1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/ModuleSlotTracker.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/Support/DataTypes.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 78 MachineFunction &MF = *N->getParent(); 79 N->Number = MF.addToMBBNumbering(N); 80 81 // Make sure the instructions have their operands in the reginfo lists. 82 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 83 for (MachineBasicBlock::instr_iterator 84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 85 I->AddRegOperandsToUseLists(RegInfo); 86 } 87 88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 89 N->getParent()->removeFromMBBNumbering(N->Number); 90 N->Number = -1; 91 } 92 93 /// When we add an instruction to a basic block list, we update its parent 94 /// pointer and add its operands from reg use/def lists if appropriate. 95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 96 assert(!N->getParent() && "machine instruction already in a basic block"); 97 N->setParent(Parent); 98 99 // Add the instruction's register operands to their corresponding 100 // use/def lists. 101 MachineFunction *MF = Parent->getParent(); 102 N->AddRegOperandsToUseLists(MF->getRegInfo()); 103 } 104 105 /// When we remove an instruction from a basic block list, we update its parent 106 /// pointer and remove its operands from reg use/def lists if appropriate. 107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 108 assert(N->getParent() && "machine instruction not in a basic block"); 109 110 // Remove from the use/def lists. 111 if (MachineFunction *MF = N->getParent()->getParent()) 112 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 113 114 N->setParent(nullptr); 115 } 116 117 /// When moving a range of instructions from one MBB list to another, we need to 118 /// update the parent pointers and the use/def lists. 119 void ilist_traits<MachineInstr>:: 120 transferNodesFromList(ilist_traits<MachineInstr> &FromList, 121 ilist_iterator<MachineInstr> First, 122 ilist_iterator<MachineInstr> Last) { 123 assert(Parent->getParent() == FromList.Parent->getParent() && 124 "MachineInstr parent mismatch!"); 125 126 // Splice within the same MBB -> no change. 127 if (Parent == FromList.Parent) return; 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; First != Last; ++First) 132 First->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 iterator E = end(); 152 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 153 ++I; 154 // FIXME: This needs to change if we wish to bundle labels / dbg_values 155 // inside the bundle. 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi / non-label instruction is inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 162 iterator B = begin(), E = end(), I = E; 163 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 164 ; /*noop */ 165 while (I != E && !I->isTerminator()) 166 ++I; 167 return I; 168 } 169 170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 171 instr_iterator B = instr_begin(), E = instr_end(), I = E; 172 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 173 ; /*noop */ 174 while (I != E && !I->isTerminator()) 175 ++I; 176 return I; 177 } 178 179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 180 // Skip over begin-of-block dbg_value instructions. 181 iterator I = begin(), E = end(); 182 while (I != E && I->isDebugValue()) 183 ++I; 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 188 // Skip over end-of-block dbg_value instructions. 189 instr_iterator B = instr_begin(), I = instr_end(); 190 while (I != B) { 191 --I; 192 // Return instruction that starts a bundle. 193 if (I->isDebugValue() || I->isInsideBundle()) 194 continue; 195 return I; 196 } 197 // The block is all debug values. 198 return end(); 199 } 200 201 bool MachineBasicBlock::hasEHPadSuccessor() const { 202 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 203 if ((*I)->isEHPad()) 204 return true; 205 return false; 206 } 207 208 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 209 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 210 print(dbgs()); 211 } 212 #endif 213 214 StringRef MachineBasicBlock::getName() const { 215 if (const BasicBlock *LBB = getBasicBlock()) 216 return LBB->getName(); 217 else 218 return "(null)"; 219 } 220 221 /// Return a hopefully unique identifier for this block. 222 std::string MachineBasicBlock::getFullName() const { 223 std::string Name; 224 if (getParent()) 225 Name = (getParent()->getName() + ":").str(); 226 if (getBasicBlock()) 227 Name += getBasicBlock()->getName(); 228 else 229 Name += ("BB" + Twine(getNumber())).str(); 230 return Name; 231 } 232 233 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 234 const { 235 const MachineFunction *MF = getParent(); 236 if (!MF) { 237 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 238 << " is null\n"; 239 return; 240 } 241 const Function *F = MF->getFunction(); 242 const Module *M = F ? F->getParent() : nullptr; 243 ModuleSlotTracker MST(M); 244 print(OS, MST, Indexes); 245 } 246 247 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 248 const SlotIndexes *Indexes) const { 249 const MachineFunction *MF = getParent(); 250 if (!MF) { 251 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 252 << " is null\n"; 253 return; 254 } 255 256 if (Indexes) 257 OS << Indexes->getMBBStartIdx(this) << '\t'; 258 259 OS << "BB#" << getNumber() << ": "; 260 261 const char *Comma = ""; 262 if (const BasicBlock *LBB = getBasicBlock()) { 263 OS << Comma << "derived from LLVM BB "; 264 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 265 Comma = ", "; 266 } 267 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 268 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 269 if (Alignment) 270 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 271 << " bytes)"; 272 273 OS << '\n'; 274 275 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 276 if (!livein_empty()) { 277 if (Indexes) OS << '\t'; 278 OS << " Live Ins:"; 279 for (const auto &LI : make_range(livein_begin(), livein_end())) { 280 OS << ' ' << PrintReg(LI.PhysReg, TRI); 281 if (LI.LaneMask != ~0u) 282 OS << ':' << PrintLaneMask(LI.LaneMask); 283 } 284 OS << '\n'; 285 } 286 // Print the preds of this block according to the CFG. 287 if (!pred_empty()) { 288 if (Indexes) OS << '\t'; 289 OS << " Predecessors according to CFG:"; 290 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 291 OS << " BB#" << (*PI)->getNumber(); 292 OS << '\n'; 293 } 294 295 for (auto &I : instrs()) { 296 if (Indexes) { 297 if (Indexes->hasIndex(I)) 298 OS << Indexes->getInstructionIndex(I); 299 OS << '\t'; 300 } 301 OS << '\t'; 302 if (I.isInsideBundle()) 303 OS << " * "; 304 I.print(OS, MST); 305 } 306 307 // Print the successors of this block according to the CFG. 308 if (!succ_empty()) { 309 if (Indexes) OS << '\t'; 310 OS << " Successors according to CFG:"; 311 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 312 OS << " BB#" << (*SI)->getNumber(); 313 if (!Probs.empty()) 314 OS << '(' << *getProbabilityIterator(SI) << ')'; 315 } 316 OS << '\n'; 317 } 318 } 319 320 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 321 bool /*PrintType*/) const { 322 OS << "BB#" << getNumber(); 323 } 324 325 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 326 LiveInVector::iterator I = std::find_if( 327 LiveIns.begin(), LiveIns.end(), 328 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 329 if (I == LiveIns.end()) 330 return; 331 332 I->LaneMask &= ~LaneMask; 333 if (I->LaneMask == 0) 334 LiveIns.erase(I); 335 } 336 337 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 338 livein_iterator I = std::find_if( 339 LiveIns.begin(), LiveIns.end(), 340 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 341 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 342 } 343 344 void MachineBasicBlock::sortUniqueLiveIns() { 345 std::sort(LiveIns.begin(), LiveIns.end(), 346 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 347 return LI0.PhysReg < LI1.PhysReg; 348 }); 349 // Liveins are sorted by physreg now we can merge their lanemasks. 350 LiveInVector::const_iterator I = LiveIns.begin(); 351 LiveInVector::const_iterator J; 352 LiveInVector::iterator Out = LiveIns.begin(); 353 for (; I != LiveIns.end(); ++Out, I = J) { 354 unsigned PhysReg = I->PhysReg; 355 LaneBitmask LaneMask = I->LaneMask; 356 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 357 LaneMask |= J->LaneMask; 358 Out->PhysReg = PhysReg; 359 Out->LaneMask = LaneMask; 360 } 361 LiveIns.erase(Out, LiveIns.end()); 362 } 363 364 unsigned 365 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 366 assert(getParent() && "MBB must be inserted in function"); 367 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 368 assert(RC && "Register class is required"); 369 assert((isEHPad() || this == &getParent()->front()) && 370 "Only the entry block and landing pads can have physreg live ins"); 371 372 bool LiveIn = isLiveIn(PhysReg); 373 iterator I = SkipPHIsAndLabels(begin()), E = end(); 374 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 375 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 376 377 // Look for an existing copy. 378 if (LiveIn) 379 for (;I != E && I->isCopy(); ++I) 380 if (I->getOperand(1).getReg() == PhysReg) { 381 unsigned VirtReg = I->getOperand(0).getReg(); 382 if (!MRI.constrainRegClass(VirtReg, RC)) 383 llvm_unreachable("Incompatible live-in register class."); 384 return VirtReg; 385 } 386 387 // No luck, create a virtual register. 388 unsigned VirtReg = MRI.createVirtualRegister(RC); 389 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 390 .addReg(PhysReg, RegState::Kill); 391 if (!LiveIn) 392 addLiveIn(PhysReg); 393 return VirtReg; 394 } 395 396 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 397 getParent()->splice(NewAfter->getIterator(), getIterator()); 398 } 399 400 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 401 getParent()->splice(++NewBefore->getIterator(), getIterator()); 402 } 403 404 void MachineBasicBlock::updateTerminator() { 405 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 406 // A block with no successors has no concerns with fall-through edges. 407 if (this->succ_empty()) 408 return; 409 410 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 411 SmallVector<MachineOperand, 4> Cond; 412 DebugLoc DL; // FIXME: this is nowhere 413 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 414 (void) B; 415 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 416 if (Cond.empty()) { 417 if (TBB) { 418 // The block has an unconditional branch. If its successor is now its 419 // layout successor, delete the branch. 420 if (isLayoutSuccessor(TBB)) 421 TII->RemoveBranch(*this); 422 } else { 423 // The block has an unconditional fallthrough. If its successor is not its 424 // layout successor, insert a branch. First we have to locate the only 425 // non-landing-pad successor, as that is the fallthrough block. 426 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 427 if ((*SI)->isEHPad()) 428 continue; 429 assert(!TBB && "Found more than one non-landing-pad successor!"); 430 TBB = *SI; 431 } 432 433 // If there is no non-landing-pad successor, the block has no fall-through 434 // edges to be concerned with. 435 if (!TBB) 436 return; 437 438 // Finally update the unconditional successor to be reached via a branch 439 // if it would not be reached by fallthrough. 440 if (!isLayoutSuccessor(TBB)) 441 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 442 } 443 return; 444 } 445 446 if (FBB) { 447 // The block has a non-fallthrough conditional branch. If one of its 448 // successors is its layout successor, rewrite it to a fallthrough 449 // conditional branch. 450 if (isLayoutSuccessor(TBB)) { 451 if (TII->ReverseBranchCondition(Cond)) 452 return; 453 TII->RemoveBranch(*this); 454 TII->InsertBranch(*this, FBB, nullptr, Cond, DL); 455 } else if (isLayoutSuccessor(FBB)) { 456 TII->RemoveBranch(*this); 457 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 458 } 459 return; 460 } 461 462 // Walk through the successors and find the successor which is not a landing 463 // pad and is not the conditional branch destination (in TBB) as the 464 // fallthrough successor. 465 MachineBasicBlock *FallthroughBB = nullptr; 466 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 467 if ((*SI)->isEHPad() || *SI == TBB) 468 continue; 469 assert(!FallthroughBB && "Found more than one fallthrough successor."); 470 FallthroughBB = *SI; 471 } 472 473 if (!FallthroughBB) { 474 if (canFallThrough()) { 475 // We fallthrough to the same basic block as the conditional jump targets. 476 // Remove the conditional jump, leaving unconditional fallthrough. 477 // FIXME: This does not seem like a reasonable pattern to support, but it 478 // has been seen in the wild coming out of degenerate ARM test cases. 479 TII->RemoveBranch(*this); 480 481 // Finally update the unconditional successor to be reached via a branch if 482 // it would not be reached by fallthrough. 483 if (!isLayoutSuccessor(TBB)) 484 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 485 return; 486 } 487 488 // We enter here iff exactly one successor is TBB which cannot fallthrough 489 // and the rest successors if any are EHPads. In this case, we need to 490 // change the conditional branch into unconditional branch. 491 TII->RemoveBranch(*this); 492 Cond.clear(); 493 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 494 return; 495 } 496 497 // The block has a fallthrough conditional branch. 498 if (isLayoutSuccessor(TBB)) { 499 if (TII->ReverseBranchCondition(Cond)) { 500 // We can't reverse the condition, add an unconditional branch. 501 Cond.clear(); 502 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 503 return; 504 } 505 TII->RemoveBranch(*this); 506 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 507 } else if (!isLayoutSuccessor(FallthroughBB)) { 508 TII->RemoveBranch(*this); 509 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); 510 } 511 } 512 513 void MachineBasicBlock::validateSuccProbs() const { 514 #ifndef NDEBUG 515 int64_t Sum = 0; 516 for (auto Prob : Probs) 517 Sum += Prob.getNumerator(); 518 // Due to precision issue, we assume that the sum of probabilities is one if 519 // the difference between the sum of their numerators and the denominator is 520 // no greater than the number of successors. 521 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 522 Probs.size() && 523 "The sum of successors's probabilities exceeds one."); 524 #endif // NDEBUG 525 } 526 527 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 528 BranchProbability Prob) { 529 // Probability list is either empty (if successor list isn't empty, this means 530 // disabled optimization) or has the same size as successor list. 531 if (!(Probs.empty() && !Successors.empty())) 532 Probs.push_back(Prob); 533 Successors.push_back(Succ); 534 Succ->addPredecessor(this); 535 } 536 537 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 538 // We need to make sure probability list is either empty or has the same size 539 // of successor list. When this function is called, we can safely delete all 540 // probability in the list. 541 Probs.clear(); 542 Successors.push_back(Succ); 543 Succ->addPredecessor(this); 544 } 545 546 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 547 bool NormalizeSuccProbs) { 548 succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ); 549 removeSuccessor(I, NormalizeSuccProbs); 550 } 551 552 MachineBasicBlock::succ_iterator 553 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 554 assert(I != Successors.end() && "Not a current successor!"); 555 556 // If probability list is empty it means we don't use it (disabled 557 // optimization). 558 if (!Probs.empty()) { 559 probability_iterator WI = getProbabilityIterator(I); 560 Probs.erase(WI); 561 if (NormalizeSuccProbs) 562 normalizeSuccProbs(); 563 } 564 565 (*I)->removePredecessor(this); 566 return Successors.erase(I); 567 } 568 569 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 570 MachineBasicBlock *New) { 571 if (Old == New) 572 return; 573 574 succ_iterator E = succ_end(); 575 succ_iterator NewI = E; 576 succ_iterator OldI = E; 577 for (succ_iterator I = succ_begin(); I != E; ++I) { 578 if (*I == Old) { 579 OldI = I; 580 if (NewI != E) 581 break; 582 } 583 if (*I == New) { 584 NewI = I; 585 if (OldI != E) 586 break; 587 } 588 } 589 assert(OldI != E && "Old is not a successor of this block"); 590 591 // If New isn't already a successor, let it take Old's place. 592 if (NewI == E) { 593 Old->removePredecessor(this); 594 New->addPredecessor(this); 595 *OldI = New; 596 return; 597 } 598 599 // New is already a successor. 600 // Update its probability instead of adding a duplicate edge. 601 if (!Probs.empty()) { 602 auto ProbIter = getProbabilityIterator(NewI); 603 if (!ProbIter->isUnknown()) 604 *ProbIter += *getProbabilityIterator(OldI); 605 } 606 removeSuccessor(OldI); 607 } 608 609 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 610 Predecessors.push_back(Pred); 611 } 612 613 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 614 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred); 615 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 616 Predecessors.erase(I); 617 } 618 619 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 620 if (this == FromMBB) 621 return; 622 623 while (!FromMBB->succ_empty()) { 624 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 625 626 // If probability list is empty it means we don't use it (disabled optimization). 627 if (!FromMBB->Probs.empty()) { 628 auto Prob = *FromMBB->Probs.begin(); 629 addSuccessor(Succ, Prob); 630 } else 631 addSuccessorWithoutProb(Succ); 632 633 FromMBB->removeSuccessor(Succ); 634 } 635 } 636 637 void 638 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 639 if (this == FromMBB) 640 return; 641 642 while (!FromMBB->succ_empty()) { 643 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 644 if (!FromMBB->Probs.empty()) { 645 auto Prob = *FromMBB->Probs.begin(); 646 addSuccessor(Succ, Prob); 647 } else 648 addSuccessorWithoutProb(Succ); 649 FromMBB->removeSuccessor(Succ); 650 651 // Fix up any PHI nodes in the successor. 652 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 653 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 654 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 655 MachineOperand &MO = MI->getOperand(i); 656 if (MO.getMBB() == FromMBB) 657 MO.setMBB(this); 658 } 659 } 660 normalizeSuccProbs(); 661 } 662 663 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 664 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 665 } 666 667 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 668 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 669 } 670 671 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 672 MachineFunction::const_iterator I(this); 673 return std::next(I) == MachineFunction::const_iterator(MBB); 674 } 675 676 bool MachineBasicBlock::canFallThrough() { 677 MachineFunction::iterator Fallthrough = getIterator(); 678 ++Fallthrough; 679 // If FallthroughBlock is off the end of the function, it can't fall through. 680 if (Fallthrough == getParent()->end()) 681 return false; 682 683 // If FallthroughBlock isn't a successor, no fallthrough is possible. 684 if (!isSuccessor(&*Fallthrough)) 685 return false; 686 687 // Analyze the branches, if any, at the end of the block. 688 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 689 SmallVector<MachineOperand, 4> Cond; 690 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 691 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 692 // If we couldn't analyze the branch, examine the last instruction. 693 // If the block doesn't end in a known control barrier, assume fallthrough 694 // is possible. The isPredicated check is needed because this code can be 695 // called during IfConversion, where an instruction which is normally a 696 // Barrier is predicated and thus no longer an actual control barrier. 697 return empty() || !back().isBarrier() || TII->isPredicated(back()); 698 } 699 700 // If there is no branch, control always falls through. 701 if (!TBB) return true; 702 703 // If there is some explicit branch to the fallthrough block, it can obviously 704 // reach, even though the branch should get folded to fall through implicitly. 705 if (MachineFunction::iterator(TBB) == Fallthrough || 706 MachineFunction::iterator(FBB) == Fallthrough) 707 return true; 708 709 // If it's an unconditional branch to some block not the fall through, it 710 // doesn't fall through. 711 if (Cond.empty()) return false; 712 713 // Otherwise, if it is conditional and has no explicit false block, it falls 714 // through. 715 return FBB == nullptr; 716 } 717 718 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 719 Pass &P) { 720 if (!canSplitCriticalEdge(Succ)) 721 return nullptr; 722 723 MachineFunction *MF = getParent(); 724 DebugLoc DL; // FIXME: this is nowhere 725 726 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 727 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 728 DEBUG(dbgs() << "Splitting critical edge:" 729 " BB#" << getNumber() 730 << " -- BB#" << NMBB->getNumber() 731 << " -- BB#" << Succ->getNumber() << '\n'); 732 733 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 734 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 735 if (LIS) 736 LIS->insertMBBInMaps(NMBB); 737 else if (Indexes) 738 Indexes->insertMBBInMaps(NMBB); 739 740 // On some targets like Mips, branches may kill virtual registers. Make sure 741 // that LiveVariables is properly updated after updateTerminator replaces the 742 // terminators. 743 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 744 745 // Collect a list of virtual registers killed by the terminators. 746 SmallVector<unsigned, 4> KilledRegs; 747 if (LV) 748 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 749 I != E; ++I) { 750 MachineInstr *MI = &*I; 751 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 752 OE = MI->operands_end(); OI != OE; ++OI) { 753 if (!OI->isReg() || OI->getReg() == 0 || 754 !OI->isUse() || !OI->isKill() || OI->isUndef()) 755 continue; 756 unsigned Reg = OI->getReg(); 757 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 758 LV->getVarInfo(Reg).removeKill(*MI)) { 759 KilledRegs.push_back(Reg); 760 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 761 OI->setIsKill(false); 762 } 763 } 764 } 765 766 SmallVector<unsigned, 4> UsedRegs; 767 if (LIS) { 768 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 769 I != E; ++I) { 770 MachineInstr *MI = &*I; 771 772 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 773 OE = MI->operands_end(); OI != OE; ++OI) { 774 if (!OI->isReg() || OI->getReg() == 0) 775 continue; 776 777 unsigned Reg = OI->getReg(); 778 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 779 UsedRegs.push_back(Reg); 780 } 781 } 782 } 783 784 ReplaceUsesOfBlockWith(Succ, NMBB); 785 786 // If updateTerminator() removes instructions, we need to remove them from 787 // SlotIndexes. 788 SmallVector<MachineInstr*, 4> Terminators; 789 if (Indexes) { 790 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 791 I != E; ++I) 792 Terminators.push_back(&*I); 793 } 794 795 updateTerminator(); 796 797 if (Indexes) { 798 SmallVector<MachineInstr*, 4> NewTerminators; 799 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 800 I != E; ++I) 801 NewTerminators.push_back(&*I); 802 803 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 804 E = Terminators.end(); I != E; ++I) { 805 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 806 NewTerminators.end()) 807 Indexes->removeMachineInstrFromMaps(**I); 808 } 809 } 810 811 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 812 NMBB->addSuccessor(Succ); 813 if (!NMBB->isLayoutSuccessor(Succ)) { 814 SmallVector<MachineOperand, 4> Cond; 815 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 816 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); 817 818 if (Indexes) { 819 for (MachineInstr &MI : NMBB->instrs()) { 820 // Some instructions may have been moved to NMBB by updateTerminator(), 821 // so we first remove any instruction that already has an index. 822 if (Indexes->hasIndex(MI)) 823 Indexes->removeMachineInstrFromMaps(MI); 824 Indexes->insertMachineInstrInMaps(MI); 825 } 826 } 827 } 828 829 // Fix PHI nodes in Succ so they refer to NMBB instead of this 830 for (MachineBasicBlock::instr_iterator 831 i = Succ->instr_begin(),e = Succ->instr_end(); 832 i != e && i->isPHI(); ++i) 833 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 834 if (i->getOperand(ni+1).getMBB() == this) 835 i->getOperand(ni+1).setMBB(NMBB); 836 837 // Inherit live-ins from the successor 838 for (const auto &LI : Succ->liveins()) 839 NMBB->addLiveIn(LI); 840 841 // Update LiveVariables. 842 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 843 if (LV) { 844 // Restore kills of virtual registers that were killed by the terminators. 845 while (!KilledRegs.empty()) { 846 unsigned Reg = KilledRegs.pop_back_val(); 847 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 848 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 849 continue; 850 if (TargetRegisterInfo::isVirtualRegister(Reg)) 851 LV->getVarInfo(Reg).Kills.push_back(&*I); 852 DEBUG(dbgs() << "Restored terminator kill: " << *I); 853 break; 854 } 855 } 856 // Update relevant live-through information. 857 LV->addNewBlock(NMBB, this, Succ); 858 } 859 860 if (LIS) { 861 // After splitting the edge and updating SlotIndexes, live intervals may be 862 // in one of two situations, depending on whether this block was the last in 863 // the function. If the original block was the last in the function, all 864 // live intervals will end prior to the beginning of the new split block. If 865 // the original block was not at the end of the function, all live intervals 866 // will extend to the end of the new split block. 867 868 bool isLastMBB = 869 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 870 871 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 872 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 873 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 874 875 // Find the registers used from NMBB in PHIs in Succ. 876 SmallSet<unsigned, 8> PHISrcRegs; 877 for (MachineBasicBlock::instr_iterator 878 I = Succ->instr_begin(), E = Succ->instr_end(); 879 I != E && I->isPHI(); ++I) { 880 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 881 if (I->getOperand(ni+1).getMBB() == NMBB) { 882 MachineOperand &MO = I->getOperand(ni); 883 unsigned Reg = MO.getReg(); 884 PHISrcRegs.insert(Reg); 885 if (MO.isUndef()) 886 continue; 887 888 LiveInterval &LI = LIS->getInterval(Reg); 889 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 890 assert(VNI && 891 "PHI sources should be live out of their predecessors."); 892 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 893 } 894 } 895 } 896 897 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 898 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 899 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 900 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 901 continue; 902 903 LiveInterval &LI = LIS->getInterval(Reg); 904 if (!LI.liveAt(PrevIndex)) 905 continue; 906 907 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 908 if (isLiveOut && isLastMBB) { 909 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 910 assert(VNI && "LiveInterval should have VNInfo where it is live."); 911 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 912 } else if (!isLiveOut && !isLastMBB) { 913 LI.removeSegment(StartIndex, EndIndex); 914 } 915 } 916 917 // Update all intervals for registers whose uses may have been modified by 918 // updateTerminator(). 919 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 920 } 921 922 if (MachineDominatorTree *MDT = 923 P.getAnalysisIfAvailable<MachineDominatorTree>()) 924 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 925 926 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 927 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 928 // If one or the other blocks were not in a loop, the new block is not 929 // either, and thus LI doesn't need to be updated. 930 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 931 if (TIL == DestLoop) { 932 // Both in the same loop, the NMBB joins loop. 933 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 934 } else if (TIL->contains(DestLoop)) { 935 // Edge from an outer loop to an inner loop. Add to the outer loop. 936 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 937 } else if (DestLoop->contains(TIL)) { 938 // Edge from an inner loop to an outer loop. Add to the outer loop. 939 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 940 } else { 941 // Edge from two loops with no containment relation. Because these 942 // are natural loops, we know that the destination block must be the 943 // header of its loop (adding a branch into a loop elsewhere would 944 // create an irreducible loop). 945 assert(DestLoop->getHeader() == Succ && 946 "Should not create irreducible loops!"); 947 if (MachineLoop *P = DestLoop->getParentLoop()) 948 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 949 } 950 } 951 } 952 953 return NMBB; 954 } 955 956 bool MachineBasicBlock::canSplitCriticalEdge( 957 const MachineBasicBlock *Succ) const { 958 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 959 // it in this generic function. 960 if (Succ->isEHPad()) 961 return false; 962 963 const MachineFunction *MF = getParent(); 964 965 // Performance might be harmed on HW that implements branching using exec mask 966 // where both sides of the branches are always executed. 967 if (MF->getTarget().requiresStructuredCFG()) 968 return false; 969 970 // We may need to update this's terminator, but we can't do that if 971 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 972 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 973 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 974 SmallVector<MachineOperand, 4> Cond; 975 // AnalyzeBanch should modify this, since we did not allow modification. 976 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 977 /*AllowModify*/ false)) 978 return false; 979 980 // Avoid bugpoint weirdness: A block may end with a conditional branch but 981 // jumps to the same MBB is either case. We have duplicate CFG edges in that 982 // case that we can't handle. Since this never happens in properly optimized 983 // code, just skip those edges. 984 if (TBB && TBB == FBB) { 985 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 986 << getNumber() << '\n'); 987 return false; 988 } 989 return true; 990 } 991 992 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 993 /// neighboring instructions so the bundle won't be broken by removing MI. 994 static void unbundleSingleMI(MachineInstr *MI) { 995 // Removing the first instruction in a bundle. 996 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 997 MI->unbundleFromSucc(); 998 // Removing the last instruction in a bundle. 999 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1000 MI->unbundleFromPred(); 1001 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1002 // are already fine. 1003 } 1004 1005 MachineBasicBlock::instr_iterator 1006 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1007 unbundleSingleMI(&*I); 1008 return Insts.erase(I); 1009 } 1010 1011 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1012 unbundleSingleMI(MI); 1013 MI->clearFlag(MachineInstr::BundledPred); 1014 MI->clearFlag(MachineInstr::BundledSucc); 1015 return Insts.remove(MI); 1016 } 1017 1018 MachineBasicBlock::instr_iterator 1019 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1020 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1021 "Cannot insert instruction with bundle flags"); 1022 // Set the bundle flags when inserting inside a bundle. 1023 if (I != instr_end() && I->isBundledWithPred()) { 1024 MI->setFlag(MachineInstr::BundledPred); 1025 MI->setFlag(MachineInstr::BundledSucc); 1026 } 1027 return Insts.insert(I, MI); 1028 } 1029 1030 /// This method unlinks 'this' from the containing function, and returns it, but 1031 /// does not delete it. 1032 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1033 assert(getParent() && "Not embedded in a function!"); 1034 getParent()->remove(this); 1035 return this; 1036 } 1037 1038 /// This method unlinks 'this' from the containing function, and deletes it. 1039 void MachineBasicBlock::eraseFromParent() { 1040 assert(getParent() && "Not embedded in a function!"); 1041 getParent()->erase(this); 1042 } 1043 1044 /// Given a machine basic block that branched to 'Old', change the code and CFG 1045 /// so that it branches to 'New' instead. 1046 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1047 MachineBasicBlock *New) { 1048 assert(Old != New && "Cannot replace self with self!"); 1049 1050 MachineBasicBlock::instr_iterator I = instr_end(); 1051 while (I != instr_begin()) { 1052 --I; 1053 if (!I->isTerminator()) break; 1054 1055 // Scan the operands of this machine instruction, replacing any uses of Old 1056 // with New. 1057 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1058 if (I->getOperand(i).isMBB() && 1059 I->getOperand(i).getMBB() == Old) 1060 I->getOperand(i).setMBB(New); 1061 } 1062 1063 // Update the successor information. 1064 replaceSuccessor(Old, New); 1065 } 1066 1067 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1068 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1069 /// MBB successors from the CFG. DestA and DestB can be null. 1070 /// 1071 /// Besides DestA and DestB, retain other edges leading to LandingPads 1072 /// (currently there can be only one; we don't check or require that here). 1073 /// Note it is possible that DestA and/or DestB are LandingPads. 1074 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1075 MachineBasicBlock *DestB, 1076 bool IsCond) { 1077 // The values of DestA and DestB frequently come from a call to the 1078 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1079 // values from there. 1080 // 1081 // 1. If both DestA and DestB are null, then the block ends with no branches 1082 // (it falls through to its successor). 1083 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1084 // with only an unconditional branch. 1085 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1086 // with a conditional branch that falls through to a successor (DestB). 1087 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1088 // conditional branch followed by an unconditional branch. DestA is the 1089 // 'true' destination and DestB is the 'false' destination. 1090 1091 bool Changed = false; 1092 1093 MachineFunction::iterator FallThru = std::next(getIterator()); 1094 1095 if (!DestA && !DestB) { 1096 // Block falls through to successor. 1097 DestA = &*FallThru; 1098 DestB = &*FallThru; 1099 } else if (DestA && !DestB) { 1100 if (IsCond) 1101 // Block ends in conditional jump that falls through to successor. 1102 DestB = &*FallThru; 1103 } else { 1104 assert(DestA && DestB && IsCond && 1105 "CFG in a bad state. Cannot correct CFG edges"); 1106 } 1107 1108 // Remove superfluous edges. I.e., those which aren't destinations of this 1109 // basic block, duplicate edges, or landing pads. 1110 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1111 MachineBasicBlock::succ_iterator SI = succ_begin(); 1112 while (SI != succ_end()) { 1113 const MachineBasicBlock *MBB = *SI; 1114 if (!SeenMBBs.insert(MBB).second || 1115 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1116 // This is a superfluous edge, remove it. 1117 SI = removeSuccessor(SI); 1118 Changed = true; 1119 } else { 1120 ++SI; 1121 } 1122 } 1123 1124 if (Changed) 1125 normalizeSuccProbs(); 1126 return Changed; 1127 } 1128 1129 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1130 /// instructions. Return UnknownLoc if there is none. 1131 DebugLoc 1132 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1133 DebugLoc DL; 1134 instr_iterator E = instr_end(); 1135 if (MBBI == E) 1136 return DL; 1137 1138 // Skip debug declarations, we don't want a DebugLoc from them. 1139 while (MBBI != E && MBBI->isDebugValue()) 1140 MBBI++; 1141 if (MBBI != E) 1142 DL = MBBI->getDebugLoc(); 1143 return DL; 1144 } 1145 1146 /// Return probability of the edge from this block to MBB. 1147 BranchProbability 1148 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1149 if (Probs.empty()) 1150 return BranchProbability(1, succ_size()); 1151 1152 const auto &Prob = *getProbabilityIterator(Succ); 1153 if (Prob.isUnknown()) { 1154 // For unknown probabilities, collect the sum of all known ones, and evenly 1155 // ditribute the complemental of the sum to each unknown probability. 1156 unsigned KnownProbNum = 0; 1157 auto Sum = BranchProbability::getZero(); 1158 for (auto &P : Probs) { 1159 if (!P.isUnknown()) { 1160 Sum += P; 1161 KnownProbNum++; 1162 } 1163 } 1164 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1165 } else 1166 return Prob; 1167 } 1168 1169 /// Set successor probability of a given iterator. 1170 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1171 BranchProbability Prob) { 1172 assert(!Prob.isUnknown()); 1173 if (Probs.empty()) 1174 return; 1175 *getProbabilityIterator(I) = Prob; 1176 } 1177 1178 /// Return probability iterator corresonding to the I successor iterator 1179 MachineBasicBlock::const_probability_iterator 1180 MachineBasicBlock::getProbabilityIterator( 1181 MachineBasicBlock::const_succ_iterator I) const { 1182 assert(Probs.size() == Successors.size() && "Async probability list!"); 1183 const size_t index = std::distance(Successors.begin(), I); 1184 assert(index < Probs.size() && "Not a current successor!"); 1185 return Probs.begin() + index; 1186 } 1187 1188 /// Return probability iterator corresonding to the I successor iterator. 1189 MachineBasicBlock::probability_iterator 1190 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1191 assert(Probs.size() == Successors.size() && "Async probability list!"); 1192 const size_t index = std::distance(Successors.begin(), I); 1193 assert(index < Probs.size() && "Not a current successor!"); 1194 return Probs.begin() + index; 1195 } 1196 1197 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1198 /// as of just before "MI". 1199 /// 1200 /// Search is localised to a neighborhood of 1201 /// Neighborhood instructions before (searching for defs or kills) and N 1202 /// instructions after (searching just for defs) MI. 1203 MachineBasicBlock::LivenessQueryResult 1204 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1205 unsigned Reg, const_iterator Before, 1206 unsigned Neighborhood) const { 1207 unsigned N = Neighborhood; 1208 1209 // Start by searching backwards from Before, looking for kills, reads or defs. 1210 const_iterator I(Before); 1211 // If this is the first insn in the block, don't search backwards. 1212 if (I != begin()) { 1213 do { 1214 --I; 1215 1216 MachineOperandIteratorBase::PhysRegInfo Info = 1217 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1218 1219 // Defs happen after uses so they take precedence if both are present. 1220 1221 // Register is dead after a dead def of the full register. 1222 if (Info.DeadDef) 1223 return LQR_Dead; 1224 // Register is (at least partially) live after a def. 1225 if (Info.Defined) { 1226 if (!Info.PartialDeadDef) 1227 return LQR_Live; 1228 // As soon as we saw a partial definition (dead or not), 1229 // we cannot tell if the value is partial live without 1230 // tracking the lanemasks. We are not going to do this, 1231 // so fall back on the remaining of the analysis. 1232 break; 1233 } 1234 // Register is dead after a full kill or clobber and no def. 1235 if (Info.Killed || Info.Clobbered) 1236 return LQR_Dead; 1237 // Register must be live if we read it. 1238 if (Info.Read) 1239 return LQR_Live; 1240 } while (I != begin() && --N > 0); 1241 } 1242 1243 // Did we get to the start of the block? 1244 if (I == begin()) { 1245 // If so, the register's state is definitely defined by the live-in state. 1246 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1247 ++RAI) 1248 if (isLiveIn(*RAI)) 1249 return LQR_Live; 1250 1251 return LQR_Dead; 1252 } 1253 1254 N = Neighborhood; 1255 1256 // Try searching forwards from Before, looking for reads or defs. 1257 I = const_iterator(Before); 1258 // If this is the last insn in the block, don't search forwards. 1259 if (I != end()) { 1260 for (++I; I != end() && N > 0; ++I, --N) { 1261 MachineOperandIteratorBase::PhysRegInfo Info = 1262 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1263 1264 // Register is live when we read it here. 1265 if (Info.Read) 1266 return LQR_Live; 1267 // Register is dead if we can fully overwrite or clobber it here. 1268 if (Info.FullyDefined || Info.Clobbered) 1269 return LQR_Dead; 1270 } 1271 } 1272 1273 // At this point we have no idea of the liveness of the register. 1274 return LQR_Unknown; 1275 } 1276 1277 const uint32_t * 1278 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1279 // EH funclet entry does not preserve any registers. 1280 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1281 } 1282 1283 const uint32_t * 1284 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1285 // If we see a return block with successors, this must be a funclet return, 1286 // which does not preserve any registers. If there are no successors, we don't 1287 // care what kind of return it is, putting a mask after it is a no-op. 1288 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1289 } 1290