Home | History | Annotate | Download | only in AST
      1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expr class and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/APValue.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/Attr.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/EvaluatedExprVisitor.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/Mangle.h"
     24 #include "clang/AST/RecordLayout.h"
     25 #include "clang/AST/StmtVisitor.h"
     26 #include "clang/Basic/Builtins.h"
     27 #include "clang/Basic/CharInfo.h"
     28 #include "clang/Basic/SourceManager.h"
     29 #include "clang/Basic/TargetInfo.h"
     30 #include "clang/Lex/Lexer.h"
     31 #include "clang/Lex/LiteralSupport.h"
     32 #include "clang/Sema/SemaDiagnostic.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include <algorithm>
     36 #include <cstring>
     37 using namespace clang;
     38 
     39 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
     40   const Expr *E = ignoreParenBaseCasts();
     41 
     42   QualType DerivedType = E->getType();
     43   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
     44     DerivedType = PTy->getPointeeType();
     45 
     46   if (DerivedType->isDependentType())
     47     return nullptr;
     48 
     49   const RecordType *Ty = DerivedType->castAs<RecordType>();
     50   Decl *D = Ty->getDecl();
     51   return cast<CXXRecordDecl>(D);
     52 }
     53 
     54 const Expr *Expr::skipRValueSubobjectAdjustments(
     55     SmallVectorImpl<const Expr *> &CommaLHSs,
     56     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
     57   const Expr *E = this;
     58   while (true) {
     59     E = E->IgnoreParens();
     60 
     61     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
     62       if ((CE->getCastKind() == CK_DerivedToBase ||
     63            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
     64           E->getType()->isRecordType()) {
     65         E = CE->getSubExpr();
     66         CXXRecordDecl *Derived
     67           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
     68         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
     69         continue;
     70       }
     71 
     72       if (CE->getCastKind() == CK_NoOp) {
     73         E = CE->getSubExpr();
     74         continue;
     75       }
     76     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
     77       if (!ME->isArrow()) {
     78         assert(ME->getBase()->getType()->isRecordType());
     79         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
     80           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
     81             E = ME->getBase();
     82             Adjustments.push_back(SubobjectAdjustment(Field));
     83             continue;
     84           }
     85         }
     86       }
     87     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
     88       if (BO->isPtrMemOp()) {
     89         assert(BO->getRHS()->isRValue());
     90         E = BO->getLHS();
     91         const MemberPointerType *MPT =
     92           BO->getRHS()->getType()->getAs<MemberPointerType>();
     93         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
     94         continue;
     95       } else if (BO->getOpcode() == BO_Comma) {
     96         CommaLHSs.push_back(BO->getLHS());
     97         E = BO->getRHS();
     98         continue;
     99       }
    100     }
    101 
    102     // Nothing changed.
    103     break;
    104   }
    105   return E;
    106 }
    107 
    108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
    109 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
    110 /// but also int expressions which are produced by things like comparisons in
    111 /// C.
    112 bool Expr::isKnownToHaveBooleanValue() const {
    113   const Expr *E = IgnoreParens();
    114 
    115   // If this value has _Bool type, it is obvious 0/1.
    116   if (E->getType()->isBooleanType()) return true;
    117   // If this is a non-scalar-integer type, we don't care enough to try.
    118   if (!E->getType()->isIntegralOrEnumerationType()) return false;
    119 
    120   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
    121     switch (UO->getOpcode()) {
    122     case UO_Plus:
    123       return UO->getSubExpr()->isKnownToHaveBooleanValue();
    124     case UO_LNot:
    125       return true;
    126     default:
    127       return false;
    128     }
    129   }
    130 
    131   // Only look through implicit casts.  If the user writes
    132   // '(int) (a && b)' treat it as an arbitrary int.
    133   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
    134     return CE->getSubExpr()->isKnownToHaveBooleanValue();
    135 
    136   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    137     switch (BO->getOpcode()) {
    138     default: return false;
    139     case BO_LT:   // Relational operators.
    140     case BO_GT:
    141     case BO_LE:
    142     case BO_GE:
    143     case BO_EQ:   // Equality operators.
    144     case BO_NE:
    145     case BO_LAnd: // AND operator.
    146     case BO_LOr:  // Logical OR operator.
    147       return true;
    148 
    149     case BO_And:  // Bitwise AND operator.
    150     case BO_Xor:  // Bitwise XOR operator.
    151     case BO_Or:   // Bitwise OR operator.
    152       // Handle things like (x==2)|(y==12).
    153       return BO->getLHS()->isKnownToHaveBooleanValue() &&
    154              BO->getRHS()->isKnownToHaveBooleanValue();
    155 
    156     case BO_Comma:
    157     case BO_Assign:
    158       return BO->getRHS()->isKnownToHaveBooleanValue();
    159     }
    160   }
    161 
    162   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
    163     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
    164            CO->getFalseExpr()->isKnownToHaveBooleanValue();
    165 
    166   return false;
    167 }
    168 
    169 // Amusing macro metaprogramming hack: check whether a class provides
    170 // a more specific implementation of getExprLoc().
    171 //
    172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
    173 namespace {
    174   /// This implementation is used when a class provides a custom
    175   /// implementation of getExprLoc.
    176   template <class E, class T>
    177   SourceLocation getExprLocImpl(const Expr *expr,
    178                                 SourceLocation (T::*v)() const) {
    179     return static_cast<const E*>(expr)->getExprLoc();
    180   }
    181 
    182   /// This implementation is used when a class doesn't provide
    183   /// a custom implementation of getExprLoc.  Overload resolution
    184   /// should pick it over the implementation above because it's
    185   /// more specialized according to function template partial ordering.
    186   template <class E>
    187   SourceLocation getExprLocImpl(const Expr *expr,
    188                                 SourceLocation (Expr::*v)() const) {
    189     return static_cast<const E*>(expr)->getLocStart();
    190   }
    191 }
    192 
    193 SourceLocation Expr::getExprLoc() const {
    194   switch (getStmtClass()) {
    195   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
    196 #define ABSTRACT_STMT(type)
    197 #define STMT(type, base) \
    198   case Stmt::type##Class: break;
    199 #define EXPR(type, base) \
    200   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
    201 #include "clang/AST/StmtNodes.inc"
    202   }
    203   llvm_unreachable("unknown expression kind");
    204 }
    205 
    206 //===----------------------------------------------------------------------===//
    207 // Primary Expressions.
    208 //===----------------------------------------------------------------------===//
    209 
    210 /// \brief Compute the type-, value-, and instantiation-dependence of a
    211 /// declaration reference
    212 /// based on the declaration being referenced.
    213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
    214                                      QualType T, bool &TypeDependent,
    215                                      bool &ValueDependent,
    216                                      bool &InstantiationDependent) {
    217   TypeDependent = false;
    218   ValueDependent = false;
    219   InstantiationDependent = false;
    220 
    221   // (TD) C++ [temp.dep.expr]p3:
    222   //   An id-expression is type-dependent if it contains:
    223   //
    224   // and
    225   //
    226   // (VD) C++ [temp.dep.constexpr]p2:
    227   //  An identifier is value-dependent if it is:
    228 
    229   //  (TD)  - an identifier that was declared with dependent type
    230   //  (VD)  - a name declared with a dependent type,
    231   if (T->isDependentType()) {
    232     TypeDependent = true;
    233     ValueDependent = true;
    234     InstantiationDependent = true;
    235     return;
    236   } else if (T->isInstantiationDependentType()) {
    237     InstantiationDependent = true;
    238   }
    239 
    240   //  (TD)  - a conversion-function-id that specifies a dependent type
    241   if (D->getDeclName().getNameKind()
    242                                 == DeclarationName::CXXConversionFunctionName) {
    243     QualType T = D->getDeclName().getCXXNameType();
    244     if (T->isDependentType()) {
    245       TypeDependent = true;
    246       ValueDependent = true;
    247       InstantiationDependent = true;
    248       return;
    249     }
    250 
    251     if (T->isInstantiationDependentType())
    252       InstantiationDependent = true;
    253   }
    254 
    255   //  (VD)  - the name of a non-type template parameter,
    256   if (isa<NonTypeTemplateParmDecl>(D)) {
    257     ValueDependent = true;
    258     InstantiationDependent = true;
    259     return;
    260   }
    261 
    262   //  (VD) - a constant with integral or enumeration type and is
    263   //         initialized with an expression that is value-dependent.
    264   //  (VD) - a constant with literal type and is initialized with an
    265   //         expression that is value-dependent [C++11].
    266   //  (VD) - FIXME: Missing from the standard:
    267   //       -  an entity with reference type and is initialized with an
    268   //          expression that is value-dependent [C++11]
    269   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
    270     if ((Ctx.getLangOpts().CPlusPlus11 ?
    271            Var->getType()->isLiteralType(Ctx) :
    272            Var->getType()->isIntegralOrEnumerationType()) &&
    273         (Var->getType().isConstQualified() ||
    274          Var->getType()->isReferenceType())) {
    275       if (const Expr *Init = Var->getAnyInitializer())
    276         if (Init->isValueDependent()) {
    277           ValueDependent = true;
    278           InstantiationDependent = true;
    279         }
    280     }
    281 
    282     // (VD) - FIXME: Missing from the standard:
    283     //      -  a member function or a static data member of the current
    284     //         instantiation
    285     if (Var->isStaticDataMember() &&
    286         Var->getDeclContext()->isDependentContext()) {
    287       ValueDependent = true;
    288       InstantiationDependent = true;
    289       TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
    290       if (TInfo->getType()->isIncompleteArrayType())
    291         TypeDependent = true;
    292     }
    293 
    294     return;
    295   }
    296 
    297   // (VD) - FIXME: Missing from the standard:
    298   //      -  a member function or a static data member of the current
    299   //         instantiation
    300   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
    301     ValueDependent = true;
    302     InstantiationDependent = true;
    303   }
    304 }
    305 
    306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
    307   bool TypeDependent = false;
    308   bool ValueDependent = false;
    309   bool InstantiationDependent = false;
    310   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
    311                            ValueDependent, InstantiationDependent);
    312 
    313   ExprBits.TypeDependent |= TypeDependent;
    314   ExprBits.ValueDependent |= ValueDependent;
    315   ExprBits.InstantiationDependent |= InstantiationDependent;
    316 
    317   // Is the declaration a parameter pack?
    318   if (getDecl()->isParameterPack())
    319     ExprBits.ContainsUnexpandedParameterPack = true;
    320 }
    321 
    322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
    323                          NestedNameSpecifierLoc QualifierLoc,
    324                          SourceLocation TemplateKWLoc,
    325                          ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
    326                          const DeclarationNameInfo &NameInfo,
    327                          NamedDecl *FoundD,
    328                          const TemplateArgumentListInfo *TemplateArgs,
    329                          QualType T, ExprValueKind VK)
    330   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
    331     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
    332   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
    333   if (QualifierLoc) {
    334     new (getTrailingObjects<NestedNameSpecifierLoc>())
    335         NestedNameSpecifierLoc(QualifierLoc);
    336     auto *NNS = QualifierLoc.getNestedNameSpecifier();
    337     if (NNS->isInstantiationDependent())
    338       ExprBits.InstantiationDependent = true;
    339     if (NNS->containsUnexpandedParameterPack())
    340       ExprBits.ContainsUnexpandedParameterPack = true;
    341   }
    342   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
    343   if (FoundD)
    344     *getTrailingObjects<NamedDecl *>() = FoundD;
    345   DeclRefExprBits.HasTemplateKWAndArgsInfo
    346     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
    347   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
    348       RefersToEnclosingVariableOrCapture;
    349   if (TemplateArgs) {
    350     bool Dependent = false;
    351     bool InstantiationDependent = false;
    352     bool ContainsUnexpandedParameterPack = false;
    353     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
    354         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
    355         Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
    356     assert(!Dependent && "built a DeclRefExpr with dependent template args");
    357     ExprBits.InstantiationDependent |= InstantiationDependent;
    358     ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
    359   } else if (TemplateKWLoc.isValid()) {
    360     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
    361         TemplateKWLoc);
    362   }
    363   DeclRefExprBits.HadMultipleCandidates = 0;
    364 
    365   computeDependence(Ctx);
    366 }
    367 
    368 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
    369                                  NestedNameSpecifierLoc QualifierLoc,
    370                                  SourceLocation TemplateKWLoc,
    371                                  ValueDecl *D,
    372                                  bool RefersToEnclosingVariableOrCapture,
    373                                  SourceLocation NameLoc,
    374                                  QualType T,
    375                                  ExprValueKind VK,
    376                                  NamedDecl *FoundD,
    377                                  const TemplateArgumentListInfo *TemplateArgs) {
    378   return Create(Context, QualifierLoc, TemplateKWLoc, D,
    379                 RefersToEnclosingVariableOrCapture,
    380                 DeclarationNameInfo(D->getDeclName(), NameLoc),
    381                 T, VK, FoundD, TemplateArgs);
    382 }
    383 
    384 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
    385                                  NestedNameSpecifierLoc QualifierLoc,
    386                                  SourceLocation TemplateKWLoc,
    387                                  ValueDecl *D,
    388                                  bool RefersToEnclosingVariableOrCapture,
    389                                  const DeclarationNameInfo &NameInfo,
    390                                  QualType T,
    391                                  ExprValueKind VK,
    392                                  NamedDecl *FoundD,
    393                                  const TemplateArgumentListInfo *TemplateArgs) {
    394   // Filter out cases where the found Decl is the same as the value refenenced.
    395   if (D == FoundD)
    396     FoundD = nullptr;
    397 
    398   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
    399   std::size_t Size =
    400       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
    401                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
    402           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
    403           HasTemplateKWAndArgsInfo ? 1 : 0,
    404           TemplateArgs ? TemplateArgs->size() : 0);
    405 
    406   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    407   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
    408                                RefersToEnclosingVariableOrCapture,
    409                                NameInfo, FoundD, TemplateArgs, T, VK);
    410 }
    411 
    412 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
    413                                       bool HasQualifier,
    414                                       bool HasFoundDecl,
    415                                       bool HasTemplateKWAndArgsInfo,
    416                                       unsigned NumTemplateArgs) {
    417   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
    418   std::size_t Size =
    419       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
    420                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
    421           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
    422           NumTemplateArgs);
    423   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
    424   return new (Mem) DeclRefExpr(EmptyShell());
    425 }
    426 
    427 SourceLocation DeclRefExpr::getLocStart() const {
    428   if (hasQualifier())
    429     return getQualifierLoc().getBeginLoc();
    430   return getNameInfo().getLocStart();
    431 }
    432 SourceLocation DeclRefExpr::getLocEnd() const {
    433   if (hasExplicitTemplateArgs())
    434     return getRAngleLoc();
    435   return getNameInfo().getLocEnd();
    436 }
    437 
    438 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
    439                                StringLiteral *SL)
    440     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
    441            FNTy->isDependentType(), FNTy->isDependentType(),
    442            FNTy->isInstantiationDependentType(),
    443            /*ContainsUnexpandedParameterPack=*/false),
    444       Loc(L), Type(IT), FnName(SL) {}
    445 
    446 StringLiteral *PredefinedExpr::getFunctionName() {
    447   return cast_or_null<StringLiteral>(FnName);
    448 }
    449 
    450 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
    451   switch (IT) {
    452   case Func:
    453     return "__func__";
    454   case Function:
    455     return "__FUNCTION__";
    456   case FuncDName:
    457     return "__FUNCDNAME__";
    458   case LFunction:
    459     return "L__FUNCTION__";
    460   case PrettyFunction:
    461     return "__PRETTY_FUNCTION__";
    462   case FuncSig:
    463     return "__FUNCSIG__";
    464   case PrettyFunctionNoVirtual:
    465     break;
    466   }
    467   llvm_unreachable("Unknown ident type for PredefinedExpr");
    468 }
    469 
    470 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
    471 // expr" policy instead.
    472 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
    473   ASTContext &Context = CurrentDecl->getASTContext();
    474 
    475   if (IT == PredefinedExpr::FuncDName) {
    476     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
    477       std::unique_ptr<MangleContext> MC;
    478       MC.reset(Context.createMangleContext());
    479 
    480       if (MC->shouldMangleDeclName(ND)) {
    481         SmallString<256> Buffer;
    482         llvm::raw_svector_ostream Out(Buffer);
    483         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
    484           MC->mangleCXXCtor(CD, Ctor_Base, Out);
    485         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
    486           MC->mangleCXXDtor(DD, Dtor_Base, Out);
    487         else
    488           MC->mangleName(ND, Out);
    489 
    490         if (!Buffer.empty() && Buffer.front() == '\01')
    491           return Buffer.substr(1);
    492         return Buffer.str();
    493       } else
    494         return ND->getIdentifier()->getName();
    495     }
    496     return "";
    497   }
    498   if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) {
    499     std::unique_ptr<MangleContext> MC;
    500     MC.reset(Context.createMangleContext());
    501     SmallString<256> Buffer;
    502     llvm::raw_svector_ostream Out(Buffer);
    503     auto DC = CurrentDecl->getDeclContext();
    504     if (DC->isFileContext())
    505       MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out);
    506     else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
    507       MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
    508     else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
    509       MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
    510     else
    511       MC->mangleBlock(DC, BD, Out);
    512     return Out.str();
    513   }
    514   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
    515     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
    516       return FD->getNameAsString();
    517 
    518     SmallString<256> Name;
    519     llvm::raw_svector_ostream Out(Name);
    520 
    521     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    522       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
    523         Out << "virtual ";
    524       if (MD->isStatic())
    525         Out << "static ";
    526     }
    527 
    528     PrintingPolicy Policy(Context.getLangOpts());
    529     std::string Proto;
    530     llvm::raw_string_ostream POut(Proto);
    531 
    532     const FunctionDecl *Decl = FD;
    533     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
    534       Decl = Pattern;
    535     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
    536     const FunctionProtoType *FT = nullptr;
    537     if (FD->hasWrittenPrototype())
    538       FT = dyn_cast<FunctionProtoType>(AFT);
    539 
    540     if (IT == FuncSig) {
    541       switch (FT->getCallConv()) {
    542       case CC_C: POut << "__cdecl "; break;
    543       case CC_X86StdCall: POut << "__stdcall "; break;
    544       case CC_X86FastCall: POut << "__fastcall "; break;
    545       case CC_X86ThisCall: POut << "__thiscall "; break;
    546       case CC_X86VectorCall: POut << "__vectorcall "; break;
    547       // Only bother printing the conventions that MSVC knows about.
    548       default: break;
    549       }
    550     }
    551 
    552     FD->printQualifiedName(POut, Policy);
    553 
    554     POut << "(";
    555     if (FT) {
    556       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
    557         if (i) POut << ", ";
    558         POut << Decl->getParamDecl(i)->getType().stream(Policy);
    559       }
    560 
    561       if (FT->isVariadic()) {
    562         if (FD->getNumParams()) POut << ", ";
    563         POut << "...";
    564       }
    565     }
    566     POut << ")";
    567 
    568     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
    569       const FunctionType *FT = MD->getType()->castAs<FunctionType>();
    570       if (FT->isConst())
    571         POut << " const";
    572       if (FT->isVolatile())
    573         POut << " volatile";
    574       RefQualifierKind Ref = MD->getRefQualifier();
    575       if (Ref == RQ_LValue)
    576         POut << " &";
    577       else if (Ref == RQ_RValue)
    578         POut << " &&";
    579     }
    580 
    581     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
    582     SpecsTy Specs;
    583     const DeclContext *Ctx = FD->getDeclContext();
    584     while (Ctx && isa<NamedDecl>(Ctx)) {
    585       const ClassTemplateSpecializationDecl *Spec
    586                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
    587       if (Spec && !Spec->isExplicitSpecialization())
    588         Specs.push_back(Spec);
    589       Ctx = Ctx->getParent();
    590     }
    591 
    592     std::string TemplateParams;
    593     llvm::raw_string_ostream TOut(TemplateParams);
    594     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
    595          I != E; ++I) {
    596       const TemplateParameterList *Params
    597                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
    598       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
    599       assert(Params->size() == Args.size());
    600       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
    601         StringRef Param = Params->getParam(i)->getName();
    602         if (Param.empty()) continue;
    603         TOut << Param << " = ";
    604         Args.get(i).print(Policy, TOut);
    605         TOut << ", ";
    606       }
    607     }
    608 
    609     FunctionTemplateSpecializationInfo *FSI
    610                                           = FD->getTemplateSpecializationInfo();
    611     if (FSI && !FSI->isExplicitSpecialization()) {
    612       const TemplateParameterList* Params
    613                                   = FSI->getTemplate()->getTemplateParameters();
    614       const TemplateArgumentList* Args = FSI->TemplateArguments;
    615       assert(Params->size() == Args->size());
    616       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
    617         StringRef Param = Params->getParam(i)->getName();
    618         if (Param.empty()) continue;
    619         TOut << Param << " = ";
    620         Args->get(i).print(Policy, TOut);
    621         TOut << ", ";
    622       }
    623     }
    624 
    625     TOut.flush();
    626     if (!TemplateParams.empty()) {
    627       // remove the trailing comma and space
    628       TemplateParams.resize(TemplateParams.size() - 2);
    629       POut << " [" << TemplateParams << "]";
    630     }
    631 
    632     POut.flush();
    633 
    634     // Print "auto" for all deduced return types. This includes C++1y return
    635     // type deduction and lambdas. For trailing return types resolve the
    636     // decltype expression. Otherwise print the real type when this is
    637     // not a constructor or destructor.
    638     if (isa<CXXMethodDecl>(FD) &&
    639          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
    640       Proto = "auto " + Proto;
    641     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
    642       FT->getReturnType()
    643           ->getAs<DecltypeType>()
    644           ->getUnderlyingType()
    645           .getAsStringInternal(Proto, Policy);
    646     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
    647       AFT->getReturnType().getAsStringInternal(Proto, Policy);
    648 
    649     Out << Proto;
    650 
    651     return Name.str().str();
    652   }
    653   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
    654     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
    655       // Skip to its enclosing function or method, but not its enclosing
    656       // CapturedDecl.
    657       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
    658         const Decl *D = Decl::castFromDeclContext(DC);
    659         return ComputeName(IT, D);
    660       }
    661     llvm_unreachable("CapturedDecl not inside a function or method");
    662   }
    663   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
    664     SmallString<256> Name;
    665     llvm::raw_svector_ostream Out(Name);
    666     Out << (MD->isInstanceMethod() ? '-' : '+');
    667     Out << '[';
    668 
    669     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
    670     // a null check to avoid a crash.
    671     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
    672       Out << *ID;
    673 
    674     if (const ObjCCategoryImplDecl *CID =
    675         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
    676       Out << '(' << *CID << ')';
    677 
    678     Out <<  ' ';
    679     MD->getSelector().print(Out);
    680     Out <<  ']';
    681 
    682     return Name.str().str();
    683   }
    684   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
    685     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
    686     return "top level";
    687   }
    688   return "";
    689 }
    690 
    691 void APNumericStorage::setIntValue(const ASTContext &C,
    692                                    const llvm::APInt &Val) {
    693   if (hasAllocation())
    694     C.Deallocate(pVal);
    695 
    696   BitWidth = Val.getBitWidth();
    697   unsigned NumWords = Val.getNumWords();
    698   const uint64_t* Words = Val.getRawData();
    699   if (NumWords > 1) {
    700     pVal = new (C) uint64_t[NumWords];
    701     std::copy(Words, Words + NumWords, pVal);
    702   } else if (NumWords == 1)
    703     VAL = Words[0];
    704   else
    705     VAL = 0;
    706 }
    707 
    708 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
    709                                QualType type, SourceLocation l)
    710   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
    711          false, false),
    712     Loc(l) {
    713   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
    714   assert(V.getBitWidth() == C.getIntWidth(type) &&
    715          "Integer type is not the correct size for constant.");
    716   setValue(C, V);
    717 }
    718 
    719 IntegerLiteral *
    720 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
    721                        QualType type, SourceLocation l) {
    722   return new (C) IntegerLiteral(C, V, type, l);
    723 }
    724 
    725 IntegerLiteral *
    726 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
    727   return new (C) IntegerLiteral(Empty);
    728 }
    729 
    730 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
    731                                  bool isexact, QualType Type, SourceLocation L)
    732   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
    733          false, false), Loc(L) {
    734   setSemantics(V.getSemantics());
    735   FloatingLiteralBits.IsExact = isexact;
    736   setValue(C, V);
    737 }
    738 
    739 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
    740   : Expr(FloatingLiteralClass, Empty) {
    741   setRawSemantics(IEEEhalf);
    742   FloatingLiteralBits.IsExact = false;
    743 }
    744 
    745 FloatingLiteral *
    746 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
    747                         bool isexact, QualType Type, SourceLocation L) {
    748   return new (C) FloatingLiteral(C, V, isexact, Type, L);
    749 }
    750 
    751 FloatingLiteral *
    752 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
    753   return new (C) FloatingLiteral(C, Empty);
    754 }
    755 
    756 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
    757   switch(FloatingLiteralBits.Semantics) {
    758   case IEEEhalf:
    759     return llvm::APFloat::IEEEhalf;
    760   case IEEEsingle:
    761     return llvm::APFloat::IEEEsingle;
    762   case IEEEdouble:
    763     return llvm::APFloat::IEEEdouble;
    764   case x87DoubleExtended:
    765     return llvm::APFloat::x87DoubleExtended;
    766   case IEEEquad:
    767     return llvm::APFloat::IEEEquad;
    768   case PPCDoubleDouble:
    769     return llvm::APFloat::PPCDoubleDouble;
    770   }
    771   llvm_unreachable("Unrecognised floating semantics");
    772 }
    773 
    774 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
    775   if (&Sem == &llvm::APFloat::IEEEhalf)
    776     FloatingLiteralBits.Semantics = IEEEhalf;
    777   else if (&Sem == &llvm::APFloat::IEEEsingle)
    778     FloatingLiteralBits.Semantics = IEEEsingle;
    779   else if (&Sem == &llvm::APFloat::IEEEdouble)
    780     FloatingLiteralBits.Semantics = IEEEdouble;
    781   else if (&Sem == &llvm::APFloat::x87DoubleExtended)
    782     FloatingLiteralBits.Semantics = x87DoubleExtended;
    783   else if (&Sem == &llvm::APFloat::IEEEquad)
    784     FloatingLiteralBits.Semantics = IEEEquad;
    785   else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
    786     FloatingLiteralBits.Semantics = PPCDoubleDouble;
    787   else
    788     llvm_unreachable("Unknown floating semantics");
    789 }
    790 
    791 /// getValueAsApproximateDouble - This returns the value as an inaccurate
    792 /// double.  Note that this may cause loss of precision, but is useful for
    793 /// debugging dumps, etc.
    794 double FloatingLiteral::getValueAsApproximateDouble() const {
    795   llvm::APFloat V = getValue();
    796   bool ignored;
    797   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
    798             &ignored);
    799   return V.convertToDouble();
    800 }
    801 
    802 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
    803   int CharByteWidth = 0;
    804   switch(k) {
    805     case Ascii:
    806     case UTF8:
    807       CharByteWidth = target.getCharWidth();
    808       break;
    809     case Wide:
    810       CharByteWidth = target.getWCharWidth();
    811       break;
    812     case UTF16:
    813       CharByteWidth = target.getChar16Width();
    814       break;
    815     case UTF32:
    816       CharByteWidth = target.getChar32Width();
    817       break;
    818   }
    819   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
    820   CharByteWidth /= 8;
    821   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
    822          && "character byte widths supported are 1, 2, and 4 only");
    823   return CharByteWidth;
    824 }
    825 
    826 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
    827                                      StringKind Kind, bool Pascal, QualType Ty,
    828                                      const SourceLocation *Loc,
    829                                      unsigned NumStrs) {
    830   assert(C.getAsConstantArrayType(Ty) &&
    831          "StringLiteral must be of constant array type!");
    832 
    833   // Allocate enough space for the StringLiteral plus an array of locations for
    834   // any concatenated string tokens.
    835   void *Mem = C.Allocate(sizeof(StringLiteral)+
    836                          sizeof(SourceLocation)*(NumStrs-1),
    837                          llvm::alignOf<StringLiteral>());
    838   StringLiteral *SL = new (Mem) StringLiteral(Ty);
    839 
    840   // OPTIMIZE: could allocate this appended to the StringLiteral.
    841   SL->setString(C,Str,Kind,Pascal);
    842 
    843   SL->TokLocs[0] = Loc[0];
    844   SL->NumConcatenated = NumStrs;
    845 
    846   if (NumStrs != 1)
    847     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
    848   return SL;
    849 }
    850 
    851 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
    852                                           unsigned NumStrs) {
    853   void *Mem = C.Allocate(sizeof(StringLiteral)+
    854                          sizeof(SourceLocation)*(NumStrs-1),
    855                          llvm::alignOf<StringLiteral>());
    856   StringLiteral *SL = new (Mem) StringLiteral(QualType());
    857   SL->CharByteWidth = 0;
    858   SL->Length = 0;
    859   SL->NumConcatenated = NumStrs;
    860   return SL;
    861 }
    862 
    863 void StringLiteral::outputString(raw_ostream &OS) const {
    864   switch (getKind()) {
    865   case Ascii: break; // no prefix.
    866   case Wide:  OS << 'L'; break;
    867   case UTF8:  OS << "u8"; break;
    868   case UTF16: OS << 'u'; break;
    869   case UTF32: OS << 'U'; break;
    870   }
    871   OS << '"';
    872   static const char Hex[] = "0123456789ABCDEF";
    873 
    874   unsigned LastSlashX = getLength();
    875   for (unsigned I = 0, N = getLength(); I != N; ++I) {
    876     switch (uint32_t Char = getCodeUnit(I)) {
    877     default:
    878       // FIXME: Convert UTF-8 back to codepoints before rendering.
    879 
    880       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
    881       // Leave invalid surrogates alone; we'll use \x for those.
    882       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
    883           Char <= 0xdbff) {
    884         uint32_t Trail = getCodeUnit(I + 1);
    885         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
    886           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
    887           ++I;
    888         }
    889       }
    890 
    891       if (Char > 0xff) {
    892         // If this is a wide string, output characters over 0xff using \x
    893         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
    894         // codepoint: use \x escapes for invalid codepoints.
    895         if (getKind() == Wide ||
    896             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
    897           // FIXME: Is this the best way to print wchar_t?
    898           OS << "\\x";
    899           int Shift = 28;
    900           while ((Char >> Shift) == 0)
    901             Shift -= 4;
    902           for (/**/; Shift >= 0; Shift -= 4)
    903             OS << Hex[(Char >> Shift) & 15];
    904           LastSlashX = I;
    905           break;
    906         }
    907 
    908         if (Char > 0xffff)
    909           OS << "\\U00"
    910              << Hex[(Char >> 20) & 15]
    911              << Hex[(Char >> 16) & 15];
    912         else
    913           OS << "\\u";
    914         OS << Hex[(Char >> 12) & 15]
    915            << Hex[(Char >>  8) & 15]
    916            << Hex[(Char >>  4) & 15]
    917            << Hex[(Char >>  0) & 15];
    918         break;
    919       }
    920 
    921       // If we used \x... for the previous character, and this character is a
    922       // hexadecimal digit, prevent it being slurped as part of the \x.
    923       if (LastSlashX + 1 == I) {
    924         switch (Char) {
    925           case '0': case '1': case '2': case '3': case '4':
    926           case '5': case '6': case '7': case '8': case '9':
    927           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
    928           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
    929             OS << "\"\"";
    930         }
    931       }
    932 
    933       assert(Char <= 0xff &&
    934              "Characters above 0xff should already have been handled.");
    935 
    936       if (isPrintable(Char))
    937         OS << (char)Char;
    938       else  // Output anything hard as an octal escape.
    939         OS << '\\'
    940            << (char)('0' + ((Char >> 6) & 7))
    941            << (char)('0' + ((Char >> 3) & 7))
    942            << (char)('0' + ((Char >> 0) & 7));
    943       break;
    944     // Handle some common non-printable cases to make dumps prettier.
    945     case '\\': OS << "\\\\"; break;
    946     case '"': OS << "\\\""; break;
    947     case '\n': OS << "\\n"; break;
    948     case '\t': OS << "\\t"; break;
    949     case '\a': OS << "\\a"; break;
    950     case '\b': OS << "\\b"; break;
    951     }
    952   }
    953   OS << '"';
    954 }
    955 
    956 void StringLiteral::setString(const ASTContext &C, StringRef Str,
    957                               StringKind Kind, bool IsPascal) {
    958   //FIXME: we assume that the string data comes from a target that uses the same
    959   // code unit size and endianess for the type of string.
    960   this->Kind = Kind;
    961   this->IsPascal = IsPascal;
    962 
    963   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
    964   assert((Str.size()%CharByteWidth == 0)
    965          && "size of data must be multiple of CharByteWidth");
    966   Length = Str.size()/CharByteWidth;
    967 
    968   switch(CharByteWidth) {
    969     case 1: {
    970       char *AStrData = new (C) char[Length];
    971       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    972       StrData.asChar = AStrData;
    973       break;
    974     }
    975     case 2: {
    976       uint16_t *AStrData = new (C) uint16_t[Length];
    977       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    978       StrData.asUInt16 = AStrData;
    979       break;
    980     }
    981     case 4: {
    982       uint32_t *AStrData = new (C) uint32_t[Length];
    983       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
    984       StrData.asUInt32 = AStrData;
    985       break;
    986     }
    987     default:
    988       llvm_unreachable("unsupported CharByteWidth");
    989   }
    990 }
    991 
    992 /// getLocationOfByte - Return a source location that points to the specified
    993 /// byte of this string literal.
    994 ///
    995 /// Strings are amazingly complex.  They can be formed from multiple tokens and
    996 /// can have escape sequences in them in addition to the usual trigraph and
    997 /// escaped newline business.  This routine handles this complexity.
    998 ///
    999 /// The *StartToken sets the first token to be searched in this function and
   1000 /// the *StartTokenByteOffset is the byte offset of the first token. Before
   1001 /// returning, it updates the *StartToken to the TokNo of the token being found
   1002 /// and sets *StartTokenByteOffset to the byte offset of the token in the
   1003 /// string.
   1004 /// Using these two parameters can reduce the time complexity from O(n^2) to
   1005 /// O(n) if one wants to get the location of byte for all the tokens in a
   1006 /// string.
   1007 ///
   1008 SourceLocation
   1009 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
   1010                                  const LangOptions &Features,
   1011                                  const TargetInfo &Target, unsigned *StartToken,
   1012                                  unsigned *StartTokenByteOffset) const {
   1013   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
   1014          "Only narrow string literals are currently supported");
   1015 
   1016   // Loop over all of the tokens in this string until we find the one that
   1017   // contains the byte we're looking for.
   1018   unsigned TokNo = 0;
   1019   unsigned StringOffset = 0;
   1020   if (StartToken)
   1021     TokNo = *StartToken;
   1022   if (StartTokenByteOffset) {
   1023     StringOffset = *StartTokenByteOffset;
   1024     ByteNo -= StringOffset;
   1025   }
   1026   while (1) {
   1027     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
   1028     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
   1029 
   1030     // Get the spelling of the string so that we can get the data that makes up
   1031     // the string literal, not the identifier for the macro it is potentially
   1032     // expanded through.
   1033     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
   1034 
   1035     // Re-lex the token to get its length and original spelling.
   1036     std::pair<FileID, unsigned> LocInfo =
   1037         SM.getDecomposedLoc(StrTokSpellingLoc);
   1038     bool Invalid = false;
   1039     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
   1040     if (Invalid) {
   1041       if (StartTokenByteOffset != nullptr)
   1042         *StartTokenByteOffset = StringOffset;
   1043       if (StartToken != nullptr)
   1044         *StartToken = TokNo;
   1045       return StrTokSpellingLoc;
   1046     }
   1047 
   1048     const char *StrData = Buffer.data()+LocInfo.second;
   1049 
   1050     // Create a lexer starting at the beginning of this token.
   1051     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
   1052                    Buffer.begin(), StrData, Buffer.end());
   1053     Token TheTok;
   1054     TheLexer.LexFromRawLexer(TheTok);
   1055 
   1056     // Use the StringLiteralParser to compute the length of the string in bytes.
   1057     StringLiteralParser SLP(TheTok, SM, Features, Target);
   1058     unsigned TokNumBytes = SLP.GetStringLength();
   1059 
   1060     // If the byte is in this token, return the location of the byte.
   1061     if (ByteNo < TokNumBytes ||
   1062         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
   1063       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
   1064 
   1065       // Now that we know the offset of the token in the spelling, use the
   1066       // preprocessor to get the offset in the original source.
   1067       if (StartTokenByteOffset != nullptr)
   1068         *StartTokenByteOffset = StringOffset;
   1069       if (StartToken != nullptr)
   1070         *StartToken = TokNo;
   1071       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
   1072     }
   1073 
   1074     // Move to the next string token.
   1075     StringOffset += TokNumBytes;
   1076     ++TokNo;
   1077     ByteNo -= TokNumBytes;
   1078   }
   1079 }
   1080 
   1081 
   1082 
   1083 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
   1084 /// corresponds to, e.g. "sizeof" or "[pre]++".
   1085 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
   1086   switch (Op) {
   1087 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
   1088 #include "clang/AST/OperationKinds.def"
   1089   }
   1090   llvm_unreachable("Unknown unary operator");
   1091 }
   1092 
   1093 UnaryOperatorKind
   1094 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
   1095   switch (OO) {
   1096   default: llvm_unreachable("No unary operator for overloaded function");
   1097   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
   1098   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
   1099   case OO_Amp:        return UO_AddrOf;
   1100   case OO_Star:       return UO_Deref;
   1101   case OO_Plus:       return UO_Plus;
   1102   case OO_Minus:      return UO_Minus;
   1103   case OO_Tilde:      return UO_Not;
   1104   case OO_Exclaim:    return UO_LNot;
   1105   case OO_Coawait:    return UO_Coawait;
   1106   }
   1107 }
   1108 
   1109 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
   1110   switch (Opc) {
   1111   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
   1112   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
   1113   case UO_AddrOf: return OO_Amp;
   1114   case UO_Deref: return OO_Star;
   1115   case UO_Plus: return OO_Plus;
   1116   case UO_Minus: return OO_Minus;
   1117   case UO_Not: return OO_Tilde;
   1118   case UO_LNot: return OO_Exclaim;
   1119   case UO_Coawait: return OO_Coawait;
   1120   default: return OO_None;
   1121   }
   1122 }
   1123 
   1124 
   1125 //===----------------------------------------------------------------------===//
   1126 // Postfix Operators.
   1127 //===----------------------------------------------------------------------===//
   1128 
   1129 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
   1130                    ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
   1131                    ExprValueKind VK, SourceLocation rparenloc)
   1132     : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(),
   1133            fn->isValueDependent(), fn->isInstantiationDependent(),
   1134            fn->containsUnexpandedParameterPack()),
   1135       NumArgs(args.size()) {
   1136 
   1137   unsigned NumPreArgs = preargs.size();
   1138   SubExprs = new (C) Stmt *[args.size()+PREARGS_START+NumPreArgs];
   1139   SubExprs[FN] = fn;
   1140   for (unsigned i = 0; i != NumPreArgs; ++i) {
   1141     updateDependenciesFromArg(preargs[i]);
   1142     SubExprs[i+PREARGS_START] = preargs[i];
   1143   }
   1144   for (unsigned i = 0; i != args.size(); ++i) {
   1145     updateDependenciesFromArg(args[i]);
   1146     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
   1147   }
   1148 
   1149   CallExprBits.NumPreArgs = NumPreArgs;
   1150   RParenLoc = rparenloc;
   1151 }
   1152 
   1153 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
   1154                    ArrayRef<Expr *> args, QualType t, ExprValueKind VK,
   1155                    SourceLocation rparenloc)
   1156     : CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {}
   1157 
   1158 CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
   1159                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
   1160     : CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {
   1161 }
   1162 
   1163 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
   1164     : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
   1165 
   1166 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
   1167                    EmptyShell Empty)
   1168   : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
   1169   // FIXME: Why do we allocate this?
   1170   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]();
   1171   CallExprBits.NumPreArgs = NumPreArgs;
   1172 }
   1173 
   1174 void CallExpr::updateDependenciesFromArg(Expr *Arg) {
   1175   if (Arg->isTypeDependent())
   1176     ExprBits.TypeDependent = true;
   1177   if (Arg->isValueDependent())
   1178     ExprBits.ValueDependent = true;
   1179   if (Arg->isInstantiationDependent())
   1180     ExprBits.InstantiationDependent = true;
   1181   if (Arg->containsUnexpandedParameterPack())
   1182     ExprBits.ContainsUnexpandedParameterPack = true;
   1183 }
   1184 
   1185 Decl *CallExpr::getCalleeDecl() {
   1186   Expr *CEE = getCallee()->IgnoreParenImpCasts();
   1187 
   1188   while (SubstNonTypeTemplateParmExpr *NTTP
   1189                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
   1190     CEE = NTTP->getReplacement()->IgnoreParenCasts();
   1191   }
   1192 
   1193   // If we're calling a dereference, look at the pointer instead.
   1194   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
   1195     if (BO->isPtrMemOp())
   1196       CEE = BO->getRHS()->IgnoreParenCasts();
   1197   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
   1198     if (UO->getOpcode() == UO_Deref)
   1199       CEE = UO->getSubExpr()->IgnoreParenCasts();
   1200   }
   1201   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
   1202     return DRE->getDecl();
   1203   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
   1204     return ME->getMemberDecl();
   1205 
   1206   return nullptr;
   1207 }
   1208 
   1209 FunctionDecl *CallExpr::getDirectCallee() {
   1210   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
   1211 }
   1212 
   1213 /// setNumArgs - This changes the number of arguments present in this call.
   1214 /// Any orphaned expressions are deleted by this, and any new operands are set
   1215 /// to null.
   1216 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
   1217   // No change, just return.
   1218   if (NumArgs == getNumArgs()) return;
   1219 
   1220   // If shrinking # arguments, just delete the extras and forgot them.
   1221   if (NumArgs < getNumArgs()) {
   1222     this->NumArgs = NumArgs;
   1223     return;
   1224   }
   1225 
   1226   // Otherwise, we are growing the # arguments.  New an bigger argument array.
   1227   unsigned NumPreArgs = getNumPreArgs();
   1228   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
   1229   // Copy over args.
   1230   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
   1231     NewSubExprs[i] = SubExprs[i];
   1232   // Null out new args.
   1233   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
   1234        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
   1235     NewSubExprs[i] = nullptr;
   1236 
   1237   if (SubExprs) C.Deallocate(SubExprs);
   1238   SubExprs = NewSubExprs;
   1239   this->NumArgs = NumArgs;
   1240 }
   1241 
   1242 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
   1243 /// not, return 0.
   1244 unsigned CallExpr::getBuiltinCallee() const {
   1245   // All simple function calls (e.g. func()) are implicitly cast to pointer to
   1246   // function. As a result, we try and obtain the DeclRefExpr from the
   1247   // ImplicitCastExpr.
   1248   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
   1249   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
   1250     return 0;
   1251 
   1252   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
   1253   if (!DRE)
   1254     return 0;
   1255 
   1256   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
   1257   if (!FDecl)
   1258     return 0;
   1259 
   1260   if (!FDecl->getIdentifier())
   1261     return 0;
   1262 
   1263   return FDecl->getBuiltinID();
   1264 }
   1265 
   1266 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
   1267   if (unsigned BI = getBuiltinCallee())
   1268     return Ctx.BuiltinInfo.isUnevaluated(BI);
   1269   return false;
   1270 }
   1271 
   1272 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
   1273   const Expr *Callee = getCallee();
   1274   QualType CalleeType = Callee->getType();
   1275   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
   1276     CalleeType = FnTypePtr->getPointeeType();
   1277   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
   1278     CalleeType = BPT->getPointeeType();
   1279   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
   1280     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
   1281       return Ctx.VoidTy;
   1282 
   1283     // This should never be overloaded and so should never return null.
   1284     CalleeType = Expr::findBoundMemberType(Callee);
   1285   }
   1286 
   1287   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
   1288   return FnType->getReturnType();
   1289 }
   1290 
   1291 SourceLocation CallExpr::getLocStart() const {
   1292   if (isa<CXXOperatorCallExpr>(this))
   1293     return cast<CXXOperatorCallExpr>(this)->getLocStart();
   1294 
   1295   SourceLocation begin = getCallee()->getLocStart();
   1296   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
   1297     begin = getArg(0)->getLocStart();
   1298   return begin;
   1299 }
   1300 SourceLocation CallExpr::getLocEnd() const {
   1301   if (isa<CXXOperatorCallExpr>(this))
   1302     return cast<CXXOperatorCallExpr>(this)->getLocEnd();
   1303 
   1304   SourceLocation end = getRParenLoc();
   1305   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
   1306     end = getArg(getNumArgs() - 1)->getLocEnd();
   1307   return end;
   1308 }
   1309 
   1310 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
   1311                                    SourceLocation OperatorLoc,
   1312                                    TypeSourceInfo *tsi,
   1313                                    ArrayRef<OffsetOfNode> comps,
   1314                                    ArrayRef<Expr*> exprs,
   1315                                    SourceLocation RParenLoc) {
   1316   void *Mem = C.Allocate(
   1317       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
   1318 
   1319   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
   1320                                 RParenLoc);
   1321 }
   1322 
   1323 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
   1324                                         unsigned numComps, unsigned numExprs) {
   1325   void *Mem =
   1326       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
   1327   return new (Mem) OffsetOfExpr(numComps, numExprs);
   1328 }
   1329 
   1330 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
   1331                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
   1332                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
   1333                            SourceLocation RParenLoc)
   1334   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
   1335          /*TypeDependent=*/false,
   1336          /*ValueDependent=*/tsi->getType()->isDependentType(),
   1337          tsi->getType()->isInstantiationDependentType(),
   1338          tsi->getType()->containsUnexpandedParameterPack()),
   1339     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
   1340     NumComps(comps.size()), NumExprs(exprs.size())
   1341 {
   1342   for (unsigned i = 0; i != comps.size(); ++i) {
   1343     setComponent(i, comps[i]);
   1344   }
   1345 
   1346   for (unsigned i = 0; i != exprs.size(); ++i) {
   1347     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
   1348       ExprBits.ValueDependent = true;
   1349     if (exprs[i]->containsUnexpandedParameterPack())
   1350       ExprBits.ContainsUnexpandedParameterPack = true;
   1351 
   1352     setIndexExpr(i, exprs[i]);
   1353   }
   1354 }
   1355 
   1356 IdentifierInfo *OffsetOfNode::getFieldName() const {
   1357   assert(getKind() == Field || getKind() == Identifier);
   1358   if (getKind() == Field)
   1359     return getField()->getIdentifier();
   1360 
   1361   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
   1362 }
   1363 
   1364 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
   1365     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
   1366     SourceLocation op, SourceLocation rp)
   1367     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
   1368            false, // Never type-dependent (C++ [temp.dep.expr]p3).
   1369            // Value-dependent if the argument is type-dependent.
   1370            E->isTypeDependent(), E->isInstantiationDependent(),
   1371            E->containsUnexpandedParameterPack()),
   1372       OpLoc(op), RParenLoc(rp) {
   1373   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
   1374   UnaryExprOrTypeTraitExprBits.IsType = false;
   1375   Argument.Ex = E;
   1376 
   1377   // Check to see if we are in the situation where alignof(decl) should be
   1378   // dependent because decl's alignment is dependent.
   1379   if (ExprKind == UETT_AlignOf) {
   1380     if (!isValueDependent() || !isInstantiationDependent()) {
   1381       E = E->IgnoreParens();
   1382 
   1383       const ValueDecl *D = nullptr;
   1384       if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
   1385         D = DRE->getDecl();
   1386       else if (const auto *ME = dyn_cast<MemberExpr>(E))
   1387         D = ME->getMemberDecl();
   1388 
   1389       if (D) {
   1390         for (const auto *I : D->specific_attrs<AlignedAttr>()) {
   1391           if (I->isAlignmentDependent()) {
   1392             setValueDependent(true);
   1393             setInstantiationDependent(true);
   1394             break;
   1395           }
   1396         }
   1397       }
   1398     }
   1399   }
   1400 }
   1401 
   1402 MemberExpr *MemberExpr::Create(
   1403     const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
   1404     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
   1405     ValueDecl *memberdecl, DeclAccessPair founddecl,
   1406     DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
   1407     QualType ty, ExprValueKind vk, ExprObjectKind ok) {
   1408 
   1409   bool hasQualOrFound = (QualifierLoc ||
   1410                          founddecl.getDecl() != memberdecl ||
   1411                          founddecl.getAccess() != memberdecl->getAccess());
   1412 
   1413   bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid();
   1414   std::size_t Size =
   1415       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
   1416                        TemplateArgumentLoc>(hasQualOrFound ? 1 : 0,
   1417                                             HasTemplateKWAndArgsInfo ? 1 : 0,
   1418                                             targs ? targs->size() : 0);
   1419 
   1420   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
   1421   MemberExpr *E = new (Mem)
   1422       MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
   1423 
   1424   if (hasQualOrFound) {
   1425     // FIXME: Wrong. We should be looking at the member declaration we found.
   1426     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
   1427       E->setValueDependent(true);
   1428       E->setTypeDependent(true);
   1429       E->setInstantiationDependent(true);
   1430     }
   1431     else if (QualifierLoc &&
   1432              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
   1433       E->setInstantiationDependent(true);
   1434 
   1435     E->HasQualifierOrFoundDecl = true;
   1436 
   1437     MemberExprNameQualifier *NQ =
   1438         E->getTrailingObjects<MemberExprNameQualifier>();
   1439     NQ->QualifierLoc = QualifierLoc;
   1440     NQ->FoundDecl = founddecl;
   1441   }
   1442 
   1443   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
   1444 
   1445   if (targs) {
   1446     bool Dependent = false;
   1447     bool InstantiationDependent = false;
   1448     bool ContainsUnexpandedParameterPack = false;
   1449     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
   1450         TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(),
   1451         Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
   1452     if (InstantiationDependent)
   1453       E->setInstantiationDependent(true);
   1454   } else if (TemplateKWLoc.isValid()) {
   1455     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
   1456         TemplateKWLoc);
   1457   }
   1458 
   1459   return E;
   1460 }
   1461 
   1462 SourceLocation MemberExpr::getLocStart() const {
   1463   if (isImplicitAccess()) {
   1464     if (hasQualifier())
   1465       return getQualifierLoc().getBeginLoc();
   1466     return MemberLoc;
   1467   }
   1468 
   1469   // FIXME: We don't want this to happen. Rather, we should be able to
   1470   // detect all kinds of implicit accesses more cleanly.
   1471   SourceLocation BaseStartLoc = getBase()->getLocStart();
   1472   if (BaseStartLoc.isValid())
   1473     return BaseStartLoc;
   1474   return MemberLoc;
   1475 }
   1476 SourceLocation MemberExpr::getLocEnd() const {
   1477   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
   1478   if (hasExplicitTemplateArgs())
   1479     EndLoc = getRAngleLoc();
   1480   else if (EndLoc.isInvalid())
   1481     EndLoc = getBase()->getLocEnd();
   1482   return EndLoc;
   1483 }
   1484 
   1485 bool CastExpr::CastConsistency() const {
   1486   switch (getCastKind()) {
   1487   case CK_DerivedToBase:
   1488   case CK_UncheckedDerivedToBase:
   1489   case CK_DerivedToBaseMemberPointer:
   1490   case CK_BaseToDerived:
   1491   case CK_BaseToDerivedMemberPointer:
   1492     assert(!path_empty() && "Cast kind should have a base path!");
   1493     break;
   1494 
   1495   case CK_CPointerToObjCPointerCast:
   1496     assert(getType()->isObjCObjectPointerType());
   1497     assert(getSubExpr()->getType()->isPointerType());
   1498     goto CheckNoBasePath;
   1499 
   1500   case CK_BlockPointerToObjCPointerCast:
   1501     assert(getType()->isObjCObjectPointerType());
   1502     assert(getSubExpr()->getType()->isBlockPointerType());
   1503     goto CheckNoBasePath;
   1504 
   1505   case CK_ReinterpretMemberPointer:
   1506     assert(getType()->isMemberPointerType());
   1507     assert(getSubExpr()->getType()->isMemberPointerType());
   1508     goto CheckNoBasePath;
   1509 
   1510   case CK_BitCast:
   1511     // Arbitrary casts to C pointer types count as bitcasts.
   1512     // Otherwise, we should only have block and ObjC pointer casts
   1513     // here if they stay within the type kind.
   1514     if (!getType()->isPointerType()) {
   1515       assert(getType()->isObjCObjectPointerType() ==
   1516              getSubExpr()->getType()->isObjCObjectPointerType());
   1517       assert(getType()->isBlockPointerType() ==
   1518              getSubExpr()->getType()->isBlockPointerType());
   1519     }
   1520     goto CheckNoBasePath;
   1521 
   1522   case CK_AnyPointerToBlockPointerCast:
   1523     assert(getType()->isBlockPointerType());
   1524     assert(getSubExpr()->getType()->isAnyPointerType() &&
   1525            !getSubExpr()->getType()->isBlockPointerType());
   1526     goto CheckNoBasePath;
   1527 
   1528   case CK_CopyAndAutoreleaseBlockObject:
   1529     assert(getType()->isBlockPointerType());
   1530     assert(getSubExpr()->getType()->isBlockPointerType());
   1531     goto CheckNoBasePath;
   1532 
   1533   case CK_FunctionToPointerDecay:
   1534     assert(getType()->isPointerType());
   1535     assert(getSubExpr()->getType()->isFunctionType());
   1536     goto CheckNoBasePath;
   1537 
   1538   case CK_AddressSpaceConversion:
   1539     assert(getType()->isPointerType());
   1540     assert(getSubExpr()->getType()->isPointerType());
   1541     assert(getType()->getPointeeType().getAddressSpace() !=
   1542            getSubExpr()->getType()->getPointeeType().getAddressSpace());
   1543   // These should not have an inheritance path.
   1544   case CK_Dynamic:
   1545   case CK_ToUnion:
   1546   case CK_ArrayToPointerDecay:
   1547   case CK_NullToMemberPointer:
   1548   case CK_NullToPointer:
   1549   case CK_ConstructorConversion:
   1550   case CK_IntegralToPointer:
   1551   case CK_PointerToIntegral:
   1552   case CK_ToVoid:
   1553   case CK_VectorSplat:
   1554   case CK_IntegralCast:
   1555   case CK_BooleanToSignedIntegral:
   1556   case CK_IntegralToFloating:
   1557   case CK_FloatingToIntegral:
   1558   case CK_FloatingCast:
   1559   case CK_ObjCObjectLValueCast:
   1560   case CK_FloatingRealToComplex:
   1561   case CK_FloatingComplexToReal:
   1562   case CK_FloatingComplexCast:
   1563   case CK_FloatingComplexToIntegralComplex:
   1564   case CK_IntegralRealToComplex:
   1565   case CK_IntegralComplexToReal:
   1566   case CK_IntegralComplexCast:
   1567   case CK_IntegralComplexToFloatingComplex:
   1568   case CK_ARCProduceObject:
   1569   case CK_ARCConsumeObject:
   1570   case CK_ARCReclaimReturnedObject:
   1571   case CK_ARCExtendBlockObject:
   1572   case CK_ZeroToOCLEvent:
   1573     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
   1574     goto CheckNoBasePath;
   1575 
   1576   case CK_Dependent:
   1577   case CK_LValueToRValue:
   1578   case CK_NoOp:
   1579   case CK_AtomicToNonAtomic:
   1580   case CK_NonAtomicToAtomic:
   1581   case CK_PointerToBoolean:
   1582   case CK_IntegralToBoolean:
   1583   case CK_FloatingToBoolean:
   1584   case CK_MemberPointerToBoolean:
   1585   case CK_FloatingComplexToBoolean:
   1586   case CK_IntegralComplexToBoolean:
   1587   case CK_LValueBitCast:            // -> bool&
   1588   case CK_UserDefinedConversion:    // operator bool()
   1589   case CK_BuiltinFnToFnPtr:
   1590   CheckNoBasePath:
   1591     assert(path_empty() && "Cast kind should not have a base path!");
   1592     break;
   1593   }
   1594   return true;
   1595 }
   1596 
   1597 const char *CastExpr::getCastKindName() const {
   1598   switch (getCastKind()) {
   1599 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
   1600 #include "clang/AST/OperationKinds.def"
   1601   }
   1602   llvm_unreachable("Unhandled cast kind!");
   1603 }
   1604 
   1605 Expr *CastExpr::getSubExprAsWritten() {
   1606   Expr *SubExpr = nullptr;
   1607   CastExpr *E = this;
   1608   do {
   1609     SubExpr = E->getSubExpr();
   1610 
   1611     // Skip through reference binding to temporary.
   1612     if (MaterializeTemporaryExpr *Materialize
   1613                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
   1614       SubExpr = Materialize->GetTemporaryExpr();
   1615 
   1616     // Skip any temporary bindings; they're implicit.
   1617     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
   1618       SubExpr = Binder->getSubExpr();
   1619 
   1620     // Conversions by constructor and conversion functions have a
   1621     // subexpression describing the call; strip it off.
   1622     if (E->getCastKind() == CK_ConstructorConversion)
   1623       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
   1624     else if (E->getCastKind() == CK_UserDefinedConversion) {
   1625       assert((isa<CXXMemberCallExpr>(SubExpr) ||
   1626               isa<BlockExpr>(SubExpr)) &&
   1627              "Unexpected SubExpr for CK_UserDefinedConversion.");
   1628       if (isa<CXXMemberCallExpr>(SubExpr))
   1629         SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
   1630     }
   1631 
   1632     // If the subexpression we're left with is an implicit cast, look
   1633     // through that, too.
   1634   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
   1635 
   1636   return SubExpr;
   1637 }
   1638 
   1639 CXXBaseSpecifier **CastExpr::path_buffer() {
   1640   switch (getStmtClass()) {
   1641 #define ABSTRACT_STMT(x)
   1642 #define CASTEXPR(Type, Base)                                                   \
   1643   case Stmt::Type##Class:                                                      \
   1644     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
   1645 #define STMT(Type, Base)
   1646 #include "clang/AST/StmtNodes.inc"
   1647   default:
   1648     llvm_unreachable("non-cast expressions not possible here");
   1649   }
   1650 }
   1651 
   1652 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
   1653                                            CastKind Kind, Expr *Operand,
   1654                                            const CXXCastPath *BasePath,
   1655                                            ExprValueKind VK) {
   1656   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1657   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
   1658   ImplicitCastExpr *E =
   1659     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
   1660   if (PathSize)
   1661     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
   1662                               E->getTrailingObjects<CXXBaseSpecifier *>());
   1663   return E;
   1664 }
   1665 
   1666 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
   1667                                                 unsigned PathSize) {
   1668   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
   1669   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
   1670 }
   1671 
   1672 
   1673 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
   1674                                        ExprValueKind VK, CastKind K, Expr *Op,
   1675                                        const CXXCastPath *BasePath,
   1676                                        TypeSourceInfo *WrittenTy,
   1677                                        SourceLocation L, SourceLocation R) {
   1678   unsigned PathSize = (BasePath ? BasePath->size() : 0);
   1679   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
   1680   CStyleCastExpr *E =
   1681     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
   1682   if (PathSize)
   1683     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
   1684                               E->getTrailingObjects<CXXBaseSpecifier *>());
   1685   return E;
   1686 }
   1687 
   1688 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
   1689                                             unsigned PathSize) {
   1690   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
   1691   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
   1692 }
   1693 
   1694 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
   1695 /// corresponds to, e.g. "<<=".
   1696 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
   1697   switch (Op) {
   1698 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
   1699 #include "clang/AST/OperationKinds.def"
   1700   }
   1701   llvm_unreachable("Invalid OpCode!");
   1702 }
   1703 
   1704 BinaryOperatorKind
   1705 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
   1706   switch (OO) {
   1707   default: llvm_unreachable("Not an overloadable binary operator");
   1708   case OO_Plus: return BO_Add;
   1709   case OO_Minus: return BO_Sub;
   1710   case OO_Star: return BO_Mul;
   1711   case OO_Slash: return BO_Div;
   1712   case OO_Percent: return BO_Rem;
   1713   case OO_Caret: return BO_Xor;
   1714   case OO_Amp: return BO_And;
   1715   case OO_Pipe: return BO_Or;
   1716   case OO_Equal: return BO_Assign;
   1717   case OO_Less: return BO_LT;
   1718   case OO_Greater: return BO_GT;
   1719   case OO_PlusEqual: return BO_AddAssign;
   1720   case OO_MinusEqual: return BO_SubAssign;
   1721   case OO_StarEqual: return BO_MulAssign;
   1722   case OO_SlashEqual: return BO_DivAssign;
   1723   case OO_PercentEqual: return BO_RemAssign;
   1724   case OO_CaretEqual: return BO_XorAssign;
   1725   case OO_AmpEqual: return BO_AndAssign;
   1726   case OO_PipeEqual: return BO_OrAssign;
   1727   case OO_LessLess: return BO_Shl;
   1728   case OO_GreaterGreater: return BO_Shr;
   1729   case OO_LessLessEqual: return BO_ShlAssign;
   1730   case OO_GreaterGreaterEqual: return BO_ShrAssign;
   1731   case OO_EqualEqual: return BO_EQ;
   1732   case OO_ExclaimEqual: return BO_NE;
   1733   case OO_LessEqual: return BO_LE;
   1734   case OO_GreaterEqual: return BO_GE;
   1735   case OO_AmpAmp: return BO_LAnd;
   1736   case OO_PipePipe: return BO_LOr;
   1737   case OO_Comma: return BO_Comma;
   1738   case OO_ArrowStar: return BO_PtrMemI;
   1739   }
   1740 }
   1741 
   1742 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
   1743   static const OverloadedOperatorKind OverOps[] = {
   1744     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
   1745     OO_Star, OO_Slash, OO_Percent,
   1746     OO_Plus, OO_Minus,
   1747     OO_LessLess, OO_GreaterGreater,
   1748     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
   1749     OO_EqualEqual, OO_ExclaimEqual,
   1750     OO_Amp,
   1751     OO_Caret,
   1752     OO_Pipe,
   1753     OO_AmpAmp,
   1754     OO_PipePipe,
   1755     OO_Equal, OO_StarEqual,
   1756     OO_SlashEqual, OO_PercentEqual,
   1757     OO_PlusEqual, OO_MinusEqual,
   1758     OO_LessLessEqual, OO_GreaterGreaterEqual,
   1759     OO_AmpEqual, OO_CaretEqual,
   1760     OO_PipeEqual,
   1761     OO_Comma
   1762   };
   1763   return OverOps[Opc];
   1764 }
   1765 
   1766 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
   1767                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
   1768   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
   1769          false, false),
   1770     InitExprs(C, initExprs.size()),
   1771     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
   1772 {
   1773   sawArrayRangeDesignator(false);
   1774   for (unsigned I = 0; I != initExprs.size(); ++I) {
   1775     if (initExprs[I]->isTypeDependent())
   1776       ExprBits.TypeDependent = true;
   1777     if (initExprs[I]->isValueDependent())
   1778       ExprBits.ValueDependent = true;
   1779     if (initExprs[I]->isInstantiationDependent())
   1780       ExprBits.InstantiationDependent = true;
   1781     if (initExprs[I]->containsUnexpandedParameterPack())
   1782       ExprBits.ContainsUnexpandedParameterPack = true;
   1783   }
   1784 
   1785   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
   1786 }
   1787 
   1788 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
   1789   if (NumInits > InitExprs.size())
   1790     InitExprs.reserve(C, NumInits);
   1791 }
   1792 
   1793 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
   1794   InitExprs.resize(C, NumInits, nullptr);
   1795 }
   1796 
   1797 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
   1798   if (Init >= InitExprs.size()) {
   1799     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
   1800     setInit(Init, expr);
   1801     return nullptr;
   1802   }
   1803 
   1804   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
   1805   setInit(Init, expr);
   1806   return Result;
   1807 }
   1808 
   1809 void InitListExpr::setArrayFiller(Expr *filler) {
   1810   assert(!hasArrayFiller() && "Filler already set!");
   1811   ArrayFillerOrUnionFieldInit = filler;
   1812   // Fill out any "holes" in the array due to designated initializers.
   1813   Expr **inits = getInits();
   1814   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
   1815     if (inits[i] == nullptr)
   1816       inits[i] = filler;
   1817 }
   1818 
   1819 bool InitListExpr::isStringLiteralInit() const {
   1820   if (getNumInits() != 1)
   1821     return false;
   1822   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
   1823   if (!AT || !AT->getElementType()->isIntegerType())
   1824     return false;
   1825   // It is possible for getInit() to return null.
   1826   const Expr *Init = getInit(0);
   1827   if (!Init)
   1828     return false;
   1829   Init = Init->IgnoreParens();
   1830   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
   1831 }
   1832 
   1833 SourceLocation InitListExpr::getLocStart() const {
   1834   if (InitListExpr *SyntacticForm = getSyntacticForm())
   1835     return SyntacticForm->getLocStart();
   1836   SourceLocation Beg = LBraceLoc;
   1837   if (Beg.isInvalid()) {
   1838     // Find the first non-null initializer.
   1839     for (InitExprsTy::const_iterator I = InitExprs.begin(),
   1840                                      E = InitExprs.end();
   1841       I != E; ++I) {
   1842       if (Stmt *S = *I) {
   1843         Beg = S->getLocStart();
   1844         break;
   1845       }
   1846     }
   1847   }
   1848   return Beg;
   1849 }
   1850 
   1851 SourceLocation InitListExpr::getLocEnd() const {
   1852   if (InitListExpr *SyntacticForm = getSyntacticForm())
   1853     return SyntacticForm->getLocEnd();
   1854   SourceLocation End = RBraceLoc;
   1855   if (End.isInvalid()) {
   1856     // Find the first non-null initializer from the end.
   1857     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
   1858          E = InitExprs.rend();
   1859          I != E; ++I) {
   1860       if (Stmt *S = *I) {
   1861         End = S->getLocEnd();
   1862         break;
   1863       }
   1864     }
   1865   }
   1866   return End;
   1867 }
   1868 
   1869 /// getFunctionType - Return the underlying function type for this block.
   1870 ///
   1871 const FunctionProtoType *BlockExpr::getFunctionType() const {
   1872   // The block pointer is never sugared, but the function type might be.
   1873   return cast<BlockPointerType>(getType())
   1874            ->getPointeeType()->castAs<FunctionProtoType>();
   1875 }
   1876 
   1877 SourceLocation BlockExpr::getCaretLocation() const {
   1878   return TheBlock->getCaretLocation();
   1879 }
   1880 const Stmt *BlockExpr::getBody() const {
   1881   return TheBlock->getBody();
   1882 }
   1883 Stmt *BlockExpr::getBody() {
   1884   return TheBlock->getBody();
   1885 }
   1886 
   1887 
   1888 //===----------------------------------------------------------------------===//
   1889 // Generic Expression Routines
   1890 //===----------------------------------------------------------------------===//
   1891 
   1892 /// isUnusedResultAWarning - Return true if this immediate expression should
   1893 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
   1894 /// with location to warn on and the source range[s] to report with the
   1895 /// warning.
   1896 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
   1897                                   SourceRange &R1, SourceRange &R2,
   1898                                   ASTContext &Ctx) const {
   1899   // Don't warn if the expr is type dependent. The type could end up
   1900   // instantiating to void.
   1901   if (isTypeDependent())
   1902     return false;
   1903 
   1904   switch (getStmtClass()) {
   1905   default:
   1906     if (getType()->isVoidType())
   1907       return false;
   1908     WarnE = this;
   1909     Loc = getExprLoc();
   1910     R1 = getSourceRange();
   1911     return true;
   1912   case ParenExprClass:
   1913     return cast<ParenExpr>(this)->getSubExpr()->
   1914       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   1915   case GenericSelectionExprClass:
   1916     return cast<GenericSelectionExpr>(this)->getResultExpr()->
   1917       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   1918   case ChooseExprClass:
   1919     return cast<ChooseExpr>(this)->getChosenSubExpr()->
   1920       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   1921   case UnaryOperatorClass: {
   1922     const UnaryOperator *UO = cast<UnaryOperator>(this);
   1923 
   1924     switch (UO->getOpcode()) {
   1925     case UO_Plus:
   1926     case UO_Minus:
   1927     case UO_AddrOf:
   1928     case UO_Not:
   1929     case UO_LNot:
   1930     case UO_Deref:
   1931       break;
   1932     case UO_Coawait:
   1933       // This is just the 'operator co_await' call inside the guts of a
   1934       // dependent co_await call.
   1935     case UO_PostInc:
   1936     case UO_PostDec:
   1937     case UO_PreInc:
   1938     case UO_PreDec:                 // ++/--
   1939       return false;  // Not a warning.
   1940     case UO_Real:
   1941     case UO_Imag:
   1942       // accessing a piece of a volatile complex is a side-effect.
   1943       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
   1944           .isVolatileQualified())
   1945         return false;
   1946       break;
   1947     case UO_Extension:
   1948       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   1949     }
   1950     WarnE = this;
   1951     Loc = UO->getOperatorLoc();
   1952     R1 = UO->getSubExpr()->getSourceRange();
   1953     return true;
   1954   }
   1955   case BinaryOperatorClass: {
   1956     const BinaryOperator *BO = cast<BinaryOperator>(this);
   1957     switch (BO->getOpcode()) {
   1958       default:
   1959         break;
   1960       // Consider the RHS of comma for side effects. LHS was checked by
   1961       // Sema::CheckCommaOperands.
   1962       case BO_Comma:
   1963         // ((foo = <blah>), 0) is an idiom for hiding the result (and
   1964         // lvalue-ness) of an assignment written in a macro.
   1965         if (IntegerLiteral *IE =
   1966               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
   1967           if (IE->getValue() == 0)
   1968             return false;
   1969         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   1970       // Consider '||', '&&' to have side effects if the LHS or RHS does.
   1971       case BO_LAnd:
   1972       case BO_LOr:
   1973         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
   1974             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
   1975           return false;
   1976         break;
   1977     }
   1978     if (BO->isAssignmentOp())
   1979       return false;
   1980     WarnE = this;
   1981     Loc = BO->getOperatorLoc();
   1982     R1 = BO->getLHS()->getSourceRange();
   1983     R2 = BO->getRHS()->getSourceRange();
   1984     return true;
   1985   }
   1986   case CompoundAssignOperatorClass:
   1987   case VAArgExprClass:
   1988   case AtomicExprClass:
   1989     return false;
   1990 
   1991   case ConditionalOperatorClass: {
   1992     // If only one of the LHS or RHS is a warning, the operator might
   1993     // be being used for control flow. Only warn if both the LHS and
   1994     // RHS are warnings.
   1995     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
   1996     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
   1997       return false;
   1998     if (!Exp->getLHS())
   1999       return true;
   2000     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2001   }
   2002 
   2003   case MemberExprClass:
   2004     WarnE = this;
   2005     Loc = cast<MemberExpr>(this)->getMemberLoc();
   2006     R1 = SourceRange(Loc, Loc);
   2007     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
   2008     return true;
   2009 
   2010   case ArraySubscriptExprClass:
   2011     WarnE = this;
   2012     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
   2013     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
   2014     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
   2015     return true;
   2016 
   2017   case CXXOperatorCallExprClass: {
   2018     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
   2019     // overloads as there is no reasonable way to define these such that they
   2020     // have non-trivial, desirable side-effects. See the -Wunused-comparison
   2021     // warning: operators == and != are commonly typo'ed, and so warning on them
   2022     // provides additional value as well. If this list is updated,
   2023     // DiagnoseUnusedComparison should be as well.
   2024     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
   2025     switch (Op->getOperator()) {
   2026     default:
   2027       break;
   2028     case OO_EqualEqual:
   2029     case OO_ExclaimEqual:
   2030     case OO_Less:
   2031     case OO_Greater:
   2032     case OO_GreaterEqual:
   2033     case OO_LessEqual:
   2034       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
   2035           Op->getCallReturnType(Ctx)->isVoidType())
   2036         break;
   2037       WarnE = this;
   2038       Loc = Op->getOperatorLoc();
   2039       R1 = Op->getSourceRange();
   2040       return true;
   2041     }
   2042 
   2043     // Fallthrough for generic call handling.
   2044   }
   2045   case CallExprClass:
   2046   case CXXMemberCallExprClass:
   2047   case UserDefinedLiteralClass: {
   2048     // If this is a direct call, get the callee.
   2049     const CallExpr *CE = cast<CallExpr>(this);
   2050     if (const Decl *FD = CE->getCalleeDecl()) {
   2051       const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
   2052       bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
   2053                                           : FD->hasAttr<WarnUnusedResultAttr>();
   2054 
   2055       // If the callee has attribute pure, const, or warn_unused_result, warn
   2056       // about it. void foo() { strlen("bar"); } should warn.
   2057       //
   2058       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
   2059       // updated to match for QoI.
   2060       if (HasWarnUnusedResultAttr ||
   2061           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
   2062         WarnE = this;
   2063         Loc = CE->getCallee()->getLocStart();
   2064         R1 = CE->getCallee()->getSourceRange();
   2065 
   2066         if (unsigned NumArgs = CE->getNumArgs())
   2067           R2 = SourceRange(CE->getArg(0)->getLocStart(),
   2068                            CE->getArg(NumArgs-1)->getLocEnd());
   2069         return true;
   2070       }
   2071     }
   2072     return false;
   2073   }
   2074 
   2075   // If we don't know precisely what we're looking at, let's not warn.
   2076   case UnresolvedLookupExprClass:
   2077   case CXXUnresolvedConstructExprClass:
   2078     return false;
   2079 
   2080   case CXXTemporaryObjectExprClass:
   2081   case CXXConstructExprClass: {
   2082     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
   2083       if (Type->hasAttr<WarnUnusedAttr>()) {
   2084         WarnE = this;
   2085         Loc = getLocStart();
   2086         R1 = getSourceRange();
   2087         return true;
   2088       }
   2089     }
   2090     return false;
   2091   }
   2092 
   2093   case ObjCMessageExprClass: {
   2094     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
   2095     if (Ctx.getLangOpts().ObjCAutoRefCount &&
   2096         ME->isInstanceMessage() &&
   2097         !ME->getType()->isVoidType() &&
   2098         ME->getMethodFamily() == OMF_init) {
   2099       WarnE = this;
   2100       Loc = getExprLoc();
   2101       R1 = ME->getSourceRange();
   2102       return true;
   2103     }
   2104 
   2105     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
   2106       if (MD->hasAttr<WarnUnusedResultAttr>()) {
   2107         WarnE = this;
   2108         Loc = getExprLoc();
   2109         return true;
   2110       }
   2111 
   2112     return false;
   2113   }
   2114 
   2115   case ObjCPropertyRefExprClass:
   2116     WarnE = this;
   2117     Loc = getExprLoc();
   2118     R1 = getSourceRange();
   2119     return true;
   2120 
   2121   case PseudoObjectExprClass: {
   2122     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
   2123 
   2124     // Only complain about things that have the form of a getter.
   2125     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
   2126         isa<BinaryOperator>(PO->getSyntacticForm()))
   2127       return false;
   2128 
   2129     WarnE = this;
   2130     Loc = getExprLoc();
   2131     R1 = getSourceRange();
   2132     return true;
   2133   }
   2134 
   2135   case StmtExprClass: {
   2136     // Statement exprs don't logically have side effects themselves, but are
   2137     // sometimes used in macros in ways that give them a type that is unused.
   2138     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
   2139     // however, if the result of the stmt expr is dead, we don't want to emit a
   2140     // warning.
   2141     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
   2142     if (!CS->body_empty()) {
   2143       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
   2144         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2145       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
   2146         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
   2147           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2148     }
   2149 
   2150     if (getType()->isVoidType())
   2151       return false;
   2152     WarnE = this;
   2153     Loc = cast<StmtExpr>(this)->getLParenLoc();
   2154     R1 = getSourceRange();
   2155     return true;
   2156   }
   2157   case CXXFunctionalCastExprClass:
   2158   case CStyleCastExprClass: {
   2159     // Ignore an explicit cast to void unless the operand is a non-trivial
   2160     // volatile lvalue.
   2161     const CastExpr *CE = cast<CastExpr>(this);
   2162     if (CE->getCastKind() == CK_ToVoid) {
   2163       if (CE->getSubExpr()->isGLValue() &&
   2164           CE->getSubExpr()->getType().isVolatileQualified()) {
   2165         const DeclRefExpr *DRE =
   2166             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
   2167         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
   2168               cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
   2169           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
   2170                                                           R1, R2, Ctx);
   2171         }
   2172       }
   2173       return false;
   2174     }
   2175 
   2176     // If this is a cast to a constructor conversion, check the operand.
   2177     // Otherwise, the result of the cast is unused.
   2178     if (CE->getCastKind() == CK_ConstructorConversion)
   2179       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2180 
   2181     WarnE = this;
   2182     if (const CXXFunctionalCastExpr *CXXCE =
   2183             dyn_cast<CXXFunctionalCastExpr>(this)) {
   2184       Loc = CXXCE->getLocStart();
   2185       R1 = CXXCE->getSubExpr()->getSourceRange();
   2186     } else {
   2187       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
   2188       Loc = CStyleCE->getLParenLoc();
   2189       R1 = CStyleCE->getSubExpr()->getSourceRange();
   2190     }
   2191     return true;
   2192   }
   2193   case ImplicitCastExprClass: {
   2194     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
   2195 
   2196     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
   2197     if (ICE->getCastKind() == CK_LValueToRValue &&
   2198         ICE->getSubExpr()->getType().isVolatileQualified())
   2199       return false;
   2200 
   2201     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
   2202   }
   2203   case CXXDefaultArgExprClass:
   2204     return (cast<CXXDefaultArgExpr>(this)
   2205             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2206   case CXXDefaultInitExprClass:
   2207     return (cast<CXXDefaultInitExpr>(this)
   2208             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2209 
   2210   case CXXNewExprClass:
   2211     // FIXME: In theory, there might be new expressions that don't have side
   2212     // effects (e.g. a placement new with an uninitialized POD).
   2213   case CXXDeleteExprClass:
   2214     return false;
   2215   case CXXBindTemporaryExprClass:
   2216     return (cast<CXXBindTemporaryExpr>(this)
   2217             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2218   case ExprWithCleanupsClass:
   2219     return (cast<ExprWithCleanups>(this)
   2220             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
   2221   }
   2222 }
   2223 
   2224 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
   2225 /// returns true, if it is; false otherwise.
   2226 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
   2227   const Expr *E = IgnoreParens();
   2228   switch (E->getStmtClass()) {
   2229   default:
   2230     return false;
   2231   case ObjCIvarRefExprClass:
   2232     return true;
   2233   case Expr::UnaryOperatorClass:
   2234     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2235   case ImplicitCastExprClass:
   2236     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2237   case MaterializeTemporaryExprClass:
   2238     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
   2239                                                       ->isOBJCGCCandidate(Ctx);
   2240   case CStyleCastExprClass:
   2241     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
   2242   case DeclRefExprClass: {
   2243     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
   2244 
   2245     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   2246       if (VD->hasGlobalStorage())
   2247         return true;
   2248       QualType T = VD->getType();
   2249       // dereferencing to a  pointer is always a gc'able candidate,
   2250       // unless it is __weak.
   2251       return T->isPointerType() &&
   2252              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
   2253     }
   2254     return false;
   2255   }
   2256   case MemberExprClass: {
   2257     const MemberExpr *M = cast<MemberExpr>(E);
   2258     return M->getBase()->isOBJCGCCandidate(Ctx);
   2259   }
   2260   case ArraySubscriptExprClass:
   2261     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
   2262   }
   2263 }
   2264 
   2265 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
   2266   if (isTypeDependent())
   2267     return false;
   2268   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
   2269 }
   2270 
   2271 QualType Expr::findBoundMemberType(const Expr *expr) {
   2272   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
   2273 
   2274   // Bound member expressions are always one of these possibilities:
   2275   //   x->m      x.m      x->*y      x.*y
   2276   // (possibly parenthesized)
   2277 
   2278   expr = expr->IgnoreParens();
   2279   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
   2280     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
   2281     return mem->getMemberDecl()->getType();
   2282   }
   2283 
   2284   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
   2285     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
   2286                       ->getPointeeType();
   2287     assert(type->isFunctionType());
   2288     return type;
   2289   }
   2290 
   2291   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
   2292   return QualType();
   2293 }
   2294 
   2295 Expr* Expr::IgnoreParens() {
   2296   Expr* E = this;
   2297   while (true) {
   2298     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
   2299       E = P->getSubExpr();
   2300       continue;
   2301     }
   2302     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
   2303       if (P->getOpcode() == UO_Extension) {
   2304         E = P->getSubExpr();
   2305         continue;
   2306       }
   2307     }
   2308     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
   2309       if (!P->isResultDependent()) {
   2310         E = P->getResultExpr();
   2311         continue;
   2312       }
   2313     }
   2314     if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
   2315       if (!P->isConditionDependent()) {
   2316         E = P->getChosenSubExpr();
   2317         continue;
   2318       }
   2319     }
   2320     return E;
   2321   }
   2322 }
   2323 
   2324 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
   2325 /// or CastExprs or ImplicitCastExprs, returning their operand.
   2326 Expr *Expr::IgnoreParenCasts() {
   2327   Expr *E = this;
   2328   while (true) {
   2329     E = E->IgnoreParens();
   2330     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2331       E = P->getSubExpr();
   2332       continue;
   2333     }
   2334     if (MaterializeTemporaryExpr *Materialize
   2335                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2336       E = Materialize->GetTemporaryExpr();
   2337       continue;
   2338     }
   2339     if (SubstNonTypeTemplateParmExpr *NTTP
   2340                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2341       E = NTTP->getReplacement();
   2342       continue;
   2343     }
   2344     return E;
   2345   }
   2346 }
   2347 
   2348 Expr *Expr::IgnoreCasts() {
   2349   Expr *E = this;
   2350   while (true) {
   2351     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2352       E = P->getSubExpr();
   2353       continue;
   2354     }
   2355     if (MaterializeTemporaryExpr *Materialize
   2356         = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2357       E = Materialize->GetTemporaryExpr();
   2358       continue;
   2359     }
   2360     if (SubstNonTypeTemplateParmExpr *NTTP
   2361         = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2362       E = NTTP->getReplacement();
   2363       continue;
   2364     }
   2365     return E;
   2366   }
   2367 }
   2368 
   2369 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
   2370 /// casts.  This is intended purely as a temporary workaround for code
   2371 /// that hasn't yet been rewritten to do the right thing about those
   2372 /// casts, and may disappear along with the last internal use.
   2373 Expr *Expr::IgnoreParenLValueCasts() {
   2374   Expr *E = this;
   2375   while (true) {
   2376     E = E->IgnoreParens();
   2377     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2378       if (P->getCastKind() == CK_LValueToRValue) {
   2379         E = P->getSubExpr();
   2380         continue;
   2381       }
   2382     } else if (MaterializeTemporaryExpr *Materialize
   2383                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2384       E = Materialize->GetTemporaryExpr();
   2385       continue;
   2386     } else if (SubstNonTypeTemplateParmExpr *NTTP
   2387                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2388       E = NTTP->getReplacement();
   2389       continue;
   2390     }
   2391     break;
   2392   }
   2393   return E;
   2394 }
   2395 
   2396 Expr *Expr::ignoreParenBaseCasts() {
   2397   Expr *E = this;
   2398   while (true) {
   2399     E = E->IgnoreParens();
   2400     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
   2401       if (CE->getCastKind() == CK_DerivedToBase ||
   2402           CE->getCastKind() == CK_UncheckedDerivedToBase ||
   2403           CE->getCastKind() == CK_NoOp) {
   2404         E = CE->getSubExpr();
   2405         continue;
   2406       }
   2407     }
   2408 
   2409     return E;
   2410   }
   2411 }
   2412 
   2413 Expr *Expr::IgnoreParenImpCasts() {
   2414   Expr *E = this;
   2415   while (true) {
   2416     E = E->IgnoreParens();
   2417     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
   2418       E = P->getSubExpr();
   2419       continue;
   2420     }
   2421     if (MaterializeTemporaryExpr *Materialize
   2422                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2423       E = Materialize->GetTemporaryExpr();
   2424       continue;
   2425     }
   2426     if (SubstNonTypeTemplateParmExpr *NTTP
   2427                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2428       E = NTTP->getReplacement();
   2429       continue;
   2430     }
   2431     return E;
   2432   }
   2433 }
   2434 
   2435 Expr *Expr::IgnoreConversionOperator() {
   2436   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
   2437     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
   2438       return MCE->getImplicitObjectArgument();
   2439   }
   2440   return this;
   2441 }
   2442 
   2443 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
   2444 /// value (including ptr->int casts of the same size).  Strip off any
   2445 /// ParenExpr or CastExprs, returning their operand.
   2446 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
   2447   Expr *E = this;
   2448   while (true) {
   2449     E = E->IgnoreParens();
   2450 
   2451     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
   2452       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
   2453       // ptr<->int casts of the same width.  We also ignore all identity casts.
   2454       Expr *SE = P->getSubExpr();
   2455 
   2456       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
   2457         E = SE;
   2458         continue;
   2459       }
   2460 
   2461       if ((E->getType()->isPointerType() ||
   2462            E->getType()->isIntegralType(Ctx)) &&
   2463           (SE->getType()->isPointerType() ||
   2464            SE->getType()->isIntegralType(Ctx)) &&
   2465           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
   2466         E = SE;
   2467         continue;
   2468       }
   2469     }
   2470 
   2471     if (SubstNonTypeTemplateParmExpr *NTTP
   2472                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
   2473       E = NTTP->getReplacement();
   2474       continue;
   2475     }
   2476 
   2477     return E;
   2478   }
   2479 }
   2480 
   2481 bool Expr::isDefaultArgument() const {
   2482   const Expr *E = this;
   2483   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2484     E = M->GetTemporaryExpr();
   2485 
   2486   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   2487     E = ICE->getSubExprAsWritten();
   2488 
   2489   return isa<CXXDefaultArgExpr>(E);
   2490 }
   2491 
   2492 /// \brief Skip over any no-op casts and any temporary-binding
   2493 /// expressions.
   2494 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
   2495   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
   2496     E = M->GetTemporaryExpr();
   2497 
   2498   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2499     if (ICE->getCastKind() == CK_NoOp)
   2500       E = ICE->getSubExpr();
   2501     else
   2502       break;
   2503   }
   2504 
   2505   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
   2506     E = BE->getSubExpr();
   2507 
   2508   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2509     if (ICE->getCastKind() == CK_NoOp)
   2510       E = ICE->getSubExpr();
   2511     else
   2512       break;
   2513   }
   2514 
   2515   return E->IgnoreParens();
   2516 }
   2517 
   2518 /// isTemporaryObject - Determines if this expression produces a
   2519 /// temporary of the given class type.
   2520 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
   2521   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
   2522     return false;
   2523 
   2524   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
   2525 
   2526   // Temporaries are by definition pr-values of class type.
   2527   if (!E->Classify(C).isPRValue()) {
   2528     // In this context, property reference is a message call and is pr-value.
   2529     if (!isa<ObjCPropertyRefExpr>(E))
   2530       return false;
   2531   }
   2532 
   2533   // Black-list a few cases which yield pr-values of class type that don't
   2534   // refer to temporaries of that type:
   2535 
   2536   // - implicit derived-to-base conversions
   2537   if (isa<ImplicitCastExpr>(E)) {
   2538     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
   2539     case CK_DerivedToBase:
   2540     case CK_UncheckedDerivedToBase:
   2541       return false;
   2542     default:
   2543       break;
   2544     }
   2545   }
   2546 
   2547   // - member expressions (all)
   2548   if (isa<MemberExpr>(E))
   2549     return false;
   2550 
   2551   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
   2552     if (BO->isPtrMemOp())
   2553       return false;
   2554 
   2555   // - opaque values (all)
   2556   if (isa<OpaqueValueExpr>(E))
   2557     return false;
   2558 
   2559   return true;
   2560 }
   2561 
   2562 bool Expr::isImplicitCXXThis() const {
   2563   const Expr *E = this;
   2564 
   2565   // Strip away parentheses and casts we don't care about.
   2566   while (true) {
   2567     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
   2568       E = Paren->getSubExpr();
   2569       continue;
   2570     }
   2571 
   2572     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   2573       if (ICE->getCastKind() == CK_NoOp ||
   2574           ICE->getCastKind() == CK_LValueToRValue ||
   2575           ICE->getCastKind() == CK_DerivedToBase ||
   2576           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
   2577         E = ICE->getSubExpr();
   2578         continue;
   2579       }
   2580     }
   2581 
   2582     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
   2583       if (UnOp->getOpcode() == UO_Extension) {
   2584         E = UnOp->getSubExpr();
   2585         continue;
   2586       }
   2587     }
   2588 
   2589     if (const MaterializeTemporaryExpr *M
   2590                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
   2591       E = M->GetTemporaryExpr();
   2592       continue;
   2593     }
   2594 
   2595     break;
   2596   }
   2597 
   2598   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
   2599     return This->isImplicit();
   2600 
   2601   return false;
   2602 }
   2603 
   2604 /// hasAnyTypeDependentArguments - Determines if any of the expressions
   2605 /// in Exprs is type-dependent.
   2606 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
   2607   for (unsigned I = 0; I < Exprs.size(); ++I)
   2608     if (Exprs[I]->isTypeDependent())
   2609       return true;
   2610 
   2611   return false;
   2612 }
   2613 
   2614 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
   2615                                  const Expr **Culprit) const {
   2616   // This function is attempting whether an expression is an initializer
   2617   // which can be evaluated at compile-time. It very closely parallels
   2618   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
   2619   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
   2620   // to isEvaluatable most of the time.
   2621   //
   2622   // If we ever capture reference-binding directly in the AST, we can
   2623   // kill the second parameter.
   2624 
   2625   if (IsForRef) {
   2626     EvalResult Result;
   2627     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
   2628       return true;
   2629     if (Culprit)
   2630       *Culprit = this;
   2631     return false;
   2632   }
   2633 
   2634   switch (getStmtClass()) {
   2635   default: break;
   2636   case StringLiteralClass:
   2637   case ObjCEncodeExprClass:
   2638     return true;
   2639   case CXXTemporaryObjectExprClass:
   2640   case CXXConstructExprClass: {
   2641     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
   2642 
   2643     if (CE->getConstructor()->isTrivial() &&
   2644         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
   2645       // Trivial default constructor
   2646       if (!CE->getNumArgs()) return true;
   2647 
   2648       // Trivial copy constructor
   2649       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
   2650       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
   2651     }
   2652 
   2653     break;
   2654   }
   2655   case CompoundLiteralExprClass: {
   2656     // This handles gcc's extension that allows global initializers like
   2657     // "struct x {int x;} x = (struct x) {};".
   2658     // FIXME: This accepts other cases it shouldn't!
   2659     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
   2660     return Exp->isConstantInitializer(Ctx, false, Culprit);
   2661   }
   2662   case DesignatedInitUpdateExprClass: {
   2663     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
   2664     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
   2665            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
   2666   }
   2667   case InitListExprClass: {
   2668     const InitListExpr *ILE = cast<InitListExpr>(this);
   2669     if (ILE->getType()->isArrayType()) {
   2670       unsigned numInits = ILE->getNumInits();
   2671       for (unsigned i = 0; i < numInits; i++) {
   2672         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
   2673           return false;
   2674       }
   2675       return true;
   2676     }
   2677 
   2678     if (ILE->getType()->isRecordType()) {
   2679       unsigned ElementNo = 0;
   2680       RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
   2681       for (const auto *Field : RD->fields()) {
   2682         // If this is a union, skip all the fields that aren't being initialized.
   2683         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
   2684           continue;
   2685 
   2686         // Don't emit anonymous bitfields, they just affect layout.
   2687         if (Field->isUnnamedBitfield())
   2688           continue;
   2689 
   2690         if (ElementNo < ILE->getNumInits()) {
   2691           const Expr *Elt = ILE->getInit(ElementNo++);
   2692           if (Field->isBitField()) {
   2693             // Bitfields have to evaluate to an integer.
   2694             llvm::APSInt ResultTmp;
   2695             if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
   2696               if (Culprit)
   2697                 *Culprit = Elt;
   2698               return false;
   2699             }
   2700           } else {
   2701             bool RefType = Field->getType()->isReferenceType();
   2702             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
   2703               return false;
   2704           }
   2705         }
   2706       }
   2707       return true;
   2708     }
   2709 
   2710     break;
   2711   }
   2712   case ImplicitValueInitExprClass:
   2713   case NoInitExprClass:
   2714     return true;
   2715   case ParenExprClass:
   2716     return cast<ParenExpr>(this)->getSubExpr()
   2717       ->isConstantInitializer(Ctx, IsForRef, Culprit);
   2718   case GenericSelectionExprClass:
   2719     return cast<GenericSelectionExpr>(this)->getResultExpr()
   2720       ->isConstantInitializer(Ctx, IsForRef, Culprit);
   2721   case ChooseExprClass:
   2722     if (cast<ChooseExpr>(this)->isConditionDependent()) {
   2723       if (Culprit)
   2724         *Culprit = this;
   2725       return false;
   2726     }
   2727     return cast<ChooseExpr>(this)->getChosenSubExpr()
   2728       ->isConstantInitializer(Ctx, IsForRef, Culprit);
   2729   case UnaryOperatorClass: {
   2730     const UnaryOperator* Exp = cast<UnaryOperator>(this);
   2731     if (Exp->getOpcode() == UO_Extension)
   2732       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
   2733     break;
   2734   }
   2735   case CXXFunctionalCastExprClass:
   2736   case CXXStaticCastExprClass:
   2737   case ImplicitCastExprClass:
   2738   case CStyleCastExprClass:
   2739   case ObjCBridgedCastExprClass:
   2740   case CXXDynamicCastExprClass:
   2741   case CXXReinterpretCastExprClass:
   2742   case CXXConstCastExprClass: {
   2743     const CastExpr *CE = cast<CastExpr>(this);
   2744 
   2745     // Handle misc casts we want to ignore.
   2746     if (CE->getCastKind() == CK_NoOp ||
   2747         CE->getCastKind() == CK_LValueToRValue ||
   2748         CE->getCastKind() == CK_ToUnion ||
   2749         CE->getCastKind() == CK_ConstructorConversion ||
   2750         CE->getCastKind() == CK_NonAtomicToAtomic ||
   2751         CE->getCastKind() == CK_AtomicToNonAtomic)
   2752       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
   2753 
   2754     break;
   2755   }
   2756   case MaterializeTemporaryExprClass:
   2757     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
   2758       ->isConstantInitializer(Ctx, false, Culprit);
   2759 
   2760   case SubstNonTypeTemplateParmExprClass:
   2761     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
   2762       ->isConstantInitializer(Ctx, false, Culprit);
   2763   case CXXDefaultArgExprClass:
   2764     return cast<CXXDefaultArgExpr>(this)->getExpr()
   2765       ->isConstantInitializer(Ctx, false, Culprit);
   2766   case CXXDefaultInitExprClass:
   2767     return cast<CXXDefaultInitExpr>(this)->getExpr()
   2768       ->isConstantInitializer(Ctx, false, Culprit);
   2769   }
   2770   // Allow certain forms of UB in constant initializers: signed integer
   2771   // overflow and floating-point division by zero. We'll give a warning on
   2772   // these, but they're common enough that we have to accept them.
   2773   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
   2774     return true;
   2775   if (Culprit)
   2776     *Culprit = this;
   2777   return false;
   2778 }
   2779 
   2780 namespace {
   2781   /// \brief Look for any side effects within a Stmt.
   2782   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
   2783     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
   2784     const bool IncludePossibleEffects;
   2785     bool HasSideEffects;
   2786 
   2787   public:
   2788     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
   2789       : Inherited(Context),
   2790         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
   2791 
   2792     bool hasSideEffects() const { return HasSideEffects; }
   2793 
   2794     void VisitExpr(const Expr *E) {
   2795       if (!HasSideEffects &&
   2796           E->HasSideEffects(Context, IncludePossibleEffects))
   2797         HasSideEffects = true;
   2798     }
   2799   };
   2800 }
   2801 
   2802 bool Expr::HasSideEffects(const ASTContext &Ctx,
   2803                           bool IncludePossibleEffects) const {
   2804   // In circumstances where we care about definite side effects instead of
   2805   // potential side effects, we want to ignore expressions that are part of a
   2806   // macro expansion as a potential side effect.
   2807   if (!IncludePossibleEffects && getExprLoc().isMacroID())
   2808     return false;
   2809 
   2810   if (isInstantiationDependent())
   2811     return IncludePossibleEffects;
   2812 
   2813   switch (getStmtClass()) {
   2814   case NoStmtClass:
   2815   #define ABSTRACT_STMT(Type)
   2816   #define STMT(Type, Base) case Type##Class:
   2817   #define EXPR(Type, Base)
   2818   #include "clang/AST/StmtNodes.inc"
   2819     llvm_unreachable("unexpected Expr kind");
   2820 
   2821   case DependentScopeDeclRefExprClass:
   2822   case CXXUnresolvedConstructExprClass:
   2823   case CXXDependentScopeMemberExprClass:
   2824   case UnresolvedLookupExprClass:
   2825   case UnresolvedMemberExprClass:
   2826   case PackExpansionExprClass:
   2827   case SubstNonTypeTemplateParmPackExprClass:
   2828   case FunctionParmPackExprClass:
   2829   case TypoExprClass:
   2830   case CXXFoldExprClass:
   2831     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
   2832 
   2833   case DeclRefExprClass:
   2834   case ObjCIvarRefExprClass:
   2835   case PredefinedExprClass:
   2836   case IntegerLiteralClass:
   2837   case FloatingLiteralClass:
   2838   case ImaginaryLiteralClass:
   2839   case StringLiteralClass:
   2840   case CharacterLiteralClass:
   2841   case OffsetOfExprClass:
   2842   case ImplicitValueInitExprClass:
   2843   case UnaryExprOrTypeTraitExprClass:
   2844   case AddrLabelExprClass:
   2845   case GNUNullExprClass:
   2846   case NoInitExprClass:
   2847   case CXXBoolLiteralExprClass:
   2848   case CXXNullPtrLiteralExprClass:
   2849   case CXXThisExprClass:
   2850   case CXXScalarValueInitExprClass:
   2851   case TypeTraitExprClass:
   2852   case ArrayTypeTraitExprClass:
   2853   case ExpressionTraitExprClass:
   2854   case CXXNoexceptExprClass:
   2855   case SizeOfPackExprClass:
   2856   case ObjCStringLiteralClass:
   2857   case ObjCEncodeExprClass:
   2858   case ObjCBoolLiteralExprClass:
   2859   case CXXUuidofExprClass:
   2860   case OpaqueValueExprClass:
   2861     // These never have a side-effect.
   2862     return false;
   2863 
   2864   case CallExprClass:
   2865   case CXXOperatorCallExprClass:
   2866   case CXXMemberCallExprClass:
   2867   case CUDAKernelCallExprClass:
   2868   case UserDefinedLiteralClass: {
   2869     // We don't know a call definitely has side effects, except for calls
   2870     // to pure/const functions that definitely don't.
   2871     // If the call itself is considered side-effect free, check the operands.
   2872     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
   2873     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
   2874     if (IsPure || !IncludePossibleEffects)
   2875       break;
   2876     return true;
   2877   }
   2878 
   2879   case BlockExprClass:
   2880   case CXXBindTemporaryExprClass:
   2881     if (!IncludePossibleEffects)
   2882       break;
   2883     return true;
   2884 
   2885   case MSPropertyRefExprClass:
   2886   case MSPropertySubscriptExprClass:
   2887   case CompoundAssignOperatorClass:
   2888   case VAArgExprClass:
   2889   case AtomicExprClass:
   2890   case CXXThrowExprClass:
   2891   case CXXNewExprClass:
   2892   case CXXDeleteExprClass:
   2893   case CoawaitExprClass:
   2894   case CoyieldExprClass:
   2895     // These always have a side-effect.
   2896     return true;
   2897 
   2898   case StmtExprClass: {
   2899     // StmtExprs have a side-effect if any substatement does.
   2900     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
   2901     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
   2902     return Finder.hasSideEffects();
   2903   }
   2904 
   2905   case ExprWithCleanupsClass:
   2906     if (IncludePossibleEffects)
   2907       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
   2908         return true;
   2909     break;
   2910 
   2911   case ParenExprClass:
   2912   case ArraySubscriptExprClass:
   2913   case OMPArraySectionExprClass:
   2914   case MemberExprClass:
   2915   case ConditionalOperatorClass:
   2916   case BinaryConditionalOperatorClass:
   2917   case CompoundLiteralExprClass:
   2918   case ExtVectorElementExprClass:
   2919   case DesignatedInitExprClass:
   2920   case DesignatedInitUpdateExprClass:
   2921   case ParenListExprClass:
   2922   case CXXPseudoDestructorExprClass:
   2923   case CXXStdInitializerListExprClass:
   2924   case SubstNonTypeTemplateParmExprClass:
   2925   case MaterializeTemporaryExprClass:
   2926   case ShuffleVectorExprClass:
   2927   case ConvertVectorExprClass:
   2928   case AsTypeExprClass:
   2929     // These have a side-effect if any subexpression does.
   2930     break;
   2931 
   2932   case UnaryOperatorClass:
   2933     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
   2934       return true;
   2935     break;
   2936 
   2937   case BinaryOperatorClass:
   2938     if (cast<BinaryOperator>(this)->isAssignmentOp())
   2939       return true;
   2940     break;
   2941 
   2942   case InitListExprClass:
   2943     // FIXME: The children for an InitListExpr doesn't include the array filler.
   2944     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
   2945       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
   2946         return true;
   2947     break;
   2948 
   2949   case GenericSelectionExprClass:
   2950     return cast<GenericSelectionExpr>(this)->getResultExpr()->
   2951         HasSideEffects(Ctx, IncludePossibleEffects);
   2952 
   2953   case ChooseExprClass:
   2954     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
   2955         Ctx, IncludePossibleEffects);
   2956 
   2957   case CXXDefaultArgExprClass:
   2958     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
   2959         Ctx, IncludePossibleEffects);
   2960 
   2961   case CXXDefaultInitExprClass: {
   2962     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
   2963     if (const Expr *E = FD->getInClassInitializer())
   2964       return E->HasSideEffects(Ctx, IncludePossibleEffects);
   2965     // If we've not yet parsed the initializer, assume it has side-effects.
   2966     return true;
   2967   }
   2968 
   2969   case CXXDynamicCastExprClass: {
   2970     // A dynamic_cast expression has side-effects if it can throw.
   2971     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
   2972     if (DCE->getTypeAsWritten()->isReferenceType() &&
   2973         DCE->getCastKind() == CK_Dynamic)
   2974       return true;
   2975   } // Fall through.
   2976   case ImplicitCastExprClass:
   2977   case CStyleCastExprClass:
   2978   case CXXStaticCastExprClass:
   2979   case CXXReinterpretCastExprClass:
   2980   case CXXConstCastExprClass:
   2981   case CXXFunctionalCastExprClass: {
   2982     // While volatile reads are side-effecting in both C and C++, we treat them
   2983     // as having possible (not definite) side-effects. This allows idiomatic
   2984     // code to behave without warning, such as sizeof(*v) for a volatile-
   2985     // qualified pointer.
   2986     if (!IncludePossibleEffects)
   2987       break;
   2988 
   2989     const CastExpr *CE = cast<CastExpr>(this);
   2990     if (CE->getCastKind() == CK_LValueToRValue &&
   2991         CE->getSubExpr()->getType().isVolatileQualified())
   2992       return true;
   2993     break;
   2994   }
   2995 
   2996   case CXXTypeidExprClass:
   2997     // typeid might throw if its subexpression is potentially-evaluated, so has
   2998     // side-effects in that case whether or not its subexpression does.
   2999     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
   3000 
   3001   case CXXConstructExprClass:
   3002   case CXXTemporaryObjectExprClass: {
   3003     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
   3004     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
   3005       return true;
   3006     // A trivial constructor does not add any side-effects of its own. Just look
   3007     // at its arguments.
   3008     break;
   3009   }
   3010 
   3011   case CXXInheritedCtorInitExprClass: {
   3012     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
   3013     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
   3014       return true;
   3015     break;
   3016   }
   3017 
   3018   case LambdaExprClass: {
   3019     const LambdaExpr *LE = cast<LambdaExpr>(this);
   3020     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
   3021                                       E = LE->capture_end(); I != E; ++I)
   3022       if (I->getCaptureKind() == LCK_ByCopy)
   3023         // FIXME: Only has a side-effect if the variable is volatile or if
   3024         // the copy would invoke a non-trivial copy constructor.
   3025         return true;
   3026     return false;
   3027   }
   3028 
   3029   case PseudoObjectExprClass: {
   3030     // Only look for side-effects in the semantic form, and look past
   3031     // OpaqueValueExpr bindings in that form.
   3032     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
   3033     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
   3034                                                     E = PO->semantics_end();
   3035          I != E; ++I) {
   3036       const Expr *Subexpr = *I;
   3037       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
   3038         Subexpr = OVE->getSourceExpr();
   3039       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
   3040         return true;
   3041     }
   3042     return false;
   3043   }
   3044 
   3045   case ObjCBoxedExprClass:
   3046   case ObjCArrayLiteralClass:
   3047   case ObjCDictionaryLiteralClass:
   3048   case ObjCSelectorExprClass:
   3049   case ObjCProtocolExprClass:
   3050   case ObjCIsaExprClass:
   3051   case ObjCIndirectCopyRestoreExprClass:
   3052   case ObjCSubscriptRefExprClass:
   3053   case ObjCBridgedCastExprClass:
   3054   case ObjCMessageExprClass:
   3055   case ObjCPropertyRefExprClass:
   3056   // FIXME: Classify these cases better.
   3057     if (IncludePossibleEffects)
   3058       return true;
   3059     break;
   3060   }
   3061 
   3062   // Recurse to children.
   3063   for (const Stmt *SubStmt : children())
   3064     if (SubStmt &&
   3065         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
   3066       return true;
   3067 
   3068   return false;
   3069 }
   3070 
   3071 namespace {
   3072   /// \brief Look for a call to a non-trivial function within an expression.
   3073   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
   3074   {
   3075     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
   3076 
   3077     bool NonTrivial;
   3078 
   3079   public:
   3080     explicit NonTrivialCallFinder(const ASTContext &Context)
   3081       : Inherited(Context), NonTrivial(false) { }
   3082 
   3083     bool hasNonTrivialCall() const { return NonTrivial; }
   3084 
   3085     void VisitCallExpr(const CallExpr *E) {
   3086       if (const CXXMethodDecl *Method
   3087           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
   3088         if (Method->isTrivial()) {
   3089           // Recurse to children of the call.
   3090           Inherited::VisitStmt(E);
   3091           return;
   3092         }
   3093       }
   3094 
   3095       NonTrivial = true;
   3096     }
   3097 
   3098     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
   3099       if (E->getConstructor()->isTrivial()) {
   3100         // Recurse to children of the call.
   3101         Inherited::VisitStmt(E);
   3102         return;
   3103       }
   3104 
   3105       NonTrivial = true;
   3106     }
   3107 
   3108     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
   3109       if (E->getTemporary()->getDestructor()->isTrivial()) {
   3110         Inherited::VisitStmt(E);
   3111         return;
   3112       }
   3113 
   3114       NonTrivial = true;
   3115     }
   3116   };
   3117 }
   3118 
   3119 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
   3120   NonTrivialCallFinder Finder(Ctx);
   3121   Finder.Visit(this);
   3122   return Finder.hasNonTrivialCall();
   3123 }
   3124 
   3125 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
   3126 /// pointer constant or not, as well as the specific kind of constant detected.
   3127 /// Null pointer constants can be integer constant expressions with the
   3128 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
   3129 /// (a GNU extension).
   3130 Expr::NullPointerConstantKind
   3131 Expr::isNullPointerConstant(ASTContext &Ctx,
   3132                             NullPointerConstantValueDependence NPC) const {
   3133   if (isValueDependent() &&
   3134       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
   3135     switch (NPC) {
   3136     case NPC_NeverValueDependent:
   3137       llvm_unreachable("Unexpected value dependent expression!");
   3138     case NPC_ValueDependentIsNull:
   3139       if (isTypeDependent() || getType()->isIntegralType(Ctx))
   3140         return NPCK_ZeroExpression;
   3141       else
   3142         return NPCK_NotNull;
   3143 
   3144     case NPC_ValueDependentIsNotNull:
   3145       return NPCK_NotNull;
   3146     }
   3147   }
   3148 
   3149   // Strip off a cast to void*, if it exists. Except in C++.
   3150   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
   3151     if (!Ctx.getLangOpts().CPlusPlus) {
   3152       // Check that it is a cast to void*.
   3153       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
   3154         QualType Pointee = PT->getPointeeType();
   3155         Qualifiers Q = Pointee.getQualifiers();
   3156         // In OpenCL v2.0 generic address space acts as a placeholder
   3157         // and should be ignored.
   3158         bool IsASValid = true;
   3159         if (Ctx.getLangOpts().OpenCLVersion >= 200) {
   3160           if (Pointee.getAddressSpace() == LangAS::opencl_generic)
   3161             Q.removeAddressSpace();
   3162           else
   3163             IsASValid = false;
   3164         }
   3165 
   3166         if (IsASValid && !Q.hasQualifiers() &&
   3167             Pointee->isVoidType() &&                      // to void*
   3168             CE->getSubExpr()->getType()->isIntegerType()) // from int.
   3169           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3170       }
   3171     }
   3172   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
   3173     // Ignore the ImplicitCastExpr type entirely.
   3174     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3175   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
   3176     // Accept ((void*)0) as a null pointer constant, as many other
   3177     // implementations do.
   3178     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
   3179   } else if (const GenericSelectionExpr *GE =
   3180                dyn_cast<GenericSelectionExpr>(this)) {
   3181     if (GE->isResultDependent())
   3182       return NPCK_NotNull;
   3183     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
   3184   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
   3185     if (CE->isConditionDependent())
   3186       return NPCK_NotNull;
   3187     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
   3188   } else if (const CXXDefaultArgExpr *DefaultArg
   3189                = dyn_cast<CXXDefaultArgExpr>(this)) {
   3190     // See through default argument expressions.
   3191     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
   3192   } else if (const CXXDefaultInitExpr *DefaultInit
   3193                = dyn_cast<CXXDefaultInitExpr>(this)) {
   3194     // See through default initializer expressions.
   3195     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
   3196   } else if (isa<GNUNullExpr>(this)) {
   3197     // The GNU __null extension is always a null pointer constant.
   3198     return NPCK_GNUNull;
   3199   } else if (const MaterializeTemporaryExpr *M
   3200                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
   3201     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
   3202   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
   3203     if (const Expr *Source = OVE->getSourceExpr())
   3204       return Source->isNullPointerConstant(Ctx, NPC);
   3205   }
   3206 
   3207   // C++11 nullptr_t is always a null pointer constant.
   3208   if (getType()->isNullPtrType())
   3209     return NPCK_CXX11_nullptr;
   3210 
   3211   if (const RecordType *UT = getType()->getAsUnionType())
   3212     if (!Ctx.getLangOpts().CPlusPlus11 &&
   3213         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
   3214       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
   3215         const Expr *InitExpr = CLE->getInitializer();
   3216         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
   3217           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
   3218       }
   3219   // This expression must be an integer type.
   3220   if (!getType()->isIntegerType() ||
   3221       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
   3222     return NPCK_NotNull;
   3223 
   3224   if (Ctx.getLangOpts().CPlusPlus11) {
   3225     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
   3226     // value zero or a prvalue of type std::nullptr_t.
   3227     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
   3228     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
   3229     if (Lit && !Lit->getValue())
   3230       return NPCK_ZeroLiteral;
   3231     else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
   3232       return NPCK_NotNull;
   3233   } else {
   3234     // If we have an integer constant expression, we need to *evaluate* it and
   3235     // test for the value 0.
   3236     if (!isIntegerConstantExpr(Ctx))
   3237       return NPCK_NotNull;
   3238   }
   3239 
   3240   if (EvaluateKnownConstInt(Ctx) != 0)
   3241     return NPCK_NotNull;
   3242 
   3243   if (isa<IntegerLiteral>(this))
   3244     return NPCK_ZeroLiteral;
   3245   return NPCK_ZeroExpression;
   3246 }
   3247 
   3248 /// \brief If this expression is an l-value for an Objective C
   3249 /// property, find the underlying property reference expression.
   3250 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
   3251   const Expr *E = this;
   3252   while (true) {
   3253     assert((E->getValueKind() == VK_LValue &&
   3254             E->getObjectKind() == OK_ObjCProperty) &&
   3255            "expression is not a property reference");
   3256     E = E->IgnoreParenCasts();
   3257     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   3258       if (BO->getOpcode() == BO_Comma) {
   3259         E = BO->getRHS();
   3260         continue;
   3261       }
   3262     }
   3263 
   3264     break;
   3265   }
   3266 
   3267   return cast<ObjCPropertyRefExpr>(E);
   3268 }
   3269 
   3270 bool Expr::isObjCSelfExpr() const {
   3271   const Expr *E = IgnoreParenImpCasts();
   3272 
   3273   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   3274   if (!DRE)
   3275     return false;
   3276 
   3277   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
   3278   if (!Param)
   3279     return false;
   3280 
   3281   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
   3282   if (!M)
   3283     return false;
   3284 
   3285   return M->getSelfDecl() == Param;
   3286 }
   3287 
   3288 FieldDecl *Expr::getSourceBitField() {
   3289   Expr *E = this->IgnoreParens();
   3290 
   3291   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   3292     if (ICE->getCastKind() == CK_LValueToRValue ||
   3293         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
   3294       E = ICE->getSubExpr()->IgnoreParens();
   3295     else
   3296       break;
   3297   }
   3298 
   3299   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
   3300     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
   3301       if (Field->isBitField())
   3302         return Field;
   3303 
   3304   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
   3305     if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
   3306       if (Ivar->isBitField())
   3307         return Ivar;
   3308 
   3309   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
   3310     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
   3311       if (Field->isBitField())
   3312         return Field;
   3313 
   3314   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
   3315     if (BinOp->isAssignmentOp() && BinOp->getLHS())
   3316       return BinOp->getLHS()->getSourceBitField();
   3317 
   3318     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
   3319       return BinOp->getRHS()->getSourceBitField();
   3320   }
   3321 
   3322   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
   3323     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
   3324       return UnOp->getSubExpr()->getSourceBitField();
   3325 
   3326   return nullptr;
   3327 }
   3328 
   3329 bool Expr::refersToVectorElement() const {
   3330   const Expr *E = this->IgnoreParens();
   3331 
   3332   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   3333     if (ICE->getValueKind() != VK_RValue &&
   3334         ICE->getCastKind() == CK_NoOp)
   3335       E = ICE->getSubExpr()->IgnoreParens();
   3336     else
   3337       break;
   3338   }
   3339 
   3340   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
   3341     return ASE->getBase()->getType()->isVectorType();
   3342 
   3343   if (isa<ExtVectorElementExpr>(E))
   3344     return true;
   3345 
   3346   return false;
   3347 }
   3348 
   3349 bool Expr::refersToGlobalRegisterVar() const {
   3350   const Expr *E = this->IgnoreParenImpCasts();
   3351 
   3352   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   3353     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
   3354       if (VD->getStorageClass() == SC_Register &&
   3355           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
   3356         return true;
   3357 
   3358   return false;
   3359 }
   3360 
   3361 /// isArrow - Return true if the base expression is a pointer to vector,
   3362 /// return false if the base expression is a vector.
   3363 bool ExtVectorElementExpr::isArrow() const {
   3364   return getBase()->getType()->isPointerType();
   3365 }
   3366 
   3367 unsigned ExtVectorElementExpr::getNumElements() const {
   3368   if (const VectorType *VT = getType()->getAs<VectorType>())
   3369     return VT->getNumElements();
   3370   return 1;
   3371 }
   3372 
   3373 /// containsDuplicateElements - Return true if any element access is repeated.
   3374 bool ExtVectorElementExpr::containsDuplicateElements() const {
   3375   // FIXME: Refactor this code to an accessor on the AST node which returns the
   3376   // "type" of component access, and share with code below and in Sema.
   3377   StringRef Comp = Accessor->getName();
   3378 
   3379   // Halving swizzles do not contain duplicate elements.
   3380   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
   3381     return false;
   3382 
   3383   // Advance past s-char prefix on hex swizzles.
   3384   if (Comp[0] == 's' || Comp[0] == 'S')
   3385     Comp = Comp.substr(1);
   3386 
   3387   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
   3388     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
   3389         return true;
   3390 
   3391   return false;
   3392 }
   3393 
   3394 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
   3395 void ExtVectorElementExpr::getEncodedElementAccess(
   3396     SmallVectorImpl<uint32_t> &Elts) const {
   3397   StringRef Comp = Accessor->getName();
   3398   bool isNumericAccessor = false;
   3399   if (Comp[0] == 's' || Comp[0] == 'S') {
   3400     Comp = Comp.substr(1);
   3401     isNumericAccessor = true;
   3402   }
   3403 
   3404   bool isHi =   Comp == "hi";
   3405   bool isLo =   Comp == "lo";
   3406   bool isEven = Comp == "even";
   3407   bool isOdd  = Comp == "odd";
   3408 
   3409   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
   3410     uint64_t Index;
   3411 
   3412     if (isHi)
   3413       Index = e + i;
   3414     else if (isLo)
   3415       Index = i;
   3416     else if (isEven)
   3417       Index = 2 * i;
   3418     else if (isOdd)
   3419       Index = 2 * i + 1;
   3420     else
   3421       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
   3422 
   3423     Elts.push_back(Index);
   3424   }
   3425 }
   3426 
   3427 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
   3428                                      QualType Type, SourceLocation BLoc,
   3429                                      SourceLocation RP)
   3430    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
   3431           Type->isDependentType(), Type->isDependentType(),
   3432           Type->isInstantiationDependentType(),
   3433           Type->containsUnexpandedParameterPack()),
   3434      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
   3435 {
   3436   SubExprs = new (C) Stmt*[args.size()];
   3437   for (unsigned i = 0; i != args.size(); i++) {
   3438     if (args[i]->isTypeDependent())
   3439       ExprBits.TypeDependent = true;
   3440     if (args[i]->isValueDependent())
   3441       ExprBits.ValueDependent = true;
   3442     if (args[i]->isInstantiationDependent())
   3443       ExprBits.InstantiationDependent = true;
   3444     if (args[i]->containsUnexpandedParameterPack())
   3445       ExprBits.ContainsUnexpandedParameterPack = true;
   3446 
   3447     SubExprs[i] = args[i];
   3448   }
   3449 }
   3450 
   3451 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
   3452   if (SubExprs) C.Deallocate(SubExprs);
   3453 
   3454   this->NumExprs = Exprs.size();
   3455   SubExprs = new (C) Stmt*[NumExprs];
   3456   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
   3457 }
   3458 
   3459 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
   3460                                SourceLocation GenericLoc, Expr *ControllingExpr,
   3461                                ArrayRef<TypeSourceInfo*> AssocTypes,
   3462                                ArrayRef<Expr*> AssocExprs,
   3463                                SourceLocation DefaultLoc,
   3464                                SourceLocation RParenLoc,
   3465                                bool ContainsUnexpandedParameterPack,
   3466                                unsigned ResultIndex)
   3467   : Expr(GenericSelectionExprClass,
   3468          AssocExprs[ResultIndex]->getType(),
   3469          AssocExprs[ResultIndex]->getValueKind(),
   3470          AssocExprs[ResultIndex]->getObjectKind(),
   3471          AssocExprs[ResultIndex]->isTypeDependent(),
   3472          AssocExprs[ResultIndex]->isValueDependent(),
   3473          AssocExprs[ResultIndex]->isInstantiationDependent(),
   3474          ContainsUnexpandedParameterPack),
   3475     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
   3476     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
   3477     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
   3478     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
   3479   SubExprs[CONTROLLING] = ControllingExpr;
   3480   assert(AssocTypes.size() == AssocExprs.size());
   3481   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
   3482   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
   3483 }
   3484 
   3485 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
   3486                                SourceLocation GenericLoc, Expr *ControllingExpr,
   3487                                ArrayRef<TypeSourceInfo*> AssocTypes,
   3488                                ArrayRef<Expr*> AssocExprs,
   3489                                SourceLocation DefaultLoc,
   3490                                SourceLocation RParenLoc,
   3491                                bool ContainsUnexpandedParameterPack)
   3492   : Expr(GenericSelectionExprClass,
   3493          Context.DependentTy,
   3494          VK_RValue,
   3495          OK_Ordinary,
   3496          /*isTypeDependent=*/true,
   3497          /*isValueDependent=*/true,
   3498          /*isInstantiationDependent=*/true,
   3499          ContainsUnexpandedParameterPack),
   3500     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
   3501     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
   3502     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
   3503     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
   3504   SubExprs[CONTROLLING] = ControllingExpr;
   3505   assert(AssocTypes.size() == AssocExprs.size());
   3506   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
   3507   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
   3508 }
   3509 
   3510 //===----------------------------------------------------------------------===//
   3511 //  DesignatedInitExpr
   3512 //===----------------------------------------------------------------------===//
   3513 
   3514 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
   3515   assert(Kind == FieldDesignator && "Only valid on a field designator");
   3516   if (Field.NameOrField & 0x01)
   3517     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
   3518   else
   3519     return getField()->getIdentifier();
   3520 }
   3521 
   3522 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
   3523                                        llvm::ArrayRef<Designator> Designators,
   3524                                        SourceLocation EqualOrColonLoc,
   3525                                        bool GNUSyntax,
   3526                                        ArrayRef<Expr*> IndexExprs,
   3527                                        Expr *Init)
   3528   : Expr(DesignatedInitExprClass, Ty,
   3529          Init->getValueKind(), Init->getObjectKind(),
   3530          Init->isTypeDependent(), Init->isValueDependent(),
   3531          Init->isInstantiationDependent(),
   3532          Init->containsUnexpandedParameterPack()),
   3533     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
   3534     NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
   3535   this->Designators = new (C) Designator[NumDesignators];
   3536 
   3537   // Record the initializer itself.
   3538   child_iterator Child = child_begin();
   3539   *Child++ = Init;
   3540 
   3541   // Copy the designators and their subexpressions, computing
   3542   // value-dependence along the way.
   3543   unsigned IndexIdx = 0;
   3544   for (unsigned I = 0; I != NumDesignators; ++I) {
   3545     this->Designators[I] = Designators[I];
   3546 
   3547     if (this->Designators[I].isArrayDesignator()) {
   3548       // Compute type- and value-dependence.
   3549       Expr *Index = IndexExprs[IndexIdx];
   3550       if (Index->isTypeDependent() || Index->isValueDependent())
   3551         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
   3552       if (Index->isInstantiationDependent())
   3553         ExprBits.InstantiationDependent = true;
   3554       // Propagate unexpanded parameter packs.
   3555       if (Index->containsUnexpandedParameterPack())
   3556         ExprBits.ContainsUnexpandedParameterPack = true;
   3557 
   3558       // Copy the index expressions into permanent storage.
   3559       *Child++ = IndexExprs[IndexIdx++];
   3560     } else if (this->Designators[I].isArrayRangeDesignator()) {
   3561       // Compute type- and value-dependence.
   3562       Expr *Start = IndexExprs[IndexIdx];
   3563       Expr *End = IndexExprs[IndexIdx + 1];
   3564       if (Start->isTypeDependent() || Start->isValueDependent() ||
   3565           End->isTypeDependent() || End->isValueDependent()) {
   3566         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
   3567         ExprBits.InstantiationDependent = true;
   3568       } else if (Start->isInstantiationDependent() ||
   3569                  End->isInstantiationDependent()) {
   3570         ExprBits.InstantiationDependent = true;
   3571       }
   3572 
   3573       // Propagate unexpanded parameter packs.
   3574       if (Start->containsUnexpandedParameterPack() ||
   3575           End->containsUnexpandedParameterPack())
   3576         ExprBits.ContainsUnexpandedParameterPack = true;
   3577 
   3578       // Copy the start/end expressions into permanent storage.
   3579       *Child++ = IndexExprs[IndexIdx++];
   3580       *Child++ = IndexExprs[IndexIdx++];
   3581     }
   3582   }
   3583 
   3584   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
   3585 }
   3586 
   3587 DesignatedInitExpr *
   3588 DesignatedInitExpr::Create(const ASTContext &C,
   3589                            llvm::ArrayRef<Designator> Designators,
   3590                            ArrayRef<Expr*> IndexExprs,
   3591                            SourceLocation ColonOrEqualLoc,
   3592                            bool UsesColonSyntax, Expr *Init) {
   3593   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
   3594                          llvm::alignOf<DesignatedInitExpr>());
   3595   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
   3596                                       ColonOrEqualLoc, UsesColonSyntax,
   3597                                       IndexExprs, Init);
   3598 }
   3599 
   3600 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
   3601                                                     unsigned NumIndexExprs) {
   3602   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
   3603                          llvm::alignOf<DesignatedInitExpr>());
   3604   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
   3605 }
   3606 
   3607 void DesignatedInitExpr::setDesignators(const ASTContext &C,
   3608                                         const Designator *Desigs,
   3609                                         unsigned NumDesigs) {
   3610   Designators = new (C) Designator[NumDesigs];
   3611   NumDesignators = NumDesigs;
   3612   for (unsigned I = 0; I != NumDesigs; ++I)
   3613     Designators[I] = Desigs[I];
   3614 }
   3615 
   3616 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
   3617   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
   3618   if (size() == 1)
   3619     return DIE->getDesignator(0)->getSourceRange();
   3620   return SourceRange(DIE->getDesignator(0)->getLocStart(),
   3621                      DIE->getDesignator(size()-1)->getLocEnd());
   3622 }
   3623 
   3624 SourceLocation DesignatedInitExpr::getLocStart() const {
   3625   SourceLocation StartLoc;
   3626   auto *DIE = const_cast<DesignatedInitExpr *>(this);
   3627   Designator &First = *DIE->getDesignator(0);
   3628   if (First.isFieldDesignator()) {
   3629     if (GNUSyntax)
   3630       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
   3631     else
   3632       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
   3633   } else
   3634     StartLoc =
   3635       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
   3636   return StartLoc;
   3637 }
   3638 
   3639 SourceLocation DesignatedInitExpr::getLocEnd() const {
   3640   return getInit()->getLocEnd();
   3641 }
   3642 
   3643 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
   3644   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
   3645   return getSubExpr(D.ArrayOrRange.Index + 1);
   3646 }
   3647 
   3648 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
   3649   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3650          "Requires array range designator");
   3651   return getSubExpr(D.ArrayOrRange.Index + 1);
   3652 }
   3653 
   3654 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
   3655   assert(D.Kind == Designator::ArrayRangeDesignator &&
   3656          "Requires array range designator");
   3657   return getSubExpr(D.ArrayOrRange.Index + 2);
   3658 }
   3659 
   3660 /// \brief Replaces the designator at index @p Idx with the series
   3661 /// of designators in [First, Last).
   3662 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
   3663                                           const Designator *First,
   3664                                           const Designator *Last) {
   3665   unsigned NumNewDesignators = Last - First;
   3666   if (NumNewDesignators == 0) {
   3667     std::copy_backward(Designators + Idx + 1,
   3668                        Designators + NumDesignators,
   3669                        Designators + Idx);
   3670     --NumNewDesignators;
   3671     return;
   3672   } else if (NumNewDesignators == 1) {
   3673     Designators[Idx] = *First;
   3674     return;
   3675   }
   3676 
   3677   Designator *NewDesignators
   3678     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
   3679   std::copy(Designators, Designators + Idx, NewDesignators);
   3680   std::copy(First, Last, NewDesignators + Idx);
   3681   std::copy(Designators + Idx + 1, Designators + NumDesignators,
   3682             NewDesignators + Idx + NumNewDesignators);
   3683   Designators = NewDesignators;
   3684   NumDesignators = NumDesignators - 1 + NumNewDesignators;
   3685 }
   3686 
   3687 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
   3688     SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
   3689   : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
   3690          OK_Ordinary, false, false, false, false) {
   3691   BaseAndUpdaterExprs[0] = baseExpr;
   3692 
   3693   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
   3694   ILE->setType(baseExpr->getType());
   3695   BaseAndUpdaterExprs[1] = ILE;
   3696 }
   3697 
   3698 SourceLocation DesignatedInitUpdateExpr::getLocStart() const {
   3699   return getBase()->getLocStart();
   3700 }
   3701 
   3702 SourceLocation DesignatedInitUpdateExpr::getLocEnd() const {
   3703   return getBase()->getLocEnd();
   3704 }
   3705 
   3706 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
   3707                              ArrayRef<Expr*> exprs,
   3708                              SourceLocation rparenloc)
   3709   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
   3710          false, false, false, false),
   3711     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
   3712   Exprs = new (C) Stmt*[exprs.size()];
   3713   for (unsigned i = 0; i != exprs.size(); ++i) {
   3714     if (exprs[i]->isTypeDependent())
   3715       ExprBits.TypeDependent = true;
   3716     if (exprs[i]->isValueDependent())
   3717       ExprBits.ValueDependent = true;
   3718     if (exprs[i]->isInstantiationDependent())
   3719       ExprBits.InstantiationDependent = true;
   3720     if (exprs[i]->containsUnexpandedParameterPack())
   3721       ExprBits.ContainsUnexpandedParameterPack = true;
   3722 
   3723     Exprs[i] = exprs[i];
   3724   }
   3725 }
   3726 
   3727 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
   3728   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
   3729     e = ewc->getSubExpr();
   3730   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
   3731     e = m->GetTemporaryExpr();
   3732   e = cast<CXXConstructExpr>(e)->getArg(0);
   3733   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
   3734     e = ice->getSubExpr();
   3735   return cast<OpaqueValueExpr>(e);
   3736 }
   3737 
   3738 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
   3739                                            EmptyShell sh,
   3740                                            unsigned numSemanticExprs) {
   3741   void *buffer =
   3742       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
   3743                        llvm::alignOf<PseudoObjectExpr>());
   3744   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
   3745 }
   3746 
   3747 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
   3748   : Expr(PseudoObjectExprClass, shell) {
   3749   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
   3750 }
   3751 
   3752 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
   3753                                            ArrayRef<Expr*> semantics,
   3754                                            unsigned resultIndex) {
   3755   assert(syntax && "no syntactic expression!");
   3756   assert(semantics.size() && "no semantic expressions!");
   3757 
   3758   QualType type;
   3759   ExprValueKind VK;
   3760   if (resultIndex == NoResult) {
   3761     type = C.VoidTy;
   3762     VK = VK_RValue;
   3763   } else {
   3764     assert(resultIndex < semantics.size());
   3765     type = semantics[resultIndex]->getType();
   3766     VK = semantics[resultIndex]->getValueKind();
   3767     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
   3768   }
   3769 
   3770   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
   3771                             llvm::alignOf<PseudoObjectExpr>());
   3772   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
   3773                                       resultIndex);
   3774 }
   3775 
   3776 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
   3777                                    Expr *syntax, ArrayRef<Expr*> semantics,
   3778                                    unsigned resultIndex)
   3779   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
   3780          /*filled in at end of ctor*/ false, false, false, false) {
   3781   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
   3782   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
   3783 
   3784   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
   3785     Expr *E = (i == 0 ? syntax : semantics[i-1]);
   3786     getSubExprsBuffer()[i] = E;
   3787 
   3788     if (E->isTypeDependent())
   3789       ExprBits.TypeDependent = true;
   3790     if (E->isValueDependent())
   3791       ExprBits.ValueDependent = true;
   3792     if (E->isInstantiationDependent())
   3793       ExprBits.InstantiationDependent = true;
   3794     if (E->containsUnexpandedParameterPack())
   3795       ExprBits.ContainsUnexpandedParameterPack = true;
   3796 
   3797     if (isa<OpaqueValueExpr>(E))
   3798       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
   3799              "opaque-value semantic expressions for pseudo-object "
   3800              "operations must have sources");
   3801   }
   3802 }
   3803 
   3804 //===----------------------------------------------------------------------===//
   3805 //  Child Iterators for iterating over subexpressions/substatements
   3806 //===----------------------------------------------------------------------===//
   3807 
   3808 // UnaryExprOrTypeTraitExpr
   3809 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
   3810   // If this is of a type and the type is a VLA type (and not a typedef), the
   3811   // size expression of the VLA needs to be treated as an executable expression.
   3812   // Why isn't this weirdness documented better in StmtIterator?
   3813   if (isArgumentType()) {
   3814     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
   3815                                    getArgumentType().getTypePtr()))
   3816       return child_range(child_iterator(T), child_iterator());
   3817     return child_range(child_iterator(), child_iterator());
   3818   }
   3819   return child_range(&Argument.Ex, &Argument.Ex + 1);
   3820 }
   3821 
   3822 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
   3823                        QualType t, AtomicOp op, SourceLocation RP)
   3824   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
   3825          false, false, false, false),
   3826     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
   3827 {
   3828   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
   3829   for (unsigned i = 0; i != args.size(); i++) {
   3830     if (args[i]->isTypeDependent())
   3831       ExprBits.TypeDependent = true;
   3832     if (args[i]->isValueDependent())
   3833       ExprBits.ValueDependent = true;
   3834     if (args[i]->isInstantiationDependent())
   3835       ExprBits.InstantiationDependent = true;
   3836     if (args[i]->containsUnexpandedParameterPack())
   3837       ExprBits.ContainsUnexpandedParameterPack = true;
   3838 
   3839     SubExprs[i] = args[i];
   3840   }
   3841 }
   3842 
   3843 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
   3844   switch (Op) {
   3845   case AO__c11_atomic_init:
   3846   case AO__c11_atomic_load:
   3847   case AO__atomic_load_n:
   3848     return 2;
   3849 
   3850   case AO__c11_atomic_store:
   3851   case AO__c11_atomic_exchange:
   3852   case AO__atomic_load:
   3853   case AO__atomic_store:
   3854   case AO__atomic_store_n:
   3855   case AO__atomic_exchange_n:
   3856   case AO__c11_atomic_fetch_add:
   3857   case AO__c11_atomic_fetch_sub:
   3858   case AO__c11_atomic_fetch_and:
   3859   case AO__c11_atomic_fetch_or:
   3860   case AO__c11_atomic_fetch_xor:
   3861   case AO__atomic_fetch_add:
   3862   case AO__atomic_fetch_sub:
   3863   case AO__atomic_fetch_and:
   3864   case AO__atomic_fetch_or:
   3865   case AO__atomic_fetch_xor:
   3866   case AO__atomic_fetch_nand:
   3867   case AO__atomic_add_fetch:
   3868   case AO__atomic_sub_fetch:
   3869   case AO__atomic_and_fetch:
   3870   case AO__atomic_or_fetch:
   3871   case AO__atomic_xor_fetch:
   3872   case AO__atomic_nand_fetch:
   3873     return 3;
   3874 
   3875   case AO__atomic_exchange:
   3876     return 4;
   3877 
   3878   case AO__c11_atomic_compare_exchange_strong:
   3879   case AO__c11_atomic_compare_exchange_weak:
   3880     return 5;
   3881 
   3882   case AO__atomic_compare_exchange:
   3883   case AO__atomic_compare_exchange_n:
   3884     return 6;
   3885   }
   3886   llvm_unreachable("unknown atomic op");
   3887 }
   3888 
   3889 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
   3890   unsigned ArraySectionCount = 0;
   3891   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
   3892     Base = OASE->getBase();
   3893     ++ArraySectionCount;
   3894   }
   3895   while (auto *ASE =
   3896              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
   3897     Base = ASE->getBase();
   3898     ++ArraySectionCount;
   3899   }
   3900   Base = Base->IgnoreParenImpCasts();
   3901   auto OriginalTy = Base->getType();
   3902   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
   3903     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
   3904       OriginalTy = PVD->getOriginalType().getNonReferenceType();
   3905 
   3906   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
   3907     if (OriginalTy->isAnyPointerType())
   3908       OriginalTy = OriginalTy->getPointeeType();
   3909     else {
   3910       assert (OriginalTy->isArrayType());
   3911       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
   3912     }
   3913   }
   3914   return OriginalTy;
   3915 }
   3916