std::string TypeStr;
   5364     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
   5365 
   5366     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
   5367         << FixItHint::CreateInsertion(From->getLocStart(),
   5368                                       "static_cast<" + TypeStr + ">(")
   5369         << FixItHint::CreateInsertion(
   5370                SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
   5371     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
   5372 
   5373     // If we aren't in a SFINAE context, build a call to the
   5374     // explicit conversion function.
   5375     if (SemaRef.isSFINAEContext())
   5376       return true;
   5377 
   5378     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
   5379     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
   5380                                                        HadMultipleCandidates);
   5381     if (Result.isInvalid())
   5382       return true;
   5383     // Record usage of conversion in an implicit cast.
   5384     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
   5385                                     CK_UserDefinedConversion, Result.get(),
   5386                                     nullptr, Result.get()->getValueKind());
   5387   }
   5388   return false;
   5389 }
   5390 
   5391 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
   5392                              Sema::ContextualImplicitConverter &Converter,
   5393                              QualType T, bool HadMultipleCandidates,
   5394                              DeclAccessPair &Found) {
   5395   CXXConversionDecl *Conversion =
   5396       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
   5397   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
   5398 
   5399   QualType ToType = Conversion->getConversionType().getNonReferenceType();
   5400   if (!Converter.SuppressConversion) {
   5401     if (SemaRef.isSFINAEContext())
   5402       return true;
   5403 
   5404     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
   5405         << From->getSourceRange();
   5406   }
   5407 
   5408   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
   5409                                                      HadMultipleCandidates);
   5410   if (Result.isInvalid())
   5411     return true;
   5412   // Record usage of conversion in an implicit cast.
   5413   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
   5414                                   CK_UserDefinedConversion, Result.get(),
   5415                                   nullptr, Result.get()->getValueKind());
   5416   return false;
   5417 }
   5418 
   5419 static ExprResult finishContextualImplicitConversion(
   5420     Sema &SemaRef, SourceLocation Loc, Expr *From,
   5421     Sema::ContextualImplicitConverter &Converter) {
   5422   if (!Converter.match(From->getType()) && !Converter.Suppress)
   5423     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
   5424         << From->getSourceRange();
   5425 
   5426   return SemaRef.DefaultLvalueConversion(From);
   5427 }
   5428 
   5429 static void
   5430 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
   5431                                   UnresolvedSetImpl &ViableConversions,
   5432                                   OverloadCandidateSet &CandidateSet) {
   5433   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
   5434     DeclAccessPair FoundDecl = ViableConversions[I];
   5435     NamedDecl *D = FoundDecl.getDecl();
   5436     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   5437     if (isa<UsingShadowDecl>(D))
   5438       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   5439 
   5440     CXXConversionDecl *Conv;
   5441     FunctionTemplateDecl *ConvTemplate;
   5442     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
   5443       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   5444     else
   5445       Conv = cast<CXXConversionDecl>(D);
   5446 
   5447     if (ConvTemplate)
   5448       SemaRef.AddTemplateConversionCandidate(
   5449         ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
   5450         /*AllowObjCConversionOnExplicit=*/false);
   5451     else
   5452       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
   5453                                      ToType, CandidateSet,
   5454                                      /*AllowObjCConversionOnExplicit=*/false);
   5455   }
   5456 }
   5457 
   5458 /// \brief Attempt to convert the given expression to a type which is accepted
   5459 /// by the given converter.
   5460 ///
   5461 /// This routine will attempt to convert an expression of class type to a
   5462 /// type accepted by the specified converter. In C++11 and before, the class
   5463 /// must have a single non-explicit conversion function converting to a matching
   5464 /// type. In C++1y, there can be multiple such conversion functions, but only
   5465 /// one target type.
   5466 ///
   5467 /// \param Loc The source location of the construct that requires the
   5468 /// conversion.
   5469 ///
   5470 /// \param From The expression we're converting from.
   5471 ///
   5472 /// \param Converter Used to control and diagnose the conversion process.
   5473 ///
   5474 /// \returns The expression, converted to an integral or enumeration type if
   5475 /// successful.
   5476 ExprResult Sema::PerformContextualImplicitConversion(
   5477     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
   5478   // We can't perform any more checking for type-dependent expressions.
   5479   if (From->isTypeDependent())
   5480     return From;
   5481 
   5482   // Process placeholders immediately.
   5483   if (From->hasPlaceholderType()) {
   5484     ExprResult result = CheckPlaceholderExpr(From);
   5485     if (result.isInvalid())
   5486       return result;
   5487     From = result.get();
   5488   }
   5489 
   5490   // If the expression already has a matching type, we're golden.
   5491   QualType T = From->getType();
   5492   if (Converter.match(T))
   5493     return DefaultLvalueConversion(From);
   5494 
   5495   // FIXME: Check for missing '()' if T is a function type?
   5496 
   5497   // We can only perform contextual implicit conversions on objects of class
   5498   // type.
   5499   const RecordType *RecordTy = T->getAs<RecordType>();
   5500   if (!RecordTy || !getLangOpts().CPlusPlus) {
   5501     if (!Converter.Suppress)
   5502       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
   5503     return From;
   5504   }
   5505 
   5506   // We must have a complete class type.
   5507   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
   5508     ContextualImplicitConverter &Converter;
   5509     Expr *From;
   5510 
   5511     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
   5512         : Converter(Converter), From(From) {}
   5513 
   5514     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
   5515       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
   5516     }
   5517   } IncompleteDiagnoser(Converter, From);
   5518 
   5519   if (Converter.Suppress ? !isCompleteType(Loc, T)
   5520                          : RequireCompleteType(Loc, T, IncompleteDiagnoser))
   5521     return From;
   5522 
   5523   // Look for a conversion to an integral or enumeration type.
   5524   UnresolvedSet<4>
   5525       ViableConversions; // These are *potentially* viable in C++1y.
   5526   UnresolvedSet<4> ExplicitConversions;
   5527   const auto &Conversions =
   5528       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
   5529 
   5530   bool HadMultipleCandidates =
   5531       (std::distance(Conversions.begin(), Conversions.end()) > 1);
   5532 
   5533   // To check that there is only one target type, in C++1y:
   5534   QualType ToType;
   5535   bool HasUniqueTargetType = true;
   5536 
   5537   // Collect explicit or viable (potentially in C++1y) conversions.
   5538   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   5539     NamedDecl *D = (*I)->getUnderlyingDecl();
   5540     CXXConversionDecl *Conversion;
   5541     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
   5542     if (ConvTemplate) {
   5543       if (getLangOpts().CPlusPlus14)
   5544         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   5545       else
   5546         continue; // C++11 does not consider conversion operator templates(?).
   5547     } else
   5548       Conversion = cast<CXXConversionDecl>(D);
   5549 
   5550     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
   5551            "Conversion operator templates are considered potentially "
   5552            "viable in C++1y");
   5553 
   5554     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
   5555     if (Converter.match(CurToType) || ConvTemplate) {
   5556 
   5557       if (Conversion->isExplicit()) {
   5558         // FIXME: For C++1y, do we need this restriction?
   5559         // cf. diagnoseNoViableConversion()
   5560         if (!ConvTemplate)
   5561           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
   5562       } else {
   5563         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
   5564           if (ToType.isNull())
   5565             ToType = CurToType.getUnqualifiedType();
   5566           else if (HasUniqueTargetType &&
   5567                    (CurToType.getUnqualifiedType() != ToType))
   5568             HasUniqueTargetType = false;
   5569         }
   5570         ViableConversions.addDecl(I.getDecl(), I.getAccess());
   5571       }
   5572     }
   5573   }
   5574 
   5575   if (getLangOpts().CPlusPlus14) {
   5576     // C++1y [conv]p6:
   5577     // ... An expression e of class type E appearing in such a context
   5578     // is said to be contextually implicitly converted to a specified
   5579     // type T and is well-formed if and only if e can be implicitly
   5580     // converted to a type T that is determined as follows: E is searched
   5581     // for conversion functions whose return type is cv T or reference to
   5582     // cv T such that T is allowed by the context. There shall be
   5583     // exactly one such T.
   5584 
   5585     // If no unique T is found:
   5586     if (ToType.isNull()) {
   5587       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5588                                      HadMultipleCandidates,
   5589                                      ExplicitConversions))
   5590         return ExprError();
   5591       return finishContextualImplicitConversion(*this, Loc, From, Converter);
   5592     }
   5593 
   5594     // If more than one unique Ts are found:
   5595     if (!HasUniqueTargetType)
   5596       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5597                                          ViableConversions);
   5598 
   5599     // If one unique T is found:
   5600     // First, build a candidate set from the previously recorded
   5601     // potentially viable conversions.
   5602     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
   5603     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
   5604                                       CandidateSet);
   5605 
   5606     // Then, perform overload resolution over the candidate set.
   5607     OverloadCandidateSet::iterator Best;
   5608     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
   5609     case OR_Success: {
   5610       // Apply this conversion.
   5611       DeclAccessPair Found =
   5612           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
   5613       if (recordConversion(*this, Loc, From, Converter, T,
   5614                            HadMultipleCandidates, Found))
   5615         return ExprError();
   5616       break;
   5617     }
   5618     case OR_Ambiguous:
   5619       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5620                                          ViableConversions);
   5621     case OR_No_Viable_Function:
   5622       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5623                                      HadMultipleCandidates,
   5624                                      ExplicitConversions))
   5625         return ExprError();
   5626     // fall through 'OR_Deleted' case.
   5627     case OR_Deleted:
   5628       // We'll complain below about a non-integral condition type.
   5629       break;
   5630     }
   5631   } else {
   5632     switch (ViableConversions.size()) {
   5633     case 0: {
   5634       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5635                                      HadMultipleCandidates,
   5636                                      ExplicitConversions))
   5637         return ExprError();
   5638 
   5639       // We'll complain below about a non-integral condition type.
   5640       break;
   5641     }
   5642     case 1: {
   5643       // Apply this conversion.
   5644       DeclAccessPair Found = ViableConversions[0];
   5645       if (recordConversion(*this, Loc, From, Converter, T,
   5646                            HadMultipleCandidates, Found))
   5647         return ExprError();
   5648       break;
   5649     }
   5650     default:
   5651       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5652                                          ViableConversions);
   5653     }
   5654   }
   5655 
   5656   return finishContextualImplicitConversion(*this, Loc, From, Converter);
   5657 }
   5658 
   5659 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
   5660 /// an acceptable non-member overloaded operator for a call whose
   5661 /// arguments have types T1 (and, if non-empty, T2). This routine
   5662 /// implements the check in C++ [over.match.oper]p3b2 concerning
   5663 /// enumeration types.
   5664 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
   5665                                                    FunctionDecl *Fn,
   5666                                                    ArrayRef<Expr *> Args) {
   5667   QualType T1 = Args[0]->getType();
   5668   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
   5669 
   5670   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
   5671     return true;
   5672 
   5673   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
   5674     return true;
   5675 
   5676   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
   5677   if (Proto->getNumParams() < 1)
   5678     return false;
   5679 
   5680   if (T1->isEnumeralType()) {
   5681     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
   5682     if (Context.hasSameUnqualifiedType(T1, ArgType))
   5683       return true;
   5684   }
   5685 
   5686   if (Proto->getNumParams() < 2)
   5687     return false;
   5688 
   5689   if (!T2.isNull() && T2->isEnumeralType()) {
   5690     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
   5691     if (Context.hasSameUnqualifiedType(T2, ArgType))
   5692       return true;
   5693   }
   5694 
   5695   return false;
   5696 }
   5697 
   5698 /// AddOverloadCandidate - Adds the given function to the set of
   5699 /// candidate functions, using the given function call arguments.  If
   5700 /// @p SuppressUserConversions, then don't allow user-defined
   5701 /// conversions via constructors or conversion operators.
   5702 ///
   5703 /// \param PartialOverloading true if we are performing "partial" overloading
   5704 /// based on an incomplete set of function arguments. This feature is used by
   5705 /// code completion.
   5706 void
   5707 Sema::AddOverloadCandidate(FunctionDecl *Function,
   5708                            DeclAccessPair FoundDecl,
   5709                            ArrayRef<Expr *> Args,
   5710                            OverloadCandidateSet &CandidateSet,
   5711                            bool SuppressUserConversions,
   5712                            bool PartialOverloading,
   5713                            bool AllowExplicit) {
   5714   const FunctionProtoType *Proto
   5715     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
   5716   assert(Proto && "Functions without a prototype cannot be overloaded");
   5717   assert(!Function->getDescribedFunctionTemplate() &&
   5718          "Use AddTemplateOverloadCandidate for function templates");
   5719 
   5720   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
   5721     if (!isa<CXXConstructorDecl>(Method)) {
   5722       // If we get here, it's because we're calling a member function
   5723       // that is named without a member access expression (e.g.,
   5724       // "this->f") that was either written explicitly or created
   5725       // implicitly. This can happen with a qualified call to a member
   5726       // function, e.g., X::f(). We use an empty type for the implied
   5727       // object argument (C++ [over.call.func]p3), and the acting context
   5728       // is irrelevant.
   5729       AddMethodCandidate(Method, FoundDecl, Method->getParent(),
   5730                          QualType(), Expr::Classification::makeSimpleLValue(),
   5731                          Args, CandidateSet, SuppressUserConversions,
   5732                          PartialOverloading);
   5733       return;
   5734     }
   5735     // We treat a constructor like a non-member function, since its object
   5736     // argument doesn't participate in overload resolution.
   5737   }
   5738 
   5739   if (!CandidateSet.isNewCandidate(Function))
   5740     return;
   5741 
   5742   // C++ [over.match.oper]p3:
   5743   //   if no operand has a class type, only those non-member functions in the
   5744   //   lookup set that have a first parameter of type T1 or "reference to
   5745   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
   5746   //   is a right operand) a second parameter of type T2 or "reference to
   5747   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
   5748   //   candidate functions.
   5749   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
   5750       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
   5751     return;
   5752 
   5753   // C++11 [class.copy]p11: [DR1402]
   5754   //   A defaulted move constructor that is defined as deleted is ignored by
   5755   //   overload resolution.
   5756   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
   5757   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
   5758       Constructor->isMoveConstructor())
   5759     return;
   5760 
   5761   // Overload resolution is always an unevaluated context.
   5762   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   5763 
   5764   // Add this candidate
   5765   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
   5766   Candidate.FoundDecl = FoundDecl;
   5767   Candidate.Function = Function;
   5768   Candidate.Viable = true;
   5769   Candidate.IsSurrogate = false;
   5770   Candidate.IgnoreObjectArgument = false;
   5771   Candidate.ExplicitCallArguments = Args.size();
   5772 
   5773   if (Constructor) {
   5774     // C++ [class.copy]p3:
   5775     //   A member function template is never instantiated to perform the copy
   5776     //   of a class object to an object of its class type.
   5777     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
   5778     if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
   5779         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
   5780          IsDerivedFrom(Args[0]->getLocStart(), Args[0]->getType(),
   5781                        ClassType))) {
   5782       Candidate.Viable = false;
   5783       Candidate.FailureKind = ovl_fail_illegal_constructor;
   5784       return;
   5785     }
   5786   }
   5787 
   5788   unsigned NumParams = Proto->getNumParams();
   5789 
   5790   // (C++ 13.3.2p2): A candidate function having fewer than m
   5791   // parameters is viable only if it has an ellipsis in its parameter
   5792   // list (8.3.5).
   5793   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
   5794       !Proto->isVariadic()) {
   5795     Candidate.Viable = false;
   5796     Candidate.FailureKind = ovl_fail_too_many_arguments;
   5797     return;
   5798   }
   5799 
   5800   // (C++ 13.3.2p2): A candidate function having more than m parameters
   5801   // is viable only if the (m+1)st parameter has a default argument
   5802   // (8.3.6). For the purposes of overload resolution, the
   5803   // parameter list is truncated on the right, so that there are
   5804   // exactly m parameters.
   5805   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
   5806   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
   5807     // Not enough arguments.
   5808     Candidate.Viable = false;
   5809     Candidate.FailureKind = ovl_fail_too_few_arguments;
   5810     return;
   5811   }
   5812 
   5813   // (CUDA B.1): Check for invalid calls between targets.
   5814   if (getLangOpts().CUDA)
   5815     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   5816       // Skip the check for callers that are implicit members, because in this
   5817       // case we may not yet know what the member's target is; the target is
   5818       // inferred for the member automatically, based on the bases and fields of
   5819       // the class.
   5820       if (!Caller->isImplicit() && CheckCUDATarget(Caller, Function)) {
   5821         Candidate.Viable = false;
   5822         Candidate.FailureKind = ovl_fail_bad_target;
   5823         return;
   5824       }
   5825 
   5826   // Determine the implicit conversion sequences for each of the
   5827   // arguments.
   5828   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
   5829     if (ArgIdx < NumParams) {
   5830       // (C++ 13.3.2p3): for F to be a viable function, there shall
   5831       // exist for each argument an implicit conversion sequence
   5832       // (13.3.3.1) that converts that argument to the corresponding
   5833       // parameter of F.
   5834       QualType ParamType = Proto->getParamType(ArgIdx);
   5835       Candidate.Conversions[ArgIdx]
   5836         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   5837                                 SuppressUserConversions,
   5838                                 /*InOverloadResolution=*/true,
   5839                                 /*AllowObjCWritebackConversion=*/
   5840                                   getLangOpts().ObjCAutoRefCount,
   5841                                 AllowExplicit);
   5842       if (Candidate.Conversions[ArgIdx].isBad()) {
   5843         Candidate.Viable = false;
   5844         Candidate.FailureKind = ovl_fail_bad_conversion;
   5845         return;
   5846       }
   5847     } else {
   5848       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   5849       // argument for which there is no corresponding parameter is
   5850       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
   5851       Candidate.Conversions[ArgIdx].setEllipsis();
   5852     }
   5853   }
   5854 
   5855   if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
   5856     Candidate.Viable = false;
   5857     Candidate.FailureKind = ovl_fail_enable_if;
   5858     Candidate.DeductionFailure.Data = FailedAttr;
   5859     return;
   5860   }
   5861 }
   5862 
   5863 ObjCMethodDecl *
   5864 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
   5865                        SmallVectorImpl<ObjCMethodDecl *> &Methods) {
   5866   if (Methods.size() <= 1)
   5867     return nullptr;
   5868 
   5869   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
   5870     bool Match = true;
   5871     ObjCMethodDecl *Method = Methods[b];
   5872     unsigned NumNamedArgs = Sel.getNumArgs();
   5873     // Method might have more arguments than selector indicates. This is due
   5874     // to addition of c-style arguments in method.
   5875     if (Method->param_size() > NumNamedArgs)
   5876       NumNamedArgs = Method->param_size();
   5877     if (Args.size() < NumNamedArgs)
   5878       continue;
   5879 
   5880     for (unsigned i = 0; i < NumNamedArgs; i++) {
   5881       // We can't do any type-checking on a type-dependent argument.
   5882       if (Args[i]->isTypeDependent()) {
   5883         Match = false;
   5884         break;
   5885       }
   5886 
   5887       ParmVarDecl *param = Method->parameters()[i];
   5888       Expr *argExpr = Args[i];
   5889       assert(argExpr && "SelectBestMethod(): missing expression");
   5890 
   5891       // Strip the unbridged-cast placeholder expression off unless it's
   5892       // a consumed argument.
   5893       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
   5894           !param->hasAttr<CFConsumedAttr>())
   5895         argExpr = stripARCUnbridgedCast(argExpr);
   5896 
   5897       // If the parameter is __unknown_anytype, move on to the next method.
   5898       if (param->getType() == Context.UnknownAnyTy) {
   5899         Match = false;
   5900         break;
   5901       }
   5902 
   5903       ImplicitConversionSequence ConversionState
   5904         = TryCopyInitialization(*this, argExpr, param->getType(),
   5905                                 /*SuppressUserConversions*/false,
   5906                                 /*InOverloadResolution=*/true,
   5907                                 /*AllowObjCWritebackConversion=*/
   5908                                 getLangOpts().ObjCAutoRefCount,
   5909                                 /*AllowExplicit*/false);
   5910         if (ConversionState.isBad()) {
   5911           Match = false;
   5912           break;
   5913         }
   5914     }
   5915     // Promote additional arguments to variadic methods.
   5916     if (Match && Method->isVariadic()) {
   5917       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
   5918         if (Args[i]->isTypeDependent()) {
   5919           Match = false;
   5920           break;
   5921         }
   5922         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
   5923                                                           nullptr);
   5924         if (Arg.isInvalid()) {
   5925           Match = false;
   5926           break;
   5927         }
   5928       }
   5929     } else {
   5930       // Check for extra arguments to non-variadic methods.
   5931       if (Args.size() != NumNamedArgs)
   5932         Match = false;
   5933       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
   5934         // Special case when selectors have no argument. In this case, select
   5935         // one with the most general result type of 'id'.
   5936         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
   5937           QualType ReturnT = Methods[b]->getReturnType();
   5938           if (ReturnT->isObjCIdType())
   5939             return Methods[b];
   5940         }
   5941       }
   5942     }
   5943 
   5944     if (Match)
   5945       return Method;
   5946   }
   5947   return nullptr;
   5948 }
   5949 
   5950 // specific_attr_iterator iterates over enable_if attributes in reverse, and
   5951 // enable_if is order-sensitive. As a result, we need to reverse things
   5952 // sometimes. Size of 4 elements is arbitrary.
   5953 static SmallVector<EnableIfAttr *, 4>
   5954 getOrderedEnableIfAttrs(const FunctionDecl *Function) {
   5955   SmallVector<EnableIfAttr *, 4> Result;
   5956   if (!Function->hasAttrs())
   5957     return Result;
   5958 
   5959   const auto &FuncAttrs = Function->getAttrs();
   5960   for (Attr *Attr : FuncAttrs)
   5961     if (auto *EnableIf = dyn_cast<EnableIfAttr>(Attr))
   5962       Result.push_back(EnableIf);
   5963 
   5964   std::reverse(Result.begin(), Result.end());
   5965   return Result;
   5966 }
   5967 
   5968 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
   5969                                   bool MissingImplicitThis) {
   5970   auto EnableIfAttrs = getOrderedEnableIfAttrs(Function);
   5971   if (EnableIfAttrs.empty())
   5972     return nullptr;
   5973 
   5974   SFINAETrap Trap(*this);
   5975   SmallVector<Expr *, 16> ConvertedArgs;
   5976   bool InitializationFailed = false;
   5977 
   5978   // Convert the arguments.
   5979   for (unsigned I = 0, E = Args.size(); I != E; ++I) {
   5980     ExprResult R;
   5981     if (I == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
   5982         !cast<CXXMethodDecl>(Function)->isStatic() &&
   5983         !isa<CXXConstructorDecl>(Function)) {
   5984       CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
   5985       R = PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   5986                                               Method, Method);
   5987     } else {
   5988       R = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   5989                                         Context, Function->getParamDecl(I)),
   5990                                     SourceLocation(), Args[I]);
   5991     }
   5992 
   5993     if (R.isInvalid()) {
   5994       InitializationFailed = true;
   5995       break;
   5996     }
   5997 
   5998     ConvertedArgs.push_back(R.get());
   5999   }
   6000 
   6001   if (InitializationFailed || Trap.hasErrorOccurred())
   6002     return EnableIfAttrs[0];
   6003 
   6004   // Push default arguments if needed.
   6005   if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
   6006     for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
   6007       ParmVarDecl *P = Function->getParamDecl(i);
   6008       ExprResult R = PerformCopyInitialization(
   6009           InitializedEntity::InitializeParameter(Context,
   6010                                                  Function->getParamDecl(i)),
   6011           SourceLocation(),
   6012           P->hasUninstantiatedDefaultArg() ? P->getUninstantiatedDefaultArg()
   6013                                            : P->getDefaultArg());
   6014       if (R.isInvalid()) {
   6015         InitializationFailed = true;
   6016         break;
   6017       }
   6018       ConvertedArgs.push_back(R.get());
   6019     }
   6020 
   6021     if (InitializationFailed || Trap.hasErrorOccurred())
   6022       return EnableIfAttrs[0];
   6023   }
   6024 
   6025   for (auto *EIA : EnableIfAttrs) {
   6026     APValue Result;
   6027     // FIXME: This doesn't consider value-dependent cases, because doing so is
   6028     // very difficult. Ideally, we should handle them more gracefully.
   6029     if (!EIA->getCond()->EvaluateWithSubstitution(
   6030             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
   6031       return EIA;
   6032 
   6033     if (!Result.isInt() || !Result.getInt().getBoolValue())
   6034       return EIA;
   6035   }
   6036   return nullptr;
   6037 }
   6038 
   6039 /// \brief Add all of the function declarations in the given function set to
   6040 /// the overload candidate set.
   6041 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
   6042                                  ArrayRef<Expr *> Args,
   6043                                  OverloadCandidateSet& CandidateSet,
   6044                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   6045                                  bool SuppressUserConversions,
   6046                                  bool PartialOverloading) {
   6047   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
   6048     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
   6049     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   6050       if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
   6051         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
   6052                            cast<CXXMethodDecl>(FD)->getParent(),
   6053                            Args[0]->getType(), Args[0]->Classify(Context),
   6054                            Args.slice(1), CandidateSet,
   6055                            SuppressUserConversions, PartialOverloading);
   6056       else
   6057         AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
   6058                              SuppressUserConversions, PartialOverloading);
   6059     } else {
   6060       FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
   6061       if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
   6062           !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
   6063         AddMethodTemplateCandidate(FunTmpl, F.getPair(),
   6064                               cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
   6065                                    ExplicitTemplateArgs,
   6066                                    Args[0]->getType(),
   6067                                    Args[0]->Classify(Context), Args.slice(1),
   6068                                    CandidateSet, SuppressUserConversions,
   6069                                    PartialOverloading);
   6070       else
   6071         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
   6072                                      ExplicitTemplateArgs, Args,
   6073                                      CandidateSet, SuppressUserConversions,
   6074                                      PartialOverloading);
   6075     }
   6076   }
   6077 }
   6078 
   6079 /// AddMethodCandidate - Adds a named decl (which is some kind of
   6080 /// method) as a method candidate to the given overload set.
   6081 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
   6082                               QualType ObjectType,
   6083                               Expr::Classification ObjectClassification,
   6084                               ArrayRef<Expr *> Args,
   6085                               OverloadCandidateSet& CandidateSet,
   6086                               bool SuppressUserConversions) {
   6087   NamedDecl *Decl = FoundDecl.getDecl();
   6088   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
   6089 
   6090   if (isa<UsingShadowDecl>(Decl))
   6091     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
   6092 
   6093   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
   6094     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
   6095            "Expected a member function template");
   6096     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
   6097                                /*ExplicitArgs*/ nullptr,
   6098                                ObjectType, ObjectClassification,
   6099                                Args, CandidateSet,
   6100                                SuppressUserConversions);
   6101   } else {
   6102     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
   6103                        ObjectType, ObjectClassification,
   6104                        Args,
   6105                        CandidateSet, SuppressUserConversions);
   6106   }
   6107 }
   6108 
   6109 /// AddMethodCandidate - Adds the given C++ member function to the set
   6110 /// of candidate functions, using the given function call arguments
   6111 /// and the object argument (@c Object). For example, in a call
   6112 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
   6113 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
   6114 /// allow user-defined conversions via constructors or conversion
   6115 /// operators.
   6116 void
   6117 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
   6118                          CXXRecordDecl *ActingContext, QualType ObjectType,
   6119                          Expr::Classification ObjectClassification,
   6120                          ArrayRef<Expr *> Args,
   6121                          OverloadCandidateSet &CandidateSet,
   6122                          bool SuppressUserConversions,
   6123                          bool PartialOverloading) {
   6124   const FunctionProtoType *Proto
   6125     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
   6126   assert(Proto && "Methods without a prototype cannot be overloaded");
   6127   assert(!isa<CXXConstructorDecl>(Method) &&
   6128          "Use AddOverloadCandidate for constructors");
   6129 
   6130   if (!CandidateSet.isNewCandidate(Method))
   6131     return;
   6132 
   6133   // C++11 [class.copy]p23: [DR1402]
   6134   //   A defaulted move assignment operator that is defined as deleted is
   6135   //   ignored by overload resolution.
   6136   if (Method->isDefaulted() && Method->isDeleted() &&
   6137       Method->isMoveAssignmentOperator())
   6138     return;
   6139 
   6140   // Overload resolution is always an unevaluated context.
   6141   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6142 
   6143   // Add this candidate
   6144   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
   6145   Candidate.FoundDecl = FoundDecl;
   6146   Candidate.Function = Method;
   6147   Candidate.IsSurrogate = false;
   6148   Candidate.IgnoreObjectArgument = false;
   6149   Candidate.ExplicitCallArguments = Args.size();
   6150 
   6151   unsigned NumParams = Proto->getNumParams();
   6152 
   6153   // (C++ 13.3.2p2): A candidate function having fewer than m
   6154   // parameters is viable only if it has an ellipsis in its parameter
   6155   // list (8.3.5).
   6156   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
   6157       !Proto->isVariadic()) {
   6158     Candidate.Viable = false;
   6159     Candidate.FailureKind = ovl_fail_too_many_arguments;
   6160     return;
   6161   }
   6162 
   6163   // (C++ 13.3.2p2): A candidate function having more than m parameters
   6164   // is viable only if the (m+1)st parameter has a default argument
   6165   // (8.3.6). For the purposes of overload resolution, the
   6166   // parameter list is truncated on the right, so that there are
   6167   // exactly m parameters.
   6168   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
   6169   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
   6170     // Not enough arguments.
   6171     Candidate.Viable = false;
   6172     Candidate.FailureKind = ovl_fail_too_few_arguments;
   6173     return;
   6174   }
   6175 
   6176   Candidate.Viable = true;
   6177 
   6178   if (Method->isStatic() || ObjectType.isNull())
   6179     // The implicit object argument is ignored.
   6180     Candidate.IgnoreObjectArgument = true;
   6181   else {
   6182     // Determine the implicit conversion sequence for the object
   6183     // parameter.
   6184     Candidate.Conversions[0] = TryObjectArgumentInitialization(
   6185         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
   6186         Method, ActingContext);
   6187     if (Candidate.Conversions[0].isBad()) {
   6188       Candidate.Viable = false;
   6189       Candidate.FailureKind = ovl_fail_bad_conversion;
   6190       return;
   6191     }
   6192   }
   6193 
   6194   // (CUDA B.1): Check for invalid calls between targets.
   6195   if (getLangOpts().CUDA)
   6196     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   6197       if (CheckCUDATarget(Caller, Method)) {
   6198         Candidate.Viable = false;
   6199         Candidate.FailureKind = ovl_fail_bad_target;
   6200         return;
   6201       }
   6202 
   6203   // Determine the implicit conversion sequences for each of the
   6204   // arguments.
   6205   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
   6206     if (ArgIdx < NumParams) {
   6207       // (C++ 13.3.2p3): for F to be a viable function, there shall
   6208       // exist for each argument an implicit conversion sequence
   6209       // (13.3.3.1) that converts that argument to the corresponding
   6210       // parameter of F.
   6211       QualType ParamType = Proto->getParamType(ArgIdx);
   6212       Candidate.Conversions[ArgIdx + 1]
   6213         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   6214                                 SuppressUserConversions,
   6215                                 /*InOverloadResolution=*/true,
   6216                                 /*AllowObjCWritebackConversion=*/
   6217                                   getLangOpts().ObjCAutoRefCount);
   6218       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
   6219         Candidate.Viable = false;
   6220         Candidate.FailureKind = ovl_fail_bad_conversion;
   6221         return;
   6222       }
   6223     } else {
   6224       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   6225       // argument for which there is no corresponding parameter is
   6226       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
   6227       Candidate.Conversions[ArgIdx + 1].setEllipsis();
   6228     }
   6229   }
   6230 
   6231   if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
   6232     Candidate.Viable = false;
   6233     Candidate.FailureKind = ovl_fail_enable_if;
   6234     Candidate.DeductionFailure.Data = FailedAttr;
   6235     return;
   6236   }
   6237 }
   6238 
   6239 /// \brief Add a C++ member function template as a candidate to the candidate
   6240 /// set, using template argument deduction to produce an appropriate member
   6241 /// function template specialization.
   6242 void
   6243 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
   6244                                  DeclAccessPair FoundDecl,
   6245                                  CXXRecordDecl *ActingContext,
   6246                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   6247                                  QualType ObjectType,
   6248                                  Expr::Classification ObjectClassification,
   6249                                  ArrayRef<Expr *> Args,
   6250                                  OverloadCandidateSet& CandidateSet,
   6251                                  bool SuppressUserConversions,
   6252                                  bool PartialOverloading) {
   6253   if (!CandidateSet.isNewCandidate(MethodTmpl))
   6254     return;
   6255 
   6256   // C++ [over.match.funcs]p7:
   6257   //   In each case where a candidate is a function template, candidate
   6258   //   function template specializations are generated using template argument
   6259   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
   6260   //   candidate functions in the usual way.113) A given name can refer to one
   6261   //   or more function templates and also to a set of overloaded non-template
   6262   //   functions. In such a case, the candidate functions generated from each
   6263   //   function template are combined with the set of non-template candidate
   6264   //   functions.
   6265   TemplateDeductionInfo Info(CandidateSet.getLocation());
   6266   FunctionDecl *Specialization = nullptr;
   6267   if (TemplateDeductionResult Result
   6268       = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
   6269                                 Specialization, Info, PartialOverloading)) {
   6270     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   6271     Candidate.FoundDecl = FoundDecl;
   6272     Candidate.Function = MethodTmpl->getTemplatedDecl();
   6273     Candidate.Viable = false;
   6274     Candidate.FailureKind = ovl_fail_bad_deduction;
   6275     Candidate.IsSurrogate = false;
   6276     Candidate.IgnoreObjectArgument = false;
   6277     Candidate.ExplicitCallArguments = Args.size();
   6278     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   6279                                                           Info);
   6280     return;
   6281   }
   6282 
   6283   // Add the function template specialization produced by template argument
   6284   // deduction as a candidate.
   6285   assert(Specialization && "Missing member function template specialization?");
   6286   assert(isa<CXXMethodDecl>(Specialization) &&
   6287          "Specialization is not a member function?");
   6288   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
   6289                      ActingContext, ObjectType, ObjectClassification, Args,
   6290                      CandidateSet, SuppressUserConversions, PartialOverloading);
   6291 }
   6292 
   6293 /// \brief Add a C++ function template specialization as a candidate
   6294 /// in the candidate set, using template argument deduction to produce
   6295 /// an appropriate function template specialization.
   6296 void
   6297 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
   6298                                    DeclAccessPair FoundDecl,
   6299                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   6300                                    ArrayRef<Expr *> Args,
   6301                                    OverloadCandidateSet& CandidateSet,
   6302                                    bool SuppressUserConversions,
   6303                                    bool PartialOverloading) {
   6304   if (!CandidateSet.isNewCandidate(FunctionTemplate))
   6305     return;
   6306 
   6307   // C++ [over.match.funcs]p7:
   6308   //   In each case where a candidate is a function template, candidate
   6309   //   function template specializations are generated using template argument
   6310   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
   6311   //   candidate functions in the usual way.113) A given name can refer to one
   6312   //   or more function templates and also to a set of overloaded non-template
   6313   //   functions. In such a case, the candidate functions generated from each
   6314   //   function template are combined with the set of non-template candidate
   6315   //   functions.
   6316   TemplateDeductionInfo Info(CandidateSet.getLocation());
   6317   FunctionDecl *Specialization = nullptr;
   6318   if (TemplateDeductionResult Result
   6319         = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
   6320                                   Specialization, Info, PartialOverloading)) {
   6321     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   6322     Candidate.FoundDecl = FoundDecl;
   6323     Candidate.Function = FunctionTemplate->getTemplatedDecl();
   6324     Candidate.Viable = false;
   6325     Candidate.FailureKind = ovl_fail_bad_deduction;
   6326     Candidate.IsSurrogate = false;
   6327     Candidate.IgnoreObjectArgument = false;
   6328     Candidate.ExplicitCallArguments = Args.size();
   6329     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   6330                                                           Info);
   6331     return;
   6332   }
   6333 
   6334   // Add the function template specialization produced by template argument
   6335   // deduction as a candidate.
   6336   assert(Specialization && "Missing function template specialization?");
   6337   AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
   6338                        SuppressUserConversions, PartialOverloading);
   6339 }
   6340 
   6341 /// Determine whether this is an allowable conversion from the result
   6342 /// of an explicit conversion operator to the expected type, per C++
   6343 /// [over.match.conv]p1 and [over.match.ref]p1.
   6344 ///
   6345 /// \param ConvType The return type of the conversion function.
   6346 ///
   6347 /// \param ToType The type we are converting to.
   6348 ///
   6349 /// \param AllowObjCPointerConversion Allow a conversion from one
   6350 /// Objective-C pointer to another.
   6351 ///
   6352 /// \returns true if the conversion is allowable, false otherwise.
   6353 static bool isAllowableExplicitConversion(Sema &S,
   6354                                           QualType ConvType, QualType ToType,
   6355                                           bool AllowObjCPointerConversion) {
   6356   QualType ToNonRefType = ToType.getNonReferenceType();
   6357 
   6358   // Easy case: the types are the same.
   6359   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
   6360     return true;
   6361 
   6362   // Allow qualification conversions.
   6363   bool ObjCLifetimeConversion;
   6364   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
   6365                                   ObjCLifetimeConversion))
   6366     return true;
   6367 
   6368   // If we're not allowed to consider Objective-C pointer conversions,
   6369   // we're done.
   6370   if (!AllowObjCPointerConversion)
   6371     return false;
   6372 
   6373   // Is this an Objective-C pointer conversion?
   6374   bool IncompatibleObjC = false;
   6375   QualType ConvertedType;
   6376   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
   6377                                    IncompatibleObjC);
   6378 }
   6379 
   6380 /// AddConversionCandidate - Add a C++ conversion function as a
   6381 /// candidate in the candidate set (C++ [over.match.conv],
   6382 /// C++ [over.match.copy]). From is the expression we're converting from,
   6383 /// and ToType is the type that we're eventually trying to convert to
   6384 /// (which may or may not be the same type as the type that the
   6385 /// conversion function produces).
   6386 void
   6387 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
   6388                              DeclAccessPair FoundDecl,
   6389                              CXXRecordDecl *ActingContext,
   6390                              Expr *From, QualType ToType,
   6391                              OverloadCandidateSet& CandidateSet,
   6392                              bool AllowObjCConversionOnExplicit) {
   6393   assert(!Conversion->getDescribedFunctionTemplate() &&
   6394          "Conversion function templates use AddTemplateConversionCandidate");
   6395   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
   6396   if (!CandidateSet.isNewCandidate(Conversion))
   6397     return;
   6398 
   6399   // If the conversion function has an undeduced return type, trigger its
   6400   // deduction now.
   6401   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
   6402     if (DeduceReturnType(Conversion, From->getExprLoc()))
   6403       return;
   6404     ConvType = Conversion->getConversionType().getNonReferenceType();
   6405   }
   6406 
   6407   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
   6408   // operator is only a candidate if its return type is the target type or
   6409   // can be converted to the target type with a qualification conversion.
   6410   if (Conversion->isExplicit() &&
   6411       !isAllowableExplicitConversion(*this, ConvType, ToType,
   6412                                      AllowObjCConversionOnExplicit))
   6413     return;
   6414 
   6415   // Overload resolution is always an unevaluated context.
   6416   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6417 
   6418   // Add this candidate
   6419   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
   6420   Candidate.FoundDecl = FoundDecl;
   6421   Candidate.Function = Conversion;
   6422   Candidate.IsSurrogate = false;
   6423   Candidate.IgnoreObjectArgument = false;
   6424   Candidate.FinalConversion.setAsIdentityConversion();
   6425   Candidate.FinalConversion.setFromType(ConvType);
   6426   Candidate.FinalConversion.setAllToTypes(ToType);
   6427   Candidate.Viable = true;
   6428   Candidate.ExplicitCallArguments = 1;
   6429 
   6430   // C++ [over.match.funcs]p4:
   6431   //   For conversion functions, the function is considered to be a member of
   6432   //   the class of the implicit implied object argument for the purpose of
   6433   //   defining the type of the implicit object parameter.
   6434   //
   6435   // Determine the implicit conversion sequence for the implicit
   6436   // object parameter.
   6437   QualType ImplicitParamType = From->getType();
   6438   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
   6439     ImplicitParamType = FromPtrType->getPointeeType();
   6440   CXXRecordDecl *ConversionContext
   6441     = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
   6442 
   6443   Candidate.Conversions[0] = TryObjectArgumentInitialization(
   6444       *this, CandidateSet.getLocation(), From->getType(),
   6445       From->Classify(Context), Conversion, ConversionContext);
   6446 
   6447   if (Candidate.Conversions[0].isBad()) {
   6448     Candidate.Viable = false;
   6449     Candidate.FailureKind = ovl_fail_bad_conversion;
   6450     return;
   6451   }
   6452 
   6453   // We won't go through a user-defined type conversion function to convert a
   6454   // derived to base as such conversions are given Conversion Rank. They only
   6455   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
   6456   QualType FromCanon
   6457     = Context.getCanonicalType(From->getType().getUnqualifiedType());
   6458   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
   6459   if (FromCanon == ToCanon ||
   6460       IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
   6461     Candidate.Viable = false;
   6462     Candidate.FailureKind = ovl_fail_trivial_conversion;
   6463     return;
   6464   }
   6465 
   6466   // To determine what the conversion from the result of calling the
   6467   // conversion function to the type we're eventually trying to
   6468   // convert to (ToType), we need to synthesize a call to the
   6469   // conversion function and attempt copy initialization from it. This
   6470   // makes sure that we get the right semantics with respect to
   6471   // lvalues/rvalues and the type. Fortunately, we can allocate this
   6472   // call on the stack and we don't need its arguments to be
   6473   // well-formed.
   6474   DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
   6475                             VK_LValue, From->getLocStart());
   6476   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
   6477                                 Context.getPointerType(Conversion->getType()),
   6478                                 CK_FunctionToPointerDecay,
   6479                                 &ConversionRef, VK_RValue);
   6480 
   6481   QualType ConversionType = Conversion->getConversionType();
   6482   if (!isCompleteType(From->getLocStart(), ConversionType)) {
   6483     Candidate.Viable = false;
   6484     Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6485     return;
   6486   }
   6487 
   6488   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
   6489 
   6490   // Note that it is safe to allocate CallExpr on the stack here because
   6491   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
   6492   // allocator).
   6493   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
   6494   CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
   6495                 From->getLocStart());
   6496   ImplicitConversionSequence ICS =
   6497     TryCopyInitialization(*this, &Call, ToType,
   6498                           /*SuppressUserConversions=*/true,
   6499                           /*InOverloadResolution=*/false,
   6500                           /*AllowObjCWritebackConversion=*/false);
   6501 
   6502   switch (ICS.getKind()) {
   6503   case ImplicitConversionSequence::StandardConversion:
   6504     Candidate.FinalConversion = ICS.Standard;
   6505 
   6506     // C++ [over.ics.user]p3:
   6507     //   If the user-defined conversion is specified by a specialization of a
   6508     //   conversion function template, the second standard conversion sequence
   6509     //   shall have exact match rank.
   6510     if (Conversion->getPrimaryTemplate() &&
   6511         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
   6512       Candidate.Viable = false;
   6513       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
   6514       return;
   6515     }
   6516 
   6517     // C++0x [dcl.init.ref]p5:
   6518     //    In the second case, if the reference is an rvalue reference and
   6519     //    the second standard conversion sequence of the user-defined
   6520     //    conversion sequence includes an lvalue-to-rvalue conversion, the
   6521     //    program is ill-formed.
   6522     if (ToType->isRValueReferenceType() &&
   6523         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
   6524       Candidate.Viable = false;
   6525       Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6526       return;
   6527     }
   6528     break;
   6529 
   6530   case ImplicitConversionSequence::BadConversion:
   6531     Candidate.Viable = false;
   6532     Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6533     return;
   6534 
   6535   default:
   6536     llvm_unreachable(
   6537            "Can only end up with a standard conversion sequence or failure");
   6538   }
   6539 
   6540   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
   6541     Candidate.Viable = false;
   6542     Candidate.FailureKind = ovl_fail_enable_if;
   6543     Candidate.DeductionFailure.Data = FailedAttr;
   6544     return;
   6545   }
   6546 }
   6547 
   6548 /// \brief Adds a conversion function template specialization
   6549 /// candidate to the overload set, using template argument deduction
   6550 /// to deduce the template arguments of the conversion function
   6551 /// template from the type that we are converting to (C++
   6552 /// [temp.deduct.conv]).
   6553 void
   6554 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
   6555                                      DeclAccessPair FoundDecl,
   6556                                      CXXRecordDecl *ActingDC,
   6557                                      Expr *From, QualType ToType,
   6558                                      OverloadCandidateSet &CandidateSet,
   6559                                      bool AllowObjCConversionOnExplicit) {
   6560   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
   6561          "Only conversion function templates permitted here");
   6562 
   6563   if (!CandidateSet.isNewCandidate(FunctionTemplate))
   6564     return;
   6565 
   6566   TemplateDeductionInfo Info(CandidateSet.getLocation());
   6567   CXXConversionDecl *Specialization = nullptr;
   6568   if (TemplateDeductionResult Result
   6569         = DeduceTemplateArguments(FunctionTemplate, ToType,
   6570                                   Specialization, Info)) {
   6571     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   6572     Candidate.FoundDecl = FoundDecl;
   6573     Candidate.Function = FunctionTemplate->getTemplatedDecl();
   6574     Candidate.Viable = false;
   6575     Candidate.FailureKind = ovl_fail_bad_deduction;
   6576     Candidate.IsSurrogate = false;
   6577     Candidate.IgnoreObjectArgument = false;
   6578     Candidate.ExplicitCallArguments = 1;
   6579     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   6580                                                           Info);
   6581     return;
   6582   }
   6583 
   6584   // Add the conversion function template specialization produced by
   6585   // template argument deduction as a candidate.
   6586   assert(Specialization && "Missing function template specialization?");
   6587   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
   6588                          CandidateSet, AllowObjCConversionOnExplicit);
   6589 }
   6590 
   6591 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
   6592 /// converts the given @c Object to a function pointer via the
   6593 /// conversion function @c Conversion, and then attempts to call it
   6594 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
   6595 /// the type of function that we'll eventually be calling.
   6596 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
   6597                                  DeclAccessPair FoundDecl,
   6598                                  CXXRecordDecl *ActingContext,
   6599                                  const FunctionProtoType *Proto,
   6600                                  Expr *Object,
   6601                                  ArrayRef<Expr *> Args,
   6602                                  OverloadCandidateSet& CandidateSet) {
   6603   if (!CandidateSet.isNewCandidate(Conversion))
   6604     return;
   6605 
   6606   // Overload resolution is always an unevaluated context.
   6607   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6608 
   6609   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
   6610   Candidate.FoundDecl = FoundDecl;
   6611   Candidate.Function = nullptr;
   6612   Candidate.Surrogate = Conversion;
   6613   Candidate.Viable = true;
   6614   Candidate.IsSurrogate = true;
   6615   Candidate.IgnoreObjectArgument = false;
   6616   Candidate.ExplicitCallArguments = Args.size();
   6617 
   6618   // Determine the implicit conversion sequence for the implicit
   6619   // object parameter.
   6620   ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
   6621       *this, CandidateSet.getLocation(), Object->getType(),
   6622       Object->Classify(Context), Conversion, ActingContext);
   6623   if (ObjectInit.isBad()) {
   6624     Candidate.Viable = false;
   6625     Candidate.FailureKind = ovl_fail_bad_conversion;
   6626     Candidate.Conversions[0] = ObjectInit;
   6627     return;
   6628   }
   6629 
   6630   // The first conversion is actually a user-defined conversion whose
   6631   // first conversion is ObjectInit's standard conversion (which is
   6632   // effectively a reference binding). Record it as such.
   6633   Candidate.Conversions[0].setUserDefined();
   6634   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
   6635   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
   6636   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
   6637   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
   6638   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
   6639   Candidate.Conversions[0].UserDefined.After
   6640     = Candidate.Conversions[0].UserDefined.Before;
   6641   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
   6642 
   6643   // Find the
   6644   unsigned NumParams = Proto->getNumParams();
   6645 
   6646   // (C++ 13.3.2p2): A candidate function having fewer than m
   6647   // parameters is viable only if it has an ellipsis in its parameter
   6648   // list (8.3.5).
   6649   if (Args.size() > NumParams && !Proto->isVariadic()) {
   6650     Candidate.Viable = false;
   6651     Candidate.FailureKind = ovl_fail_too_many_arguments;
   6652     return;
   6653   }
   6654 
   6655   // Function types don't have any default arguments, so just check if
   6656   // we have enough arguments.
   6657   if (Args.size() < NumParams) {
   6658     // Not enough arguments.
   6659     Candidate.Viable = false;
   6660     Candidate.FailureKind = ovl_fail_too_few_arguments;
   6661     return;
   6662   }
   6663 
   6664   // Determine the implicit conversion sequences for each of the
   6665   // arguments.
   6666   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   6667     if (ArgIdx < NumParams) {
   6668       // (C++ 13.3.2p3): for F to be a viable function, there shall
   6669       // exist for each argument an implicit conversion sequence
   6670       // (13.3.3.1) that converts that argument to the corresponding
   6671       // parameter of F.
   6672       QualType ParamType = Proto->getParamType(ArgIdx);
   6673       Candidate.Conversions[ArgIdx + 1]
   6674         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   6675                                 /*SuppressUserConversions=*/false,
   6676                                 /*InOverloadResolution=*/false,
   6677                                 /*AllowObjCWritebackConversion=*/
   6678                                   getLangOpts().ObjCAutoRefCount);
   6679       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
   6680         Candidate.Viable = false;
   6681         Candidate.FailureKind = ovl_fail_bad_conversion;
   6682         return;
   6683       }
   6684     } else {
   6685       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   6686       // argument for which there is no corresponding parameter is
   6687       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
   6688       Candidate.Conversions[ArgIdx + 1].setEllipsis();
   6689     }
   6690   }
   6691 
   6692   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
   6693     Candidate.Viable = false;
   6694     Candidate.FailureKind = ovl_fail_enable_if;
   6695     Candidate.DeductionFailure.Data = FailedAttr;
   6696     return;
   6697   }
   6698 }
   6699 
   6700 /// \brief Add overload candidates for overloaded operators that are
   6701 /// member functions.
   6702 ///
   6703 /// Add the overloaded operator candidates that are member functions
   6704 /// for the operator Op that was used in an operator expression such
   6705 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
   6706 /// CandidateSet will store the added overload candidates. (C++
   6707 /// [over.match.oper]).
   6708 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
   6709                                        SourceLocation OpLoc,
   6710                                        ArrayRef<Expr *> Args,
   6711                                        OverloadCandidateSet& CandidateSet,
   6712                                        SourceRange OpRange) {
   6713   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   6714 
   6715   // C++ [over.match.oper]p3:
   6716   //   For a unary operator @ with an operand of a type whose
   6717   //   cv-unqualified version is T1, and for a binary operator @ with
   6718   //   a left operand of a type whose cv-unqualified version is T1 and
   6719   //   a right operand of a type whose cv-unqualified version is T2,
   6720   //   three sets of candidate functions, designated member
   6721   //   candidates, non-member candidates and built-in candidates, are
   6722   //   constructed as follows:
   6723   QualType T1 = Args[0]->getType();
   6724 
   6725   //     -- If T1 is a complete class type or a class currently being
   6726   //        defined, the set of member candidates is the result of the
   6727   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
   6728   //        the set of member candidates is empty.
   6729   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
   6730     // Complete the type if it can be completed.
   6731     if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
   6732       return;
   6733     // If the type is neither complete nor being defined, bail out now.
   6734     if (!T1Rec->getDecl()->getDefinition())
   6735       return;
   6736 
   6737     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
   6738     LookupQualifiedName(Operators, T1Rec->getDecl());
   6739     Operators.suppressDiagnostics();
   6740 
   6741     for (LookupResult::iterator Oper = Operators.begin(),
   6742                              OperEnd = Operators.end();
   6743          Oper != OperEnd;
   6744          ++Oper)
   6745       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
   6746                          Args[0]->Classify(Context),
   6747                          Args.slice(1),
   6748                          CandidateSet,
   6749                          /* SuppressUserConversions = */ false);
   6750   }
   6751 }
   6752 
   6753 /// AddBuiltinCandidate - Add a candidate for a built-in
   6754 /// operator. ResultTy and ParamTys are the result and parameter types
   6755 /// of the built-in candidate, respectively. Args and NumArgs are the
   6756 /// arguments being passed to the candidate. IsAssignmentOperator
   6757 /// should be true when this built-in candidate is an assignment
   6758 /// operator. NumContextualBoolArguments is the number of arguments
   6759 /// (at the beginning of the argument list) that will be contextually
   6760 /// converted to bool.
   6761 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
   6762                                ArrayRef<Expr *> Args,
   6763                                OverloadCandidateSet& CandidateSet,
   6764                                bool IsAssignmentOperator,
   6765                                unsigned NumContextualBoolArguments) {
   6766   // Overload resolution is always an unevaluated context.
   6767   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6768 
   6769   // Add this candidate
   6770   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
   6771   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
   6772   Candidate.Function = nullptr;
   6773   Candidate.IsSurrogate = false;
   6774   Candidate.IgnoreObjectArgument = false;
   6775   Candidate.BuiltinTypes.ResultTy = ResultTy;
   6776   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
   6777     Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
   6778 
   6779   // Determine the implicit conversion sequences for each of the
   6780   // arguments.
   6781   Candidate.Viable = true;
   6782   Candidate.ExplicitCallArguments = Args.size();
   6783   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   6784     // C++ [over.match.oper]p4:
   6785     //   For the built-in assignment operators, conversions of the
   6786     //   left operand are restricted as follows:
   6787     //     -- no temporaries are introduced to hold the left operand, and
   6788     //     -- no user-defined conversions are applied to the left
   6789     //        operand to achieve a type match with the left-most
   6790     //        parameter of a built-in candidate.
   6791     //
   6792     // We block these conversions by turning off user-defined
   6793     // conversions, since that is the only way that initialization of
   6794     // a reference to a non-class type can occur from something that
   6795     // is not of the same type.
   6796     if (ArgIdx < NumContextualBoolArguments) {
   6797       assert(ParamTys[ArgIdx] == Context.BoolTy &&
   6798              "Contextual conversion to bool requires bool type");
   6799       Candidate.Conversions[ArgIdx]
   6800         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
   6801     } else {
   6802       Candidate.Conversions[ArgIdx]
   6803         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
   6804                                 ArgIdx == 0 && IsAssignmentOperator,
   6805                                 /*InOverloadResolution=*/false,
   6806                                 /*AllowObjCWritebackConversion=*/
   6807                                   getLangOpts().ObjCAutoRefCount);
   6808     }
   6809     if (Candidate.Conversions[ArgIdx].isBad()) {
   6810       Candidate.Viable = false;
   6811       Candidate.FailureKind = ovl_fail_bad_conversion;
   6812       break;
   6813     }
   6814   }
   6815 }
   6816 
   6817 namespace {
   6818 
   6819 /// BuiltinCandidateTypeSet - A set of types that will be used for the
   6820 /// candidate operator functions for built-in operators (C++
   6821 /// [over.built]). The types are separated into pointer types and
   6822 /// enumeration types.
   6823 class BuiltinCandidateTypeSet  {
   6824   /// TypeSet - A set of types.
   6825   typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
   6826                           llvm::SmallPtrSet<QualType, 8>> TypeSet;
   6827 
   6828   /// PointerTypes - The set of pointer types that will be used in the
   6829   /// built-in candidates.
   6830   TypeSet PointerTypes;
   6831 
   6832   /// MemberPointerTypes - The set of member pointer types that will be
   6833   /// used in the built-in candidates.
   6834   TypeSet MemberPointerTypes;
   6835 
   6836   /// EnumerationTypes - The set of enumeration types that will be
   6837   /// used in the built-in candidates.
   6838   TypeSet EnumerationTypes;
   6839 
   6840   /// \brief The set of vector types that will be used in the built-in
   6841   /// candidates.
   6842   TypeSet VectorTypes;
   6843 
   6844   /// \brief A flag indicating non-record types are viable candidates
   6845   bool HasNonRecordTypes;
   6846 
   6847   /// \brief A flag indicating whether either arithmetic or enumeration types
   6848   /// were present in the candidate set.
   6849   bool HasArithmeticOrEnumeralTypes;
   6850 
   6851   /// \brief A flag indicating whether the nullptr type was present in the
   6852   /// candidate set.
   6853   bool HasNullPtrType;
   6854 
   6855   /// Sema - The semantic analysis instance where we are building the
   6856   /// candidate type set.
   6857   Sema &SemaRef;
   6858 
   6859   /// Context - The AST context in which we will build the type sets.
   6860   ASTContext &Context;
   6861 
   6862   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
   6863                                                const Qualifiers &VisibleQuals);
   6864   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
   6865 
   6866 public:
   6867   /// iterator - Iterates through the types that are part of the set.
   6868   typedef TypeSet::iterator iterator;
   6869 
   6870   BuiltinCandidateTypeSet(Sema &SemaRef)
   6871     : HasNonRecordTypes(false),
   6872       HasArithmeticOrEnumeralTypes(false),
   6873       HasNullPtrType(false),
   6874       SemaRef(SemaRef),
   6875       Context(SemaRef.Context) { }
   6876 
   6877   void AddTypesConvertedFrom(QualType Ty,
   6878                              SourceLocation Loc,
   6879                              bool AllowUserConversions,
   6880                              bool AllowExplicitConversions,
   6881                              const Qualifiers &VisibleTypeConversionsQuals);
   6882 
   6883   /// pointer_begin - First pointer type found;
   6884   iterator pointer_begin() { return PointerTypes.begin(); }
   6885 
   6886   /// pointer_end - Past the last pointer type found;
   6887   iterator pointer_end() { return PointerTypes.end(); }
   6888 
   6889   /// member_pointer_begin - First member pointer type found;
   6890   iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
   6891 
   6892   /// member_pointer_end - Past the last member pointer type found;
   6893   iterator member_pointer_end() { return MemberPointerTypes.end(); }
   6894 
   6895   /// enumeration_begin - First enumeration type found;
   6896   iterator enumeration_begin() { return EnumerationTypes.begin(); }
   6897 
   6898   /// enumeration_end - Past the last enumeration type found;
   6899   iterator enumeration_end() { return EnumerationTypes.end(); }
   6900 
   6901   iterator vector_begin() { return VectorTypes.begin(); }
   6902   iterator vector_end() { return VectorTypes.end(); }
   6903 
   6904   bool hasNonRecordTypes() { return HasNonRecordTypes; }
   6905   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
   6906   bool hasNullPtrType() const { return HasNullPtrType; }
   6907 };
   6908 
   6909 } // end anonymous namespace
   6910 
   6911 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
   6912 /// the set of pointer types along with any more-qualified variants of
   6913 /// that type. For example, if @p Ty is "int const *", this routine
   6914 /// will add "int const *", "int const volatile *", "int const
   6915 /// restrict *", and "int const volatile restrict *" to the set of
   6916 /// pointer types. Returns true if the add of @p Ty itself succeeded,
   6917 /// false otherwise.
   6918 ///
   6919 /// FIXME: what to do about extended qualifiers?
   6920 bool
   6921 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
   6922                                              const Qualifiers &VisibleQuals) {
   6923 
   6924   // Insert this type.
   6925   if (!PointerTypes.insert(Ty))
   6926     return false;
   6927 
   6928   QualType PointeeTy;
   6929   const PointerType *PointerTy = Ty->getAs<PointerType>();
   6930   bool buildObjCPtr = false;
   6931   if (!PointerTy) {
   6932     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
   6933     PointeeTy = PTy->getPointeeType();
   6934     buildObjCPtr = true;
   6935   } else {
   6936     PointeeTy = PointerTy->getPointeeType();
   6937   }
   6938 
   6939   // Don't add qualified variants of arrays. For one, they're not allowed
   6940   // (the qualifier would sink to the element type), and for another, the
   6941   // only overload situation where it matters is subscript or pointer +- int,
   6942   // and those shouldn't have qualifier variants anyway.
   6943   if (PointeeTy->isArrayType())
   6944     return true;
   6945 
   6946   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
   6947   bool hasVolatile = VisibleQuals.hasVolatile();
   6948   bool hasRestrict = VisibleQuals.hasRestrict();
   6949 
   6950   // Iterate through all strict supersets of BaseCVR.
   6951   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
   6952     if ((CVR | BaseCVR) != CVR) continue;
   6953     // Skip over volatile if no volatile found anywhere in the types.
   6954     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
   6955 
   6956     // Skip over restrict if no restrict found anywhere in the types, or if
   6957     // the type cannot be restrict-qualified.
   6958     if ((CVR & Qualifiers::Restrict) &&
   6959         (!hasRestrict ||
   6960          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
   6961       continue;
   6962 
   6963     // Build qualified pointee type.
   6964     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
   6965 
   6966     // Build qualified pointer type.
   6967     QualType QPointerTy;
   6968     if (!buildObjCPtr)
   6969       QPointerTy = Context.getPointerType(QPointeeTy);
   6970     else
   6971       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
   6972 
   6973     // Insert qualified pointer type.
   6974     PointerTypes.insert(QPointerTy);
   6975   }
   6976 
   6977   return true;
   6978 }
   6979 
   6980 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
   6981 /// to the set of pointer types along with any more-qualified variants of
   6982 /// that type. For example, if @p Ty is "int const *", this routine
   6983 /// will add "int const *", "int const volatile *", "int const
   6984 /// restrict *", and "int const volatile restrict *" to the set of
   6985 /// pointer types. Returns true if the add of @p Ty itself succeeded,
   6986 /// false otherwise.
   6987 ///
   6988 /// FIXME: what to do about extended qualifiers?
   6989 bool
   6990 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
   6991     QualType Ty) {
   6992   // Insert this type.
   6993   if (!MemberPointerTypes.insert(Ty))
   6994     return false;
   6995 
   6996   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
   6997   assert(PointerTy && "type was not a member pointer type!");
   6998 
   6999   QualType PointeeTy = PointerTy->getPointeeType();
   7000   // Don't add qualified variants of arrays. For one, they're not allowed
   7001   // (the qualifier would sink to the element type), and for another, the
   7002   // only overload situation where it matters is subscript or pointer +- int,
   7003   // and those shouldn't have qualifier variants anyway.
   7004   if (PointeeTy->isArrayType())
   7005     return true;
   7006   const Type *ClassTy = PointerTy->getClass();
   7007 
   7008   // Iterate through all strict supersets of the pointee type's CVR
   7009   // qualifiers.
   7010   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
   7011   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
   7012     if ((CVR | BaseCVR) != CVR) continue;
   7013 
   7014     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
   7015     MemberPointerTypes.insert(
   7016       Context.getMemberPointerType(QPointeeTy, ClassTy));
   7017   }
   7018 
   7019   return true;
   7020 }
   7021 
   7022 /// AddTypesConvertedFrom - Add each of the types to which the type @p
   7023 /// Ty can be implicit converted to the given set of @p Types. We're
   7024 /// primarily interested in pointer types and enumeration types. We also
   7025 /// take member pointer types, for the conditional operator.
   7026 /// AllowUserConversions is true if we should look at the conversion
   7027 /// functions of a class type, and AllowExplicitConversions if we
   7028 /// should also include the explicit conversion functions of a class
   7029 /// type.
   7030 void
   7031 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
   7032                                                SourceLocation Loc,
   7033                                                bool AllowUserConversions,
   7034                                                bool AllowExplicitConversions,
   7035                                                const Qualifiers &VisibleQuals) {
   7036   // Only deal with canonical types.
   7037   Ty = Context.getCanonicalType(Ty);
   7038 
   7039   // Look through reference types; they aren't part of the type of an
   7040   // expression for the purposes of conversions.
   7041   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
   7042     Ty = RefTy->getPointeeType();
   7043 
   7044   // If we're dealing with an array type, decay to the pointer.
   7045   if (Ty->isArrayType())
   7046     Ty = SemaRef.Context.getArrayDecayedType(Ty);
   7047 
   7048   // Otherwise, we don't care about qualifiers on the type.
   7049   Ty = Ty.getLocalUnqualifiedType();
   7050 
   7051   // Flag if we ever add a non-record type.
   7052   const RecordType *TyRec = Ty->getAs<RecordType>();
   7053   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
   7054 
   7055   // Flag if we encounter an arithmetic type.
   7056   HasArithmeticOrEnumeralTypes =
   7057     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
   7058 
   7059   if (Ty->isObjCIdType() || Ty->isObjCClassType())
   7060     PointerTypes.insert(Ty);
   7061   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
   7062     // Insert our type, and its more-qualified variants, into the set
   7063     // of types.
   7064     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
   7065       return;
   7066   } else if (Ty->isMemberPointerType()) {
   7067     // Member pointers are far easier, since the pointee can't be converted.
   7068     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
   7069       return;
   7070   } else if (Ty->isEnumeralType()) {
   7071     HasArithmeticOrEnumeralTypes = true;
   7072     EnumerationTypes.insert(Ty);
   7073   } else if (Ty->isVectorType()) {
   7074     // We treat vector types as arithmetic types in many contexts as an
   7075     // extension.
   7076     HasArithmeticOrEnumeralTypes = true;
   7077     VectorTypes.insert(Ty);
   7078   } else if (Ty->isNullPtrType()) {
   7079     HasNullPtrType = true;
   7080   } else if (AllowUserConversions && TyRec) {
   7081     // No conversion functions in incomplete types.
   7082     if (!SemaRef.isCompleteType(Loc, Ty))
   7083       return;
   7084 
   7085     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
   7086     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
   7087       if (isa<UsingShadowDecl>(D))
   7088         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   7089 
   7090       // Skip conversion function templates; they don't tell us anything
   7091       // about which builtin types we can convert to.
   7092       if (isa<FunctionTemplateDecl>(D))
   7093         continue;
   7094 
   7095       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   7096       if (AllowExplicitConversions || !Conv->isExplicit()) {
   7097         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
   7098                               VisibleQuals);
   7099       }
   7100     }
   7101   }
   7102 }
   7103 
   7104 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
   7105 /// the volatile- and non-volatile-qualified assignment operators for the
   7106 /// given type to the candidate set.
   7107 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
   7108                                                    QualType T,
   7109                                                    ArrayRef<Expr *> Args,
   7110                                     OverloadCandidateSet &CandidateSet) {
   7111   QualType ParamTypes[2];
   7112 
   7113   // T& operator=(T&, T)
   7114   ParamTypes[0] = S.Context.getLValueReferenceType(T);
   7115   ParamTypes[1] = T;
   7116   S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7117                         /*IsAssignmentOperator=*/true);
   7118 
   7119   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
   7120     // volatile T& operator=(volatile T&, T)
   7121     ParamTypes[0]
   7122       = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
   7123     ParamTypes[1] = T;
   7124     S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7125                           /*IsAssignmentOperator=*/true);
   7126   }
   7127 }
   7128 
   7129 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
   7130 /// if any, found in visible type conversion functions found in ArgExpr's type.
   7131 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
   7132     Qualifiers VRQuals;
   7133     const RecordType *TyRec;
   7134     if (const MemberPointerType *RHSMPType =
   7135         ArgExpr->getType()->getAs<MemberPointerType>())
   7136       TyRec = RHSMPType->getClass()->getAs<RecordType>();
   7137     else
   7138       TyRec = ArgExpr->getType()->getAs<RecordType>();
   7139     if (!TyRec) {
   7140       // Just to be safe, assume the worst case.
   7141       VRQuals.addVolatile();
   7142       VRQuals.addRestrict();
   7143       return VRQuals;
   7144     }
   7145 
   7146     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
   7147     if (!ClassDecl->hasDefinition())
   7148       return VRQuals;
   7149 
   7150     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
   7151       if (isa<UsingShadowDecl>(D))
   7152         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   7153       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
   7154         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
   7155         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
   7156           CanTy = ResTypeRef->getPointeeType();
   7157         // Need to go down the pointer/mempointer chain and add qualifiers
   7158         // as see them.
   7159         bool done = false;
   7160         while (!done) {
   7161           if (CanTy.isRestrictQualified())
   7162             VRQuals.addRestrict();
   7163           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
   7164             CanTy = ResTypePtr->getPointeeType();
   7165           else if (const MemberPointerType *ResTypeMPtr =
   7166                 CanTy->getAs<MemberPointerType>())
   7167             CanTy = ResTypeMPtr->getPointeeType();
   7168           else
   7169             done = true;
   7170           if (CanTy.isVolatileQualified())
   7171             VRQuals.addVolatile();
   7172           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
   7173             return VRQuals;
   7174         }
   7175       }
   7176     }
   7177     return VRQuals;
   7178 }
   7179 
   7180 namespace {
   7181 
   7182 /// \brief Helper class to manage the addition of builtin operator overload
   7183 /// candidates. It provides shared state and utility methods used throughout
   7184 /// the process, as well as a helper method to add each group of builtin
   7185 /// operator overloads from the standard to a candidate set.
   7186 class BuiltinOperatorOverloadBuilder {
   7187   // Common instance state available to all overload candidate addition methods.
   7188   Sema &S;
   7189   ArrayRef<Expr *> Args;
   7190   Qualifiers VisibleTypeConversionsQuals;
   7191   bool HasArithmeticOrEnumeralCandidateType;
   7192   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
   7193   OverloadCandidateSet &CandidateSet;
   7194 
   7195   // Define some constants used to index and iterate over the arithemetic types
   7196   // provided via the getArithmeticType() method below.
   7197   // The "promoted arithmetic types" are the arithmetic
   7198   // types are that preserved by promotion (C++ [over.built]p2).
   7199   static const unsigned FirstIntegralType = 4;
   7200   static const unsigned LastIntegralType = 21;
   7201   static const unsigned FirstPromotedIntegralType = 4,
   7202                         LastPromotedIntegralType = 12;
   7203   static const unsigned FirstPromotedArithmeticType = 0,
   7204                         LastPromotedArithmeticType = 12;
   7205   static const unsigned NumArithmeticTypes = 21;
   7206 
   7207   /// \brief Get the canonical type for a given arithmetic type index.
   7208   CanQualType getArithmeticType(unsigned index) {
   7209     assert(index < NumArithmeticTypes);
   7210     static CanQualType ASTContext::* const
   7211       ArithmeticTypes[NumArithmeticTypes] = {
   7212       // Start of promoted types.
   7213       &ASTContext::FloatTy,
   7214       &ASTContext::DoubleTy,
   7215       &ASTContext::LongDoubleTy,
   7216       &ASTContext::Float128Ty,
   7217 
   7218       // Start of integral types.
   7219       &ASTContext::IntTy,
   7220       &ASTContext::LongTy,
   7221       &ASTContext::LongLongTy,
   7222       &ASTContext::Int128Ty,
   7223       &ASTContext::UnsignedIntTy,
   7224       &ASTContext::UnsignedLongTy,
   7225       &ASTContext::UnsignedLongLongTy,
   7226       &ASTContext::UnsignedInt128Ty,
   7227       // End of promoted types.
   7228 
   7229       &ASTContext::BoolTy,
   7230       &ASTContext::CharTy,
   7231       &ASTContext::WCharTy,
   7232       &ASTContext::Char16Ty,
   7233       &ASTContext::Char32Ty,
   7234       &ASTContext::SignedCharTy,
   7235       &ASTContext::ShortTy,
   7236       &ASTContext::UnsignedCharTy,
   7237       &ASTContext::UnsignedShortTy,
   7238       // End of integral types.
   7239       // FIXME: What about complex? What about half?
   7240     };
   7241     return S.Context.*ArithmeticTypes[index];
   7242   }
   7243 
   7244   /// \brief Gets the canonical type resulting from the usual arithemetic
   7245   /// converions for the given arithmetic types.
   7246   CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
   7247     // Accelerator table for performing the usual arithmetic conversions.
   7248     // The rules are basically:
   7249     //   - if either is floating-point, use the wider floating-point
   7250     //   - if same signedness, use the higher rank
   7251     //   - if same size, use unsigned of the higher rank
   7252     //   - use the larger type
   7253     // These rules, together with the axiom that higher ranks are
   7254     // never smaller, are sufficient to precompute all of these results
   7255     // *except* when dealing with signed types of higher rank.
   7256     // (we could precompute SLL x UI for all known platforms, but it's
   7257     // better not to make any assumptions).
   7258     // We assume that int128 has a higher rank than long long on all platforms.
   7259     enum PromotedType : int8_t {
   7260             Dep=-1,
   7261             Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
   7262     };
   7263     static const PromotedType ConversionsTable[LastPromotedArithmeticType]
   7264                                         [LastPromotedArithmeticType] = {
   7265 /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
   7266 /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
   7267 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
   7268 /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
   7269 /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
   7270 /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
   7271 /*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
   7272 /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
   7273 /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
   7274 /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
   7275 /*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
   7276     };
   7277 
   7278     assert(L < LastPromotedArithmeticType);
   7279     assert(R < LastPromotedArithmeticType);
   7280     int Idx = ConversionsTable[L][R];
   7281 
   7282     // Fast path: the table gives us a concrete answer.
   7283     if (Idx != Dep) return getArithmeticType(Idx);
   7284 
   7285     // Slow path: we need to compare widths.
   7286     // An invariant is that the signed type has higher rank.
   7287     CanQualType LT = getArithmeticType(L),
   7288                 RT = getArithmeticType(R);
   7289     unsigned LW = S.Context.getIntWidth(LT),
   7290              RW = S.Context.getIntWidth(RT);
   7291 
   7292     // If they're different widths, use the signed type.
   7293     if (LW > RW) return LT;
   7294     else if (LW < RW) return RT;
   7295 
   7296     // Otherwise, use the unsigned type of the signed type's rank.
   7297     if (L == SL || R == SL) return S.Context.UnsignedLongTy;
   7298     assert(L == SLL || R == SLL);
   7299     return S.Context.UnsignedLongLongTy;
   7300   }
   7301 
   7302   /// \brief Helper method to factor out the common pattern of adding overloads
   7303   /// for '++' and '--' builtin operators.
   7304   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
   7305                                            bool HasVolatile,
   7306                                            bool HasRestrict) {
   7307     QualType ParamTypes[2] = {
   7308       S.Context.getLValueReferenceType(CandidateTy),
   7309       S.Context.IntTy
   7310     };
   7311 
   7312     // Non-volatile version.
   7313     if (Args.size() == 1)
   7314       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7315     else
   7316       S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7317 
   7318     // Use a heuristic to reduce number of builtin candidates in the set:
   7319     // add volatile version only if there are conversions to a volatile type.
   7320     if (HasVolatile) {
   7321       ParamTypes[0] =
   7322         S.Context.getLValueReferenceType(
   7323           S.Context.getVolatileType(CandidateTy));
   7324       if (Args.size() == 1)
   7325         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7326       else
   7327         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7328     }
   7329 
   7330     // Add restrict version only if there are conversions to a restrict type
   7331     // and our candidate type is a non-restrict-qualified pointer.
   7332     if (HasRestrict && CandidateTy->isAnyPointerType() &&
   7333         !CandidateTy.isRestrictQualified()) {
   7334       ParamTypes[0]
   7335         = S.Context.getLValueReferenceType(
   7336             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
   7337       if (Args.size() == 1)
   7338         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7339       else
   7340         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7341 
   7342       if (HasVolatile) {
   7343         ParamTypes[0]
   7344           = S.Context.getLValueReferenceType(
   7345               S.Context.getCVRQualifiedType(CandidateTy,
   7346                                             (Qualifiers::Volatile |
   7347                                              Qualifiers::Restrict)));
   7348         if (Args.size() == 1)
   7349           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7350         else
   7351           S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7352       }
   7353     }
   7354 
   7355   }
   7356 
   7357 public:
   7358   BuiltinOperatorOverloadBuilder(
   7359     Sema &S, ArrayRef<Expr *> Args,
   7360     Qualifiers VisibleTypeConversionsQuals,
   7361     bool HasArithmeticOrEnumeralCandidateType,
   7362     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
   7363     OverloadCandidateSet &CandidateSet)
   7364     : S(S), Args(Args),
   7365       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
   7366       HasArithmeticOrEnumeralCandidateType(
   7367         HasArithmeticOrEnumeralCandidateType),
   7368       CandidateTypes(CandidateTypes),
   7369       CandidateSet(CandidateSet) {
   7370     // Validate some of our static helper constants in debug builds.
   7371     assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
   7372            "Invalid first promoted integral type");
   7373     assert(getArithmeticType(LastPromotedIntegralType - 1)
   7374              == S.Context.UnsignedInt128Ty &&
   7375            "Invalid last promoted integral type");
   7376     assert(getArithmeticType(FirstPromotedArithmeticType)
   7377              == S.Context.FloatTy &&
   7378            "Invalid first promoted arithmetic type");
   7379     assert(getArithmeticType(LastPromotedArithmeticType - 1)
   7380              == S.Context.UnsignedInt128Ty &&
   7381            "Invalid last promoted arithmetic type");
   7382   }
   7383 
   7384   // C++ [over.built]p3:
   7385   //
   7386   //   For every pair (T, VQ), where T is an arithmetic type, and VQ
   7387   //   is either volatile or empty, there exist candidate operator
   7388   //   functions of the form
   7389   //
   7390   //       VQ T&      operator++(VQ T&);
   7391   //       T          operator++(VQ T&, int);
   7392   //
   7393   // C++ [over.built]p4:
   7394   //
   7395   //   For every pair (T, VQ), where T is an arithmetic type other
   7396   //   than bool, and VQ is either volatile or empty, there exist
   7397   //   candidate operator functions of the form
   7398   //
   7399   //       VQ T&      operator--(VQ T&);
   7400   //       T          operator--(VQ T&, int);
   7401   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
   7402     if (!HasArithmeticOrEnumeralCandidateType)
   7403       return;
   7404 
   7405     for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
   7406          Arith < NumArithmeticTypes; ++Arith) {
   7407       addPlusPlusMinusMinusStyleOverloads(
   7408         getArithmeticType(Arith),
   7409         VisibleTypeConversionsQuals.hasVolatile(),
   7410         VisibleTypeConversionsQuals.hasRestrict());
   7411     }
   7412   }
   7413 
   7414   // C++ [over.built]p5:
   7415   //
   7416   //   For every pair (T, VQ), where T is a cv-qualified or
   7417   //   cv-unqualified object type, and VQ is either volatile or
   7418   //   empty, there exist candidate operator functions of the form
   7419   //
   7420   //       T*VQ&      operator++(T*VQ&);
   7421   //       T*VQ&      operator--(T*VQ&);
   7422   //       T*         operator++(T*VQ&, int);
   7423   //       T*         operator--(T*VQ&, int);
   7424   void addPlusPlusMinusMinusPointerOverloads() {
   7425     for (BuiltinCandidateTypeSet::iterator
   7426               Ptr = CandidateTypes[0].pointer_begin(),
   7427            PtrEnd = CandidateTypes[0].pointer_end();
   7428          Ptr != PtrEnd; ++Ptr) {
   7429       // Skip pointer types that aren't pointers to object types.
   7430       if (!(*Ptr)->getPointeeType()->isObjectType())
   7431         continue;
   7432 
   7433       addPlusPlusMinusMinusStyleOverloads(*Ptr,
   7434         (!(*Ptr).isVolatileQualified() &&
   7435          VisibleTypeConversionsQuals.hasVolatile()),
   7436         (!(*Ptr).isRestrictQualified() &&
   7437          VisibleTypeConversionsQuals.hasRestrict()));
   7438     }
   7439   }
   7440 
   7441   // C++ [over.built]p6:
   7442   //   For every cv-qualified or cv-unqualified object type T, there
   7443   //   exist candidate operator functions of the form
   7444   //
   7445   //       T&         operator*(T*);
   7446   //
   7447   // C++ [over.built]p7:
   7448   //   For every function type T that does not have cv-qualifiers or a
   7449   //   ref-qualifier, there exist candidate operator functions of the form
   7450   //       T&         operator*(T*);
   7451   void addUnaryStarPointerOverloads() {
   7452     for (BuiltinCandidateTypeSet::iterator
   7453               Ptr = CandidateTypes[0].pointer_begin(),
   7454            PtrEnd = CandidateTypes[0].pointer_end();
   7455          Ptr != PtrEnd; ++Ptr) {
   7456       QualType ParamTy = *Ptr;
   7457       QualType PointeeTy = ParamTy->getPointeeType();
   7458       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
   7459         continue;
   7460 
   7461       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
   7462         if (Proto->getTypeQuals() || Proto->getRefQualifier())
   7463           continue;
   7464 
   7465       S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
   7466                             &ParamTy, Args, CandidateSet);
   7467     }
   7468   }
   7469 
   7470   // C++ [over.built]p9:
   7471   //  For every promoted arithmetic type T, there exist candidate
   7472   //  operator functions of the form
   7473   //
   7474   //       T         operator+(T);
   7475   //       T         operator-(T);
   7476   void addUnaryPlusOrMinusArithmeticOverloads() {
   7477     if (!HasArithmeticOrEnumeralCandidateType)
   7478       return;
   7479 
   7480     for (unsigned Arith = FirstPromotedArithmeticType;
   7481          Arith < LastPromotedArithmeticType; ++Arith) {
   7482       QualType ArithTy = getArithmeticType(Arith);
   7483       S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
   7484     }
   7485 
   7486     // Extension: We also add these operators for vector types.
   7487     for (BuiltinCandidateTypeSet::iterator
   7488               Vec = CandidateTypes[0].vector_begin(),
   7489            VecEnd = CandidateTypes[0].vector_end();
   7490          Vec != VecEnd; ++Vec) {
   7491       QualType VecTy = *Vec;
   7492       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
   7493     }
   7494   }
   7495 
   7496   // C++ [over.built]p8:
   7497   //   For every type T, there exist candidate operator functions of
   7498   //   the form
   7499   //
   7500   //       T*         operator+(T*);
   7501   void addUnaryPlusPointerOverloads() {
   7502     for (BuiltinCandidateTypeSet::iterator
   7503               Ptr = CandidateTypes[0].pointer_begin(),
   7504            PtrEnd = CandidateTypes[0].pointer_end();
   7505          Ptr != PtrEnd; ++Ptr) {
   7506       QualType ParamTy = *Ptr;
   7507       S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
   7508     }
   7509   }
   7510 
   7511   // C++ [over.built]p10:
   7512   //   For every promoted integral type T, there exist candidate
   7513   //   operator functions of the form
   7514   //
   7515   //        T         operator~(T);
   7516   void addUnaryTildePromotedIntegralOverloads() {
   7517     if (!HasArithmeticOrEnumeralCandidateType)
   7518       return;
   7519 
   7520     for (unsigned Int = FirstPromotedIntegralType;
   7521          Int < LastPromotedIntegralType; ++Int) {
   7522       QualType IntTy = getArithmeticType(Int);
   7523       S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
   7524     }
   7525 
   7526     // Extension: We also add this operator for vector types.
   7527     for (BuiltinCandidateTypeSet::iterator
   7528               Vec = CandidateTypes[0].vector_begin(),
   7529            VecEnd = CandidateTypes[0].vector_end();
   7530          Vec != VecEnd; ++Vec) {
   7531       QualType VecTy = *Vec;
   7532       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
   7533     }
   7534   }
   7535 
   7536   // C++ [over.match.oper]p16:
   7537   //   For every pointer to member type T, there exist candidate operator
   7538   //   functions of the form
   7539   //
   7540   //        bool operator==(T,T);
   7541   //        bool operator!=(T,T);
   7542   void addEqualEqualOrNotEqualMemberPointerOverloads() {
   7543     /// Set of (canonical) types that we've already handled.
   7544     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7545 
   7546     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7547       for (BuiltinCandidateTypeSet::iterator
   7548                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   7549              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   7550            MemPtr != MemPtrEnd;
   7551            ++MemPtr) {
   7552         // Don't add the same builtin candidate twice.
   7553         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
   7554           continue;
   7555 
   7556         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
   7557         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7558       }
   7559     }
   7560   }
   7561 
   7562   // C++ [over.built]p15:
   7563   //
   7564   //   For every T, where T is an enumeration type, a pointer type, or
   7565   //   std::nullptr_t, there exist candidate operator functions of the form
   7566   //
   7567   //        bool       operator<(T, T);
   7568   //        bool       operator>(T, T);
   7569   //        bool       operator<=(T, T);
   7570   //        bool       operator>=(T, T);
   7571   //        bool       operator==(T, T);
   7572   //        bool       operator!=(T, T);
   7573   void addRelationalPointerOrEnumeralOverloads() {
   7574     // C++ [over.match.oper]p3:
   7575     //   [...]the built-in candidates include all of the candidate operator
   7576     //   functions defined in 13.6 that, compared to the given operator, [...]
   7577     //   do not have the same parameter-type-list as any non-template non-member
   7578     //   candidate.
   7579     //
   7580     // Note that in practice, this only affects enumeration types because there
   7581     // aren't any built-in candidates of record type, and a user-defined operator
   7582     // must have an operand of record or enumeration type. Also, the only other
   7583     // overloaded operator with enumeration arguments, operator=,
   7584     // cannot be overloaded for enumeration types, so this is the only place
   7585     // where we must suppress candidates like this.
   7586     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
   7587       UserDefinedBinaryOperators;
   7588 
   7589     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7590       if (CandidateTypes[ArgIdx].enumeration_begin() !=
   7591           CandidateTypes[ArgIdx].enumeration_end()) {
   7592         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
   7593                                          CEnd = CandidateSet.end();
   7594              C != CEnd; ++C) {
   7595           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
   7596             continue;
   7597 
   7598           if (C->Function->isFunctionTemplateSpecialization())
   7599             continue;
   7600 
   7601           QualType FirstParamType =
   7602             C->Function->getParamDecl(0)->getType().getUnqualifiedType();
   7603           QualType SecondParamType =
   7604             C->Function->getParamDecl(1)->getType().getUnqualifiedType();
   7605 
   7606           // Skip if either parameter isn't of enumeral type.
   7607           if (!FirstParamType->isEnumeralType() ||
   7608               !SecondParamType->isEnumeralType())
   7609             continue;
   7610 
   7611           // Add this operator to the set of known user-defined operators.
   7612           UserDefinedBinaryOperators.insert(
   7613             std::make_pair(S.Context.getCanonicalType(FirstParamType),
   7614                            S.Context.getCanonicalType(SecondParamType)));
   7615         }
   7616       }
   7617     }
   7618 
   7619     /// Set of (canonical) types that we've already handled.
   7620     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7621 
   7622     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7623       for (BuiltinCandidateTypeSet::iterator
   7624                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
   7625              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
   7626            Ptr != PtrEnd; ++Ptr) {
   7627         // Don't add the same builtin candidate twice.
   7628         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   7629           continue;
   7630 
   7631         QualType ParamTypes[2] = { *Ptr, *Ptr };
   7632         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7633       }
   7634       for (BuiltinCandidateTypeSet::iterator
   7635                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   7636              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   7637            Enum != EnumEnd; ++Enum) {
   7638         CanQualType CanonType = S.Context.getCanonicalType(*Enum);
   7639 
   7640         // Don't add the same builtin candidate twice, or if a user defined
   7641         // candidate exists.
   7642         if (!AddedTypes.insert(CanonType).second ||
   7643             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
   7644                                                             CanonType)))
   7645           continue;
   7646 
   7647         QualType ParamTypes[2] = { *Enum, *Enum };
   7648         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7649       }
   7650 
   7651       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
   7652         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
   7653         if (AddedTypes.insert(NullPtrTy).second &&
   7654             !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
   7655                                                              NullPtrTy))) {
   7656           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
   7657           S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
   7658                                 CandidateSet);
   7659         }
   7660       }
   7661     }
   7662   }
   7663 
   7664   // C++ [over.built]p13:
   7665   //
   7666   //   For every cv-qualified or cv-unqualified object type T
   7667   //   there exist candidate operator functions of the form
   7668   //
   7669   //      T*         operator+(T*, ptrdiff_t);
   7670   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
   7671   //      T*         operator-(T*, ptrdiff_t);
   7672   //      T*         operator+(ptrdiff_t, T*);
   7673   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
   7674   //
   7675   // C++ [over.built]p14:
   7676   //
   7677   //   For every T, where T is a pointer to object type, there
   7678   //   exist candidate operator functions of the form
   7679   //
   7680   //      ptrdiff_t  operator-(T, T);
   7681   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
   7682     /// Set of (canonical) types that we've already handled.
   7683     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7684 
   7685     for (int Arg = 0; Arg < 2; ++Arg) {
   7686       QualType AsymmetricParamTypes[2] = {
   7687         S.Context.getPointerDiffType(),
   7688         S.Context.getPointerDiffType(),
   7689       };
   7690       for (BuiltinCandidateTypeSet::iterator
   7691                 Ptr = CandidateTypes[Arg].pointer_begin(),
   7692              PtrEnd = CandidateTypes[Arg].pointer_end();
   7693            Ptr != PtrEnd; ++Ptr) {
   7694         QualType PointeeTy = (*Ptr)->getPointeeType();
   7695         if (!PointeeTy->isObjectType())
   7696           continue;
   7697 
   7698         AsymmetricParamTypes[Arg] = *Ptr;
   7699         if (Arg == 0 || Op == OO_Plus) {
   7700           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
   7701           // T* operator+(ptrdiff_t, T*);
   7702           S.AddBuiltinCandidate(*Ptr, AsymmetricParamTypes, Args, CandidateSet);
   7703         }
   7704         if (Op == OO_Minus) {
   7705           // ptrdiff_t operator-(T, T);
   7706           if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   7707             continue;
   7708 
   7709           QualType ParamTypes[2] = { *Ptr, *Ptr };
   7710           S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
   7711                                 Args, CandidateSet);
   7712         }
   7713       }
   7714     }
   7715   }
   7716 
   7717   // C++ [over.built]p12:
   7718   //
   7719   //   For every pair of promoted arithmetic types L and R, there
   7720   //   exist candidate operator functions of the form
   7721   //
   7722   //        LR         operator*(L, R);
   7723   //        LR         operator/(L, R);
   7724   //        LR         operator+(L, R);
   7725   //        LR         operator-(L, R);
   7726   //        bool       operator<(L, R);
   7727   //        bool       operator>(L, R);
   7728   //        bool       operator<=(L, R);
   7729   //        bool       operator>=(L, R);
   7730   //        bool       operator==(L, R);
   7731   //        bool       operator!=(L, R);
   7732   //
   7733   //   where LR is the result of the usual arithmetic conversions
   7734   //   between types L and R.
   7735   //
   7736   // C++ [over.built]p24:
   7737   //
   7738   //   For every pair of promoted arithmetic types L and R, there exist
   7739   //   candidate operator functions of the form
   7740   //
   7741   //        LR       operator?(bool, L, R);
   7742   //
   7743   //   where LR is the result of the usual arithmetic conversions
   7744   //   between types L and R.
   7745   // Our candidates ignore the first parameter.
   7746   void addGenericBinaryArithmeticOverloads(bool isComparison) {
   7747     if (!HasArithmeticOrEnumeralCandidateType)
   7748       return;
   7749 
   7750     for (unsigned Left = FirstPromotedArithmeticType;
   7751          Left < LastPromotedArithmeticType; ++Left) {
   7752       for (unsigned Right = FirstPromotedArithmeticType;
   7753            Right < LastPromotedArithmeticType; ++Right) {
   7754         QualType LandR[2] = { getArithmeticType(Left),
   7755                               getArithmeticType(Right) };
   7756         QualType Result =
   7757           isComparison ? S.Context.BoolTy
   7758                        : getUsualArithmeticConversions(Left, Right);
   7759         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7760       }
   7761     }
   7762 
   7763     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
   7764     // conditional operator for vector types.
   7765     for (BuiltinCandidateTypeSet::iterator
   7766               Vec1 = CandidateTypes[0].vector_begin(),
   7767            Vec1End = CandidateTypes[0].vector_end();
   7768          Vec1 != Vec1End; ++Vec1) {
   7769       for (BuiltinCandidateTypeSet::iterator
   7770                 Vec2 = CandidateTypes[1].vector_begin(),
   7771              Vec2End = CandidateTypes[1].vector_end();
   7772            Vec2 != Vec2End; ++Vec2) {
   7773         QualType LandR[2] = { *Vec1, *Vec2 };
   7774         QualType Result = S.Context.BoolTy;
   7775         if (!isComparison) {
   7776           if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
   7777             Result = *Vec1;
   7778           else
   7779             Result = *Vec2;
   7780         }
   7781 
   7782         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7783       }
   7784     }
   7785   }
   7786 
   7787   // C++ [over.built]p17:
   7788   //
   7789   //   For every pair of promoted integral types L and R, there
   7790   //   exist candidate operator functions of the form
   7791   //
   7792   //      LR         operator%(L, R);
   7793   //      LR         operator&(L, R);
   7794   //      LR         operator^(L, R);
   7795   //      LR         operator|(L, R);
   7796   //      L          operator<<(L, R);
   7797   //      L          operator>>(L, R);
   7798   //
   7799   //   where LR is the result of the usual arithmetic conversions
   7800   //   between types L and R.
   7801   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
   7802     if (!HasArithmeticOrEnumeralCandidateType)
   7803       return;
   7804 
   7805     for (unsigned Left = FirstPromotedIntegralType;
   7806          Left < LastPromotedIntegralType; ++Left) {
   7807       for (unsigned Right = FirstPromotedIntegralType;
   7808            Right < LastPromotedIntegralType; ++Right) {
   7809         QualType LandR[2] = { getArithmeticType(Left),
   7810                               getArithmeticType(Right) };
   7811         QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
   7812             ? LandR[0]
   7813             : getUsualArithmeticConversions(Left, Right);
   7814         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7815       }
   7816     }
   7817   }
   7818 
   7819   // C++ [over.built]p20:
   7820   //
   7821   //   For every pair (T, VQ), where T is an enumeration or
   7822   //   pointer to member type and VQ is either volatile or
   7823   //   empty, there exist candidate operator functions of the form
   7824   //
   7825   //        VQ T&      operator=(VQ T&, T);
   7826   void addAssignmentMemberPointerOrEnumeralOverloads() {
   7827     /// Set of (canonical) types that we've already handled.
   7828     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7829 
   7830     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
   7831       for (BuiltinCandidateTypeSet::iterator
   7832                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   7833              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   7834            Enum != EnumEnd; ++Enum) {
   7835         if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
   7836           continue;
   7837 
   7838         AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
   7839       }
   7840 
   7841       for (BuiltinCandidateTypeSet::iterator
   7842                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   7843              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   7844            MemPtr != MemPtrEnd; ++MemPtr) {
   7845         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
   7846           continue;
   7847 
   7848         AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
   7849       }
   7850     }
   7851   }
   7852 
   7853   // C++ [over.built]p19:
   7854   //
   7855   //   For every pair (T, VQ), where T is any type and VQ is either
   7856   //   volatile or empty, there exist candidate operator functions
   7857   //   of the form
   7858   //
   7859   //        T*VQ&      operator=(T*VQ&, T*);
   7860   //
   7861   // C++ [over.built]p21:
   7862   //
   7863   //   For every pair (T, VQ), where T is a cv-qualified or
   7864   //   cv-unqualified object type and VQ is either volatile or
   7865   //   empty, there exist candidate operator functions of the form
   7866   //
   7867   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
   7868   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
   7869   void addAssignmentPointerOverloads(bool isEqualOp) {
   7870     /// Set of (canonical) types that we've already handled.
   7871     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7872 
   7873     for (BuiltinCandidateTypeSet::iterator
   7874               Ptr = CandidateTypes[0].pointer_begin(),
   7875            PtrEnd = CandidateTypes[0].pointer_end();
   7876          Ptr != PtrEnd; ++Ptr) {
   7877       // If this is operator=, keep track of the builtin candidates we added.
   7878       if (isEqualOp)
   7879         AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
   7880       else if (!(*Ptr)->getPointeeType()->isObjectType())
   7881         continue;
   7882 
   7883       // non-volatile version
   7884       QualType ParamTypes[2] = {
   7885         S.Context.getLValueReferenceType(*Ptr),
   7886         isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
   7887       };
   7888       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7889                             /*IsAssigmentOperator=*/ isEqualOp);
   7890 
   7891       bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
   7892                           VisibleTypeConversionsQuals.hasVolatile();
   7893       if (NeedVolatile) {
   7894         // volatile version
   7895         ParamTypes[0] =
   7896           S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
   7897         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7898                               /*IsAssigmentOperator=*/isEqualOp);
   7899       }
   7900 
   7901       if (!(*Ptr).isRestrictQualified() &&
   7902           VisibleTypeConversionsQuals.hasRestrict()) {
   7903         // restrict version
   7904         ParamTypes[0]
   7905           = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
   7906         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7907                               /*IsAssigmentOperator=*/isEqualOp);
   7908 
   7909         if (NeedVolatile) {
   7910           // volatile restrict version
   7911           ParamTypes[0]
   7912             = S.Context.getLValueReferenceType(
   7913                 S.Context.getCVRQualifiedType(*Ptr,
   7914                                               (Qualifiers::Volatile |
   7915                                                Qualifiers::Restrict)));
   7916           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7917                                 /*IsAssigmentOperator=*/isEqualOp);
   7918         }
   7919       }
   7920     }
   7921 
   7922     if (isEqualOp) {
   7923       for (BuiltinCandidateTypeSet::iterator
   7924                 Ptr = CandidateTypes[1].pointer_begin(),
   7925              PtrEnd = CandidateTypes[1].pointer_end();
   7926            Ptr != PtrEnd; ++Ptr) {
   7927         // Make sure we don't add the same candidate twice.
   7928         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   7929           continue;
   7930 
   7931         QualType ParamTypes[2] = {
   7932           S.Context.getLValueReferenceType(*Ptr),
   7933           *Ptr,
   7934         };
   7935 
   7936         // non-volatile version
   7937         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7938                               /*IsAssigmentOperator=*/true);
   7939 
   7940         bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
   7941                            VisibleTypeConversionsQuals.hasVolatile();
   7942         if (NeedVolatile) {
   7943           // volatile version
   7944           ParamTypes[0] =
   7945             S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
   7946           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7947                                 /*IsAssigmentOperator=*/true);
   7948         }
   7949 
   7950         if (!(*Ptr).isRestrictQualified() &&
   7951             VisibleTypeConversionsQuals.hasRestrict()) {
   7952           // restrict version
   7953           ParamTypes[0]
   7954             = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
   7955           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7956                                 /*IsAssigmentOperator=*/true);
   7957 
   7958           if (NeedVolatile) {
   7959             // volatile restrict version
   7960             ParamTypes[0]
   7961               = S.Context.getLValueReferenceType(
   7962                   S.Context.getCVRQualifiedType(*Ptr,
   7963                                                 (Qualifiers::Volatile |
   7964                                                  Qualifiers::Restrict)));
   7965             S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7966                                   /*IsAssigmentOperator=*/true);
   7967           }
   7968         }
   7969       }
   7970     }
   7971   }
   7972 
   7973   // C++ [over.built]p18:
   7974   //
   7975   //   For every triple (L, VQ, R), where L is an arithmetic type,
   7976   //   VQ is either volatile or empty, and R is a promoted
   7977   //   arithmetic type, there exist candidate operator functions of
   7978   //   the form
   7979   //
   7980   //        VQ L&      operator=(VQ L&, R);
   7981   //        VQ L&      operator*=(VQ L&, R);
   7982   //        VQ L&      operator/=(VQ L&, R);
   7983   //        VQ L&      operator+=(VQ L&, R);
   7984   //        VQ L&      operator-=(VQ L&, R);
   7985   void addAssignmentArithmeticOverloads(bool isEqualOp) {
   7986     if (!HasArithmeticOrEnumeralCandidateType)
   7987       return;
   7988 
   7989     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
   7990       for (unsigned Right = FirstPromotedArithmeticType;
   7991            Right < LastPromotedArithmeticType; ++Right) {
   7992         QualType ParamTypes[2];
   7993         ParamTypes[1] = getArithmeticType(Right);
   7994 
   7995         // Add this built-in operator as a candidate (VQ is empty).
   7996         ParamTypes[0] =
   7997           S.Context.getLValueReferenceType(getArithmeticType(Left));
   7998         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7999                               /*IsAssigmentOperator=*/isEqualOp);
   8000 
   8001         // Add this built-in operator as a candidate (VQ is 'volatile').
   8002         if (VisibleTypeConversionsQuals.hasVolatile()) {
   8003           ParamTypes[0] =
   8004             S.Context.getVolatileType(getArithmeticType(Left));
   8005           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   8006           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   8007                                 /*IsAssigmentOperator=*/isEqualOp);
   8008         }
   8009       }
   8010     }
   8011 
   8012     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
   8013     for (BuiltinCandidateTypeSet::iterator
   8014               Vec1 = CandidateTypes[0].vector_begin(),
   8015            Vec1End = CandidateTypes[0].vector_end();
   8016          Vec1 != Vec1End; ++Vec1) {
   8017       for (BuiltinCandidateTypeSet::iterator
   8018                 Vec2 = CandidateTypes[1].vector_begin(),
   8019              Vec2End = CandidateTypes[1].vector_end();
   8020            Vec2 != Vec2End; ++Vec2) {
   8021         QualType ParamTypes[2];
   8022         ParamTypes[1] = *Vec2;
   8023         // Add this built-in operator as a candidate (VQ is empty).
   8024         ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
   8025         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   8026                               /*IsAssigmentOperator=*/isEqualOp);
   8027 
   8028         // Add this built-in operator as a candidate (VQ is 'volatile').
   8029         if (VisibleTypeConversionsQuals.hasVolatile()) {
   8030           ParamTypes[0] = S.Context.getVolatileType(*Vec1);
   8031           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   8032           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   8033                                 /*IsAssigmentOperator=*/isEqualOp);
   8034         }
   8035       }
   8036     }
   8037   }
   8038 
   8039   // C++ [over.built]p22:
   8040   //
   8041   //   For every triple (L, VQ, R), where L is an integral type, VQ
   8042   //   is either volatile or empty, and R is a promoted integral
   8043   //   type, there exist candidate operator functions of the form
   8044   //
   8045   //        VQ L&       operator%=(VQ L&, R);
   8046   //        VQ L&       operator<<=(VQ L&, R);
   8047   //        VQ L&       operator>>=(VQ L&, R);
   8048   //        VQ L&       operator&=(VQ L&, R);
   8049   //        VQ L&       operator^=(VQ L&, R);
   8050   //        VQ L&       operator|=(VQ L&, R);
   8051   void addAssignmentIntegralOverloads() {
   8052     if (!HasArithmeticOrEnumeralCandidateType)
   8053       return;
   8054 
   8055     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
   8056       for (unsigned Right = FirstPromotedIntegralType;
   8057            Right < LastPromotedIntegralType; ++Right) {
   8058         QualType ParamTypes[2];
   8059         ParamTypes[1] = getArithmeticType(Right);
   8060 
   8061         // Add this built-in operator as a candidate (VQ is empty).
   8062         ParamTypes[0] =
   8063           S.Context.getLValueReferenceType(getArithmeticType(Left));
   8064         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   8065         if (VisibleTypeConversionsQuals.hasVolatile()) {
   8066           // Add this built-in operator as a candidate (VQ is 'volatile').
   8067           ParamTypes[0] = getArithmeticType(Left);
   8068           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
   8069           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   8070           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   8071         }
   8072       }
   8073     }
   8074   }
   8075 
   8076   // C++ [over.operator]p23:
   8077   //
   8078   //   There also exist candidate operator functions of the form
   8079   //
   8080   //        bool        operator!(bool);
   8081   //        bool        operator&&(bool, bool);
   8082   //        bool        operator||(bool, bool);
   8083   void addExclaimOverload() {
   8084     QualType ParamTy = S.Context.BoolTy;
   8085     S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
   8086                           /*IsAssignmentOperator=*/false,
   8087                           /*NumContextualBoolArguments=*/1);
   8088   }
   8089   void addAmpAmpOrPipePipeOverload() {
   8090     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
   8091     S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
   8092                           /*IsAssignmentOperator=*/false,
   8093                           /*NumContextualBoolArguments=*/2);
   8094   }
   8095 
   8096   // C++ [over.built]p13:
   8097   //
   8098   //   For every cv-qualified or cv-unqualified object type T there
   8099   //   exist candidate operator functions of the form
   8100   //
   8101   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
   8102   //        T&         operator[](T*, ptrdiff_t);
   8103   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
   8104   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
   8105   //        T&         operator[](ptrdiff_t, T*);
   8106   void addSubscriptOverloads() {
   8107     for (BuiltinCandidateTypeSet::iterator
   8108               Ptr = CandidateTypes[0].pointer_begin(),
   8109            PtrEnd = CandidateTypes[0].pointer_end();
   8110          Ptr != PtrEnd; ++Ptr) {
   8111       QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
   8112       QualType PointeeType = (*Ptr)->getPointeeType();
   8113       if (!PointeeType->isObjectType())
   8114         continue;
   8115 
   8116       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
   8117 
   8118       // T& operator[](T*, ptrdiff_t)
   8119       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   8120     }
   8121 
   8122     for (BuiltinCandidateTypeSet::iterator
   8123               Ptr = CandidateTypes[1].pointer_begin(),
   8124            PtrEnd = CandidateTypes[1].pointer_end();
   8125          Ptr != PtrEnd; ++Ptr) {
   8126       QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
   8127       QualType PointeeType = (*Ptr)->getPointeeType();
   8128       if (!PointeeType->isObjectType())
   8129         continue;
   8130 
   8131       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
   8132 
   8133       // T& operator[](ptrdiff_t, T*)
   8134       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   8135     }
   8136   }
   8137 
   8138   // C++ [over.built]p11:
   8139   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
   8140   //    C1 is the same type as C2 or is a derived class of C2, T is an object
   8141   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
   8142   //    there exist candidate operator functions of the form
   8143   //
   8144   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
   8145   //
   8146   //    where CV12 is the union of CV1 and CV2.
   8147   void addArrowStarOverloads() {
   8148     for (BuiltinCandidateTypeSet::iterator
   8149              Ptr = CandidateTypes[0].pointer_begin(),
   8150            PtrEnd = CandidateTypes[0].pointer_end();
   8151          Ptr != PtrEnd; ++Ptr) {
   8152       QualType C1Ty = (*Ptr);
   8153       QualType C1;
   8154       QualifierCollector Q1;
   8155       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
   8156       if (!isa<RecordType>(C1))
   8157         continue;
   8158       // heuristic to reduce number of builtin candidates in the set.
   8159       // Add volatile/restrict version only if there are conversions to a
   8160       // volatile/restrict type.
   8161       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
   8162         continue;
   8163       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
   8164         continue;
   8165       for (BuiltinCandidateTypeSet::iterator
   8166                 MemPtr = CandidateTypes[1].member_pointer_begin(),
   8167              MemPtrEnd = CandidateTypes[1].member_pointer_end();
   8168            MemPtr != MemPtrEnd; ++MemPtr) {
   8169         const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
   8170         QualType C2 = QualType(mptr->getClass(), 0);
   8171         C2 = C2.getUnqualifiedType();
   8172         if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
   8173           break;
   8174         QualType ParamTypes[2] = { *Ptr, *MemPtr };
   8175         // build CV12 T&
   8176         QualType T = mptr->getPointeeType();
   8177         if (!VisibleTypeConversionsQuals.hasVolatile() &&
   8178             T.isVolatileQualified())
   8179           continue;
   8180         if (!VisibleTypeConversionsQuals.hasRestrict() &&
   8181             T.isRestrictQualified())
   8182           continue;
   8183         T = Q1.apply(S.Context, T);
   8184         QualType ResultTy = S.Context.getLValueReferenceType(T);
   8185         S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   8186       }
   8187     }
   8188   }
   8189 
   8190   // Note that we don't consider the first argument, since it has been
   8191   // contextually converted to bool long ago. The candidates below are
   8192   // therefore added as binary.
   8193   //
   8194   // C++ [over.built]p25:
   8195   //   For every type T, where T is a pointer, pointer-to-member, or scoped
   8196   //   enumeration type, there exist candidate operator functions of the form
   8197   //
   8198   //        T        operator?(bool, T, T);
   8199   //
   8200   void addConditionalOperatorOverloads() {
   8201     /// Set of (canonical) types that we've already handled.
   8202     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   8203 
   8204     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
   8205       for (BuiltinCandidateTypeSet::iterator
   8206                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
   8207              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
   8208            Ptr != PtrEnd; ++Ptr) {
   8209         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   8210           continue;
   8211 
   8212         QualType ParamTypes[2] = { *Ptr, *Ptr };
   8213         S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
   8214       }
   8215 
   8216       for (BuiltinCandidateTypeSet::iterator
   8217                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   8218              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   8219            MemPtr != MemPtrEnd; ++MemPtr) {
   8220         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
   8221           continue;
   8222 
   8223         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
   8224         S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
   8225       }
   8226 
   8227       if (S.getLangOpts().CPlusPlus11) {
   8228         for (BuiltinCandidateTypeSet::iterator
   8229                   Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   8230                EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   8231              Enum != EnumEnd; ++Enum) {
   8232           if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
   8233             continue;
   8234 
   8235           if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
   8236             continue;
   8237 
   8238           QualType ParamTypes[2] = { *Enum, *Enum };
   8239           S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
   8240         }
   8241       }
   8242     }
   8243   }
   8244 };
   8245 
   8246 } // end anonymous namespace
   8247 
   8248 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
   8249 /// operator overloads to the candidate set (C++ [over.built]), based
   8250 /// on the operator @p Op and the arguments given. For example, if the
   8251 /// operator is a binary '+', this routine might add "int
   8252 /// operator+(int, int)" to cover integer addition.
   8253 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
   8254                                         SourceLocation OpLoc,
   8255                                         ArrayRef<Expr *> Args,
   8256                                         OverloadCandidateSet &CandidateSet) {
   8257   // Find all of the types that the arguments can convert to, but only
   8258   // if the operator we're looking at has built-in operator candidates
   8259   // that make use of these types. Also record whether we encounter non-record
   8260   // candidate types or either arithmetic or enumeral candidate types.
   8261   Qualifiers VisibleTypeConversionsQuals;
   8262   VisibleTypeConversionsQuals.addConst();
   8263   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
   8264     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
   8265 
   8266   bool HasNonRecordCandidateType = false;
   8267   bool HasArithmeticOrEnumeralCandidateType = false;
   8268   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
   8269   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   8270     CandidateTypes.emplace_back(*this);
   8271     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
   8272                                                  OpLoc,
   8273                                                  true,
   8274                                                  (Op == OO_Exclaim ||
   8275                                                   Op == OO_AmpAmp ||
   8276                                                   Op == OO_PipePipe),
   8277                                                  VisibleTypeConversionsQuals);
   8278     HasNonRecordCandidateType = HasNonRecordCandidateType ||
   8279         CandidateTypes[ArgIdx].hasNonRecordTypes();
   8280     HasArithmeticOrEnumeralCandidateType =
   8281         HasArithmeticOrEnumeralCandidateType ||
   8282         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
   8283   }
   8284 
   8285   // Exit early when no non-record types have been added to the candidate set
   8286   // for any of the arguments to the operator.
   8287   //
   8288   // We can't exit early for !, ||, or &&, since there we have always have
   8289   // 'bool' overloads.
   8290   if (!HasNonRecordCandidateType &&
   8291       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
   8292     return;
   8293 
   8294   // Setup an object to manage the common state for building overloads.
   8295   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
   8296                                            VisibleTypeConversionsQuals,
   8297                                            HasArithmeticOrEnumeralCandidateType,
   8298                                            CandidateTypes, CandidateSet);
   8299 
   8300   // Dispatch over the operation to add in only those overloads which apply.
   8301   switch (Op) {
   8302   case OO_None:
   8303   case NUM_OVERLOADED_OPERATORS:
   8304     llvm_unreachable("Expected an overloaded operator");
   8305 
   8306   case OO_New:
   8307   case OO_Delete:
   8308   case OO_Array_New:
   8309   case OO_Array_Delete:
   8310   case OO_Call:
   8311     llvm_unreachable(
   8312                     "Special operators don't use AddBuiltinOperatorCandidates");
   8313 
   8314   case OO_Comma:
   8315   case OO_Arrow:
   8316   case OO_Coawait:
   8317     // C++ [over.match.oper]p3:
   8318     //   -- For the operator ',', the unary operator '&', the
   8319     //      operator '->', or the operator 'co_await', the
   8320     //      built-in candidates set is empty.
   8321     break;
   8322 
   8323   case OO_Plus: // '+' is either unary or binary
   8324     if (Args.size() == 1)
   8325       OpBuilder.addUnaryPlusPointerOverloads();
   8326     // Fall through.
   8327 
   8328   case OO_Minus: // '-' is either unary or binary
   8329     if (Args.size() == 1) {
   8330       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
   8331     } else {
   8332       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
   8333       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8334     }
   8335     break;
   8336 
   8337   case OO_Star: // '*' is either unary or binary
   8338     if (Args.size() == 1)
   8339       OpBuilder.addUnaryStarPointerOverloads();
   8340     else
   8341       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8342     break;
   8343 
   8344   case OO_Slash:
   8345     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8346     break;
   8347 
   8348   case OO_PlusPlus:
   8349   case OO_MinusMinus:
   8350     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
   8351     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
   8352     break;
   8353 
   8354   case OO_EqualEqual:
   8355   case OO_ExclaimEqual:
   8356     OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
   8357     // Fall through.
   8358 
   8359   case OO_Less:
   8360   case OO_Greater:
   8361   case OO_LessEqual:
   8362   case OO_GreaterEqual:
   8363     OpBuilder.addRelationalPointerOrEnumeralOverloads();
   8364     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
   8365     break;
   8366 
   8367   case OO_Percent:
   8368   case OO_Caret:
   8369   case OO_Pipe:
   8370   case OO_LessLess:
   8371   case OO_GreaterGreater:
   8372     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
   8373     break;
   8374 
   8375   case OO_Amp: // '&' is either unary or binary
   8376     if (Args.size() == 1)
   8377       // C++ [over.match.oper]p3:
   8378       //   -- For the operator ',', the unary operator '&', or the
   8379       //      operator '->', the built-in candidates set is empty.
   8380       break;
   8381 
   8382     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
   8383     break;
   8384 
   8385   case OO_Tilde:
   8386     OpBuilder.addUnaryTildePromotedIntegralOverloads();
   8387     break;
   8388 
   8389   case OO_Equal:
   8390     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
   8391     // Fall through.
   8392 
   8393   case OO_PlusEqual:
   8394   case OO_MinusEqual:
   8395     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
   8396     // Fall through.
   8397 
   8398   case OO_StarEqual:
   8399   case OO_SlashEqual:
   8400     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
   8401     break;
   8402 
   8403   case OO_PercentEqual:
   8404   case OO_LessLessEqual:
   8405   case OO_GreaterGreaterEqual:
   8406   case OO_AmpEqual:
   8407   case OO_CaretEqual:
   8408   case OO_PipeEqual:
   8409     OpBuilder.addAssignmentIntegralOverloads();
   8410     break;
   8411 
   8412   case OO_Exclaim:
   8413     OpBuilder.addExclaimOverload();
   8414     break;
   8415 
   8416   case OO_AmpAmp:
   8417   case OO_PipePipe:
   8418     OpBuilder.addAmpAmpOrPipePipeOverload();
   8419     break;
   8420 
   8421   case OO_Subscript:
   8422     OpBuilder.addSubscriptOverloads();
   8423     break;
   8424 
   8425   case OO_ArrowStar:
   8426     OpBuilder.addArrowStarOverloads();
   8427     break;
   8428 
   8429   case OO_Conditional:
   8430     OpBuilder.addConditionalOperatorOverloads();
   8431     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8432     break;
   8433   }
   8434 }
   8435 
   8436 /// \brief Add function candidates found via argument-dependent lookup
   8437 /// to the set of overloading candidates.
   8438 ///
   8439 /// This routine performs argument-dependent name lookup based on the
   8440 /// given function name (which may also be an operator name) and adds
   8441 /// all of the overload candidates found by ADL to the overload
   8442 /// candidate set (C++ [basic.lookup.argdep]).
   8443 void
   8444 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
   8445                                            SourceLocation Loc,
   8446                                            ArrayRef<Expr *> Args,
   8447                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   8448                                            OverloadCandidateSet& CandidateSet,
   8449                                            bool PartialOverloading) {
   8450   ADLResult Fns;
   8451 
   8452   // FIXME: This approach for uniquing ADL results (and removing
   8453   // redundant candidates from the set) relies on pointer-equality,
   8454   // which means we need to key off the canonical decl.  However,
   8455   // always going back to the canonical decl might not get us the
   8456   // right set of default arguments.  What default arguments are
   8457   // we supposed to consider on ADL candidates, anyway?
   8458 
   8459   // FIXME: Pass in the explicit template arguments?
   8460   ArgumentDependentLookup(Name, Loc, Args, Fns);
   8461 
   8462   // Erase all of the candidates we already knew about.
   8463   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
   8464                                    CandEnd = CandidateSet.end();
   8465        Cand != CandEnd; ++Cand)
   8466     if (Cand->Function) {
   8467       Fns.erase(Cand->Function);
   8468       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
   8469         Fns.erase(FunTmpl);
   8470     }
   8471 
   8472   // For each of the ADL candidates we found, add it to the overload
   8473   // set.
   8474   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
   8475     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
   8476     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
   8477       if (ExplicitTemplateArgs)
   8478         continue;
   8479 
   8480       AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
   8481                            PartialOverloading);
   8482     } else
   8483       AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
   8484                                    FoundDecl, ExplicitTemplateArgs,
   8485                                    Args, CandidateSet, PartialOverloading);
   8486   }
   8487 }
   8488 
   8489 namespace {
   8490 enum class Comparison { Equal, Better, Worse };
   8491 }
   8492 
   8493 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
   8494 /// overload resolution.
   8495 ///
   8496 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
   8497 /// Cand1's first N enable_if attributes have precisely the same conditions as
   8498 /// Cand2's first N enable_if attributes (where N = the number of enable_if
   8499 /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
   8500 ///
   8501 /// Note that you can have a pair of candidates such that Cand1's enable_if
   8502 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
   8503 /// worse than Cand1's.
   8504 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
   8505                                        const FunctionDecl *Cand2) {
   8506   // Common case: One (or both) decls don't have enable_if attrs.
   8507   bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
   8508   bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
   8509   if (!Cand1Attr || !Cand2Attr) {
   8510     if (Cand1Attr == Cand2Attr)
   8511       return Comparison::Equal;
   8512     return Cand1Attr ? Comparison::Better : Comparison::Worse;
   8513   }
   8514 
   8515   // FIXME: The next several lines are just
   8516   // specific_attr_iterator<EnableIfAttr> but going in declaration order,
   8517   // instead of reverse order which is how they're stored in the AST.
   8518   auto Cand1Attrs = getOrderedEnableIfAttrs(Cand1);
   8519   auto Cand2Attrs = getOrderedEnableIfAttrs(Cand2);
   8520 
   8521   // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
   8522   // has fewer enable_if attributes than Cand2.
   8523   if (Cand1Attrs.size() < Cand2Attrs.size())
   8524     return Comparison::Worse;
   8525 
   8526   auto Cand1I = Cand1Attrs.begin();
   8527   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
   8528   for (auto &Cand2A : Cand2Attrs) {
   8529     Cand1ID.clear();
   8530     Cand2ID.clear();
   8531 
   8532     auto &Cand1A = *Cand1I++;
   8533     Cand1A->getCond()->Profile(Cand1ID, S.getASTContext(), true);
   8534     Cand2A->getCond()->Profile(Cand2ID, S.getASTContext(), true);
   8535     if (Cand1ID != Cand2ID)
   8536       return Comparison::Worse;
   8537   }
   8538 
   8539   return Cand1I == Cand1Attrs.end() ? Comparison::Equal : Comparison::Better;
   8540 }
   8541 
   8542 /// isBetterOverloadCandidate - Determines whether the first overload
   8543 /// candidate is a better candidate than the second (C++ 13.3.3p1).
   8544 bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1,
   8545                                       const OverloadCandidate &Cand2,
   8546                                       SourceLocation Loc,
   8547                                       bool UserDefinedConversion) {
   8548   // Define viable functions to be better candidates than non-viable
   8549   // functions.
   8550   if (!Cand2.Viable)
   8551     return Cand1.Viable;
   8552   else if (!Cand1.Viable)
   8553     return false;
   8554 
   8555   // C++ [over.match.best]p1:
   8556   //
   8557   //   -- if F is a static member function, ICS1(F) is defined such
   8558   //      that ICS1(F) is neither better nor worse than ICS1(G) for
   8559   //      any function G, and, symmetrically, ICS1(G) is neither
   8560   //      better nor worse than ICS1(F).
   8561   unsigned StartArg = 0;
   8562   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
   8563     StartArg = 1;
   8564 
   8565   // C++ [over.match.best]p1:
   8566   //   A viable function F1 is defined to be a better function than another
   8567   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
   8568   //   conversion sequence than ICSi(F2), and then...
   8569   unsigned NumArgs = Cand1.NumConversions;
   8570   assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
   8571   bool HasBetterConversion = false;
   8572   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
   8573     switch (CompareImplicitConversionSequences(S, Loc,
   8574                                                Cand1.Conversions[ArgIdx],
   8575                                                Cand2.Conversions[ArgIdx])) {
   8576     case ImplicitConversionSequence::Better:
   8577       // Cand1 has a better conversion sequence.
   8578       HasBetterConversion = true;
   8579       break;
   8580 
   8581     case ImplicitConversionSequence::Worse:
   8582       // Cand1 can't be better than Cand2.
   8583       return false;
   8584 
   8585     case ImplicitConversionSequence::Indistinguishable:
   8586       // Do nothing.
   8587       break;
   8588     }
   8589   }
   8590 
   8591   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
   8592   //       ICSj(F2), or, if not that,
   8593   if (HasBetterConversion)
   8594     return true;
   8595 
   8596   //   -- the context is an initialization by user-defined conversion
   8597   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
   8598   //      from the return type of F1 to the destination type (i.e.,
   8599   //      the type of the entity being initialized) is a better
   8600   //      conversion sequence than the standard conversion sequence
   8601   //      from the return type of F2 to the destination type.
   8602   if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
   8603       isa<CXXConversionDecl>(Cand1.Function) &&
   8604       isa<CXXConversionDecl>(Cand2.Function)) {
   8605     // First check whether we prefer one of the conversion functions over the
   8606     // other. This only distinguishes the results in non-standard, extension
   8607     // cases such as the conversion from a lambda closure type to a function
   8608     // pointer or block.
   8609     ImplicitConversionSequence::CompareKind Result =
   8610         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
   8611     if (Result == ImplicitConversionSequence::Indistinguishable)
   8612       Result = CompareStandardConversionSequences(S, Loc,
   8613                                                   Cand1.FinalConversion,
   8614                                                   Cand2.FinalConversion);
   8615 
   8616     if (Result != ImplicitConversionSequence::Indistinguishable)
   8617       return Result == ImplicitConversionSequence::Better;
   8618 
   8619     // FIXME: Compare kind of reference binding if conversion functions
   8620     // convert to a reference type used in direct reference binding, per
   8621     // C++14 [over.match.best]p1 section 2 bullet 3.
   8622   }
   8623 
   8624   //    -- F1 is a non-template function and F2 is a function template
   8625   //       specialization, or, if not that,
   8626   bool Cand1IsSpecialization = Cand1.Function &&
   8627                                Cand1.Function->getPrimaryTemplate();
   8628   bool Cand2IsSpecialization = Cand2.Function &&
   8629                                Cand2.Function->getPrimaryTemplate();
   8630   if (Cand1IsSpecialization != Cand2IsSpecialization)
   8631     return Cand2IsSpecialization;
   8632 
   8633   //   -- F1 and F2 are function template specializations, and the function
   8634   //      template for F1 is more specialized than the template for F2
   8635   //      according to the partial ordering rules described in 14.5.5.2, or,
   8636   //      if not that,
   8637   if (Cand1IsSpecialization && Cand2IsSpecialization) {
   8638     if (FunctionTemplateDecl *BetterTemplate
   8639           = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
   8640                                          Cand2.Function->getPrimaryTemplate(),
   8641                                          Loc,
   8642                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
   8643                                                              : TPOC_Call,
   8644                                          Cand1.ExplicitCallArguments,
   8645                                          Cand2.ExplicitCallArguments))
   8646       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
   8647   }
   8648 
   8649   // FIXME: Work around a defect in the C++17 inheriting constructor wording.
   8650   // A derived-class constructor beats an (inherited) base class constructor.
   8651   bool Cand1IsInherited =
   8652       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
   8653   bool Cand2IsInherited =
   8654       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
   8655   if (Cand1IsInherited != Cand2IsInherited)
   8656     return Cand2IsInherited;
   8657   else if (Cand1IsInherited) {
   8658     assert(Cand2IsInherited);
   8659     auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
   8660     auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
   8661     if (Cand1Class->isDerivedFrom(Cand2Class))
   8662       return true;
   8663     if (Cand2Class->isDerivedFrom(Cand1Class))
   8664       return false;
   8665     // Inherited from sibling base classes: still ambiguous.
   8666   }
   8667 
   8668   // Check for enable_if value-based overload resolution.
   8669   if (Cand1.Function && Cand2.Function) {
   8670     Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
   8671     if (Cmp != Comparison::Equal)
   8672       return Cmp == Comparison::Better;
   8673   }
   8674 
   8675   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
   8676     FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
   8677     return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
   8678            S.IdentifyCUDAPreference(Caller, Cand2.Function);
   8679   }
   8680 
   8681   bool HasPS1 = Cand1.Function != nullptr &&
   8682                 functionHasPassObjectSizeParams(Cand1.Function);
   8683   bool HasPS2 = Cand2.Function != nullptr &&
   8684                 functionHasPassObjectSizeParams(Cand2.Function);
   8685   return HasPS1 != HasPS2 && HasPS1;
   8686 }
   8687 
   8688 /// Determine whether two declarations are "equivalent" for the purposes of
   8689 /// name lookup and overload resolution. This applies when the same internal/no
   8690 /// linkage entity is defined by two modules (probably by textually including
   8691 /// the same header). In such a case, we don't consider the declarations to
   8692 /// declare the same entity, but we also don't want lookups with both
   8693 /// declarations visible to be ambiguous in some cases (this happens when using
   8694 /// a modularized libstdc++).
   8695 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
   8696                                                   const NamedDecl *B) {
   8697   auto *VA = dyn_cast_or_null<ValueDecl>(A);
   8698   auto *VB = dyn_cast_or_null<ValueDecl>(B);
   8699   if (!VA || !VB)
   8700     return false;
   8701 
   8702   // The declarations must be declaring the same name as an internal linkage
   8703   // entity in different modules.
   8704   if (!VA->getDeclContext()->getRedeclContext()->Equals(
   8705           VB->getDeclContext()->getRedeclContext()) ||
   8706       getOwningModule(const_cast<ValueDecl *>(VA)) ==
   8707           getOwningModule(const_cast<ValueDecl *>(VB)) ||
   8708       VA->isExternallyVisible() || VB->isExternallyVisible())
   8709     return false;
   8710 
   8711   // Check that the declarations appear to be equivalent.
   8712   //
   8713   // FIXME: Checking the type isn't really enough to resolve the ambiguity.
   8714   // For constants and functions, we should check the initializer or body is
   8715   // the same. For non-constant variables, we shouldn't allow it at all.
   8716   if (Context.hasSameType(VA->getType(), VB->getType()))
   8717     return true;
   8718 
   8719   // Enum constants within unnamed enumerations will have different types, but
   8720   // may still be similar enough to be interchangeable for our purposes.
   8721   if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
   8722     if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
   8723       // Only handle anonymous enums. If the enumerations were named and
   8724       // equivalent, they would have been merged to the same type.
   8725       auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
   8726       auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
   8727       if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
   8728           !Context.hasSameType(EnumA->getIntegerType(),
   8729                                EnumB->getIntegerType()))
   8730         return false;
   8731       // Allow this only if the value is the same for both enumerators.
   8732       return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
   8733     }
   8734   }
   8735 
   8736   // Nothing else is sufficiently similar.
   8737   return false;
   8738 }
   8739 
   8740 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
   8741     SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
   8742   Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
   8743 
   8744   Module *M = getOwningModule(const_cast<NamedDecl*>(D));
   8745   Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
   8746       << !M << (M ? M->getFullModuleName() : "");
   8747 
   8748   for (auto *E : Equiv) {
   8749     Module *M = getOwningModule(const_cast<NamedDecl*>(E));
   8750     Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
   8751         << !M << (M ? M->getFullModuleName() : "");
   8752   }
   8753 }
   8754 
   8755 /// \brief Computes the best viable function (C++ 13.3.3)
   8756 /// within an overload candidate set.
   8757 ///
   8758 /// \param Loc The location of the function name (or operator symbol) for
   8759 /// which overload resolution occurs.
   8760 ///
   8761 /// \param Best If overload resolution was successful or found a deleted
   8762 /// function, \p Best points to the candidate function found.
   8763 ///
   8764 /// \returns The result of overload resolution.
   8765 OverloadingResult
   8766 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
   8767                                          iterator &Best,
   8768                                          bool UserDefinedConversion) {
   8769   llvm::SmallVector<OverloadCandidate *, 16> Candidates;
   8770   std::transform(begin(), end(), std::back_inserter(Candidates),
   8771                  [](OverloadCandidate &Cand) { return &Cand; });
   8772 
   8773   // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA
   8774   // but accepted by both clang and NVCC. However during a particular
   8775   // compilation mode only one call variant is viable. We need to
   8776   // exclude non-viable overload candidates from consideration based
   8777   // only on their host/device attributes. Specifically, if one
   8778   // candidate call is WrongSide and the other is SameSide, we ignore
   8779   // the WrongSide candidate.
   8780   if (S.getLangOpts().CUDA) {
   8781     const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
   8782     bool ContainsSameSideCandidate =
   8783         llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
   8784           return Cand->Function &&
   8785                  S.IdentifyCUDAPreference(Caller, Cand->Function) ==
   8786                      Sema::CFP_SameSide;
   8787         });
   8788     if (ContainsSameSideCandidate) {
   8789       auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
   8790         return Cand->Function &&
   8791                S.IdentifyCUDAPreference(Caller, Cand->Function) ==
   8792                    Sema::CFP_WrongSide;
   8793       };
   8794       Candidates.erase(std::remove_if(Candidates.begin(), Candidates.end(),
   8795                                       IsWrongSideCandidate),
   8796                        Candidates.end());
   8797     }
   8798   }
   8799 
   8800   // Find the best viable function.
   8801   Best = end();
   8802   for (auto *Cand : Candidates)
   8803     if (Cand->Viable)
   8804       if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
   8805                                                      UserDefinedConversion))
   8806         Best = Cand;
   8807 
   8808   // If we didn't find any viable functions, abort.
   8809   if (Best == end())
   8810     return OR_No_Viable_Function;
   8811 
   8812   llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
   8813 
   8814   // Make sure that this function is better than every other viable
   8815   // function. If not, we have an ambiguity.
   8816   for (auto *Cand : Candidates) {
   8817     if (Cand->Viable &&
   8818         Cand != Best &&
   8819         !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
   8820                                    UserDefinedConversion)) {
   8821       if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
   8822                                                    Cand->Function)) {
   8823         EquivalentCands.push_back(Cand->Function);
   8824         continue;
   8825       }
   8826 
   8827       Best = end();
   8828       return OR_Ambiguous;
   8829     }
   8830   }
   8831 
   8832   // Best is the best viable function.
   8833   if (Best->Function &&
   8834       (Best->Function->isDeleted() ||
   8835        S.isFunctionConsideredUnavailable(Best->Function)))
   8836     return OR_Deleted;
   8837 
   8838   if (!EquivalentCands.empty())
   8839     S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
   8840                                                     EquivalentCands);
   8841 
   8842   return OR_Success;
   8843 }
   8844 
   8845 namespace {
   8846 
   8847 enum OverloadCandidateKind {
   8848   oc_function,
   8849   oc_method,
   8850   oc_constructor,
   8851   oc_function_template,
   8852   oc_method_template,
   8853   oc_constructor_template,
   8854   oc_implicit_default_constructor,
   8855   oc_implicit_copy_constructor,
   8856   oc_implicit_move_constructor,
   8857   oc_implicit_copy_assignment,
   8858   oc_implicit_move_assignment,
   8859   oc_inherited_constructor,
   8860   oc_inherited_constructor_template
   8861 };
   8862 
   8863 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
   8864                                                 NamedDecl *Found,
   8865                                                 FunctionDecl *Fn,
   8866                                                 std::string &Description) {
   8867   bool isTemplate = false;
   8868 
   8869   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
   8870     isTemplate = true;
   8871     Description = S.getTemplateArgumentBindingsText(
   8872       FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
   8873   }
   8874 
   8875   if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
   8876     if (!Ctor->isImplicit()) {
   8877       if (isa<ConstructorUsingShadowDecl>(Found))
   8878         return isTemplate ? oc_inherited_constructor_template
   8879                           : oc_inherited_constructor;
   8880       else
   8881         return isTemplate ? oc_constructor_template : oc_constructor;
   8882     }
   8883 
   8884     if (Ctor->isDefaultConstructor())
   8885       return oc_implicit_default_constructor;
   8886 
   8887     if (Ctor->isMoveConstructor())
   8888       return oc_implicit_move_constructor;
   8889 
   8890     assert(Ctor->isCopyConstructor() &&
   8891            "unexpected sort of implicit constructor");
   8892     return oc_implicit_copy_constructor;
   8893   }
   8894 
   8895   if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
   8896     // This actually gets spelled 'candidate function' for now, but
   8897     // it doesn't hurt to split it out.
   8898     if (!Meth->isImplicit())
   8899       return isTemplate ? oc_method_template : oc_method;
   8900 
   8901     if (Meth->isMoveAssignmentOperator())
   8902       return oc_implicit_move_assignment;
   8903 
   8904     if (Meth->isCopyAssignmentOperator())
   8905       return oc_implicit_copy_assignment;
   8906 
   8907     assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
   8908     return oc_method;
   8909   }
   8910 
   8911   return isTemplate ? oc_function_template : oc_function;
   8912 }
   8913 
   8914 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
   8915   // FIXME: It'd be nice to only emit a note once per using-decl per overload
   8916   // set.
   8917   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
   8918     S.Diag(FoundDecl->getLocation(),
   8919            diag::note_ovl_candidate_inherited_constructor)
   8920       << Shadow->getNominatedBaseClass();
   8921 }
   8922 
   8923 } // end anonymous namespace
   8924 
   8925 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
   8926                                     const FunctionDecl *FD) {
   8927   for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
   8928     bool AlwaysTrue;
   8929     if (!EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
   8930       return false;
   8931     if (!AlwaysTrue)
   8932       return false;
   8933   }
   8934   return true;
   8935 }
   8936 
   8937 /// \brief Returns true if we can take the address of the function.
   8938 ///
   8939 /// \param Complain - If true, we'll emit a diagnostic
   8940 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
   8941 ///   we in overload resolution?
   8942 /// \param Loc - The location of the statement we're complaining about. Ignored
   8943 ///   if we're not complaining, or if we're in overload resolution.
   8944 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
   8945                                               bool Complain,
   8946                                               bool InOverloadResolution,
   8947                                               SourceLocation Loc) {
   8948   if (!isFunctionAlwaysEnabled(S.Context, FD)) {
   8949     if (Complain) {
   8950       if (InOverloadResolution)
   8951         S.Diag(FD->getLocStart(),
   8952                diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
   8953       else
   8954         S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
   8955     }
   8956     return false;
   8957   }
   8958 
   8959   auto I = llvm::find_if(
   8960       FD->parameters(), std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>));
   8961   if (I == FD->param_end())
   8962     return true;
   8963 
   8964   if (Complain) {
   8965     // Add one to ParamNo because it's user-facing
   8966     unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
   8967     if (InOverloadResolution)
   8968       S.Diag(FD->getLocation(),
   8969              diag::note_ovl_candidate_has_pass_object_size_params)
   8970           << ParamNo;
   8971     else
   8972       S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
   8973           << FD << ParamNo;
   8974   }
   8975   return false;
   8976 }
   8977 
   8978 static bool checkAddressOfCandidateIsAvailable(Sema &S,
   8979                                                const FunctionDecl *FD) {
   8980   return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
   8981                                            /*InOverloadResolution=*/true,
   8982                                            /*Loc=*/SourceLocation());
   8983 }
   8984 
   8985 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
   8986                                              bool Complain,
   8987                                              SourceLocation Loc) {
   8988   return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
   8989                                              /*InOverloadResolution=*/false,
   8990                                              Loc);
   8991 }
   8992 
   8993 // Notes the location of an overload candidate.
   8994 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
   8995                                  QualType DestType, bool TakingAddress) {
   8996   if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
   8997     return;
   8998 
   8999   std::string FnDesc;
   9000   OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Found, Fn, FnDesc);
   9001   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
   9002                              << (unsigned) K << FnDesc;
   9003 
   9004   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
   9005   Diag(Fn->getLocation(), PD);
   9006   MaybeEmitInheritedConstructorNote(*this, Found);
   9007 }
   9008 
   9009 // Notes the location of all overload candidates designated through
   9010 // OverloadedExpr
   9011 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
   9012                                      bool TakingAddress) {
   9013   assert(OverloadedExpr->getType() == Context.OverloadTy);
   9014 
   9015   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
   9016   OverloadExpr *OvlExpr = Ovl.Expression;
   9017 
   9018   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   9019                             IEnd = OvlExpr->decls_end();
   9020        I != IEnd; ++I) {
   9021     if (FunctionTemplateDecl *FunTmpl =
   9022                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
   9023       NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), DestType,
   9024                             TakingAddress);
   9025     } else if (FunctionDecl *Fun
   9026                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
   9027       NoteOverloadCandidate(*I, Fun, DestType, TakingAddress);
   9028     }
   9029   }
   9030 }
   9031 
   9032 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
   9033 /// "lead" diagnostic; it will be given two arguments, the source and
   9034 /// target types of the conversion.
   9035 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
   9036                                  Sema &S,
   9037                                  SourceLocation CaretLoc,
   9038                                  const PartialDiagnostic &PDiag) const {
   9039   S.Diag(CaretLoc, PDiag)
   9040     << Ambiguous.getFromType() << Ambiguous.getToType();
   9041   // FIXME: The note limiting machinery is borrowed from
   9042   // OverloadCandidateSet::NoteCandidates; there's an opportunity for
   9043   // refactoring here.
   9044   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   9045   unsigned CandsShown = 0;
   9046   AmbiguousConversionSequence::const_iterator I, E;
   9047   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
   9048     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
   9049       break;
   9050     ++CandsShown;
   9051     S.NoteOverloadCandidate(I->first, I->second);
   9052   }
   9053   if (I != E)
   9054     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
   9055 }
   9056 
   9057 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
   9058                                   unsigned I, bool TakingCandidateAddress) {
   9059   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
   9060   assert(Conv.isBad());
   9061   assert(Cand->Function && "for now, candidate must be a function");
   9062   FunctionDecl *Fn = Cand->Function;
   9063 
   9064   // There's a conversion slot for the object argument if this is a
   9065   // non-constructor method.  Note that 'I' corresponds the
   9066   // conversion-slot index.
   9067   bool isObjectArgument = false;
   9068   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
   9069     if (I == 0)
   9070       isObjectArgument = true;
   9071     else
   9072       I--;
   9073   }
   9074 
   9075   std::string FnDesc;
   9076   OverloadCandidateKind FnKind =
   9077       ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
   9078 
   9079   Expr *FromExpr = Conv.Bad.FromExpr;
   9080   QualType FromTy = Conv.Bad.getFromType();
   9081   QualType ToTy = Conv.Bad.getToType();
   9082 
   9083   if (FromTy == S.Context.OverloadTy) {
   9084     assert(FromExpr && "overload set argument came from implicit argument?");
   9085     Expr *E = FromExpr->IgnoreParens();
   9086     if (isa<UnaryOperator>(E))
   9087       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
   9088     DeclarationName Name = cast<OverloadExpr>(E)->getName();
   9089 
   9090     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
   9091       << (unsigned) FnKind << FnDesc
   9092       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9093       << ToTy << Name << I+1;
   9094     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9095     return;
   9096   }
   9097 
   9098   // Do some hand-waving analysis to see if the non-viability is due
   9099   // to a qualifier mismatch.
   9100   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
   9101   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
   9102   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
   9103     CToTy = RT->getPointeeType();
   9104   else {
   9105     // TODO: detect and diagnose the full richness of const mismatches.
   9106     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
   9107       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
   9108         CFromTy = FromPT->getPointeeType();
   9109         CToTy = ToPT->getPointeeType();
   9110       }
   9111   }
   9112 
   9113   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
   9114       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
   9115     Qualifiers FromQs = CFromTy.getQualifiers();
   9116     Qualifiers ToQs = CToTy.getQualifiers();
   9117 
   9118     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
   9119       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
   9120         << (unsigned) FnKind << FnDesc
   9121         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9122         << FromTy
   9123         << FromQs.getAddressSpace() << ToQs.getAddressSpace()
   9124         << (unsigned) isObjectArgument << I+1;
   9125       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9126       return;
   9127     }
   9128 
   9129     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
   9130       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
   9131         << (unsigned) FnKind << FnDesc
   9132         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9133         << FromTy
   9134         << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
   9135         << (unsigned) isObjectArgument << I+1;
   9136       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9137       return;
   9138     }
   9139 
   9140     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
   9141       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
   9142       << (unsigned) FnKind << FnDesc
   9143       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9144       << FromTy
   9145       << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
   9146       << (unsigned) isObjectArgument << I+1;
   9147       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9148       return;
   9149     }
   9150 
   9151     if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
   9152       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
   9153         << (unsigned) FnKind << FnDesc
   9154         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9155         << FromTy << FromQs.hasUnaligned() << I+1;
   9156       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9157       return;
   9158     }
   9159 
   9160     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
   9161     assert(CVR && "unexpected qualifiers mismatch");
   9162 
   9163     if (isObjectArgument) {
   9164       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
   9165         << (unsigned) FnKind << FnDesc
   9166         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9167         << FromTy << (CVR - 1);
   9168     } else {
   9169       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
   9170         << (unsigned) FnKind << FnDesc
   9171         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9172         << FromTy << (CVR - 1) << I+1;
   9173     }
   9174     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9175     return;
   9176   }
   9177 
   9178   // Special diagnostic for failure to convert an initializer list, since
   9179   // telling the user that it has type void is not useful.
   9180   if (FromExpr && isa<InitListExpr>(FromExpr)) {
   9181     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
   9182       << (unsigned) FnKind << FnDesc
   9183       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9184       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
   9185     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9186     return;
   9187   }
   9188 
   9189   // Diagnose references or pointers to incomplete types differently,
   9190   // since it's far from impossible that the incompleteness triggered
   9191   // the failure.
   9192   QualType TempFromTy = FromTy.getNonReferenceType();
   9193   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
   9194     TempFromTy = PTy->getPointeeType();
   9195   if (TempFromTy->isIncompleteType()) {
   9196     // Emit the generic diagnostic and, optionally, add the hints to it.
   9197     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
   9198       << (unsigned) FnKind << FnDesc
   9199       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9200       << FromTy << ToTy << (unsigned) isObjectArgument << I+1
   9201       << (unsigned) (Cand->Fix.Kind);
   9202 
   9203     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9204     return;
   9205   }
   9206 
   9207   // Diagnose base -> derived pointer conversions.
   9208   unsigned BaseToDerivedConversion = 0;
   9209   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
   9210     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
   9211       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
   9212                                                FromPtrTy->getPointeeType()) &&
   9213           !FromPtrTy->getPointeeType()->isIncompleteType() &&
   9214           !ToPtrTy->getPointeeType()->isIncompleteType() &&
   9215           S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
   9216                           FromPtrTy->getPointeeType()))
   9217         BaseToDerivedConversion = 1;
   9218     }
   9219   } else if (const ObjCObjectPointerType *FromPtrTy
   9220                                     = FromTy->getAs<ObjCObjectPointerType>()) {
   9221     if (const ObjCObjectPointerType *ToPtrTy
   9222                                         = ToTy->getAs<ObjCObjectPointerType>())
   9223       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
   9224         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
   9225           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
   9226                                                 FromPtrTy->getPointeeType()) &&
   9227               FromIface->isSuperClassOf(ToIface))
   9228             BaseToDerivedConversion = 2;
   9229   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
   9230     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
   9231         !FromTy->isIncompleteType() &&
   9232         !ToRefTy->getPointeeType()->isIncompleteType() &&
   9233         S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
   9234       BaseToDerivedConversion = 3;
   9235     } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
   9236                ToTy.getNonReferenceType().getCanonicalType() ==
   9237                FromTy.getNonReferenceType().getCanonicalType()) {
   9238       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
   9239         << (unsigned) FnKind << FnDesc
   9240         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9241         << (unsigned) isObjectArgument << I + 1;
   9242       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9243       return;
   9244     }
   9245   }
   9246 
   9247   if (BaseToDerivedConversion) {
   9248     S.Diag(Fn->getLocation(),
   9249            diag::note_ovl_candidate_bad_base_to_derived_conv)
   9250       << (unsigned) FnKind << FnDesc
   9251       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9252       << (BaseToDerivedConversion - 1)
   9253       << FromTy << ToTy << I+1;
   9254     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9255     return;
   9256   }
   9257 
   9258   if (isa<ObjCObjectPointerType>(CFromTy) &&
   9259       isa<PointerType>(CToTy)) {
   9260       Qualifiers FromQs = CFromTy.getQualifiers();
   9261       Qualifiers ToQs = CToTy.getQualifiers();
   9262       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
   9263         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
   9264         << (unsigned) FnKind << FnDesc
   9265         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9266         << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
   9267         MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9268         return;
   9269       }
   9270   }
   9271 
   9272   if (TakingCandidateAddress &&
   9273       !checkAddressOfCandidateIsAvailable(S, Cand->Function))
   9274     return;
   9275 
   9276   // Emit the generic diagnostic and, optionally, add the hints to it.
   9277   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
   9278   FDiag << (unsigned) FnKind << FnDesc
   9279     << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9280     << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
   9281     << (unsigned) (Cand->Fix.Kind);
   9282 
   9283   // If we can fix the conversion, suggest the FixIts.
   9284   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
   9285        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
   9286     FDiag << *HI;
   9287   S.Diag(Fn->getLocation(), FDiag);
   9288 
   9289   MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9290 }
   9291 
   9292 /// Additional arity mismatch diagnosis specific to a function overload
   9293 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
   9294 /// over a candidate in any candidate set.
   9295 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
   9296                                unsigned NumArgs) {
   9297   FunctionDecl *Fn = Cand->Function;
   9298   unsigned MinParams = Fn->getMinRequiredArguments();
   9299 
   9300   // With invalid overloaded operators, it's possible that we think we
   9301   // have an arity mismatch when in fact it looks like we have the
   9302   // right number of arguments, because only overloaded operators have
   9303   // the weird behavior of overloading member and non-member functions.
   9304   // Just don't report anything.
   9305   if (Fn->isInvalidDecl() &&
   9306       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
   9307     return true;
   9308 
   9309   if (NumArgs < MinParams) {
   9310     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
   9311            (Cand->FailureKind == ovl_fail_bad_deduction &&
   9312             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
   9313   } else {
   9314     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
   9315            (Cand->FailureKind == ovl_fail_bad_deduction &&
   9316             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
   9317   }
   9318 
   9319   return false;
   9320 }
   9321 
   9322 /// General arity mismatch diagnosis over a candidate in a candidate set.
   9323 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
   9324                                   unsigned NumFormalArgs) {
   9325   assert(isa<FunctionDecl>(D) &&
   9326       "The templated declaration should at least be a function"
   9327       " when diagnosing bad template argument deduction due to too many"
   9328       " or too few arguments");
   9329 
   9330   FunctionDecl *Fn = cast<FunctionDecl>(D);
   9331 
   9332   // TODO: treat calls to a missing default constructor as a special case
   9333   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
   9334   unsigned MinParams = Fn->getMinRequiredArguments();
   9335 
   9336   // at least / at most / exactly
   9337   unsigned mode, modeCount;
   9338   if (NumFormalArgs < MinParams) {
   9339     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
   9340         FnTy->isTemplateVariadic())
   9341       mode = 0; // "at least"
   9342     else
   9343       mode = 2; // "exactly"
   9344     modeCount = MinParams;
   9345   } else {
   9346     if (MinParams != FnTy->getNumParams())
   9347       mode = 1; // "at most"
   9348     else
   9349       mode = 2; // "exactly"
   9350     modeCount = FnTy->getNumParams();
   9351   }
   9352 
   9353   std::string Description;
   9354   OverloadCandidateKind FnKind =
   9355       ClassifyOverloadCandidate(S, Found, Fn, Description);
   9356 
   9357   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
   9358     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
   9359       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
   9360       << mode << Fn->getParamDecl(0) << NumFormalArgs;
   9361   else
   9362     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
   9363       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
   9364       << mode << modeCount << NumFormalArgs;
   9365   MaybeEmitInheritedConstructorNote(S, Found);
   9366 }
   9367 
   9368 /// Arity mismatch diagnosis specific to a function overload candidate.
   9369 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
   9370                                   unsigned NumFormalArgs) {
   9371   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
   9372     DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
   9373 }
   9374 
   9375 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
   9376   if (TemplateDecl *TD = Templated->getDescribedTemplate())
   9377     return TD;
   9378   llvm_unreachable("Unsupported: Getting the described template declaration"
   9379                    " for bad deduction diagnosis");
   9380 }
   9381 
   9382 /// Diagnose a failed template-argument deduction.
   9383 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
   9384                                  DeductionFailureInfo &DeductionFailure,
   9385                                  unsigned NumArgs,
   9386                                  bool TakingCandidateAddress) {
   9387   TemplateParameter Param = DeductionFailure.getTemplateParameter();
   9388   NamedDecl *ParamD;
   9389   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
   9390   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
   9391   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
   9392   switch (DeductionFailure.Result) {
   9393   case Sema::TDK_Success:
   9394     llvm_unreachable("TDK_success while diagnosing bad deduction");
   9395 
   9396   case Sema::TDK_Incomplete: {
   9397     assert(ParamD && "no parameter found for incomplete deduction result");
   9398     S.Diag(Templated->getLocation(),
   9399            diag::note_ovl_candidate_incomplete_deduction)
   9400         << ParamD->getDeclName();
   9401     MaybeEmitInheritedConstructorNote(S, Found);
   9402     return;
   9403   }
   9404 
   9405   case Sema::TDK_Underqualified: {
   9406     assert(ParamD && "no parameter found for bad qualifiers deduction result");
   9407     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
   9408 
   9409     QualType Param = DeductionFailure.getFirstArg()->getAsType();
   9410 
   9411     // Param will have been canonicalized, but it should just be a
   9412     // qualified version of ParamD, so move the qualifiers to that.
   9413     QualifierCollector Qs;
   9414     Qs.strip(Param);
   9415     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
   9416     assert(S.Context.hasSameType(Param, NonCanonParam));
   9417 
   9418     // Arg has also been canonicalized, but there's nothing we can do
   9419     // about that.  It also doesn't matter as much, because it won't
   9420     // have any template parameters in it (because deduction isn't
   9421     // done on dependent types).
   9422     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
   9423 
   9424     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
   9425         << ParamD->getDeclName() << Arg << NonCanonParam;
   9426     MaybeEmitInheritedConstructorNote(S, Found);
   9427     return;
   9428   }
   9429 
   9430   case Sema::TDK_Inconsistent: {
   9431     assert(ParamD && "no parameter found for inconsistent deduction result");
   9432     int which = 0;
   9433     if (isa<TemplateTypeParmDecl>(ParamD))
   9434       which = 0;
   9435     else if (isa<NonTypeTemplateParmDecl>(ParamD))
   9436       which = 1;
   9437     else {
   9438       which = 2;
   9439     }
   9440 
   9441     S.Diag(Templated->getLocation(),
   9442            diag::note_ovl_candidate_inconsistent_deduction)
   9443         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
   9444         << *DeductionFailure.getSecondArg();
   9445     MaybeEmitInheritedConstructorNote(S, Found);
   9446     return;
   9447   }
   9448 
   9449   case Sema::TDK_InvalidExplicitArguments:
   9450     assert(ParamD && "no parameter found for invalid explicit arguments");
   9451     if (ParamD->getDeclName())
   9452       S.Diag(Templated->getLocation(),
   9453              diag::note_ovl_candidate_explicit_arg_mismatch_named)
   9454           << ParamD->getDeclName();
   9455     else {
   9456       int index = 0;
   9457       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
   9458         index = TTP->getIndex();
   9459       else if (NonTypeTemplateParmDecl *NTTP
   9460                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
   9461         index = NTTP->getIndex();
   9462       else
   9463         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
   9464       S.Diag(Templated->getLocation(),
   9465              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
   9466           << (index + 1);
   9467     }
   9468     MaybeEmitInheritedConstructorNote(S, Found);
   9469     return;
   9470 
   9471   case Sema::TDK_TooManyArguments:
   9472   case Sema::TDK_TooFewArguments:
   9473     DiagnoseArityMismatch(S, Found, Templated, NumArgs);
   9474     return;
   9475 
   9476   case Sema::TDK_InstantiationDepth:
   9477     S.Diag(Templated->getLocation(),
   9478            diag::note_ovl_candidate_instantiation_depth);
   9479     MaybeEmitInheritedConstructorNote(S, Found);
   9480     return;
   9481 
   9482   case Sema::TDK_SubstitutionFailure: {
   9483     // Format the template argument list into the argument string.
   9484     SmallString<128> TemplateArgString;
   9485     if (TemplateArgumentList *Args =
   9486             DeductionFailure.getTemplateArgumentList()) {
   9487       TemplateArgString = " ";
   9488       TemplateArgString += S.getTemplateArgumentBindingsText(
   9489           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
   9490     }
   9491 
   9492     // If this candidate was disabled by enable_if, say so.
   9493     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
   9494     if (PDiag && PDiag->second.getDiagID() ==
   9495           diag::err_typename_nested_not_found_enable_if) {
   9496       // FIXME: Use the source range of the condition, and the fully-qualified
   9497       //        name of the enable_if template. These are both present in PDiag.
   9498       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
   9499         << "'enable_if'" << TemplateArgString;
   9500       return;
   9501     }
   9502 
   9503     // Format the SFINAE diagnostic into the argument string.
   9504     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
   9505     //        formatted message in another diagnostic.
   9506     SmallString<128> SFINAEArgString;
   9507     SourceRange R;
   9508     if (PDiag) {
   9509       SFINAEArgString = ": ";
   9510       R = SourceRange(PDiag->first, PDiag->first);
   9511       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
   9512     }
   9513 
   9514     S.Diag(Templated->getLocation(),
   9515            diag::note_ovl_candidate_substitution_failure)
   9516         << TemplateArgString << SFINAEArgString << R;
   9517     MaybeEmitInheritedConstructorNote(S, Found);
   9518     return;
   9519   }
   9520 
   9521   case Sema::TDK_FailedOverloadResolution: {
   9522     OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
   9523     S.Diag(Templated->getLocation(),
   9524            diag::note_ovl_candidate_failed_overload_resolution)
   9525         << R.Expression->getName();
   9526     return;
   9527   }
   9528 
   9529   case Sema::TDK_DeducedMismatch: {
   9530     // Format the template argument list into the argument string.
   9531     SmallString<128> TemplateArgString;
   9532     if (TemplateArgumentList *Args =
   9533             DeductionFailure.getTemplateArgumentList()) {
   9534       TemplateArgString = " ";
   9535       TemplateArgString += S.getTemplateArgumentBindingsText(
   9536           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
   9537     }
   9538 
   9539     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
   9540         << (*DeductionFailure.getCallArgIndex() + 1)
   9541         << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
   9542         << TemplateArgString;
   9543     break;
   9544   }
   9545 
   9546   case Sema::TDK_NonDeducedMismatch: {
   9547     // FIXME: Provide a source location to indicate what we couldn't match.
   9548     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
   9549     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
   9550     if (FirstTA.getKind() == TemplateArgument::Template &&
   9551         SecondTA.getKind() == TemplateArgument::Template) {
   9552       TemplateName FirstTN = FirstTA.getAsTemplate();
   9553       TemplateName SecondTN = SecondTA.getAsTemplate();
   9554       if (FirstTN.getKind() == TemplateName::Template &&
   9555           SecondTN.getKind() == TemplateName::Template) {
   9556         if (FirstTN.getAsTemplateDecl()->getName() ==
   9557             SecondTN.getAsTemplateDecl()->getName()) {
   9558           // FIXME: This fixes a bad diagnostic where both templates are named
   9559           // the same.  This particular case is a bit difficult since:
   9560           // 1) It is passed as a string to the diagnostic printer.
   9561           // 2) The diagnostic printer only attempts to find a better
   9562           //    name for types, not decls.
   9563           // Ideally, this should folded into the diagnostic printer.
   9564           S.Diag(Templated->getLocation(),
   9565                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
   9566               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
   9567           return;
   9568         }
   9569       }
   9570     }
   9571 
   9572     if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
   9573         !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
   9574       return;
   9575 
   9576     // FIXME: For generic lambda parameters, check if the function is a lambda
   9577     // call operator, and if so, emit a prettier and more informative
   9578     // diagnostic that mentions 'auto' and lambda in addition to
   9579     // (or instead of?) the canonical template type parameters.
   9580     S.Diag(Templated->getLocation(),
   9581            diag::note_ovl_candidate_non_deduced_mismatch)
   9582         << FirstTA << SecondTA;
   9583     return;
   9584   }
   9585   // TODO: diagnose these individually, then kill off
   9586   // note_ovl_candidate_bad_deduction, which is uselessly vague.
   9587   case Sema::TDK_MiscellaneousDeductionFailure:
   9588     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
   9589     MaybeEmitInheritedConstructorNote(S, Found);
   9590     return;
   9591   }
   9592 }
   9593 
   9594 /// Diagnose a failed template-argument deduction, for function calls.
   9595 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
   9596                                  unsigned NumArgs,
   9597                                  bool TakingCandidateAddress) {
   9598   unsigned TDK = Cand->DeductionFailure.Result;
   9599   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
   9600     if (CheckArityMismatch(S, Cand, NumArgs))
   9601       return;
   9602   }
   9603   DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
   9604                        Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
   9605 }
   9606 
   9607 /// CUDA: diagnose an invalid call across targets.
   9608 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
   9609   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
   9610   FunctionDecl *Callee = Cand->Function;
   9611 
   9612   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
   9613                            CalleeTarget = S.IdentifyCUDATarget(Callee);
   9614 
   9615   std::string FnDesc;
   9616   OverloadCandidateKind FnKind =
   9617       ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, FnDesc);
   9618 
   9619   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
   9620       << (unsigned)FnKind << CalleeTarget << CallerTarget;
   9621 
   9622   // This could be an implicit constructor for which we could not infer the
   9623   // target due to a collsion. Diagnose that case.
   9624   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
   9625   if (Meth != nullptr && Meth->isImplicit()) {
   9626     CXXRecordDecl *ParentClass = Meth->getParent();
   9627     Sema::CXXSpecialMember CSM;
   9628 
   9629     switch (FnKind) {
   9630     default:
   9631       return;
   9632     case oc_implicit_default_constructor:
   9633       CSM = Sema::CXXDefaultConstructor;
   9634       break;
   9635     case oc_implicit_copy_constructor:
   9636       CSM = Sema::CXXCopyConstructor;
   9637       break;
   9638     case oc_implicit_move_constructor:
   9639       CSM = Sema::CXXMoveConstructor;
   9640       break;
   9641     case oc_implicit_copy_assignment:
   9642       CSM = Sema::CXXCopyAssignment;
   9643       break;
   9644     case oc_implicit_move_assignment:
   9645       CSM = Sema::CXXMoveAssignment;
   9646       break;
   9647     };
   9648 
   9649     bool ConstRHS = false;
   9650     if (Meth->getNumParams()) {
   9651       if (const ReferenceType *RT =
   9652               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
   9653         ConstRHS = RT->getPointeeType().isConstQualified();
   9654       }
   9655     }
   9656 
   9657     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
   9658                                               /* ConstRHS */ ConstRHS,
   9659                                               /* Diagnose */ true);
   9660   }
   9661 }
   9662 
   9663 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
   9664   FunctionDecl *Callee = Cand->Function;
   9665   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
   9666 
   9667   S.Diag(Callee->getLocation(),
   9668          diag::note_ovl_candidate_disabled_by_enable_if_attr)
   9669       << Attr->getCond()->getSourceRange() << Attr->getMessage();
   9670 }
   9671 
   9672 /// Generates a 'note' diagnostic for an overload candidate.  We've
   9673 /// already generated a primary error at the call site.
   9674 ///
   9675 /// It really does need to be a single diagnostic with its caret
   9676 /// pointed at the candidate declaration.  Yes, this creates some
   9677 /// major challenges of technical writing.  Yes, this makes pointing
   9678 /// out problems with specific arguments quite awkward.  It's still
   9679 /// better than generating twenty screens of text for every failed
   9680 /// overload.
   9681 ///
   9682 /// It would be great to be able to express per-candidate problems
   9683 /// more richly for those diagnostic clients that cared, but we'd
   9684 /// still have to be just as careful with the default diagnostics.
   9685 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
   9686                                   unsigned NumArgs,
   9687                                   bool TakingCandidateAddress) {
   9688   FunctionDecl *Fn = Cand->Function;
   9689 
   9690   // Note deleted candidates, but only if they're viable.
   9691   if (Cand->Viable && (Fn->isDeleted() ||
   9692       S.isFunctionConsideredUnavailable(Fn))) {
   9693     std::string FnDesc;
   9694     OverloadCandidateKind FnKind =
   9695         ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
   9696 
   9697     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
   9698       << FnKind << FnDesc
   9699       << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
   9700     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9701     return;
   9702   }
   9703 
   9704   // We don't really have anything else to say about viable candidates.
   9705   if (Cand->Viable) {
   9706     S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
   9707     return;
   9708   }
   9709 
   9710   switch (Cand->FailureKind) {
   9711   case ovl_fail_too_many_arguments:
   9712   case ovl_fail_too_few_arguments:
   9713     return DiagnoseArityMismatch(S, Cand, NumArgs);
   9714 
   9715   case ovl_fail_bad_deduction:
   9716     return DiagnoseBadDeduction(S, Cand, NumArgs,
   9717                                 TakingCandidateAddress);
   9718 
   9719   case ovl_fail_illegal_constructor: {
   9720     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
   9721       << (Fn->getPrimaryTemplate() ? 1 : 0);
   9722     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
   9723     return;
   9724   }
   9725 
   9726   case ovl_fail_trivial_conversion:
   9727   case ovl_fail_bad_final_conversion:
   9728   case ovl_fail_final_conversion_not_exact:
   9729     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
   9730 
   9731   case ovl_fail_bad_conversion: {
   9732     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
   9733     for (unsigned N = Cand->NumConversions; I != N; ++I)
   9734       if (Cand->Conversions[I].isBad())
   9735         return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
   9736 
   9737     // FIXME: this currently happens when we're called from SemaInit
   9738     // when user-conversion overload fails.  Figure out how to handle
   9739     // those conditions and diagnose them well.
   9740     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
   9741   }
   9742 
   9743   case ovl_fail_bad_target:
   9744     return DiagnoseBadTarget(S, Cand);
   9745 
   9746   case ovl_fail_enable_if:
   9747     return DiagnoseFailedEnableIfAttr(S, Cand);
   9748 
   9749   case ovl_fail_addr_not_available: {
   9750     bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
   9751     (void)Available;
   9752     assert(!Available);
   9753     break;
   9754   }
   9755   }
   9756 }
   9757 
   9758 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
   9759   // Desugar the type of the surrogate down to a function type,
   9760   // retaining as many typedefs as possible while still showing
   9761   // the function type (and, therefore, its parameter types).
   9762   QualType FnType = Cand->Surrogate->getConversionType();
   9763   bool isLValueReference = false;
   9764   bool isRValueReference = false;
   9765   bool isPointer = false;
   9766   if (const LValueReferenceType *FnTypeRef =
   9767         FnType->getAs<LValueReferenceType>()) {
   9768     FnType = FnTypeRef->getPointeeType();
   9769     isLValueReference = true;
   9770   } else if (const RValueReferenceType *FnTypeRef =
   9771                FnType->getAs<RValueReferenceType>()) {
   9772     FnType = FnTypeRef->getPointeeType();
   9773     isRValueReference = true;
   9774   }
   9775   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
   9776     FnType = FnTypePtr->getPointeeType();
   9777     isPointer = true;
   9778   }
   9779   // Desugar down to a function type.
   9780   FnType = QualType(FnType->getAs<FunctionType>(), 0);
   9781   // Reconstruct the pointer/reference as appropriate.
   9782   if (isPointer) FnType = S.Context.getPointerType(FnType);
   9783   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
   9784   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
   9785 
   9786   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
   9787     << FnType;
   9788 }
   9789 
   9790 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
   9791                                          SourceLocation OpLoc,
   9792                                          OverloadCandidate *Cand) {
   9793   assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
   9794   std::string TypeStr("operator");
   9795   TypeStr += Opc;
   9796   TypeStr += "(";
   9797   TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
   9798   if (Cand->NumConversions == 1) {
   9799     TypeStr += ")";
   9800     S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
   9801   } else {
   9802     TypeStr += ", ";
   9803     TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
   9804     TypeStr += ")";
   9805     S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
   9806   }
   9807 }
   9808 
   9809 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
   9810                                          OverloadCandidate *Cand) {
   9811   unsigned NoOperands = Cand->NumConversions;
   9812   for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
   9813     const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
   9814     if (ICS.isBad()) break; // all meaningless after first invalid
   9815     if (!ICS.isAmbiguous()) continue;
   9816 
   9817     ICS.DiagnoseAmbiguousConversion(
   9818         S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
   9819   }
   9820 }
   9821 
   9822 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
   9823   if (Cand->Function)
   9824     return Cand->Function->getLocation();
   9825   if (Cand->IsSurrogate)
   9826     return Cand->Surrogate->getLocation();
   9827   return SourceLocation();
   9828 }
   9829 
   9830 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
   9831   switch ((Sema::TemplateDeductionResult)DFI.Result) {
   9832   case Sema::TDK_Success:
   9833     llvm_unreachable("TDK_success while diagnosing bad deduction");
   9834 
   9835   case Sema::TDK_Invalid:
   9836   case Sema::TDK_Incomplete:
   9837     return 1;
   9838 
   9839   case Sema::TDK_Underqualified:
   9840   case Sema::TDK_Inconsistent:
   9841     return 2;
   9842 
   9843   case Sema::TDK_SubstitutionFailure:
   9844   case Sema::TDK_DeducedMismatch:
   9845   case Sema::TDK_NonDeducedMismatch:
   9846   case Sema::TDK_MiscellaneousDeductionFailure:
   9847     return 3;
   9848 
   9849   case Sema::TDK_InstantiationDepth:
   9850   case Sema::TDK_FailedOverloadResolution:
   9851     return 4;
   9852 
   9853   case Sema::TDK_InvalidExplicitArguments:
   9854     return 5;
   9855 
   9856   case Sema::TDK_TooManyArguments:
   9857   case Sema::TDK_TooFewArguments:
   9858     return 6;
   9859   }
   9860   llvm_unreachable("Unhandled deduction result");
   9861 }
   9862 
   9863 namespace {
   9864 struct CompareOverloadCandidatesForDisplay {
   9865   Sema &S;
   9866   SourceLocation Loc;
   9867   size_t NumArgs;
   9868 
   9869   CompareOverloadCandidatesForDisplay(Sema &S, SourceLocation Loc, size_t nArgs)
   9870       : S(S), NumArgs(nArgs) {}
   9871 
   9872   bool operator()(const OverloadCandidate *L,
   9873                   const OverloadCandidate *R) {
   9874     // Fast-path this check.
   9875     if (L == R) return false;
   9876 
   9877     // Order first by viability.
   9878     if (L->Viable) {
   9879       if (!R->Viable) return true;
   9880 
   9881       // TODO: introduce a tri-valued comparison for overload
   9882       // candidates.  Would be more worthwhile if we had a sort
   9883       // that could exploit it.
   9884       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
   9885       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
   9886     } else if (R->Viable)
   9887       return false;
   9888 
   9889     assert(L->Viable == R->Viable);
   9890 
   9891     // Criteria by which we can sort non-viable candidates:
   9892     if (!L->Viable) {
   9893       // 1. Arity mismatches come after other candidates.
   9894       if (L->FailureKind == ovl_fail_too_many_arguments ||
   9895           L->FailureKind == ovl_fail_too_few_arguments) {
   9896         if (R->FailureKind == ovl_fail_too_many_arguments ||
   9897             R->FailureKind == ovl_fail_too_few_arguments) {
   9898           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
   9899           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
   9900           if (LDist == RDist) {
   9901             if (L->FailureKind == R->FailureKind)
   9902               // Sort non-surrogates before surrogates.
   9903               return !L->IsSurrogate && R->IsSurrogate;
   9904             // Sort candidates requiring fewer parameters than there were
   9905             // arguments given after candidates requiring more parameters
   9906             // than there were arguments given.
   9907             return L->FailureKind == ovl_fail_too_many_arguments;
   9908           }
   9909           return LDist < RDist;
   9910         }
   9911         return false;
   9912       }
   9913       if (R->FailureKind == ovl_fail_too_many_arguments ||
   9914           R->FailureKind == ovl_fail_too_few_arguments)
   9915         return true;
   9916 
   9917       // 2. Bad conversions come first and are ordered by the number
   9918       // of bad conversions and quality of good conversions.
   9919       if (L->FailureKind == ovl_fail_bad_conversion) {
   9920         if (R->FailureKind != ovl_fail_bad_conversion)
   9921           return true;
   9922 
   9923         // The conversion that can be fixed with a smaller number of changes,
   9924         // comes first.
   9925         unsigned numLFixes = L->Fix.NumConversionsFixed;
   9926         unsigned numRFixes = R->Fix.NumConversionsFixed;
   9927         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
   9928         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
   9929         if (numLFixes != numRFixes) {
   9930           return numLFixes < numRFixes;
   9931         }
   9932 
   9933         // If there's any ordering between the defined conversions...
   9934         // FIXME: this might not be transitive.
   9935         assert(L->NumConversions == R->NumConversions);
   9936 
   9937         int leftBetter = 0;
   9938         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
   9939         for (unsigned E = L->NumConversions; I != E; ++I) {
   9940           switch (CompareImplicitConversionSequences(S, Loc,
   9941                                                      L->Conversions[I],
   9942                                                      R->Conversions[I])) {
   9943           case ImplicitConversionSequence::Better:
   9944             leftBetter++;
   9945             break;
   9946 
   9947           case ImplicitConversionSequence::Worse:
   9948             leftBetter--;
   9949             break;
   9950 
   9951           case ImplicitConversionSequence::Indistinguishable:
   9952             break;
   9953           }
   9954         }
   9955         if (leftBetter > 0) return true;
   9956         if (leftBetter < 0) return false;
   9957 
   9958       } else if (R->FailureKind == ovl_fail_bad_conversion)
   9959         return false;
   9960 
   9961       if (L->FailureKind == ovl_fail_bad_deduction) {
   9962         if (R->FailureKind != ovl_fail_bad_deduction)
   9963           return true;
   9964 
   9965         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
   9966           return RankDeductionFailure(L->DeductionFailure)
   9967                < RankDeductionFailure(R->DeductionFailure);
   9968       } else if (R->FailureKind == ovl_fail_bad_deduction)
   9969         return false;
   9970 
   9971       // TODO: others?
   9972     }
   9973 
   9974     // Sort everything else by location.
   9975     SourceLocation LLoc = GetLocationForCandidate(L);
   9976     SourceLocation RLoc = GetLocationForCandidate(R);
   9977 
   9978     // Put candidates without locations (e.g. builtins) at the end.
   9979     if (LLoc.isInvalid()) return false;
   9980     if (RLoc.isInvalid()) return true;
   9981 
   9982     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
   9983   }
   9984 };
   9985 }
   9986 
   9987 /// CompleteNonViableCandidate - Normally, overload resolution only
   9988 /// computes up to the first. Produces the FixIt set if possible.
   9989 static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
   9990                                        ArrayRef<Expr *> Args) {
   9991   assert(!Cand->Viable);
   9992 
   9993   // Don't do anything on failures other than bad conversion.
   9994   if (Cand->FailureKind != ovl_fail_bad_conversion) return;
   9995 
   9996   // We only want the FixIts if all the arguments can be corrected.
   9997   bool Unfixable = false;
   9998   // Use a implicit copy initialization to check conversion fixes.
   9999   Cand->Fix.setConversionChecker(TryCopyInitialization);
   10000 
   10001   // Skip forward to the first bad conversion.
   10002   unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
   10003   unsigned ConvCount = Cand->NumConversions;
   10004   while (true) {
   10005     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
   10006     ConvIdx++;
   10007     if (Cand->Conversions[ConvIdx - 1].isBad()) {
   10008       Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
   10009       break;
   10010     }
   10011   }
   10012 
   10013   if (ConvIdx == ConvCount)
   10014     return;
   10015 
   10016   assert(!Cand->Conversions[ConvIdx].isInitialized() &&
   10017          "remaining conversion is initialized?");
   10018 
   10019   // FIXME: this should probably be preserved from the overload
   10020   // operation somehow.
   10021   bool SuppressUserConversions = false;
   10022 
   10023   const FunctionProtoType* Proto;
   10024   unsigned ArgIdx = ConvIdx;
   10025 
   10026   if (Cand->IsSurrogate) {
   10027     QualType ConvType
   10028       = Cand->Surrogate->getConversionType().getNonReferenceType();
   10029     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   10030       ConvType = ConvPtrType->getPointeeType();
   10031     Proto = ConvType->getAs<FunctionProtoType>();
   10032     ArgIdx--;
   10033   } else if (Cand->Function) {
   10034     Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
   10035     if (isa<CXXMethodDecl>(Cand->Function) &&
   10036         !isa<CXXConstructorDecl>(Cand->Function))
   10037       ArgIdx--;
   10038   } else {
   10039     // Builtin binary operator with a bad first conversion.
   10040     assert(ConvCount <= 3);
   10041     for (; ConvIdx != ConvCount; ++ConvIdx)
   10042       Cand->Conversions[ConvIdx]
   10043         = TryCopyInitialization(S, Args[ConvIdx],
   10044                                 Cand->BuiltinTypes.ParamTypes[ConvIdx],
   10045                                 SuppressUserConversions,
   10046                                 /*InOverloadResolution*/ true,
   10047                                 /*AllowObjCWritebackConversion=*/
   10048                                   S.getLangOpts().ObjCAutoRefCount);
   10049     return;
   10050   }
   10051 
   10052   // Fill in the rest of the conversions.
   10053   unsigned NumParams = Proto->getNumParams();
   10054   for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
   10055     if (ArgIdx < NumParams) {
   10056       Cand->Conversions[ConvIdx] = TryCopyInitialization(
   10057           S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
   10058           /*InOverloadResolution=*/true,
   10059           /*AllowObjCWritebackConversion=*/
   10060           S.getLangOpts().ObjCAutoRefCount);
   10061       // Store the FixIt in the candidate if it exists.
   10062       if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
   10063         Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
   10064     }
   10065     else
   10066       Cand->Conversions[ConvIdx].setEllipsis();
   10067   }
   10068 }
   10069 
   10070 /// PrintOverloadCandidates - When overload resolution fails, prints
   10071 /// diagnostic messages containing the candidates in the candidate
   10072 /// set.
   10073 void OverloadCandidateSet::NoteCandidates(Sema &S,
   10074                                           OverloadCandidateDisplayKind OCD,
   10075                                           ArrayRef<Expr *> Args,
   10076                                           StringRef Opc,
   10077                                           SourceLocation OpLoc) {
   10078   // Sort the candidates by viability and position.  Sorting directly would
   10079   // be prohibitive, so we make a set of pointers and sort those.
   10080   SmallVector<OverloadCandidate*, 32> Cands;
   10081   if (OCD == OCD_AllCandidates) Cands.reserve(size());
   10082   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
   10083     if (Cand->Viable)
   10084       Cands.push_back(Cand);
   10085     else if (OCD == OCD_AllCandidates) {
   10086       CompleteNonViableCandidate(S, Cand, Args);
   10087       if (Cand->Function || Cand->IsSurrogate)
   10088         Cands.push_back(Cand);
   10089       // Otherwise, this a non-viable builtin candidate.  We do not, in general,
   10090       // want to list every possible builtin candidate.
   10091     }
   10092   }
   10093 
   10094   std::sort(Cands.begin(), Cands.end(),
   10095             CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size()));
   10096 
   10097   bool ReportedAmbiguousConversions = false;
   10098 
   10099   SmallVectorImpl<OverloadCandidate*>::iterator I, E;
   10100   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   10101   unsigned CandsShown = 0;
   10102   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
   10103     OverloadCandidate *Cand = *I;
   10104 
   10105     // Set an arbitrary limit on the number of candidate functions we'll spam
   10106     // the user with.  FIXME: This limit should depend on details of the
   10107     // candidate list.
   10108     if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
   10109       break;
   10110     }
   10111     ++CandsShown;
   10112 
   10113     if (Cand->Function)
   10114       NoteFunctionCandidate(S, Cand, Args.size(),
   10115                             /*TakingCandidateAddress=*/false);
   10116     else if (Cand->IsSurrogate)
   10117       NoteSurrogateCandidate(S, Cand);
   10118     else {
   10119       assert(Cand->Viable &&
   10120              "Non-viable built-in candidates are not added to Cands.");
   10121       // Generally we only see ambiguities including viable builtin
   10122       // operators if overload resolution got screwed up by an
   10123       // ambiguous user-defined conversion.
   10124       //
   10125       // FIXME: It's quite possible for different conversions to see
   10126       // different ambiguities, though.
   10127       if (!ReportedAmbiguousConversions) {
   10128         NoteAmbiguousUserConversions(S, OpLoc, Cand);
   10129         ReportedAmbiguousConversions = true;
   10130       }
   10131 
   10132       // If this is a viable builtin, print it.
   10133       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
   10134     }
   10135   }
   10136 
   10137   if (I != E)
   10138     S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
   10139 }
   10140 
   10141 static SourceLocation
   10142 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
   10143   return Cand->Specialization ? Cand->Specialization->getLocation()
   10144                               : SourceLocation();
   10145 }
   10146 
   10147 namespace {
   10148 struct CompareTemplateSpecCandidatesForDisplay {
   10149   Sema &S;
   10150   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
   10151 
   10152   bool operator()(const TemplateSpecCandidate *L,
   10153                   const TemplateSpecCandidate *R) {
   10154     // Fast-path this check.
   10155     if (L == R)
   10156       return false;
   10157 
   10158     // Assuming that both candidates are not matches...
   10159 
   10160     // Sort by the ranking of deduction failures.
   10161     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
   10162       return RankDeductionFailure(L->DeductionFailure) <
   10163              RankDeductionFailure(R->DeductionFailure);
   10164 
   10165     // Sort everything else by location.
   10166     SourceLocation LLoc = GetLocationForCandidate(L);
   10167     SourceLocation RLoc = GetLocationForCandidate(R);
   10168 
   10169     // Put candidates without locations (e.g. builtins) at the end.
   10170     if (LLoc.isInvalid())
   10171       return false;
   10172     if (RLoc.isInvalid())
   10173       return true;
   10174 
   10175     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
   10176   }
   10177 };
   10178 }
   10179 
   10180 /// Diagnose a template argument deduction failure.
   10181 /// We are treating these failures as overload failures due to bad
   10182 /// deductions.
   10183 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
   10184                                                  bool ForTakingAddress) {
   10185   DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
   10186                        DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
   10187 }
   10188 
   10189 void TemplateSpecCandidateSet::destroyCandidates() {
   10190   for (iterator i = begin(), e = end(); i != e; ++i) {
   10191     i->DeductionFailure.Destroy();
   10192   }
   10193 }
   10194 
   10195 void TemplateSpecCandidateSet::clear() {
   10196   destroyCandidates();
   10197   Candidates.clear();
   10198 }
   10199 
   10200 /// NoteCandidates - When no template specialization match is found, prints
   10201 /// diagnostic messages containing the non-matching specializations that form
   10202 /// the candidate set.
   10203 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
   10204 /// OCD == OCD_AllCandidates and Cand->Viable == false.
   10205 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
   10206   // Sort the candidates by position (assuming no candidate is a match).
   10207   // Sorting directly would be prohibitive, so we make a set of pointers
   10208   // and sort those.
   10209   SmallVector<TemplateSpecCandidate *, 32> Cands;
   10210   Cands.reserve(size());
   10211   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
   10212     if (Cand->Specialization)
   10213       Cands.push_back(Cand);
   10214     // Otherwise, this is a non-matching builtin candidate.  We do not,
   10215     // in general, want to list every possible builtin candidate.
   10216   }
   10217 
   10218   std::sort(Cands.begin(), Cands.end(),
   10219             CompareTemplateSpecCandidatesForDisplay(S));
   10220 
   10221   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
   10222   // for generalization purposes (?).
   10223   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   10224 
   10225   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
   10226   unsigned CandsShown = 0;
   10227   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
   10228     TemplateSpecCandidate *Cand = *I;
   10229 
   10230     // Set an arbitrary limit on the number of candidates we'll spam
   10231     // the user with.  FIXME: This limit should depend on details of the
   10232     // candidate list.
   10233     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
   10234       break;
   10235     ++CandsShown;
   10236 
   10237     assert(Cand->Specialization &&
   10238            "Non-matching built-in candidates are not added to Cands.");
   10239     Cand->NoteDeductionFailure(S, ForTakingAddress);
   10240   }
   10241 
   10242   if (I != E)
   10243     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
   10244 }
   10245 
   10246 // [PossiblyAFunctionType]  -->   [Return]
   10247 // NonFunctionType --> NonFunctionType
   10248 // R (A) --> R(A)
   10249 // R (*)(A) --> R (A)
   10250 // R (&)(A) --> R (A)
   10251 // R (S::*)(A) --> R (A)
   10252 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
   10253   QualType Ret = PossiblyAFunctionType;
   10254   if (const PointerType *ToTypePtr =
   10255     PossiblyAFunctionType->getAs<PointerType>())
   10256     Ret = ToTypePtr->getPointeeType();
   10257   else if (const ReferenceType *ToTypeRef =
   10258     PossiblyAFunctionType->getAs<ReferenceType>())
   10259     Ret = ToTypeRef->getPointeeType();
   10260   else if (const MemberPointerType *MemTypePtr =
   10261     PossiblyAFunctionType->getAs<MemberPointerType>())
   10262     Ret = MemTypePtr->getPointeeType();
   10263   Ret =
   10264     Context.getCanonicalType(Ret).getUnqualifiedType();
   10265   return Ret;
   10266 }
   10267 
   10268 namespace {
   10269 // A helper class to help with address of function resolution
   10270 // - allows us to avoid passing around all those ugly parameters
   10271 class AddressOfFunctionResolver {
   10272   Sema& S;
   10273   Expr* SourceExpr;
   10274   const QualType& TargetType;
   10275   QualType TargetFunctionType; // Extracted function type from target type
   10276 
   10277   bool Complain;
   10278   //DeclAccessPair& ResultFunctionAccessPair;
   10279   ASTContext& Context;
   10280 
   10281   bool TargetTypeIsNonStaticMemberFunction;
   10282   bool FoundNonTemplateFunction;
   10283   bool StaticMemberFunctionFromBoundPointer;
   10284   bool HasComplained;
   10285 
   10286   OverloadExpr::FindResult OvlExprInfo;
   10287   OverloadExpr *OvlExpr;
   10288   TemplateArgumentListInfo OvlExplicitTemplateArgs;
   10289   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
   10290   TemplateSpecCandidateSet FailedCandidates;
   10291 
   10292 public:
   10293   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
   10294                             const QualType &TargetType, bool Complain)
   10295       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
   10296         Complain(Complain), Context(S.getASTContext()),
   10297         TargetTypeIsNonStaticMemberFunction(
   10298             !!TargetType->getAs<MemberPointerType>()),
   10299         FoundNonTemplateFunction(false),
   10300         StaticMemberFunctionFromBoundPointer(false),
   10301         HasComplained(false),
   10302         OvlExprInfo(OverloadExpr::find(SourceExpr)),
   10303         OvlExpr(OvlExprInfo.Expression),
   10304         FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
   10305     ExtractUnqualifiedFunctionTypeFromTargetType();
   10306 
   10307     if (TargetFunctionType->isFunctionType()) {
   10308       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
   10309         if (!UME->isImplicitAccess() &&
   10310             !S.ResolveSingleFunctionTemplateSpecialization(UME))
   10311           StaticMemberFunctionFromBoundPointer = true;
   10312     } else if (OvlExpr->hasExplicitTemplateArgs()) {
   10313       DeclAccessPair dap;
   10314       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
   10315               OvlExpr, false, &dap)) {
   10316         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   10317           if (!Method->isStatic()) {
   10318             // If the target type is a non-function type and the function found
   10319             // is a non-static member function, pretend as if that was the
   10320             // target, it's the only possible type to end up with.
   10321             TargetTypeIsNonStaticMemberFunction = true;
   10322 
   10323             // And skip adding the function if its not in the proper form.
   10324             // We'll diagnose this due to an empty set of functions.
   10325             if (!OvlExprInfo.HasFormOfMemberPointer)
   10326               return;
   10327           }
   10328 
   10329         Matches.push_back(std::make_pair(dap, Fn));
   10330       }
   10331       return;
   10332     }
   10333 
   10334     if (OvlExpr->hasExplicitTemplateArgs())
   10335       OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
   10336 
   10337     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
   10338       // C++ [over.over]p4:
   10339       //   If more than one function is selected, [...]
   10340       if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
   10341         if (FoundNonTemplateFunction)
   10342           EliminateAllTemplateMatches();
   10343         else
   10344           EliminateAllExceptMostSpecializedTemplate();
   10345       }
   10346     }
   10347 
   10348     if (S.getLangOpts().CUDA && Matches.size() > 1)
   10349       EliminateSuboptimalCudaMatches();
   10350   }
   10351 
   10352   bool hasComplained() const { return HasComplained; }
   10353 
   10354 private:
   10355   bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
   10356     QualType Discard;
   10357     return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
   10358            S.IsNoReturnConversion(FD->getType(), TargetFunctionType, Discard);
   10359   }
   10360 
   10361   /// \return true if A is considered a better overload candidate for the
   10362   /// desired type than B.
   10363   bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
   10364     // If A doesn't have exactly the correct type, we don't want to classify it
   10365     // as "better" than anything else. This way, the user is required to
   10366     // disambiguate for us if there are multiple candidates and no exact match.
   10367     return candidateHasExactlyCorrectType(A) &&
   10368            (!candidateHasExactlyCorrectType(B) ||
   10369             compareEnableIfAttrs(S, A, B) == Comparison::Better);
   10370   }
   10371 
   10372   /// \return true if we were able to eliminate all but one overload candidate,
   10373   /// false otherwise.
   10374   bool eliminiateSuboptimalOverloadCandidates() {
   10375     // Same algorithm as overload resolution -- one pass to pick the "best",
   10376     // another pass to be sure that nothing is better than the best.
   10377     auto Best = Matches.begin();
   10378     for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
   10379       if (isBetterCandidate(I->second, Best->second))
   10380         Best = I;
   10381 
   10382     const FunctionDecl *BestFn = Best->second;
   10383     auto IsBestOrInferiorToBest = [this, BestFn](
   10384         const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
   10385       return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
   10386     };
   10387 
   10388     // Note: We explicitly leave Matches unmodified if there isn't a clear best
   10389     // option, so we can potentially give the user a better error
   10390     if (!std::all_of(Matches.begin(), Matches.end(), IsBestOrInferiorToBest))
   10391       return false;
   10392     Matches[0] = *Best;
   10393     Matches.resize(1);
   10394     return true;
   10395   }
   10396 
   10397   bool isTargetTypeAFunction() const {
   10398     return TargetFunctionType->isFunctionType();
   10399   }
   10400 
   10401   // [ToType]     [Return]
   10402 
   10403   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
   10404   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
   10405   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
   10406   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
   10407     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
   10408   }
   10409 
   10410   // return true if any matching specializations were found
   10411   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
   10412                                    const DeclAccessPair& CurAccessFunPair) {
   10413     if (CXXMethodDecl *Method
   10414               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
   10415       // Skip non-static function templates when converting to pointer, and
   10416       // static when converting to member pointer.
   10417       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
   10418         return false;
   10419     }
   10420     else if (TargetTypeIsNonStaticMemberFunction)
   10421       return false;
   10422 
   10423     // C++ [over.over]p2:
   10424     //   If the name is a function template, template argument deduction is
   10425     //   done (14.8.2.2), and if the argument deduction succeeds, the
   10426     //   resulting template argument list is used to generate a single
   10427     //   function template specialization, which is added to the set of
   10428     //   overloaded functions considered.
   10429     FunctionDecl *Specialization = nullptr;
   10430     TemplateDeductionInfo Info(FailedCandidates.getLocation());
   10431     if (Sema::TemplateDeductionResult Result
   10432           = S.DeduceTemplateArguments(FunctionTemplate,
   10433                                       &OvlExplicitTemplateArgs,
   10434                                       TargetFunctionType, Specialization,
   10435                                       Info, /*InOverloadResolution=*/true)) {
   10436       // Make a note of the failed deduction for diagnostics.
   10437       FailedCandidates.addCandidate()
   10438           .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
   10439                MakeDeductionFailureInfo(Context, Result, Info));
   10440       return false;
   10441     }
   10442 
   10443     // Template argument deduction ensures that we have an exact match or
   10444     // compatible pointer-to-function arguments that would be adjusted by ICS.
   10445     // This function template specicalization works.
   10446     assert(S.isSameOrCompatibleFunctionType(
   10447               Context.getCanonicalType(Specialization->getType()),
   10448               Context.getCanonicalType(TargetFunctionType)));
   10449 
   10450     if (!S.checkAddressOfFunctionIsAvailable(Specialization))
   10451       return false;
   10452 
   10453     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
   10454     return true;
   10455   }
   10456 
   10457   bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
   10458                                       const DeclAccessPair& CurAccessFunPair) {
   10459     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
   10460       // Skip non-static functions when converting to pointer, and static
   10461       // when converting to member pointer.
   10462       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
   10463         return false;
   10464     }
   10465     else if (TargetTypeIsNonStaticMemberFunction)
   10466       return false;
   10467 
   10468     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
   10469       if (S.getLangOpts().CUDA)
   10470         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
   10471           if (!Caller->isImplicit() && S.CheckCUDATarget(Caller, FunDecl))
   10472             return false;
   10473 
   10474       // If any candidate has a placeholder return type, trigger its deduction
   10475       // now.
   10476       if (S.getLangOpts().CPlusPlus14 &&
   10477           FunDecl->getReturnType()->isUndeducedType() &&
   10478           S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain)) {
   10479         HasComplained |= Complain;
   10480         return false;
   10481       }
   10482 
   10483       if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
   10484         return false;
   10485 
   10486       // If we're in C, we need to support types that aren't exactly identical.
   10487       if (!S.getLangOpts().CPlusPlus ||
   10488           candidateHasExactlyCorrectType(FunDecl)) {
   10489         Matches.push_back(std::make_pair(
   10490             CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
   10491         FoundNonTemplateFunction = true;
   10492         return true;
   10493       }
   10494     }
   10495 
   10496     return false;
   10497   }
   10498 
   10499   bool FindAllFunctionsThatMatchTargetTypeExactly() {
   10500     bool Ret = false;
   10501 
   10502     // If the overload expression doesn't have the form of a pointer to
   10503     // member, don't try to convert it to a pointer-to-member type.
   10504     if (IsInvalidFormOfPointerToMemberFunction())
   10505       return false;
   10506 
   10507     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   10508                                E = OvlExpr->decls_end();
   10509          I != E; ++I) {
   10510       // Look through any using declarations to find the underlying function.
   10511       NamedDecl *Fn = (*I)->getUnderlyingDecl();
   10512 
   10513       // C++ [over.over]p3:
   10514       //   Non-member functions and static member functions match
   10515       //   targets of type "pointer-to-function" or "reference-to-function."
   10516       //   Nonstatic member functions match targets of
   10517       //   type "pointer-to-member-function."
   10518       // Note that according to DR 247, the containing class does not matter.
   10519       if (FunctionTemplateDecl *FunctionTemplate
   10520                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
   10521         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
   10522           Ret = true;
   10523       }
   10524       // If we have explicit template arguments supplied, skip non-templates.
   10525       else if (!OvlExpr->hasExplicitTemplateArgs() &&
   10526                AddMatchingNonTemplateFunction(Fn, I.getPair()))
   10527         Ret = true;
   10528     }
   10529     assert(Ret || Matches.empty());
   10530     return Ret;
   10531   }
   10532 
   10533   void EliminateAllExceptMostSpecializedTemplate() {
   10534     //   [...] and any given function template specialization F1 is
   10535     //   eliminated if the set contains a second function template
   10536     //   specialization whose function template is more specialized
   10537     //   than the function template of F1 according to the partial
   10538     //   ordering rules of 14.5.5.2.
   10539 
   10540     // The algorithm specified above is quadratic. We instead use a
   10541     // two-pass algorithm (similar to the one used to identify the
   10542     // best viable function in an overload set) that identifies the
   10543     // best function template (if it exists).
   10544 
   10545     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
   10546     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
   10547       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
   10548 
   10549     // TODO: It looks like FailedCandidates does not serve much purpose
   10550     // here, since the no_viable diagnostic has index 0.
   10551     UnresolvedSetIterator Result = S.getMostSpecialized(
   10552         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
   10553         SourceExpr->getLocStart(), S.PDiag(),
   10554         S.PDiag(diag::err_addr_ovl_ambiguous)
   10555           << Matches[0].second->getDeclName(),
   10556         S.PDiag(diag::note_ovl_candidate)
   10557           << (unsigned)oc_function_template,
   10558         Complain, TargetFunctionType);
   10559 
   10560     if (Result != MatchesCopy.end()) {
   10561       // Make it the first and only element
   10562       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
   10563       Matches[0].second = cast<FunctionDecl>(*Result);
   10564       Matches.resize(1);
   10565     } else
   10566       HasComplained |= Complain;
   10567   }
   10568 
   10569   void EliminateAllTemplateMatches() {
   10570     //   [...] any function template specializations in the set are
   10571     //   eliminated if the set also contains a non-template function, [...]
   10572     for (unsigned I = 0, N = Matches.size(); I != N; ) {
   10573       if (Matches[I].second->getPrimaryTemplate() == nullptr)
   10574         ++I;
   10575       else {
   10576         Matches[I] = Matches[--N];
   10577         Matches.resize(N);
   10578       }
   10579     }
   10580   }
   10581 
   10582   void EliminateSuboptimalCudaMatches() {
   10583     S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
   10584   }
   10585 
   10586 public:
   10587   void ComplainNoMatchesFound() const {
   10588     assert(Matches.empty());
   10589     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
   10590         << OvlExpr->getName() << TargetFunctionType
   10591         << OvlExpr->getSourceRange();
   10592     if (FailedCandidates.empty())
   10593       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
   10594                                   /*TakingAddress=*/true);
   10595     else {
   10596       // We have some deduction failure messages. Use them to diagnose
   10597       // the function templates, and diagnose the non-template candidates
   10598       // normally.
   10599       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   10600                                  IEnd = OvlExpr->decls_end();
   10601            I != IEnd; ++I)
   10602         if (FunctionDecl *Fun =
   10603                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
   10604           if (!functionHasPassObjectSizeParams(Fun))
   10605             S.NoteOverloadCandidate(*I, Fun, TargetFunctionType,
   10606                                     /*TakingAddress=*/true);
   10607       FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
   10608     }
   10609   }
   10610 
   10611   bool IsInvalidFormOfPointerToMemberFunction() const {
   10612     return TargetTypeIsNonStaticMemberFunction &&
   10613       !OvlExprInfo.HasFormOfMemberPointer;
   10614   }
   10615 
   10616   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
   10617       // TODO: Should we condition this on whether any functions might
   10618       // have matched, or is it more appropriate to do that in callers?
   10619       // TODO: a fixit wouldn't hurt.
   10620       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
   10621         << TargetType << OvlExpr->getSourceRange();
   10622   }
   10623 
   10624   bool IsStaticMemberFunctionFromBoundPointer() const {
   10625     return StaticMemberFunctionFromBoundPointer;
   10626   }
   10627 
   10628   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
   10629     S.Diag(OvlExpr->getLocStart(),
   10630            diag::err_invalid_form_pointer_member_function)
   10631       << OvlExpr->getSourceRange();
   10632   }
   10633 
   10634   void ComplainOfInvalidConversion() const {
   10635     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
   10636       << OvlExpr->getName() << TargetType;
   10637   }
   10638 
   10639   void ComplainMultipleMatchesFound() const {
   10640     assert(Matches.size() > 1);
   10641     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
   10642       << OvlExpr->getName()
   10643       << OvlExpr->getSourceRange();
   10644     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
   10645                                 /*TakingAddress=*/true);
   10646   }
   10647 
   10648   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
   10649 
   10650   int getNumMatches() const { return Matches.size(); }
   10651 
   10652   FunctionDecl* getMatchingFunctionDecl() const {
   10653     if (Matches.size() != 1) return nullptr;
   10654     return Matches[0].second;
   10655   }
   10656 
   10657   const DeclAccessPair* getMatchingFunctionAccessPair() const {
   10658     if (Matches.size() != 1) return nullptr;
   10659     return &Matches[0].first;
   10660   }
   10661 };
   10662 }
   10663 
   10664 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
   10665 /// an overloaded function (C++ [over.over]), where @p From is an
   10666 /// expression with overloaded function type and @p ToType is the type
   10667 /// we're trying to resolve to. For example:
   10668 ///
   10669 /// @code
   10670 /// int f(double);
   10671 /// int f(int);
   10672 ///
   10673 /// int (*pfd)(double) = f; // selects f(double)
   10674 /// @endcode
   10675 ///
   10676 /// This routine returns the resulting FunctionDecl if it could be
   10677 /// resolved, and NULL otherwise. When @p Complain is true, this
   10678 /// routine will emit diagnostics if there is an error.
   10679 FunctionDecl *
   10680 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
   10681                                          QualType TargetType,
   10682                                          bool Complain,
   10683                                          DeclAccessPair &FoundResult,
   10684                                          bool *pHadMultipleCandidates) {
   10685   assert(AddressOfExpr->getType() == Context.OverloadTy);
   10686 
   10687   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
   10688                                      Complain);
   10689   int NumMatches = Resolver.getNumMatches();
   10690   FunctionDecl *Fn = nullptr;
   10691   bool ShouldComplain = Complain && !Resolver.hasComplained();
   10692   if (NumMatches == 0 && ShouldComplain) {
   10693     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
   10694       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
   10695     else
   10696       Resolver.ComplainNoMatchesFound();
   10697   }
   10698   else if (NumMatches > 1 && ShouldComplain)
   10699     Resolver.ComplainMultipleMatchesFound();
   10700   else if (NumMatches == 1) {
   10701     Fn = Resolver.getMatchingFunctionDecl();
   10702     assert(Fn);
   10703     FoundResult = *Resolver.getMatchingFunctionAccessPair();
   10704     if (Complain) {
   10705       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
   10706         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
   10707       else
   10708         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
   10709     }
   10710   }
   10711 
   10712   if (pHadMultipleCandidates)
   10713     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
   10714   return Fn;
   10715 }
   10716 
   10717 /// \brief Given an expression that refers to an overloaded function, try to
   10718 /// resolve that function to a single function that can have its address taken.
   10719 /// This will modify `Pair` iff it returns non-null.
   10720 ///
   10721 /// This routine can only realistically succeed if all but one candidates in the
   10722 /// overload set for SrcExpr cannot have their addresses taken.
   10723 FunctionDecl *
   10724 Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
   10725                                                   DeclAccessPair &Pair) {
   10726   OverloadExpr::FindResult R = OverloadExpr::find(E);
   10727   OverloadExpr *Ovl = R.Expression;
   10728   FunctionDecl *Result = nullptr;
   10729   DeclAccessPair DAP;
   10730   // Don't use the AddressOfResolver because we're specifically looking for
   10731   // cases where we have one overload candidate that lacks
   10732   // enable_if/pass_object_size/...
   10733   for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
   10734     auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
   10735     if (!FD)
   10736       return nullptr;
   10737 
   10738     if (!checkAddressOfFunctionIsAvailable(FD))
   10739       continue;
   10740 
   10741     // We have more than one result; quit.
   10742     if (Result)
   10743       return nullptr;
   10744     DAP = I.getPair();
   10745     Result = FD;
   10746   }
   10747 
   10748   if (Result)
   10749     Pair = DAP;
   10750   return Result;
   10751 }
   10752 
   10753 /// \brief Given an overloaded function, tries to turn it into a non-overloaded
   10754 /// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
   10755 /// will perform access checks, diagnose the use of the resultant decl, and, if
   10756 /// necessary, perform a function-to-pointer decay.
   10757 ///
   10758 /// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
   10759 /// Otherwise, returns true. This may emit diagnostics and return true.
   10760 bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
   10761     ExprResult &SrcExpr) {
   10762   Expr *E = SrcExpr.get();
   10763   assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
   10764 
   10765   DeclAccessPair DAP;
   10766   FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
   10767   if (!Found)
   10768     return false;
   10769 
   10770   // Emitting multiple diagnostics for a function that is both inaccessible and
   10771   // unavailable is consistent with our behavior elsewhere. So, always check
   10772   // for both.
   10773   DiagnoseUseOfDecl(Found, E->getExprLoc());
   10774   CheckAddressOfMemberAccess(E, DAP);
   10775   Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
   10776   if (Fixed->getType()->isFunctionType())
   10777     SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
   10778   else
   10779     SrcExpr = Fixed;
   10780   return true;
   10781 }
   10782 
   10783 /// \brief Given an expression that refers to an overloaded function, try to
   10784 /// resolve that overloaded function expression down to a single function.
   10785 ///
   10786 /// This routine can only resolve template-ids that refer to a single function
   10787 /// template, where that template-id refers to a single template whose template
   10788 /// arguments are either provided by the template-id or have defaults,
   10789 /// as described in C++0x [temp.arg.explicit]p3.
   10790 ///
   10791 /// If no template-ids are found, no diagnostics are emitted and NULL is
   10792 /// returned.
   10793 FunctionDecl *
   10794 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
   10795                                                   bool Complain,
   10796                                                   DeclAccessPair *FoundResult) {
   10797   // C++ [over.over]p1:
   10798   //   [...] [Note: any redundant set of parentheses surrounding the
   10799   //   overloaded function name is ignored (5.1). ]
   10800   // C++ [over.over]p1:
   10801   //   [...] The overloaded function name can be preceded by the &
   10802   //   operator.
   10803 
   10804   // If we didn't actually find any template-ids, we're done.
   10805   if (!ovl->hasExplicitTemplateArgs())
   10806     return nullptr;
   10807 
   10808   TemplateArgumentListInfo ExplicitTemplateArgs;
   10809   ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
   10810   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
   10811 
   10812   // Look through all of the overloaded functions, searching for one
   10813   // whose type matches exactly.
   10814   FunctionDecl *Matched = nullptr;
   10815   for (UnresolvedSetIterator I = ovl->decls_begin(),
   10816          E = ovl->decls_end(); I != E; ++I) {
   10817     // C++0x [temp.arg.explicit]p3:
   10818     //   [...] In contexts where deduction is done and fails, or in contexts
   10819     //   where deduction is not done, if a template argument list is
   10820     //   specified and it, along with any default template arguments,
   10821     //   identifies a single function template specialization, then the
   10822     //   template-id is an lvalue for the function template specialization.
   10823     FunctionTemplateDecl *FunctionTemplate
   10824       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
   10825 
   10826     // C++ [over.over]p2:
   10827     //   If the name is a function template, template argument deduction is
   10828     //   done (14.8.2.2), and if the argument deduction succeeds, the
   10829     //   resulting template argument list is used to generate a single
   10830     //   function template specialization, which is added to the set of
   10831     //   overloaded functions considered.
   10832     FunctionDecl *Specialization = nullptr;
   10833     TemplateDeductionInfo Info(FailedCandidates.getLocation());
   10834     if (TemplateDeductionResult Result
   10835           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
   10836                                     Specialization, Info,
   10837                                     /*InOverloadResolution=*/true)) {
   10838       // Make a note of the failed deduction for diagnostics.
   10839       // TODO: Actually use the failed-deduction info?
   10840       FailedCandidates.addCandidate()
   10841           .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
   10842                MakeDeductionFailureInfo(Context, Result, Info));
   10843       continue;
   10844     }
   10845 
   10846     assert(Specialization && "no specialization and no error?");
   10847 
   10848     // Multiple matches; we can't resolve to a single declaration.
   10849     if (Matched) {
   10850       if (Complain) {
   10851         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
   10852           << ovl->getName();
   10853         NoteAllOverloadCandidates(ovl);
   10854       }
   10855       return nullptr;
   10856     }
   10857 
   10858     Matched = Specialization;
   10859     if (FoundResult) *FoundResult = I.getPair();
   10860   }
   10861 
   10862   if (Matched && getLangOpts().CPlusPlus14 &&
   10863       Matched->getReturnType()->isUndeducedType() &&
   10864       DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
   10865     return nullptr;
   10866 
   10867   return Matched;
   10868 }
   10869 
   10870 
   10871 
   10872 
   10873 // Resolve and fix an overloaded expression that can be resolved
   10874 // because it identifies a single function template specialization.
   10875 //
   10876 // Last three arguments should only be supplied if Complain = true
   10877 //
   10878 // Return true if it was logically possible to so resolve the
   10879 // expression, regardless of whether or not it succeeded.  Always
   10880 // returns true if 'complain' is set.
   10881 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
   10882                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
   10883                       bool complain, SourceRange OpRangeForComplaining,
   10884                                            QualType DestTypeForComplaining,
   10885                                             unsigned DiagIDForComplaining) {
   10886   assert(SrcExpr.get()->getType() == Context.OverloadTy);
   10887 
   10888   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
   10889 
   10890   DeclAccessPair found;
   10891   ExprResult SingleFunctionExpression;
   10892   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
   10893                            ovl.Expression, /*complain*/ false, &found)) {
   10894     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
   10895       SrcExpr = ExprError();
   10896       return true;
   10897     }
   10898 
   10899     // It is only correct to resolve to an instance method if we're
   10900     // resolving a form that's permitted to be a pointer to member.
   10901     // Otherwise we'll end up making a bound member expression, which
   10902     // is illegal in all the contexts we resolve like this.
   10903     if (!ovl.HasFormOfMemberPointer &&
   10904         isa<CXXMethodDecl>(fn) &&
   10905         cast<CXXMethodDecl>(fn)->isInstance()) {
   10906       if (!complain) return false;
   10907 
   10908       Diag(ovl.Expression->getExprLoc(),
   10909            diag::err_bound_member_function)
   10910         << 0 << ovl.Expression->getSourceRange();
   10911 
   10912       // TODO: I believe we only end up here if there's a mix of
   10913       // static and non-static candidates (otherwise the expression
   10914       // would have 'bound member' type, not 'overload' type).
   10915       // Ideally we would note which candidate was chosen and why
   10916       // the static candidates were rejected.
   10917       SrcExpr = ExprError();
   10918       return true;
   10919     }
   10920 
   10921     // Fix the expression to refer to 'fn'.
   10922     SingleFunctionExpression =
   10923         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
   10924 
   10925     // If desired, do function-to-pointer decay.
   10926     if (doFunctionPointerConverion) {
   10927       SingleFunctionExpression =
   10928         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
   10929       if (SingleFunctionExpression.isInvalid()) {
   10930         SrcExpr = ExprError();
   10931         return true;
   10932       }
   10933     }
   10934   }
   10935 
   10936   if (!SingleFunctionExpression.isUsable()) {
   10937     if (complain) {
   10938       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
   10939         << ovl.Expression->getName()
   10940         << DestTypeForComplaining
   10941         << OpRangeForComplaining
   10942         << ovl.Expression->getQualifierLoc().getSourceRange();
   10943       NoteAllOverloadCandidates(SrcExpr.get());
   10944 
   10945       SrcExpr = ExprError();
   10946       return true;
   10947     }
   10948 
   10949     return false;
   10950   }
   10951 
   10952   SrcExpr = SingleFunctionExpression;
   10953   return true;
   10954 }
   10955 
   10956 /// \brief Add a single candidate to the overload set.
   10957 static void AddOverloadedCallCandidate(Sema &S,
   10958                                        DeclAccessPair FoundDecl,
   10959                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   10960                                        ArrayRef<Expr *> Args,
   10961                                        OverloadCandidateSet &CandidateSet,
   10962                                        bool PartialOverloading,
   10963                                        bool KnownValid) {
   10964   NamedDecl *Callee = FoundDecl.getDecl();
   10965   if (isa<UsingShadowDecl>(Callee))
   10966     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
   10967 
   10968   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
   10969     if (ExplicitTemplateArgs) {
   10970       assert(!KnownValid && "Explicit template arguments?");
   10971       return;
   10972     }
   10973     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
   10974                            /*SuppressUsedConversions=*/false,
   10975                            PartialOverloading);
   10976     return;
   10977   }
   10978 
   10979   if (FunctionTemplateDecl *FuncTemplate
   10980       = dyn_cast<FunctionTemplateDecl>(Callee)) {
   10981     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
   10982                                    ExplicitTemplateArgs, Args, CandidateSet,
   10983                                    /*SuppressUsedConversions=*/false,
   10984                                    PartialOverloading);
   10985     return;
   10986   }
   10987 
   10988   assert(!KnownValid && "unhandled case in overloaded call candidate");
   10989 }
   10990 
   10991 /// \brief Add the overload candidates named by callee and/or found by argument
   10992 /// dependent lookup to the given overload set.
   10993 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
   10994                                        ArrayRef<Expr *> Args,
   10995                                        OverloadCandidateSet &CandidateSet,
   10996                                        bool PartialOverloading) {
   10997 
   10998 #ifndef NDEBUG
   10999   // Verify that ArgumentDependentLookup is consistent with the rules
   11000   // in C++0x [basic.lookup.argdep]p3:
   11001   //
   11002   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
   11003   //   and let Y be the lookup set produced by argument dependent
   11004   //   lookup (defined as follows). If X contains
   11005   //
   11006   //     -- a declaration of a class member, or
   11007   //
   11008   //     -- a block-scope function declaration that is not a
   11009   //        using-declaration, or
   11010   //
   11011   //     -- a declaration that is neither a function or a function
   11012   //        template
   11013   //
   11014   //   then Y is empty.
   11015 
   11016   if (ULE->requiresADL()) {
   11017     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
   11018            E = ULE->decls_end(); I != E; ++I) {
   11019       assert(!(*I)->getDeclContext()->isRecord());
   11020       assert(isa<UsingShadowDecl>(*I) ||
   11021              !(*I)->getDeclContext()->isFunctionOrMethod());
   11022       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
   11023     }
   11024   }
   11025 #endif
   11026 
   11027   // It would be nice to avoid this copy.
   11028   TemplateArgumentListInfo TABuffer;
   11029   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
   11030   if (ULE->hasExplicitTemplateArgs()) {
   11031     ULE->copyTemplateArgumentsInto(TABuffer);
   11032     ExplicitTemplateArgs = &TABuffer;
   11033   }
   11034 
   11035   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
   11036          E = ULE->decls_end(); I != E; ++I)
   11037     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
   11038                                CandidateSet, PartialOverloading,
   11039                                /*KnownValid*/ true);
   11040 
   11041   if (ULE->requiresADL())
   11042     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
   11043                                          Args, ExplicitTemplateArgs,
   11044                                          CandidateSet, PartialOverloading);
   11045 }
   11046 
   11047 /// Determine whether a declaration with the specified name could be moved into
   11048 /// a different namespace.
   11049 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
   11050   switch (Name.getCXXOverloadedOperator()) {
   11051   case OO_New: case OO_Array_New:
   11052   case OO_Delete: case OO_Array_Delete:
   11053     return false;
   11054 
   11055   default:
   11056     return true;
   11057   }
   11058 }
   11059 
   11060 /// Attempt to recover from an ill-formed use of a non-dependent name in a
   11061 /// template, where the non-dependent name was declared after the template
   11062 /// was defined. This is common in code written for a compilers which do not
   11063 /// correctly implement two-stage name lookup.
   11064 ///
   11065 /// Returns true if a viable candidate was found and a diagnostic was issued.
   11066 static bool
   11067 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
   11068                        const CXXScopeSpec &SS, LookupResult &R,
   11069                        OverloadCandidateSet::CandidateSetKind CSK,
   11070                        TemplateArgumentListInfo *ExplicitTemplateArgs,
   11071                        ArrayRef<Expr *> Args,
   11072                        bool *DoDiagnoseEmptyLookup = nullptr) {
   11073   if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
   11074     return false;
   11075 
   11076   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
   11077     if (DC->isTransparentContext())
   11078       continue;
   11079 
   11080     SemaRef.LookupQualifiedName(R, DC);
   11081 
   11082     if (!R.empty()) {
   11083       R.suppressDiagnostics();
   11084 
   11085       if (isa<CXXRecordDecl>(DC)) {
   11086         // Don't diagnose names we find in classes; we get much better
   11087         // diagnostics for these from DiagnoseEmptyLookup.
   11088         R.clear();
   11089         if (DoDiagnoseEmptyLookup)
   11090           *DoDiagnoseEmptyLookup = true;
   11091         return false;
   11092       }
   11093 
   11094       OverloadCandidateSet Candidates(FnLoc, CSK);
   11095       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   11096         AddOverloadedCallCandidate(SemaRef, I.getPair(),
   11097                                    ExplicitTemplateArgs, Args,
   11098                                    Candidates, false, /*KnownValid*/ false);
   11099 
   11100       OverloadCandidateSet::iterator Best;
   11101       if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
   11102         // No viable functions. Don't bother the user with notes for functions
   11103         // which don't work and shouldn't be found anyway.
   11104         R.clear();
   11105         return false;
   11106       }
   11107 
   11108       // Find the namespaces where ADL would have looked, and suggest
   11109       // declaring the function there instead.
   11110       Sema::AssociatedNamespaceSet AssociatedNamespaces;
   11111       Sema::AssociatedClassSet AssociatedClasses;
   11112       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
   11113                                                  AssociatedNamespaces,
   11114                                                  AssociatedClasses);
   11115       Sema::AssociatedNamespaceSet SuggestedNamespaces;
   11116       if (canBeDeclaredInNamespace(R.getLookupName())) {
   11117         DeclContext *Std = SemaRef.getStdNamespace();
   11118         for (Sema::AssociatedNamespaceSet::iterator
   11119                it = AssociatedNamespaces.begin(),
   11120                end = AssociatedNamespaces.end(); it != end; ++it) {
   11121           // Never suggest declaring a function within namespace 'std'.
   11122           if (Std && Std->Encloses(*it))
   11123             continue;
   11124 
   11125           // Never suggest declaring a function within a namespace with a
   11126           // reserved name, like __gnu_cxx.
   11127           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
   11128           if (NS &&
   11129               NS->getQualifiedNameAsString().find("__") != std::string::npos)
   11130             continue;
   11131 
   11132           SuggestedNamespaces.insert(*it);
   11133         }
   11134       }
   11135 
   11136       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
   11137         << R.getLookupName();
   11138       if (SuggestedNamespaces.empty()) {
   11139         SemaRef.Diag(Best->Function->getLocation(),
   11140                      diag::note_not_found_by_two_phase_lookup)
   11141           << R.getLookupName() << 0;
   11142       } else if (SuggestedNamespaces.size() == 1) {
   11143         SemaRef.Diag(Best->Function->getLocation(),
   11144                      diag::note_not_found_by_two_phase_lookup)
   11145           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
   11146       } else {
   11147         // FIXME: It would be useful to list the associated namespaces here,
   11148         // but the diagnostics infrastructure doesn't provide a way to produce
   11149         // a localized representation of a list of items.
   11150         SemaRef.Diag(Best->Function->getLocation(),
   11151                      diag::note_not_found_by_two_phase_lookup)
   11152           << R.getLookupName() << 2;
   11153       }
   11154 
   11155       // Try to recover by calling this function.
   11156       return true;
   11157     }
   11158 
   11159     R.clear();
   11160   }
   11161 
   11162   return false;
   11163 }
   11164 
   11165 /// Attempt to recover from ill-formed use of a non-dependent operator in a
   11166 /// template, where the non-dependent operator was declared after the template
   11167 /// was defined.
   11168 ///
   11169 /// Returns true if a viable candidate was found and a diagnostic was issued.
   11170 static bool
   11171 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
   11172                                SourceLocation OpLoc,
   11173                                ArrayRef<Expr *> Args) {
   11174   DeclarationName OpName =
   11175     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
   11176   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
   11177   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
   11178                                 OverloadCandidateSet::CSK_Operator,
   11179                                 /*ExplicitTemplateArgs=*/nullptr, Args);
   11180 }
   11181 
   11182 namespace {
   11183 class BuildRecoveryCallExprRAII {
   11184   Sema &SemaRef;
   11185 public:
   11186   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
   11187     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
   11188     SemaRef.IsBuildingRecoveryCallExpr = true;
   11189   }
   11190 
   11191   ~BuildRecoveryCallExprRAII() {
   11192     SemaRef.IsBuildingRecoveryCallExpr = false;
   11193   }
   11194 };
   11195 
   11196 }
   11197 
   11198 static std::unique_ptr<CorrectionCandidateCallback>
   11199 MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs,
   11200               bool HasTemplateArgs, bool AllowTypoCorrection) {
   11201   if (!AllowTypoCorrection)
   11202     return llvm::make_unique<NoTypoCorrectionCCC>();
   11203   return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs,
   11204                                                   HasTemplateArgs, ME);
   11205 }
   11206 
   11207 /// Attempts to recover from a call where no functions were found.
   11208 ///
   11209 /// Returns true if new candidates were found.
   11210 static ExprResult
   11211 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
   11212                       UnresolvedLookupExpr *ULE,
   11213                       SourceLocation LParenLoc,
   11214                       MutableArrayRef<Expr *> Args,
   11215                       SourceLocation RParenLoc,
   11216                       bool EmptyLookup, bool AllowTypoCorrection) {
   11217   // Do not try to recover if it is already building a recovery call.
   11218   // This stops infinite loops for template instantiations like
   11219   //
   11220   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
   11221   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
   11222   //
   11223   if (SemaRef.IsBuildingRecoveryCallExpr)
   11224     return ExprError();
   11225   BuildRecoveryCallExprRAII RCE(SemaRef);
   11226 
   11227   CXXScopeSpec SS;
   11228   SS.Adopt(ULE->getQualifierLoc());
   11229   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
   11230 
   11231   TemplateArgumentListInfo TABuffer;
   11232   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
   11233   if (ULE->hasExplicitTemplateArgs()) {
   11234     ULE->copyTemplateArgumentsInto(TABuffer);
   11235     ExplicitTemplateArgs = &TABuffer;
   11236   }
   11237 
   11238   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
   11239                  Sema::LookupOrdinaryName);
   11240   bool DoDiagnoseEmptyLookup = EmptyLookup;
   11241   if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
   11242                               OverloadCandidateSet::CSK_Normal,
   11243                               ExplicitTemplateArgs, Args,
   11244                               &DoDiagnoseEmptyLookup) &&
   11245     (!DoDiagnoseEmptyLookup || SemaRef.DiagnoseEmptyLookup(
   11246         S, SS, R,
   11247         MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(),
   11248                       ExplicitTemplateArgs != nullptr, AllowTypoCorrection),
   11249         ExplicitTemplateArgs, Args)))
   11250     return ExprError();
   11251 
   11252   assert(!R.empty() && "lookup results empty despite recovery");
   11253 
   11254   // Build an implicit member call if appropriate.  Just drop the
   11255   // casts and such from the call, we don't really care.
   11256   ExprResult NewFn = ExprError();
   11257   if ((*R.begin())->isCXXClassMember())
   11258     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
   11259                                                     ExplicitTemplateArgs, S);
   11260   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
   11261     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
   11262                                         ExplicitTemplateArgs);
   11263   else
   11264     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
   11265 
   11266   if (NewFn.isInvalid())
   11267     return ExprError();
   11268 
   11269   // This shouldn't cause an infinite loop because we're giving it
   11270   // an expression with viable lookup results, which should never
   11271   // end up here.
   11272   return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
   11273                                MultiExprArg(Args.data(), Args.size()),
   11274                                RParenLoc);
   11275 }
   11276 
   11277 /// \brief Constructs and populates an OverloadedCandidateSet from
   11278 /// the given function.
   11279 /// \returns true when an the ExprResult output parameter has been set.
   11280 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
   11281                                   UnresolvedLookupExpr *ULE,
   11282                                   MultiExprArg Args,
   11283                                   SourceLocation RParenLoc,
   11284                                   OverloadCandidateSet *CandidateSet,
   11285                                   ExprResult *Result) {
   11286 #ifndef NDEBUG
   11287   if (ULE->requiresADL()) {
   11288     // To do ADL, we must have found an unqualified name.
   11289     assert(!ULE->getQualifier() && "qualified name with ADL");
   11290 
   11291     // We don't perform ADL for implicit declarations of builtins.
   11292     // Verify that this was correctly set up.
   11293     FunctionDecl *F;
   11294     if (ULE->decls_begin() + 1 == ULE->decls_end() &&
   11295         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
   11296         F->getBuiltinID() && F->isImplicit())
   11297       llvm_unreachable("performing ADL for builtin");
   11298 
   11299     // We don't perform ADL in C.
   11300     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
   11301   }
   11302 #endif
   11303 
   11304   UnbridgedCastsSet UnbridgedCasts;
   11305   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
   11306     *Result = ExprError();
   11307     return true;
   11308   }
   11309 
   11310   // Add the functions denoted by the callee to the set of candidate
   11311   // functions, including those from argument-dependent lookup.
   11312   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
   11313 
   11314   if (getLangOpts().MSVCCompat &&
   11315       CurContext->isDependentContext() && !isSFINAEContext() &&
   11316       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
   11317 
   11318     OverloadCandidateSet::iterator Best;
   11319     if (CandidateSet->empty() ||
   11320         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best) ==
   11321             OR_No_Viable_Function) {
   11322       // In Microsoft mode, if we are inside a template class member function then
   11323       // create a type dependent CallExpr. The goal is to postpone name lookup
   11324       // to instantiation time to be able to search into type dependent base
   11325       // classes.
   11326       CallExpr *CE = new (Context) CallExpr(
   11327           Context, Fn, Args, Context.DependentTy, VK_RValue, RParenLoc);
   11328       CE->setTypeDependent(true);
   11329       CE->setValueDependent(true);
   11330       CE->setInstantiationDependent(true);
   11331       *Result = CE;
   11332       return true;
   11333     }
   11334   }
   11335 
   11336   if (CandidateSet->empty())
   11337     return false;
   11338 
   11339   UnbridgedCasts.restore();
   11340   return false;
   11341 }
   11342 
   11343 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
   11344 /// the completed call expression. If overload resolution fails, emits
   11345 /// diagnostics and returns ExprError()
   11346 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
   11347                                            UnresolvedLookupExpr *ULE,
   11348                                            SourceLocation LParenLoc,
   11349                                            MultiExprArg Args,
   11350                                            SourceLocation RParenLoc,
   11351                                            Expr *ExecConfig,
   11352                                            OverloadCandidateSet *CandidateSet,
   11353                                            OverloadCandidateSet::iterator *Best,
   11354                                            OverloadingResult OverloadResult,
   11355                                            bool AllowTypoCorrection) {
   11356   if (CandidateSet->empty())
   11357     return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
   11358                                  RParenLoc, /*EmptyLookup=*/true,
   11359                                  AllowTypoCorrection);
   11360 
   11361   switch (OverloadResult) {
   11362   case OR_Success: {
   11363     FunctionDecl *FDecl = (*Best)->Function;
   11364     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
   11365     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
   11366       return ExprError();
   11367     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
   11368     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
   11369                                          ExecConfig);
   11370   }
   11371 
   11372   case OR_No_Viable_Function: {
   11373     // Try to recover by looking for viable functions which the user might
   11374     // have meant to call.
   11375     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
   11376                                                 Args, RParenLoc,
   11377                                                 /*EmptyLookup=*/false,
   11378                                                 AllowTypoCorrection);
   11379     if (!Recovery.isInvalid())
   11380       return Recovery;
   11381 
   11382     // If the user passes in a function that we can't take the address of, we
   11383     // generally end up emitting really bad error messages. Here, we attempt to
   11384     // emit better ones.
   11385     for (const Expr *Arg : Args) {
   11386       if (!Arg->getType()->isFunctionType())
   11387         continue;
   11388       if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
   11389         auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
   11390         if (FD &&
   11391             !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
   11392                                                        Arg->getExprLoc()))
   11393           return ExprError();
   11394       }
   11395     }
   11396 
   11397     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_no_viable_function_in_call)
   11398         << ULE->getName() << Fn->getSourceRange();
   11399     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
   11400     break;
   11401   }
   11402 
   11403   case OR_Ambiguous:
   11404     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
   11405       << ULE->getName() << Fn->getSourceRange();
   11406     CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
   11407     break;
   11408 
   11409   case OR_Deleted: {
   11410     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
   11411       << (*Best)->Function->isDeleted()
   11412       << ULE->getName()
   11413       << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
   11414       << Fn->getSourceRange();
   11415     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
   11416 
   11417     // We emitted an error for the unvailable/deleted function call but keep
   11418     // the call in the AST.
   11419     FunctionDecl *FDecl = (*Best)->Function;
   11420     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
   11421     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
   11422                                          ExecConfig);
   11423   }
   11424   }
   11425 
   11426   // Overload resolution failed.
   11427   return ExprError();
   11428 }
   11429 
   11430 static void markUnaddressableCandidatesUnviable(Sema &S,
   11431                                                 OverloadCandidateSet &CS) {
   11432   for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
   11433     if (I->Viable &&
   11434         !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
   11435       I->Viable = false;
   11436       I->FailureKind = ovl_fail_addr_not_available;
   11437     }
   11438   }
   11439 }
   11440 
   11441 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
   11442 /// (which eventually refers to the declaration Func) and the call
   11443 /// arguments Args/NumArgs, attempt to resolve the function call down
   11444 /// to a specific function. If overload resolution succeeds, returns
   11445 /// the call expression produced by overload resolution.
   11446 /// Otherwise, emits diagnostics and returns ExprError.
   11447 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
   11448                                          UnresolvedLookupExpr *ULE,
   11449                                          SourceLocation LParenLoc,
   11450                                          MultiExprArg Args,
   11451                                          SourceLocation RParenLoc,
   11452                                          Expr *ExecConfig,
   11453                                          bool AllowTypoCorrection,
   11454                                          bool CalleesAddressIsTaken) {
   11455   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
   11456                                     OverloadCandidateSet::CSK_Normal);
   11457   ExprResult result;
   11458 
   11459   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
   11460                              &result))
   11461     return result;
   11462 
   11463   // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
   11464   // functions that aren't addressible are considered unviable.
   11465   if (CalleesAddressIsTaken)
   11466     markUnaddressableCandidatesUnviable(*this, CandidateSet);
   11467 
   11468   OverloadCandidateSet::iterator Best;
   11469   OverloadingResult OverloadResult =
   11470       CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
   11471 
   11472   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
   11473                                   RParenLoc, ExecConfig, &CandidateSet,
   11474                                   &Best, OverloadResult,
   11475                                   AllowTypoCorrection);
   11476 }
   11477 
   11478 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
   11479   return Functions.size() > 1 ||
   11480     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
   11481 }
   11482 
   11483 /// \brief Create a unary operation that may resolve to an overloaded
   11484 /// operator.
   11485 ///
   11486 /// \param OpLoc The location of the operator itself (e.g., '*').
   11487 ///
   11488 /// \param Opc The UnaryOperatorKind that describes this operator.
   11489 ///
   11490 /// \param Fns The set of non-member functions that will be
   11491 /// considered by overload resolution. The caller needs to build this
   11492 /// set based on the context using, e.g.,
   11493 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
   11494 /// set should not contain any member functions; those will be added
   11495 /// by CreateOverloadedUnaryOp().
   11496 ///
   11497 /// \param Input The input argument.
   11498 ExprResult
   11499 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
   11500                               const UnresolvedSetImpl &Fns,
   11501                               Expr *Input) {
   11502   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
   11503   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
   11504   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   11505   // TODO: provide better source location info.
   11506   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
   11507 
   11508   if (checkPlaceholderForOverload(*this, Input))
   11509     return ExprError();
   11510 
   11511   Expr *Args[2] = { Input, nullptr };
   11512   unsigned NumArgs = 1;
   11513 
   11514   // For post-increment and post-decrement, add the implicit '0' as
   11515   // the second argument, so that we know this is a post-increment or
   11516   // post-decrement.
   11517   if (Opc == UO_PostInc || Opc == UO_PostDec) {
   11518     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
   11519     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
   11520                                      SourceLocation());
   11521     NumArgs = 2;
   11522   }
   11523 
   11524   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
   11525 
   11526   if (Input->isTypeDependent()) {
   11527     if (Fns.empty())
   11528       return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
   11529                                          VK_RValue, OK_Ordinary, OpLoc);
   11530 
   11531     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   11532     UnresolvedLookupExpr *Fn
   11533       = UnresolvedLookupExpr::Create(Context, NamingClass,
   11534                                      NestedNameSpecifierLoc(), OpNameInfo,
   11535                                      /*ADL*/ true, IsOverloaded(Fns),
   11536                                      Fns.begin(), Fns.end());
   11537     return new (Context)
   11538         CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
   11539                             VK_RValue, OpLoc, false);
   11540   }
   11541 
   11542   // Build an empty overload set.
   11543   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
   11544 
   11545   // Add the candidates from the given function set.
   11546   AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
   11547 
   11548   // Add operator candidates that are member functions.
   11549   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
   11550 
   11551   // Add candidates from ADL.
   11552   AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
   11553                                        /*ExplicitTemplateArgs*/nullptr,
   11554                                        CandidateSet);
   11555 
   11556   // Add builtin operator candidates.
   11557   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
   11558 
   11559   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11560 
   11561   // Perform overload resolution.
   11562   OverloadCandidateSet::iterator Best;
   11563   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   11564   case OR_Success: {
   11565     // We found a built-in operator or an overloaded operator.
   11566     FunctionDecl *FnDecl = Best->Function;
   11567 
   11568     if (FnDecl) {
   11569       // We matched an overloaded operator. Build a call to that
   11570       // operator.
   11571 
   11572       // Convert the arguments.
   11573       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
   11574         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
   11575 
   11576         ExprResult InputRes =
   11577           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
   11578                                               Best->FoundDecl, Method);
   11579         if (InputRes.isInvalid())
   11580           return ExprError();
   11581         Input = InputRes.get();
   11582       } else {
   11583         // Convert the arguments.
   11584         ExprResult InputInit
   11585           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   11586                                                       Context,
   11587                                                       FnDecl->getParamDecl(0)),
   11588                                       SourceLocation(),
   11589                                       Input);
   11590         if (InputInit.isInvalid())
   11591           return ExprError();
   11592         Input = InputInit.get();
   11593       }
   11594 
   11595       // Build the actual expression node.
   11596       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
   11597                                                 HadMultipleCandidates, OpLoc);
   11598       if (FnExpr.isInvalid())
   11599         return ExprError();
   11600 
   11601       // Determine the result type.
   11602       QualType ResultTy = FnDecl->getReturnType();
   11603       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11604       ResultTy = ResultTy.getNonLValueExprType(Context);
   11605 
   11606       Args[0] = Input;
   11607       CallExpr *TheCall =
   11608         new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
   11609                                           ResultTy, VK, OpLoc, false);
   11610 
   11611       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
   11612         return ExprError();
   11613 
   11614       return MaybeBindToTemporary(TheCall);
   11615     } else {
   11616       // We matched a built-in operator. Convert the arguments, then
   11617       // break out so that we will build the appropriate built-in
   11618       // operator node.
   11619       ExprResult InputRes =
   11620         PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
   11621                                   Best->Conversions[0], AA_Passing);
   11622       if (InputRes.isInvalid())
   11623         return ExprError();
   11624       Input = InputRes.get();
   11625       break;
   11626     }
   11627   }
   11628 
   11629   case OR_No_Viable_Function:
   11630     // This is an erroneous use of an operator which can be overloaded by
   11631     // a non-member function. Check for non-member operators which were
   11632     // defined too late to be candidates.
   11633     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
   11634       // FIXME: Recover by calling the found function.
   11635       return ExprError();
   11636 
   11637     // No viable function; fall through to handling this as a
   11638     // built-in operator, which will produce an error message for us.
   11639     break;
   11640 
   11641   case OR_Ambiguous:
   11642     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
   11643         << UnaryOperator::getOpcodeStr(Opc)
   11644         << Input->getType()
   11645         << Input->getSourceRange();
   11646     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
   11647                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
   11648     return ExprError();
   11649 
   11650   case OR_Deleted:
   11651     Diag(OpLoc, diag::err_ovl_deleted_oper)
   11652       << Best->Function->isDeleted()
   11653       << UnaryOperator::getOpcodeStr(Opc)
   11654       << getDeletedOrUnavailableSuffix(Best->Function)
   11655       << Input->getSourceRange();
   11656     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
   11657                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
   11658     return ExprError();
   11659   }
   11660 
   11661   // Either we found no viable overloaded operator or we matched a
   11662   // built-in operator. In either case, fall through to trying to
   11663   // build a built-in operation.
   11664   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   11665 }
   11666 
   11667 /// \brief Create a binary operation that may resolve to an overloaded
   11668 /// operator.
   11669 ///
   11670 /// \param OpLoc The location of the operator itself (e.g., '+').
   11671 ///
   11672 /// \param Opc The BinaryOperatorKind that describes this operator.
   11673 ///
   11674 /// \param Fns The set of non-member functions that will be
   11675 /// considered by overload resolution. The caller needs to build this
   11676 /// set based on the context using, e.g.,
   11677 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
   11678 /// set should not contain any member functions; those will be added
   11679 /// by CreateOverloadedBinOp().
   11680 ///
   11681 /// \param LHS Left-hand argument.
   11682 /// \param RHS Right-hand argument.
   11683 ExprResult
   11684 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
   11685                             BinaryOperatorKind Opc,
   11686                             const UnresolvedSetImpl &Fns,
   11687                             Expr *LHS, Expr *RHS) {
   11688   Expr *Args[2] = { LHS, RHS };
   11689   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
   11690 
   11691   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
   11692   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   11693 
   11694   // If either side is type-dependent, create an appropriate dependent
   11695   // expression.
   11696   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
   11697     if (Fns.empty()) {
   11698       // If there are no functions to store, just build a dependent
   11699       // BinaryOperator or CompoundAssignment.
   11700       if (Opc <= BO_Assign || Opc > BO_OrAssign)
   11701         return new (Context) BinaryOperator(
   11702             Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
   11703             OpLoc, FPFeatures.fp_contract);
   11704 
   11705       return new (Context) CompoundAssignOperator(
   11706           Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
   11707           Context.DependentTy, Context.DependentTy, OpLoc,
   11708           FPFeatures.fp_contract);
   11709     }
   11710 
   11711     // FIXME: save results of ADL from here?
   11712     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   11713     // TODO: provide better source location info in DNLoc component.
   11714     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
   11715     UnresolvedLookupExpr *Fn
   11716       = UnresolvedLookupExpr::Create(Context, NamingClass,
   11717                                      NestedNameSpecifierLoc(), OpNameInfo,
   11718                                      /*ADL*/ true, IsOverloaded(Fns),
   11719                                      Fns.begin(), Fns.end());
   11720     return new (Context)
   11721         CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
   11722                             VK_RValue, OpLoc, FPFeatures.fp_contract);
   11723   }
   11724 
   11725   // Always do placeholder-like conversions on the RHS.
   11726   if (checkPlaceholderForOverload(*this, Args[1]))
   11727     return ExprError();
   11728 
   11729   // Do placeholder-like conversion on the LHS; note that we should
   11730   // not get here with a PseudoObject LHS.
   11731   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
   11732   if (checkPlaceholderForOverload(*this, Args[0]))
   11733     return ExprError();
   11734 
   11735   // If this is the assignment operator, we only perform overload resolution
   11736   // if the left-hand side is a class or enumeration type. This is actually
   11737   // a hack. The standard requires that we do overload resolution between the
   11738   // various built-in candidates, but as DR507 points out, this can lead to
   11739   // problems. So we do it this way, which pretty much follows what GCC does.
   11740   // Note that we go the traditional code path for compound assignment forms.
   11741   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
   11742     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11743 
   11744   // If this is the .* operator, which is not overloadable, just
   11745   // create a built-in binary operator.
   11746   if (Opc == BO_PtrMemD)
   11747     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11748 
   11749   // Build an empty overload set.
   11750   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
   11751 
   11752   // Add the candidates from the given function set.
   11753   AddFunctionCandidates(Fns, Args, CandidateSet);
   11754 
   11755   // Add operator candidates that are member functions.
   11756   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
   11757 
   11758   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
   11759   // performed for an assignment operator (nor for operator[] nor operator->,
   11760   // which don't get here).
   11761   if (Opc != BO_Assign)
   11762     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
   11763                                          /*ExplicitTemplateArgs*/ nullptr,
   11764                                          CandidateSet);
   11765 
   11766   // Add builtin operator candidates.
   11767   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
   11768 
   11769   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11770 
   11771   // Perform overload resolution.
   11772   OverloadCandidateSet::iterator Best;
   11773   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   11774     case OR_Success: {
   11775       // We found a built-in operator or an overloaded operator.
   11776       FunctionDecl *FnDecl = Best->Function;
   11777 
   11778       if (FnDecl) {
   11779         // We matched an overloaded operator. Build a call to that
   11780         // operator.
   11781 
   11782         // Convert the arguments.
   11783         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
   11784           // Best->Access is only meaningful for class members.
   11785           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
   11786 
   11787           ExprResult Arg1 =
   11788             PerformCopyInitialization(
   11789               InitializedEntity::InitializeParameter(Context,
   11790                                                      FnDecl->getParamDecl(0)),
   11791               SourceLocation(), Args[1]);
   11792           if (Arg1.isInvalid())
   11793             return ExprError();
   11794 
   11795           ExprResult Arg0 =
   11796             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   11797                                                 Best->FoundDecl, Method);
   11798           if (Arg0.isInvalid())
   11799             return ExprError();
   11800           Args[0] = Arg0.getAs<Expr>();
   11801           Args[1] = RHS = Arg1.getAs<Expr>();
   11802         } else {
   11803           // Convert the arguments.
   11804           ExprResult Arg0 = PerformCopyInitialization(
   11805             InitializedEntity::InitializeParameter(Context,
   11806                                                    FnDecl->getParamDecl(0)),
   11807             SourceLocation(), Args[0]);
   11808           if (Arg0.isInvalid())
   11809             return ExprError();
   11810 
   11811           ExprResult Arg1 =
   11812             PerformCopyInitialization(
   11813               InitializedEntity::InitializeParameter(Context,
   11814                                                      FnDecl->getParamDecl(1)),
   11815               SourceLocation(), Args[1]);
   11816           if (Arg1.isInvalid())
   11817             return ExprError();
   11818           Args[0] = LHS = Arg0.getAs<Expr>();
   11819           Args[1] = RHS = Arg1.getAs<Expr>();
   11820         }
   11821 
   11822         // Build the actual expression node.
   11823         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
   11824                                                   Best->FoundDecl,
   11825                                                   HadMultipleCandidates, OpLoc);
   11826         if (FnExpr.isInvalid())
   11827           return ExprError();
   11828 
   11829         // Determine the result type.
   11830         QualType ResultTy = FnDecl->getReturnType();
   11831         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11832         ResultTy = ResultTy.getNonLValueExprType(Context);
   11833 
   11834         CXXOperatorCallExpr *TheCall =
   11835           new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
   11836                                             Args, ResultTy, VK, OpLoc,
   11837                                             FPFeatures.fp_contract);
   11838 
   11839         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
   11840                                 FnDecl))
   11841           return ExprError();
   11842 
   11843         ArrayRef<const Expr *> ArgsArray(Args, 2);
   11844         // Cut off the implicit 'this'.
   11845         if (isa<CXXMethodDecl>(FnDecl))
   11846           ArgsArray = ArgsArray.slice(1);
   11847 
   11848         // Check for a self move.
   11849         if (Op == OO_Equal)
   11850           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
   11851 
   11852         checkCall(FnDecl, nullptr, ArgsArray, isa<CXXMethodDecl>(FnDecl), OpLoc,
   11853                   TheCall->getSourceRange(), VariadicDoesNotApply);
   11854 
   11855         return MaybeBindToTemporary(TheCall);
   11856       } else {
   11857         // We matched a built-in operator. Convert the arguments, then
   11858         // break out so that we will build the appropriate built-in
   11859         // operator node.
   11860         ExprResult ArgsRes0 =
   11861           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
   11862                                     Best->Conversions[0], AA_Passing);
   11863         if (ArgsRes0.isInvalid())
   11864           return ExprError();
   11865         Args[0] = ArgsRes0.get();
   11866 
   11867         ExprResult ArgsRes1 =
   11868           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
   11869                                     Best->Conversions[1], AA_Passing);
   11870         if (ArgsRes1.isInvalid())
   11871           return ExprError();
   11872         Args[1] = ArgsRes1.get();
   11873         break;
   11874       }
   11875     }
   11876 
   11877     case OR_No_Viable_Function: {
   11878       // C++ [over.match.oper]p9:
   11879       //   If the operator is the operator , [...] and there are no
   11880       //   viable functions, then the operator is assumed to be the
   11881       //   built-in operator and interpreted according to clause 5.
   11882       if (Opc == BO_Comma)
   11883         break;
   11884 
   11885       // For class as left operand for assignment or compound assigment
   11886       // operator do not fall through to handling in built-in, but report that
   11887       // no overloaded assignment operator found
   11888       ExprResult Result = ExprError();
   11889       if (Args[0]->getType()->isRecordType() &&
   11890           Opc >= BO_Assign && Opc <= BO_OrAssign) {
   11891         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
   11892              << BinaryOperator::getOpcodeStr(Opc)
   11893              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11894         if (Args[0]->getType()->isIncompleteType()) {
   11895           Diag(OpLoc, diag::note_assign_lhs_incomplete)
   11896             << Args[0]->getType()
   11897             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11898         }
   11899       } else {
   11900         // This is an erroneous use of an operator which can be overloaded by
   11901         // a non-member function. Check for non-member operators which were
   11902         // defined too late to be candidates.
   11903         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
   11904           // FIXME: Recover by calling the found function.
   11905           return ExprError();
   11906 
   11907         // No viable function; try to create a built-in operation, which will
   11908         // produce an error. Then, show the non-viable candidates.
   11909         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11910       }
   11911       assert(Result.isInvalid() &&
   11912              "C++ binary operator overloading is missing candidates!");
   11913       if (Result.isInvalid())
   11914         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11915                                     BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11916       return Result;
   11917     }
   11918 
   11919     case OR_Ambiguous:
   11920       Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
   11921           << BinaryOperator::getOpcodeStr(Opc)
   11922           << Args[0]->getType() << Args[1]->getType()
   11923           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11924       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
   11925                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11926       return ExprError();
   11927 
   11928     case OR_Deleted:
   11929       if (isImplicitlyDeleted(Best->Function)) {
   11930         CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   11931         Diag(OpLoc, diag::err_ovl_deleted_special_oper)
   11932           << Context.getRecordType(Method->getParent())
   11933           << getSpecialMember(Method);
   11934 
   11935         // The user probably meant to call this special member. Just
   11936         // explain why it's deleted.
   11937         NoteDeletedFunction(Method);
   11938         return ExprError();
   11939       } else {
   11940         Diag(OpLoc, diag::err_ovl_deleted_oper)
   11941           << Best->Function->isDeleted()
   11942           << BinaryOperator::getOpcodeStr(Opc)
   11943           << getDeletedOrUnavailableSuffix(Best->Function)
   11944           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11945       }
   11946       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11947                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11948       return ExprError();
   11949   }
   11950 
   11951   // We matched a built-in operator; build it.
   11952   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11953 }
   11954 
   11955 ExprResult
   11956 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
   11957                                          SourceLocation RLoc,
   11958                                          Expr *Base, Expr *Idx) {
   11959   Expr *Args[2] = { Base, Idx };
   11960   DeclarationName OpName =
   11961       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
   11962 
   11963   // If either side is type-dependent, create an appropriate dependent
   11964   // expression.
   11965   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
   11966 
   11967     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   11968     // CHECKME: no 'operator' keyword?
   11969     DeclarationNameInfo OpNameInfo(OpName, LLoc);
   11970     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
   11971     UnresolvedLookupExpr *Fn
   11972       = UnresolvedLookupExpr::Create(Context, NamingClass,
   11973                                      NestedNameSpecifierLoc(), OpNameInfo,
   11974                                      /*ADL*/ true, /*Overloaded*/ false,
   11975                                      UnresolvedSetIterator(),
   11976                                      UnresolvedSetIterator());
   11977     // Can't add any actual overloads yet
   11978 
   11979     return new (Context)
   11980         CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
   11981                             Context.DependentTy, VK_RValue, RLoc, false);
   11982   }
   11983 
   11984   // Handle placeholders on both operands.
   11985   if (checkPlaceholderForOverload(*this, Args[0]))
   11986     return ExprError();
   11987   if (checkPlaceholderForOverload(*this, Args[1]))
   11988     return ExprError();
   11989 
   11990   // Build an empty overload set.
   11991   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
   11992 
   11993   // Subscript can only be overloaded as a member function.
   11994 
   11995   // Add operator candidates that are member functions.
   11996   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
   11997 
   11998   // Add builtin operator candidates.
   11999   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
   12000 
   12001   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   12002 
   12003   // Perform overload resolution.
   12004   OverloadCandidateSet::iterator Best;
   12005   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
   12006     case OR_Success: {
   12007       // We found a built-in operator or an overloaded operator.
   12008       FunctionDecl *FnDecl = Best->Function;
   12009 
   12010       if (FnDecl) {
   12011         // We matched an overloaded operator. Build a call to that
   12012         // operator.
   12013 
   12014         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
   12015 
   12016         // Convert the arguments.
   12017         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
   12018         ExprResult Arg0 =
   12019           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   12020                                               Best->FoundDecl, Method);
   12021         if (Arg0.isInvalid())
   12022           return ExprError();
   12023         Args[0] = Arg0.get();
   12024 
   12025         // Convert the arguments.
   12026         ExprResult InputInit
   12027           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   12028                                                       Context,
   12029                                                       FnDecl->getParamDecl(0)),
   12030                                       SourceLocation(),
   12031                                       Args[1]);
   12032         if (InputInit.isInvalid())
   12033           return ExprError();
   12034 
   12035         Args[1] = InputInit.getAs<Expr>();
   12036 
   12037         // Build the actual expression node.
   12038         DeclarationNameInfo OpLocInfo(OpName, LLoc);
   12039         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
   12040         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
   12041                                                   Best->FoundDecl,
   12042                                                   HadMultipleCandidates,
   12043                                                   OpLocInfo.getLoc(),
   12044                                                   OpLocInfo.getInfo());
   12045         if (FnExpr.isInvalid())
   12046           return ExprError();
   12047 
   12048         // Determine the result type
   12049         QualType ResultTy = FnDecl->getReturnType();
   12050         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   12051         ResultTy = ResultTy.getNonLValueExprType(Context);
   12052 
   12053         CXXOperatorCallExpr *TheCall =
   12054           new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
   12055                                             FnExpr.get(), Args,
   12056                                             ResultTy, VK, RLoc,
   12057                                             false);
   12058 
   12059         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
   12060           return ExprError();
   12061 
   12062         return MaybeBindToTemporary(TheCall);
   12063       } else {
   12064         // We matched a built-in operator. Convert the arguments, then
   12065         // break out so that we will build the appropriate built-in
   12066         // operator node.
   12067         ExprResult ArgsRes0 =
   12068           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
   12069                                     Best->Conversions[0], AA_Passing);
   12070         if (ArgsRes0.isInvalid())
   12071           return ExprError();
   12072         Args[0] = ArgsRes0.get();
   12073 
   12074         ExprResult ArgsRes1 =
   12075           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
   12076                                     Best->Conversions[1], AA_Passing);
   12077         if (ArgsRes1.isInvalid())
   12078           return ExprError();
   12079         Args[1] = ArgsRes1.get();
   12080 
   12081         break;
   12082       }
   12083     }
   12084 
   12085     case OR_No_Viable_Function: {
   12086       if (CandidateSet.empty())
   12087         Diag(LLoc, diag::err_ovl_no_oper)
   12088           << Args[0]->getType() << /*subscript*/ 0
   12089           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   12090       else
   12091         Diag(LLoc, diag::err_ovl_no_viable_subscript)
   12092           << Args[0]->getType()
   12093           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   12094       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   12095                                   "[]", LLoc);
   12096       return ExprError();
   12097     }
   12098 
   12099     case OR_Ambiguous:
   12100       Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
   12101           << "[]"
   12102           << Args[0]->getType() << Args[1]->getType()
   12103           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   12104       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
   12105                                   "[]", LLoc);
   12106       return ExprError();
   12107 
   12108     case OR_Deleted:
   12109       Diag(LLoc, diag::err_ovl_deleted_oper)
   12110         << Best->Function->isDeleted() << "[]"
   12111         << getDeletedOrUnavailableSuffix(Best->Function)
   12112         << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   12113       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   12114                                   "[]", LLoc);
   12115       return ExprError();
   12116     }
   12117 
   12118   // We matched a built-in operator; build it.
   12119   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
   12120 }
   12121 
   12122 /// BuildCallToMemberFunction - Build a call to a member
   12123 /// function. MemExpr is the expression that refers to the member
   12124 /// function (and includes the object parameter), Args/NumArgs are the
   12125 /// arguments to the function call (not including the object
   12126 /// parameter). The caller needs to validate that the member
   12127 /// expression refers to a non-static member function or an overloaded
   12128 /// member function.
   12129 ExprResult
   12130 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
   12131                                 SourceLocation LParenLoc,
   12132                                 MultiExprArg Args,
   12133                                 SourceLocation RParenLoc) {
   12134   assert(MemExprE->getType() == Context.BoundMemberTy ||
   12135          MemExprE->getType() == Context.OverloadTy);
   12136 
   12137   // Dig out the member expression. This holds both the object
   12138   // argument and the member function we're referring to.
   12139   Expr *NakedMemExpr = MemExprE->IgnoreParens();
   12140 
   12141   // Determine whether this is a call to a pointer-to-member function.
   12142   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
   12143     assert(op->getType() == Context.BoundMemberTy);
   12144     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
   12145 
   12146     QualType fnType =
   12147       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
   12148 
   12149     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
   12150     QualType resultType = proto->getCallResultType(Context);
   12151     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
   12152 
   12153     // Check that the object type isn't more qualified than the
   12154     // member function we're calling.
   12155     Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
   12156 
   12157     QualType objectType = op->getLHS()->getType();
   12158     if (op->getOpcode() == BO_PtrMemI)
   12159       objectType = objectType->castAs<PointerType>()->getPointeeType();
   12160     Qualifiers objectQuals = objectType.getQualifiers();
   12161 
   12162     Qualifiers difference = objectQuals - funcQuals;
   12163     difference.removeObjCGCAttr();
   12164     difference.removeAddressSpace();
   12165     if (difference) {
   12166       std::string qualsString = difference.getAsString();
   12167       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
   12168         << fnType.getUnqualifiedType()
   12169         << qualsString
   12170         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
   12171     }
   12172 
   12173     CXXMemberCallExpr *call
   12174       = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
   12175                                         resultType, valueKind, RParenLoc);
   12176 
   12177     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
   12178                             call, nullptr))
   12179       return ExprError();
   12180 
   12181     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
   12182       return ExprError();
   12183 
   12184     if (CheckOtherCall(call, proto))
   12185       return ExprError();
   12186 
   12187     return MaybeBindToTemporary(call);
   12188   }
   12189 
   12190   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
   12191     return new (Context)
   12192         CallExpr(Context, MemExprE, Args, Context.VoidTy, VK_RValue, RParenLoc);
   12193 
   12194   UnbridgedCastsSet UnbridgedCasts;
   12195   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
   12196     return ExprError();
   12197 
   12198   MemberExpr *MemExpr;
   12199   CXXMethodDecl *Method = nullptr;
   12200   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
   12201   NestedNameSpecifier *Qualifier = nullptr;
   12202   if (isa<MemberExpr>(NakedMemExpr)) {
   12203     MemExpr = cast<MemberExpr>(NakedMemExpr);
   12204     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
   12205     FoundDecl = MemExpr->getFoundDecl();
   12206     Qualifier = MemExpr->getQualifier();
   12207     UnbridgedCasts.restore();
   12208   } else {
   12209     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
   12210     Qualifier = UnresExpr->getQualifier();
   12211 
   12212     QualType ObjectType = UnresExpr->getBaseType();
   12213     Expr::Classification ObjectClassification
   12214       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
   12215                             : UnresExpr->getBase()->Classify(Context);
   12216 
   12217     // Add overload candidates
   12218     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
   12219                                       OverloadCandidateSet::CSK_Normal);
   12220 
   12221     // FIXME: avoid copy.
   12222     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
   12223     if (UnresExpr->hasExplicitTemplateArgs()) {
   12224       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
   12225       TemplateArgs = &TemplateArgsBuffer;
   12226     }
   12227 
   12228     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
   12229            E = UnresExpr->decls_end(); I != E; ++I) {
   12230 
   12231       NamedDecl *Func = *I;
   12232       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
   12233       if (isa<UsingShadowDecl>(Func))
   12234         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
   12235 
   12236 
   12237       // Microsoft supports direct constructor calls.
   12238       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
   12239         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
   12240                              Args, CandidateSet);
   12241       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
   12242         // If explicit template arguments were provided, we can't call a
   12243         // non-template member function.
   12244         if (TemplateArgs)
   12245           continue;
   12246 
   12247         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
   12248                            ObjectClassification, Args, CandidateSet,
   12249                            /*SuppressUserConversions=*/false);
   12250       } else {
   12251         AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
   12252                                    I.getPair(), ActingDC, TemplateArgs,
   12253                                    ObjectType,  ObjectClassification,
   12254                                    Args, CandidateSet,
   12255                                    /*SuppressUsedConversions=*/false);
   12256       }
   12257     }
   12258 
   12259     DeclarationName DeclName = UnresExpr->getMemberName();
   12260 
   12261     UnbridgedCasts.restore();
   12262 
   12263     OverloadCandidateSet::iterator Best;
   12264     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
   12265                                             Best)) {
   12266     case OR_Success:
   12267       Method = cast<CXXMethodDecl>(Best->Function);
   12268       FoundDecl = Best->FoundDecl;
   12269       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
   12270       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
   12271         return ExprError();
   12272       // If FoundDecl is different from Method (such as if one is a template
   12273       // and the other a specialization), make sure DiagnoseUseOfDecl is
   12274       // called on both.
   12275       // FIXME: This would be more comprehensively addressed by modifying
   12276       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
   12277       // being used.
   12278       if (Method != FoundDecl.getDecl() &&
   12279                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
   12280         return ExprError();
   12281       break;
   12282 
   12283     case OR_No_Viable_Function:
   12284       Diag(UnresExpr->getMemberLoc(),
   12285            diag::err_ovl_no_viable_member_function_in_call)
   12286         << DeclName << MemExprE->getSourceRange();
   12287       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12288       // FIXME: Leaking incoming expressions!
   12289       return ExprError();
   12290 
   12291     case OR_Ambiguous:
   12292       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
   12293         << DeclName << MemExprE->getSourceRange();
   12294       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12295       // FIXME: Leaking incoming expressions!
   12296       return ExprError();
   12297 
   12298     case OR_Deleted:
   12299       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
   12300         << Best->Function->isDeleted()
   12301         << DeclName
   12302         << getDeletedOrUnavailableSuffix(Best->Function)
   12303         << MemExprE->getSourceRange();
   12304       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12305       // FIXME: Leaking incoming expressions!
   12306       return ExprError();
   12307     }
   12308 
   12309     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
   12310 
   12311     // If overload resolution picked a static member, build a
   12312     // non-member call based on that function.
   12313     if (Method->isStatic()) {
   12314       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
   12315                                    RParenLoc);
   12316     }
   12317 
   12318     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
   12319   }
   12320 
   12321   QualType ResultType = Method->getReturnType();
   12322   ExprValueKind VK = Expr::getValueKindForType(ResultType);
   12323   ResultType = ResultType.getNonLValueExprType(Context);
   12324 
   12325   assert(Method && "Member call to something that isn't a method?");
   12326   CXXMemberCallExpr *TheCall =
   12327     new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
   12328                                     ResultType, VK, RParenLoc);
   12329 
   12330   // (CUDA B.1): Check for invalid calls between targets.
   12331   if (getLangOpts().CUDA) {
   12332     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) {
   12333       if (CheckCUDATarget(Caller, Method)) {
   12334         Diag(MemExpr->getMemberLoc(), diag::err_ref_bad_target)
   12335             << IdentifyCUDATarget(Method) << Method->getIdentifier()
   12336             << IdentifyCUDATarget(Caller);
   12337         return ExprError();
   12338       }
   12339     }
   12340   }
   12341 
   12342   // Check for a valid return type.
   12343   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
   12344                           TheCall, Method))
   12345     return ExprError();
   12346 
   12347   // Convert the object argument (for a non-static member function call).
   12348   // We only need to do this if there was actually an overload; otherwise
   12349   // it was done at lookup.
   12350   if (!Method->isStatic()) {
   12351     ExprResult ObjectArg =
   12352       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
   12353                                           FoundDecl, Method);
   12354     if (ObjectArg.isInvalid())
   12355       return ExprError();
   12356     MemExpr->setBase(ObjectArg.get());
   12357   }
   12358 
   12359   // Convert the rest of the arguments
   12360   const FunctionProtoType *Proto =
   12361     Method->getType()->getAs<FunctionProtoType>();
   12362   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
   12363                               RParenLoc))
   12364     return ExprError();
   12365 
   12366   DiagnoseSentinelCalls(Method, LParenLoc, Args);
   12367 
   12368   if (CheckFunctionCall(Method, TheCall, Proto))
   12369     return ExprError();
   12370 
   12371   // In the case the method to call was not selected by the overloading
   12372   // resolution process, we still need to handle the enable_if attribute. Do
   12373   // that here, so it will not hide previous -- and more relevant -- errors
   12374   if (isa<MemberExpr>(NakedMemExpr)) {
   12375     if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
   12376       Diag(MemExprE->getLocStart(),
   12377            diag::err_ovl_no_viable_member_function_in_call)
   12378           << Method << Method->getSourceRange();
   12379       Diag(Method->getLocation(),
   12380            diag::note_ovl_candidate_disabled_by_enable_if_attr)
   12381           << Attr->getCond()->getSourceRange() << Attr->getMessage();
   12382       return ExprError();
   12383     }
   12384   }
   12385 
   12386   if ((isa<CXXConstructorDecl>(CurContext) ||
   12387        isa<CXXDestructorDecl>(CurContext)) &&
   12388       TheCall->getMethodDecl()->isPure()) {
   12389     const CXXMethodDecl *MD = TheCall->getMethodDecl();
   12390 
   12391     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
   12392         MemExpr->performsVirtualDispatch(getLangOpts())) {
   12393       Diag(MemExpr->getLocStart(),
   12394            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
   12395         << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
   12396         << MD->getParent()->getDeclName();
   12397 
   12398       Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
   12399       if (getLangOpts().AppleKext)
   12400         Diag(MemExpr->getLocStart(),
   12401              diag::note_pure_qualified_call_kext)
   12402              << MD->getParent()->getDeclName()
   12403              << MD->getDeclName();
   12404     }
   12405   }
   12406 
   12407   if (CXXDestructorDecl *DD =
   12408           dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
   12409     // a->A::f() doesn't go through the vtable, except in AppleKext mode.
   12410     bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
   12411     CheckVirtualDtorCall(DD, MemExpr->getLocStart(), /*IsDelete=*/false,
   12412                          CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
   12413                          MemExpr->getMemberLoc());
   12414   }
   12415 
   12416   return MaybeBindToTemporary(TheCall);
   12417 }
   12418 
   12419 /// BuildCallToObjectOfClassType - Build a call to an object of class
   12420 /// type (C++ [over.call.object]), which can end up invoking an
   12421 /// overloaded function call operator (@c operator()) or performing a
   12422 /// user-defined conversion on the object argument.
   12423 ExprResult
   12424 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
   12425                                    SourceLocation LParenLoc,
   12426                                    MultiExprArg Args,
   12427                                    SourceLocation RParenLoc) {
   12428   if (checkPlaceholderForOverload(*this, Obj))
   12429     return ExprError();
   12430   ExprResult Object = Obj;
   12431 
   12432   UnbridgedCastsSet UnbridgedCasts;
   12433   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
   12434     return ExprError();
   12435 
   12436   assert(Object.get()->getType()->isRecordType() &&
   12437          "Requires object type argument");
   12438   const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
   12439 
   12440   // C++ [over.call.object]p1:
   12441   //  If the primary-expression E in the function call syntax
   12442   //  evaluates to a class object of type "cv T", then the set of
   12443   //  candidate functions includes at least the function call
   12444   //  operators of T. The function call operators of T are obtained by
   12445   //  ordinary lookup of the name operator() in the context of
   12446   //  (E).operator().
   12447   OverloadCandidateSet CandidateSet(LParenLoc,
   12448                                     OverloadCandidateSet::CSK_Operator);
   12449   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
   12450 
   12451   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
   12452                           diag::err_incomplete_object_call, Object.get()))
   12453     return true;
   12454 
   12455   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
   12456   LookupQualifiedName(R, Record->getDecl());
   12457   R.suppressDiagnostics();
   12458 
   12459   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
   12460        Oper != OperEnd; ++Oper) {
   12461     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
   12462                        Object.get()->Classify(Context),
   12463                        Args, CandidateSet,
   12464                        /*SuppressUserConversions=*/ false);
   12465   }
   12466 
   12467   // C++ [over.call.object]p2:
   12468   //   In addition, for each (non-explicit in C++0x) conversion function
   12469   //   declared in T of the form
   12470   //
   12471   //        operator conversion-type-id () cv-qualifier;
   12472   //
   12473   //   where cv-qualifier is the same cv-qualification as, or a
   12474   //   greater cv-qualification than, cv, and where conversion-type-id
   12475   //   denotes the type "pointer to function of (P1,...,Pn) returning
   12476   //   R", or the type "reference to pointer to function of
   12477   //   (P1,...,Pn) returning R", or the type "reference to function
   12478   //   of (P1,...,Pn) returning R", a surrogate call function [...]
   12479   //   is also considered as a candidate function. Similarly,
   12480   //   surrogate call functions are added to the set of candidate
   12481   //   functions for each conversion function declared in an
   12482   //   accessible base class provided the function is not hidden
   12483   //   within T by another intervening declaration.
   12484   const auto &Conversions =
   12485       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
   12486   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   12487     NamedDecl *D = *I;
   12488     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   12489     if (isa<UsingShadowDecl>(D))
   12490       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   12491 
   12492     // Skip over templated conversion functions; they aren't
   12493     // surrogates.
   12494     if (isa<FunctionTemplateDecl>(D))
   12495       continue;
   12496 
   12497     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   12498     if (!Conv->isExplicit()) {
   12499       // Strip the reference type (if any) and then the pointer type (if
   12500       // any) to get down to what might be a function type.
   12501       QualType ConvType = Conv->getConversionType().getNonReferenceType();
   12502       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   12503         ConvType = ConvPtrType->getPointeeType();
   12504 
   12505       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
   12506       {
   12507         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
   12508                               Object.get(), Args, CandidateSet);
   12509       }
   12510     }
   12511   }
   12512 
   12513   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   12514 
   12515   // Perform overload resolution.
   12516   OverloadCandidateSet::iterator Best;
   12517   switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
   12518                              Best)) {
   12519   case OR_Success:
   12520     // Overload resolution succeeded; we'll build the appropriate call
   12521     // below.
   12522     break;
   12523 
   12524   case OR_No_Viable_Function:
   12525     if (CandidateSet.empty())
   12526       Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
   12527         << Object.get()->getType() << /*call*/ 1
   12528         << Object.get()->getSourceRange();
   12529     else
   12530       Diag(Object.get()->getLocStart(),
   12531            diag::err_ovl_no_viable_object_call)
   12532         << Object.get()->getType() << Object.get()->getSourceRange();
   12533     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12534     break;
   12535 
   12536   case OR_Ambiguous:
   12537     Diag(Object.get()->getLocStart(),
   12538          diag::err_ovl_ambiguous_object_call)
   12539       << Object.get()->getType() << Object.get()->getSourceRange();
   12540     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
   12541     break;
   12542 
   12543   case OR_Deleted:
   12544     Diag(Object.get()->getLocStart(),
   12545          diag::err_ovl_deleted_object_call)
   12546       << Best->Function->isDeleted()
   12547       << Object.get()->getType()
   12548       << getDeletedOrUnavailableSuffix(Best->Function)
   12549       << Object.get()->getSourceRange();
   12550     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12551     break;
   12552   }
   12553 
   12554   if (Best == CandidateSet.end())
   12555     return true;
   12556 
   12557   UnbridgedCasts.restore();
   12558 
   12559   if (Best->Function == nullptr) {
   12560     // Since there is no function declaration, this is one of the
   12561     // surrogate candidates. Dig out the conversion function.
   12562     CXXConversionDecl *Conv
   12563       = cast<CXXConversionDecl>(
   12564                          Best->Conversions[0].UserDefined.ConversionFunction);
   12565 
   12566     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
   12567                               Best->FoundDecl);
   12568     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
   12569       return ExprError();
   12570     assert(Conv == Best->FoundDecl.getDecl() &&
   12571              "Found Decl & conversion-to-functionptr should be same, right?!");
   12572     // We selected one of the surrogate functions that converts the
   12573     // object parameter to a function pointer. Perform the conversion
   12574     // on the object argument, then let ActOnCallExpr finish the job.
   12575 
   12576     // Create an implicit member expr to refer to the conversion operator.
   12577     // and then call it.
   12578     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
   12579                                              Conv, HadMultipleCandidates);
   12580     if (Call.isInvalid())
   12581       return ExprError();
   12582     // Record usage of conversion in an implicit cast.
   12583     Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
   12584                                     CK_UserDefinedConversion, Call.get(),
   12585                                     nullptr, VK_RValue);
   12586 
   12587     return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
   12588   }
   12589 
   12590   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
   12591 
   12592   // We found an overloaded operator(). Build a CXXOperatorCallExpr
   12593   // that calls this method, using Object for the implicit object
   12594   // parameter and passing along the remaining arguments.
   12595   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   12596 
   12597   // An error diagnostic has already been printed when parsing the declaration.
   12598   if (Method->isInvalidDecl())
   12599     return ExprError();
   12600 
   12601   const FunctionProtoType *Proto =
   12602     Method->getType()->getAs<FunctionProtoType>();
   12603 
   12604   unsigned NumParams = Proto->getNumParams();
   12605 
   12606   DeclarationNameInfo OpLocInfo(
   12607                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
   12608   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
   12609   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
   12610                                            HadMultipleCandidates,
   12611                                            OpLocInfo.getLoc(),
   12612                                            OpLocInfo.getInfo());
   12613   if (NewFn.isInvalid())
   12614     return true;
   12615 
   12616   // Build the full argument list for the method call (the implicit object
   12617   // parameter is placed at the beginning of the list).
   12618   std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]);
   12619   MethodArgs[0] = Object.get();
   12620   std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
   12621 
   12622   // Once we've built TheCall, all of the expressions are properly
   12623   // owned.
   12624   QualType ResultTy = Method->getReturnType();
   12625   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   12626   ResultTy = ResultTy.getNonLValueExprType(Context);
   12627 
   12628   CXXOperatorCallExpr *TheCall = new (Context)
   12629       CXXOperatorCallExpr(Context, OO_Call, NewFn.get(),
   12630                           llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
   12631                           ResultTy, VK, RParenLoc, false);
   12632   MethodArgs.reset();
   12633 
   12634   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
   12635     return true;
   12636 
   12637   // We may have default arguments. If so, we need to allocate more
   12638   // slots in the call for them.
   12639   if (Args.size() < NumParams)
   12640     TheCall->setNumArgs(Context, NumParams + 1);
   12641 
   12642   bool IsError = false;
   12643 
   12644   // Initialize the implicit object parameter.
   12645   ExprResult ObjRes =
   12646     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
   12647                                         Best->FoundDecl, Method);
   12648   if (ObjRes.isInvalid())
   12649     IsError = true;
   12650   else
   12651     Object = ObjRes;
   12652   TheCall->setArg(0, Object.get());
   12653 
   12654   // Check the argument types.
   12655   for (unsigned i = 0; i != NumParams; i++) {
   12656     Expr *Arg;
   12657     if (i < Args.size()) {
   12658       Arg = Args[i];
   12659 
   12660       // Pass the argument.
   12661 
   12662       ExprResult InputInit
   12663         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   12664                                                     Context,
   12665                                                     Method->getParamDecl(i)),
   12666                                     SourceLocation(), Arg);
   12667 
   12668       IsError |= InputInit.isInvalid();
   12669       Arg = InputInit.getAs<Expr>();
   12670     } else {
   12671       ExprResult DefArg
   12672         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
   12673       if (DefArg.isInvalid()) {
   12674         IsError = true;
   12675         break;
   12676       }
   12677 
   12678       Arg = DefArg.getAs<Expr>();
   12679     }
   12680 
   12681     TheCall->setArg(i + 1, Arg);
   12682   }
   12683 
   12684   // If this is a variadic call, handle args passed through "...".
   12685   if (Proto->isVariadic()) {
   12686     // Promote the arguments (C99 6.5.2.2p7).
   12687     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
   12688       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
   12689                                                         nullptr);
   12690       IsError |= Arg.isInvalid();
   12691       TheCall->setArg(i + 1, Arg.get());
   12692     }
   12693   }
   12694 
   12695   if (IsError) return true;
   12696 
   12697   DiagnoseSentinelCalls(Method, LParenLoc, Args);
   12698 
   12699   if (CheckFunctionCall(Method, TheCall, Proto))
   12700     return true;
   12701 
   12702   return MaybeBindToTemporary(TheCall);
   12703 }
   12704 
   12705 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
   12706 ///  (if one exists), where @c Base is an expression of class type and
   12707 /// @c Member is the name of the member we're trying to find.
   12708 ExprResult
   12709 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
   12710                                bool *NoArrowOperatorFound) {
   12711   assert(Base->getType()->isRecordType() &&
   12712          "left-hand side must have class type");
   12713 
   12714   if (checkPlaceholderForOverload(*this, Base))
   12715     return ExprError();
   12716 
   12717   SourceLocation Loc = Base->getExprLoc();
   12718 
   12719   // C++ [over.ref]p1:
   12720   //
   12721   //   [...] An expression x->m is interpreted as (x.operator->())->m
   12722   //   for a class object x of type T if T::operator->() exists and if
   12723   //   the operator is selected as the best match function by the
   12724   //   overload resolution mechanism (13.3).
   12725   DeclarationName OpName =
   12726     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
   12727   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
   12728   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
   12729 
   12730   if (RequireCompleteType(Loc, Base->getType(),
   12731                           diag::err_typecheck_incomplete_tag, Base))
   12732     return ExprError();
   12733 
   12734   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
   12735   LookupQualifiedName(R, BaseRecord->getDecl());
   12736   R.suppressDiagnostics();
   12737 
   12738   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
   12739        Oper != OperEnd; ++Oper) {
   12740     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
   12741                        None, CandidateSet, /*SuppressUserConversions=*/false);
   12742   }
   12743 
   12744   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   12745 
   12746   // Perform overload resolution.
   12747   OverloadCandidateSet::iterator Best;
   12748   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   12749   case OR_Success:
   12750     // Overload resolution succeeded; we'll build the call below.
   12751     break;
   12752 
   12753   case OR_No_Viable_Function:
   12754     if (CandidateSet.empty()) {
   12755       QualType BaseType = Base->getType();
   12756       if (NoArrowOperatorFound) {
   12757         // Report this specific error to the caller instead of emitting a
   12758         // diagnostic, as requested.
   12759         *NoArrowOperatorFound = true;
   12760         return ExprError();
   12761       }
   12762       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
   12763         << BaseType << Base->getSourceRange();
   12764       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
   12765         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
   12766           << FixItHint::CreateReplacement(OpLoc, ".");
   12767       }
   12768     } else
   12769       Diag(OpLoc, diag::err_ovl_no_viable_oper)
   12770         << "operator->" << Base->getSourceRange();
   12771     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
   12772     return ExprError();
   12773 
   12774   case OR_Ambiguous:
   12775     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
   12776       << "->" << Base->getType() << Base->getSourceRange();
   12777     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
   12778     return ExprError();
   12779 
   12780   case OR_Deleted:
   12781     Diag(OpLoc,  diag::err_ovl_deleted_oper)
   12782       << Best->Function->isDeleted()
   12783       << "->"
   12784       << getDeletedOrUnavailableSuffix(Best->Function)
   12785       << Base->getSourceRange();
   12786     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
   12787     return ExprError();
   12788   }
   12789 
   12790   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
   12791 
   12792   // Convert the object parameter.
   12793   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   12794   ExprResult BaseResult =
   12795     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
   12796                                         Best->FoundDecl, Method);
   12797   if (BaseResult.isInvalid())
   12798     return ExprError();
   12799   Base = BaseResult.get();
   12800 
   12801   // Build the operator call.
   12802   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
   12803                                             HadMultipleCandidates, OpLoc);
   12804   if (FnExpr.isInvalid())
   12805     return ExprError();
   12806 
   12807   QualType ResultTy = Method->getReturnType();
   12808   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   12809   ResultTy = ResultTy.getNonLValueExprType(Context);
   12810   CXXOperatorCallExpr *TheCall =
   12811     new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
   12812                                       Base, ResultTy, VK, OpLoc, false);
   12813 
   12814   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
   12815           return ExprError();
   12816 
   12817   return MaybeBindToTemporary(TheCall);
   12818 }
   12819 
   12820 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
   12821 /// a literal operator described by the provided lookup results.
   12822 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
   12823                                           DeclarationNameInfo &SuffixInfo,
   12824                                           ArrayRef<Expr*> Args,
   12825                                           SourceLocation LitEndLoc,
   12826                                        TemplateArgumentListInfo *TemplateArgs) {
   12827   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
   12828 
   12829   OverloadCandidateSet CandidateSet(UDSuffixLoc,
   12830                                     OverloadCandidateSet::CSK_Normal);
   12831   AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
   12832                         /*SuppressUserConversions=*/true);
   12833 
   12834   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   12835 
   12836   // Perform overload resolution. This will usually be trivial, but might need
   12837   // to perform substitutions for a literal operator template.
   12838   OverloadCandidateSet::iterator Best;
   12839   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
   12840   case OR_Success:
   12841   case OR_Deleted:
   12842     break;
   12843 
   12844   case OR_No_Viable_Function:
   12845     Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
   12846       << R.getLookupName();
   12847     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12848     return ExprError();
   12849 
   12850   case OR_Ambiguous:
   12851     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
   12852     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
   12853     return ExprError();
   12854   }
   12855 
   12856   FunctionDecl *FD = Best->Function;
   12857   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
   12858                                         HadMultipleCandidates,
   12859                                         SuffixInfo.getLoc(),
   12860                                         SuffixInfo.getInfo());
   12861   if (Fn.isInvalid())
   12862     return true;
   12863 
   12864   // Check the argument types. This should almost always be a no-op, except
   12865   // that array-to-pointer decay is applied to string literals.
   12866   Expr *ConvArgs[2];
   12867   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   12868     ExprResult InputInit = PerformCopyInitialization(
   12869       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
   12870       SourceLocation(), Args[ArgIdx]);
   12871     if (InputInit.isInvalid())
   12872       return true;
   12873     ConvArgs[ArgIdx] = InputInit.get();
   12874   }
   12875 
   12876   QualType ResultTy = FD->getReturnType();
   12877   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   12878   ResultTy = ResultTy.getNonLValueExprType(Context);
   12879 
   12880   UserDefinedLiteral *UDL =
   12881     new (Context) UserDefinedLiteral(Context, Fn.get(),
   12882                                      llvm::makeArrayRef(ConvArgs, Args.size()),
   12883                                      ResultTy, VK, LitEndLoc, UDSuffixLoc);
   12884 
   12885   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
   12886     return ExprError();
   12887 
   12888   if (CheckFunctionCall(FD, UDL, nullptr))
   12889     return ExprError();
   12890 
   12891   return MaybeBindToTemporary(UDL);
   12892 }
   12893 
   12894 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
   12895 /// given LookupResult is non-empty, it is assumed to describe a member which
   12896 /// will be invoked. Otherwise, the function will be found via argument
   12897 /// dependent lookup.
   12898 /// CallExpr is set to a valid expression and FRS_Success returned on success,
   12899 /// otherwise CallExpr is set to ExprError() and some non-success value
   12900 /// is returned.
   12901 Sema::ForRangeStatus
   12902 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
   12903                                 SourceLocation RangeLoc,
   12904                                 const DeclarationNameInfo &NameInfo,
   12905                                 LookupResult &MemberLookup,
   12906                                 OverloadCandidateSet *CandidateSet,
   12907                                 Expr *Range, ExprResult *CallExpr) {
   12908   Scope *S = nullptr;
   12909 
   12910   CandidateSet->clear();
   12911   if (!MemberLookup.empty()) {
   12912     ExprResult MemberRef =
   12913         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
   12914                                  /*IsPtr=*/false, CXXScopeSpec(),
   12915                                  /*TemplateKWLoc=*/SourceLocation(),
   12916                                  /*FirstQualifierInScope=*/nullptr,
   12917                                  MemberLookup,
   12918                                  /*TemplateArgs=*/nullptr, S);
   12919     if (MemberRef.isInvalid()) {
   12920       *CallExpr = ExprError();
   12921       return FRS_DiagnosticIssued;
   12922     }
   12923     *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
   12924     if (CallExpr->isInvalid()) {
   12925       *CallExpr = ExprError();
   12926       return FRS_DiagnosticIssued;
   12927     }
   12928   } else {
   12929     UnresolvedSet<0> FoundNames;
   12930     UnresolvedLookupExpr *Fn =
   12931       UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
   12932                                    NestedNameSpecifierLoc(), NameInfo,
   12933                                    /*NeedsADL=*/true, /*Overloaded=*/false,
   12934                                    FoundNames.begin(), FoundNames.end());
   12935 
   12936     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
   12937                                                     CandidateSet, CallExpr);
   12938     if (CandidateSet->empty() || CandidateSetError) {
   12939       *CallExpr = ExprError();
   12940       return FRS_NoViableFunction;
   12941     }
   12942     OverloadCandidateSet::iterator Best;
   12943     OverloadingResult OverloadResult =
   12944         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
   12945 
   12946     if (OverloadResult == OR_No_Viable_Function) {
   12947       *CallExpr = ExprError();
   12948       return FRS_NoViableFunction;
   12949     }
   12950     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
   12951                                          Loc, nullptr, CandidateSet, &Best,
   12952                                          OverloadResult,
   12953                                          /*AllowTypoCorrection=*/false);
   12954     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
   12955       *CallExpr = ExprError();
   12956       return FRS_DiagnosticIssued;
   12957     }
   12958   }
   12959   return FRS_Success;
   12960 }
   12961 
   12962 
   12963 /// FixOverloadedFunctionReference - E is an expression that refers to
   12964 /// a C++ overloaded function (possibly with some parentheses and
   12965 /// perhaps a '&' around it). We have resolved the overloaded function
   12966 /// to the function declaration Fn, so patch up the expression E to
   12967 /// refer (possibly indirectly) to Fn. Returns the new expr.
   12968 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
   12969                                            FunctionDecl *Fn) {
   12970   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
   12971     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
   12972                                                    Found, Fn);
   12973     if (SubExpr == PE->getSubExpr())
   12974       return PE;
   12975 
   12976     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
   12977   }
   12978 
   12979   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   12980     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
   12981                                                    Found, Fn);
   12982     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
   12983                                SubExpr->getType()) &&
   12984            "Implicit cast type cannot be determined from overload");
   12985     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
   12986     if (SubExpr == ICE->getSubExpr())
   12987       return ICE;
   12988 
   12989     return ImplicitCastExpr::Create(Context, ICE->getType(),
   12990                                     ICE->getCastKind(),
   12991                                     SubExpr, nullptr,
   12992                                     ICE->getValueKind());
   12993   }
   12994 
   12995   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
   12996     assert(UnOp->getOpcode() == UO_AddrOf &&
   12997            "Can only take the address of an overloaded function");
   12998     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
   12999       if (Method->isStatic()) {
   13000         // Do nothing: static member functions aren't any different
   13001         // from non-member functions.
   13002       } else {
   13003         // Fix the subexpression, which really has to be an
   13004         // UnresolvedLookupExpr holding an overloaded member function
   13005         // or template.
   13006         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
   13007                                                        Found, Fn);
   13008         if (SubExpr == UnOp->getSubExpr())
   13009           return UnOp;
   13010 
   13011         assert(isa<DeclRefExpr>(SubExpr)
   13012                && "fixed to something other than a decl ref");
   13013         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
   13014                && "fixed to a member ref with no nested name qualifier");
   13015 
   13016         // We have taken the address of a pointer to member
   13017         // function. Perform the computation here so that we get the
   13018         // appropriate pointer to member type.
   13019         QualType ClassType
   13020           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
   13021         QualType MemPtrType
   13022           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
   13023         // Under the MS ABI, lock down the inheritance model now.
   13024         if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   13025           (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
   13026 
   13027         return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
   13028                                            VK_RValue, OK_Ordinary,
   13029                                            UnOp->getOperatorLoc());
   13030       }
   13031     }
   13032     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
   13033                                                    Found, Fn);
   13034     if (SubExpr == UnOp->getSubExpr())
   13035       return UnOp;
   13036 
   13037     return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
   13038                                      Context.getPointerType(SubExpr->getType()),
   13039                                        VK_RValue, OK_Ordinary,
   13040                                        UnOp->getOperatorLoc());
   13041   }
   13042 
   13043   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
   13044     // FIXME: avoid copy.
   13045     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
   13046     if (ULE->hasExplicitTemplateArgs()) {
   13047       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
   13048       TemplateArgs = &TemplateArgsBuffer;
   13049     }
   13050 
   13051     DeclRefExpr *DRE = DeclRefExpr::Create(Context,
   13052                                            ULE->getQualifierLoc(),
   13053                                            ULE->getTemplateKeywordLoc(),
   13054                                            Fn,
   13055                                            /*enclosing*/ false, // FIXME?
   13056                                            ULE->getNameLoc(),
   13057                                            Fn->getType(),
   13058                                            VK_LValue,
   13059                                            Found.getDecl(),
   13060                                            TemplateArgs);
   13061     MarkDeclRefReferenced(DRE);
   13062     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
   13063     return DRE;
   13064   }
   13065 
   13066   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
   13067     // FIXME: avoid copy.
   13068     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
   13069     if (MemExpr->hasExplicitTemplateArgs()) {
   13070       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
   13071       TemplateArgs = &TemplateArgsBuffer;
   13072     }
   13073 
   13074     Expr *Base;
   13075 
   13076     // If we're filling in a static method where we used to have an
   13077     // implicit member access, rewrite to a simple decl ref.
   13078     if (MemExpr->isImplicitAccess()) {
   13079       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
   13080         DeclRefExpr *DRE = DeclRefExpr::Create(Context,
   13081                                                MemExpr->getQualifierLoc(),
   13082                                                MemExpr->getTemplateKeywordLoc(),
   13083                                                Fn,
   13084                                                /*enclosing*/ false,
   13085                                                MemExpr->getMemberLoc(),
   13086                                                Fn->getType(),
   13087                                                VK_LValue,
   13088                                                Found.getDecl(),
   13089                                                TemplateArgs);
   13090         MarkDeclRefReferenced(DRE);
   13091         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
   13092         return DRE;
   13093       } else {
   13094         SourceLocation Loc = MemExpr->getMemberLoc();
   13095         if (MemExpr->getQualifier())
   13096           Loc = MemExpr->getQualifierLoc().getBeginLoc();
   13097         CheckCXXThisCapture(Loc);
   13098         Base = new (Context) CXXThisExpr(Loc,
   13099                                          MemExpr->getBaseType(),
   13100                                          /*isImplicit=*/true);
   13101       }
   13102     } else
   13103       Base = MemExpr->getBase();
   13104 
   13105     ExprValueKind valueKind;
   13106     QualType type;
   13107     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
   13108       valueKind = VK_LValue;
   13109       type = Fn->getType();
   13110     } else {
   13111       valueKind = VK_RValue;
   13112       type = Context.BoundMemberTy;
   13113     }
   13114 
   13115     MemberExpr *ME = MemberExpr::Create(
   13116         Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
   13117         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
   13118         MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind,
   13119         OK_Ordinary);
   13120     ME->setHadMultipleCandidates(true);
   13121     MarkMemberReferenced(ME);
   13122     return ME;
   13123   }
   13124 
   13125   llvm_unreachable("Invalid reference to overloaded function");
   13126 }
   13127 
   13128 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
   13129                                                 DeclAccessPair Found,
   13130                                                 FunctionDecl *Fn) {
   13131   return FixOverloadedFunctionReference(E.get(), Found, Fn);
   13132 }
   13133