1 //===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for Objective-C expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/DeclObjC.h" 17 #include "clang/AST/ExprObjC.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Analysis/DomainSpecific/CocoaConventions.h" 21 #include "clang/Edit/Commit.h" 22 #include "clang/Edit/Rewriters.h" 23 #include "clang/Lex/Preprocessor.h" 24 #include "clang/Sema/Initialization.h" 25 #include "clang/Sema/Lookup.h" 26 #include "clang/Sema/Scope.h" 27 #include "clang/Sema/ScopeInfo.h" 28 #include "llvm/ADT/SmallString.h" 29 30 using namespace clang; 31 using namespace sema; 32 using llvm::makeArrayRef; 33 34 ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, 35 ArrayRef<Expr *> Strings) { 36 // Most ObjC strings are formed out of a single piece. However, we *can* 37 // have strings formed out of multiple @ strings with multiple pptokens in 38 // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one 39 // StringLiteral for ObjCStringLiteral to hold onto. 40 StringLiteral *S = cast<StringLiteral>(Strings[0]); 41 42 // If we have a multi-part string, merge it all together. 43 if (Strings.size() != 1) { 44 // Concatenate objc strings. 45 SmallString<128> StrBuf; 46 SmallVector<SourceLocation, 8> StrLocs; 47 48 for (Expr *E : Strings) { 49 S = cast<StringLiteral>(E); 50 51 // ObjC strings can't be wide or UTF. 52 if (!S->isAscii()) { 53 Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant) 54 << S->getSourceRange(); 55 return true; 56 } 57 58 // Append the string. 59 StrBuf += S->getString(); 60 61 // Get the locations of the string tokens. 62 StrLocs.append(S->tokloc_begin(), S->tokloc_end()); 63 } 64 65 // Create the aggregate string with the appropriate content and location 66 // information. 67 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 68 assert(CAT && "String literal not of constant array type!"); 69 QualType StrTy = Context.getConstantArrayType( 70 CAT->getElementType(), llvm::APInt(32, StrBuf.size() + 1), 71 CAT->getSizeModifier(), CAT->getIndexTypeCVRQualifiers()); 72 S = StringLiteral::Create(Context, StrBuf, StringLiteral::Ascii, 73 /*Pascal=*/false, StrTy, &StrLocs[0], 74 StrLocs.size()); 75 } 76 77 return BuildObjCStringLiteral(AtLocs[0], S); 78 } 79 80 ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){ 81 // Verify that this composite string is acceptable for ObjC strings. 82 if (CheckObjCString(S)) 83 return true; 84 85 // Initialize the constant string interface lazily. This assumes 86 // the NSString interface is seen in this translation unit. Note: We 87 // don't use NSConstantString, since the runtime team considers this 88 // interface private (even though it appears in the header files). 89 QualType Ty = Context.getObjCConstantStringInterface(); 90 if (!Ty.isNull()) { 91 Ty = Context.getObjCObjectPointerType(Ty); 92 } else if (getLangOpts().NoConstantCFStrings) { 93 IdentifierInfo *NSIdent=nullptr; 94 std::string StringClass(getLangOpts().ObjCConstantStringClass); 95 96 if (StringClass.empty()) 97 NSIdent = &Context.Idents.get("NSConstantString"); 98 else 99 NSIdent = &Context.Idents.get(StringClass); 100 101 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 102 LookupOrdinaryName); 103 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 104 Context.setObjCConstantStringInterface(StrIF); 105 Ty = Context.getObjCConstantStringInterface(); 106 Ty = Context.getObjCObjectPointerType(Ty); 107 } else { 108 // If there is no NSConstantString interface defined then treat this 109 // as error and recover from it. 110 Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent 111 << S->getSourceRange(); 112 Ty = Context.getObjCIdType(); 113 } 114 } else { 115 IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString); 116 NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc, 117 LookupOrdinaryName); 118 if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { 119 Context.setObjCConstantStringInterface(StrIF); 120 Ty = Context.getObjCConstantStringInterface(); 121 Ty = Context.getObjCObjectPointerType(Ty); 122 } else { 123 // If there is no NSString interface defined, implicitly declare 124 // a @class NSString; and use that instead. This is to make sure 125 // type of an NSString literal is represented correctly, instead of 126 // being an 'id' type. 127 Ty = Context.getObjCNSStringType(); 128 if (Ty.isNull()) { 129 ObjCInterfaceDecl *NSStringIDecl = 130 ObjCInterfaceDecl::Create (Context, 131 Context.getTranslationUnitDecl(), 132 SourceLocation(), NSIdent, 133 nullptr, nullptr, SourceLocation()); 134 Ty = Context.getObjCInterfaceType(NSStringIDecl); 135 Context.setObjCNSStringType(Ty); 136 } 137 Ty = Context.getObjCObjectPointerType(Ty); 138 } 139 } 140 141 return new (Context) ObjCStringLiteral(S, Ty, AtLoc); 142 } 143 144 /// \brief Emits an error if the given method does not exist, or if the return 145 /// type is not an Objective-C object. 146 static bool validateBoxingMethod(Sema &S, SourceLocation Loc, 147 const ObjCInterfaceDecl *Class, 148 Selector Sel, const ObjCMethodDecl *Method) { 149 if (!Method) { 150 // FIXME: Is there a better way to avoid quotes than using getName()? 151 S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName(); 152 return false; 153 } 154 155 // Make sure the return type is reasonable. 156 QualType ReturnType = Method->getReturnType(); 157 if (!ReturnType->isObjCObjectPointerType()) { 158 S.Diag(Loc, diag::err_objc_literal_method_sig) 159 << Sel; 160 S.Diag(Method->getLocation(), diag::note_objc_literal_method_return) 161 << ReturnType; 162 return false; 163 } 164 165 return true; 166 } 167 168 /// \brief Maps ObjCLiteralKind to NSClassIdKindKind 169 static NSAPI::NSClassIdKindKind ClassKindFromLiteralKind( 170 Sema::ObjCLiteralKind LiteralKind) { 171 switch (LiteralKind) { 172 case Sema::LK_Array: 173 return NSAPI::ClassId_NSArray; 174 case Sema::LK_Dictionary: 175 return NSAPI::ClassId_NSDictionary; 176 case Sema::LK_Numeric: 177 return NSAPI::ClassId_NSNumber; 178 case Sema::LK_String: 179 return NSAPI::ClassId_NSString; 180 case Sema::LK_Boxed: 181 return NSAPI::ClassId_NSValue; 182 183 // there is no corresponding matching 184 // between LK_None/LK_Block and NSClassIdKindKind 185 case Sema::LK_Block: 186 case Sema::LK_None: 187 break; 188 } 189 llvm_unreachable("LiteralKind can't be converted into a ClassKind"); 190 } 191 192 /// \brief Validates ObjCInterfaceDecl availability. 193 /// ObjCInterfaceDecl, used to create ObjC literals, should be defined 194 /// if clang not in a debugger mode. 195 static bool ValidateObjCLiteralInterfaceDecl(Sema &S, ObjCInterfaceDecl *Decl, 196 SourceLocation Loc, 197 Sema::ObjCLiteralKind LiteralKind) { 198 if (!Decl) { 199 NSAPI::NSClassIdKindKind Kind = ClassKindFromLiteralKind(LiteralKind); 200 IdentifierInfo *II = S.NSAPIObj->getNSClassId(Kind); 201 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 202 << II->getName() << LiteralKind; 203 return false; 204 } else if (!Decl->hasDefinition() && !S.getLangOpts().DebuggerObjCLiteral) { 205 S.Diag(Loc, diag::err_undeclared_objc_literal_class) 206 << Decl->getName() << LiteralKind; 207 S.Diag(Decl->getLocation(), diag::note_forward_class); 208 return false; 209 } 210 211 return true; 212 } 213 214 /// \brief Looks up ObjCInterfaceDecl of a given NSClassIdKindKind. 215 /// Used to create ObjC literals, such as NSDictionary (@{}), 216 /// NSArray (@[]) and Boxed Expressions (@()) 217 static ObjCInterfaceDecl *LookupObjCInterfaceDeclForLiteral(Sema &S, 218 SourceLocation Loc, 219 Sema::ObjCLiteralKind LiteralKind) { 220 NSAPI::NSClassIdKindKind ClassKind = ClassKindFromLiteralKind(LiteralKind); 221 IdentifierInfo *II = S.NSAPIObj->getNSClassId(ClassKind); 222 NamedDecl *IF = S.LookupSingleName(S.TUScope, II, Loc, 223 Sema::LookupOrdinaryName); 224 ObjCInterfaceDecl *ID = dyn_cast_or_null<ObjCInterfaceDecl>(IF); 225 if (!ID && S.getLangOpts().DebuggerObjCLiteral) { 226 ASTContext &Context = S.Context; 227 TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); 228 ID = ObjCInterfaceDecl::Create (Context, TU, SourceLocation(), II, 229 nullptr, nullptr, SourceLocation()); 230 } 231 232 if (!ValidateObjCLiteralInterfaceDecl(S, ID, Loc, LiteralKind)) { 233 ID = nullptr; 234 } 235 236 return ID; 237 } 238 239 /// \brief Retrieve the NSNumber factory method that should be used to create 240 /// an Objective-C literal for the given type. 241 static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc, 242 QualType NumberType, 243 bool isLiteral = false, 244 SourceRange R = SourceRange()) { 245 Optional<NSAPI::NSNumberLiteralMethodKind> Kind = 246 S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType); 247 248 if (!Kind) { 249 if (isLiteral) { 250 S.Diag(Loc, diag::err_invalid_nsnumber_type) 251 << NumberType << R; 252 } 253 return nullptr; 254 } 255 256 // If we already looked up this method, we're done. 257 if (S.NSNumberLiteralMethods[*Kind]) 258 return S.NSNumberLiteralMethods[*Kind]; 259 260 Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind, 261 /*Instance=*/false); 262 263 ASTContext &CX = S.Context; 264 265 // Look up the NSNumber class, if we haven't done so already. It's cached 266 // in the Sema instance. 267 if (!S.NSNumberDecl) { 268 S.NSNumberDecl = LookupObjCInterfaceDeclForLiteral(S, Loc, 269 Sema::LK_Numeric); 270 if (!S.NSNumberDecl) { 271 return nullptr; 272 } 273 } 274 275 if (S.NSNumberPointer.isNull()) { 276 // generate the pointer to NSNumber type. 277 QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl); 278 S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject); 279 } 280 281 // Look for the appropriate method within NSNumber. 282 ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel); 283 if (!Method && S.getLangOpts().DebuggerObjCLiteral) { 284 // create a stub definition this NSNumber factory method. 285 TypeSourceInfo *ReturnTInfo = nullptr; 286 Method = 287 ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel, 288 S.NSNumberPointer, ReturnTInfo, S.NSNumberDecl, 289 /*isInstance=*/false, /*isVariadic=*/false, 290 /*isPropertyAccessor=*/false, 291 /*isImplicitlyDeclared=*/true, 292 /*isDefined=*/false, ObjCMethodDecl::Required, 293 /*HasRelatedResultType=*/false); 294 ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method, 295 SourceLocation(), SourceLocation(), 296 &CX.Idents.get("value"), 297 NumberType, /*TInfo=*/nullptr, 298 SC_None, nullptr); 299 Method->setMethodParams(S.Context, value, None); 300 } 301 302 if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method)) 303 return nullptr; 304 305 // Note: if the parameter type is out-of-line, we'll catch it later in the 306 // implicit conversion. 307 308 S.NSNumberLiteralMethods[*Kind] = Method; 309 return Method; 310 } 311 312 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the 313 /// numeric literal expression. Type of the expression will be "NSNumber *". 314 ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) { 315 // Determine the type of the literal. 316 QualType NumberType = Number->getType(); 317 if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) { 318 // In C, character literals have type 'int'. That's not the type we want 319 // to use to determine the Objective-c literal kind. 320 switch (Char->getKind()) { 321 case CharacterLiteral::Ascii: 322 case CharacterLiteral::UTF8: 323 NumberType = Context.CharTy; 324 break; 325 326 case CharacterLiteral::Wide: 327 NumberType = Context.getWideCharType(); 328 break; 329 330 case CharacterLiteral::UTF16: 331 NumberType = Context.Char16Ty; 332 break; 333 334 case CharacterLiteral::UTF32: 335 NumberType = Context.Char32Ty; 336 break; 337 } 338 } 339 340 // Look for the appropriate method within NSNumber. 341 // Construct the literal. 342 SourceRange NR(Number->getSourceRange()); 343 ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType, 344 true, NR); 345 if (!Method) 346 return ExprError(); 347 348 // Convert the number to the type that the parameter expects. 349 ParmVarDecl *ParamDecl = Method->parameters()[0]; 350 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 351 ParamDecl); 352 ExprResult ConvertedNumber = PerformCopyInitialization(Entity, 353 SourceLocation(), 354 Number); 355 if (ConvertedNumber.isInvalid()) 356 return ExprError(); 357 Number = ConvertedNumber.get(); 358 359 // Use the effective source range of the literal, including the leading '@'. 360 return MaybeBindToTemporary( 361 new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method, 362 SourceRange(AtLoc, NR.getEnd()))); 363 } 364 365 ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc, 366 SourceLocation ValueLoc, 367 bool Value) { 368 ExprResult Inner; 369 if (getLangOpts().CPlusPlus) { 370 Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false); 371 } else { 372 // C doesn't actually have a way to represent literal values of type 373 // _Bool. So, we'll use 0/1 and implicit cast to _Bool. 374 Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0); 375 Inner = ImpCastExprToType(Inner.get(), Context.BoolTy, 376 CK_IntegralToBoolean); 377 } 378 379 return BuildObjCNumericLiteral(AtLoc, Inner.get()); 380 } 381 382 /// \brief Check that the given expression is a valid element of an Objective-C 383 /// collection literal. 384 static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element, 385 QualType T, 386 bool ArrayLiteral = false) { 387 // If the expression is type-dependent, there's nothing for us to do. 388 if (Element->isTypeDependent()) 389 return Element; 390 391 ExprResult Result = S.CheckPlaceholderExpr(Element); 392 if (Result.isInvalid()) 393 return ExprError(); 394 Element = Result.get(); 395 396 // In C++, check for an implicit conversion to an Objective-C object pointer 397 // type. 398 if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) { 399 InitializedEntity Entity 400 = InitializedEntity::InitializeParameter(S.Context, T, 401 /*Consumed=*/false); 402 InitializationKind Kind 403 = InitializationKind::CreateCopy(Element->getLocStart(), 404 SourceLocation()); 405 InitializationSequence Seq(S, Entity, Kind, Element); 406 if (!Seq.Failed()) 407 return Seq.Perform(S, Entity, Kind, Element); 408 } 409 410 Expr *OrigElement = Element; 411 412 // Perform lvalue-to-rvalue conversion. 413 Result = S.DefaultLvalueConversion(Element); 414 if (Result.isInvalid()) 415 return ExprError(); 416 Element = Result.get(); 417 418 // Make sure that we have an Objective-C pointer type or block. 419 if (!Element->getType()->isObjCObjectPointerType() && 420 !Element->getType()->isBlockPointerType()) { 421 bool Recovered = false; 422 423 // If this is potentially an Objective-C numeric literal, add the '@'. 424 if (isa<IntegerLiteral>(OrigElement) || 425 isa<CharacterLiteral>(OrigElement) || 426 isa<FloatingLiteral>(OrigElement) || 427 isa<ObjCBoolLiteralExpr>(OrigElement) || 428 isa<CXXBoolLiteralExpr>(OrigElement)) { 429 if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) { 430 int Which = isa<CharacterLiteral>(OrigElement) ? 1 431 : (isa<CXXBoolLiteralExpr>(OrigElement) || 432 isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2 433 : 3; 434 435 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) 436 << Which << OrigElement->getSourceRange() 437 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); 438 439 Result = S.BuildObjCNumericLiteral(OrigElement->getLocStart(), 440 OrigElement); 441 if (Result.isInvalid()) 442 return ExprError(); 443 444 Element = Result.get(); 445 Recovered = true; 446 } 447 } 448 // If this is potentially an Objective-C string literal, add the '@'. 449 else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) { 450 if (String->isAscii()) { 451 S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection) 452 << 0 << OrigElement->getSourceRange() 453 << FixItHint::CreateInsertion(OrigElement->getLocStart(), "@"); 454 455 Result = S.BuildObjCStringLiteral(OrigElement->getLocStart(), String); 456 if (Result.isInvalid()) 457 return ExprError(); 458 459 Element = Result.get(); 460 Recovered = true; 461 } 462 } 463 464 if (!Recovered) { 465 S.Diag(Element->getLocStart(), diag::err_invalid_collection_element) 466 << Element->getType(); 467 return ExprError(); 468 } 469 } 470 if (ArrayLiteral) 471 if (ObjCStringLiteral *getString = 472 dyn_cast<ObjCStringLiteral>(OrigElement)) { 473 if (StringLiteral *SL = getString->getString()) { 474 unsigned numConcat = SL->getNumConcatenated(); 475 if (numConcat > 1) { 476 // Only warn if the concatenated string doesn't come from a macro. 477 bool hasMacro = false; 478 for (unsigned i = 0; i < numConcat ; ++i) 479 if (SL->getStrTokenLoc(i).isMacroID()) { 480 hasMacro = true; 481 break; 482 } 483 if (!hasMacro) 484 S.Diag(Element->getLocStart(), 485 diag::warn_concatenated_nsarray_literal) 486 << Element->getType(); 487 } 488 } 489 } 490 491 // Make sure that the element has the type that the container factory 492 // function expects. 493 return S.PerformCopyInitialization( 494 InitializedEntity::InitializeParameter(S.Context, T, 495 /*Consumed=*/false), 496 Element->getLocStart(), Element); 497 } 498 499 ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { 500 if (ValueExpr->isTypeDependent()) { 501 ObjCBoxedExpr *BoxedExpr = 502 new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, nullptr, SR); 503 return BoxedExpr; 504 } 505 ObjCMethodDecl *BoxingMethod = nullptr; 506 QualType BoxedType; 507 // Convert the expression to an RValue, so we can check for pointer types... 508 ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr); 509 if (RValue.isInvalid()) { 510 return ExprError(); 511 } 512 SourceLocation Loc = SR.getBegin(); 513 ValueExpr = RValue.get(); 514 QualType ValueType(ValueExpr->getType()); 515 if (const PointerType *PT = ValueType->getAs<PointerType>()) { 516 QualType PointeeType = PT->getPointeeType(); 517 if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) { 518 519 if (!NSStringDecl) { 520 NSStringDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 521 Sema::LK_String); 522 if (!NSStringDecl) { 523 return ExprError(); 524 } 525 QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl); 526 NSStringPointer = Context.getObjCObjectPointerType(NSStringObject); 527 } 528 529 if (!StringWithUTF8StringMethod) { 530 IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String"); 531 Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II); 532 533 // Look for the appropriate method within NSString. 534 BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String); 535 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 536 // Debugger needs to work even if NSString hasn't been defined. 537 TypeSourceInfo *ReturnTInfo = nullptr; 538 ObjCMethodDecl *M = ObjCMethodDecl::Create( 539 Context, SourceLocation(), SourceLocation(), stringWithUTF8String, 540 NSStringPointer, ReturnTInfo, NSStringDecl, 541 /*isInstance=*/false, /*isVariadic=*/false, 542 /*isPropertyAccessor=*/false, 543 /*isImplicitlyDeclared=*/true, 544 /*isDefined=*/false, ObjCMethodDecl::Required, 545 /*HasRelatedResultType=*/false); 546 QualType ConstCharType = Context.CharTy.withConst(); 547 ParmVarDecl *value = 548 ParmVarDecl::Create(Context, M, 549 SourceLocation(), SourceLocation(), 550 &Context.Idents.get("value"), 551 Context.getPointerType(ConstCharType), 552 /*TInfo=*/nullptr, 553 SC_None, nullptr); 554 M->setMethodParams(Context, value, None); 555 BoxingMethod = M; 556 } 557 558 if (!validateBoxingMethod(*this, Loc, NSStringDecl, 559 stringWithUTF8String, BoxingMethod)) 560 return ExprError(); 561 562 StringWithUTF8StringMethod = BoxingMethod; 563 } 564 565 BoxingMethod = StringWithUTF8StringMethod; 566 BoxedType = NSStringPointer; 567 } 568 } else if (ValueType->isBuiltinType()) { 569 // The other types we support are numeric, char and BOOL/bool. We could also 570 // provide limited support for structure types, such as NSRange, NSRect, and 571 // NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h> 572 // for more details. 573 574 // Check for a top-level character literal. 575 if (const CharacterLiteral *Char = 576 dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) { 577 // In C, character literals have type 'int'. That's not the type we want 578 // to use to determine the Objective-c literal kind. 579 switch (Char->getKind()) { 580 case CharacterLiteral::Ascii: 581 case CharacterLiteral::UTF8: 582 ValueType = Context.CharTy; 583 break; 584 585 case CharacterLiteral::Wide: 586 ValueType = Context.getWideCharType(); 587 break; 588 589 case CharacterLiteral::UTF16: 590 ValueType = Context.Char16Ty; 591 break; 592 593 case CharacterLiteral::UTF32: 594 ValueType = Context.Char32Ty; 595 break; 596 } 597 } 598 CheckForIntOverflow(ValueExpr); 599 // FIXME: Do I need to do anything special with BoolTy expressions? 600 601 // Look for the appropriate method within NSNumber. 602 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, ValueType); 603 BoxedType = NSNumberPointer; 604 } else if (const EnumType *ET = ValueType->getAs<EnumType>()) { 605 if (!ET->getDecl()->isComplete()) { 606 Diag(Loc, diag::err_objc_incomplete_boxed_expression_type) 607 << ValueType << ValueExpr->getSourceRange(); 608 return ExprError(); 609 } 610 611 BoxingMethod = getNSNumberFactoryMethod(*this, Loc, 612 ET->getDecl()->getIntegerType()); 613 BoxedType = NSNumberPointer; 614 } else if (ValueType->isObjCBoxableRecordType()) { 615 // Support for structure types, that marked as objc_boxable 616 // struct __attribute__((objc_boxable)) s { ... }; 617 618 // Look up the NSValue class, if we haven't done so already. It's cached 619 // in the Sema instance. 620 if (!NSValueDecl) { 621 NSValueDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 622 Sema::LK_Boxed); 623 if (!NSValueDecl) { 624 return ExprError(); 625 } 626 627 // generate the pointer to NSValue type. 628 QualType NSValueObject = Context.getObjCInterfaceType(NSValueDecl); 629 NSValuePointer = Context.getObjCObjectPointerType(NSValueObject); 630 } 631 632 if (!ValueWithBytesObjCTypeMethod) { 633 IdentifierInfo *II[] = { 634 &Context.Idents.get("valueWithBytes"), 635 &Context.Idents.get("objCType") 636 }; 637 Selector ValueWithBytesObjCType = Context.Selectors.getSelector(2, II); 638 639 // Look for the appropriate method within NSValue. 640 BoxingMethod = NSValueDecl->lookupClassMethod(ValueWithBytesObjCType); 641 if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) { 642 // Debugger needs to work even if NSValue hasn't been defined. 643 TypeSourceInfo *ReturnTInfo = nullptr; 644 ObjCMethodDecl *M = ObjCMethodDecl::Create( 645 Context, 646 SourceLocation(), 647 SourceLocation(), 648 ValueWithBytesObjCType, 649 NSValuePointer, 650 ReturnTInfo, 651 NSValueDecl, 652 /*isInstance=*/false, 653 /*isVariadic=*/false, 654 /*isPropertyAccessor=*/false, 655 /*isImplicitlyDeclared=*/true, 656 /*isDefined=*/false, 657 ObjCMethodDecl::Required, 658 /*HasRelatedResultType=*/false); 659 660 SmallVector<ParmVarDecl *, 2> Params; 661 662 ParmVarDecl *bytes = 663 ParmVarDecl::Create(Context, M, 664 SourceLocation(), SourceLocation(), 665 &Context.Idents.get("bytes"), 666 Context.VoidPtrTy.withConst(), 667 /*TInfo=*/nullptr, 668 SC_None, nullptr); 669 Params.push_back(bytes); 670 671 QualType ConstCharType = Context.CharTy.withConst(); 672 ParmVarDecl *type = 673 ParmVarDecl::Create(Context, M, 674 SourceLocation(), SourceLocation(), 675 &Context.Idents.get("type"), 676 Context.getPointerType(ConstCharType), 677 /*TInfo=*/nullptr, 678 SC_None, nullptr); 679 Params.push_back(type); 680 681 M->setMethodParams(Context, Params, None); 682 BoxingMethod = M; 683 } 684 685 if (!validateBoxingMethod(*this, Loc, NSValueDecl, 686 ValueWithBytesObjCType, BoxingMethod)) 687 return ExprError(); 688 689 ValueWithBytesObjCTypeMethod = BoxingMethod; 690 } 691 692 if (!ValueType.isTriviallyCopyableType(Context)) { 693 Diag(Loc, diag::err_objc_non_trivially_copyable_boxed_expression_type) 694 << ValueType << ValueExpr->getSourceRange(); 695 return ExprError(); 696 } 697 698 BoxingMethod = ValueWithBytesObjCTypeMethod; 699 BoxedType = NSValuePointer; 700 } 701 702 if (!BoxingMethod) { 703 Diag(Loc, diag::err_objc_illegal_boxed_expression_type) 704 << ValueType << ValueExpr->getSourceRange(); 705 return ExprError(); 706 } 707 708 DiagnoseUseOfDecl(BoxingMethod, Loc); 709 710 ExprResult ConvertedValueExpr; 711 if (ValueType->isObjCBoxableRecordType()) { 712 InitializedEntity IE = InitializedEntity::InitializeTemporary(ValueType); 713 ConvertedValueExpr = PerformCopyInitialization(IE, ValueExpr->getExprLoc(), 714 ValueExpr); 715 } else { 716 // Convert the expression to the type that the parameter requires. 717 ParmVarDecl *ParamDecl = BoxingMethod->parameters()[0]; 718 InitializedEntity IE = InitializedEntity::InitializeParameter(Context, 719 ParamDecl); 720 ConvertedValueExpr = PerformCopyInitialization(IE, SourceLocation(), 721 ValueExpr); 722 } 723 724 if (ConvertedValueExpr.isInvalid()) 725 return ExprError(); 726 ValueExpr = ConvertedValueExpr.get(); 727 728 ObjCBoxedExpr *BoxedExpr = 729 new (Context) ObjCBoxedExpr(ValueExpr, BoxedType, 730 BoxingMethod, SR); 731 return MaybeBindToTemporary(BoxedExpr); 732 } 733 734 /// Build an ObjC subscript pseudo-object expression, given that 735 /// that's supported by the runtime. 736 ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, 737 Expr *IndexExpr, 738 ObjCMethodDecl *getterMethod, 739 ObjCMethodDecl *setterMethod) { 740 assert(!LangOpts.isSubscriptPointerArithmetic()); 741 742 // We can't get dependent types here; our callers should have 743 // filtered them out. 744 assert((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) && 745 "base or index cannot have dependent type here"); 746 747 // Filter out placeholders in the index. In theory, overloads could 748 // be preserved here, although that might not actually work correctly. 749 ExprResult Result = CheckPlaceholderExpr(IndexExpr); 750 if (Result.isInvalid()) 751 return ExprError(); 752 IndexExpr = Result.get(); 753 754 // Perform lvalue-to-rvalue conversion on the base. 755 Result = DefaultLvalueConversion(BaseExpr); 756 if (Result.isInvalid()) 757 return ExprError(); 758 BaseExpr = Result.get(); 759 760 // Build the pseudo-object expression. 761 return new (Context) ObjCSubscriptRefExpr( 762 BaseExpr, IndexExpr, Context.PseudoObjectTy, VK_LValue, OK_ObjCSubscript, 763 getterMethod, setterMethod, RB); 764 } 765 766 ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) { 767 SourceLocation Loc = SR.getBegin(); 768 769 if (!NSArrayDecl) { 770 NSArrayDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 771 Sema::LK_Array); 772 if (!NSArrayDecl) { 773 return ExprError(); 774 } 775 } 776 777 // Find the arrayWithObjects:count: method, if we haven't done so already. 778 QualType IdT = Context.getObjCIdType(); 779 if (!ArrayWithObjectsMethod) { 780 Selector 781 Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount); 782 ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel); 783 if (!Method && getLangOpts().DebuggerObjCLiteral) { 784 TypeSourceInfo *ReturnTInfo = nullptr; 785 Method = ObjCMethodDecl::Create( 786 Context, SourceLocation(), SourceLocation(), Sel, IdT, ReturnTInfo, 787 Context.getTranslationUnitDecl(), false /*Instance*/, 788 false /*isVariadic*/, 789 /*isPropertyAccessor=*/false, 790 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 791 ObjCMethodDecl::Required, false); 792 SmallVector<ParmVarDecl *, 2> Params; 793 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 794 SourceLocation(), 795 SourceLocation(), 796 &Context.Idents.get("objects"), 797 Context.getPointerType(IdT), 798 /*TInfo=*/nullptr, 799 SC_None, nullptr); 800 Params.push_back(objects); 801 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 802 SourceLocation(), 803 SourceLocation(), 804 &Context.Idents.get("cnt"), 805 Context.UnsignedLongTy, 806 /*TInfo=*/nullptr, SC_None, 807 nullptr); 808 Params.push_back(cnt); 809 Method->setMethodParams(Context, Params, None); 810 } 811 812 if (!validateBoxingMethod(*this, Loc, NSArrayDecl, Sel, Method)) 813 return ExprError(); 814 815 // Dig out the type that all elements should be converted to. 816 QualType T = Method->parameters()[0]->getType(); 817 const PointerType *PtrT = T->getAs<PointerType>(); 818 if (!PtrT || 819 !Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) { 820 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 821 << Sel; 822 Diag(Method->parameters()[0]->getLocation(), 823 diag::note_objc_literal_method_param) 824 << 0 << T 825 << Context.getPointerType(IdT.withConst()); 826 return ExprError(); 827 } 828 829 // Check that the 'count' parameter is integral. 830 if (!Method->parameters()[1]->getType()->isIntegerType()) { 831 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 832 << Sel; 833 Diag(Method->parameters()[1]->getLocation(), 834 diag::note_objc_literal_method_param) 835 << 1 836 << Method->parameters()[1]->getType() 837 << "integral"; 838 return ExprError(); 839 } 840 841 // We've found a good +arrayWithObjects:count: method. Save it! 842 ArrayWithObjectsMethod = Method; 843 } 844 845 QualType ObjectsType = ArrayWithObjectsMethod->parameters()[0]->getType(); 846 QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType(); 847 848 // Check that each of the elements provided is valid in a collection literal, 849 // performing conversions as necessary. 850 Expr **ElementsBuffer = Elements.data(); 851 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 852 ExprResult Converted = CheckObjCCollectionLiteralElement(*this, 853 ElementsBuffer[I], 854 RequiredType, true); 855 if (Converted.isInvalid()) 856 return ExprError(); 857 858 ElementsBuffer[I] = Converted.get(); 859 } 860 861 QualType Ty 862 = Context.getObjCObjectPointerType( 863 Context.getObjCInterfaceType(NSArrayDecl)); 864 865 return MaybeBindToTemporary( 866 ObjCArrayLiteral::Create(Context, Elements, Ty, 867 ArrayWithObjectsMethod, SR)); 868 } 869 870 ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR, 871 MutableArrayRef<ObjCDictionaryElement> Elements) { 872 SourceLocation Loc = SR.getBegin(); 873 874 if (!NSDictionaryDecl) { 875 NSDictionaryDecl = LookupObjCInterfaceDeclForLiteral(*this, Loc, 876 Sema::LK_Dictionary); 877 if (!NSDictionaryDecl) { 878 return ExprError(); 879 } 880 } 881 882 // Find the dictionaryWithObjects:forKeys:count: method, if we haven't done 883 // so already. 884 QualType IdT = Context.getObjCIdType(); 885 if (!DictionaryWithObjectsMethod) { 886 Selector Sel = NSAPIObj->getNSDictionarySelector( 887 NSAPI::NSDict_dictionaryWithObjectsForKeysCount); 888 ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel); 889 if (!Method && getLangOpts().DebuggerObjCLiteral) { 890 Method = ObjCMethodDecl::Create(Context, 891 SourceLocation(), SourceLocation(), Sel, 892 IdT, 893 nullptr /*TypeSourceInfo */, 894 Context.getTranslationUnitDecl(), 895 false /*Instance*/, false/*isVariadic*/, 896 /*isPropertyAccessor=*/false, 897 /*isImplicitlyDeclared=*/true, /*isDefined=*/false, 898 ObjCMethodDecl::Required, 899 false); 900 SmallVector<ParmVarDecl *, 3> Params; 901 ParmVarDecl *objects = ParmVarDecl::Create(Context, Method, 902 SourceLocation(), 903 SourceLocation(), 904 &Context.Idents.get("objects"), 905 Context.getPointerType(IdT), 906 /*TInfo=*/nullptr, SC_None, 907 nullptr); 908 Params.push_back(objects); 909 ParmVarDecl *keys = ParmVarDecl::Create(Context, Method, 910 SourceLocation(), 911 SourceLocation(), 912 &Context.Idents.get("keys"), 913 Context.getPointerType(IdT), 914 /*TInfo=*/nullptr, SC_None, 915 nullptr); 916 Params.push_back(keys); 917 ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method, 918 SourceLocation(), 919 SourceLocation(), 920 &Context.Idents.get("cnt"), 921 Context.UnsignedLongTy, 922 /*TInfo=*/nullptr, SC_None, 923 nullptr); 924 Params.push_back(cnt); 925 Method->setMethodParams(Context, Params, None); 926 } 927 928 if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel, 929 Method)) 930 return ExprError(); 931 932 // Dig out the type that all values should be converted to. 933 QualType ValueT = Method->parameters()[0]->getType(); 934 const PointerType *PtrValue = ValueT->getAs<PointerType>(); 935 if (!PtrValue || 936 !Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) { 937 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 938 << Sel; 939 Diag(Method->parameters()[0]->getLocation(), 940 diag::note_objc_literal_method_param) 941 << 0 << ValueT 942 << Context.getPointerType(IdT.withConst()); 943 return ExprError(); 944 } 945 946 // Dig out the type that all keys should be converted to. 947 QualType KeyT = Method->parameters()[1]->getType(); 948 const PointerType *PtrKey = KeyT->getAs<PointerType>(); 949 if (!PtrKey || 950 !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 951 IdT)) { 952 bool err = true; 953 if (PtrKey) { 954 if (QIDNSCopying.isNull()) { 955 // key argument of selector is id<NSCopying>? 956 if (ObjCProtocolDecl *NSCopyingPDecl = 957 LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) { 958 ObjCProtocolDecl *PQ[] = {NSCopyingPDecl}; 959 QIDNSCopying = 960 Context.getObjCObjectType(Context.ObjCBuiltinIdTy, { }, 961 llvm::makeArrayRef( 962 (ObjCProtocolDecl**) PQ, 963 1), 964 false); 965 QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying); 966 } 967 } 968 if (!QIDNSCopying.isNull()) 969 err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(), 970 QIDNSCopying); 971 } 972 973 if (err) { 974 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 975 << Sel; 976 Diag(Method->parameters()[1]->getLocation(), 977 diag::note_objc_literal_method_param) 978 << 1 << KeyT 979 << Context.getPointerType(IdT.withConst()); 980 return ExprError(); 981 } 982 } 983 984 // Check that the 'count' parameter is integral. 985 QualType CountType = Method->parameters()[2]->getType(); 986 if (!CountType->isIntegerType()) { 987 Diag(SR.getBegin(), diag::err_objc_literal_method_sig) 988 << Sel; 989 Diag(Method->parameters()[2]->getLocation(), 990 diag::note_objc_literal_method_param) 991 << 2 << CountType 992 << "integral"; 993 return ExprError(); 994 } 995 996 // We've found a good +dictionaryWithObjects:keys:count: method; save it! 997 DictionaryWithObjectsMethod = Method; 998 } 999 1000 QualType ValuesT = DictionaryWithObjectsMethod->parameters()[0]->getType(); 1001 QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType(); 1002 QualType KeysT = DictionaryWithObjectsMethod->parameters()[1]->getType(); 1003 QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType(); 1004 1005 // Check that each of the keys and values provided is valid in a collection 1006 // literal, performing conversions as necessary. 1007 bool HasPackExpansions = false; 1008 for (ObjCDictionaryElement &Element : Elements) { 1009 // Check the key. 1010 ExprResult Key = CheckObjCCollectionLiteralElement(*this, Element.Key, 1011 KeyT); 1012 if (Key.isInvalid()) 1013 return ExprError(); 1014 1015 // Check the value. 1016 ExprResult Value 1017 = CheckObjCCollectionLiteralElement(*this, Element.Value, ValueT); 1018 if (Value.isInvalid()) 1019 return ExprError(); 1020 1021 Element.Key = Key.get(); 1022 Element.Value = Value.get(); 1023 1024 if (Element.EllipsisLoc.isInvalid()) 1025 continue; 1026 1027 if (!Element.Key->containsUnexpandedParameterPack() && 1028 !Element.Value->containsUnexpandedParameterPack()) { 1029 Diag(Element.EllipsisLoc, 1030 diag::err_pack_expansion_without_parameter_packs) 1031 << SourceRange(Element.Key->getLocStart(), 1032 Element.Value->getLocEnd()); 1033 return ExprError(); 1034 } 1035 1036 HasPackExpansions = true; 1037 } 1038 1039 QualType Ty 1040 = Context.getObjCObjectPointerType( 1041 Context.getObjCInterfaceType(NSDictionaryDecl)); 1042 return MaybeBindToTemporary(ObjCDictionaryLiteral::Create( 1043 Context, Elements, HasPackExpansions, Ty, 1044 DictionaryWithObjectsMethod, SR)); 1045 } 1046 1047 ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, 1048 TypeSourceInfo *EncodedTypeInfo, 1049 SourceLocation RParenLoc) { 1050 QualType EncodedType = EncodedTypeInfo->getType(); 1051 QualType StrTy; 1052 if (EncodedType->isDependentType()) 1053 StrTy = Context.DependentTy; 1054 else { 1055 if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. 1056 !EncodedType->isVoidType()) // void is handled too. 1057 if (RequireCompleteType(AtLoc, EncodedType, 1058 diag::err_incomplete_type_objc_at_encode, 1059 EncodedTypeInfo->getTypeLoc())) 1060 return ExprError(); 1061 1062 std::string Str; 1063 QualType NotEncodedT; 1064 Context.getObjCEncodingForType(EncodedType, Str, nullptr, &NotEncodedT); 1065 if (!NotEncodedT.isNull()) 1066 Diag(AtLoc, diag::warn_incomplete_encoded_type) 1067 << EncodedType << NotEncodedT; 1068 1069 // The type of @encode is the same as the type of the corresponding string, 1070 // which is an array type. 1071 StrTy = Context.CharTy; 1072 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). 1073 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) 1074 StrTy.addConst(); 1075 StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1), 1076 ArrayType::Normal, 0); 1077 } 1078 1079 return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); 1080 } 1081 1082 ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, 1083 SourceLocation EncodeLoc, 1084 SourceLocation LParenLoc, 1085 ParsedType ty, 1086 SourceLocation RParenLoc) { 1087 // FIXME: Preserve type source info ? 1088 TypeSourceInfo *TInfo; 1089 QualType EncodedType = GetTypeFromParser(ty, &TInfo); 1090 if (!TInfo) 1091 TInfo = Context.getTrivialTypeSourceInfo(EncodedType, 1092 getLocForEndOfToken(LParenLoc)); 1093 1094 return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); 1095 } 1096 1097 static bool HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S, 1098 SourceLocation AtLoc, 1099 SourceLocation LParenLoc, 1100 SourceLocation RParenLoc, 1101 ObjCMethodDecl *Method, 1102 ObjCMethodList &MethList) { 1103 ObjCMethodList *M = &MethList; 1104 bool Warned = false; 1105 for (M = M->getNext(); M; M=M->getNext()) { 1106 ObjCMethodDecl *MatchingMethodDecl = M->getMethod(); 1107 if (MatchingMethodDecl == Method || 1108 isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()) || 1109 MatchingMethodDecl->getSelector() != Method->getSelector()) 1110 continue; 1111 if (!S.MatchTwoMethodDeclarations(Method, 1112 MatchingMethodDecl, Sema::MMS_loose)) { 1113 if (!Warned) { 1114 Warned = true; 1115 S.Diag(AtLoc, diag::warning_multiple_selectors) 1116 << Method->getSelector() << FixItHint::CreateInsertion(LParenLoc, "(") 1117 << FixItHint::CreateInsertion(RParenLoc, ")"); 1118 S.Diag(Method->getLocation(), diag::note_method_declared_at) 1119 << Method->getDeclName(); 1120 } 1121 S.Diag(MatchingMethodDecl->getLocation(), diag::note_method_declared_at) 1122 << MatchingMethodDecl->getDeclName(); 1123 } 1124 } 1125 return Warned; 1126 } 1127 1128 static void DiagnoseMismatchedSelectors(Sema &S, SourceLocation AtLoc, 1129 ObjCMethodDecl *Method, 1130 SourceLocation LParenLoc, 1131 SourceLocation RParenLoc, 1132 bool WarnMultipleSelectors) { 1133 if (!WarnMultipleSelectors || 1134 S.Diags.isIgnored(diag::warning_multiple_selectors, SourceLocation())) 1135 return; 1136 bool Warned = false; 1137 for (Sema::GlobalMethodPool::iterator b = S.MethodPool.begin(), 1138 e = S.MethodPool.end(); b != e; b++) { 1139 // first, instance methods 1140 ObjCMethodList &InstMethList = b->second.first; 1141 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1142 Method, InstMethList)) 1143 Warned = true; 1144 1145 // second, class methods 1146 ObjCMethodList &ClsMethList = b->second.second; 1147 if (HelperToDiagnoseMismatchedMethodsInGlobalPool(S, AtLoc, LParenLoc, RParenLoc, 1148 Method, ClsMethList) || Warned) 1149 return; 1150 } 1151 } 1152 1153 ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, 1154 SourceLocation AtLoc, 1155 SourceLocation SelLoc, 1156 SourceLocation LParenLoc, 1157 SourceLocation RParenLoc, 1158 bool WarnMultipleSelectors) { 1159 ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, 1160 SourceRange(LParenLoc, RParenLoc)); 1161 if (!Method) 1162 Method = LookupFactoryMethodInGlobalPool(Sel, 1163 SourceRange(LParenLoc, RParenLoc)); 1164 if (!Method) { 1165 if (const ObjCMethodDecl *OM = SelectorsForTypoCorrection(Sel)) { 1166 Selector MatchedSel = OM->getSelector(); 1167 SourceRange SelectorRange(LParenLoc.getLocWithOffset(1), 1168 RParenLoc.getLocWithOffset(-1)); 1169 Diag(SelLoc, diag::warn_undeclared_selector_with_typo) 1170 << Sel << MatchedSel 1171 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1172 1173 } else 1174 Diag(SelLoc, diag::warn_undeclared_selector) << Sel; 1175 } else 1176 DiagnoseMismatchedSelectors(*this, AtLoc, Method, LParenLoc, RParenLoc, 1177 WarnMultipleSelectors); 1178 1179 if (Method && 1180 Method->getImplementationControl() != ObjCMethodDecl::Optional && 1181 !getSourceManager().isInSystemHeader(Method->getLocation())) 1182 ReferencedSelectors.insert(std::make_pair(Sel, AtLoc)); 1183 1184 // In ARC, forbid the user from using @selector for 1185 // retain/release/autorelease/dealloc/retainCount. 1186 if (getLangOpts().ObjCAutoRefCount) { 1187 switch (Sel.getMethodFamily()) { 1188 case OMF_retain: 1189 case OMF_release: 1190 case OMF_autorelease: 1191 case OMF_retainCount: 1192 case OMF_dealloc: 1193 Diag(AtLoc, diag::err_arc_illegal_selector) << 1194 Sel << SourceRange(LParenLoc, RParenLoc); 1195 break; 1196 1197 case OMF_None: 1198 case OMF_alloc: 1199 case OMF_copy: 1200 case OMF_finalize: 1201 case OMF_init: 1202 case OMF_mutableCopy: 1203 case OMF_new: 1204 case OMF_self: 1205 case OMF_initialize: 1206 case OMF_performSelector: 1207 break; 1208 } 1209 } 1210 QualType Ty = Context.getObjCSelType(); 1211 return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); 1212 } 1213 1214 ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, 1215 SourceLocation AtLoc, 1216 SourceLocation ProtoLoc, 1217 SourceLocation LParenLoc, 1218 SourceLocation ProtoIdLoc, 1219 SourceLocation RParenLoc) { 1220 ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc); 1221 if (!PDecl) { 1222 Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; 1223 return true; 1224 } 1225 if (PDecl->hasDefinition()) 1226 PDecl = PDecl->getDefinition(); 1227 1228 QualType Ty = Context.getObjCProtoType(); 1229 if (Ty.isNull()) 1230 return true; 1231 Ty = Context.getObjCObjectPointerType(Ty); 1232 return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc); 1233 } 1234 1235 /// Try to capture an implicit reference to 'self'. 1236 ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) { 1237 DeclContext *DC = getFunctionLevelDeclContext(); 1238 1239 // If we're not in an ObjC method, error out. Note that, unlike the 1240 // C++ case, we don't require an instance method --- class methods 1241 // still have a 'self', and we really do still need to capture it! 1242 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); 1243 if (!method) 1244 return nullptr; 1245 1246 tryCaptureVariable(method->getSelfDecl(), Loc); 1247 1248 return method; 1249 } 1250 1251 static QualType stripObjCInstanceType(ASTContext &Context, QualType T) { 1252 QualType origType = T; 1253 if (auto nullability = AttributedType::stripOuterNullability(T)) { 1254 if (T == Context.getObjCInstanceType()) { 1255 return Context.getAttributedType( 1256 AttributedType::getNullabilityAttrKind(*nullability), 1257 Context.getObjCIdType(), 1258 Context.getObjCIdType()); 1259 } 1260 1261 return origType; 1262 } 1263 1264 if (T == Context.getObjCInstanceType()) 1265 return Context.getObjCIdType(); 1266 1267 return origType; 1268 } 1269 1270 /// Determine the result type of a message send based on the receiver type, 1271 /// method, and the kind of message send. 1272 /// 1273 /// This is the "base" result type, which will still need to be adjusted 1274 /// to account for nullability. 1275 static QualType getBaseMessageSendResultType(Sema &S, 1276 QualType ReceiverType, 1277 ObjCMethodDecl *Method, 1278 bool isClassMessage, 1279 bool isSuperMessage) { 1280 assert(Method && "Must have a method"); 1281 if (!Method->hasRelatedResultType()) 1282 return Method->getSendResultType(ReceiverType); 1283 1284 ASTContext &Context = S.Context; 1285 1286 // Local function that transfers the nullability of the method's 1287 // result type to the returned result. 1288 auto transferNullability = [&](QualType type) -> QualType { 1289 // If the method's result type has nullability, extract it. 1290 if (auto nullability = Method->getSendResultType(ReceiverType) 1291 ->getNullability(Context)){ 1292 // Strip off any outer nullability sugar from the provided type. 1293 (void)AttributedType::stripOuterNullability(type); 1294 1295 // Form a new attributed type using the method result type's nullability. 1296 return Context.getAttributedType( 1297 AttributedType::getNullabilityAttrKind(*nullability), 1298 type, 1299 type); 1300 } 1301 1302 return type; 1303 }; 1304 1305 // If a method has a related return type: 1306 // - if the method found is an instance method, but the message send 1307 // was a class message send, T is the declared return type of the method 1308 // found 1309 if (Method->isInstanceMethod() && isClassMessage) 1310 return stripObjCInstanceType(Context, 1311 Method->getSendResultType(ReceiverType)); 1312 1313 // - if the receiver is super, T is a pointer to the class of the 1314 // enclosing method definition 1315 if (isSuperMessage) { 1316 if (ObjCMethodDecl *CurMethod = S.getCurMethodDecl()) 1317 if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) { 1318 return transferNullability( 1319 Context.getObjCObjectPointerType( 1320 Context.getObjCInterfaceType(Class))); 1321 } 1322 } 1323 1324 // - if the receiver is the name of a class U, T is a pointer to U 1325 if (ReceiverType->getAsObjCInterfaceType()) 1326 return transferNullability(Context.getObjCObjectPointerType(ReceiverType)); 1327 // - if the receiver is of type Class or qualified Class type, 1328 // T is the declared return type of the method. 1329 if (ReceiverType->isObjCClassType() || 1330 ReceiverType->isObjCQualifiedClassType()) 1331 return stripObjCInstanceType(Context, 1332 Method->getSendResultType(ReceiverType)); 1333 1334 // - if the receiver is id, qualified id, Class, or qualified Class, T 1335 // is the receiver type, otherwise 1336 // - T is the type of the receiver expression. 1337 return transferNullability(ReceiverType); 1338 } 1339 1340 QualType Sema::getMessageSendResultType(QualType ReceiverType, 1341 ObjCMethodDecl *Method, 1342 bool isClassMessage, 1343 bool isSuperMessage) { 1344 // Produce the result type. 1345 QualType resultType = getBaseMessageSendResultType(*this, ReceiverType, 1346 Method, 1347 isClassMessage, 1348 isSuperMessage); 1349 1350 // If this is a class message, ignore the nullability of the receiver. 1351 if (isClassMessage) 1352 return resultType; 1353 1354 // Map the nullability of the result into a table index. 1355 unsigned receiverNullabilityIdx = 0; 1356 if (auto nullability = ReceiverType->getNullability(Context)) 1357 receiverNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1358 1359 unsigned resultNullabilityIdx = 0; 1360 if (auto nullability = resultType->getNullability(Context)) 1361 resultNullabilityIdx = 1 + static_cast<unsigned>(*nullability); 1362 1363 // The table of nullability mappings, indexed by the receiver's nullability 1364 // and then the result type's nullability. 1365 static const uint8_t None = 0; 1366 static const uint8_t NonNull = 1; 1367 static const uint8_t Nullable = 2; 1368 static const uint8_t Unspecified = 3; 1369 static const uint8_t nullabilityMap[4][4] = { 1370 // None NonNull Nullable Unspecified 1371 /* None */ { None, None, Nullable, None }, 1372 /* NonNull */ { None, NonNull, Nullable, Unspecified }, 1373 /* Nullable */ { Nullable, Nullable, Nullable, Nullable }, 1374 /* Unspecified */ { None, Unspecified, Nullable, Unspecified } 1375 }; 1376 1377 unsigned newResultNullabilityIdx 1378 = nullabilityMap[receiverNullabilityIdx][resultNullabilityIdx]; 1379 if (newResultNullabilityIdx == resultNullabilityIdx) 1380 return resultType; 1381 1382 // Strip off the existing nullability. This removes as little type sugar as 1383 // possible. 1384 do { 1385 if (auto attributed = dyn_cast<AttributedType>(resultType.getTypePtr())) { 1386 resultType = attributed->getModifiedType(); 1387 } else { 1388 resultType = resultType.getDesugaredType(Context); 1389 } 1390 } while (resultType->getNullability(Context)); 1391 1392 // Add nullability back if needed. 1393 if (newResultNullabilityIdx > 0) { 1394 auto newNullability 1395 = static_cast<NullabilityKind>(newResultNullabilityIdx-1); 1396 return Context.getAttributedType( 1397 AttributedType::getNullabilityAttrKind(newNullability), 1398 resultType, resultType); 1399 } 1400 1401 return resultType; 1402 } 1403 1404 /// Look for an ObjC method whose result type exactly matches the given type. 1405 static const ObjCMethodDecl * 1406 findExplicitInstancetypeDeclarer(const ObjCMethodDecl *MD, 1407 QualType instancetype) { 1408 if (MD->getReturnType() == instancetype) 1409 return MD; 1410 1411 // For these purposes, a method in an @implementation overrides a 1412 // declaration in the @interface. 1413 if (const ObjCImplDecl *impl = 1414 dyn_cast<ObjCImplDecl>(MD->getDeclContext())) { 1415 const ObjCContainerDecl *iface; 1416 if (const ObjCCategoryImplDecl *catImpl = 1417 dyn_cast<ObjCCategoryImplDecl>(impl)) { 1418 iface = catImpl->getCategoryDecl(); 1419 } else { 1420 iface = impl->getClassInterface(); 1421 } 1422 1423 const ObjCMethodDecl *ifaceMD = 1424 iface->getMethod(MD->getSelector(), MD->isInstanceMethod()); 1425 if (ifaceMD) return findExplicitInstancetypeDeclarer(ifaceMD, instancetype); 1426 } 1427 1428 SmallVector<const ObjCMethodDecl *, 4> overrides; 1429 MD->getOverriddenMethods(overrides); 1430 for (unsigned i = 0, e = overrides.size(); i != e; ++i) { 1431 if (const ObjCMethodDecl *result = 1432 findExplicitInstancetypeDeclarer(overrides[i], instancetype)) 1433 return result; 1434 } 1435 1436 return nullptr; 1437 } 1438 1439 void Sema::EmitRelatedResultTypeNoteForReturn(QualType destType) { 1440 // Only complain if we're in an ObjC method and the required return 1441 // type doesn't match the method's declared return type. 1442 ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurContext); 1443 if (!MD || !MD->hasRelatedResultType() || 1444 Context.hasSameUnqualifiedType(destType, MD->getReturnType())) 1445 return; 1446 1447 // Look for a method overridden by this method which explicitly uses 1448 // 'instancetype'. 1449 if (const ObjCMethodDecl *overridden = 1450 findExplicitInstancetypeDeclarer(MD, Context.getObjCInstanceType())) { 1451 SourceRange range = overridden->getReturnTypeSourceRange(); 1452 SourceLocation loc = range.getBegin(); 1453 if (loc.isInvalid()) 1454 loc = overridden->getLocation(); 1455 Diag(loc, diag::note_related_result_type_explicit) 1456 << /*current method*/ 1 << range; 1457 return; 1458 } 1459 1460 // Otherwise, if we have an interesting method family, note that. 1461 // This should always trigger if the above didn't. 1462 if (ObjCMethodFamily family = MD->getMethodFamily()) 1463 Diag(MD->getLocation(), diag::note_related_result_type_family) 1464 << /*current method*/ 1 1465 << family; 1466 } 1467 1468 void Sema::EmitRelatedResultTypeNote(const Expr *E) { 1469 E = E->IgnoreParenImpCasts(); 1470 const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); 1471 if (!MsgSend) 1472 return; 1473 1474 const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); 1475 if (!Method) 1476 return; 1477 1478 if (!Method->hasRelatedResultType()) 1479 return; 1480 1481 if (Context.hasSameUnqualifiedType( 1482 Method->getReturnType().getNonReferenceType(), MsgSend->getType())) 1483 return; 1484 1485 if (!Context.hasSameUnqualifiedType(Method->getReturnType(), 1486 Context.getObjCInstanceType())) 1487 return; 1488 1489 Diag(Method->getLocation(), diag::note_related_result_type_inferred) 1490 << Method->isInstanceMethod() << Method->getSelector() 1491 << MsgSend->getType(); 1492 } 1493 1494 bool Sema::CheckMessageArgumentTypes(QualType ReceiverType, 1495 MultiExprArg Args, 1496 Selector Sel, 1497 ArrayRef<SourceLocation> SelectorLocs, 1498 ObjCMethodDecl *Method, 1499 bool isClassMessage, bool isSuperMessage, 1500 SourceLocation lbrac, SourceLocation rbrac, 1501 SourceRange RecRange, 1502 QualType &ReturnType, ExprValueKind &VK) { 1503 SourceLocation SelLoc; 1504 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 1505 SelLoc = SelectorLocs.front(); 1506 else 1507 SelLoc = lbrac; 1508 1509 if (!Method) { 1510 // Apply default argument promotion as for (C99 6.5.2.2p6). 1511 for (unsigned i = 0, e = Args.size(); i != e; i++) { 1512 if (Args[i]->isTypeDependent()) 1513 continue; 1514 1515 ExprResult result; 1516 if (getLangOpts().DebuggerSupport) { 1517 QualType paramTy; // ignored 1518 result = checkUnknownAnyArg(SelLoc, Args[i], paramTy); 1519 } else { 1520 result = DefaultArgumentPromotion(Args[i]); 1521 } 1522 if (result.isInvalid()) 1523 return true; 1524 Args[i] = result.get(); 1525 } 1526 1527 unsigned DiagID; 1528 if (getLangOpts().ObjCAutoRefCount) 1529 DiagID = diag::err_arc_method_not_found; 1530 else 1531 DiagID = isClassMessage ? diag::warn_class_method_not_found 1532 : diag::warn_inst_method_not_found; 1533 if (!getLangOpts().DebuggerSupport) { 1534 const ObjCMethodDecl *OMD = SelectorsForTypoCorrection(Sel, ReceiverType); 1535 if (OMD && !OMD->isInvalidDecl()) { 1536 if (getLangOpts().ObjCAutoRefCount) 1537 DiagID = diag::error_method_not_found_with_typo; 1538 else 1539 DiagID = isClassMessage ? diag::warn_class_method_not_found_with_typo 1540 : diag::warn_instance_method_not_found_with_typo; 1541 Selector MatchedSel = OMD->getSelector(); 1542 SourceRange SelectorRange(SelectorLocs.front(), SelectorLocs.back()); 1543 if (MatchedSel.isUnarySelector()) 1544 Diag(SelLoc, DiagID) 1545 << Sel<< isClassMessage << MatchedSel 1546 << FixItHint::CreateReplacement(SelectorRange, MatchedSel.getAsString()); 1547 else 1548 Diag(SelLoc, DiagID) << Sel<< isClassMessage << MatchedSel; 1549 } 1550 else 1551 Diag(SelLoc, DiagID) 1552 << Sel << isClassMessage << SourceRange(SelectorLocs.front(), 1553 SelectorLocs.back()); 1554 // Find the class to which we are sending this message. 1555 if (ReceiverType->isObjCObjectPointerType()) { 1556 if (ObjCInterfaceDecl *ThisClass = 1557 ReceiverType->getAs<ObjCObjectPointerType>()->getInterfaceDecl()) { 1558 Diag(ThisClass->getLocation(), diag::note_receiver_class_declared); 1559 if (!RecRange.isInvalid()) 1560 if (ThisClass->lookupClassMethod(Sel)) 1561 Diag(RecRange.getBegin(),diag::note_receiver_expr_here) 1562 << FixItHint::CreateReplacement(RecRange, 1563 ThisClass->getNameAsString()); 1564 } 1565 } 1566 } 1567 1568 // In debuggers, we want to use __unknown_anytype for these 1569 // results so that clients can cast them. 1570 if (getLangOpts().DebuggerSupport) { 1571 ReturnType = Context.UnknownAnyTy; 1572 } else { 1573 ReturnType = Context.getObjCIdType(); 1574 } 1575 VK = VK_RValue; 1576 return false; 1577 } 1578 1579 ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage, 1580 isSuperMessage); 1581 VK = Expr::getValueKindForType(Method->getReturnType()); 1582 1583 unsigned NumNamedArgs = Sel.getNumArgs(); 1584 // Method might have more arguments than selector indicates. This is due 1585 // to addition of c-style arguments in method. 1586 if (Method->param_size() > Sel.getNumArgs()) 1587 NumNamedArgs = Method->param_size(); 1588 // FIXME. This need be cleaned up. 1589 if (Args.size() < NumNamedArgs) { 1590 Diag(SelLoc, diag::err_typecheck_call_too_few_args) 1591 << 2 << NumNamedArgs << static_cast<unsigned>(Args.size()); 1592 return false; 1593 } 1594 1595 // Compute the set of type arguments to be substituted into each parameter 1596 // type. 1597 Optional<ArrayRef<QualType>> typeArgs 1598 = ReceiverType->getObjCSubstitutions(Method->getDeclContext()); 1599 bool IsError = false; 1600 for (unsigned i = 0; i < NumNamedArgs; i++) { 1601 // We can't do any type-checking on a type-dependent argument. 1602 if (Args[i]->isTypeDependent()) 1603 continue; 1604 1605 Expr *argExpr = Args[i]; 1606 1607 ParmVarDecl *param = Method->parameters()[i]; 1608 assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); 1609 1610 // Strip the unbridged-cast placeholder expression off unless it's 1611 // a consumed argument. 1612 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 1613 !param->hasAttr<CFConsumedAttr>()) 1614 argExpr = stripARCUnbridgedCast(argExpr); 1615 1616 // If the parameter is __unknown_anytype, infer its type 1617 // from the argument. 1618 if (param->getType() == Context.UnknownAnyTy) { 1619 QualType paramType; 1620 ExprResult argE = checkUnknownAnyArg(SelLoc, argExpr, paramType); 1621 if (argE.isInvalid()) { 1622 IsError = true; 1623 } else { 1624 Args[i] = argE.get(); 1625 1626 // Update the parameter type in-place. 1627 param->setType(paramType); 1628 } 1629 continue; 1630 } 1631 1632 QualType origParamType = param->getType(); 1633 QualType paramType = param->getType(); 1634 if (typeArgs) 1635 paramType = paramType.substObjCTypeArgs( 1636 Context, 1637 *typeArgs, 1638 ObjCSubstitutionContext::Parameter); 1639 1640 if (RequireCompleteType(argExpr->getSourceRange().getBegin(), 1641 paramType, 1642 diag::err_call_incomplete_argument, argExpr)) 1643 return true; 1644 1645 InitializedEntity Entity 1646 = InitializedEntity::InitializeParameter(Context, param, paramType); 1647 ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), argExpr); 1648 if (ArgE.isInvalid()) 1649 IsError = true; 1650 else { 1651 Args[i] = ArgE.getAs<Expr>(); 1652 1653 // If we are type-erasing a block to a block-compatible 1654 // Objective-C pointer type, we may need to extend the lifetime 1655 // of the block object. 1656 if (typeArgs && Args[i]->isRValue() && paramType->isBlockPointerType() && 1657 Args[i]->getType()->isBlockPointerType() && 1658 origParamType->isObjCObjectPointerType()) { 1659 ExprResult arg = Args[i]; 1660 maybeExtendBlockObject(arg); 1661 Args[i] = arg.get(); 1662 } 1663 } 1664 } 1665 1666 // Promote additional arguments to variadic methods. 1667 if (Method->isVariadic()) { 1668 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 1669 if (Args[i]->isTypeDependent()) 1670 continue; 1671 1672 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 1673 nullptr); 1674 IsError |= Arg.isInvalid(); 1675 Args[i] = Arg.get(); 1676 } 1677 } else { 1678 // Check for extra arguments to non-variadic methods. 1679 if (Args.size() != NumNamedArgs) { 1680 Diag(Args[NumNamedArgs]->getLocStart(), 1681 diag::err_typecheck_call_too_many_args) 1682 << 2 /*method*/ << NumNamedArgs << static_cast<unsigned>(Args.size()) 1683 << Method->getSourceRange() 1684 << SourceRange(Args[NumNamedArgs]->getLocStart(), 1685 Args.back()->getLocEnd()); 1686 } 1687 } 1688 1689 DiagnoseSentinelCalls(Method, SelLoc, Args); 1690 1691 // Do additional checkings on method. 1692 IsError |= CheckObjCMethodCall( 1693 Method, SelLoc, makeArrayRef(Args.data(), Args.size())); 1694 1695 return IsError; 1696 } 1697 1698 bool Sema::isSelfExpr(Expr *RExpr) { 1699 // 'self' is objc 'self' in an objc method only. 1700 ObjCMethodDecl *Method = 1701 dyn_cast_or_null<ObjCMethodDecl>(CurContext->getNonClosureAncestor()); 1702 return isSelfExpr(RExpr, Method); 1703 } 1704 1705 bool Sema::isSelfExpr(Expr *receiver, const ObjCMethodDecl *method) { 1706 if (!method) return false; 1707 1708 receiver = receiver->IgnoreParenLValueCasts(); 1709 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) 1710 if (DRE->getDecl() == method->getSelfDecl()) 1711 return true; 1712 return false; 1713 } 1714 1715 /// LookupMethodInType - Look up a method in an ObjCObjectType. 1716 ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type, 1717 bool isInstance) { 1718 const ObjCObjectType *objType = type->castAs<ObjCObjectType>(); 1719 if (ObjCInterfaceDecl *iface = objType->getInterface()) { 1720 // Look it up in the main interface (and categories, etc.) 1721 if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance)) 1722 return method; 1723 1724 // Okay, look for "private" methods declared in any 1725 // @implementations we've seen. 1726 if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance)) 1727 return method; 1728 } 1729 1730 // Check qualifiers. 1731 for (const auto *I : objType->quals()) 1732 if (ObjCMethodDecl *method = I->lookupMethod(sel, isInstance)) 1733 return method; 1734 1735 return nullptr; 1736 } 1737 1738 /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier 1739 /// list of a qualified objective pointer type. 1740 ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, 1741 const ObjCObjectPointerType *OPT, 1742 bool Instance) 1743 { 1744 ObjCMethodDecl *MD = nullptr; 1745 for (const auto *PROTO : OPT->quals()) { 1746 if ((MD = PROTO->lookupMethod(Sel, Instance))) { 1747 return MD; 1748 } 1749 } 1750 return nullptr; 1751 } 1752 1753 /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an 1754 /// objective C interface. This is a property reference expression. 1755 ExprResult Sema:: 1756 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, 1757 Expr *BaseExpr, SourceLocation OpLoc, 1758 DeclarationName MemberName, 1759 SourceLocation MemberLoc, 1760 SourceLocation SuperLoc, QualType SuperType, 1761 bool Super) { 1762 const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); 1763 ObjCInterfaceDecl *IFace = IFaceT->getDecl(); 1764 1765 if (!MemberName.isIdentifier()) { 1766 Diag(MemberLoc, diag::err_invalid_property_name) 1767 << MemberName << QualType(OPT, 0); 1768 return ExprError(); 1769 } 1770 1771 IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); 1772 1773 SourceRange BaseRange = Super? SourceRange(SuperLoc) 1774 : BaseExpr->getSourceRange(); 1775 if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), 1776 diag::err_property_not_found_forward_class, 1777 MemberName, BaseRange)) 1778 return ExprError(); 1779 1780 if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration( 1781 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 1782 // Check whether we can reference this property. 1783 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1784 return ExprError(); 1785 if (Super) 1786 return new (Context) 1787 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1788 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 1789 else 1790 return new (Context) 1791 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1792 OK_ObjCProperty, MemberLoc, BaseExpr); 1793 } 1794 // Check protocols on qualified interfaces. 1795 for (const auto *I : OPT->quals()) 1796 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration( 1797 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 1798 // Check whether we can reference this property. 1799 if (DiagnoseUseOfDecl(PD, MemberLoc)) 1800 return ExprError(); 1801 1802 if (Super) 1803 return new (Context) ObjCPropertyRefExpr( 1804 PD, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, MemberLoc, 1805 SuperLoc, SuperType); 1806 else 1807 return new (Context) 1808 ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, VK_LValue, 1809 OK_ObjCProperty, MemberLoc, BaseExpr); 1810 } 1811 // If that failed, look for an "implicit" property by seeing if the nullary 1812 // selector is implemented. 1813 1814 // FIXME: The logic for looking up nullary and unary selectors should be 1815 // shared with the code in ActOnInstanceMessage. 1816 1817 Selector Sel = PP.getSelectorTable().getNullarySelector(Member); 1818 ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); 1819 1820 // May be found in property's qualified list. 1821 if (!Getter) 1822 Getter = LookupMethodInQualifiedType(Sel, OPT, true); 1823 1824 // If this reference is in an @implementation, check for 'private' methods. 1825 if (!Getter) 1826 Getter = IFace->lookupPrivateMethod(Sel); 1827 1828 if (Getter) { 1829 // Check if we can reference this property. 1830 if (DiagnoseUseOfDecl(Getter, MemberLoc)) 1831 return ExprError(); 1832 } 1833 // If we found a getter then this may be a valid dot-reference, we 1834 // will look for the matching setter, in case it is needed. 1835 Selector SetterSel = 1836 SelectorTable::constructSetterSelector(PP.getIdentifierTable(), 1837 PP.getSelectorTable(), Member); 1838 ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); 1839 1840 // May be found in property's qualified list. 1841 if (!Setter) 1842 Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); 1843 1844 if (!Setter) { 1845 // If this reference is in an @implementation, also check for 'private' 1846 // methods. 1847 Setter = IFace->lookupPrivateMethod(SetterSel); 1848 } 1849 1850 if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) 1851 return ExprError(); 1852 1853 // Special warning if member name used in a property-dot for a setter accessor 1854 // does not use a property with same name; e.g. obj.X = ... for a property with 1855 // name 'x'. 1856 if (Setter && Setter->isImplicit() && Setter->isPropertyAccessor() && 1857 !IFace->FindPropertyDeclaration( 1858 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 1859 if (const ObjCPropertyDecl *PDecl = Setter->findPropertyDecl()) { 1860 // Do not warn if user is using property-dot syntax to make call to 1861 // user named setter. 1862 if (!(PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter)) 1863 Diag(MemberLoc, 1864 diag::warn_property_access_suggest) 1865 << MemberName << QualType(OPT, 0) << PDecl->getName() 1866 << FixItHint::CreateReplacement(MemberLoc, PDecl->getName()); 1867 } 1868 } 1869 1870 if (Getter || Setter) { 1871 if (Super) 1872 return new (Context) 1873 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 1874 OK_ObjCProperty, MemberLoc, SuperLoc, SuperType); 1875 else 1876 return new (Context) 1877 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 1878 OK_ObjCProperty, MemberLoc, BaseExpr); 1879 1880 } 1881 1882 // Attempt to correct for typos in property names. 1883 if (TypoCorrection Corrected = 1884 CorrectTypo(DeclarationNameInfo(MemberName, MemberLoc), 1885 LookupOrdinaryName, nullptr, nullptr, 1886 llvm::make_unique<DeclFilterCCC<ObjCPropertyDecl>>(), 1887 CTK_ErrorRecovery, IFace, false, OPT)) { 1888 DeclarationName TypoResult = Corrected.getCorrection(); 1889 if (TypoResult.isIdentifier() && 1890 TypoResult.getAsIdentifierInfo() == Member) { 1891 // There is no need to try the correction if it is the same. 1892 NamedDecl *ChosenDecl = 1893 Corrected.isKeyword() ? nullptr : Corrected.getFoundDecl(); 1894 if (ChosenDecl && isa<ObjCPropertyDecl>(ChosenDecl)) 1895 if (cast<ObjCPropertyDecl>(ChosenDecl)->isClassProperty()) { 1896 // This is a class property, we should not use the instance to 1897 // access it. 1898 Diag(MemberLoc, diag::err_class_property_found) << MemberName 1899 << OPT->getInterfaceDecl()->getName() 1900 << FixItHint::CreateReplacement(BaseExpr->getSourceRange(), 1901 OPT->getInterfaceDecl()->getName()); 1902 return ExprError(); 1903 } 1904 } else { 1905 diagnoseTypo(Corrected, PDiag(diag::err_property_not_found_suggest) 1906 << MemberName << QualType(OPT, 0)); 1907 return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, 1908 TypoResult, MemberLoc, 1909 SuperLoc, SuperType, Super); 1910 } 1911 } 1912 ObjCInterfaceDecl *ClassDeclared; 1913 if (ObjCIvarDecl *Ivar = 1914 IFace->lookupInstanceVariable(Member, ClassDeclared)) { 1915 QualType T = Ivar->getType(); 1916 if (const ObjCObjectPointerType * OBJPT = 1917 T->getAsObjCInterfacePointerType()) { 1918 if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), 1919 diag::err_property_not_as_forward_class, 1920 MemberName, BaseExpr)) 1921 return ExprError(); 1922 } 1923 Diag(MemberLoc, 1924 diag::err_ivar_access_using_property_syntax_suggest) 1925 << MemberName << QualType(OPT, 0) << Ivar->getDeclName() 1926 << FixItHint::CreateReplacement(OpLoc, "->"); 1927 return ExprError(); 1928 } 1929 1930 Diag(MemberLoc, diag::err_property_not_found) 1931 << MemberName << QualType(OPT, 0); 1932 if (Setter) 1933 Diag(Setter->getLocation(), diag::note_getter_unavailable) 1934 << MemberName << BaseExpr->getSourceRange(); 1935 return ExprError(); 1936 } 1937 1938 ExprResult Sema:: 1939 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, 1940 IdentifierInfo &propertyName, 1941 SourceLocation receiverNameLoc, 1942 SourceLocation propertyNameLoc) { 1943 1944 IdentifierInfo *receiverNamePtr = &receiverName; 1945 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, 1946 receiverNameLoc); 1947 1948 QualType SuperType; 1949 if (!IFace) { 1950 // If the "receiver" is 'super' in a method, handle it as an expression-like 1951 // property reference. 1952 if (receiverNamePtr->isStr("super")) { 1953 if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) { 1954 if (auto classDecl = CurMethod->getClassInterface()) { 1955 SuperType = QualType(classDecl->getSuperClassType(), 0); 1956 if (CurMethod->isInstanceMethod()) { 1957 if (SuperType.isNull()) { 1958 // The current class does not have a superclass. 1959 Diag(receiverNameLoc, diag::error_root_class_cannot_use_super) 1960 << CurMethod->getClassInterface()->getIdentifier(); 1961 return ExprError(); 1962 } 1963 QualType T = Context.getObjCObjectPointerType(SuperType); 1964 1965 return HandleExprPropertyRefExpr(T->castAs<ObjCObjectPointerType>(), 1966 /*BaseExpr*/nullptr, 1967 SourceLocation()/*OpLoc*/, 1968 &propertyName, 1969 propertyNameLoc, 1970 receiverNameLoc, T, true); 1971 } 1972 1973 // Otherwise, if this is a class method, try dispatching to our 1974 // superclass. 1975 IFace = CurMethod->getClassInterface()->getSuperClass(); 1976 } 1977 } 1978 } 1979 1980 if (!IFace) { 1981 Diag(receiverNameLoc, diag::err_expected_either) << tok::identifier 1982 << tok::l_paren; 1983 return ExprError(); 1984 } 1985 } 1986 1987 // Search for a declared property first. 1988 Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName); 1989 ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel); 1990 1991 // If this reference is in an @implementation, check for 'private' methods. 1992 if (!Getter) 1993 Getter = IFace->lookupPrivateClassMethod(Sel); 1994 1995 if (Getter) { 1996 // FIXME: refactor/share with ActOnMemberReference(). 1997 // Check if we can reference this property. 1998 if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) 1999 return ExprError(); 2000 } 2001 2002 // Look for the matching setter, in case it is needed. 2003 Selector SetterSel = 2004 SelectorTable::constructSetterSelector(PP.getIdentifierTable(), 2005 PP.getSelectorTable(), 2006 &propertyName); 2007 2008 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); 2009 if (!Setter) { 2010 // If this reference is in an @implementation, also check for 'private' 2011 // methods. 2012 Setter = IFace->lookupPrivateClassMethod(SetterSel); 2013 } 2014 // Look through local category implementations associated with the class. 2015 if (!Setter) 2016 Setter = IFace->getCategoryClassMethod(SetterSel); 2017 2018 if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) 2019 return ExprError(); 2020 2021 if (Getter || Setter) { 2022 if (!SuperType.isNull()) 2023 return new (Context) 2024 ObjCPropertyRefExpr(Getter, Setter, Context.PseudoObjectTy, VK_LValue, 2025 OK_ObjCProperty, propertyNameLoc, receiverNameLoc, 2026 SuperType); 2027 2028 return new (Context) ObjCPropertyRefExpr( 2029 Getter, Setter, Context.PseudoObjectTy, VK_LValue, OK_ObjCProperty, 2030 propertyNameLoc, receiverNameLoc, IFace); 2031 } 2032 return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) 2033 << &propertyName << Context.getObjCInterfaceType(IFace)); 2034 } 2035 2036 namespace { 2037 2038 class ObjCInterfaceOrSuperCCC : public CorrectionCandidateCallback { 2039 public: 2040 ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) { 2041 // Determine whether "super" is acceptable in the current context. 2042 if (Method && Method->getClassInterface()) 2043 WantObjCSuper = Method->getClassInterface()->getSuperClass(); 2044 } 2045 2046 bool ValidateCandidate(const TypoCorrection &candidate) override { 2047 return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() || 2048 candidate.isKeyword("super"); 2049 } 2050 }; 2051 2052 } // end anonymous namespace 2053 2054 Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, 2055 IdentifierInfo *Name, 2056 SourceLocation NameLoc, 2057 bool IsSuper, 2058 bool HasTrailingDot, 2059 ParsedType &ReceiverType) { 2060 ReceiverType = nullptr; 2061 2062 // If the identifier is "super" and there is no trailing dot, we're 2063 // messaging super. If the identifier is "super" and there is a 2064 // trailing dot, it's an instance message. 2065 if (IsSuper && S->isInObjcMethodScope()) 2066 return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; 2067 2068 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 2069 LookupName(Result, S); 2070 2071 switch (Result.getResultKind()) { 2072 case LookupResult::NotFound: 2073 // Normal name lookup didn't find anything. If we're in an 2074 // Objective-C method, look for ivars. If we find one, we're done! 2075 // FIXME: This is a hack. Ivar lookup should be part of normal 2076 // lookup. 2077 if (ObjCMethodDecl *Method = getCurMethodDecl()) { 2078 if (!Method->getClassInterface()) { 2079 // Fall back: let the parser try to parse it as an instance message. 2080 return ObjCInstanceMessage; 2081 } 2082 2083 ObjCInterfaceDecl *ClassDeclared; 2084 if (Method->getClassInterface()->lookupInstanceVariable(Name, 2085 ClassDeclared)) 2086 return ObjCInstanceMessage; 2087 } 2088 2089 // Break out; we'll perform typo correction below. 2090 break; 2091 2092 case LookupResult::NotFoundInCurrentInstantiation: 2093 case LookupResult::FoundOverloaded: 2094 case LookupResult::FoundUnresolvedValue: 2095 case LookupResult::Ambiguous: 2096 Result.suppressDiagnostics(); 2097 return ObjCInstanceMessage; 2098 2099 case LookupResult::Found: { 2100 // If the identifier is a class or not, and there is a trailing dot, 2101 // it's an instance message. 2102 if (HasTrailingDot) 2103 return ObjCInstanceMessage; 2104 // We found something. If it's a type, then we have a class 2105 // message. Otherwise, it's an instance message. 2106 NamedDecl *ND = Result.getFoundDecl(); 2107 QualType T; 2108 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) 2109 T = Context.getObjCInterfaceType(Class); 2110 else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) { 2111 T = Context.getTypeDeclType(Type); 2112 DiagnoseUseOfDecl(Type, NameLoc); 2113 } 2114 else 2115 return ObjCInstanceMessage; 2116 2117 // We have a class message, and T is the type we're 2118 // messaging. Build source-location information for it. 2119 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2120 ReceiverType = CreateParsedType(T, TSInfo); 2121 return ObjCClassMessage; 2122 } 2123 } 2124 2125 if (TypoCorrection Corrected = CorrectTypo( 2126 Result.getLookupNameInfo(), Result.getLookupKind(), S, nullptr, 2127 llvm::make_unique<ObjCInterfaceOrSuperCCC>(getCurMethodDecl()), 2128 CTK_ErrorRecovery, nullptr, false, nullptr, false)) { 2129 if (Corrected.isKeyword()) { 2130 // If we've found the keyword "super" (the only keyword that would be 2131 // returned by CorrectTypo), this is a send to super. 2132 diagnoseTypo(Corrected, 2133 PDiag(diag::err_unknown_receiver_suggest) << Name); 2134 return ObjCSuperMessage; 2135 } else if (ObjCInterfaceDecl *Class = 2136 Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { 2137 // If we found a declaration, correct when it refers to an Objective-C 2138 // class. 2139 diagnoseTypo(Corrected, 2140 PDiag(diag::err_unknown_receiver_suggest) << Name); 2141 QualType T = Context.getObjCInterfaceType(Class); 2142 TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); 2143 ReceiverType = CreateParsedType(T, TSInfo); 2144 return ObjCClassMessage; 2145 } 2146 } 2147 2148 // Fall back: let the parser try to parse it as an instance message. 2149 return ObjCInstanceMessage; 2150 } 2151 2152 ExprResult Sema::ActOnSuperMessage(Scope *S, 2153 SourceLocation SuperLoc, 2154 Selector Sel, 2155 SourceLocation LBracLoc, 2156 ArrayRef<SourceLocation> SelectorLocs, 2157 SourceLocation RBracLoc, 2158 MultiExprArg Args) { 2159 // Determine whether we are inside a method or not. 2160 ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc); 2161 if (!Method) { 2162 Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); 2163 return ExprError(); 2164 } 2165 2166 ObjCInterfaceDecl *Class = Method->getClassInterface(); 2167 if (!Class) { 2168 Diag(SuperLoc, diag::error_no_super_class_message) 2169 << Method->getDeclName(); 2170 return ExprError(); 2171 } 2172 2173 QualType SuperTy(Class->getSuperClassType(), 0); 2174 if (SuperTy.isNull()) { 2175 // The current class does not have a superclass. 2176 Diag(SuperLoc, diag::error_root_class_cannot_use_super) 2177 << Class->getIdentifier(); 2178 return ExprError(); 2179 } 2180 2181 // We are in a method whose class has a superclass, so 'super' 2182 // is acting as a keyword. 2183 if (Method->getSelector() == Sel) 2184 getCurFunction()->ObjCShouldCallSuper = false; 2185 2186 if (Method->isInstanceMethod()) { 2187 // Since we are in an instance method, this is an instance 2188 // message to the superclass instance. 2189 SuperTy = Context.getObjCObjectPointerType(SuperTy); 2190 return BuildInstanceMessage(nullptr, SuperTy, SuperLoc, 2191 Sel, /*Method=*/nullptr, 2192 LBracLoc, SelectorLocs, RBracLoc, Args); 2193 } 2194 2195 // Since we are in a class method, this is a class message to 2196 // the superclass. 2197 return BuildClassMessage(/*ReceiverTypeInfo=*/nullptr, 2198 SuperTy, 2199 SuperLoc, Sel, /*Method=*/nullptr, 2200 LBracLoc, SelectorLocs, RBracLoc, Args); 2201 } 2202 2203 ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType, 2204 bool isSuperReceiver, 2205 SourceLocation Loc, 2206 Selector Sel, 2207 ObjCMethodDecl *Method, 2208 MultiExprArg Args) { 2209 TypeSourceInfo *receiverTypeInfo = nullptr; 2210 if (!ReceiverType.isNull()) 2211 receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType); 2212 2213 return BuildClassMessage(receiverTypeInfo, ReceiverType, 2214 /*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(), 2215 Sel, Method, Loc, Loc, Loc, Args, 2216 /*isImplicit=*/true); 2217 } 2218 2219 static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg, 2220 unsigned DiagID, 2221 bool (*refactor)(const ObjCMessageExpr *, 2222 const NSAPI &, edit::Commit &)) { 2223 SourceLocation MsgLoc = Msg->getExprLoc(); 2224 if (S.Diags.isIgnored(DiagID, MsgLoc)) 2225 return; 2226 2227 SourceManager &SM = S.SourceMgr; 2228 edit::Commit ECommit(SM, S.LangOpts); 2229 if (refactor(Msg,*S.NSAPIObj, ECommit)) { 2230 DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID) 2231 << Msg->getSelector() << Msg->getSourceRange(); 2232 // FIXME: Don't emit diagnostic at all if fixits are non-commitable. 2233 if (!ECommit.isCommitable()) 2234 return; 2235 for (edit::Commit::edit_iterator 2236 I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) { 2237 const edit::Commit::Edit &Edit = *I; 2238 switch (Edit.Kind) { 2239 case edit::Commit::Act_Insert: 2240 Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc, 2241 Edit.Text, 2242 Edit.BeforePrev)); 2243 break; 2244 case edit::Commit::Act_InsertFromRange: 2245 Builder.AddFixItHint( 2246 FixItHint::CreateInsertionFromRange(Edit.OrigLoc, 2247 Edit.getInsertFromRange(SM), 2248 Edit.BeforePrev)); 2249 break; 2250 case edit::Commit::Act_Remove: 2251 Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM))); 2252 break; 2253 } 2254 } 2255 } 2256 } 2257 2258 static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) { 2259 applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use, 2260 edit::rewriteObjCRedundantCallWithLiteral); 2261 } 2262 2263 /// \brief Diagnose use of %s directive in an NSString which is being passed 2264 /// as formatting string to formatting method. 2265 static void 2266 DiagnoseCStringFormatDirectiveInObjCAPI(Sema &S, 2267 ObjCMethodDecl *Method, 2268 Selector Sel, 2269 Expr **Args, unsigned NumArgs) { 2270 unsigned Idx = 0; 2271 bool Format = false; 2272 ObjCStringFormatFamily SFFamily = Sel.getStringFormatFamily(); 2273 if (SFFamily == ObjCStringFormatFamily::SFF_NSString) { 2274 Idx = 0; 2275 Format = true; 2276 } 2277 else if (Method) { 2278 for (const auto *I : Method->specific_attrs<FormatAttr>()) { 2279 if (S.GetFormatNSStringIdx(I, Idx)) { 2280 Format = true; 2281 break; 2282 } 2283 } 2284 } 2285 if (!Format || NumArgs <= Idx) 2286 return; 2287 2288 Expr *FormatExpr = Args[Idx]; 2289 if (ObjCStringLiteral *OSL = 2290 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) { 2291 StringLiteral *FormatString = OSL->getString(); 2292 if (S.FormatStringHasSArg(FormatString)) { 2293 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 2294 << "%s" << 0 << 0; 2295 if (Method) 2296 S.Diag(Method->getLocation(), diag::note_method_declared_at) 2297 << Method->getDeclName(); 2298 } 2299 } 2300 } 2301 2302 /// \brief Build an Objective-C class message expression. 2303 /// 2304 /// This routine takes care of both normal class messages and 2305 /// class messages to the superclass. 2306 /// 2307 /// \param ReceiverTypeInfo Type source information that describes the 2308 /// receiver of this message. This may be NULL, in which case we are 2309 /// sending to the superclass and \p SuperLoc must be a valid source 2310 /// location. 2311 2312 /// \param ReceiverType The type of the object receiving the 2313 /// message. When \p ReceiverTypeInfo is non-NULL, this is the same 2314 /// type as that refers to. For a superclass send, this is the type of 2315 /// the superclass. 2316 /// 2317 /// \param SuperLoc The location of the "super" keyword in a 2318 /// superclass message. 2319 /// 2320 /// \param Sel The selector to which the message is being sent. 2321 /// 2322 /// \param Method The method that this class message is invoking, if 2323 /// already known. 2324 /// 2325 /// \param LBracLoc The location of the opening square bracket ']'. 2326 /// 2327 /// \param RBracLoc The location of the closing square bracket ']'. 2328 /// 2329 /// \param ArgsIn The message arguments. 2330 ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, 2331 QualType ReceiverType, 2332 SourceLocation SuperLoc, 2333 Selector Sel, 2334 ObjCMethodDecl *Method, 2335 SourceLocation LBracLoc, 2336 ArrayRef<SourceLocation> SelectorLocs, 2337 SourceLocation RBracLoc, 2338 MultiExprArg ArgsIn, 2339 bool isImplicit) { 2340 SourceLocation Loc = SuperLoc.isValid()? SuperLoc 2341 : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); 2342 if (LBracLoc.isInvalid()) { 2343 Diag(Loc, diag::err_missing_open_square_message_send) 2344 << FixItHint::CreateInsertion(Loc, "["); 2345 LBracLoc = Loc; 2346 } 2347 SourceLocation SelLoc; 2348 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2349 SelLoc = SelectorLocs.front(); 2350 else 2351 SelLoc = Loc; 2352 2353 if (ReceiverType->isDependentType()) { 2354 // If the receiver type is dependent, we can't type-check anything 2355 // at this point. Build a dependent expression. 2356 unsigned NumArgs = ArgsIn.size(); 2357 Expr **Args = ArgsIn.data(); 2358 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2359 return ObjCMessageExpr::Create( 2360 Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel, 2361 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), RBracLoc, 2362 isImplicit); 2363 } 2364 2365 // Find the class to which we are sending this message. 2366 ObjCInterfaceDecl *Class = nullptr; 2367 const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); 2368 if (!ClassType || !(Class = ClassType->getInterface())) { 2369 Diag(Loc, diag::err_invalid_receiver_class_message) 2370 << ReceiverType; 2371 return ExprError(); 2372 } 2373 assert(Class && "We don't know which class we're messaging?"); 2374 // objc++ diagnoses during typename annotation. 2375 if (!getLangOpts().CPlusPlus) 2376 (void)DiagnoseUseOfDecl(Class, SelLoc); 2377 // Find the method we are messaging. 2378 if (!Method) { 2379 SourceRange TypeRange 2380 = SuperLoc.isValid()? SourceRange(SuperLoc) 2381 : ReceiverTypeInfo->getTypeLoc().getSourceRange(); 2382 if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), 2383 (getLangOpts().ObjCAutoRefCount 2384 ? diag::err_arc_receiver_forward_class 2385 : diag::warn_receiver_forward_class), 2386 TypeRange)) { 2387 // A forward class used in messaging is treated as a 'Class' 2388 Method = LookupFactoryMethodInGlobalPool(Sel, 2389 SourceRange(LBracLoc, RBracLoc)); 2390 if (Method && !getLangOpts().ObjCAutoRefCount) 2391 Diag(Method->getLocation(), diag::note_method_sent_forward_class) 2392 << Method->getDeclName(); 2393 } 2394 if (!Method) 2395 Method = Class->lookupClassMethod(Sel); 2396 2397 // If we have an implementation in scope, check "private" methods. 2398 if (!Method) 2399 Method = Class->lookupPrivateClassMethod(Sel); 2400 2401 if (Method && DiagnoseUseOfDecl(Method, SelLoc)) 2402 return ExprError(); 2403 } 2404 2405 // Check the argument types and determine the result type. 2406 QualType ReturnType; 2407 ExprValueKind VK = VK_RValue; 2408 2409 unsigned NumArgs = ArgsIn.size(); 2410 Expr **Args = ArgsIn.data(); 2411 if (CheckMessageArgumentTypes(ReceiverType, MultiExprArg(Args, NumArgs), 2412 Sel, SelectorLocs, 2413 Method, true, 2414 SuperLoc.isValid(), LBracLoc, RBracLoc, 2415 SourceRange(), 2416 ReturnType, VK)) 2417 return ExprError(); 2418 2419 if (Method && !Method->getReturnType()->isVoidType() && 2420 RequireCompleteType(LBracLoc, Method->getReturnType(), 2421 diag::err_illegal_message_expr_incomplete_type)) 2422 return ExprError(); 2423 2424 // Warn about explicit call of +initialize on its own class. But not on 'super'. 2425 if (Method && Method->getMethodFamily() == OMF_initialize) { 2426 if (!SuperLoc.isValid()) { 2427 const ObjCInterfaceDecl *ID = 2428 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext()); 2429 if (ID == Class) { 2430 Diag(Loc, diag::warn_direct_initialize_call); 2431 Diag(Method->getLocation(), diag::note_method_declared_at) 2432 << Method->getDeclName(); 2433 } 2434 } 2435 else if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2436 // [super initialize] is allowed only within an +initialize implementation 2437 if (CurMeth->getMethodFamily() != OMF_initialize) { 2438 Diag(Loc, diag::warn_direct_super_initialize_call); 2439 Diag(Method->getLocation(), diag::note_method_declared_at) 2440 << Method->getDeclName(); 2441 Diag(CurMeth->getLocation(), diag::note_method_declared_at) 2442 << CurMeth->getDeclName(); 2443 } 2444 } 2445 } 2446 2447 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 2448 2449 // Construct the appropriate ObjCMessageExpr. 2450 ObjCMessageExpr *Result; 2451 if (SuperLoc.isValid()) 2452 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2453 SuperLoc, /*IsInstanceSuper=*/false, 2454 ReceiverType, Sel, SelectorLocs, 2455 Method, makeArrayRef(Args, NumArgs), 2456 RBracLoc, isImplicit); 2457 else { 2458 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2459 ReceiverTypeInfo, Sel, SelectorLocs, 2460 Method, makeArrayRef(Args, NumArgs), 2461 RBracLoc, isImplicit); 2462 if (!isImplicit) 2463 checkCocoaAPI(*this, Result); 2464 } 2465 return MaybeBindToTemporary(Result); 2466 } 2467 2468 // ActOnClassMessage - used for both unary and keyword messages. 2469 // ArgExprs is optional - if it is present, the number of expressions 2470 // is obtained from Sel.getNumArgs(). 2471 ExprResult Sema::ActOnClassMessage(Scope *S, 2472 ParsedType Receiver, 2473 Selector Sel, 2474 SourceLocation LBracLoc, 2475 ArrayRef<SourceLocation> SelectorLocs, 2476 SourceLocation RBracLoc, 2477 MultiExprArg Args) { 2478 TypeSourceInfo *ReceiverTypeInfo; 2479 QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); 2480 if (ReceiverType.isNull()) 2481 return ExprError(); 2482 2483 if (!ReceiverTypeInfo) 2484 ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); 2485 2486 return BuildClassMessage(ReceiverTypeInfo, ReceiverType, 2487 /*SuperLoc=*/SourceLocation(), Sel, 2488 /*Method=*/nullptr, LBracLoc, SelectorLocs, RBracLoc, 2489 Args); 2490 } 2491 2492 ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver, 2493 QualType ReceiverType, 2494 SourceLocation Loc, 2495 Selector Sel, 2496 ObjCMethodDecl *Method, 2497 MultiExprArg Args) { 2498 return BuildInstanceMessage(Receiver, ReceiverType, 2499 /*SuperLoc=*/!Receiver ? Loc : SourceLocation(), 2500 Sel, Method, Loc, Loc, Loc, Args, 2501 /*isImplicit=*/true); 2502 } 2503 2504 /// \brief Build an Objective-C instance message expression. 2505 /// 2506 /// This routine takes care of both normal instance messages and 2507 /// instance messages to the superclass instance. 2508 /// 2509 /// \param Receiver The expression that computes the object that will 2510 /// receive this message. This may be empty, in which case we are 2511 /// sending to the superclass instance and \p SuperLoc must be a valid 2512 /// source location. 2513 /// 2514 /// \param ReceiverType The (static) type of the object receiving the 2515 /// message. When a \p Receiver expression is provided, this is the 2516 /// same type as that expression. For a superclass instance send, this 2517 /// is a pointer to the type of the superclass. 2518 /// 2519 /// \param SuperLoc The location of the "super" keyword in a 2520 /// superclass instance message. 2521 /// 2522 /// \param Sel The selector to which the message is being sent. 2523 /// 2524 /// \param Method The method that this instance message is invoking, if 2525 /// already known. 2526 /// 2527 /// \param LBracLoc The location of the opening square bracket ']'. 2528 /// 2529 /// \param RBracLoc The location of the closing square bracket ']'. 2530 /// 2531 /// \param ArgsIn The message arguments. 2532 ExprResult Sema::BuildInstanceMessage(Expr *Receiver, 2533 QualType ReceiverType, 2534 SourceLocation SuperLoc, 2535 Selector Sel, 2536 ObjCMethodDecl *Method, 2537 SourceLocation LBracLoc, 2538 ArrayRef<SourceLocation> SelectorLocs, 2539 SourceLocation RBracLoc, 2540 MultiExprArg ArgsIn, 2541 bool isImplicit) { 2542 // The location of the receiver. 2543 SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart(); 2544 SourceRange RecRange = 2545 SuperLoc.isValid()? SuperLoc : Receiver->getSourceRange(); 2546 SourceLocation SelLoc; 2547 if (!SelectorLocs.empty() && SelectorLocs.front().isValid()) 2548 SelLoc = SelectorLocs.front(); 2549 else 2550 SelLoc = Loc; 2551 2552 if (LBracLoc.isInvalid()) { 2553 Diag(Loc, diag::err_missing_open_square_message_send) 2554 << FixItHint::CreateInsertion(Loc, "["); 2555 LBracLoc = Loc; 2556 } 2557 2558 // If we have a receiver expression, perform appropriate promotions 2559 // and determine receiver type. 2560 if (Receiver) { 2561 if (Receiver->hasPlaceholderType()) { 2562 ExprResult Result; 2563 if (Receiver->getType() == Context.UnknownAnyTy) 2564 Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType()); 2565 else 2566 Result = CheckPlaceholderExpr(Receiver); 2567 if (Result.isInvalid()) return ExprError(); 2568 Receiver = Result.get(); 2569 } 2570 2571 if (Receiver->isTypeDependent()) { 2572 // If the receiver is type-dependent, we can't type-check anything 2573 // at this point. Build a dependent expression. 2574 unsigned NumArgs = ArgsIn.size(); 2575 Expr **Args = ArgsIn.data(); 2576 assert(SuperLoc.isInvalid() && "Message to super with dependent type"); 2577 return ObjCMessageExpr::Create( 2578 Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel, 2579 SelectorLocs, /*Method=*/nullptr, makeArrayRef(Args, NumArgs), 2580 RBracLoc, isImplicit); 2581 } 2582 2583 // If necessary, apply function/array conversion to the receiver. 2584 // C99 6.7.5.3p[7,8]. 2585 ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); 2586 if (Result.isInvalid()) 2587 return ExprError(); 2588 Receiver = Result.get(); 2589 ReceiverType = Receiver->getType(); 2590 2591 // If the receiver is an ObjC pointer, a block pointer, or an 2592 // __attribute__((NSObject)) pointer, we don't need to do any 2593 // special conversion in order to look up a receiver. 2594 if (ReceiverType->isObjCRetainableType()) { 2595 // do nothing 2596 } else if (!getLangOpts().ObjCAutoRefCount && 2597 !Context.getObjCIdType().isNull() && 2598 (ReceiverType->isPointerType() || 2599 ReceiverType->isIntegerType())) { 2600 // Implicitly convert integers and pointers to 'id' but emit a warning. 2601 // But not in ARC. 2602 Diag(Loc, diag::warn_bad_receiver_type) 2603 << ReceiverType 2604 << Receiver->getSourceRange(); 2605 if (ReceiverType->isPointerType()) { 2606 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2607 CK_CPointerToObjCPointerCast).get(); 2608 } else { 2609 // TODO: specialized warning on null receivers? 2610 bool IsNull = Receiver->isNullPointerConstant(Context, 2611 Expr::NPC_ValueDependentIsNull); 2612 CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer; 2613 Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), 2614 Kind).get(); 2615 } 2616 ReceiverType = Receiver->getType(); 2617 } else if (getLangOpts().CPlusPlus) { 2618 // The receiver must be a complete type. 2619 if (RequireCompleteType(Loc, Receiver->getType(), 2620 diag::err_incomplete_receiver_type)) 2621 return ExprError(); 2622 2623 ExprResult result = PerformContextuallyConvertToObjCPointer(Receiver); 2624 if (result.isUsable()) { 2625 Receiver = result.get(); 2626 ReceiverType = Receiver->getType(); 2627 } 2628 } 2629 } 2630 2631 // There's a somewhat weird interaction here where we assume that we 2632 // won't actually have a method unless we also don't need to do some 2633 // of the more detailed type-checking on the receiver. 2634 2635 if (!Method) { 2636 // Handle messages to id and __kindof types (where we use the 2637 // global method pool). 2638 const ObjCObjectType *typeBound = nullptr; 2639 bool receiverIsIdLike = ReceiverType->isObjCIdOrObjectKindOfType(Context, 2640 typeBound); 2641 if (receiverIsIdLike || ReceiverType->isBlockPointerType() || 2642 (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { 2643 SmallVector<ObjCMethodDecl*, 4> Methods; 2644 // If we have a type bound, further filter the methods. 2645 CollectMultipleMethodsInGlobalPool(Sel, Methods, true/*InstanceFirst*/, 2646 true/*CheckTheOther*/, typeBound); 2647 if (!Methods.empty()) { 2648 // We chose the first method as the initial condidate, then try to 2649 // select a better one. 2650 Method = Methods[0]; 2651 2652 if (ObjCMethodDecl *BestMethod = 2653 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), Methods)) 2654 Method = BestMethod; 2655 2656 if (!AreMultipleMethodsInGlobalPool(Sel, Method, 2657 SourceRange(LBracLoc, RBracLoc), 2658 receiverIsIdLike, Methods)) 2659 DiagnoseUseOfDecl(Method, SelLoc); 2660 } 2661 } else if (ReceiverType->isObjCClassOrClassKindOfType() || 2662 ReceiverType->isObjCQualifiedClassType()) { 2663 // Handle messages to Class. 2664 // We allow sending a message to a qualified Class ("Class<foo>"), which 2665 // is ok as long as one of the protocols implements the selector (if not, 2666 // warn). 2667 if (!ReceiverType->isObjCClassOrClassKindOfType()) { 2668 const ObjCObjectPointerType *QClassTy 2669 = ReceiverType->getAsObjCQualifiedClassType(); 2670 // Search protocols for class methods. 2671 Method = LookupMethodInQualifiedType(Sel, QClassTy, false); 2672 if (!Method) { 2673 Method = LookupMethodInQualifiedType(Sel, QClassTy, true); 2674 // warn if instance method found for a Class message. 2675 if (Method) { 2676 Diag(SelLoc, diag::warn_instance_method_on_class_found) 2677 << Method->getSelector() << Sel; 2678 Diag(Method->getLocation(), diag::note_method_declared_at) 2679 << Method->getDeclName(); 2680 } 2681 } 2682 } else { 2683 if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { 2684 if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { 2685 // First check the public methods in the class interface. 2686 Method = ClassDecl->lookupClassMethod(Sel); 2687 2688 if (!Method) 2689 Method = ClassDecl->lookupPrivateClassMethod(Sel); 2690 } 2691 if (Method && DiagnoseUseOfDecl(Method, SelLoc)) 2692 return ExprError(); 2693 } 2694 if (!Method) { 2695 // If not messaging 'self', look for any factory method named 'Sel'. 2696 if (!Receiver || !isSelfExpr(Receiver)) { 2697 // If no class (factory) method was found, check if an _instance_ 2698 // method of the same name exists in the root class only. 2699 SmallVector<ObjCMethodDecl*, 4> Methods; 2700 CollectMultipleMethodsInGlobalPool(Sel, Methods, 2701 false/*InstanceFirst*/, 2702 true/*CheckTheOther*/); 2703 if (!Methods.empty()) { 2704 // We chose the first method as the initial condidate, then try 2705 // to select a better one. 2706 Method = Methods[0]; 2707 2708 // If we find an instance method, emit waring. 2709 if (Method->isInstanceMethod()) { 2710 if (const ObjCInterfaceDecl *ID = 2711 dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { 2712 if (ID->getSuperClass()) 2713 Diag(SelLoc, diag::warn_root_inst_method_not_found) 2714 << Sel << SourceRange(LBracLoc, RBracLoc); 2715 } 2716 } 2717 2718 if (ObjCMethodDecl *BestMethod = 2719 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), 2720 Methods)) 2721 Method = BestMethod; 2722 } 2723 } 2724 } 2725 } 2726 } else { 2727 ObjCInterfaceDecl *ClassDecl = nullptr; 2728 2729 // We allow sending a message to a qualified ID ("id<foo>"), which is ok as 2730 // long as one of the protocols implements the selector (if not, warn). 2731 // And as long as message is not deprecated/unavailable (warn if it is). 2732 if (const ObjCObjectPointerType *QIdTy 2733 = ReceiverType->getAsObjCQualifiedIdType()) { 2734 // Search protocols for instance methods. 2735 Method = LookupMethodInQualifiedType(Sel, QIdTy, true); 2736 if (!Method) 2737 Method = LookupMethodInQualifiedType(Sel, QIdTy, false); 2738 if (Method && DiagnoseUseOfDecl(Method, SelLoc)) 2739 return ExprError(); 2740 } else if (const ObjCObjectPointerType *OCIType 2741 = ReceiverType->getAsObjCInterfacePointerType()) { 2742 // We allow sending a message to a pointer to an interface (an object). 2743 ClassDecl = OCIType->getInterfaceDecl(); 2744 2745 // Try to complete the type. Under ARC, this is a hard error from which 2746 // we don't try to recover. 2747 // FIXME: In the non-ARC case, this will still be a hard error if the 2748 // definition is found in a module that's not visible. 2749 const ObjCInterfaceDecl *forwardClass = nullptr; 2750 if (RequireCompleteType(Loc, OCIType->getPointeeType(), 2751 getLangOpts().ObjCAutoRefCount 2752 ? diag::err_arc_receiver_forward_instance 2753 : diag::warn_receiver_forward_instance, 2754 Receiver? Receiver->getSourceRange() 2755 : SourceRange(SuperLoc))) { 2756 if (getLangOpts().ObjCAutoRefCount) 2757 return ExprError(); 2758 2759 forwardClass = OCIType->getInterfaceDecl(); 2760 Diag(Receiver ? Receiver->getLocStart() 2761 : SuperLoc, diag::note_receiver_is_id); 2762 Method = nullptr; 2763 } else { 2764 Method = ClassDecl->lookupInstanceMethod(Sel); 2765 } 2766 2767 if (!Method) 2768 // Search protocol qualifiers. 2769 Method = LookupMethodInQualifiedType(Sel, OCIType, true); 2770 2771 if (!Method) { 2772 // If we have implementations in scope, check "private" methods. 2773 Method = ClassDecl->lookupPrivateMethod(Sel); 2774 2775 if (!Method && getLangOpts().ObjCAutoRefCount) { 2776 Diag(SelLoc, diag::err_arc_may_not_respond) 2777 << OCIType->getPointeeType() << Sel << RecRange 2778 << SourceRange(SelectorLocs.front(), SelectorLocs.back()); 2779 return ExprError(); 2780 } 2781 2782 if (!Method && (!Receiver || !isSelfExpr(Receiver))) { 2783 // If we still haven't found a method, look in the global pool. This 2784 // behavior isn't very desirable, however we need it for GCC 2785 // compatibility. FIXME: should we deviate?? 2786 if (OCIType->qual_empty()) { 2787 SmallVector<ObjCMethodDecl*, 4> Methods; 2788 CollectMultipleMethodsInGlobalPool(Sel, Methods, 2789 true/*InstanceFirst*/, 2790 false/*CheckTheOther*/); 2791 if (!Methods.empty()) { 2792 // We chose the first method as the initial condidate, then try 2793 // to select a better one. 2794 Method = Methods[0]; 2795 2796 if (ObjCMethodDecl *BestMethod = 2797 SelectBestMethod(Sel, ArgsIn, Method->isInstanceMethod(), 2798 Methods)) 2799 Method = BestMethod; 2800 2801 AreMultipleMethodsInGlobalPool(Sel, Method, 2802 SourceRange(LBracLoc, RBracLoc), 2803 true/*receiverIdOrClass*/, 2804 Methods); 2805 } 2806 if (Method && !forwardClass) 2807 Diag(SelLoc, diag::warn_maynot_respond) 2808 << OCIType->getInterfaceDecl()->getIdentifier() 2809 << Sel << RecRange; 2810 } 2811 } 2812 } 2813 if (Method && DiagnoseUseOfDecl(Method, SelLoc, forwardClass)) 2814 return ExprError(); 2815 } else { 2816 // Reject other random receiver types (e.g. structs). 2817 Diag(Loc, diag::err_bad_receiver_type) 2818 << ReceiverType << Receiver->getSourceRange(); 2819 return ExprError(); 2820 } 2821 } 2822 } 2823 2824 FunctionScopeInfo *DIFunctionScopeInfo = 2825 (Method && Method->getMethodFamily() == OMF_init) 2826 ? getEnclosingFunction() : nullptr; 2827 2828 if (DIFunctionScopeInfo && 2829 DIFunctionScopeInfo->ObjCIsDesignatedInit && 2830 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 2831 bool isDesignatedInitChain = false; 2832 if (SuperLoc.isValid()) { 2833 if (const ObjCObjectPointerType * 2834 OCIType = ReceiverType->getAsObjCInterfacePointerType()) { 2835 if (const ObjCInterfaceDecl *ID = OCIType->getInterfaceDecl()) { 2836 // Either we know this is a designated initializer or we 2837 // conservatively assume it because we don't know for sure. 2838 if (!ID->declaresOrInheritsDesignatedInitializers() || 2839 ID->isDesignatedInitializer(Sel)) { 2840 isDesignatedInitChain = true; 2841 DIFunctionScopeInfo->ObjCWarnForNoDesignatedInitChain = false; 2842 } 2843 } 2844 } 2845 } 2846 if (!isDesignatedInitChain) { 2847 const ObjCMethodDecl *InitMethod = nullptr; 2848 bool isDesignated = 2849 getCurMethodDecl()->isDesignatedInitializerForTheInterface(&InitMethod); 2850 assert(isDesignated && InitMethod); 2851 (void)isDesignated; 2852 Diag(SelLoc, SuperLoc.isValid() ? 2853 diag::warn_objc_designated_init_non_designated_init_call : 2854 diag::warn_objc_designated_init_non_super_designated_init_call); 2855 Diag(InitMethod->getLocation(), 2856 diag::note_objc_designated_init_marked_here); 2857 } 2858 } 2859 2860 if (DIFunctionScopeInfo && 2861 DIFunctionScopeInfo->ObjCIsSecondaryInit && 2862 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 2863 if (SuperLoc.isValid()) { 2864 Diag(SelLoc, diag::warn_objc_secondary_init_super_init_call); 2865 } else { 2866 DIFunctionScopeInfo->ObjCWarnForNoInitDelegation = false; 2867 } 2868 } 2869 2870 // Check the message arguments. 2871 unsigned NumArgs = ArgsIn.size(); 2872 Expr **Args = ArgsIn.data(); 2873 QualType ReturnType; 2874 ExprValueKind VK = VK_RValue; 2875 bool ClassMessage = (ReceiverType->isObjCClassType() || 2876 ReceiverType->isObjCQualifiedClassType()); 2877 if (CheckMessageArgumentTypes(ReceiverType, MultiExprArg(Args, NumArgs), 2878 Sel, SelectorLocs, Method, 2879 ClassMessage, SuperLoc.isValid(), 2880 LBracLoc, RBracLoc, RecRange, ReturnType, VK)) 2881 return ExprError(); 2882 2883 if (Method && !Method->getReturnType()->isVoidType() && 2884 RequireCompleteType(LBracLoc, Method->getReturnType(), 2885 diag::err_illegal_message_expr_incomplete_type)) 2886 return ExprError(); 2887 2888 // In ARC, forbid the user from sending messages to 2889 // retain/release/autorelease/dealloc/retainCount explicitly. 2890 if (getLangOpts().ObjCAutoRefCount) { 2891 ObjCMethodFamily family = 2892 (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); 2893 switch (family) { 2894 case OMF_init: 2895 if (Method) 2896 checkInitMethod(Method, ReceiverType); 2897 2898 case OMF_None: 2899 case OMF_alloc: 2900 case OMF_copy: 2901 case OMF_finalize: 2902 case OMF_mutableCopy: 2903 case OMF_new: 2904 case OMF_self: 2905 case OMF_initialize: 2906 break; 2907 2908 case OMF_dealloc: 2909 case OMF_retain: 2910 case OMF_release: 2911 case OMF_autorelease: 2912 case OMF_retainCount: 2913 Diag(SelLoc, diag::err_arc_illegal_explicit_message) 2914 << Sel << RecRange; 2915 break; 2916 2917 case OMF_performSelector: 2918 if (Method && NumArgs >= 1) { 2919 if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) { 2920 Selector ArgSel = SelExp->getSelector(); 2921 ObjCMethodDecl *SelMethod = 2922 LookupInstanceMethodInGlobalPool(ArgSel, 2923 SelExp->getSourceRange()); 2924 if (!SelMethod) 2925 SelMethod = 2926 LookupFactoryMethodInGlobalPool(ArgSel, 2927 SelExp->getSourceRange()); 2928 if (SelMethod) { 2929 ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); 2930 switch (SelFamily) { 2931 case OMF_alloc: 2932 case OMF_copy: 2933 case OMF_mutableCopy: 2934 case OMF_new: 2935 case OMF_self: 2936 case OMF_init: 2937 // Issue error, unless ns_returns_not_retained. 2938 if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { 2939 // selector names a +1 method 2940 Diag(SelLoc, 2941 diag::err_arc_perform_selector_retains); 2942 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 2943 << SelMethod->getDeclName(); 2944 } 2945 break; 2946 default: 2947 // +0 call. OK. unless ns_returns_retained. 2948 if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { 2949 // selector names a +1 method 2950 Diag(SelLoc, 2951 diag::err_arc_perform_selector_retains); 2952 Diag(SelMethod->getLocation(), diag::note_method_declared_at) 2953 << SelMethod->getDeclName(); 2954 } 2955 break; 2956 } 2957 } 2958 } else { 2959 // error (may leak). 2960 Diag(SelLoc, diag::warn_arc_perform_selector_leaks); 2961 Diag(Args[0]->getExprLoc(), diag::note_used_here); 2962 } 2963 } 2964 break; 2965 } 2966 } 2967 2968 DiagnoseCStringFormatDirectiveInObjCAPI(*this, Method, Sel, Args, NumArgs); 2969 2970 // Construct the appropriate ObjCMessageExpr instance. 2971 ObjCMessageExpr *Result; 2972 if (SuperLoc.isValid()) 2973 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2974 SuperLoc, /*IsInstanceSuper=*/true, 2975 ReceiverType, Sel, SelectorLocs, Method, 2976 makeArrayRef(Args, NumArgs), RBracLoc, 2977 isImplicit); 2978 else { 2979 Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, 2980 Receiver, Sel, SelectorLocs, Method, 2981 makeArrayRef(Args, NumArgs), RBracLoc, 2982 isImplicit); 2983 if (!isImplicit) 2984 checkCocoaAPI(*this, Result); 2985 } 2986 2987 if (getLangOpts().ObjCAutoRefCount) { 2988 // In ARC, annotate delegate init calls. 2989 if (Result->getMethodFamily() == OMF_init && 2990 (SuperLoc.isValid() || isSelfExpr(Receiver))) { 2991 // Only consider init calls *directly* in init implementations, 2992 // not within blocks. 2993 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); 2994 if (method && method->getMethodFamily() == OMF_init) { 2995 // The implicit assignment to self means we also don't want to 2996 // consume the result. 2997 Result->setDelegateInitCall(true); 2998 return Result; 2999 } 3000 } 3001 3002 // In ARC, check for message sends which are likely to introduce 3003 // retain cycles. 3004 checkRetainCycles(Result); 3005 3006 if (!isImplicit && Method) { 3007 if (const ObjCPropertyDecl *Prop = Method->findPropertyDecl()) { 3008 bool IsWeak = 3009 Prop->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak; 3010 if (!IsWeak && Sel.isUnarySelector()) 3011 IsWeak = ReturnType.getObjCLifetime() & Qualifiers::OCL_Weak; 3012 if (IsWeak && 3013 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, LBracLoc)) 3014 getCurFunction()->recordUseOfWeak(Result, Prop); 3015 } 3016 } 3017 } 3018 3019 CheckObjCCircularContainer(Result); 3020 3021 return MaybeBindToTemporary(Result); 3022 } 3023 3024 static void RemoveSelectorFromWarningCache(Sema &S, Expr* Arg) { 3025 if (ObjCSelectorExpr *OSE = 3026 dyn_cast<ObjCSelectorExpr>(Arg->IgnoreParenCasts())) { 3027 Selector Sel = OSE->getSelector(); 3028 SourceLocation Loc = OSE->getAtLoc(); 3029 auto Pos = S.ReferencedSelectors.find(Sel); 3030 if (Pos != S.ReferencedSelectors.end() && Pos->second == Loc) 3031 S.ReferencedSelectors.erase(Pos); 3032 } 3033 } 3034 3035 // ActOnInstanceMessage - used for both unary and keyword messages. 3036 // ArgExprs is optional - if it is present, the number of expressions 3037 // is obtained from Sel.getNumArgs(). 3038 ExprResult Sema::ActOnInstanceMessage(Scope *S, 3039 Expr *Receiver, 3040 Selector Sel, 3041 SourceLocation LBracLoc, 3042 ArrayRef<SourceLocation> SelectorLocs, 3043 SourceLocation RBracLoc, 3044 MultiExprArg Args) { 3045 if (!Receiver) 3046 return ExprError(); 3047 3048 // A ParenListExpr can show up while doing error recovery with invalid code. 3049 if (isa<ParenListExpr>(Receiver)) { 3050 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Receiver); 3051 if (Result.isInvalid()) return ExprError(); 3052 Receiver = Result.get(); 3053 } 3054 3055 if (RespondsToSelectorSel.isNull()) { 3056 IdentifierInfo *SelectorId = &Context.Idents.get("respondsToSelector"); 3057 RespondsToSelectorSel = Context.Selectors.getUnarySelector(SelectorId); 3058 } 3059 if (Sel == RespondsToSelectorSel) 3060 RemoveSelectorFromWarningCache(*this, Args[0]); 3061 3062 return BuildInstanceMessage(Receiver, Receiver->getType(), 3063 /*SuperLoc=*/SourceLocation(), Sel, 3064 /*Method=*/nullptr, LBracLoc, SelectorLocs, 3065 RBracLoc, Args); 3066 } 3067 3068 enum ARCConversionTypeClass { 3069 /// int, void, struct A 3070 ACTC_none, 3071 3072 /// id, void (^)() 3073 ACTC_retainable, 3074 3075 /// id*, id***, void (^*)(), 3076 ACTC_indirectRetainable, 3077 3078 /// void* might be a normal C type, or it might a CF type. 3079 ACTC_voidPtr, 3080 3081 /// struct A* 3082 ACTC_coreFoundation 3083 }; 3084 3085 static bool isAnyRetainable(ARCConversionTypeClass ACTC) { 3086 return (ACTC == ACTC_retainable || 3087 ACTC == ACTC_coreFoundation || 3088 ACTC == ACTC_voidPtr); 3089 } 3090 3091 static bool isAnyCLike(ARCConversionTypeClass ACTC) { 3092 return ACTC == ACTC_none || 3093 ACTC == ACTC_voidPtr || 3094 ACTC == ACTC_coreFoundation; 3095 } 3096 3097 static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { 3098 bool isIndirect = false; 3099 3100 // Ignore an outermost reference type. 3101 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 3102 type = ref->getPointeeType(); 3103 isIndirect = true; 3104 } 3105 3106 // Drill through pointers and arrays recursively. 3107 while (true) { 3108 if (const PointerType *ptr = type->getAs<PointerType>()) { 3109 type = ptr->getPointeeType(); 3110 3111 // The first level of pointer may be the innermost pointer on a CF type. 3112 if (!isIndirect) { 3113 if (type->isVoidType()) return ACTC_voidPtr; 3114 if (type->isRecordType()) return ACTC_coreFoundation; 3115 } 3116 } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { 3117 type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); 3118 } else { 3119 break; 3120 } 3121 isIndirect = true; 3122 } 3123 3124 if (isIndirect) { 3125 if (type->isObjCARCBridgableType()) 3126 return ACTC_indirectRetainable; 3127 return ACTC_none; 3128 } 3129 3130 if (type->isObjCARCBridgableType()) 3131 return ACTC_retainable; 3132 3133 return ACTC_none; 3134 } 3135 3136 namespace { 3137 /// A result from the cast checker. 3138 enum ACCResult { 3139 /// Cannot be casted. 3140 ACC_invalid, 3141 3142 /// Can be safely retained or not retained. 3143 ACC_bottom, 3144 3145 /// Can be casted at +0. 3146 ACC_plusZero, 3147 3148 /// Can be casted at +1. 3149 ACC_plusOne 3150 }; 3151 ACCResult merge(ACCResult left, ACCResult right) { 3152 if (left == right) return left; 3153 if (left == ACC_bottom) return right; 3154 if (right == ACC_bottom) return left; 3155 return ACC_invalid; 3156 } 3157 3158 /// A checker which white-lists certain expressions whose conversion 3159 /// to or from retainable type would otherwise be forbidden in ARC. 3160 class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> { 3161 typedef StmtVisitor<ARCCastChecker, ACCResult> super; 3162 3163 ASTContext &Context; 3164 ARCConversionTypeClass SourceClass; 3165 ARCConversionTypeClass TargetClass; 3166 bool Diagnose; 3167 3168 static bool isCFType(QualType type) { 3169 // Someday this can use ns_bridged. For now, it has to do this. 3170 return type->isCARCBridgableType(); 3171 } 3172 3173 public: 3174 ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source, 3175 ARCConversionTypeClass target, bool diagnose) 3176 : Context(Context), SourceClass(source), TargetClass(target), 3177 Diagnose(diagnose) {} 3178 3179 using super::Visit; 3180 ACCResult Visit(Expr *e) { 3181 return super::Visit(e->IgnoreParens()); 3182 } 3183 3184 ACCResult VisitStmt(Stmt *s) { 3185 return ACC_invalid; 3186 } 3187 3188 /// Null pointer constants can be casted however you please. 3189 ACCResult VisitExpr(Expr *e) { 3190 if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 3191 return ACC_bottom; 3192 return ACC_invalid; 3193 } 3194 3195 /// Objective-C string literals can be safely casted. 3196 ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) { 3197 // If we're casting to any retainable type, go ahead. Global 3198 // strings are immune to retains, so this is bottom. 3199 if (isAnyRetainable(TargetClass)) return ACC_bottom; 3200 3201 return ACC_invalid; 3202 } 3203 3204 /// Look through certain implicit and explicit casts. 3205 ACCResult VisitCastExpr(CastExpr *e) { 3206 switch (e->getCastKind()) { 3207 case CK_NullToPointer: 3208 return ACC_bottom; 3209 3210 case CK_NoOp: 3211 case CK_LValueToRValue: 3212 case CK_BitCast: 3213 case CK_CPointerToObjCPointerCast: 3214 case CK_BlockPointerToObjCPointerCast: 3215 case CK_AnyPointerToBlockPointerCast: 3216 return Visit(e->getSubExpr()); 3217 3218 default: 3219 return ACC_invalid; 3220 } 3221 } 3222 3223 /// Look through unary extension. 3224 ACCResult VisitUnaryExtension(UnaryOperator *e) { 3225 return Visit(e->getSubExpr()); 3226 } 3227 3228 /// Ignore the LHS of a comma operator. 3229 ACCResult VisitBinComma(BinaryOperator *e) { 3230 return Visit(e->getRHS()); 3231 } 3232 3233 /// Conditional operators are okay if both sides are okay. 3234 ACCResult VisitConditionalOperator(ConditionalOperator *e) { 3235 ACCResult left = Visit(e->getTrueExpr()); 3236 if (left == ACC_invalid) return ACC_invalid; 3237 return merge(left, Visit(e->getFalseExpr())); 3238 } 3239 3240 /// Look through pseudo-objects. 3241 ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) { 3242 // If we're getting here, we should always have a result. 3243 return Visit(e->getResultExpr()); 3244 } 3245 3246 /// Statement expressions are okay if their result expression is okay. 3247 ACCResult VisitStmtExpr(StmtExpr *e) { 3248 return Visit(e->getSubStmt()->body_back()); 3249 } 3250 3251 /// Some declaration references are okay. 3252 ACCResult VisitDeclRefExpr(DeclRefExpr *e) { 3253 VarDecl *var = dyn_cast<VarDecl>(e->getDecl()); 3254 // References to global constants are okay. 3255 if (isAnyRetainable(TargetClass) && 3256 isAnyRetainable(SourceClass) && 3257 var && 3258 var->getStorageClass() == SC_Extern && 3259 var->getType().isConstQualified()) { 3260 3261 // In system headers, they can also be assumed to be immune to retains. 3262 // These are things like 'kCFStringTransformToLatin'. 3263 if (Context.getSourceManager().isInSystemHeader(var->getLocation())) 3264 return ACC_bottom; 3265 3266 return ACC_plusZero; 3267 } 3268 3269 // Nothing else. 3270 return ACC_invalid; 3271 } 3272 3273 /// Some calls are okay. 3274 ACCResult VisitCallExpr(CallExpr *e) { 3275 if (FunctionDecl *fn = e->getDirectCallee()) 3276 if (ACCResult result = checkCallToFunction(fn)) 3277 return result; 3278 3279 return super::VisitCallExpr(e); 3280 } 3281 3282 ACCResult checkCallToFunction(FunctionDecl *fn) { 3283 // Require a CF*Ref return type. 3284 if (!isCFType(fn->getReturnType())) 3285 return ACC_invalid; 3286 3287 if (!isAnyRetainable(TargetClass)) 3288 return ACC_invalid; 3289 3290 // Honor an explicit 'not retained' attribute. 3291 if (fn->hasAttr<CFReturnsNotRetainedAttr>()) 3292 return ACC_plusZero; 3293 3294 // Honor an explicit 'retained' attribute, except that for 3295 // now we're not going to permit implicit handling of +1 results, 3296 // because it's a bit frightening. 3297 if (fn->hasAttr<CFReturnsRetainedAttr>()) 3298 return Diagnose ? ACC_plusOne 3299 : ACC_invalid; // ACC_plusOne if we start accepting this 3300 3301 // Recognize this specific builtin function, which is used by CFSTR. 3302 unsigned builtinID = fn->getBuiltinID(); 3303 if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) 3304 return ACC_bottom; 3305 3306 // Otherwise, don't do anything implicit with an unaudited function. 3307 if (!fn->hasAttr<CFAuditedTransferAttr>()) 3308 return ACC_invalid; 3309 3310 // Otherwise, it's +0 unless it follows the create convention. 3311 if (ento::coreFoundation::followsCreateRule(fn)) 3312 return Diagnose ? ACC_plusOne 3313 : ACC_invalid; // ACC_plusOne if we start accepting this 3314 3315 return ACC_plusZero; 3316 } 3317 3318 ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) { 3319 return checkCallToMethod(e->getMethodDecl()); 3320 } 3321 3322 ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) { 3323 ObjCMethodDecl *method; 3324 if (e->isExplicitProperty()) 3325 method = e->getExplicitProperty()->getGetterMethodDecl(); 3326 else 3327 method = e->getImplicitPropertyGetter(); 3328 return checkCallToMethod(method); 3329 } 3330 3331 ACCResult checkCallToMethod(ObjCMethodDecl *method) { 3332 if (!method) return ACC_invalid; 3333 3334 // Check for message sends to functions returning CF types. We 3335 // just obey the Cocoa conventions with these, even though the 3336 // return type is CF. 3337 if (!isAnyRetainable(TargetClass) || !isCFType(method->getReturnType())) 3338 return ACC_invalid; 3339 3340 // If the method is explicitly marked not-retained, it's +0. 3341 if (method->hasAttr<CFReturnsNotRetainedAttr>()) 3342 return ACC_plusZero; 3343 3344 // If the method is explicitly marked as returning retained, or its 3345 // selector follows a +1 Cocoa convention, treat it as +1. 3346 if (method->hasAttr<CFReturnsRetainedAttr>()) 3347 return ACC_plusOne; 3348 3349 switch (method->getSelector().getMethodFamily()) { 3350 case OMF_alloc: 3351 case OMF_copy: 3352 case OMF_mutableCopy: 3353 case OMF_new: 3354 return ACC_plusOne; 3355 3356 default: 3357 // Otherwise, treat it as +0. 3358 return ACC_plusZero; 3359 } 3360 } 3361 }; 3362 } // end anonymous namespace 3363 3364 bool Sema::isKnownName(StringRef name) { 3365 if (name.empty()) 3366 return false; 3367 LookupResult R(*this, &Context.Idents.get(name), SourceLocation(), 3368 Sema::LookupOrdinaryName); 3369 return LookupName(R, TUScope, false); 3370 } 3371 3372 static void addFixitForObjCARCConversion(Sema &S, 3373 DiagnosticBuilder &DiagB, 3374 Sema::CheckedConversionKind CCK, 3375 SourceLocation afterLParen, 3376 QualType castType, 3377 Expr *castExpr, 3378 Expr *realCast, 3379 const char *bridgeKeyword, 3380 const char *CFBridgeName) { 3381 // We handle C-style and implicit casts here. 3382 switch (CCK) { 3383 case Sema::CCK_ImplicitConversion: 3384 case Sema::CCK_CStyleCast: 3385 case Sema::CCK_OtherCast: 3386 break; 3387 case Sema::CCK_FunctionalCast: 3388 return; 3389 } 3390 3391 if (CFBridgeName) { 3392 if (CCK == Sema::CCK_OtherCast) { 3393 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3394 SourceRange range(NCE->getOperatorLoc(), 3395 NCE->getAngleBrackets().getEnd()); 3396 SmallString<32> BridgeCall; 3397 3398 SourceManager &SM = S.getSourceManager(); 3399 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3400 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3401 BridgeCall += ' '; 3402 3403 BridgeCall += CFBridgeName; 3404 DiagB.AddFixItHint(FixItHint::CreateReplacement(range, BridgeCall)); 3405 } 3406 return; 3407 } 3408 Expr *castedE = castExpr; 3409 if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE)) 3410 castedE = CCE->getSubExpr(); 3411 castedE = castedE->IgnoreImpCasts(); 3412 SourceRange range = castedE->getSourceRange(); 3413 3414 SmallString<32> BridgeCall; 3415 3416 SourceManager &SM = S.getSourceManager(); 3417 char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1)); 3418 if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts())) 3419 BridgeCall += ' '; 3420 3421 BridgeCall += CFBridgeName; 3422 3423 if (isa<ParenExpr>(castedE)) { 3424 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3425 BridgeCall)); 3426 } else { 3427 BridgeCall += '('; 3428 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3429 BridgeCall)); 3430 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3431 S.getLocForEndOfToken(range.getEnd()), 3432 ")")); 3433 } 3434 return; 3435 } 3436 3437 if (CCK == Sema::CCK_CStyleCast) { 3438 DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword)); 3439 } else if (CCK == Sema::CCK_OtherCast) { 3440 if (const CXXNamedCastExpr *NCE = dyn_cast<CXXNamedCastExpr>(realCast)) { 3441 std::string castCode = "("; 3442 castCode += bridgeKeyword; 3443 castCode += castType.getAsString(); 3444 castCode += ")"; 3445 SourceRange Range(NCE->getOperatorLoc(), 3446 NCE->getAngleBrackets().getEnd()); 3447 DiagB.AddFixItHint(FixItHint::CreateReplacement(Range, castCode)); 3448 } 3449 } else { 3450 std::string castCode = "("; 3451 castCode += bridgeKeyword; 3452 castCode += castType.getAsString(); 3453 castCode += ")"; 3454 Expr *castedE = castExpr->IgnoreImpCasts(); 3455 SourceRange range = castedE->getSourceRange(); 3456 if (isa<ParenExpr>(castedE)) { 3457 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3458 castCode)); 3459 } else { 3460 castCode += "("; 3461 DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(), 3462 castCode)); 3463 DiagB.AddFixItHint(FixItHint::CreateInsertion( 3464 S.getLocForEndOfToken(range.getEnd()), 3465 ")")); 3466 } 3467 } 3468 } 3469 3470 template <typename T> 3471 static inline T *getObjCBridgeAttr(const TypedefType *TD) { 3472 TypedefNameDecl *TDNDecl = TD->getDecl(); 3473 QualType QT = TDNDecl->getUnderlyingType(); 3474 if (QT->isPointerType()) { 3475 QT = QT->getPointeeType(); 3476 if (const RecordType *RT = QT->getAs<RecordType>()) 3477 if (RecordDecl *RD = RT->getDecl()->getMostRecentDecl()) 3478 return RD->getAttr<T>(); 3479 } 3480 return nullptr; 3481 } 3482 3483 static ObjCBridgeRelatedAttr *ObjCBridgeRelatedAttrFromType(QualType T, 3484 TypedefNameDecl *&TDNDecl) { 3485 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3486 TDNDecl = TD->getDecl(); 3487 if (ObjCBridgeRelatedAttr *ObjCBAttr = 3488 getObjCBridgeAttr<ObjCBridgeRelatedAttr>(TD)) 3489 return ObjCBAttr; 3490 T = TDNDecl->getUnderlyingType(); 3491 } 3492 return nullptr; 3493 } 3494 3495 static void 3496 diagnoseObjCARCConversion(Sema &S, SourceRange castRange, 3497 QualType castType, ARCConversionTypeClass castACTC, 3498 Expr *castExpr, Expr *realCast, 3499 ARCConversionTypeClass exprACTC, 3500 Sema::CheckedConversionKind CCK) { 3501 SourceLocation loc = 3502 (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); 3503 3504 if (S.makeUnavailableInSystemHeader(loc, 3505 UnavailableAttr::IR_ARCForbiddenConversion)) 3506 return; 3507 3508 QualType castExprType = castExpr->getType(); 3509 // Defer emitting a diagnostic for bridge-related casts; that will be 3510 // handled by CheckObjCBridgeRelatedConversions. 3511 TypedefNameDecl *TDNDecl = nullptr; 3512 if ((castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable && 3513 ObjCBridgeRelatedAttrFromType(castType, TDNDecl)) || 3514 (exprACTC == ACTC_coreFoundation && castACTC == ACTC_retainable && 3515 ObjCBridgeRelatedAttrFromType(castExprType, TDNDecl))) 3516 return; 3517 3518 unsigned srcKind = 0; 3519 switch (exprACTC) { 3520 case ACTC_none: 3521 case ACTC_coreFoundation: 3522 case ACTC_voidPtr: 3523 srcKind = (castExprType->isPointerType() ? 1 : 0); 3524 break; 3525 case ACTC_retainable: 3526 srcKind = (castExprType->isBlockPointerType() ? 2 : 3); 3527 break; 3528 case ACTC_indirectRetainable: 3529 srcKind = 4; 3530 break; 3531 } 3532 3533 // Check whether this could be fixed with a bridge cast. 3534 SourceLocation afterLParen = S.getLocForEndOfToken(castRange.getBegin()); 3535 SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc; 3536 3537 // Bridge from an ARC type to a CF type. 3538 if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) { 3539 3540 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3541 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit 3542 << 2 // of C pointer type 3543 << castExprType 3544 << unsigned(castType->isBlockPointerType()) // to ObjC|block type 3545 << castType 3546 << castRange 3547 << castExpr->getSourceRange(); 3548 bool br = S.isKnownName("CFBridgingRelease"); 3549 ACCResult CreateRule = 3550 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3551 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3552 if (CreateRule != ACC_plusOne) 3553 { 3554 DiagnosticBuilder DiagB = 3555 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge) 3556 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3557 3558 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3559 castType, castExpr, realCast, "__bridge ", 3560 nullptr); 3561 } 3562 if (CreateRule != ACC_plusZero) 3563 { 3564 DiagnosticBuilder DiagB = 3565 (CCK == Sema::CCK_OtherCast && !br) ? 3566 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_transfer) << castExprType : 3567 S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3568 diag::note_arc_bridge_transfer) 3569 << castExprType << br; 3570 3571 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3572 castType, castExpr, realCast, "__bridge_transfer ", 3573 br ? "CFBridgingRelease" : nullptr); 3574 } 3575 3576 return; 3577 } 3578 3579 // Bridge from a CF type to an ARC type. 3580 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) { 3581 bool br = S.isKnownName("CFBridgingRetain"); 3582 S.Diag(loc, diag::err_arc_cast_requires_bridge) 3583 << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit 3584 << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type 3585 << castExprType 3586 << 2 // to C pointer type 3587 << castType 3588 << castRange 3589 << castExpr->getSourceRange(); 3590 ACCResult CreateRule = 3591 ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr); 3592 assert(CreateRule != ACC_bottom && "This cast should already be accepted."); 3593 if (CreateRule != ACC_plusOne) 3594 { 3595 DiagnosticBuilder DiagB = 3596 (CCK != Sema::CCK_OtherCast) ? S.Diag(noteLoc, diag::note_arc_bridge) 3597 : S.Diag(noteLoc, diag::note_arc_cstyle_bridge); 3598 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3599 castType, castExpr, realCast, "__bridge ", 3600 nullptr); 3601 } 3602 if (CreateRule != ACC_plusZero) 3603 { 3604 DiagnosticBuilder DiagB = 3605 (CCK == Sema::CCK_OtherCast && !br) ? 3606 S.Diag(noteLoc, diag::note_arc_cstyle_bridge_retained) << castType : 3607 S.Diag(br ? castExpr->getExprLoc() : noteLoc, 3608 diag::note_arc_bridge_retained) 3609 << castType << br; 3610 3611 addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen, 3612 castType, castExpr, realCast, "__bridge_retained ", 3613 br ? "CFBridgingRetain" : nullptr); 3614 } 3615 3616 return; 3617 } 3618 3619 S.Diag(loc, diag::err_arc_mismatched_cast) 3620 << (CCK != Sema::CCK_ImplicitConversion) 3621 << srcKind << castExprType << castType 3622 << castRange << castExpr->getSourceRange(); 3623 } 3624 3625 template <typename TB> 3626 static bool CheckObjCBridgeNSCast(Sema &S, QualType castType, Expr *castExpr, 3627 bool &HadTheAttribute, bool warn) { 3628 QualType T = castExpr->getType(); 3629 HadTheAttribute = false; 3630 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3631 TypedefNameDecl *TDNDecl = TD->getDecl(); 3632 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 3633 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 3634 HadTheAttribute = true; 3635 if (Parm->isStr("id")) 3636 return true; 3637 3638 NamedDecl *Target = nullptr; 3639 // Check for an existing type with this name. 3640 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 3641 Sema::LookupOrdinaryName); 3642 if (S.LookupName(R, S.TUScope)) { 3643 Target = R.getFoundDecl(); 3644 if (Target && isa<ObjCInterfaceDecl>(Target)) { 3645 ObjCInterfaceDecl *ExprClass = cast<ObjCInterfaceDecl>(Target); 3646 if (const ObjCObjectPointerType *InterfacePointerType = 3647 castType->getAsObjCInterfacePointerType()) { 3648 ObjCInterfaceDecl *CastClass 3649 = InterfacePointerType->getObjectType()->getInterface(); 3650 if ((CastClass == ExprClass) || 3651 (CastClass && CastClass->isSuperClassOf(ExprClass))) 3652 return true; 3653 if (warn) 3654 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge) 3655 << T << Target->getName() << castType->getPointeeType(); 3656 return false; 3657 } else if (castType->isObjCIdType() || 3658 (S.Context.ObjCObjectAdoptsQTypeProtocols( 3659 castType, ExprClass))) 3660 // ok to cast to 'id'. 3661 // casting to id<p-list> is ok if bridge type adopts all of 3662 // p-list protocols. 3663 return true; 3664 else { 3665 if (warn) { 3666 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge) 3667 << T << Target->getName() << castType; 3668 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3669 S.Diag(Target->getLocStart(), diag::note_declared_at); 3670 } 3671 return false; 3672 } 3673 } 3674 } else if (!castType->isObjCIdType()) { 3675 S.Diag(castExpr->getLocStart(), diag::err_objc_cf_bridged_not_interface) 3676 << castExpr->getType() << Parm; 3677 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3678 if (Target) 3679 S.Diag(Target->getLocStart(), diag::note_declared_at); 3680 } 3681 return true; 3682 } 3683 return false; 3684 } 3685 T = TDNDecl->getUnderlyingType(); 3686 } 3687 return true; 3688 } 3689 3690 template <typename TB> 3691 static bool CheckObjCBridgeCFCast(Sema &S, QualType castType, Expr *castExpr, 3692 bool &HadTheAttribute, bool warn) { 3693 QualType T = castType; 3694 HadTheAttribute = false; 3695 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr())) { 3696 TypedefNameDecl *TDNDecl = TD->getDecl(); 3697 if (TB *ObjCBAttr = getObjCBridgeAttr<TB>(TD)) { 3698 if (IdentifierInfo *Parm = ObjCBAttr->getBridgedType()) { 3699 HadTheAttribute = true; 3700 if (Parm->isStr("id")) 3701 return true; 3702 3703 NamedDecl *Target = nullptr; 3704 // Check for an existing type with this name. 3705 LookupResult R(S, DeclarationName(Parm), SourceLocation(), 3706 Sema::LookupOrdinaryName); 3707 if (S.LookupName(R, S.TUScope)) { 3708 Target = R.getFoundDecl(); 3709 if (Target && isa<ObjCInterfaceDecl>(Target)) { 3710 ObjCInterfaceDecl *CastClass = cast<ObjCInterfaceDecl>(Target); 3711 if (const ObjCObjectPointerType *InterfacePointerType = 3712 castExpr->getType()->getAsObjCInterfacePointerType()) { 3713 ObjCInterfaceDecl *ExprClass 3714 = InterfacePointerType->getObjectType()->getInterface(); 3715 if ((CastClass == ExprClass) || 3716 (ExprClass && CastClass->isSuperClassOf(ExprClass))) 3717 return true; 3718 if (warn) { 3719 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge_to_cf) 3720 << castExpr->getType()->getPointeeType() << T; 3721 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3722 } 3723 return false; 3724 } else if (castExpr->getType()->isObjCIdType() || 3725 (S.Context.QIdProtocolsAdoptObjCObjectProtocols( 3726 castExpr->getType(), CastClass))) 3727 // ok to cast an 'id' expression to a CFtype. 3728 // ok to cast an 'id<plist>' expression to CFtype provided plist 3729 // adopts all of CFtype's ObjetiveC's class plist. 3730 return true; 3731 else { 3732 if (warn) { 3733 S.Diag(castExpr->getLocStart(), diag::warn_objc_invalid_bridge_to_cf) 3734 << castExpr->getType() << castType; 3735 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3736 S.Diag(Target->getLocStart(), diag::note_declared_at); 3737 } 3738 return false; 3739 } 3740 } 3741 } 3742 S.Diag(castExpr->getLocStart(), diag::err_objc_ns_bridged_invalid_cfobject) 3743 << castExpr->getType() << castType; 3744 S.Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3745 if (Target) 3746 S.Diag(Target->getLocStart(), diag::note_declared_at); 3747 return true; 3748 } 3749 return false; 3750 } 3751 T = TDNDecl->getUnderlyingType(); 3752 } 3753 return true; 3754 } 3755 3756 void Sema::CheckTollFreeBridgeCast(QualType castType, Expr *castExpr) { 3757 if (!getLangOpts().ObjC1) 3758 return; 3759 // warn in presence of __bridge casting to or from a toll free bridge cast. 3760 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExpr->getType()); 3761 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 3762 if (castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) { 3763 bool HasObjCBridgeAttr; 3764 bool ObjCBridgeAttrWillNotWarn = 3765 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3766 false); 3767 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 3768 return; 3769 bool HasObjCBridgeMutableAttr; 3770 bool ObjCBridgeMutableAttrWillNotWarn = 3771 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3772 HasObjCBridgeMutableAttr, false); 3773 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 3774 return; 3775 3776 if (HasObjCBridgeAttr) 3777 CheckObjCBridgeNSCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3778 true); 3779 else if (HasObjCBridgeMutableAttr) 3780 CheckObjCBridgeNSCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3781 HasObjCBridgeMutableAttr, true); 3782 } 3783 else if (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable) { 3784 bool HasObjCBridgeAttr; 3785 bool ObjCBridgeAttrWillNotWarn = 3786 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3787 false); 3788 if (ObjCBridgeAttrWillNotWarn && HasObjCBridgeAttr) 3789 return; 3790 bool HasObjCBridgeMutableAttr; 3791 bool ObjCBridgeMutableAttrWillNotWarn = 3792 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3793 HasObjCBridgeMutableAttr, false); 3794 if (ObjCBridgeMutableAttrWillNotWarn && HasObjCBridgeMutableAttr) 3795 return; 3796 3797 if (HasObjCBridgeAttr) 3798 CheckObjCBridgeCFCast<ObjCBridgeAttr>(*this, castType, castExpr, HasObjCBridgeAttr, 3799 true); 3800 else if (HasObjCBridgeMutableAttr) 3801 CheckObjCBridgeCFCast<ObjCBridgeMutableAttr>(*this, castType, castExpr, 3802 HasObjCBridgeMutableAttr, true); 3803 } 3804 } 3805 3806 void Sema::CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr) { 3807 QualType SrcType = castExpr->getType(); 3808 if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(castExpr)) { 3809 if (PRE->isExplicitProperty()) { 3810 if (ObjCPropertyDecl *PDecl = PRE->getExplicitProperty()) 3811 SrcType = PDecl->getType(); 3812 } 3813 else if (PRE->isImplicitProperty()) { 3814 if (ObjCMethodDecl *Getter = PRE->getImplicitPropertyGetter()) 3815 SrcType = Getter->getReturnType(); 3816 } 3817 } 3818 3819 ARCConversionTypeClass srcExprACTC = classifyTypeForARCConversion(SrcType); 3820 ARCConversionTypeClass castExprACTC = classifyTypeForARCConversion(castType); 3821 if (srcExprACTC != ACTC_retainable || castExprACTC != ACTC_coreFoundation) 3822 return; 3823 CheckObjCBridgeRelatedConversions(castExpr->getLocStart(), 3824 castType, SrcType, castExpr); 3825 } 3826 3827 bool Sema::CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr, 3828 CastKind &Kind) { 3829 if (!getLangOpts().ObjC1) 3830 return false; 3831 ARCConversionTypeClass exprACTC = 3832 classifyTypeForARCConversion(castExpr->getType()); 3833 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); 3834 if ((castACTC == ACTC_retainable && exprACTC == ACTC_coreFoundation) || 3835 (castACTC == ACTC_coreFoundation && exprACTC == ACTC_retainable)) { 3836 CheckTollFreeBridgeCast(castType, castExpr); 3837 Kind = (castACTC == ACTC_coreFoundation) ? CK_BitCast 3838 : CK_CPointerToObjCPointerCast; 3839 return true; 3840 } 3841 return false; 3842 } 3843 3844 bool Sema::checkObjCBridgeRelatedComponents(SourceLocation Loc, 3845 QualType DestType, QualType SrcType, 3846 ObjCInterfaceDecl *&RelatedClass, 3847 ObjCMethodDecl *&ClassMethod, 3848 ObjCMethodDecl *&InstanceMethod, 3849 TypedefNameDecl *&TDNDecl, 3850 bool CfToNs, bool Diagnose) { 3851 QualType T = CfToNs ? SrcType : DestType; 3852 ObjCBridgeRelatedAttr *ObjCBAttr = ObjCBridgeRelatedAttrFromType(T, TDNDecl); 3853 if (!ObjCBAttr) 3854 return false; 3855 3856 IdentifierInfo *RCId = ObjCBAttr->getRelatedClass(); 3857 IdentifierInfo *CMId = ObjCBAttr->getClassMethod(); 3858 IdentifierInfo *IMId = ObjCBAttr->getInstanceMethod(); 3859 if (!RCId) 3860 return false; 3861 NamedDecl *Target = nullptr; 3862 // Check for an existing type with this name. 3863 LookupResult R(*this, DeclarationName(RCId), SourceLocation(), 3864 Sema::LookupOrdinaryName); 3865 if (!LookupName(R, TUScope)) { 3866 if (Diagnose) { 3867 Diag(Loc, diag::err_objc_bridged_related_invalid_class) << RCId 3868 << SrcType << DestType; 3869 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3870 } 3871 return false; 3872 } 3873 Target = R.getFoundDecl(); 3874 if (Target && isa<ObjCInterfaceDecl>(Target)) 3875 RelatedClass = cast<ObjCInterfaceDecl>(Target); 3876 else { 3877 if (Diagnose) { 3878 Diag(Loc, diag::err_objc_bridged_related_invalid_class_name) << RCId 3879 << SrcType << DestType; 3880 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3881 if (Target) 3882 Diag(Target->getLocStart(), diag::note_declared_at); 3883 } 3884 return false; 3885 } 3886 3887 // Check for an existing class method with the given selector name. 3888 if (CfToNs && CMId) { 3889 Selector Sel = Context.Selectors.getUnarySelector(CMId); 3890 ClassMethod = RelatedClass->lookupMethod(Sel, false); 3891 if (!ClassMethod) { 3892 if (Diagnose) { 3893 Diag(Loc, diag::err_objc_bridged_related_known_method) 3894 << SrcType << DestType << Sel << false; 3895 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3896 } 3897 return false; 3898 } 3899 } 3900 3901 // Check for an existing instance method with the given selector name. 3902 if (!CfToNs && IMId) { 3903 Selector Sel = Context.Selectors.getNullarySelector(IMId); 3904 InstanceMethod = RelatedClass->lookupMethod(Sel, true); 3905 if (!InstanceMethod) { 3906 if (Diagnose) { 3907 Diag(Loc, diag::err_objc_bridged_related_known_method) 3908 << SrcType << DestType << Sel << true; 3909 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3910 } 3911 return false; 3912 } 3913 } 3914 return true; 3915 } 3916 3917 bool 3918 Sema::CheckObjCBridgeRelatedConversions(SourceLocation Loc, 3919 QualType DestType, QualType SrcType, 3920 Expr *&SrcExpr, bool Diagnose) { 3921 ARCConversionTypeClass rhsExprACTC = classifyTypeForARCConversion(SrcType); 3922 ARCConversionTypeClass lhsExprACTC = classifyTypeForARCConversion(DestType); 3923 bool CfToNs = (rhsExprACTC == ACTC_coreFoundation && lhsExprACTC == ACTC_retainable); 3924 bool NsToCf = (rhsExprACTC == ACTC_retainable && lhsExprACTC == ACTC_coreFoundation); 3925 if (!CfToNs && !NsToCf) 3926 return false; 3927 3928 ObjCInterfaceDecl *RelatedClass; 3929 ObjCMethodDecl *ClassMethod = nullptr; 3930 ObjCMethodDecl *InstanceMethod = nullptr; 3931 TypedefNameDecl *TDNDecl = nullptr; 3932 if (!checkObjCBridgeRelatedComponents(Loc, DestType, SrcType, RelatedClass, 3933 ClassMethod, InstanceMethod, TDNDecl, 3934 CfToNs, Diagnose)) 3935 return false; 3936 3937 if (CfToNs) { 3938 // Implicit conversion from CF to ObjC object is needed. 3939 if (ClassMethod) { 3940 if (Diagnose) { 3941 std::string ExpressionString = "["; 3942 ExpressionString += RelatedClass->getNameAsString(); 3943 ExpressionString += " "; 3944 ExpressionString += ClassMethod->getSelector().getAsString(); 3945 SourceLocation SrcExprEndLoc = getLocForEndOfToken(SrcExpr->getLocEnd()); 3946 // Provide a fixit: [RelatedClass ClassMethod SrcExpr] 3947 Diag(Loc, diag::err_objc_bridged_related_known_method) 3948 << SrcType << DestType << ClassMethod->getSelector() << false 3949 << FixItHint::CreateInsertion(SrcExpr->getLocStart(), ExpressionString) 3950 << FixItHint::CreateInsertion(SrcExprEndLoc, "]"); 3951 Diag(RelatedClass->getLocStart(), diag::note_declared_at); 3952 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3953 3954 QualType receiverType = Context.getObjCInterfaceType(RelatedClass); 3955 // Argument. 3956 Expr *args[] = { SrcExpr }; 3957 ExprResult msg = BuildClassMessageImplicit(receiverType, false, 3958 ClassMethod->getLocation(), 3959 ClassMethod->getSelector(), ClassMethod, 3960 MultiExprArg(args, 1)); 3961 SrcExpr = msg.get(); 3962 } 3963 return true; 3964 } 3965 } 3966 else { 3967 // Implicit conversion from ObjC type to CF object is needed. 3968 if (InstanceMethod) { 3969 if (Diagnose) { 3970 std::string ExpressionString; 3971 SourceLocation SrcExprEndLoc = 3972 getLocForEndOfToken(SrcExpr->getLocEnd()); 3973 if (InstanceMethod->isPropertyAccessor()) 3974 if (const ObjCPropertyDecl *PDecl = 3975 InstanceMethod->findPropertyDecl()) { 3976 // fixit: ObjectExpr.propertyname when it is aproperty accessor. 3977 ExpressionString = "."; 3978 ExpressionString += PDecl->getNameAsString(); 3979 Diag(Loc, diag::err_objc_bridged_related_known_method) 3980 << SrcType << DestType << InstanceMethod->getSelector() << true 3981 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 3982 } 3983 if (ExpressionString.empty()) { 3984 // Provide a fixit: [ObjectExpr InstanceMethod] 3985 ExpressionString = " "; 3986 ExpressionString += InstanceMethod->getSelector().getAsString(); 3987 ExpressionString += "]"; 3988 3989 Diag(Loc, diag::err_objc_bridged_related_known_method) 3990 << SrcType << DestType << InstanceMethod->getSelector() << true 3991 << FixItHint::CreateInsertion(SrcExpr->getLocStart(), "[") 3992 << FixItHint::CreateInsertion(SrcExprEndLoc, ExpressionString); 3993 } 3994 Diag(RelatedClass->getLocStart(), diag::note_declared_at); 3995 Diag(TDNDecl->getLocStart(), diag::note_declared_at); 3996 3997 ExprResult msg = 3998 BuildInstanceMessageImplicit(SrcExpr, SrcType, 3999 InstanceMethod->getLocation(), 4000 InstanceMethod->getSelector(), 4001 InstanceMethod, None); 4002 SrcExpr = msg.get(); 4003 } 4004 return true; 4005 } 4006 } 4007 return false; 4008 } 4009 4010 Sema::ARCConversionResult 4011 Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType, 4012 Expr *&castExpr, CheckedConversionKind CCK, 4013 bool Diagnose, 4014 bool DiagnoseCFAudited, 4015 BinaryOperatorKind Opc) { 4016 QualType castExprType = castExpr->getType(); 4017 4018 // For the purposes of the classification, we assume reference types 4019 // will bind to temporaries. 4020 QualType effCastType = castType; 4021 if (const ReferenceType *ref = castType->getAs<ReferenceType>()) 4022 effCastType = ref->getPointeeType(); 4023 4024 ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); 4025 ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType); 4026 if (exprACTC == castACTC) { 4027 // Check for viability and report error if casting an rvalue to a 4028 // life-time qualifier. 4029 if (castACTC == ACTC_retainable && 4030 (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) && 4031 castType != castExprType) { 4032 const Type *DT = castType.getTypePtr(); 4033 QualType QDT = castType; 4034 // We desugar some types but not others. We ignore those 4035 // that cannot happen in a cast; i.e. auto, and those which 4036 // should not be de-sugared; i.e typedef. 4037 if (const ParenType *PT = dyn_cast<ParenType>(DT)) 4038 QDT = PT->desugar(); 4039 else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT)) 4040 QDT = TP->desugar(); 4041 else if (const AttributedType *AT = dyn_cast<AttributedType>(DT)) 4042 QDT = AT->desugar(); 4043 if (QDT != castType && 4044 QDT.getObjCLifetime() != Qualifiers::OCL_None) { 4045 if (Diagnose) { 4046 SourceLocation loc = (castRange.isValid() ? castRange.getBegin() 4047 : castExpr->getExprLoc()); 4048 Diag(loc, diag::err_arc_nolifetime_behavior); 4049 } 4050 return ACR_error; 4051 } 4052 } 4053 return ACR_okay; 4054 } 4055 4056 if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay; 4057 4058 // Allow all of these types to be cast to integer types (but not 4059 // vice-versa). 4060 if (castACTC == ACTC_none && castType->isIntegralType(Context)) 4061 return ACR_okay; 4062 4063 // Allow casts between pointers to lifetime types (e.g., __strong id*) 4064 // and pointers to void (e.g., cv void *). Casting from void* to lifetime* 4065 // must be explicit. 4066 if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr) 4067 return ACR_okay; 4068 if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr && 4069 CCK != CCK_ImplicitConversion) 4070 return ACR_okay; 4071 4072 switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) { 4073 // For invalid casts, fall through. 4074 case ACC_invalid: 4075 break; 4076 4077 // Do nothing for both bottom and +0. 4078 case ACC_bottom: 4079 case ACC_plusZero: 4080 return ACR_okay; 4081 4082 // If the result is +1, consume it here. 4083 case ACC_plusOne: 4084 castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(), 4085 CK_ARCConsumeObject, castExpr, 4086 nullptr, VK_RValue); 4087 Cleanup.setExprNeedsCleanups(true); 4088 return ACR_okay; 4089 } 4090 4091 // If this is a non-implicit cast from id or block type to a 4092 // CoreFoundation type, delay complaining in case the cast is used 4093 // in an acceptable context. 4094 if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && 4095 CCK != CCK_ImplicitConversion) 4096 return ACR_unbridged; 4097 4098 // Issue a diagnostic about a missing @-sign when implicit casting a cstring 4099 // to 'NSString *', instead of falling through to report a "bridge cast" 4100 // diagnostic. 4101 if (castACTC == ACTC_retainable && exprACTC == ACTC_none && 4102 ConversionToObjCStringLiteralCheck(castType, castExpr, Diagnose)) 4103 return ACR_error; 4104 4105 // Do not issue "bridge cast" diagnostic when implicit casting 4106 // a retainable object to a CF type parameter belonging to an audited 4107 // CF API function. Let caller issue a normal type mismatched diagnostic 4108 // instead. 4109 if ((!DiagnoseCFAudited || exprACTC != ACTC_retainable || 4110 castACTC != ACTC_coreFoundation) && 4111 !(exprACTC == ACTC_voidPtr && castACTC == ACTC_retainable && 4112 (Opc == BO_NE || Opc == BO_EQ))) { 4113 if (Diagnose) 4114 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, castExpr, 4115 castExpr, exprACTC, CCK); 4116 return ACR_error; 4117 } 4118 return ACR_okay; 4119 } 4120 4121 /// Given that we saw an expression with the ARCUnbridgedCastTy 4122 /// placeholder type, complain bitterly. 4123 void Sema::diagnoseARCUnbridgedCast(Expr *e) { 4124 // We expect the spurious ImplicitCastExpr to already have been stripped. 4125 assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4126 CastExpr *realCast = cast<CastExpr>(e->IgnoreParens()); 4127 4128 SourceRange castRange; 4129 QualType castType; 4130 CheckedConversionKind CCK; 4131 4132 if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) { 4133 castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc()); 4134 castType = cast->getTypeAsWritten(); 4135 CCK = CCK_CStyleCast; 4136 } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) { 4137 castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange(); 4138 castType = cast->getTypeAsWritten(); 4139 CCK = CCK_OtherCast; 4140 } else { 4141 castType = cast->getType(); 4142 CCK = CCK_ImplicitConversion; 4143 } 4144 4145 ARCConversionTypeClass castACTC = 4146 classifyTypeForARCConversion(castType.getNonReferenceType()); 4147 4148 Expr *castExpr = realCast->getSubExpr(); 4149 assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable); 4150 4151 diagnoseObjCARCConversion(*this, castRange, castType, castACTC, 4152 castExpr, realCast, ACTC_retainable, CCK); 4153 } 4154 4155 /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast 4156 /// type, remove the placeholder cast. 4157 Expr *Sema::stripARCUnbridgedCast(Expr *e) { 4158 assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 4159 4160 if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) { 4161 Expr *sub = stripARCUnbridgedCast(pe->getSubExpr()); 4162 return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub); 4163 } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) { 4164 assert(uo->getOpcode() == UO_Extension); 4165 Expr *sub = stripARCUnbridgedCast(uo->getSubExpr()); 4166 return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(), 4167 sub->getValueKind(), sub->getObjectKind(), 4168 uo->getOperatorLoc()); 4169 } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { 4170 assert(!gse->isResultDependent()); 4171 4172 unsigned n = gse->getNumAssocs(); 4173 SmallVector<Expr*, 4> subExprs(n); 4174 SmallVector<TypeSourceInfo*, 4> subTypes(n); 4175 for (unsigned i = 0; i != n; ++i) { 4176 subTypes[i] = gse->getAssocTypeSourceInfo(i); 4177 Expr *sub = gse->getAssocExpr(i); 4178 if (i == gse->getResultIndex()) 4179 sub = stripARCUnbridgedCast(sub); 4180 subExprs[i] = sub; 4181 } 4182 4183 return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(), 4184 gse->getControllingExpr(), 4185 subTypes, subExprs, 4186 gse->getDefaultLoc(), 4187 gse->getRParenLoc(), 4188 gse->containsUnexpandedParameterPack(), 4189 gse->getResultIndex()); 4190 } else { 4191 assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"); 4192 return cast<ImplicitCastExpr>(e)->getSubExpr(); 4193 } 4194 } 4195 4196 bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, 4197 QualType exprType) { 4198 QualType canCastType = 4199 Context.getCanonicalType(castType).getUnqualifiedType(); 4200 QualType canExprType = 4201 Context.getCanonicalType(exprType).getUnqualifiedType(); 4202 if (isa<ObjCObjectPointerType>(canCastType) && 4203 castType.getObjCLifetime() == Qualifiers::OCL_Weak && 4204 canExprType->isObjCObjectPointerType()) { 4205 if (const ObjCObjectPointerType *ObjT = 4206 canExprType->getAs<ObjCObjectPointerType>()) 4207 if (const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl()) 4208 return !ObjI->isArcWeakrefUnavailable(); 4209 } 4210 return true; 4211 } 4212 4213 /// Look for an ObjCReclaimReturnedObject cast and destroy it. 4214 static Expr *maybeUndoReclaimObject(Expr *e) { 4215 // For now, we just undo operands that are *immediately* reclaim 4216 // expressions, which prevents the vast majority of potential 4217 // problems here. To catch them all, we'd need to rebuild arbitrary 4218 // value-propagating subexpressions --- we can't reliably rebuild 4219 // in-place because of expression sharing. 4220 if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 4221 if (ice->getCastKind() == CK_ARCReclaimReturnedObject) 4222 return ice->getSubExpr(); 4223 4224 return e; 4225 } 4226 4227 ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, 4228 ObjCBridgeCastKind Kind, 4229 SourceLocation BridgeKeywordLoc, 4230 TypeSourceInfo *TSInfo, 4231 Expr *SubExpr) { 4232 ExprResult SubResult = UsualUnaryConversions(SubExpr); 4233 if (SubResult.isInvalid()) return ExprError(); 4234 SubExpr = SubResult.get(); 4235 4236 QualType T = TSInfo->getType(); 4237 QualType FromType = SubExpr->getType(); 4238 4239 CastKind CK; 4240 4241 bool MustConsume = false; 4242 if (T->isDependentType() || SubExpr->isTypeDependent()) { 4243 // Okay: we'll build a dependent expression type. 4244 CK = CK_Dependent; 4245 } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { 4246 // Casting CF -> id 4247 CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast 4248 : CK_CPointerToObjCPointerCast); 4249 switch (Kind) { 4250 case OBC_Bridge: 4251 break; 4252 4253 case OBC_BridgeRetained: { 4254 bool br = isKnownName("CFBridgingRelease"); 4255 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4256 << 2 4257 << FromType 4258 << (T->isBlockPointerType()? 1 : 0) 4259 << T 4260 << SubExpr->getSourceRange() 4261 << Kind; 4262 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4263 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); 4264 Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) 4265 << FromType << br 4266 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4267 br ? "CFBridgingRelease " 4268 : "__bridge_transfer "); 4269 4270 Kind = OBC_Bridge; 4271 break; 4272 } 4273 4274 case OBC_BridgeTransfer: 4275 // We must consume the Objective-C object produced by the cast. 4276 MustConsume = true; 4277 break; 4278 } 4279 } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { 4280 // Okay: id -> CF 4281 CK = CK_BitCast; 4282 switch (Kind) { 4283 case OBC_Bridge: 4284 // Reclaiming a value that's going to be __bridge-casted to CF 4285 // is very dangerous, so we don't do it. 4286 SubExpr = maybeUndoReclaimObject(SubExpr); 4287 break; 4288 4289 case OBC_BridgeRetained: 4290 // Produce the object before casting it. 4291 SubExpr = ImplicitCastExpr::Create(Context, FromType, 4292 CK_ARCProduceObject, 4293 SubExpr, nullptr, VK_RValue); 4294 break; 4295 4296 case OBC_BridgeTransfer: { 4297 bool br = isKnownName("CFBridgingRetain"); 4298 Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) 4299 << (FromType->isBlockPointerType()? 1 : 0) 4300 << FromType 4301 << 2 4302 << T 4303 << SubExpr->getSourceRange() 4304 << Kind; 4305 4306 Diag(BridgeKeywordLoc, diag::note_arc_bridge) 4307 << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); 4308 Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) 4309 << T << br 4310 << FixItHint::CreateReplacement(BridgeKeywordLoc, 4311 br ? "CFBridgingRetain " : "__bridge_retained"); 4312 4313 Kind = OBC_Bridge; 4314 break; 4315 } 4316 } 4317 } else { 4318 Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) 4319 << FromType << T << Kind 4320 << SubExpr->getSourceRange() 4321 << TSInfo->getTypeLoc().getSourceRange(); 4322 return ExprError(); 4323 } 4324 4325 Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK, 4326 BridgeKeywordLoc, 4327 TSInfo, SubExpr); 4328 4329 if (MustConsume) { 4330 Cleanup.setExprNeedsCleanups(true); 4331 Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, 4332 nullptr, VK_RValue); 4333 } 4334 4335 return Result; 4336 } 4337 4338 ExprResult Sema::ActOnObjCBridgedCast(Scope *S, 4339 SourceLocation LParenLoc, 4340 ObjCBridgeCastKind Kind, 4341 SourceLocation BridgeKeywordLoc, 4342 ParsedType Type, 4343 SourceLocation RParenLoc, 4344 Expr *SubExpr) { 4345 TypeSourceInfo *TSInfo = nullptr; 4346 QualType T = GetTypeFromParser(Type, &TSInfo); 4347 if (Kind == OBC_Bridge) 4348 CheckTollFreeBridgeCast(T, SubExpr); 4349 if (!TSInfo) 4350 TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); 4351 return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, 4352 SubExpr); 4353 } 4354