Home | History | Annotate | Download | only in nir
      1 /*
      2  * Copyright  2014 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Jason Ekstrand (jason (at) jlekstrand.net)
     25  *
     26  */
     27 
     28 #include "nir.h"
     29 #include "nir_builder.h"
     30 #include "nir_vla.h"
     31 
     32 /*
     33  * This file implements an out-of-SSA pass as described in "Revisiting
     34  * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
     35  * Boissinot et. al.
     36  */
     37 
     38 struct from_ssa_state {
     39    nir_builder builder;
     40    void *dead_ctx;
     41    bool phi_webs_only;
     42    struct hash_table *merge_node_table;
     43    nir_instr *instr;
     44 };
     45 
     46 /* Returns true if a dominates b */
     47 static bool
     48 ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
     49 {
     50    if (a->live_index == 0) {
     51       /* SSA undefs always dominate */
     52       return true;
     53    } else if (b->live_index < a->live_index) {
     54       return false;
     55    } else if (a->parent_instr->block == b->parent_instr->block) {
     56       return a->live_index <= b->live_index;
     57    } else {
     58       return nir_block_dominates(a->parent_instr->block,
     59                                  b->parent_instr->block);
     60    }
     61 }
     62 
     63 
     64 /* The following data structure, which I have named merge_set is a way of
     65  * representing a set registers of non-interfering registers.  This is
     66  * based on the concept of a "dominence forest" presented in "Fast Copy
     67  * Coalescing and Live-Range Identification" by Budimlic et. al. but the
     68  * implementation concept is taken from  "Revisiting Out-of-SSA Translation
     69  * for Correctness, Code Quality, and Efficiency" by Boissinot et. al..
     70  *
     71  * Each SSA definition is associated with a merge_node and the association
     72  * is represented by a combination of a hash table and the "def" parameter
     73  * in the merge_node structure.  The merge_set stores a linked list of
     74  * merge_node's in dominence order of the ssa definitions.  (Since the
     75  * liveness analysis pass indexes the SSA values in dominence order for us,
     76  * this is an easy thing to keep up.)  It is assumed that no pair of the
     77  * nodes in a given set interfere.  Merging two sets or checking for
     78  * interference can be done in a single linear-time merge-sort walk of the
     79  * two lists of nodes.
     80  */
     81 struct merge_set;
     82 
     83 typedef struct {
     84    struct exec_node node;
     85    struct merge_set *set;
     86    nir_ssa_def *def;
     87 } merge_node;
     88 
     89 typedef struct merge_set {
     90    struct exec_list nodes;
     91    unsigned size;
     92    nir_register *reg;
     93 } merge_set;
     94 
     95 #if 0
     96 static void
     97 merge_set_dump(merge_set *set, FILE *fp)
     98 {
     99    nir_ssa_def *dom[set->size];
    100    int dom_idx = -1;
    101 
    102    foreach_list_typed(merge_node, node, node, &set->nodes) {
    103       while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
    104          dom_idx--;
    105 
    106       for (int i = 0; i <= dom_idx; i++)
    107          fprintf(fp, "  ");
    108 
    109       if (node->def->name)
    110          fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
    111       else
    112          fprintf(fp, "ssa_%d\n", node->def->index);
    113 
    114       dom[++dom_idx] = node->def;
    115    }
    116 }
    117 #endif
    118 
    119 static merge_node *
    120 get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
    121 {
    122    struct hash_entry *entry =
    123       _mesa_hash_table_search(state->merge_node_table, def);
    124    if (entry)
    125       return entry->data;
    126 
    127    merge_set *set = ralloc(state->dead_ctx, merge_set);
    128    exec_list_make_empty(&set->nodes);
    129    set->size = 1;
    130    set->reg = NULL;
    131 
    132    merge_node *node = ralloc(state->dead_ctx, merge_node);
    133    node->set = set;
    134    node->def = def;
    135    exec_list_push_head(&set->nodes, &node->node);
    136 
    137    _mesa_hash_table_insert(state->merge_node_table, def, node);
    138 
    139    return node;
    140 }
    141 
    142 static bool
    143 merge_nodes_interfere(merge_node *a, merge_node *b)
    144 {
    145    return nir_ssa_defs_interfere(a->def, b->def);
    146 }
    147 
    148 /* Merges b into a */
    149 static merge_set *
    150 merge_merge_sets(merge_set *a, merge_set *b)
    151 {
    152    struct exec_node *an = exec_list_get_head(&a->nodes);
    153    struct exec_node *bn = exec_list_get_head(&b->nodes);
    154    while (!exec_node_is_tail_sentinel(bn)) {
    155       merge_node *a_node = exec_node_data(merge_node, an, node);
    156       merge_node *b_node = exec_node_data(merge_node, bn, node);
    157 
    158       if (exec_node_is_tail_sentinel(an) ||
    159           a_node->def->live_index > b_node->def->live_index) {
    160          struct exec_node *next = bn->next;
    161          exec_node_remove(bn);
    162          exec_node_insert_node_before(an, bn);
    163          exec_node_data(merge_node, bn, node)->set = a;
    164          bn = next;
    165       } else {
    166          an = an->next;
    167       }
    168    }
    169 
    170    a->size += b->size;
    171    b->size = 0;
    172 
    173    return a;
    174 }
    175 
    176 /* Checks for any interference between two merge sets
    177  *
    178  * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
    179  * Translation for Correctness, Code Quality, and Efficiency" by
    180  * Boissinot et. al.
    181  */
    182 static bool
    183 merge_sets_interfere(merge_set *a, merge_set *b)
    184 {
    185    NIR_VLA(merge_node *, dom, a->size + b->size);
    186    int dom_idx = -1;
    187 
    188    struct exec_node *an = exec_list_get_head(&a->nodes);
    189    struct exec_node *bn = exec_list_get_head(&b->nodes);
    190    while (!exec_node_is_tail_sentinel(an) ||
    191           !exec_node_is_tail_sentinel(bn)) {
    192 
    193       merge_node *current;
    194       if (exec_node_is_tail_sentinel(an)) {
    195          current = exec_node_data(merge_node, bn, node);
    196          bn = bn->next;
    197       } else if (exec_node_is_tail_sentinel(bn)) {
    198          current = exec_node_data(merge_node, an, node);
    199          an = an->next;
    200       } else {
    201          merge_node *a_node = exec_node_data(merge_node, an, node);
    202          merge_node *b_node = exec_node_data(merge_node, bn, node);
    203 
    204          if (a_node->def->live_index <= b_node->def->live_index) {
    205             current = a_node;
    206             an = an->next;
    207          } else {
    208             current = b_node;
    209             bn = bn->next;
    210          }
    211       }
    212 
    213       while (dom_idx >= 0 &&
    214              !ssa_def_dominates(dom[dom_idx]->def, current->def))
    215          dom_idx--;
    216 
    217       if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
    218          return true;
    219 
    220       dom[++dom_idx] = current;
    221    }
    222 
    223    return false;
    224 }
    225 
    226 static bool
    227 add_parallel_copy_to_end_of_block(nir_block *block, void *dead_ctx)
    228 {
    229 
    230    bool need_end_copy = false;
    231    if (block->successors[0]) {
    232       nir_instr *instr = nir_block_first_instr(block->successors[0]);
    233       if (instr && instr->type == nir_instr_type_phi)
    234          need_end_copy = true;
    235    }
    236 
    237    if (block->successors[1]) {
    238       nir_instr *instr = nir_block_first_instr(block->successors[1]);
    239       if (instr && instr->type == nir_instr_type_phi)
    240          need_end_copy = true;
    241    }
    242 
    243    if (need_end_copy) {
    244       /* If one of our successors has at least one phi node, we need to
    245        * create a parallel copy at the end of the block but before the jump
    246        * (if there is one).
    247        */
    248       nir_parallel_copy_instr *pcopy =
    249          nir_parallel_copy_instr_create(dead_ctx);
    250 
    251       nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
    252    }
    253 
    254    return true;
    255 }
    256 
    257 static nir_parallel_copy_instr *
    258 get_parallel_copy_at_end_of_block(nir_block *block)
    259 {
    260    nir_instr *last_instr = nir_block_last_instr(block);
    261    if (last_instr == NULL)
    262       return NULL;
    263 
    264    /* The last instruction may be a jump in which case the parallel copy is
    265     * right before it.
    266     */
    267    if (last_instr->type == nir_instr_type_jump)
    268       last_instr = nir_instr_prev(last_instr);
    269 
    270    if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
    271       return nir_instr_as_parallel_copy(last_instr);
    272    else
    273       return NULL;
    274 }
    275 
    276 /** Isolate phi nodes with parallel copies
    277  *
    278  * In order to solve the dependency problems with the sources and
    279  * destinations of phi nodes, we first isolate them by adding parallel
    280  * copies to the beginnings and ends of basic blocks.  For every block with
    281  * phi nodes, we add a parallel copy immediately following the last phi
    282  * node that copies the destinations of all of the phi nodes to new SSA
    283  * values.  We also add a parallel copy to the end of every block that has
    284  * a successor with phi nodes that, for each phi node in each successor,
    285  * copies the corresponding sorce of the phi node and adjust the phi to
    286  * used the destination of the parallel copy.
    287  *
    288  * In SSA form, each value has exactly one definition.  What this does is
    289  * ensure that each value used in a phi also has exactly one use.  The
    290  * destinations of phis are only used by the parallel copy immediately
    291  * following the phi nodes and.  Thanks to the parallel copy at the end of
    292  * the predecessor block, the sources of phi nodes are are the only use of
    293  * that value.  This allows us to immediately assign all the sources and
    294  * destinations of any given phi node to the same register without worrying
    295  * about interference at all.  We do coalescing to get rid of the parallel
    296  * copies where possible.
    297  *
    298  * Before this pass can be run, we have to iterate over the blocks with
    299  * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
    300  * the ends of blocks exist.  We can create the ones at the beginnings as
    301  * we go, but the ones at the ends of blocks need to be created ahead of
    302  * time because of potential back-edges in the CFG.
    303  */
    304 static bool
    305 isolate_phi_nodes_block(nir_block *block, void *dead_ctx)
    306 {
    307    nir_instr *last_phi_instr = NULL;
    308    nir_foreach_instr(instr, block) {
    309       /* Phi nodes only ever come at the start of a block */
    310       if (instr->type != nir_instr_type_phi)
    311          break;
    312 
    313       last_phi_instr = instr;
    314    }
    315 
    316    /* If we don't have any phi's, then there's nothing for us to do. */
    317    if (last_phi_instr == NULL)
    318       return true;
    319 
    320    /* If we have phi nodes, we need to create a parallel copy at the
    321     * start of this block but after the phi nodes.
    322     */
    323    nir_parallel_copy_instr *block_pcopy =
    324       nir_parallel_copy_instr_create(dead_ctx);
    325    nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
    326 
    327    nir_foreach_instr(instr, block) {
    328       /* Phi nodes only ever come at the start of a block */
    329       if (instr->type != nir_instr_type_phi)
    330          break;
    331 
    332       nir_phi_instr *phi = nir_instr_as_phi(instr);
    333       assert(phi->dest.is_ssa);
    334       nir_foreach_phi_src(src, phi) {
    335          nir_parallel_copy_instr *pcopy =
    336             get_parallel_copy_at_end_of_block(src->pred);
    337          assert(pcopy);
    338 
    339          nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
    340                                                   nir_parallel_copy_entry);
    341          nir_ssa_dest_init(&pcopy->instr, &entry->dest,
    342                            phi->dest.ssa.num_components,
    343                            phi->dest.ssa.bit_size, src->src.ssa->name);
    344          exec_list_push_tail(&pcopy->entries, &entry->node);
    345 
    346          assert(src->src.is_ssa);
    347          nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);
    348 
    349          nir_instr_rewrite_src(&phi->instr, &src->src,
    350                                nir_src_for_ssa(&entry->dest.ssa));
    351       }
    352 
    353       nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
    354                                                nir_parallel_copy_entry);
    355       nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
    356                         phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
    357                         phi->dest.ssa.name);
    358       exec_list_push_tail(&block_pcopy->entries, &entry->node);
    359 
    360       nir_ssa_def_rewrite_uses(&phi->dest.ssa,
    361                                nir_src_for_ssa(&entry->dest.ssa));
    362 
    363       nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
    364                             nir_src_for_ssa(&phi->dest.ssa));
    365    }
    366 
    367    return true;
    368 }
    369 
    370 static bool
    371 coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
    372 {
    373    nir_foreach_instr(instr, block) {
    374       /* Phi nodes only ever come at the start of a block */
    375       if (instr->type != nir_instr_type_phi)
    376          break;
    377 
    378       nir_phi_instr *phi = nir_instr_as_phi(instr);
    379 
    380       assert(phi->dest.is_ssa);
    381       merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
    382 
    383       nir_foreach_phi_src(src, phi) {
    384          assert(src->src.is_ssa);
    385          merge_node *src_node = get_merge_node(src->src.ssa, state);
    386          if (src_node->set != dest_node->set)
    387             merge_merge_sets(dest_node->set, src_node->set);
    388       }
    389    }
    390 
    391    return true;
    392 }
    393 
    394 static void
    395 aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
    396                                  struct from_ssa_state *state)
    397 {
    398    nir_foreach_parallel_copy_entry(entry, pcopy) {
    399       if (!entry->src.is_ssa)
    400          continue;
    401 
    402       /* Since load_const instructions are SSA only, we can't replace their
    403        * destinations with registers and, therefore, can't coalesce them.
    404        */
    405       if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
    406          continue;
    407 
    408       /* Don't try and coalesce these */
    409       if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
    410          continue;
    411 
    412       merge_node *src_node = get_merge_node(entry->src.ssa, state);
    413       merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
    414 
    415       if (src_node->set == dest_node->set)
    416          continue;
    417 
    418       if (!merge_sets_interfere(src_node->set, dest_node->set))
    419          merge_merge_sets(src_node->set, dest_node->set);
    420    }
    421 }
    422 
    423 static bool
    424 aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
    425 {
    426    nir_parallel_copy_instr *start_pcopy = NULL;
    427    nir_foreach_instr(instr, block) {
    428       /* Phi nodes only ever come at the start of a block */
    429       if (instr->type != nir_instr_type_phi) {
    430          if (instr->type != nir_instr_type_parallel_copy)
    431             break; /* The parallel copy must be right after the phis */
    432 
    433          start_pcopy = nir_instr_as_parallel_copy(instr);
    434 
    435          aggressive_coalesce_parallel_copy(start_pcopy, state);
    436 
    437          break;
    438       }
    439    }
    440 
    441    nir_parallel_copy_instr *end_pcopy =
    442       get_parallel_copy_at_end_of_block(block);
    443 
    444    if (end_pcopy && end_pcopy != start_pcopy)
    445       aggressive_coalesce_parallel_copy(end_pcopy, state);
    446 
    447    return true;
    448 }
    449 
    450 static nir_register *
    451 create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl)
    452 {
    453    nir_register *reg = nir_local_reg_create(impl);
    454 
    455    reg->name = def->name;
    456    reg->num_components = def->num_components;
    457    reg->bit_size = def->bit_size;
    458    reg->num_array_elems = 0;
    459 
    460    return reg;
    461 }
    462 
    463 static bool
    464 rewrite_ssa_def(nir_ssa_def *def, void *void_state)
    465 {
    466    struct from_ssa_state *state = void_state;
    467    nir_register *reg;
    468 
    469    struct hash_entry *entry =
    470       _mesa_hash_table_search(state->merge_node_table, def);
    471    if (entry) {
    472       /* In this case, we're part of a phi web.  Use the web's register. */
    473       merge_node *node = (merge_node *)entry->data;
    474 
    475       /* If it doesn't have a register yet, create one.  Note that all of
    476        * the things in the merge set should be the same so it doesn't
    477        * matter which node's definition we use.
    478        */
    479       if (node->set->reg == NULL)
    480          node->set->reg = create_reg_for_ssa_def(def, state->builder.impl);
    481 
    482       reg = node->set->reg;
    483    } else {
    484       if (state->phi_webs_only)
    485          return true;
    486 
    487       /* We leave load_const SSA values alone.  They act as immediates to
    488        * the backend.  If it got coalesced into a phi, that's ok.
    489        */
    490       if (def->parent_instr->type == nir_instr_type_load_const)
    491          return true;
    492 
    493       reg = create_reg_for_ssa_def(def, state->builder.impl);
    494    }
    495 
    496    nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg));
    497    assert(list_empty(&def->uses) && list_empty(&def->if_uses));
    498 
    499    if (def->parent_instr->type == nir_instr_type_ssa_undef) {
    500       /* If it's an ssa_undef instruction, remove it since we know we just got
    501        * rid of all its uses.
    502        */
    503       nir_instr *parent_instr = def->parent_instr;
    504       nir_instr_remove(parent_instr);
    505       ralloc_steal(state->dead_ctx, parent_instr);
    506       return true;
    507    }
    508 
    509    assert(def->parent_instr->type != nir_instr_type_load_const);
    510 
    511    /* At this point we know a priori that this SSA def is part of a
    512     * nir_dest.  We can use exec_node_data to get the dest pointer.
    513     */
    514    nir_dest *dest = exec_node_data(nir_dest, def, ssa);
    515 
    516    nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg));
    517 
    518    return true;
    519 }
    520 
    521 /* Resolves ssa definitions to registers.  While we're at it, we also
    522  * remove phi nodes.
    523  */
    524 static bool
    525 resolve_registers_block(nir_block *block, struct from_ssa_state *state)
    526 {
    527    nir_foreach_instr_safe(instr, block) {
    528       state->instr = instr;
    529       nir_foreach_ssa_def(instr, rewrite_ssa_def, state);
    530 
    531       if (instr->type == nir_instr_type_phi) {
    532          nir_instr_remove(instr);
    533          ralloc_steal(state->dead_ctx, instr);
    534       }
    535    }
    536    state->instr = NULL;
    537 
    538    return true;
    539 }
    540 
    541 static void
    542 emit_copy(nir_builder *b, nir_src src, nir_src dest_src)
    543 {
    544    assert(!dest_src.is_ssa &&
    545           dest_src.reg.indirect == NULL &&
    546           dest_src.reg.base_offset == 0);
    547 
    548    if (src.is_ssa)
    549       assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
    550    else
    551       assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
    552 
    553    nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_imov);
    554    nir_src_copy(&mov->src[0].src, &src, mov);
    555    mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
    556    mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
    557 
    558    nir_builder_instr_insert(b, &mov->instr);
    559 }
    560 
    561 /* Resolves a single parallel copy operation into a sequence of mov's
    562  *
    563  * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
    564  * Correctness, Code Quality, and Efficiency" by Boissinot et. al..
    565  * However, I never got the algorithm to work as written, so this version
    566  * is slightly modified.
    567  *
    568  * The algorithm works by playing this little shell game with the values.
    569  * We start by recording where every source value is and which source value
    570  * each destination value should receive.  We then grab any copy whose
    571  * destination is "empty", i.e. not used as a source, and do the following:
    572  *  - Find where its source value currently lives
    573  *  - Emit the move instruction
    574  *  - Set the location of the source value to the destination
    575  *  - Mark the location containing the source value
    576  *  - Mark the destination as no longer needing to be copied
    577  *
    578  * When we run out of "empty" destinations, we have a cycle and so we
    579  * create a temporary register, copy to that register, and mark the value
    580  * we copied as living in that temporary.  Now, the cycle is broken, so we
    581  * can continue with the above steps.
    582  */
    583 static void
    584 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
    585                       struct from_ssa_state *state)
    586 {
    587    unsigned num_copies = 0;
    588    nir_foreach_parallel_copy_entry(entry, pcopy) {
    589       /* Sources may be SSA */
    590       if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
    591          continue;
    592 
    593       num_copies++;
    594    }
    595 
    596    if (num_copies == 0) {
    597       /* Hooray, we don't need any copies! */
    598       nir_instr_remove(&pcopy->instr);
    599       return;
    600    }
    601 
    602    /* The register/source corresponding to the given index */
    603    NIR_VLA_ZERO(nir_src, values, num_copies * 2);
    604 
    605    /* The current location of a given piece of data.  We will use -1 for "null" */
    606    NIR_VLA_FILL(int, loc, num_copies * 2, -1);
    607 
    608    /* The piece of data that the given piece of data is to be copied from.  We will use -1 for "null" */
    609    NIR_VLA_FILL(int, pred, num_copies * 2, -1);
    610 
    611    /* The destinations we have yet to properly fill */
    612    NIR_VLA(int, to_do, num_copies * 2);
    613    int to_do_idx = -1;
    614 
    615    state->builder.cursor = nir_before_instr(&pcopy->instr);
    616 
    617    /* Now we set everything up:
    618     *  - All values get assigned a temporary index
    619     *  - Current locations are set from sources
    620     *  - Predicessors are recorded from sources and destinations
    621     */
    622    int num_vals = 0;
    623    nir_foreach_parallel_copy_entry(entry, pcopy) {
    624       /* Sources may be SSA */
    625       if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
    626          continue;
    627 
    628       int src_idx = -1;
    629       for (int i = 0; i < num_vals; ++i) {
    630          if (nir_srcs_equal(values[i], entry->src))
    631             src_idx = i;
    632       }
    633       if (src_idx < 0) {
    634          src_idx = num_vals++;
    635          values[src_idx] = entry->src;
    636       }
    637 
    638       nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
    639 
    640       int dest_idx = -1;
    641       for (int i = 0; i < num_vals; ++i) {
    642          if (nir_srcs_equal(values[i], dest_src)) {
    643             /* Each destination of a parallel copy instruction should be
    644              * unique.  A destination may get used as a source, so we still
    645              * have to walk the list.  However, the predecessor should not,
    646              * at this point, be set yet, so we should have -1 here.
    647              */
    648             assert(pred[i] == -1);
    649             dest_idx = i;
    650          }
    651       }
    652       if (dest_idx < 0) {
    653          dest_idx = num_vals++;
    654          values[dest_idx] = dest_src;
    655       }
    656 
    657       loc[src_idx] = src_idx;
    658       pred[dest_idx] = src_idx;
    659 
    660       to_do[++to_do_idx] = dest_idx;
    661    }
    662 
    663    /* Currently empty destinations we can go ahead and fill */
    664    NIR_VLA(int, ready, num_copies * 2);
    665    int ready_idx = -1;
    666 
    667    /* Mark the ones that are ready for copying.  We know an index is a
    668     * destination if it has a predecessor and it's ready for copying if
    669     * it's not marked as containing data.
    670     */
    671    for (int i = 0; i < num_vals; i++) {
    672       if (pred[i] != -1 && loc[i] == -1)
    673          ready[++ready_idx] = i;
    674    }
    675 
    676    while (to_do_idx >= 0) {
    677       while (ready_idx >= 0) {
    678          int b = ready[ready_idx--];
    679          int a = pred[b];
    680          emit_copy(&state->builder, values[loc[a]], values[b]);
    681 
    682          /* If any other copies want a they can find it at b */
    683          loc[a] = b;
    684 
    685          /* b has been filled, mark it as not needing to be copied */
    686          pred[b] = -1;
    687 
    688          /* If a needs to be filled, it's ready for copying now */
    689          if (pred[a] != -1)
    690             ready[++ready_idx] = a;
    691       }
    692       int b = to_do[to_do_idx--];
    693       if (pred[b] == -1)
    694          continue;
    695 
    696       /* If we got here, then we don't have any more trivial copies that we
    697        * can do.  We have to break a cycle, so we create a new temporary
    698        * register for that purpose.  Normally, if going out of SSA after
    699        * register allocation, you would want to avoid creating temporary
    700        * registers.  However, we are going out of SSA before register
    701        * allocation, so we would rather not create extra register
    702        * dependencies for the backend to deal with.  If it wants, the
    703        * backend can coalesce the (possibly multiple) temporaries.
    704        */
    705       assert(num_vals < num_copies * 2);
    706       nir_register *reg = nir_local_reg_create(state->builder.impl);
    707       reg->name = "copy_temp";
    708       reg->num_array_elems = 0;
    709       if (values[b].is_ssa)
    710          reg->num_components = values[b].ssa->num_components;
    711       else
    712          reg->num_components = values[b].reg.reg->num_components;
    713       values[num_vals].is_ssa = false;
    714       values[num_vals].reg.reg = reg;
    715 
    716       emit_copy(&state->builder, values[b], values[num_vals]);
    717       loc[b] = num_vals;
    718       ready[++ready_idx] = b;
    719       num_vals++;
    720    }
    721 
    722    nir_instr_remove(&pcopy->instr);
    723 }
    724 
    725 /* Resolves the parallel copies in a block.  Each block can have at most
    726  * two:  One at the beginning, right after all the phi noces, and one at
    727  * the end (or right before the final jump if it exists).
    728  */
    729 static bool
    730 resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
    731 {
    732    /* At this point, we have removed all of the phi nodes.  If a parallel
    733     * copy existed right after the phi nodes in this block, it is now the
    734     * first instruction.
    735     */
    736    nir_instr *first_instr = nir_block_first_instr(block);
    737    if (first_instr == NULL)
    738       return true; /* Empty, nothing to do. */
    739 
    740    if (first_instr->type == nir_instr_type_parallel_copy) {
    741       nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
    742 
    743       resolve_parallel_copy(pcopy, state);
    744    }
    745 
    746    /* It's possible that the above code already cleaned up the end parallel
    747     * copy.  However, doing so removed it form the instructions list so we
    748     * won't find it here.  Therefore, it's safe to go ahead and just look
    749     * for one and clean it up if it exists.
    750     */
    751    nir_parallel_copy_instr *end_pcopy =
    752       get_parallel_copy_at_end_of_block(block);
    753    if (end_pcopy)
    754       resolve_parallel_copy(end_pcopy, state);
    755 
    756    return true;
    757 }
    758 
    759 static void
    760 nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only)
    761 {
    762    struct from_ssa_state state;
    763 
    764    nir_builder_init(&state.builder, impl);
    765    state.dead_ctx = ralloc_context(NULL);
    766    state.phi_webs_only = phi_webs_only;
    767    state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
    768                                                     _mesa_key_pointer_equal);
    769 
    770    nir_foreach_block(block, impl) {
    771       add_parallel_copy_to_end_of_block(block, state.dead_ctx);
    772    }
    773 
    774    nir_foreach_block(block, impl) {
    775       isolate_phi_nodes_block(block, state.dead_ctx);
    776    }
    777 
    778    /* Mark metadata as dirty before we ask for liveness analysis */
    779    nir_metadata_preserve(impl, nir_metadata_block_index |
    780                                nir_metadata_dominance);
    781 
    782    nir_metadata_require(impl, nir_metadata_live_ssa_defs |
    783                               nir_metadata_dominance);
    784 
    785    nir_foreach_block(block, impl) {
    786       coalesce_phi_nodes_block(block, &state);
    787    }
    788 
    789    nir_foreach_block(block, impl) {
    790       aggressive_coalesce_block(block, &state);
    791    }
    792 
    793    nir_foreach_block(block, impl) {
    794       resolve_registers_block(block, &state);
    795    }
    796 
    797    nir_foreach_block(block, impl) {
    798       resolve_parallel_copies_block(block, &state);
    799    }
    800 
    801    nir_metadata_preserve(impl, nir_metadata_block_index |
    802                                nir_metadata_dominance);
    803 
    804    /* Clean up dead instructions and the hash tables */
    805    _mesa_hash_table_destroy(state.merge_node_table, NULL);
    806    ralloc_free(state.dead_ctx);
    807 }
    808 
    809 void
    810 nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only)
    811 {
    812    nir_foreach_function(function, shader) {
    813       if (function->impl)
    814          nir_convert_from_ssa_impl(function->impl, phi_webs_only);
    815    }
    816 }
    817 
    818 
    819 static void
    820 place_phi_read(nir_shader *shader, nir_register *reg,
    821                nir_ssa_def *def, nir_block *block)
    822 {
    823    if (block != def->parent_instr->block) {
    824       /* Try to go up the single-successor tree */
    825       bool all_single_successors = true;
    826       struct set_entry *entry;
    827       set_foreach(block->predecessors, entry) {
    828          nir_block *pred = (nir_block *)entry->key;
    829          if (pred->successors[0] && pred->successors[1]) {
    830             all_single_successors = false;
    831             break;
    832          }
    833       }
    834 
    835       if (all_single_successors) {
    836          /* All predecessors of this block have exactly one successor and it
    837           * is this block so they must eventually lead here without
    838           * intersecting each other.  Place the reads in the predecessors
    839           * instead of this block.
    840           */
    841          set_foreach(block->predecessors, entry)
    842             place_phi_read(shader, reg, def, (nir_block *)entry->key);
    843          return;
    844       }
    845    }
    846 
    847    nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
    848    mov->src[0].src = nir_src_for_ssa(def);
    849    mov->dest.dest = nir_dest_for_reg(reg);
    850    mov->dest.write_mask = (1 << reg->num_components) - 1;
    851    nir_instr_insert(nir_after_block_before_jump(block), &mov->instr);
    852 }
    853 
    854 /** Lower all of the phi nodes in a block to imov's to and from a register
    855  *
    856  * This provides a very quick-and-dirty out-of-SSA pass that you can run on a
    857  * single block to convert all of it's phis to a register and some imov's.
    858  * The code that is generated, while not optimal for actual codegen in a
    859  * back-end, is easy to generate, correct, and will turn into the same set of
    860  * phis after you call regs_to_ssa and do some copy propagation.
    861  *
    862  * The one intelligent thing this pass does is that it places the moves from
    863  * the phi sources as high up the predecessor tree as possible instead of in
    864  * the exact predecessor.  This means that, in particular, it will crawl into
    865  * the deepest nesting of any if-ladders.  In order to ensure that doing so is
    866  * safe, it stops as soon as one of the predecessors has multiple successors.
    867  */
    868 bool
    869 nir_lower_phis_to_regs_block(nir_block *block)
    870 {
    871    nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
    872    nir_shader *shader = impl->function->shader;
    873 
    874    bool progress = false;
    875    nir_foreach_instr_safe(instr, block) {
    876       if (instr->type != nir_instr_type_phi)
    877          break;
    878 
    879       nir_phi_instr *phi = nir_instr_as_phi(instr);
    880       assert(phi->dest.is_ssa);
    881 
    882       nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, impl);
    883 
    884       nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
    885       mov->src[0].src = nir_src_for_reg(reg);
    886       mov->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1;
    887       nir_ssa_dest_init(&mov->instr, &mov->dest.dest,
    888                         phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
    889                         phi->dest.ssa.name);
    890       nir_instr_insert(nir_after_instr(&phi->instr), &mov->instr);
    891 
    892       nir_ssa_def_rewrite_uses(&phi->dest.ssa,
    893                                nir_src_for_ssa(&mov->dest.dest.ssa));
    894 
    895       nir_foreach_phi_src(src, phi) {
    896          assert(src->src.is_ssa);
    897          place_phi_read(shader, reg, src->src.ssa, src->pred);
    898       }
    899 
    900       nir_instr_remove(&phi->instr);
    901 
    902       progress = true;
    903    }
    904 
    905    return progress;
    906 }
    907 
    908 struct ssa_def_to_reg_state {
    909    nir_function_impl *impl;
    910    bool progress;
    911 };
    912 
    913 static bool
    914 dest_replace_ssa_with_reg(nir_dest *dest, void *void_state)
    915 {
    916    struct ssa_def_to_reg_state *state = void_state;
    917 
    918    if (!dest->is_ssa)
    919       return true;
    920 
    921    nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl);
    922 
    923    nir_ssa_def_rewrite_uses(&dest->ssa, nir_src_for_reg(reg));
    924 
    925    nir_instr *instr = dest->ssa.parent_instr;
    926    *dest = nir_dest_for_reg(reg);
    927    dest->reg.parent_instr = instr;
    928    list_addtail(&dest->reg.def_link, &reg->defs);
    929 
    930    state->progress = true;
    931 
    932    return true;
    933 }
    934 
    935 /** Lower all of the SSA defs in a block to registers
    936  *
    937  * This performs the very simple operation of blindly replacing all of the SSA
    938  * defs in the given block with registers.  If not used carefully, this may
    939  * result in phi nodes with register sources which is technically invalid.
    940  * Fortunately, the register-based into-SSA pass handles them anyway.
    941  */
    942 bool
    943 nir_lower_ssa_defs_to_regs_block(nir_block *block)
    944 {
    945    nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
    946    nir_shader *shader = impl->function->shader;
    947 
    948    struct ssa_def_to_reg_state state = {
    949       .impl = impl,
    950       .progress = false,
    951    };
    952 
    953    nir_foreach_instr(instr, block) {
    954       if (instr->type == nir_instr_type_ssa_undef) {
    955          /* Undefs are just a read of something never written. */
    956          nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr);
    957          nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl);
    958          nir_ssa_def_rewrite_uses(&undef->def, nir_src_for_reg(reg));
    959       } else if (instr->type == nir_instr_type_load_const) {
    960          /* Constant loads are SSA-only, we need to insert a move */
    961          nir_load_const_instr *load = nir_instr_as_load_const(instr);
    962          nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl);
    963          nir_ssa_def_rewrite_uses(&load->def, nir_src_for_reg(reg));
    964 
    965          nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
    966          mov->src[0].src = nir_src_for_ssa(&load->def);
    967          mov->dest.dest = nir_dest_for_reg(reg);
    968          mov->dest.write_mask = (1 << reg->num_components) - 1;
    969          nir_instr_insert(nir_after_instr(&load->instr), &mov->instr);
    970       } else {
    971          nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state);
    972       }
    973    }
    974 
    975    return state.progress;
    976 }
    977