1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Expr class and subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/EvaluatedExprVisitor.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/AST/Mangle.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/Builtins.h" 27 #include "clang/Basic/CharInfo.h" 28 #include "clang/Basic/SourceManager.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/Lexer.h" 31 #include "clang/Lex/LiteralSupport.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 #include <cstring> 37 using namespace clang; 38 39 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 40 const Expr *E = ignoreParenBaseCasts(); 41 42 QualType DerivedType = E->getType(); 43 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 44 DerivedType = PTy->getPointeeType(); 45 46 if (DerivedType->isDependentType()) 47 return nullptr; 48 49 const RecordType *Ty = DerivedType->castAs<RecordType>(); 50 Decl *D = Ty->getDecl(); 51 return cast<CXXRecordDecl>(D); 52 } 53 54 const Expr *Expr::skipRValueSubobjectAdjustments( 55 SmallVectorImpl<const Expr *> &CommaLHSs, 56 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 57 const Expr *E = this; 58 while (true) { 59 E = E->IgnoreParens(); 60 61 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 62 if ((CE->getCastKind() == CK_DerivedToBase || 63 CE->getCastKind() == CK_UncheckedDerivedToBase) && 64 E->getType()->isRecordType()) { 65 E = CE->getSubExpr(); 66 CXXRecordDecl *Derived 67 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 68 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 69 continue; 70 } 71 72 if (CE->getCastKind() == CK_NoOp) { 73 E = CE->getSubExpr(); 74 continue; 75 } 76 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 77 if (!ME->isArrow()) { 78 assert(ME->getBase()->getType()->isRecordType()); 79 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 80 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 81 E = ME->getBase(); 82 Adjustments.push_back(SubobjectAdjustment(Field)); 83 continue; 84 } 85 } 86 } 87 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 88 if (BO->isPtrMemOp()) { 89 assert(BO->getRHS()->isRValue()); 90 E = BO->getLHS(); 91 const MemberPointerType *MPT = 92 BO->getRHS()->getType()->getAs<MemberPointerType>(); 93 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 94 continue; 95 } else if (BO->getOpcode() == BO_Comma) { 96 CommaLHSs.push_back(BO->getLHS()); 97 E = BO->getRHS(); 98 continue; 99 } 100 } 101 102 // Nothing changed. 103 break; 104 } 105 return E; 106 } 107 108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression 109 /// that is known to return 0 or 1. This happens for _Bool/bool expressions 110 /// but also int expressions which are produced by things like comparisons in 111 /// C. 112 bool Expr::isKnownToHaveBooleanValue() const { 113 const Expr *E = IgnoreParens(); 114 115 // If this value has _Bool type, it is obvious 0/1. 116 if (E->getType()->isBooleanType()) return true; 117 // If this is a non-scalar-integer type, we don't care enough to try. 118 if (!E->getType()->isIntegralOrEnumerationType()) return false; 119 120 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 121 switch (UO->getOpcode()) { 122 case UO_Plus: 123 return UO->getSubExpr()->isKnownToHaveBooleanValue(); 124 case UO_LNot: 125 return true; 126 default: 127 return false; 128 } 129 } 130 131 // Only look through implicit casts. If the user writes 132 // '(int) (a && b)' treat it as an arbitrary int. 133 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 134 return CE->getSubExpr()->isKnownToHaveBooleanValue(); 135 136 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 137 switch (BO->getOpcode()) { 138 default: return false; 139 case BO_LT: // Relational operators. 140 case BO_GT: 141 case BO_LE: 142 case BO_GE: 143 case BO_EQ: // Equality operators. 144 case BO_NE: 145 case BO_LAnd: // AND operator. 146 case BO_LOr: // Logical OR operator. 147 return true; 148 149 case BO_And: // Bitwise AND operator. 150 case BO_Xor: // Bitwise XOR operator. 151 case BO_Or: // Bitwise OR operator. 152 // Handle things like (x==2)|(y==12). 153 return BO->getLHS()->isKnownToHaveBooleanValue() && 154 BO->getRHS()->isKnownToHaveBooleanValue(); 155 156 case BO_Comma: 157 case BO_Assign: 158 return BO->getRHS()->isKnownToHaveBooleanValue(); 159 } 160 } 161 162 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 163 return CO->getTrueExpr()->isKnownToHaveBooleanValue() && 164 CO->getFalseExpr()->isKnownToHaveBooleanValue(); 165 166 return false; 167 } 168 169 // Amusing macro metaprogramming hack: check whether a class provides 170 // a more specific implementation of getExprLoc(). 171 // 172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}. 173 namespace { 174 /// This implementation is used when a class provides a custom 175 /// implementation of getExprLoc. 176 template <class E, class T> 177 SourceLocation getExprLocImpl(const Expr *expr, 178 SourceLocation (T::*v)() const) { 179 return static_cast<const E*>(expr)->getExprLoc(); 180 } 181 182 /// This implementation is used when a class doesn't provide 183 /// a custom implementation of getExprLoc. Overload resolution 184 /// should pick it over the implementation above because it's 185 /// more specialized according to function template partial ordering. 186 template <class E> 187 SourceLocation getExprLocImpl(const Expr *expr, 188 SourceLocation (Expr::*v)() const) { 189 return static_cast<const E*>(expr)->getLocStart(); 190 } 191 } 192 193 SourceLocation Expr::getExprLoc() const { 194 switch (getStmtClass()) { 195 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 196 #define ABSTRACT_STMT(type) 197 #define STMT(type, base) \ 198 case Stmt::type##Class: break; 199 #define EXPR(type, base) \ 200 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 201 #include "clang/AST/StmtNodes.inc" 202 } 203 llvm_unreachable("unknown expression kind"); 204 } 205 206 //===----------------------------------------------------------------------===// 207 // Primary Expressions. 208 //===----------------------------------------------------------------------===// 209 210 /// \brief Compute the type-, value-, and instantiation-dependence of a 211 /// declaration reference 212 /// based on the declaration being referenced. 213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, 214 QualType T, bool &TypeDependent, 215 bool &ValueDependent, 216 bool &InstantiationDependent) { 217 TypeDependent = false; 218 ValueDependent = false; 219 InstantiationDependent = false; 220 221 // (TD) C++ [temp.dep.expr]p3: 222 // An id-expression is type-dependent if it contains: 223 // 224 // and 225 // 226 // (VD) C++ [temp.dep.constexpr]p2: 227 // An identifier is value-dependent if it is: 228 229 // (TD) - an identifier that was declared with dependent type 230 // (VD) - a name declared with a dependent type, 231 if (T->isDependentType()) { 232 TypeDependent = true; 233 ValueDependent = true; 234 InstantiationDependent = true; 235 return; 236 } else if (T->isInstantiationDependentType()) { 237 InstantiationDependent = true; 238 } 239 240 // (TD) - a conversion-function-id that specifies a dependent type 241 if (D->getDeclName().getNameKind() 242 == DeclarationName::CXXConversionFunctionName) { 243 QualType T = D->getDeclName().getCXXNameType(); 244 if (T->isDependentType()) { 245 TypeDependent = true; 246 ValueDependent = true; 247 InstantiationDependent = true; 248 return; 249 } 250 251 if (T->isInstantiationDependentType()) 252 InstantiationDependent = true; 253 } 254 255 // (VD) - the name of a non-type template parameter, 256 if (isa<NonTypeTemplateParmDecl>(D)) { 257 ValueDependent = true; 258 InstantiationDependent = true; 259 return; 260 } 261 262 // (VD) - a constant with integral or enumeration type and is 263 // initialized with an expression that is value-dependent. 264 // (VD) - a constant with literal type and is initialized with an 265 // expression that is value-dependent [C++11]. 266 // (VD) - FIXME: Missing from the standard: 267 // - an entity with reference type and is initialized with an 268 // expression that is value-dependent [C++11] 269 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 270 if ((Ctx.getLangOpts().CPlusPlus11 ? 271 Var->getType()->isLiteralType(Ctx) : 272 Var->getType()->isIntegralOrEnumerationType()) && 273 (Var->getType().isConstQualified() || 274 Var->getType()->isReferenceType())) { 275 if (const Expr *Init = Var->getAnyInitializer()) 276 if (Init->isValueDependent()) { 277 ValueDependent = true; 278 InstantiationDependent = true; 279 } 280 } 281 282 // (VD) - FIXME: Missing from the standard: 283 // - a member function or a static data member of the current 284 // instantiation 285 if (Var->isStaticDataMember() && 286 Var->getDeclContext()->isDependentContext()) { 287 ValueDependent = true; 288 InstantiationDependent = true; 289 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo(); 290 if (TInfo->getType()->isIncompleteArrayType()) 291 TypeDependent = true; 292 } 293 294 return; 295 } 296 297 // (VD) - FIXME: Missing from the standard: 298 // - a member function or a static data member of the current 299 // instantiation 300 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { 301 ValueDependent = true; 302 InstantiationDependent = true; 303 } 304 } 305 306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) { 307 bool TypeDependent = false; 308 bool ValueDependent = false; 309 bool InstantiationDependent = false; 310 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, 311 ValueDependent, InstantiationDependent); 312 313 ExprBits.TypeDependent |= TypeDependent; 314 ExprBits.ValueDependent |= ValueDependent; 315 ExprBits.InstantiationDependent |= InstantiationDependent; 316 317 // Is the declaration a parameter pack? 318 if (getDecl()->isParameterPack()) 319 ExprBits.ContainsUnexpandedParameterPack = true; 320 } 321 322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 323 NestedNameSpecifierLoc QualifierLoc, 324 SourceLocation TemplateKWLoc, 325 ValueDecl *D, bool RefersToEnclosingVariableOrCapture, 326 const DeclarationNameInfo &NameInfo, 327 NamedDecl *FoundD, 328 const TemplateArgumentListInfo *TemplateArgs, 329 QualType T, ExprValueKind VK) 330 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 331 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { 332 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 333 if (QualifierLoc) { 334 new (getTrailingObjects<NestedNameSpecifierLoc>()) 335 NestedNameSpecifierLoc(QualifierLoc); 336 auto *NNS = QualifierLoc.getNestedNameSpecifier(); 337 if (NNS->isInstantiationDependent()) 338 ExprBits.InstantiationDependent = true; 339 if (NNS->containsUnexpandedParameterPack()) 340 ExprBits.ContainsUnexpandedParameterPack = true; 341 } 342 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 343 if (FoundD) 344 *getTrailingObjects<NamedDecl *>() = FoundD; 345 DeclRefExprBits.HasTemplateKWAndArgsInfo 346 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 347 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 348 RefersToEnclosingVariableOrCapture; 349 if (TemplateArgs) { 350 bool Dependent = false; 351 bool InstantiationDependent = false; 352 bool ContainsUnexpandedParameterPack = false; 353 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 354 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), 355 Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); 356 assert(!Dependent && "built a DeclRefExpr with dependent template args"); 357 ExprBits.InstantiationDependent |= InstantiationDependent; 358 ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 359 } else if (TemplateKWLoc.isValid()) { 360 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 361 TemplateKWLoc); 362 } 363 DeclRefExprBits.HadMultipleCandidates = 0; 364 365 computeDependence(Ctx); 366 } 367 368 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 369 NestedNameSpecifierLoc QualifierLoc, 370 SourceLocation TemplateKWLoc, 371 ValueDecl *D, 372 bool RefersToEnclosingVariableOrCapture, 373 SourceLocation NameLoc, 374 QualType T, 375 ExprValueKind VK, 376 NamedDecl *FoundD, 377 const TemplateArgumentListInfo *TemplateArgs) { 378 return Create(Context, QualifierLoc, TemplateKWLoc, D, 379 RefersToEnclosingVariableOrCapture, 380 DeclarationNameInfo(D->getDeclName(), NameLoc), 381 T, VK, FoundD, TemplateArgs); 382 } 383 384 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 385 NestedNameSpecifierLoc QualifierLoc, 386 SourceLocation TemplateKWLoc, 387 ValueDecl *D, 388 bool RefersToEnclosingVariableOrCapture, 389 const DeclarationNameInfo &NameInfo, 390 QualType T, 391 ExprValueKind VK, 392 NamedDecl *FoundD, 393 const TemplateArgumentListInfo *TemplateArgs) { 394 // Filter out cases where the found Decl is the same as the value refenenced. 395 if (D == FoundD) 396 FoundD = nullptr; 397 398 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); 399 std::size_t Size = 400 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 401 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 402 QualifierLoc ? 1 : 0, FoundD ? 1 : 0, 403 HasTemplateKWAndArgsInfo ? 1 : 0, 404 TemplateArgs ? TemplateArgs->size() : 0); 405 406 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 407 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 408 RefersToEnclosingVariableOrCapture, 409 NameInfo, FoundD, TemplateArgs, T, VK); 410 } 411 412 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 413 bool HasQualifier, 414 bool HasFoundDecl, 415 bool HasTemplateKWAndArgsInfo, 416 unsigned NumTemplateArgs) { 417 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); 418 std::size_t Size = 419 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, 420 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( 421 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, 422 NumTemplateArgs); 423 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 424 return new (Mem) DeclRefExpr(EmptyShell()); 425 } 426 427 SourceLocation DeclRefExpr::getLocStart() const { 428 if (hasQualifier()) 429 return getQualifierLoc().getBeginLoc(); 430 return getNameInfo().getLocStart(); 431 } 432 SourceLocation DeclRefExpr::getLocEnd() const { 433 if (hasExplicitTemplateArgs()) 434 return getRAngleLoc(); 435 return getNameInfo().getLocEnd(); 436 } 437 438 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT, 439 StringLiteral *SL) 440 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary, 441 FNTy->isDependentType(), FNTy->isDependentType(), 442 FNTy->isInstantiationDependentType(), 443 /*ContainsUnexpandedParameterPack=*/false), 444 Loc(L), Type(IT), FnName(SL) {} 445 446 StringLiteral *PredefinedExpr::getFunctionName() { 447 return cast_or_null<StringLiteral>(FnName); 448 } 449 450 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) { 451 switch (IT) { 452 case Func: 453 return "__func__"; 454 case Function: 455 return "__FUNCTION__"; 456 case FuncDName: 457 return "__FUNCDNAME__"; 458 case LFunction: 459 return "L__FUNCTION__"; 460 case PrettyFunction: 461 return "__PRETTY_FUNCTION__"; 462 case FuncSig: 463 return "__FUNCSIG__"; 464 case PrettyFunctionNoVirtual: 465 break; 466 } 467 llvm_unreachable("Unknown ident type for PredefinedExpr"); 468 } 469 470 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 471 // expr" policy instead. 472 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { 473 ASTContext &Context = CurrentDecl->getASTContext(); 474 475 if (IT == PredefinedExpr::FuncDName) { 476 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 477 std::unique_ptr<MangleContext> MC; 478 MC.reset(Context.createMangleContext()); 479 480 if (MC->shouldMangleDeclName(ND)) { 481 SmallString<256> Buffer; 482 llvm::raw_svector_ostream Out(Buffer); 483 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 484 MC->mangleCXXCtor(CD, Ctor_Base, Out); 485 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 486 MC->mangleCXXDtor(DD, Dtor_Base, Out); 487 else 488 MC->mangleName(ND, Out); 489 490 if (!Buffer.empty() && Buffer.front() == '\01') 491 return Buffer.substr(1); 492 return Buffer.str(); 493 } else 494 return ND->getIdentifier()->getName(); 495 } 496 return ""; 497 } 498 if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) { 499 std::unique_ptr<MangleContext> MC; 500 MC.reset(Context.createMangleContext()); 501 SmallString<256> Buffer; 502 llvm::raw_svector_ostream Out(Buffer); 503 auto DC = CurrentDecl->getDeclContext(); 504 if (DC->isFileContext()) 505 MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out); 506 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 507 MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out); 508 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 509 MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out); 510 else 511 MC->mangleBlock(DC, BD, Out); 512 return Out.str(); 513 } 514 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 515 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig) 516 return FD->getNameAsString(); 517 518 SmallString<256> Name; 519 llvm::raw_svector_ostream Out(Name); 520 521 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 522 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) 523 Out << "virtual "; 524 if (MD->isStatic()) 525 Out << "static "; 526 } 527 528 PrintingPolicy Policy(Context.getLangOpts()); 529 std::string Proto; 530 llvm::raw_string_ostream POut(Proto); 531 532 const FunctionDecl *Decl = FD; 533 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 534 Decl = Pattern; 535 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 536 const FunctionProtoType *FT = nullptr; 537 if (FD->hasWrittenPrototype()) 538 FT = dyn_cast<FunctionProtoType>(AFT); 539 540 if (IT == FuncSig) { 541 switch (FT->getCallConv()) { 542 case CC_C: POut << "__cdecl "; break; 543 case CC_X86StdCall: POut << "__stdcall "; break; 544 case CC_X86FastCall: POut << "__fastcall "; break; 545 case CC_X86ThisCall: POut << "__thiscall "; break; 546 case CC_X86VectorCall: POut << "__vectorcall "; break; 547 // Only bother printing the conventions that MSVC knows about. 548 default: break; 549 } 550 } 551 552 FD->printQualifiedName(POut, Policy); 553 554 POut << "("; 555 if (FT) { 556 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 557 if (i) POut << ", "; 558 POut << Decl->getParamDecl(i)->getType().stream(Policy); 559 } 560 561 if (FT->isVariadic()) { 562 if (FD->getNumParams()) POut << ", "; 563 POut << "..."; 564 } 565 } 566 POut << ")"; 567 568 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 569 const FunctionType *FT = MD->getType()->castAs<FunctionType>(); 570 if (FT->isConst()) 571 POut << " const"; 572 if (FT->isVolatile()) 573 POut << " volatile"; 574 RefQualifierKind Ref = MD->getRefQualifier(); 575 if (Ref == RQ_LValue) 576 POut << " &"; 577 else if (Ref == RQ_RValue) 578 POut << " &&"; 579 } 580 581 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 582 SpecsTy Specs; 583 const DeclContext *Ctx = FD->getDeclContext(); 584 while (Ctx && isa<NamedDecl>(Ctx)) { 585 const ClassTemplateSpecializationDecl *Spec 586 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 587 if (Spec && !Spec->isExplicitSpecialization()) 588 Specs.push_back(Spec); 589 Ctx = Ctx->getParent(); 590 } 591 592 std::string TemplateParams; 593 llvm::raw_string_ostream TOut(TemplateParams); 594 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); 595 I != E; ++I) { 596 const TemplateParameterList *Params 597 = (*I)->getSpecializedTemplate()->getTemplateParameters(); 598 const TemplateArgumentList &Args = (*I)->getTemplateArgs(); 599 assert(Params->size() == Args.size()); 600 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 601 StringRef Param = Params->getParam(i)->getName(); 602 if (Param.empty()) continue; 603 TOut << Param << " = "; 604 Args.get(i).print(Policy, TOut); 605 TOut << ", "; 606 } 607 } 608 609 FunctionTemplateSpecializationInfo *FSI 610 = FD->getTemplateSpecializationInfo(); 611 if (FSI && !FSI->isExplicitSpecialization()) { 612 const TemplateParameterList* Params 613 = FSI->getTemplate()->getTemplateParameters(); 614 const TemplateArgumentList* Args = FSI->TemplateArguments; 615 assert(Params->size() == Args->size()); 616 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 617 StringRef Param = Params->getParam(i)->getName(); 618 if (Param.empty()) continue; 619 TOut << Param << " = "; 620 Args->get(i).print(Policy, TOut); 621 TOut << ", "; 622 } 623 } 624 625 TOut.flush(); 626 if (!TemplateParams.empty()) { 627 // remove the trailing comma and space 628 TemplateParams.resize(TemplateParams.size() - 2); 629 POut << " [" << TemplateParams << "]"; 630 } 631 632 POut.flush(); 633 634 // Print "auto" for all deduced return types. This includes C++1y return 635 // type deduction and lambdas. For trailing return types resolve the 636 // decltype expression. Otherwise print the real type when this is 637 // not a constructor or destructor. 638 if (isa<CXXMethodDecl>(FD) && 639 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 640 Proto = "auto " + Proto; 641 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 642 FT->getReturnType() 643 ->getAs<DecltypeType>() 644 ->getUnderlyingType() 645 .getAsStringInternal(Proto, Policy); 646 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 647 AFT->getReturnType().getAsStringInternal(Proto, Policy); 648 649 Out << Proto; 650 651 return Name.str().str(); 652 } 653 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 654 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 655 // Skip to its enclosing function or method, but not its enclosing 656 // CapturedDecl. 657 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 658 const Decl *D = Decl::castFromDeclContext(DC); 659 return ComputeName(IT, D); 660 } 661 llvm_unreachable("CapturedDecl not inside a function or method"); 662 } 663 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 664 SmallString<256> Name; 665 llvm::raw_svector_ostream Out(Name); 666 Out << (MD->isInstanceMethod() ? '-' : '+'); 667 Out << '['; 668 669 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 670 // a null check to avoid a crash. 671 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 672 Out << *ID; 673 674 if (const ObjCCategoryImplDecl *CID = 675 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 676 Out << '(' << *CID << ')'; 677 678 Out << ' '; 679 MD->getSelector().print(Out); 680 Out << ']'; 681 682 return Name.str().str(); 683 } 684 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { 685 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 686 return "top level"; 687 } 688 return ""; 689 } 690 691 void APNumericStorage::setIntValue(const ASTContext &C, 692 const llvm::APInt &Val) { 693 if (hasAllocation()) 694 C.Deallocate(pVal); 695 696 BitWidth = Val.getBitWidth(); 697 unsigned NumWords = Val.getNumWords(); 698 const uint64_t* Words = Val.getRawData(); 699 if (NumWords > 1) { 700 pVal = new (C) uint64_t[NumWords]; 701 std::copy(Words, Words + NumWords, pVal); 702 } else if (NumWords == 1) 703 VAL = Words[0]; 704 else 705 VAL = 0; 706 } 707 708 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 709 QualType type, SourceLocation l) 710 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, 711 false, false), 712 Loc(l) { 713 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 714 assert(V.getBitWidth() == C.getIntWidth(type) && 715 "Integer type is not the correct size for constant."); 716 setValue(C, V); 717 } 718 719 IntegerLiteral * 720 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 721 QualType type, SourceLocation l) { 722 return new (C) IntegerLiteral(C, V, type, l); 723 } 724 725 IntegerLiteral * 726 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 727 return new (C) IntegerLiteral(Empty); 728 } 729 730 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 731 bool isexact, QualType Type, SourceLocation L) 732 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, 733 false, false), Loc(L) { 734 setSemantics(V.getSemantics()); 735 FloatingLiteralBits.IsExact = isexact; 736 setValue(C, V); 737 } 738 739 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 740 : Expr(FloatingLiteralClass, Empty) { 741 setRawSemantics(IEEEhalf); 742 FloatingLiteralBits.IsExact = false; 743 } 744 745 FloatingLiteral * 746 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 747 bool isexact, QualType Type, SourceLocation L) { 748 return new (C) FloatingLiteral(C, V, isexact, Type, L); 749 } 750 751 FloatingLiteral * 752 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 753 return new (C) FloatingLiteral(C, Empty); 754 } 755 756 const llvm::fltSemantics &FloatingLiteral::getSemantics() const { 757 switch(FloatingLiteralBits.Semantics) { 758 case IEEEhalf: 759 return llvm::APFloat::IEEEhalf; 760 case IEEEsingle: 761 return llvm::APFloat::IEEEsingle; 762 case IEEEdouble: 763 return llvm::APFloat::IEEEdouble; 764 case x87DoubleExtended: 765 return llvm::APFloat::x87DoubleExtended; 766 case IEEEquad: 767 return llvm::APFloat::IEEEquad; 768 case PPCDoubleDouble: 769 return llvm::APFloat::PPCDoubleDouble; 770 } 771 llvm_unreachable("Unrecognised floating semantics"); 772 } 773 774 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) { 775 if (&Sem == &llvm::APFloat::IEEEhalf) 776 FloatingLiteralBits.Semantics = IEEEhalf; 777 else if (&Sem == &llvm::APFloat::IEEEsingle) 778 FloatingLiteralBits.Semantics = IEEEsingle; 779 else if (&Sem == &llvm::APFloat::IEEEdouble) 780 FloatingLiteralBits.Semantics = IEEEdouble; 781 else if (&Sem == &llvm::APFloat::x87DoubleExtended) 782 FloatingLiteralBits.Semantics = x87DoubleExtended; 783 else if (&Sem == &llvm::APFloat::IEEEquad) 784 FloatingLiteralBits.Semantics = IEEEquad; 785 else if (&Sem == &llvm::APFloat::PPCDoubleDouble) 786 FloatingLiteralBits.Semantics = PPCDoubleDouble; 787 else 788 llvm_unreachable("Unknown floating semantics"); 789 } 790 791 /// getValueAsApproximateDouble - This returns the value as an inaccurate 792 /// double. Note that this may cause loss of precision, but is useful for 793 /// debugging dumps, etc. 794 double FloatingLiteral::getValueAsApproximateDouble() const { 795 llvm::APFloat V = getValue(); 796 bool ignored; 797 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, 798 &ignored); 799 return V.convertToDouble(); 800 } 801 802 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { 803 int CharByteWidth = 0; 804 switch(k) { 805 case Ascii: 806 case UTF8: 807 CharByteWidth = target.getCharWidth(); 808 break; 809 case Wide: 810 CharByteWidth = target.getWCharWidth(); 811 break; 812 case UTF16: 813 CharByteWidth = target.getChar16Width(); 814 break; 815 case UTF32: 816 CharByteWidth = target.getChar32Width(); 817 break; 818 } 819 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 820 CharByteWidth /= 8; 821 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) 822 && "character byte widths supported are 1, 2, and 4 only"); 823 return CharByteWidth; 824 } 825 826 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str, 827 StringKind Kind, bool Pascal, QualType Ty, 828 const SourceLocation *Loc, 829 unsigned NumStrs) { 830 assert(C.getAsConstantArrayType(Ty) && 831 "StringLiteral must be of constant array type!"); 832 833 // Allocate enough space for the StringLiteral plus an array of locations for 834 // any concatenated string tokens. 835 void *Mem = C.Allocate(sizeof(StringLiteral)+ 836 sizeof(SourceLocation)*(NumStrs-1), 837 llvm::alignOf<StringLiteral>()); 838 StringLiteral *SL = new (Mem) StringLiteral(Ty); 839 840 // OPTIMIZE: could allocate this appended to the StringLiteral. 841 SL->setString(C,Str,Kind,Pascal); 842 843 SL->TokLocs[0] = Loc[0]; 844 SL->NumConcatenated = NumStrs; 845 846 if (NumStrs != 1) 847 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); 848 return SL; 849 } 850 851 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C, 852 unsigned NumStrs) { 853 void *Mem = C.Allocate(sizeof(StringLiteral)+ 854 sizeof(SourceLocation)*(NumStrs-1), 855 llvm::alignOf<StringLiteral>()); 856 StringLiteral *SL = new (Mem) StringLiteral(QualType()); 857 SL->CharByteWidth = 0; 858 SL->Length = 0; 859 SL->NumConcatenated = NumStrs; 860 return SL; 861 } 862 863 void StringLiteral::outputString(raw_ostream &OS) const { 864 switch (getKind()) { 865 case Ascii: break; // no prefix. 866 case Wide: OS << 'L'; break; 867 case UTF8: OS << "u8"; break; 868 case UTF16: OS << 'u'; break; 869 case UTF32: OS << 'U'; break; 870 } 871 OS << '"'; 872 static const char Hex[] = "0123456789ABCDEF"; 873 874 unsigned LastSlashX = getLength(); 875 for (unsigned I = 0, N = getLength(); I != N; ++I) { 876 switch (uint32_t Char = getCodeUnit(I)) { 877 default: 878 // FIXME: Convert UTF-8 back to codepoints before rendering. 879 880 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 881 // Leave invalid surrogates alone; we'll use \x for those. 882 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 883 Char <= 0xdbff) { 884 uint32_t Trail = getCodeUnit(I + 1); 885 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 886 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 887 ++I; 888 } 889 } 890 891 if (Char > 0xff) { 892 // If this is a wide string, output characters over 0xff using \x 893 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 894 // codepoint: use \x escapes for invalid codepoints. 895 if (getKind() == Wide || 896 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 897 // FIXME: Is this the best way to print wchar_t? 898 OS << "\\x"; 899 int Shift = 28; 900 while ((Char >> Shift) == 0) 901 Shift -= 4; 902 for (/**/; Shift >= 0; Shift -= 4) 903 OS << Hex[(Char >> Shift) & 15]; 904 LastSlashX = I; 905 break; 906 } 907 908 if (Char > 0xffff) 909 OS << "\\U00" 910 << Hex[(Char >> 20) & 15] 911 << Hex[(Char >> 16) & 15]; 912 else 913 OS << "\\u"; 914 OS << Hex[(Char >> 12) & 15] 915 << Hex[(Char >> 8) & 15] 916 << Hex[(Char >> 4) & 15] 917 << Hex[(Char >> 0) & 15]; 918 break; 919 } 920 921 // If we used \x... for the previous character, and this character is a 922 // hexadecimal digit, prevent it being slurped as part of the \x. 923 if (LastSlashX + 1 == I) { 924 switch (Char) { 925 case '0': case '1': case '2': case '3': case '4': 926 case '5': case '6': case '7': case '8': case '9': 927 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 928 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 929 OS << "\"\""; 930 } 931 } 932 933 assert(Char <= 0xff && 934 "Characters above 0xff should already have been handled."); 935 936 if (isPrintable(Char)) 937 OS << (char)Char; 938 else // Output anything hard as an octal escape. 939 OS << '\\' 940 << (char)('0' + ((Char >> 6) & 7)) 941 << (char)('0' + ((Char >> 3) & 7)) 942 << (char)('0' + ((Char >> 0) & 7)); 943 break; 944 // Handle some common non-printable cases to make dumps prettier. 945 case '\\': OS << "\\\\"; break; 946 case '"': OS << "\\\""; break; 947 case '\n': OS << "\\n"; break; 948 case '\t': OS << "\\t"; break; 949 case '\a': OS << "\\a"; break; 950 case '\b': OS << "\\b"; break; 951 } 952 } 953 OS << '"'; 954 } 955 956 void StringLiteral::setString(const ASTContext &C, StringRef Str, 957 StringKind Kind, bool IsPascal) { 958 //FIXME: we assume that the string data comes from a target that uses the same 959 // code unit size and endianess for the type of string. 960 this->Kind = Kind; 961 this->IsPascal = IsPascal; 962 963 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); 964 assert((Str.size()%CharByteWidth == 0) 965 && "size of data must be multiple of CharByteWidth"); 966 Length = Str.size()/CharByteWidth; 967 968 switch(CharByteWidth) { 969 case 1: { 970 char *AStrData = new (C) char[Length]; 971 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 972 StrData.asChar = AStrData; 973 break; 974 } 975 case 2: { 976 uint16_t *AStrData = new (C) uint16_t[Length]; 977 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 978 StrData.asUInt16 = AStrData; 979 break; 980 } 981 case 4: { 982 uint32_t *AStrData = new (C) uint32_t[Length]; 983 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 984 StrData.asUInt32 = AStrData; 985 break; 986 } 987 default: 988 llvm_unreachable("unsupported CharByteWidth"); 989 } 990 } 991 992 /// getLocationOfByte - Return a source location that points to the specified 993 /// byte of this string literal. 994 /// 995 /// Strings are amazingly complex. They can be formed from multiple tokens and 996 /// can have escape sequences in them in addition to the usual trigraph and 997 /// escaped newline business. This routine handles this complexity. 998 /// 999 /// The *StartToken sets the first token to be searched in this function and 1000 /// the *StartTokenByteOffset is the byte offset of the first token. Before 1001 /// returning, it updates the *StartToken to the TokNo of the token being found 1002 /// and sets *StartTokenByteOffset to the byte offset of the token in the 1003 /// string. 1004 /// Using these two parameters can reduce the time complexity from O(n^2) to 1005 /// O(n) if one wants to get the location of byte for all the tokens in a 1006 /// string. 1007 /// 1008 SourceLocation 1009 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1010 const LangOptions &Features, 1011 const TargetInfo &Target, unsigned *StartToken, 1012 unsigned *StartTokenByteOffset) const { 1013 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) && 1014 "Only narrow string literals are currently supported"); 1015 1016 // Loop over all of the tokens in this string until we find the one that 1017 // contains the byte we're looking for. 1018 unsigned TokNo = 0; 1019 unsigned StringOffset = 0; 1020 if (StartToken) 1021 TokNo = *StartToken; 1022 if (StartTokenByteOffset) { 1023 StringOffset = *StartTokenByteOffset; 1024 ByteNo -= StringOffset; 1025 } 1026 while (1) { 1027 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1028 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1029 1030 // Get the spelling of the string so that we can get the data that makes up 1031 // the string literal, not the identifier for the macro it is potentially 1032 // expanded through. 1033 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1034 1035 // Re-lex the token to get its length and original spelling. 1036 std::pair<FileID, unsigned> LocInfo = 1037 SM.getDecomposedLoc(StrTokSpellingLoc); 1038 bool Invalid = false; 1039 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1040 if (Invalid) { 1041 if (StartTokenByteOffset != nullptr) 1042 *StartTokenByteOffset = StringOffset; 1043 if (StartToken != nullptr) 1044 *StartToken = TokNo; 1045 return StrTokSpellingLoc; 1046 } 1047 1048 const char *StrData = Buffer.data()+LocInfo.second; 1049 1050 // Create a lexer starting at the beginning of this token. 1051 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1052 Buffer.begin(), StrData, Buffer.end()); 1053 Token TheTok; 1054 TheLexer.LexFromRawLexer(TheTok); 1055 1056 // Use the StringLiteralParser to compute the length of the string in bytes. 1057 StringLiteralParser SLP(TheTok, SM, Features, Target); 1058 unsigned TokNumBytes = SLP.GetStringLength(); 1059 1060 // If the byte is in this token, return the location of the byte. 1061 if (ByteNo < TokNumBytes || 1062 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1063 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1064 1065 // Now that we know the offset of the token in the spelling, use the 1066 // preprocessor to get the offset in the original source. 1067 if (StartTokenByteOffset != nullptr) 1068 *StartTokenByteOffset = StringOffset; 1069 if (StartToken != nullptr) 1070 *StartToken = TokNo; 1071 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1072 } 1073 1074 // Move to the next string token. 1075 StringOffset += TokNumBytes; 1076 ++TokNo; 1077 ByteNo -= TokNumBytes; 1078 } 1079 } 1080 1081 1082 1083 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1084 /// corresponds to, e.g. "sizeof" or "[pre]++". 1085 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1086 switch (Op) { 1087 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; 1088 #include "clang/AST/OperationKinds.def" 1089 } 1090 llvm_unreachable("Unknown unary operator"); 1091 } 1092 1093 UnaryOperatorKind 1094 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1095 switch (OO) { 1096 default: llvm_unreachable("No unary operator for overloaded function"); 1097 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1098 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1099 case OO_Amp: return UO_AddrOf; 1100 case OO_Star: return UO_Deref; 1101 case OO_Plus: return UO_Plus; 1102 case OO_Minus: return UO_Minus; 1103 case OO_Tilde: return UO_Not; 1104 case OO_Exclaim: return UO_LNot; 1105 case OO_Coawait: return UO_Coawait; 1106 } 1107 } 1108 1109 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1110 switch (Opc) { 1111 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1112 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1113 case UO_AddrOf: return OO_Amp; 1114 case UO_Deref: return OO_Star; 1115 case UO_Plus: return OO_Plus; 1116 case UO_Minus: return OO_Minus; 1117 case UO_Not: return OO_Tilde; 1118 case UO_LNot: return OO_Exclaim; 1119 case UO_Coawait: return OO_Coawait; 1120 default: return OO_None; 1121 } 1122 } 1123 1124 1125 //===----------------------------------------------------------------------===// 1126 // Postfix Operators. 1127 //===----------------------------------------------------------------------===// 1128 1129 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, 1130 ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t, 1131 ExprValueKind VK, SourceLocation rparenloc) 1132 : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(), 1133 fn->isValueDependent(), fn->isInstantiationDependent(), 1134 fn->containsUnexpandedParameterPack()), 1135 NumArgs(args.size()) { 1136 1137 unsigned NumPreArgs = preargs.size(); 1138 SubExprs = new (C) Stmt *[args.size()+PREARGS_START+NumPreArgs]; 1139 SubExprs[FN] = fn; 1140 for (unsigned i = 0; i != NumPreArgs; ++i) { 1141 updateDependenciesFromArg(preargs[i]); 1142 SubExprs[i+PREARGS_START] = preargs[i]; 1143 } 1144 for (unsigned i = 0; i != args.size(); ++i) { 1145 updateDependenciesFromArg(args[i]); 1146 SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; 1147 } 1148 1149 CallExprBits.NumPreArgs = NumPreArgs; 1150 RParenLoc = rparenloc; 1151 } 1152 1153 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, 1154 ArrayRef<Expr *> args, QualType t, ExprValueKind VK, 1155 SourceLocation rparenloc) 1156 : CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {} 1157 1158 CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args, 1159 QualType t, ExprValueKind VK, SourceLocation rparenloc) 1160 : CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) { 1161 } 1162 1163 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty) 1164 : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {} 1165 1166 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs, 1167 EmptyShell Empty) 1168 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) { 1169 // FIXME: Why do we allocate this? 1170 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs](); 1171 CallExprBits.NumPreArgs = NumPreArgs; 1172 } 1173 1174 void CallExpr::updateDependenciesFromArg(Expr *Arg) { 1175 if (Arg->isTypeDependent()) 1176 ExprBits.TypeDependent = true; 1177 if (Arg->isValueDependent()) 1178 ExprBits.ValueDependent = true; 1179 if (Arg->isInstantiationDependent()) 1180 ExprBits.InstantiationDependent = true; 1181 if (Arg->containsUnexpandedParameterPack()) 1182 ExprBits.ContainsUnexpandedParameterPack = true; 1183 } 1184 1185 Decl *CallExpr::getCalleeDecl() { 1186 Expr *CEE = getCallee()->IgnoreParenImpCasts(); 1187 1188 while (SubstNonTypeTemplateParmExpr *NTTP 1189 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1190 CEE = NTTP->getReplacement()->IgnoreParenCasts(); 1191 } 1192 1193 // If we're calling a dereference, look at the pointer instead. 1194 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1195 if (BO->isPtrMemOp()) 1196 CEE = BO->getRHS()->IgnoreParenCasts(); 1197 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1198 if (UO->getOpcode() == UO_Deref) 1199 CEE = UO->getSubExpr()->IgnoreParenCasts(); 1200 } 1201 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1202 return DRE->getDecl(); 1203 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1204 return ME->getMemberDecl(); 1205 1206 return nullptr; 1207 } 1208 1209 FunctionDecl *CallExpr::getDirectCallee() { 1210 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); 1211 } 1212 1213 /// setNumArgs - This changes the number of arguments present in this call. 1214 /// Any orphaned expressions are deleted by this, and any new operands are set 1215 /// to null. 1216 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) { 1217 // No change, just return. 1218 if (NumArgs == getNumArgs()) return; 1219 1220 // If shrinking # arguments, just delete the extras and forgot them. 1221 if (NumArgs < getNumArgs()) { 1222 this->NumArgs = NumArgs; 1223 return; 1224 } 1225 1226 // Otherwise, we are growing the # arguments. New an bigger argument array. 1227 unsigned NumPreArgs = getNumPreArgs(); 1228 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; 1229 // Copy over args. 1230 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) 1231 NewSubExprs[i] = SubExprs[i]; 1232 // Null out new args. 1233 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; 1234 i != NumArgs+PREARGS_START+NumPreArgs; ++i) 1235 NewSubExprs[i] = nullptr; 1236 1237 if (SubExprs) C.Deallocate(SubExprs); 1238 SubExprs = NewSubExprs; 1239 this->NumArgs = NumArgs; 1240 } 1241 1242 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If 1243 /// not, return 0. 1244 unsigned CallExpr::getBuiltinCallee() const { 1245 // All simple function calls (e.g. func()) are implicitly cast to pointer to 1246 // function. As a result, we try and obtain the DeclRefExpr from the 1247 // ImplicitCastExpr. 1248 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 1249 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 1250 return 0; 1251 1252 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 1253 if (!DRE) 1254 return 0; 1255 1256 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 1257 if (!FDecl) 1258 return 0; 1259 1260 if (!FDecl->getIdentifier()) 1261 return 0; 1262 1263 return FDecl->getBuiltinID(); 1264 } 1265 1266 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { 1267 if (unsigned BI = getBuiltinCallee()) 1268 return Ctx.BuiltinInfo.isUnevaluated(BI); 1269 return false; 1270 } 1271 1272 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { 1273 const Expr *Callee = getCallee(); 1274 QualType CalleeType = Callee->getType(); 1275 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { 1276 CalleeType = FnTypePtr->getPointeeType(); 1277 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { 1278 CalleeType = BPT->getPointeeType(); 1279 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1280 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) 1281 return Ctx.VoidTy; 1282 1283 // This should never be overloaded and so should never return null. 1284 CalleeType = Expr::findBoundMemberType(Callee); 1285 } 1286 1287 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1288 return FnType->getReturnType(); 1289 } 1290 1291 SourceLocation CallExpr::getLocStart() const { 1292 if (isa<CXXOperatorCallExpr>(this)) 1293 return cast<CXXOperatorCallExpr>(this)->getLocStart(); 1294 1295 SourceLocation begin = getCallee()->getLocStart(); 1296 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1297 begin = getArg(0)->getLocStart(); 1298 return begin; 1299 } 1300 SourceLocation CallExpr::getLocEnd() const { 1301 if (isa<CXXOperatorCallExpr>(this)) 1302 return cast<CXXOperatorCallExpr>(this)->getLocEnd(); 1303 1304 SourceLocation end = getRParenLoc(); 1305 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1306 end = getArg(getNumArgs() - 1)->getLocEnd(); 1307 return end; 1308 } 1309 1310 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1311 SourceLocation OperatorLoc, 1312 TypeSourceInfo *tsi, 1313 ArrayRef<OffsetOfNode> comps, 1314 ArrayRef<Expr*> exprs, 1315 SourceLocation RParenLoc) { 1316 void *Mem = C.Allocate( 1317 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); 1318 1319 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1320 RParenLoc); 1321 } 1322 1323 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1324 unsigned numComps, unsigned numExprs) { 1325 void *Mem = 1326 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); 1327 return new (Mem) OffsetOfExpr(numComps, numExprs); 1328 } 1329 1330 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1331 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1332 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs, 1333 SourceLocation RParenLoc) 1334 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, 1335 /*TypeDependent=*/false, 1336 /*ValueDependent=*/tsi->getType()->isDependentType(), 1337 tsi->getType()->isInstantiationDependentType(), 1338 tsi->getType()->containsUnexpandedParameterPack()), 1339 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1340 NumComps(comps.size()), NumExprs(exprs.size()) 1341 { 1342 for (unsigned i = 0; i != comps.size(); ++i) { 1343 setComponent(i, comps[i]); 1344 } 1345 1346 for (unsigned i = 0; i != exprs.size(); ++i) { 1347 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent()) 1348 ExprBits.ValueDependent = true; 1349 if (exprs[i]->containsUnexpandedParameterPack()) 1350 ExprBits.ContainsUnexpandedParameterPack = true; 1351 1352 setIndexExpr(i, exprs[i]); 1353 } 1354 } 1355 1356 IdentifierInfo *OffsetOfNode::getFieldName() const { 1357 assert(getKind() == Field || getKind() == Identifier); 1358 if (getKind() == Field) 1359 return getField()->getIdentifier(); 1360 1361 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1362 } 1363 1364 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( 1365 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, 1366 SourceLocation op, SourceLocation rp) 1367 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary, 1368 false, // Never type-dependent (C++ [temp.dep.expr]p3). 1369 // Value-dependent if the argument is type-dependent. 1370 E->isTypeDependent(), E->isInstantiationDependent(), 1371 E->containsUnexpandedParameterPack()), 1372 OpLoc(op), RParenLoc(rp) { 1373 UnaryExprOrTypeTraitExprBits.Kind = ExprKind; 1374 UnaryExprOrTypeTraitExprBits.IsType = false; 1375 Argument.Ex = E; 1376 1377 // Check to see if we are in the situation where alignof(decl) should be 1378 // dependent because decl's alignment is dependent. 1379 if (ExprKind == UETT_AlignOf) { 1380 if (!isValueDependent() || !isInstantiationDependent()) { 1381 E = E->IgnoreParens(); 1382 1383 const ValueDecl *D = nullptr; 1384 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 1385 D = DRE->getDecl(); 1386 else if (const auto *ME = dyn_cast<MemberExpr>(E)) 1387 D = ME->getMemberDecl(); 1388 1389 if (D) { 1390 for (const auto *I : D->specific_attrs<AlignedAttr>()) { 1391 if (I->isAlignmentDependent()) { 1392 setValueDependent(true); 1393 setInstantiationDependent(true); 1394 break; 1395 } 1396 } 1397 } 1398 } 1399 } 1400 } 1401 1402 MemberExpr *MemberExpr::Create( 1403 const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc, 1404 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, 1405 ValueDecl *memberdecl, DeclAccessPair founddecl, 1406 DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs, 1407 QualType ty, ExprValueKind vk, ExprObjectKind ok) { 1408 1409 bool hasQualOrFound = (QualifierLoc || 1410 founddecl.getDecl() != memberdecl || 1411 founddecl.getAccess() != memberdecl->getAccess()); 1412 1413 bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid(); 1414 std::size_t Size = 1415 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, 1416 TemplateArgumentLoc>(hasQualOrFound ? 1 : 0, 1417 HasTemplateKWAndArgsInfo ? 1 : 0, 1418 targs ? targs->size() : 0); 1419 1420 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); 1421 MemberExpr *E = new (Mem) 1422 MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok); 1423 1424 if (hasQualOrFound) { 1425 // FIXME: Wrong. We should be looking at the member declaration we found. 1426 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { 1427 E->setValueDependent(true); 1428 E->setTypeDependent(true); 1429 E->setInstantiationDependent(true); 1430 } 1431 else if (QualifierLoc && 1432 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1433 E->setInstantiationDependent(true); 1434 1435 E->HasQualifierOrFoundDecl = true; 1436 1437 MemberExprNameQualifier *NQ = 1438 E->getTrailingObjects<MemberExprNameQualifier>(); 1439 NQ->QualifierLoc = QualifierLoc; 1440 NQ->FoundDecl = founddecl; 1441 } 1442 1443 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid()); 1444 1445 if (targs) { 1446 bool Dependent = false; 1447 bool InstantiationDependent = false; 1448 bool ContainsUnexpandedParameterPack = false; 1449 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1450 TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(), 1451 Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); 1452 if (InstantiationDependent) 1453 E->setInstantiationDependent(true); 1454 } else if (TemplateKWLoc.isValid()) { 1455 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( 1456 TemplateKWLoc); 1457 } 1458 1459 return E; 1460 } 1461 1462 SourceLocation MemberExpr::getLocStart() const { 1463 if (isImplicitAccess()) { 1464 if (hasQualifier()) 1465 return getQualifierLoc().getBeginLoc(); 1466 return MemberLoc; 1467 } 1468 1469 // FIXME: We don't want this to happen. Rather, we should be able to 1470 // detect all kinds of implicit accesses more cleanly. 1471 SourceLocation BaseStartLoc = getBase()->getLocStart(); 1472 if (BaseStartLoc.isValid()) 1473 return BaseStartLoc; 1474 return MemberLoc; 1475 } 1476 SourceLocation MemberExpr::getLocEnd() const { 1477 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1478 if (hasExplicitTemplateArgs()) 1479 EndLoc = getRAngleLoc(); 1480 else if (EndLoc.isInvalid()) 1481 EndLoc = getBase()->getLocEnd(); 1482 return EndLoc; 1483 } 1484 1485 bool CastExpr::CastConsistency() const { 1486 switch (getCastKind()) { 1487 case CK_DerivedToBase: 1488 case CK_UncheckedDerivedToBase: 1489 case CK_DerivedToBaseMemberPointer: 1490 case CK_BaseToDerived: 1491 case CK_BaseToDerivedMemberPointer: 1492 assert(!path_empty() && "Cast kind should have a base path!"); 1493 break; 1494 1495 case CK_CPointerToObjCPointerCast: 1496 assert(getType()->isObjCObjectPointerType()); 1497 assert(getSubExpr()->getType()->isPointerType()); 1498 goto CheckNoBasePath; 1499 1500 case CK_BlockPointerToObjCPointerCast: 1501 assert(getType()->isObjCObjectPointerType()); 1502 assert(getSubExpr()->getType()->isBlockPointerType()); 1503 goto CheckNoBasePath; 1504 1505 case CK_ReinterpretMemberPointer: 1506 assert(getType()->isMemberPointerType()); 1507 assert(getSubExpr()->getType()->isMemberPointerType()); 1508 goto CheckNoBasePath; 1509 1510 case CK_BitCast: 1511 // Arbitrary casts to C pointer types count as bitcasts. 1512 // Otherwise, we should only have block and ObjC pointer casts 1513 // here if they stay within the type kind. 1514 if (!getType()->isPointerType()) { 1515 assert(getType()->isObjCObjectPointerType() == 1516 getSubExpr()->getType()->isObjCObjectPointerType()); 1517 assert(getType()->isBlockPointerType() == 1518 getSubExpr()->getType()->isBlockPointerType()); 1519 } 1520 goto CheckNoBasePath; 1521 1522 case CK_AnyPointerToBlockPointerCast: 1523 assert(getType()->isBlockPointerType()); 1524 assert(getSubExpr()->getType()->isAnyPointerType() && 1525 !getSubExpr()->getType()->isBlockPointerType()); 1526 goto CheckNoBasePath; 1527 1528 case CK_CopyAndAutoreleaseBlockObject: 1529 assert(getType()->isBlockPointerType()); 1530 assert(getSubExpr()->getType()->isBlockPointerType()); 1531 goto CheckNoBasePath; 1532 1533 case CK_FunctionToPointerDecay: 1534 assert(getType()->isPointerType()); 1535 assert(getSubExpr()->getType()->isFunctionType()); 1536 goto CheckNoBasePath; 1537 1538 case CK_AddressSpaceConversion: 1539 assert(getType()->isPointerType()); 1540 assert(getSubExpr()->getType()->isPointerType()); 1541 assert(getType()->getPointeeType().getAddressSpace() != 1542 getSubExpr()->getType()->getPointeeType().getAddressSpace()); 1543 // These should not have an inheritance path. 1544 case CK_Dynamic: 1545 case CK_ToUnion: 1546 case CK_ArrayToPointerDecay: 1547 case CK_NullToMemberPointer: 1548 case CK_NullToPointer: 1549 case CK_ConstructorConversion: 1550 case CK_IntegralToPointer: 1551 case CK_PointerToIntegral: 1552 case CK_ToVoid: 1553 case CK_VectorSplat: 1554 case CK_IntegralCast: 1555 case CK_BooleanToSignedIntegral: 1556 case CK_IntegralToFloating: 1557 case CK_FloatingToIntegral: 1558 case CK_FloatingCast: 1559 case CK_ObjCObjectLValueCast: 1560 case CK_FloatingRealToComplex: 1561 case CK_FloatingComplexToReal: 1562 case CK_FloatingComplexCast: 1563 case CK_FloatingComplexToIntegralComplex: 1564 case CK_IntegralRealToComplex: 1565 case CK_IntegralComplexToReal: 1566 case CK_IntegralComplexCast: 1567 case CK_IntegralComplexToFloatingComplex: 1568 case CK_ARCProduceObject: 1569 case CK_ARCConsumeObject: 1570 case CK_ARCReclaimReturnedObject: 1571 case CK_ARCExtendBlockObject: 1572 case CK_ZeroToOCLEvent: 1573 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1574 goto CheckNoBasePath; 1575 1576 case CK_Dependent: 1577 case CK_LValueToRValue: 1578 case CK_NoOp: 1579 case CK_AtomicToNonAtomic: 1580 case CK_NonAtomicToAtomic: 1581 case CK_PointerToBoolean: 1582 case CK_IntegralToBoolean: 1583 case CK_FloatingToBoolean: 1584 case CK_MemberPointerToBoolean: 1585 case CK_FloatingComplexToBoolean: 1586 case CK_IntegralComplexToBoolean: 1587 case CK_LValueBitCast: // -> bool& 1588 case CK_UserDefinedConversion: // operator bool() 1589 case CK_BuiltinFnToFnPtr: 1590 CheckNoBasePath: 1591 assert(path_empty() && "Cast kind should not have a base path!"); 1592 break; 1593 } 1594 return true; 1595 } 1596 1597 const char *CastExpr::getCastKindName() const { 1598 switch (getCastKind()) { 1599 #define CAST_OPERATION(Name) case CK_##Name: return #Name; 1600 #include "clang/AST/OperationKinds.def" 1601 } 1602 llvm_unreachable("Unhandled cast kind!"); 1603 } 1604 1605 Expr *CastExpr::getSubExprAsWritten() { 1606 Expr *SubExpr = nullptr; 1607 CastExpr *E = this; 1608 do { 1609 SubExpr = E->getSubExpr(); 1610 1611 // Skip through reference binding to temporary. 1612 if (MaterializeTemporaryExpr *Materialize 1613 = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) 1614 SubExpr = Materialize->GetTemporaryExpr(); 1615 1616 // Skip any temporary bindings; they're implicit. 1617 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 1618 SubExpr = Binder->getSubExpr(); 1619 1620 // Conversions by constructor and conversion functions have a 1621 // subexpression describing the call; strip it off. 1622 if (E->getCastKind() == CK_ConstructorConversion) 1623 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); 1624 else if (E->getCastKind() == CK_UserDefinedConversion) { 1625 assert((isa<CXXMemberCallExpr>(SubExpr) || 1626 isa<BlockExpr>(SubExpr)) && 1627 "Unexpected SubExpr for CK_UserDefinedConversion."); 1628 if (isa<CXXMemberCallExpr>(SubExpr)) 1629 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); 1630 } 1631 1632 // If the subexpression we're left with is an implicit cast, look 1633 // through that, too. 1634 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1635 1636 return SubExpr; 1637 } 1638 1639 CXXBaseSpecifier **CastExpr::path_buffer() { 1640 switch (getStmtClass()) { 1641 #define ABSTRACT_STMT(x) 1642 #define CASTEXPR(Type, Base) \ 1643 case Stmt::Type##Class: \ 1644 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); 1645 #define STMT(Type, Base) 1646 #include "clang/AST/StmtNodes.inc" 1647 default: 1648 llvm_unreachable("non-cast expressions not possible here"); 1649 } 1650 } 1651 1652 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1653 CastKind Kind, Expr *Operand, 1654 const CXXCastPath *BasePath, 1655 ExprValueKind VK) { 1656 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1657 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1658 ImplicitCastExpr *E = 1659 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 1660 if (PathSize) 1661 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 1662 E->getTrailingObjects<CXXBaseSpecifier *>()); 1663 return E; 1664 } 1665 1666 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 1667 unsigned PathSize) { 1668 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1669 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 1670 } 1671 1672 1673 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 1674 ExprValueKind VK, CastKind K, Expr *Op, 1675 const CXXCastPath *BasePath, 1676 TypeSourceInfo *WrittenTy, 1677 SourceLocation L, SourceLocation R) { 1678 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1679 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1680 CStyleCastExpr *E = 1681 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 1682 if (PathSize) 1683 std::uninitialized_copy_n(BasePath->data(), BasePath->size(), 1684 E->getTrailingObjects<CXXBaseSpecifier *>()); 1685 return E; 1686 } 1687 1688 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 1689 unsigned PathSize) { 1690 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); 1691 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 1692 } 1693 1694 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1695 /// corresponds to, e.g. "<<=". 1696 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 1697 switch (Op) { 1698 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; 1699 #include "clang/AST/OperationKinds.def" 1700 } 1701 llvm_unreachable("Invalid OpCode!"); 1702 } 1703 1704 BinaryOperatorKind 1705 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 1706 switch (OO) { 1707 default: llvm_unreachable("Not an overloadable binary operator"); 1708 case OO_Plus: return BO_Add; 1709 case OO_Minus: return BO_Sub; 1710 case OO_Star: return BO_Mul; 1711 case OO_Slash: return BO_Div; 1712 case OO_Percent: return BO_Rem; 1713 case OO_Caret: return BO_Xor; 1714 case OO_Amp: return BO_And; 1715 case OO_Pipe: return BO_Or; 1716 case OO_Equal: return BO_Assign; 1717 case OO_Less: return BO_LT; 1718 case OO_Greater: return BO_GT; 1719 case OO_PlusEqual: return BO_AddAssign; 1720 case OO_MinusEqual: return BO_SubAssign; 1721 case OO_StarEqual: return BO_MulAssign; 1722 case OO_SlashEqual: return BO_DivAssign; 1723 case OO_PercentEqual: return BO_RemAssign; 1724 case OO_CaretEqual: return BO_XorAssign; 1725 case OO_AmpEqual: return BO_AndAssign; 1726 case OO_PipeEqual: return BO_OrAssign; 1727 case OO_LessLess: return BO_Shl; 1728 case OO_GreaterGreater: return BO_Shr; 1729 case OO_LessLessEqual: return BO_ShlAssign; 1730 case OO_GreaterGreaterEqual: return BO_ShrAssign; 1731 case OO_EqualEqual: return BO_EQ; 1732 case OO_ExclaimEqual: return BO_NE; 1733 case OO_LessEqual: return BO_LE; 1734 case OO_GreaterEqual: return BO_GE; 1735 case OO_AmpAmp: return BO_LAnd; 1736 case OO_PipePipe: return BO_LOr; 1737 case OO_Comma: return BO_Comma; 1738 case OO_ArrowStar: return BO_PtrMemI; 1739 } 1740 } 1741 1742 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 1743 static const OverloadedOperatorKind OverOps[] = { 1744 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 1745 OO_Star, OO_Slash, OO_Percent, 1746 OO_Plus, OO_Minus, 1747 OO_LessLess, OO_GreaterGreater, 1748 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 1749 OO_EqualEqual, OO_ExclaimEqual, 1750 OO_Amp, 1751 OO_Caret, 1752 OO_Pipe, 1753 OO_AmpAmp, 1754 OO_PipePipe, 1755 OO_Equal, OO_StarEqual, 1756 OO_SlashEqual, OO_PercentEqual, 1757 OO_PlusEqual, OO_MinusEqual, 1758 OO_LessLessEqual, OO_GreaterGreaterEqual, 1759 OO_AmpEqual, OO_CaretEqual, 1760 OO_PipeEqual, 1761 OO_Comma 1762 }; 1763 return OverOps[Opc]; 1764 } 1765 1766 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 1767 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc) 1768 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 1769 false, false), 1770 InitExprs(C, initExprs.size()), 1771 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) 1772 { 1773 sawArrayRangeDesignator(false); 1774 for (unsigned I = 0; I != initExprs.size(); ++I) { 1775 if (initExprs[I]->isTypeDependent()) 1776 ExprBits.TypeDependent = true; 1777 if (initExprs[I]->isValueDependent()) 1778 ExprBits.ValueDependent = true; 1779 if (initExprs[I]->isInstantiationDependent()) 1780 ExprBits.InstantiationDependent = true; 1781 if (initExprs[I]->containsUnexpandedParameterPack()) 1782 ExprBits.ContainsUnexpandedParameterPack = true; 1783 } 1784 1785 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 1786 } 1787 1788 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 1789 if (NumInits > InitExprs.size()) 1790 InitExprs.reserve(C, NumInits); 1791 } 1792 1793 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 1794 InitExprs.resize(C, NumInits, nullptr); 1795 } 1796 1797 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 1798 if (Init >= InitExprs.size()) { 1799 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 1800 setInit(Init, expr); 1801 return nullptr; 1802 } 1803 1804 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 1805 setInit(Init, expr); 1806 return Result; 1807 } 1808 1809 void InitListExpr::setArrayFiller(Expr *filler) { 1810 assert(!hasArrayFiller() && "Filler already set!"); 1811 ArrayFillerOrUnionFieldInit = filler; 1812 // Fill out any "holes" in the array due to designated initializers. 1813 Expr **inits = getInits(); 1814 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 1815 if (inits[i] == nullptr) 1816 inits[i] = filler; 1817 } 1818 1819 bool InitListExpr::isStringLiteralInit() const { 1820 if (getNumInits() != 1) 1821 return false; 1822 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 1823 if (!AT || !AT->getElementType()->isIntegerType()) 1824 return false; 1825 // It is possible for getInit() to return null. 1826 const Expr *Init = getInit(0); 1827 if (!Init) 1828 return false; 1829 Init = Init->IgnoreParens(); 1830 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 1831 } 1832 1833 SourceLocation InitListExpr::getLocStart() const { 1834 if (InitListExpr *SyntacticForm = getSyntacticForm()) 1835 return SyntacticForm->getLocStart(); 1836 SourceLocation Beg = LBraceLoc; 1837 if (Beg.isInvalid()) { 1838 // Find the first non-null initializer. 1839 for (InitExprsTy::const_iterator I = InitExprs.begin(), 1840 E = InitExprs.end(); 1841 I != E; ++I) { 1842 if (Stmt *S = *I) { 1843 Beg = S->getLocStart(); 1844 break; 1845 } 1846 } 1847 } 1848 return Beg; 1849 } 1850 1851 SourceLocation InitListExpr::getLocEnd() const { 1852 if (InitListExpr *SyntacticForm = getSyntacticForm()) 1853 return SyntacticForm->getLocEnd(); 1854 SourceLocation End = RBraceLoc; 1855 if (End.isInvalid()) { 1856 // Find the first non-null initializer from the end. 1857 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 1858 E = InitExprs.rend(); 1859 I != E; ++I) { 1860 if (Stmt *S = *I) { 1861 End = S->getLocEnd(); 1862 break; 1863 } 1864 } 1865 } 1866 return End; 1867 } 1868 1869 /// getFunctionType - Return the underlying function type for this block. 1870 /// 1871 const FunctionProtoType *BlockExpr::getFunctionType() const { 1872 // The block pointer is never sugared, but the function type might be. 1873 return cast<BlockPointerType>(getType()) 1874 ->getPointeeType()->castAs<FunctionProtoType>(); 1875 } 1876 1877 SourceLocation BlockExpr::getCaretLocation() const { 1878 return TheBlock->getCaretLocation(); 1879 } 1880 const Stmt *BlockExpr::getBody() const { 1881 return TheBlock->getBody(); 1882 } 1883 Stmt *BlockExpr::getBody() { 1884 return TheBlock->getBody(); 1885 } 1886 1887 1888 //===----------------------------------------------------------------------===// 1889 // Generic Expression Routines 1890 //===----------------------------------------------------------------------===// 1891 1892 /// isUnusedResultAWarning - Return true if this immediate expression should 1893 /// be warned about if the result is unused. If so, fill in Loc and Ranges 1894 /// with location to warn on and the source range[s] to report with the 1895 /// warning. 1896 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 1897 SourceRange &R1, SourceRange &R2, 1898 ASTContext &Ctx) const { 1899 // Don't warn if the expr is type dependent. The type could end up 1900 // instantiating to void. 1901 if (isTypeDependent()) 1902 return false; 1903 1904 switch (getStmtClass()) { 1905 default: 1906 if (getType()->isVoidType()) 1907 return false; 1908 WarnE = this; 1909 Loc = getExprLoc(); 1910 R1 = getSourceRange(); 1911 return true; 1912 case ParenExprClass: 1913 return cast<ParenExpr>(this)->getSubExpr()-> 1914 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 1915 case GenericSelectionExprClass: 1916 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 1917 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 1918 case ChooseExprClass: 1919 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 1920 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 1921 case UnaryOperatorClass: { 1922 const UnaryOperator *UO = cast<UnaryOperator>(this); 1923 1924 switch (UO->getOpcode()) { 1925 case UO_Plus: 1926 case UO_Minus: 1927 case UO_AddrOf: 1928 case UO_Not: 1929 case UO_LNot: 1930 case UO_Deref: 1931 break; 1932 case UO_Coawait: 1933 // This is just the 'operator co_await' call inside the guts of a 1934 // dependent co_await call. 1935 case UO_PostInc: 1936 case UO_PostDec: 1937 case UO_PreInc: 1938 case UO_PreDec: // ++/-- 1939 return false; // Not a warning. 1940 case UO_Real: 1941 case UO_Imag: 1942 // accessing a piece of a volatile complex is a side-effect. 1943 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 1944 .isVolatileQualified()) 1945 return false; 1946 break; 1947 case UO_Extension: 1948 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 1949 } 1950 WarnE = this; 1951 Loc = UO->getOperatorLoc(); 1952 R1 = UO->getSubExpr()->getSourceRange(); 1953 return true; 1954 } 1955 case BinaryOperatorClass: { 1956 const BinaryOperator *BO = cast<BinaryOperator>(this); 1957 switch (BO->getOpcode()) { 1958 default: 1959 break; 1960 // Consider the RHS of comma for side effects. LHS was checked by 1961 // Sema::CheckCommaOperands. 1962 case BO_Comma: 1963 // ((foo = <blah>), 0) is an idiom for hiding the result (and 1964 // lvalue-ness) of an assignment written in a macro. 1965 if (IntegerLiteral *IE = 1966 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 1967 if (IE->getValue() == 0) 1968 return false; 1969 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 1970 // Consider '||', '&&' to have side effects if the LHS or RHS does. 1971 case BO_LAnd: 1972 case BO_LOr: 1973 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 1974 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 1975 return false; 1976 break; 1977 } 1978 if (BO->isAssignmentOp()) 1979 return false; 1980 WarnE = this; 1981 Loc = BO->getOperatorLoc(); 1982 R1 = BO->getLHS()->getSourceRange(); 1983 R2 = BO->getRHS()->getSourceRange(); 1984 return true; 1985 } 1986 case CompoundAssignOperatorClass: 1987 case VAArgExprClass: 1988 case AtomicExprClass: 1989 return false; 1990 1991 case ConditionalOperatorClass: { 1992 // If only one of the LHS or RHS is a warning, the operator might 1993 // be being used for control flow. Only warn if both the LHS and 1994 // RHS are warnings. 1995 const ConditionalOperator *Exp = cast<ConditionalOperator>(this); 1996 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 1997 return false; 1998 if (!Exp->getLHS()) 1999 return true; 2000 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2001 } 2002 2003 case MemberExprClass: 2004 WarnE = this; 2005 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2006 R1 = SourceRange(Loc, Loc); 2007 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2008 return true; 2009 2010 case ArraySubscriptExprClass: 2011 WarnE = this; 2012 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2013 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2014 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2015 return true; 2016 2017 case CXXOperatorCallExprClass: { 2018 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2019 // overloads as there is no reasonable way to define these such that they 2020 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2021 // warning: operators == and != are commonly typo'ed, and so warning on them 2022 // provides additional value as well. If this list is updated, 2023 // DiagnoseUnusedComparison should be as well. 2024 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2025 switch (Op->getOperator()) { 2026 default: 2027 break; 2028 case OO_EqualEqual: 2029 case OO_ExclaimEqual: 2030 case OO_Less: 2031 case OO_Greater: 2032 case OO_GreaterEqual: 2033 case OO_LessEqual: 2034 if (Op->getCallReturnType(Ctx)->isReferenceType() || 2035 Op->getCallReturnType(Ctx)->isVoidType()) 2036 break; 2037 WarnE = this; 2038 Loc = Op->getOperatorLoc(); 2039 R1 = Op->getSourceRange(); 2040 return true; 2041 } 2042 2043 // Fallthrough for generic call handling. 2044 } 2045 case CallExprClass: 2046 case CXXMemberCallExprClass: 2047 case UserDefinedLiteralClass: { 2048 // If this is a direct call, get the callee. 2049 const CallExpr *CE = cast<CallExpr>(this); 2050 if (const Decl *FD = CE->getCalleeDecl()) { 2051 const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD); 2052 bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr() 2053 : FD->hasAttr<WarnUnusedResultAttr>(); 2054 2055 // If the callee has attribute pure, const, or warn_unused_result, warn 2056 // about it. void foo() { strlen("bar"); } should warn. 2057 // 2058 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2059 // updated to match for QoI. 2060 if (HasWarnUnusedResultAttr || 2061 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2062 WarnE = this; 2063 Loc = CE->getCallee()->getLocStart(); 2064 R1 = CE->getCallee()->getSourceRange(); 2065 2066 if (unsigned NumArgs = CE->getNumArgs()) 2067 R2 = SourceRange(CE->getArg(0)->getLocStart(), 2068 CE->getArg(NumArgs-1)->getLocEnd()); 2069 return true; 2070 } 2071 } 2072 return false; 2073 } 2074 2075 // If we don't know precisely what we're looking at, let's not warn. 2076 case UnresolvedLookupExprClass: 2077 case CXXUnresolvedConstructExprClass: 2078 return false; 2079 2080 case CXXTemporaryObjectExprClass: 2081 case CXXConstructExprClass: { 2082 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2083 if (Type->hasAttr<WarnUnusedAttr>()) { 2084 WarnE = this; 2085 Loc = getLocStart(); 2086 R1 = getSourceRange(); 2087 return true; 2088 } 2089 } 2090 return false; 2091 } 2092 2093 case ObjCMessageExprClass: { 2094 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2095 if (Ctx.getLangOpts().ObjCAutoRefCount && 2096 ME->isInstanceMessage() && 2097 !ME->getType()->isVoidType() && 2098 ME->getMethodFamily() == OMF_init) { 2099 WarnE = this; 2100 Loc = getExprLoc(); 2101 R1 = ME->getSourceRange(); 2102 return true; 2103 } 2104 2105 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2106 if (MD->hasAttr<WarnUnusedResultAttr>()) { 2107 WarnE = this; 2108 Loc = getExprLoc(); 2109 return true; 2110 } 2111 2112 return false; 2113 } 2114 2115 case ObjCPropertyRefExprClass: 2116 WarnE = this; 2117 Loc = getExprLoc(); 2118 R1 = getSourceRange(); 2119 return true; 2120 2121 case PseudoObjectExprClass: { 2122 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 2123 2124 // Only complain about things that have the form of a getter. 2125 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 2126 isa<BinaryOperator>(PO->getSyntacticForm())) 2127 return false; 2128 2129 WarnE = this; 2130 Loc = getExprLoc(); 2131 R1 = getSourceRange(); 2132 return true; 2133 } 2134 2135 case StmtExprClass: { 2136 // Statement exprs don't logically have side effects themselves, but are 2137 // sometimes used in macros in ways that give them a type that is unused. 2138 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2139 // however, if the result of the stmt expr is dead, we don't want to emit a 2140 // warning. 2141 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2142 if (!CS->body_empty()) { 2143 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2144 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2145 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2146 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2147 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2148 } 2149 2150 if (getType()->isVoidType()) 2151 return false; 2152 WarnE = this; 2153 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2154 R1 = getSourceRange(); 2155 return true; 2156 } 2157 case CXXFunctionalCastExprClass: 2158 case CStyleCastExprClass: { 2159 // Ignore an explicit cast to void unless the operand is a non-trivial 2160 // volatile lvalue. 2161 const CastExpr *CE = cast<CastExpr>(this); 2162 if (CE->getCastKind() == CK_ToVoid) { 2163 if (CE->getSubExpr()->isGLValue() && 2164 CE->getSubExpr()->getType().isVolatileQualified()) { 2165 const DeclRefExpr *DRE = 2166 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens()); 2167 if (!(DRE && isa<VarDecl>(DRE->getDecl()) && 2168 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) { 2169 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, 2170 R1, R2, Ctx); 2171 } 2172 } 2173 return false; 2174 } 2175 2176 // If this is a cast to a constructor conversion, check the operand. 2177 // Otherwise, the result of the cast is unused. 2178 if (CE->getCastKind() == CK_ConstructorConversion) 2179 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2180 2181 WarnE = this; 2182 if (const CXXFunctionalCastExpr *CXXCE = 2183 dyn_cast<CXXFunctionalCastExpr>(this)) { 2184 Loc = CXXCE->getLocStart(); 2185 R1 = CXXCE->getSubExpr()->getSourceRange(); 2186 } else { 2187 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2188 Loc = CStyleCE->getLParenLoc(); 2189 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2190 } 2191 return true; 2192 } 2193 case ImplicitCastExprClass: { 2194 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2195 2196 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2197 if (ICE->getCastKind() == CK_LValueToRValue && 2198 ICE->getSubExpr()->getType().isVolatileQualified()) 2199 return false; 2200 2201 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2202 } 2203 case CXXDefaultArgExprClass: 2204 return (cast<CXXDefaultArgExpr>(this) 2205 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2206 case CXXDefaultInitExprClass: 2207 return (cast<CXXDefaultInitExpr>(this) 2208 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2209 2210 case CXXNewExprClass: 2211 // FIXME: In theory, there might be new expressions that don't have side 2212 // effects (e.g. a placement new with an uninitialized POD). 2213 case CXXDeleteExprClass: 2214 return false; 2215 case CXXBindTemporaryExprClass: 2216 return (cast<CXXBindTemporaryExpr>(this) 2217 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2218 case ExprWithCleanupsClass: 2219 return (cast<ExprWithCleanups>(this) 2220 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2221 } 2222 } 2223 2224 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2225 /// returns true, if it is; false otherwise. 2226 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2227 const Expr *E = IgnoreParens(); 2228 switch (E->getStmtClass()) { 2229 default: 2230 return false; 2231 case ObjCIvarRefExprClass: 2232 return true; 2233 case Expr::UnaryOperatorClass: 2234 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2235 case ImplicitCastExprClass: 2236 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2237 case MaterializeTemporaryExprClass: 2238 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() 2239 ->isOBJCGCCandidate(Ctx); 2240 case CStyleCastExprClass: 2241 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2242 case DeclRefExprClass: { 2243 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2244 2245 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2246 if (VD->hasGlobalStorage()) 2247 return true; 2248 QualType T = VD->getType(); 2249 // dereferencing to a pointer is always a gc'able candidate, 2250 // unless it is __weak. 2251 return T->isPointerType() && 2252 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2253 } 2254 return false; 2255 } 2256 case MemberExprClass: { 2257 const MemberExpr *M = cast<MemberExpr>(E); 2258 return M->getBase()->isOBJCGCCandidate(Ctx); 2259 } 2260 case ArraySubscriptExprClass: 2261 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2262 } 2263 } 2264 2265 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2266 if (isTypeDependent()) 2267 return false; 2268 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2269 } 2270 2271 QualType Expr::findBoundMemberType(const Expr *expr) { 2272 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2273 2274 // Bound member expressions are always one of these possibilities: 2275 // x->m x.m x->*y x.*y 2276 // (possibly parenthesized) 2277 2278 expr = expr->IgnoreParens(); 2279 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2280 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2281 return mem->getMemberDecl()->getType(); 2282 } 2283 2284 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2285 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2286 ->getPointeeType(); 2287 assert(type->isFunctionType()); 2288 return type; 2289 } 2290 2291 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); 2292 return QualType(); 2293 } 2294 2295 Expr* Expr::IgnoreParens() { 2296 Expr* E = this; 2297 while (true) { 2298 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 2299 E = P->getSubExpr(); 2300 continue; 2301 } 2302 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2303 if (P->getOpcode() == UO_Extension) { 2304 E = P->getSubExpr(); 2305 continue; 2306 } 2307 } 2308 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2309 if (!P->isResultDependent()) { 2310 E = P->getResultExpr(); 2311 continue; 2312 } 2313 } 2314 if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) { 2315 if (!P->isConditionDependent()) { 2316 E = P->getChosenSubExpr(); 2317 continue; 2318 } 2319 } 2320 return E; 2321 } 2322 } 2323 2324 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr 2325 /// or CastExprs or ImplicitCastExprs, returning their operand. 2326 Expr *Expr::IgnoreParenCasts() { 2327 Expr *E = this; 2328 while (true) { 2329 E = E->IgnoreParens(); 2330 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2331 E = P->getSubExpr(); 2332 continue; 2333 } 2334 if (MaterializeTemporaryExpr *Materialize 2335 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2336 E = Materialize->GetTemporaryExpr(); 2337 continue; 2338 } 2339 if (SubstNonTypeTemplateParmExpr *NTTP 2340 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2341 E = NTTP->getReplacement(); 2342 continue; 2343 } 2344 return E; 2345 } 2346 } 2347 2348 Expr *Expr::IgnoreCasts() { 2349 Expr *E = this; 2350 while (true) { 2351 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2352 E = P->getSubExpr(); 2353 continue; 2354 } 2355 if (MaterializeTemporaryExpr *Materialize 2356 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2357 E = Materialize->GetTemporaryExpr(); 2358 continue; 2359 } 2360 if (SubstNonTypeTemplateParmExpr *NTTP 2361 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2362 E = NTTP->getReplacement(); 2363 continue; 2364 } 2365 return E; 2366 } 2367 } 2368 2369 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue 2370 /// casts. This is intended purely as a temporary workaround for code 2371 /// that hasn't yet been rewritten to do the right thing about those 2372 /// casts, and may disappear along with the last internal use. 2373 Expr *Expr::IgnoreParenLValueCasts() { 2374 Expr *E = this; 2375 while (true) { 2376 E = E->IgnoreParens(); 2377 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2378 if (P->getCastKind() == CK_LValueToRValue) { 2379 E = P->getSubExpr(); 2380 continue; 2381 } 2382 } else if (MaterializeTemporaryExpr *Materialize 2383 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2384 E = Materialize->GetTemporaryExpr(); 2385 continue; 2386 } else if (SubstNonTypeTemplateParmExpr *NTTP 2387 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2388 E = NTTP->getReplacement(); 2389 continue; 2390 } 2391 break; 2392 } 2393 return E; 2394 } 2395 2396 Expr *Expr::ignoreParenBaseCasts() { 2397 Expr *E = this; 2398 while (true) { 2399 E = E->IgnoreParens(); 2400 if (CastExpr *CE = dyn_cast<CastExpr>(E)) { 2401 if (CE->getCastKind() == CK_DerivedToBase || 2402 CE->getCastKind() == CK_UncheckedDerivedToBase || 2403 CE->getCastKind() == CK_NoOp) { 2404 E = CE->getSubExpr(); 2405 continue; 2406 } 2407 } 2408 2409 return E; 2410 } 2411 } 2412 2413 Expr *Expr::IgnoreParenImpCasts() { 2414 Expr *E = this; 2415 while (true) { 2416 E = E->IgnoreParens(); 2417 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { 2418 E = P->getSubExpr(); 2419 continue; 2420 } 2421 if (MaterializeTemporaryExpr *Materialize 2422 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2423 E = Materialize->GetTemporaryExpr(); 2424 continue; 2425 } 2426 if (SubstNonTypeTemplateParmExpr *NTTP 2427 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2428 E = NTTP->getReplacement(); 2429 continue; 2430 } 2431 return E; 2432 } 2433 } 2434 2435 Expr *Expr::IgnoreConversionOperator() { 2436 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2437 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2438 return MCE->getImplicitObjectArgument(); 2439 } 2440 return this; 2441 } 2442 2443 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the 2444 /// value (including ptr->int casts of the same size). Strip off any 2445 /// ParenExpr or CastExprs, returning their operand. 2446 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { 2447 Expr *E = this; 2448 while (true) { 2449 E = E->IgnoreParens(); 2450 2451 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2452 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2453 // ptr<->int casts of the same width. We also ignore all identity casts. 2454 Expr *SE = P->getSubExpr(); 2455 2456 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { 2457 E = SE; 2458 continue; 2459 } 2460 2461 if ((E->getType()->isPointerType() || 2462 E->getType()->isIntegralType(Ctx)) && 2463 (SE->getType()->isPointerType() || 2464 SE->getType()->isIntegralType(Ctx)) && 2465 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { 2466 E = SE; 2467 continue; 2468 } 2469 } 2470 2471 if (SubstNonTypeTemplateParmExpr *NTTP 2472 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2473 E = NTTP->getReplacement(); 2474 continue; 2475 } 2476 2477 return E; 2478 } 2479 } 2480 2481 bool Expr::isDefaultArgument() const { 2482 const Expr *E = this; 2483 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2484 E = M->GetTemporaryExpr(); 2485 2486 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 2487 E = ICE->getSubExprAsWritten(); 2488 2489 return isa<CXXDefaultArgExpr>(E); 2490 } 2491 2492 /// \brief Skip over any no-op casts and any temporary-binding 2493 /// expressions. 2494 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 2495 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2496 E = M->GetTemporaryExpr(); 2497 2498 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2499 if (ICE->getCastKind() == CK_NoOp) 2500 E = ICE->getSubExpr(); 2501 else 2502 break; 2503 } 2504 2505 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 2506 E = BE->getSubExpr(); 2507 2508 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2509 if (ICE->getCastKind() == CK_NoOp) 2510 E = ICE->getSubExpr(); 2511 else 2512 break; 2513 } 2514 2515 return E->IgnoreParens(); 2516 } 2517 2518 /// isTemporaryObject - Determines if this expression produces a 2519 /// temporary of the given class type. 2520 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 2521 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 2522 return false; 2523 2524 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 2525 2526 // Temporaries are by definition pr-values of class type. 2527 if (!E->Classify(C).isPRValue()) { 2528 // In this context, property reference is a message call and is pr-value. 2529 if (!isa<ObjCPropertyRefExpr>(E)) 2530 return false; 2531 } 2532 2533 // Black-list a few cases which yield pr-values of class type that don't 2534 // refer to temporaries of that type: 2535 2536 // - implicit derived-to-base conversions 2537 if (isa<ImplicitCastExpr>(E)) { 2538 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 2539 case CK_DerivedToBase: 2540 case CK_UncheckedDerivedToBase: 2541 return false; 2542 default: 2543 break; 2544 } 2545 } 2546 2547 // - member expressions (all) 2548 if (isa<MemberExpr>(E)) 2549 return false; 2550 2551 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 2552 if (BO->isPtrMemOp()) 2553 return false; 2554 2555 // - opaque values (all) 2556 if (isa<OpaqueValueExpr>(E)) 2557 return false; 2558 2559 return true; 2560 } 2561 2562 bool Expr::isImplicitCXXThis() const { 2563 const Expr *E = this; 2564 2565 // Strip away parentheses and casts we don't care about. 2566 while (true) { 2567 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 2568 E = Paren->getSubExpr(); 2569 continue; 2570 } 2571 2572 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2573 if (ICE->getCastKind() == CK_NoOp || 2574 ICE->getCastKind() == CK_LValueToRValue || 2575 ICE->getCastKind() == CK_DerivedToBase || 2576 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 2577 E = ICE->getSubExpr(); 2578 continue; 2579 } 2580 } 2581 2582 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 2583 if (UnOp->getOpcode() == UO_Extension) { 2584 E = UnOp->getSubExpr(); 2585 continue; 2586 } 2587 } 2588 2589 if (const MaterializeTemporaryExpr *M 2590 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2591 E = M->GetTemporaryExpr(); 2592 continue; 2593 } 2594 2595 break; 2596 } 2597 2598 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 2599 return This->isImplicit(); 2600 2601 return false; 2602 } 2603 2604 /// hasAnyTypeDependentArguments - Determines if any of the expressions 2605 /// in Exprs is type-dependent. 2606 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 2607 for (unsigned I = 0; I < Exprs.size(); ++I) 2608 if (Exprs[I]->isTypeDependent()) 2609 return true; 2610 2611 return false; 2612 } 2613 2614 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 2615 const Expr **Culprit) const { 2616 // This function is attempting whether an expression is an initializer 2617 // which can be evaluated at compile-time. It very closely parallels 2618 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 2619 // will lead to unexpected results. Like ConstExprEmitter, it falls back 2620 // to isEvaluatable most of the time. 2621 // 2622 // If we ever capture reference-binding directly in the AST, we can 2623 // kill the second parameter. 2624 2625 if (IsForRef) { 2626 EvalResult Result; 2627 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 2628 return true; 2629 if (Culprit) 2630 *Culprit = this; 2631 return false; 2632 } 2633 2634 switch (getStmtClass()) { 2635 default: break; 2636 case StringLiteralClass: 2637 case ObjCEncodeExprClass: 2638 return true; 2639 case CXXTemporaryObjectExprClass: 2640 case CXXConstructExprClass: { 2641 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 2642 2643 if (CE->getConstructor()->isTrivial() && 2644 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 2645 // Trivial default constructor 2646 if (!CE->getNumArgs()) return true; 2647 2648 // Trivial copy constructor 2649 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 2650 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 2651 } 2652 2653 break; 2654 } 2655 case CompoundLiteralExprClass: { 2656 // This handles gcc's extension that allows global initializers like 2657 // "struct x {int x;} x = (struct x) {};". 2658 // FIXME: This accepts other cases it shouldn't! 2659 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 2660 return Exp->isConstantInitializer(Ctx, false, Culprit); 2661 } 2662 case DesignatedInitUpdateExprClass: { 2663 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); 2664 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && 2665 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); 2666 } 2667 case InitListExprClass: { 2668 const InitListExpr *ILE = cast<InitListExpr>(this); 2669 if (ILE->getType()->isArrayType()) { 2670 unsigned numInits = ILE->getNumInits(); 2671 for (unsigned i = 0; i < numInits; i++) { 2672 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 2673 return false; 2674 } 2675 return true; 2676 } 2677 2678 if (ILE->getType()->isRecordType()) { 2679 unsigned ElementNo = 0; 2680 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 2681 for (const auto *Field : RD->fields()) { 2682 // If this is a union, skip all the fields that aren't being initialized. 2683 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 2684 continue; 2685 2686 // Don't emit anonymous bitfields, they just affect layout. 2687 if (Field->isUnnamedBitfield()) 2688 continue; 2689 2690 if (ElementNo < ILE->getNumInits()) { 2691 const Expr *Elt = ILE->getInit(ElementNo++); 2692 if (Field->isBitField()) { 2693 // Bitfields have to evaluate to an integer. 2694 llvm::APSInt ResultTmp; 2695 if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) { 2696 if (Culprit) 2697 *Culprit = Elt; 2698 return false; 2699 } 2700 } else { 2701 bool RefType = Field->getType()->isReferenceType(); 2702 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 2703 return false; 2704 } 2705 } 2706 } 2707 return true; 2708 } 2709 2710 break; 2711 } 2712 case ImplicitValueInitExprClass: 2713 case NoInitExprClass: 2714 return true; 2715 case ParenExprClass: 2716 return cast<ParenExpr>(this)->getSubExpr() 2717 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2718 case GenericSelectionExprClass: 2719 return cast<GenericSelectionExpr>(this)->getResultExpr() 2720 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2721 case ChooseExprClass: 2722 if (cast<ChooseExpr>(this)->isConditionDependent()) { 2723 if (Culprit) 2724 *Culprit = this; 2725 return false; 2726 } 2727 return cast<ChooseExpr>(this)->getChosenSubExpr() 2728 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2729 case UnaryOperatorClass: { 2730 const UnaryOperator* Exp = cast<UnaryOperator>(this); 2731 if (Exp->getOpcode() == UO_Extension) 2732 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 2733 break; 2734 } 2735 case CXXFunctionalCastExprClass: 2736 case CXXStaticCastExprClass: 2737 case ImplicitCastExprClass: 2738 case CStyleCastExprClass: 2739 case ObjCBridgedCastExprClass: 2740 case CXXDynamicCastExprClass: 2741 case CXXReinterpretCastExprClass: 2742 case CXXConstCastExprClass: { 2743 const CastExpr *CE = cast<CastExpr>(this); 2744 2745 // Handle misc casts we want to ignore. 2746 if (CE->getCastKind() == CK_NoOp || 2747 CE->getCastKind() == CK_LValueToRValue || 2748 CE->getCastKind() == CK_ToUnion || 2749 CE->getCastKind() == CK_ConstructorConversion || 2750 CE->getCastKind() == CK_NonAtomicToAtomic || 2751 CE->getCastKind() == CK_AtomicToNonAtomic) 2752 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 2753 2754 break; 2755 } 2756 case MaterializeTemporaryExprClass: 2757 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() 2758 ->isConstantInitializer(Ctx, false, Culprit); 2759 2760 case SubstNonTypeTemplateParmExprClass: 2761 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 2762 ->isConstantInitializer(Ctx, false, Culprit); 2763 case CXXDefaultArgExprClass: 2764 return cast<CXXDefaultArgExpr>(this)->getExpr() 2765 ->isConstantInitializer(Ctx, false, Culprit); 2766 case CXXDefaultInitExprClass: 2767 return cast<CXXDefaultInitExpr>(this)->getExpr() 2768 ->isConstantInitializer(Ctx, false, Culprit); 2769 } 2770 // Allow certain forms of UB in constant initializers: signed integer 2771 // overflow and floating-point division by zero. We'll give a warning on 2772 // these, but they're common enough that we have to accept them. 2773 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) 2774 return true; 2775 if (Culprit) 2776 *Culprit = this; 2777 return false; 2778 } 2779 2780 namespace { 2781 /// \brief Look for any side effects within a Stmt. 2782 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { 2783 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; 2784 const bool IncludePossibleEffects; 2785 bool HasSideEffects; 2786 2787 public: 2788 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) 2789 : Inherited(Context), 2790 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } 2791 2792 bool hasSideEffects() const { return HasSideEffects; } 2793 2794 void VisitExpr(const Expr *E) { 2795 if (!HasSideEffects && 2796 E->HasSideEffects(Context, IncludePossibleEffects)) 2797 HasSideEffects = true; 2798 } 2799 }; 2800 } 2801 2802 bool Expr::HasSideEffects(const ASTContext &Ctx, 2803 bool IncludePossibleEffects) const { 2804 // In circumstances where we care about definite side effects instead of 2805 // potential side effects, we want to ignore expressions that are part of a 2806 // macro expansion as a potential side effect. 2807 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 2808 return false; 2809 2810 if (isInstantiationDependent()) 2811 return IncludePossibleEffects; 2812 2813 switch (getStmtClass()) { 2814 case NoStmtClass: 2815 #define ABSTRACT_STMT(Type) 2816 #define STMT(Type, Base) case Type##Class: 2817 #define EXPR(Type, Base) 2818 #include "clang/AST/StmtNodes.inc" 2819 llvm_unreachable("unexpected Expr kind"); 2820 2821 case DependentScopeDeclRefExprClass: 2822 case CXXUnresolvedConstructExprClass: 2823 case CXXDependentScopeMemberExprClass: 2824 case UnresolvedLookupExprClass: 2825 case UnresolvedMemberExprClass: 2826 case PackExpansionExprClass: 2827 case SubstNonTypeTemplateParmPackExprClass: 2828 case FunctionParmPackExprClass: 2829 case TypoExprClass: 2830 case CXXFoldExprClass: 2831 llvm_unreachable("shouldn't see dependent / unresolved nodes here"); 2832 2833 case DeclRefExprClass: 2834 case ObjCIvarRefExprClass: 2835 case PredefinedExprClass: 2836 case IntegerLiteralClass: 2837 case FloatingLiteralClass: 2838 case ImaginaryLiteralClass: 2839 case StringLiteralClass: 2840 case CharacterLiteralClass: 2841 case OffsetOfExprClass: 2842 case ImplicitValueInitExprClass: 2843 case UnaryExprOrTypeTraitExprClass: 2844 case AddrLabelExprClass: 2845 case GNUNullExprClass: 2846 case NoInitExprClass: 2847 case CXXBoolLiteralExprClass: 2848 case CXXNullPtrLiteralExprClass: 2849 case CXXThisExprClass: 2850 case CXXScalarValueInitExprClass: 2851 case TypeTraitExprClass: 2852 case ArrayTypeTraitExprClass: 2853 case ExpressionTraitExprClass: 2854 case CXXNoexceptExprClass: 2855 case SizeOfPackExprClass: 2856 case ObjCStringLiteralClass: 2857 case ObjCEncodeExprClass: 2858 case ObjCBoolLiteralExprClass: 2859 case CXXUuidofExprClass: 2860 case OpaqueValueExprClass: 2861 // These never have a side-effect. 2862 return false; 2863 2864 case CallExprClass: 2865 case CXXOperatorCallExprClass: 2866 case CXXMemberCallExprClass: 2867 case CUDAKernelCallExprClass: 2868 case UserDefinedLiteralClass: { 2869 // We don't know a call definitely has side effects, except for calls 2870 // to pure/const functions that definitely don't. 2871 // If the call itself is considered side-effect free, check the operands. 2872 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); 2873 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); 2874 if (IsPure || !IncludePossibleEffects) 2875 break; 2876 return true; 2877 } 2878 2879 case BlockExprClass: 2880 case CXXBindTemporaryExprClass: 2881 if (!IncludePossibleEffects) 2882 break; 2883 return true; 2884 2885 case MSPropertyRefExprClass: 2886 case MSPropertySubscriptExprClass: 2887 case CompoundAssignOperatorClass: 2888 case VAArgExprClass: 2889 case AtomicExprClass: 2890 case CXXThrowExprClass: 2891 case CXXNewExprClass: 2892 case CXXDeleteExprClass: 2893 case CoawaitExprClass: 2894 case CoyieldExprClass: 2895 // These always have a side-effect. 2896 return true; 2897 2898 case StmtExprClass: { 2899 // StmtExprs have a side-effect if any substatement does. 2900 SideEffectFinder Finder(Ctx, IncludePossibleEffects); 2901 Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); 2902 return Finder.hasSideEffects(); 2903 } 2904 2905 case ExprWithCleanupsClass: 2906 if (IncludePossibleEffects) 2907 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) 2908 return true; 2909 break; 2910 2911 case ParenExprClass: 2912 case ArraySubscriptExprClass: 2913 case OMPArraySectionExprClass: 2914 case MemberExprClass: 2915 case ConditionalOperatorClass: 2916 case BinaryConditionalOperatorClass: 2917 case CompoundLiteralExprClass: 2918 case ExtVectorElementExprClass: 2919 case DesignatedInitExprClass: 2920 case DesignatedInitUpdateExprClass: 2921 case ParenListExprClass: 2922 case CXXPseudoDestructorExprClass: 2923 case CXXStdInitializerListExprClass: 2924 case SubstNonTypeTemplateParmExprClass: 2925 case MaterializeTemporaryExprClass: 2926 case ShuffleVectorExprClass: 2927 case ConvertVectorExprClass: 2928 case AsTypeExprClass: 2929 // These have a side-effect if any subexpression does. 2930 break; 2931 2932 case UnaryOperatorClass: 2933 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 2934 return true; 2935 break; 2936 2937 case BinaryOperatorClass: 2938 if (cast<BinaryOperator>(this)->isAssignmentOp()) 2939 return true; 2940 break; 2941 2942 case InitListExprClass: 2943 // FIXME: The children for an InitListExpr doesn't include the array filler. 2944 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 2945 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 2946 return true; 2947 break; 2948 2949 case GenericSelectionExprClass: 2950 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2951 HasSideEffects(Ctx, IncludePossibleEffects); 2952 2953 case ChooseExprClass: 2954 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 2955 Ctx, IncludePossibleEffects); 2956 2957 case CXXDefaultArgExprClass: 2958 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 2959 Ctx, IncludePossibleEffects); 2960 2961 case CXXDefaultInitExprClass: { 2962 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 2963 if (const Expr *E = FD->getInClassInitializer()) 2964 return E->HasSideEffects(Ctx, IncludePossibleEffects); 2965 // If we've not yet parsed the initializer, assume it has side-effects. 2966 return true; 2967 } 2968 2969 case CXXDynamicCastExprClass: { 2970 // A dynamic_cast expression has side-effects if it can throw. 2971 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 2972 if (DCE->getTypeAsWritten()->isReferenceType() && 2973 DCE->getCastKind() == CK_Dynamic) 2974 return true; 2975 } // Fall through. 2976 case ImplicitCastExprClass: 2977 case CStyleCastExprClass: 2978 case CXXStaticCastExprClass: 2979 case CXXReinterpretCastExprClass: 2980 case CXXConstCastExprClass: 2981 case CXXFunctionalCastExprClass: { 2982 // While volatile reads are side-effecting in both C and C++, we treat them 2983 // as having possible (not definite) side-effects. This allows idiomatic 2984 // code to behave without warning, such as sizeof(*v) for a volatile- 2985 // qualified pointer. 2986 if (!IncludePossibleEffects) 2987 break; 2988 2989 const CastExpr *CE = cast<CastExpr>(this); 2990 if (CE->getCastKind() == CK_LValueToRValue && 2991 CE->getSubExpr()->getType().isVolatileQualified()) 2992 return true; 2993 break; 2994 } 2995 2996 case CXXTypeidExprClass: 2997 // typeid might throw if its subexpression is potentially-evaluated, so has 2998 // side-effects in that case whether or not its subexpression does. 2999 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3000 3001 case CXXConstructExprClass: 3002 case CXXTemporaryObjectExprClass: { 3003 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3004 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3005 return true; 3006 // A trivial constructor does not add any side-effects of its own. Just look 3007 // at its arguments. 3008 break; 3009 } 3010 3011 case CXXInheritedCtorInitExprClass: { 3012 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); 3013 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) 3014 return true; 3015 break; 3016 } 3017 3018 case LambdaExprClass: { 3019 const LambdaExpr *LE = cast<LambdaExpr>(this); 3020 for (LambdaExpr::capture_iterator I = LE->capture_begin(), 3021 E = LE->capture_end(); I != E; ++I) 3022 if (I->getCaptureKind() == LCK_ByCopy) 3023 // FIXME: Only has a side-effect if the variable is volatile or if 3024 // the copy would invoke a non-trivial copy constructor. 3025 return true; 3026 return false; 3027 } 3028 3029 case PseudoObjectExprClass: { 3030 // Only look for side-effects in the semantic form, and look past 3031 // OpaqueValueExpr bindings in that form. 3032 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3033 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3034 E = PO->semantics_end(); 3035 I != E; ++I) { 3036 const Expr *Subexpr = *I; 3037 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3038 Subexpr = OVE->getSourceExpr(); 3039 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3040 return true; 3041 } 3042 return false; 3043 } 3044 3045 case ObjCBoxedExprClass: 3046 case ObjCArrayLiteralClass: 3047 case ObjCDictionaryLiteralClass: 3048 case ObjCSelectorExprClass: 3049 case ObjCProtocolExprClass: 3050 case ObjCIsaExprClass: 3051 case ObjCIndirectCopyRestoreExprClass: 3052 case ObjCSubscriptRefExprClass: 3053 case ObjCBridgedCastExprClass: 3054 case ObjCMessageExprClass: 3055 case ObjCPropertyRefExprClass: 3056 // FIXME: Classify these cases better. 3057 if (IncludePossibleEffects) 3058 return true; 3059 break; 3060 } 3061 3062 // Recurse to children. 3063 for (const Stmt *SubStmt : children()) 3064 if (SubStmt && 3065 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) 3066 return true; 3067 3068 return false; 3069 } 3070 3071 namespace { 3072 /// \brief Look for a call to a non-trivial function within an expression. 3073 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> 3074 { 3075 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3076 3077 bool NonTrivial; 3078 3079 public: 3080 explicit NonTrivialCallFinder(const ASTContext &Context) 3081 : Inherited(Context), NonTrivial(false) { } 3082 3083 bool hasNonTrivialCall() const { return NonTrivial; } 3084 3085 void VisitCallExpr(const CallExpr *E) { 3086 if (const CXXMethodDecl *Method 3087 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { 3088 if (Method->isTrivial()) { 3089 // Recurse to children of the call. 3090 Inherited::VisitStmt(E); 3091 return; 3092 } 3093 } 3094 3095 NonTrivial = true; 3096 } 3097 3098 void VisitCXXConstructExpr(const CXXConstructExpr *E) { 3099 if (E->getConstructor()->isTrivial()) { 3100 // Recurse to children of the call. 3101 Inherited::VisitStmt(E); 3102 return; 3103 } 3104 3105 NonTrivial = true; 3106 } 3107 3108 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 3109 if (E->getTemporary()->getDestructor()->isTrivial()) { 3110 Inherited::VisitStmt(E); 3111 return; 3112 } 3113 3114 NonTrivial = true; 3115 } 3116 }; 3117 } 3118 3119 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { 3120 NonTrivialCallFinder Finder(Ctx); 3121 Finder.Visit(this); 3122 return Finder.hasNonTrivialCall(); 3123 } 3124 3125 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3126 /// pointer constant or not, as well as the specific kind of constant detected. 3127 /// Null pointer constants can be integer constant expressions with the 3128 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3129 /// (a GNU extension). 3130 Expr::NullPointerConstantKind 3131 Expr::isNullPointerConstant(ASTContext &Ctx, 3132 NullPointerConstantValueDependence NPC) const { 3133 if (isValueDependent() && 3134 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3135 switch (NPC) { 3136 case NPC_NeverValueDependent: 3137 llvm_unreachable("Unexpected value dependent expression!"); 3138 case NPC_ValueDependentIsNull: 3139 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3140 return NPCK_ZeroExpression; 3141 else 3142 return NPCK_NotNull; 3143 3144 case NPC_ValueDependentIsNotNull: 3145 return NPCK_NotNull; 3146 } 3147 } 3148 3149 // Strip off a cast to void*, if it exists. Except in C++. 3150 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3151 if (!Ctx.getLangOpts().CPlusPlus) { 3152 // Check that it is a cast to void*. 3153 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3154 QualType Pointee = PT->getPointeeType(); 3155 Qualifiers Q = Pointee.getQualifiers(); 3156 // In OpenCL v2.0 generic address space acts as a placeholder 3157 // and should be ignored. 3158 bool IsASValid = true; 3159 if (Ctx.getLangOpts().OpenCLVersion >= 200) { 3160 if (Pointee.getAddressSpace() == LangAS::opencl_generic) 3161 Q.removeAddressSpace(); 3162 else 3163 IsASValid = false; 3164 } 3165 3166 if (IsASValid && !Q.hasQualifiers() && 3167 Pointee->isVoidType() && // to void* 3168 CE->getSubExpr()->getType()->isIntegerType()) // from int. 3169 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3170 } 3171 } 3172 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3173 // Ignore the ImplicitCastExpr type entirely. 3174 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3175 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3176 // Accept ((void*)0) as a null pointer constant, as many other 3177 // implementations do. 3178 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3179 } else if (const GenericSelectionExpr *GE = 3180 dyn_cast<GenericSelectionExpr>(this)) { 3181 if (GE->isResultDependent()) 3182 return NPCK_NotNull; 3183 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3184 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3185 if (CE->isConditionDependent()) 3186 return NPCK_NotNull; 3187 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3188 } else if (const CXXDefaultArgExpr *DefaultArg 3189 = dyn_cast<CXXDefaultArgExpr>(this)) { 3190 // See through default argument expressions. 3191 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3192 } else if (const CXXDefaultInitExpr *DefaultInit 3193 = dyn_cast<CXXDefaultInitExpr>(this)) { 3194 // See through default initializer expressions. 3195 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3196 } else if (isa<GNUNullExpr>(this)) { 3197 // The GNU __null extension is always a null pointer constant. 3198 return NPCK_GNUNull; 3199 } else if (const MaterializeTemporaryExpr *M 3200 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3201 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); 3202 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3203 if (const Expr *Source = OVE->getSourceExpr()) 3204 return Source->isNullPointerConstant(Ctx, NPC); 3205 } 3206 3207 // C++11 nullptr_t is always a null pointer constant. 3208 if (getType()->isNullPtrType()) 3209 return NPCK_CXX11_nullptr; 3210 3211 if (const RecordType *UT = getType()->getAsUnionType()) 3212 if (!Ctx.getLangOpts().CPlusPlus11 && 3213 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3214 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3215 const Expr *InitExpr = CLE->getInitializer(); 3216 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3217 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3218 } 3219 // This expression must be an integer type. 3220 if (!getType()->isIntegerType() || 3221 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3222 return NPCK_NotNull; 3223 3224 if (Ctx.getLangOpts().CPlusPlus11) { 3225 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3226 // value zero or a prvalue of type std::nullptr_t. 3227 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3228 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3229 if (Lit && !Lit->getValue()) 3230 return NPCK_ZeroLiteral; 3231 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3232 return NPCK_NotNull; 3233 } else { 3234 // If we have an integer constant expression, we need to *evaluate* it and 3235 // test for the value 0. 3236 if (!isIntegerConstantExpr(Ctx)) 3237 return NPCK_NotNull; 3238 } 3239 3240 if (EvaluateKnownConstInt(Ctx) != 0) 3241 return NPCK_NotNull; 3242 3243 if (isa<IntegerLiteral>(this)) 3244 return NPCK_ZeroLiteral; 3245 return NPCK_ZeroExpression; 3246 } 3247 3248 /// \brief If this expression is an l-value for an Objective C 3249 /// property, find the underlying property reference expression. 3250 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3251 const Expr *E = this; 3252 while (true) { 3253 assert((E->getValueKind() == VK_LValue && 3254 E->getObjectKind() == OK_ObjCProperty) && 3255 "expression is not a property reference"); 3256 E = E->IgnoreParenCasts(); 3257 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3258 if (BO->getOpcode() == BO_Comma) { 3259 E = BO->getRHS(); 3260 continue; 3261 } 3262 } 3263 3264 break; 3265 } 3266 3267 return cast<ObjCPropertyRefExpr>(E); 3268 } 3269 3270 bool Expr::isObjCSelfExpr() const { 3271 const Expr *E = IgnoreParenImpCasts(); 3272 3273 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3274 if (!DRE) 3275 return false; 3276 3277 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3278 if (!Param) 3279 return false; 3280 3281 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3282 if (!M) 3283 return false; 3284 3285 return M->getSelfDecl() == Param; 3286 } 3287 3288 FieldDecl *Expr::getSourceBitField() { 3289 Expr *E = this->IgnoreParens(); 3290 3291 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3292 if (ICE->getCastKind() == CK_LValueToRValue || 3293 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 3294 E = ICE->getSubExpr()->IgnoreParens(); 3295 else 3296 break; 3297 } 3298 3299 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3300 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3301 if (Field->isBitField()) 3302 return Field; 3303 3304 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) 3305 if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl())) 3306 if (Ivar->isBitField()) 3307 return Ivar; 3308 3309 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) 3310 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3311 if (Field->isBitField()) 3312 return Field; 3313 3314 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3315 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3316 return BinOp->getLHS()->getSourceBitField(); 3317 3318 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3319 return BinOp->getRHS()->getSourceBitField(); 3320 } 3321 3322 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3323 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3324 return UnOp->getSubExpr()->getSourceBitField(); 3325 3326 return nullptr; 3327 } 3328 3329 bool Expr::refersToVectorElement() const { 3330 const Expr *E = this->IgnoreParens(); 3331 3332 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3333 if (ICE->getValueKind() != VK_RValue && 3334 ICE->getCastKind() == CK_NoOp) 3335 E = ICE->getSubExpr()->IgnoreParens(); 3336 else 3337 break; 3338 } 3339 3340 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3341 return ASE->getBase()->getType()->isVectorType(); 3342 3343 if (isa<ExtVectorElementExpr>(E)) 3344 return true; 3345 3346 return false; 3347 } 3348 3349 bool Expr::refersToGlobalRegisterVar() const { 3350 const Expr *E = this->IgnoreParenImpCasts(); 3351 3352 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 3353 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) 3354 if (VD->getStorageClass() == SC_Register && 3355 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 3356 return true; 3357 3358 return false; 3359 } 3360 3361 /// isArrow - Return true if the base expression is a pointer to vector, 3362 /// return false if the base expression is a vector. 3363 bool ExtVectorElementExpr::isArrow() const { 3364 return getBase()->getType()->isPointerType(); 3365 } 3366 3367 unsigned ExtVectorElementExpr::getNumElements() const { 3368 if (const VectorType *VT = getType()->getAs<VectorType>()) 3369 return VT->getNumElements(); 3370 return 1; 3371 } 3372 3373 /// containsDuplicateElements - Return true if any element access is repeated. 3374 bool ExtVectorElementExpr::containsDuplicateElements() const { 3375 // FIXME: Refactor this code to an accessor on the AST node which returns the 3376 // "type" of component access, and share with code below and in Sema. 3377 StringRef Comp = Accessor->getName(); 3378 3379 // Halving swizzles do not contain duplicate elements. 3380 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 3381 return false; 3382 3383 // Advance past s-char prefix on hex swizzles. 3384 if (Comp[0] == 's' || Comp[0] == 'S') 3385 Comp = Comp.substr(1); 3386 3387 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 3388 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 3389 return true; 3390 3391 return false; 3392 } 3393 3394 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 3395 void ExtVectorElementExpr::getEncodedElementAccess( 3396 SmallVectorImpl<uint32_t> &Elts) const { 3397 StringRef Comp = Accessor->getName(); 3398 bool isNumericAccessor = false; 3399 if (Comp[0] == 's' || Comp[0] == 'S') { 3400 Comp = Comp.substr(1); 3401 isNumericAccessor = true; 3402 } 3403 3404 bool isHi = Comp == "hi"; 3405 bool isLo = Comp == "lo"; 3406 bool isEven = Comp == "even"; 3407 bool isOdd = Comp == "odd"; 3408 3409 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 3410 uint64_t Index; 3411 3412 if (isHi) 3413 Index = e + i; 3414 else if (isLo) 3415 Index = i; 3416 else if (isEven) 3417 Index = 2 * i; 3418 else if (isOdd) 3419 Index = 2 * i + 1; 3420 else 3421 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); 3422 3423 Elts.push_back(Index); 3424 } 3425 } 3426 3427 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, 3428 QualType Type, SourceLocation BLoc, 3429 SourceLocation RP) 3430 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, 3431 Type->isDependentType(), Type->isDependentType(), 3432 Type->isInstantiationDependentType(), 3433 Type->containsUnexpandedParameterPack()), 3434 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) 3435 { 3436 SubExprs = new (C) Stmt*[args.size()]; 3437 for (unsigned i = 0; i != args.size(); i++) { 3438 if (args[i]->isTypeDependent()) 3439 ExprBits.TypeDependent = true; 3440 if (args[i]->isValueDependent()) 3441 ExprBits.ValueDependent = true; 3442 if (args[i]->isInstantiationDependent()) 3443 ExprBits.InstantiationDependent = true; 3444 if (args[i]->containsUnexpandedParameterPack()) 3445 ExprBits.ContainsUnexpandedParameterPack = true; 3446 3447 SubExprs[i] = args[i]; 3448 } 3449 } 3450 3451 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 3452 if (SubExprs) C.Deallocate(SubExprs); 3453 3454 this->NumExprs = Exprs.size(); 3455 SubExprs = new (C) Stmt*[NumExprs]; 3456 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 3457 } 3458 3459 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 3460 SourceLocation GenericLoc, Expr *ControllingExpr, 3461 ArrayRef<TypeSourceInfo*> AssocTypes, 3462 ArrayRef<Expr*> AssocExprs, 3463 SourceLocation DefaultLoc, 3464 SourceLocation RParenLoc, 3465 bool ContainsUnexpandedParameterPack, 3466 unsigned ResultIndex) 3467 : Expr(GenericSelectionExprClass, 3468 AssocExprs[ResultIndex]->getType(), 3469 AssocExprs[ResultIndex]->getValueKind(), 3470 AssocExprs[ResultIndex]->getObjectKind(), 3471 AssocExprs[ResultIndex]->isTypeDependent(), 3472 AssocExprs[ResultIndex]->isValueDependent(), 3473 AssocExprs[ResultIndex]->isInstantiationDependent(), 3474 ContainsUnexpandedParameterPack), 3475 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 3476 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 3477 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 3478 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 3479 SubExprs[CONTROLLING] = ControllingExpr; 3480 assert(AssocTypes.size() == AssocExprs.size()); 3481 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 3482 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 3483 } 3484 3485 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 3486 SourceLocation GenericLoc, Expr *ControllingExpr, 3487 ArrayRef<TypeSourceInfo*> AssocTypes, 3488 ArrayRef<Expr*> AssocExprs, 3489 SourceLocation DefaultLoc, 3490 SourceLocation RParenLoc, 3491 bool ContainsUnexpandedParameterPack) 3492 : Expr(GenericSelectionExprClass, 3493 Context.DependentTy, 3494 VK_RValue, 3495 OK_Ordinary, 3496 /*isTypeDependent=*/true, 3497 /*isValueDependent=*/true, 3498 /*isInstantiationDependent=*/true, 3499 ContainsUnexpandedParameterPack), 3500 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 3501 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 3502 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc), 3503 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 3504 SubExprs[CONTROLLING] = ControllingExpr; 3505 assert(AssocTypes.size() == AssocExprs.size()); 3506 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 3507 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 3508 } 3509 3510 //===----------------------------------------------------------------------===// 3511 // DesignatedInitExpr 3512 //===----------------------------------------------------------------------===// 3513 3514 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 3515 assert(Kind == FieldDesignator && "Only valid on a field designator"); 3516 if (Field.NameOrField & 0x01) 3517 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 3518 else 3519 return getField()->getIdentifier(); 3520 } 3521 3522 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 3523 llvm::ArrayRef<Designator> Designators, 3524 SourceLocation EqualOrColonLoc, 3525 bool GNUSyntax, 3526 ArrayRef<Expr*> IndexExprs, 3527 Expr *Init) 3528 : Expr(DesignatedInitExprClass, Ty, 3529 Init->getValueKind(), Init->getObjectKind(), 3530 Init->isTypeDependent(), Init->isValueDependent(), 3531 Init->isInstantiationDependent(), 3532 Init->containsUnexpandedParameterPack()), 3533 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 3534 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { 3535 this->Designators = new (C) Designator[NumDesignators]; 3536 3537 // Record the initializer itself. 3538 child_iterator Child = child_begin(); 3539 *Child++ = Init; 3540 3541 // Copy the designators and their subexpressions, computing 3542 // value-dependence along the way. 3543 unsigned IndexIdx = 0; 3544 for (unsigned I = 0; I != NumDesignators; ++I) { 3545 this->Designators[I] = Designators[I]; 3546 3547 if (this->Designators[I].isArrayDesignator()) { 3548 // Compute type- and value-dependence. 3549 Expr *Index = IndexExprs[IndexIdx]; 3550 if (Index->isTypeDependent() || Index->isValueDependent()) 3551 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 3552 if (Index->isInstantiationDependent()) 3553 ExprBits.InstantiationDependent = true; 3554 // Propagate unexpanded parameter packs. 3555 if (Index->containsUnexpandedParameterPack()) 3556 ExprBits.ContainsUnexpandedParameterPack = true; 3557 3558 // Copy the index expressions into permanent storage. 3559 *Child++ = IndexExprs[IndexIdx++]; 3560 } else if (this->Designators[I].isArrayRangeDesignator()) { 3561 // Compute type- and value-dependence. 3562 Expr *Start = IndexExprs[IndexIdx]; 3563 Expr *End = IndexExprs[IndexIdx + 1]; 3564 if (Start->isTypeDependent() || Start->isValueDependent() || 3565 End->isTypeDependent() || End->isValueDependent()) { 3566 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 3567 ExprBits.InstantiationDependent = true; 3568 } else if (Start->isInstantiationDependent() || 3569 End->isInstantiationDependent()) { 3570 ExprBits.InstantiationDependent = true; 3571 } 3572 3573 // Propagate unexpanded parameter packs. 3574 if (Start->containsUnexpandedParameterPack() || 3575 End->containsUnexpandedParameterPack()) 3576 ExprBits.ContainsUnexpandedParameterPack = true; 3577 3578 // Copy the start/end expressions into permanent storage. 3579 *Child++ = IndexExprs[IndexIdx++]; 3580 *Child++ = IndexExprs[IndexIdx++]; 3581 } 3582 } 3583 3584 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 3585 } 3586 3587 DesignatedInitExpr * 3588 DesignatedInitExpr::Create(const ASTContext &C, 3589 llvm::ArrayRef<Designator> Designators, 3590 ArrayRef<Expr*> IndexExprs, 3591 SourceLocation ColonOrEqualLoc, 3592 bool UsesColonSyntax, Expr *Init) { 3593 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), 3594 llvm::alignOf<DesignatedInitExpr>()); 3595 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, 3596 ColonOrEqualLoc, UsesColonSyntax, 3597 IndexExprs, Init); 3598 } 3599 3600 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 3601 unsigned NumIndexExprs) { 3602 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), 3603 llvm::alignOf<DesignatedInitExpr>()); 3604 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 3605 } 3606 3607 void DesignatedInitExpr::setDesignators(const ASTContext &C, 3608 const Designator *Desigs, 3609 unsigned NumDesigs) { 3610 Designators = new (C) Designator[NumDesigs]; 3611 NumDesignators = NumDesigs; 3612 for (unsigned I = 0; I != NumDesigs; ++I) 3613 Designators[I] = Desigs[I]; 3614 } 3615 3616 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 3617 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 3618 if (size() == 1) 3619 return DIE->getDesignator(0)->getSourceRange(); 3620 return SourceRange(DIE->getDesignator(0)->getLocStart(), 3621 DIE->getDesignator(size()-1)->getLocEnd()); 3622 } 3623 3624 SourceLocation DesignatedInitExpr::getLocStart() const { 3625 SourceLocation StartLoc; 3626 auto *DIE = const_cast<DesignatedInitExpr *>(this); 3627 Designator &First = *DIE->getDesignator(0); 3628 if (First.isFieldDesignator()) { 3629 if (GNUSyntax) 3630 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 3631 else 3632 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 3633 } else 3634 StartLoc = 3635 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 3636 return StartLoc; 3637 } 3638 3639 SourceLocation DesignatedInitExpr::getLocEnd() const { 3640 return getInit()->getLocEnd(); 3641 } 3642 3643 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 3644 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 3645 return getSubExpr(D.ArrayOrRange.Index + 1); 3646 } 3647 3648 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 3649 assert(D.Kind == Designator::ArrayRangeDesignator && 3650 "Requires array range designator"); 3651 return getSubExpr(D.ArrayOrRange.Index + 1); 3652 } 3653 3654 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 3655 assert(D.Kind == Designator::ArrayRangeDesignator && 3656 "Requires array range designator"); 3657 return getSubExpr(D.ArrayOrRange.Index + 2); 3658 } 3659 3660 /// \brief Replaces the designator at index @p Idx with the series 3661 /// of designators in [First, Last). 3662 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 3663 const Designator *First, 3664 const Designator *Last) { 3665 unsigned NumNewDesignators = Last - First; 3666 if (NumNewDesignators == 0) { 3667 std::copy_backward(Designators + Idx + 1, 3668 Designators + NumDesignators, 3669 Designators + Idx); 3670 --NumNewDesignators; 3671 return; 3672 } else if (NumNewDesignators == 1) { 3673 Designators[Idx] = *First; 3674 return; 3675 } 3676 3677 Designator *NewDesignators 3678 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 3679 std::copy(Designators, Designators + Idx, NewDesignators); 3680 std::copy(First, Last, NewDesignators + Idx); 3681 std::copy(Designators + Idx + 1, Designators + NumDesignators, 3682 NewDesignators + Idx + NumNewDesignators); 3683 Designators = NewDesignators; 3684 NumDesignators = NumDesignators - 1 + NumNewDesignators; 3685 } 3686 3687 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, 3688 SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc) 3689 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue, 3690 OK_Ordinary, false, false, false, false) { 3691 BaseAndUpdaterExprs[0] = baseExpr; 3692 3693 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); 3694 ILE->setType(baseExpr->getType()); 3695 BaseAndUpdaterExprs[1] = ILE; 3696 } 3697 3698 SourceLocation DesignatedInitUpdateExpr::getLocStart() const { 3699 return getBase()->getLocStart(); 3700 } 3701 3702 SourceLocation DesignatedInitUpdateExpr::getLocEnd() const { 3703 return getBase()->getLocEnd(); 3704 } 3705 3706 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc, 3707 ArrayRef<Expr*> exprs, 3708 SourceLocation rparenloc) 3709 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, 3710 false, false, false, false), 3711 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) { 3712 Exprs = new (C) Stmt*[exprs.size()]; 3713 for (unsigned i = 0; i != exprs.size(); ++i) { 3714 if (exprs[i]->isTypeDependent()) 3715 ExprBits.TypeDependent = true; 3716 if (exprs[i]->isValueDependent()) 3717 ExprBits.ValueDependent = true; 3718 if (exprs[i]->isInstantiationDependent()) 3719 ExprBits.InstantiationDependent = true; 3720 if (exprs[i]->containsUnexpandedParameterPack()) 3721 ExprBits.ContainsUnexpandedParameterPack = true; 3722 3723 Exprs[i] = exprs[i]; 3724 } 3725 } 3726 3727 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 3728 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 3729 e = ewc->getSubExpr(); 3730 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 3731 e = m->GetTemporaryExpr(); 3732 e = cast<CXXConstructExpr>(e)->getArg(0); 3733 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 3734 e = ice->getSubExpr(); 3735 return cast<OpaqueValueExpr>(e); 3736 } 3737 3738 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 3739 EmptyShell sh, 3740 unsigned numSemanticExprs) { 3741 void *buffer = 3742 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), 3743 llvm::alignOf<PseudoObjectExpr>()); 3744 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 3745 } 3746 3747 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 3748 : Expr(PseudoObjectExprClass, shell) { 3749 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 3750 } 3751 3752 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 3753 ArrayRef<Expr*> semantics, 3754 unsigned resultIndex) { 3755 assert(syntax && "no syntactic expression!"); 3756 assert(semantics.size() && "no semantic expressions!"); 3757 3758 QualType type; 3759 ExprValueKind VK; 3760 if (resultIndex == NoResult) { 3761 type = C.VoidTy; 3762 VK = VK_RValue; 3763 } else { 3764 assert(resultIndex < semantics.size()); 3765 type = semantics[resultIndex]->getType(); 3766 VK = semantics[resultIndex]->getValueKind(); 3767 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 3768 } 3769 3770 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), 3771 llvm::alignOf<PseudoObjectExpr>()); 3772 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 3773 resultIndex); 3774 } 3775 3776 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 3777 Expr *syntax, ArrayRef<Expr*> semantics, 3778 unsigned resultIndex) 3779 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, 3780 /*filled in at end of ctor*/ false, false, false, false) { 3781 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 3782 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 3783 3784 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 3785 Expr *E = (i == 0 ? syntax : semantics[i-1]); 3786 getSubExprsBuffer()[i] = E; 3787 3788 if (E->isTypeDependent()) 3789 ExprBits.TypeDependent = true; 3790 if (E->isValueDependent()) 3791 ExprBits.ValueDependent = true; 3792 if (E->isInstantiationDependent()) 3793 ExprBits.InstantiationDependent = true; 3794 if (E->containsUnexpandedParameterPack()) 3795 ExprBits.ContainsUnexpandedParameterPack = true; 3796 3797 if (isa<OpaqueValueExpr>(E)) 3798 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 3799 "opaque-value semantic expressions for pseudo-object " 3800 "operations must have sources"); 3801 } 3802 } 3803 3804 //===----------------------------------------------------------------------===// 3805 // Child Iterators for iterating over subexpressions/substatements 3806 //===----------------------------------------------------------------------===// 3807 3808 // UnaryExprOrTypeTraitExpr 3809 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 3810 // If this is of a type and the type is a VLA type (and not a typedef), the 3811 // size expression of the VLA needs to be treated as an executable expression. 3812 // Why isn't this weirdness documented better in StmtIterator? 3813 if (isArgumentType()) { 3814 if (const VariableArrayType* T = dyn_cast<VariableArrayType>( 3815 getArgumentType().getTypePtr())) 3816 return child_range(child_iterator(T), child_iterator()); 3817 return child_range(child_iterator(), child_iterator()); 3818 } 3819 return child_range(&Argument.Ex, &Argument.Ex + 1); 3820 } 3821 3822 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, 3823 QualType t, AtomicOp op, SourceLocation RP) 3824 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, 3825 false, false, false, false), 3826 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) 3827 { 3828 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 3829 for (unsigned i = 0; i != args.size(); i++) { 3830 if (args[i]->isTypeDependent()) 3831 ExprBits.TypeDependent = true; 3832 if (args[i]->isValueDependent()) 3833 ExprBits.ValueDependent = true; 3834 if (args[i]->isInstantiationDependent()) 3835 ExprBits.InstantiationDependent = true; 3836 if (args[i]->containsUnexpandedParameterPack()) 3837 ExprBits.ContainsUnexpandedParameterPack = true; 3838 3839 SubExprs[i] = args[i]; 3840 } 3841 } 3842 3843 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 3844 switch (Op) { 3845 case AO__c11_atomic_init: 3846 case AO__c11_atomic_load: 3847 case AO__atomic_load_n: 3848 return 2; 3849 3850 case AO__c11_atomic_store: 3851 case AO__c11_atomic_exchange: 3852 case AO__atomic_load: 3853 case AO__atomic_store: 3854 case AO__atomic_store_n: 3855 case AO__atomic_exchange_n: 3856 case AO__c11_atomic_fetch_add: 3857 case AO__c11_atomic_fetch_sub: 3858 case AO__c11_atomic_fetch_and: 3859 case AO__c11_atomic_fetch_or: 3860 case AO__c11_atomic_fetch_xor: 3861 case AO__atomic_fetch_add: 3862 case AO__atomic_fetch_sub: 3863 case AO__atomic_fetch_and: 3864 case AO__atomic_fetch_or: 3865 case AO__atomic_fetch_xor: 3866 case AO__atomic_fetch_nand: 3867 case AO__atomic_add_fetch: 3868 case AO__atomic_sub_fetch: 3869 case AO__atomic_and_fetch: 3870 case AO__atomic_or_fetch: 3871 case AO__atomic_xor_fetch: 3872 case AO__atomic_nand_fetch: 3873 return 3; 3874 3875 case AO__atomic_exchange: 3876 return 4; 3877 3878 case AO__c11_atomic_compare_exchange_strong: 3879 case AO__c11_atomic_compare_exchange_weak: 3880 return 5; 3881 3882 case AO__atomic_compare_exchange: 3883 case AO__atomic_compare_exchange_n: 3884 return 6; 3885 } 3886 llvm_unreachable("unknown atomic op"); 3887 } 3888 3889 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { 3890 unsigned ArraySectionCount = 0; 3891 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { 3892 Base = OASE->getBase(); 3893 ++ArraySectionCount; 3894 } 3895 while (auto *ASE = 3896 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { 3897 Base = ASE->getBase(); 3898 ++ArraySectionCount; 3899 } 3900 Base = Base->IgnoreParenImpCasts(); 3901 auto OriginalTy = Base->getType(); 3902 if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) 3903 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) 3904 OriginalTy = PVD->getOriginalType().getNonReferenceType(); 3905 3906 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { 3907 if (OriginalTy->isAnyPointerType()) 3908 OriginalTy = OriginalTy->getPointeeType(); 3909 else { 3910 assert (OriginalTy->isArrayType()); 3911 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); 3912 } 3913 } 3914 return OriginalTy; 3915 } 3916