1 /* 2 * Copyright 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Jason Ekstrand (jason (at) jlekstrand.net) 25 * 26 */ 27 28 #include "nir.h" 29 #include "nir_builder.h" 30 #include "nir_vla.h" 31 32 /* 33 * This file implements an out-of-SSA pass as described in "Revisiting 34 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by 35 * Boissinot et. al. 36 */ 37 38 struct from_ssa_state { 39 nir_builder builder; 40 void *dead_ctx; 41 bool phi_webs_only; 42 struct hash_table *merge_node_table; 43 nir_instr *instr; 44 }; 45 46 /* Returns true if a dominates b */ 47 static bool 48 ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b) 49 { 50 if (a->live_index == 0) { 51 /* SSA undefs always dominate */ 52 return true; 53 } else if (b->live_index < a->live_index) { 54 return false; 55 } else if (a->parent_instr->block == b->parent_instr->block) { 56 return a->live_index <= b->live_index; 57 } else { 58 return nir_block_dominates(a->parent_instr->block, 59 b->parent_instr->block); 60 } 61 } 62 63 64 /* The following data structure, which I have named merge_set is a way of 65 * representing a set registers of non-interfering registers. This is 66 * based on the concept of a "dominence forest" presented in "Fast Copy 67 * Coalescing and Live-Range Identification" by Budimlic et. al. but the 68 * implementation concept is taken from "Revisiting Out-of-SSA Translation 69 * for Correctness, Code Quality, and Efficiency" by Boissinot et. al.. 70 * 71 * Each SSA definition is associated with a merge_node and the association 72 * is represented by a combination of a hash table and the "def" parameter 73 * in the merge_node structure. The merge_set stores a linked list of 74 * merge_node's in dominence order of the ssa definitions. (Since the 75 * liveness analysis pass indexes the SSA values in dominence order for us, 76 * this is an easy thing to keep up.) It is assumed that no pair of the 77 * nodes in a given set interfere. Merging two sets or checking for 78 * interference can be done in a single linear-time merge-sort walk of the 79 * two lists of nodes. 80 */ 81 struct merge_set; 82 83 typedef struct { 84 struct exec_node node; 85 struct merge_set *set; 86 nir_ssa_def *def; 87 } merge_node; 88 89 typedef struct merge_set { 90 struct exec_list nodes; 91 unsigned size; 92 nir_register *reg; 93 } merge_set; 94 95 #if 0 96 static void 97 merge_set_dump(merge_set *set, FILE *fp) 98 { 99 nir_ssa_def *dom[set->size]; 100 int dom_idx = -1; 101 102 foreach_list_typed(merge_node, node, node, &set->nodes) { 103 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def)) 104 dom_idx--; 105 106 for (int i = 0; i <= dom_idx; i++) 107 fprintf(fp, " "); 108 109 if (node->def->name) 110 fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name); 111 else 112 fprintf(fp, "ssa_%d\n", node->def->index); 113 114 dom[++dom_idx] = node->def; 115 } 116 } 117 #endif 118 119 static merge_node * 120 get_merge_node(nir_ssa_def *def, struct from_ssa_state *state) 121 { 122 struct hash_entry *entry = 123 _mesa_hash_table_search(state->merge_node_table, def); 124 if (entry) 125 return entry->data; 126 127 merge_set *set = ralloc(state->dead_ctx, merge_set); 128 exec_list_make_empty(&set->nodes); 129 set->size = 1; 130 set->reg = NULL; 131 132 merge_node *node = ralloc(state->dead_ctx, merge_node); 133 node->set = set; 134 node->def = def; 135 exec_list_push_head(&set->nodes, &node->node); 136 137 _mesa_hash_table_insert(state->merge_node_table, def, node); 138 139 return node; 140 } 141 142 static bool 143 merge_nodes_interfere(merge_node *a, merge_node *b) 144 { 145 return nir_ssa_defs_interfere(a->def, b->def); 146 } 147 148 /* Merges b into a */ 149 static merge_set * 150 merge_merge_sets(merge_set *a, merge_set *b) 151 { 152 struct exec_node *an = exec_list_get_head(&a->nodes); 153 struct exec_node *bn = exec_list_get_head(&b->nodes); 154 while (!exec_node_is_tail_sentinel(bn)) { 155 merge_node *a_node = exec_node_data(merge_node, an, node); 156 merge_node *b_node = exec_node_data(merge_node, bn, node); 157 158 if (exec_node_is_tail_sentinel(an) || 159 a_node->def->live_index > b_node->def->live_index) { 160 struct exec_node *next = bn->next; 161 exec_node_remove(bn); 162 exec_node_insert_node_before(an, bn); 163 exec_node_data(merge_node, bn, node)->set = a; 164 bn = next; 165 } else { 166 an = an->next; 167 } 168 } 169 170 a->size += b->size; 171 b->size = 0; 172 173 return a; 174 } 175 176 /* Checks for any interference between two merge sets 177 * 178 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA 179 * Translation for Correctness, Code Quality, and Efficiency" by 180 * Boissinot et. al. 181 */ 182 static bool 183 merge_sets_interfere(merge_set *a, merge_set *b) 184 { 185 NIR_VLA(merge_node *, dom, a->size + b->size); 186 int dom_idx = -1; 187 188 struct exec_node *an = exec_list_get_head(&a->nodes); 189 struct exec_node *bn = exec_list_get_head(&b->nodes); 190 while (!exec_node_is_tail_sentinel(an) || 191 !exec_node_is_tail_sentinel(bn)) { 192 193 merge_node *current; 194 if (exec_node_is_tail_sentinel(an)) { 195 current = exec_node_data(merge_node, bn, node); 196 bn = bn->next; 197 } else if (exec_node_is_tail_sentinel(bn)) { 198 current = exec_node_data(merge_node, an, node); 199 an = an->next; 200 } else { 201 merge_node *a_node = exec_node_data(merge_node, an, node); 202 merge_node *b_node = exec_node_data(merge_node, bn, node); 203 204 if (a_node->def->live_index <= b_node->def->live_index) { 205 current = a_node; 206 an = an->next; 207 } else { 208 current = b_node; 209 bn = bn->next; 210 } 211 } 212 213 while (dom_idx >= 0 && 214 !ssa_def_dominates(dom[dom_idx]->def, current->def)) 215 dom_idx--; 216 217 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx])) 218 return true; 219 220 dom[++dom_idx] = current; 221 } 222 223 return false; 224 } 225 226 static bool 227 add_parallel_copy_to_end_of_block(nir_block *block, void *dead_ctx) 228 { 229 230 bool need_end_copy = false; 231 if (block->successors[0]) { 232 nir_instr *instr = nir_block_first_instr(block->successors[0]); 233 if (instr && instr->type == nir_instr_type_phi) 234 need_end_copy = true; 235 } 236 237 if (block->successors[1]) { 238 nir_instr *instr = nir_block_first_instr(block->successors[1]); 239 if (instr && instr->type == nir_instr_type_phi) 240 need_end_copy = true; 241 } 242 243 if (need_end_copy) { 244 /* If one of our successors has at least one phi node, we need to 245 * create a parallel copy at the end of the block but before the jump 246 * (if there is one). 247 */ 248 nir_parallel_copy_instr *pcopy = 249 nir_parallel_copy_instr_create(dead_ctx); 250 251 nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr); 252 } 253 254 return true; 255 } 256 257 static nir_parallel_copy_instr * 258 get_parallel_copy_at_end_of_block(nir_block *block) 259 { 260 nir_instr *last_instr = nir_block_last_instr(block); 261 if (last_instr == NULL) 262 return NULL; 263 264 /* The last instruction may be a jump in which case the parallel copy is 265 * right before it. 266 */ 267 if (last_instr->type == nir_instr_type_jump) 268 last_instr = nir_instr_prev(last_instr); 269 270 if (last_instr && last_instr->type == nir_instr_type_parallel_copy) 271 return nir_instr_as_parallel_copy(last_instr); 272 else 273 return NULL; 274 } 275 276 /** Isolate phi nodes with parallel copies 277 * 278 * In order to solve the dependency problems with the sources and 279 * destinations of phi nodes, we first isolate them by adding parallel 280 * copies to the beginnings and ends of basic blocks. For every block with 281 * phi nodes, we add a parallel copy immediately following the last phi 282 * node that copies the destinations of all of the phi nodes to new SSA 283 * values. We also add a parallel copy to the end of every block that has 284 * a successor with phi nodes that, for each phi node in each successor, 285 * copies the corresponding sorce of the phi node and adjust the phi to 286 * used the destination of the parallel copy. 287 * 288 * In SSA form, each value has exactly one definition. What this does is 289 * ensure that each value used in a phi also has exactly one use. The 290 * destinations of phis are only used by the parallel copy immediately 291 * following the phi nodes and. Thanks to the parallel copy at the end of 292 * the predecessor block, the sources of phi nodes are are the only use of 293 * that value. This allows us to immediately assign all the sources and 294 * destinations of any given phi node to the same register without worrying 295 * about interference at all. We do coalescing to get rid of the parallel 296 * copies where possible. 297 * 298 * Before this pass can be run, we have to iterate over the blocks with 299 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at 300 * the ends of blocks exist. We can create the ones at the beginnings as 301 * we go, but the ones at the ends of blocks need to be created ahead of 302 * time because of potential back-edges in the CFG. 303 */ 304 static bool 305 isolate_phi_nodes_block(nir_block *block, void *dead_ctx) 306 { 307 nir_instr *last_phi_instr = NULL; 308 nir_foreach_instr(instr, block) { 309 /* Phi nodes only ever come at the start of a block */ 310 if (instr->type != nir_instr_type_phi) 311 break; 312 313 last_phi_instr = instr; 314 } 315 316 /* If we don't have any phi's, then there's nothing for us to do. */ 317 if (last_phi_instr == NULL) 318 return true; 319 320 /* If we have phi nodes, we need to create a parallel copy at the 321 * start of this block but after the phi nodes. 322 */ 323 nir_parallel_copy_instr *block_pcopy = 324 nir_parallel_copy_instr_create(dead_ctx); 325 nir_instr_insert_after(last_phi_instr, &block_pcopy->instr); 326 327 nir_foreach_instr(instr, block) { 328 /* Phi nodes only ever come at the start of a block */ 329 if (instr->type != nir_instr_type_phi) 330 break; 331 332 nir_phi_instr *phi = nir_instr_as_phi(instr); 333 assert(phi->dest.is_ssa); 334 nir_foreach_phi_src(src, phi) { 335 nir_parallel_copy_instr *pcopy = 336 get_parallel_copy_at_end_of_block(src->pred); 337 assert(pcopy); 338 339 nir_parallel_copy_entry *entry = rzalloc(dead_ctx, 340 nir_parallel_copy_entry); 341 nir_ssa_dest_init(&pcopy->instr, &entry->dest, 342 phi->dest.ssa.num_components, 343 phi->dest.ssa.bit_size, src->src.ssa->name); 344 exec_list_push_tail(&pcopy->entries, &entry->node); 345 346 assert(src->src.is_ssa); 347 nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src); 348 349 nir_instr_rewrite_src(&phi->instr, &src->src, 350 nir_src_for_ssa(&entry->dest.ssa)); 351 } 352 353 nir_parallel_copy_entry *entry = rzalloc(dead_ctx, 354 nir_parallel_copy_entry); 355 nir_ssa_dest_init(&block_pcopy->instr, &entry->dest, 356 phi->dest.ssa.num_components, phi->dest.ssa.bit_size, 357 phi->dest.ssa.name); 358 exec_list_push_tail(&block_pcopy->entries, &entry->node); 359 360 nir_ssa_def_rewrite_uses(&phi->dest.ssa, 361 nir_src_for_ssa(&entry->dest.ssa)); 362 363 nir_instr_rewrite_src(&block_pcopy->instr, &entry->src, 364 nir_src_for_ssa(&phi->dest.ssa)); 365 } 366 367 return true; 368 } 369 370 static bool 371 coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state) 372 { 373 nir_foreach_instr(instr, block) { 374 /* Phi nodes only ever come at the start of a block */ 375 if (instr->type != nir_instr_type_phi) 376 break; 377 378 nir_phi_instr *phi = nir_instr_as_phi(instr); 379 380 assert(phi->dest.is_ssa); 381 merge_node *dest_node = get_merge_node(&phi->dest.ssa, state); 382 383 nir_foreach_phi_src(src, phi) { 384 assert(src->src.is_ssa); 385 merge_node *src_node = get_merge_node(src->src.ssa, state); 386 if (src_node->set != dest_node->set) 387 merge_merge_sets(dest_node->set, src_node->set); 388 } 389 } 390 391 return true; 392 } 393 394 static void 395 aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy, 396 struct from_ssa_state *state) 397 { 398 nir_foreach_parallel_copy_entry(entry, pcopy) { 399 if (!entry->src.is_ssa) 400 continue; 401 402 /* Since load_const instructions are SSA only, we can't replace their 403 * destinations with registers and, therefore, can't coalesce them. 404 */ 405 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const) 406 continue; 407 408 /* Don't try and coalesce these */ 409 if (entry->dest.ssa.num_components != entry->src.ssa->num_components) 410 continue; 411 412 merge_node *src_node = get_merge_node(entry->src.ssa, state); 413 merge_node *dest_node = get_merge_node(&entry->dest.ssa, state); 414 415 if (src_node->set == dest_node->set) 416 continue; 417 418 if (!merge_sets_interfere(src_node->set, dest_node->set)) 419 merge_merge_sets(src_node->set, dest_node->set); 420 } 421 } 422 423 static bool 424 aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state) 425 { 426 nir_parallel_copy_instr *start_pcopy = NULL; 427 nir_foreach_instr(instr, block) { 428 /* Phi nodes only ever come at the start of a block */ 429 if (instr->type != nir_instr_type_phi) { 430 if (instr->type != nir_instr_type_parallel_copy) 431 break; /* The parallel copy must be right after the phis */ 432 433 start_pcopy = nir_instr_as_parallel_copy(instr); 434 435 aggressive_coalesce_parallel_copy(start_pcopy, state); 436 437 break; 438 } 439 } 440 441 nir_parallel_copy_instr *end_pcopy = 442 get_parallel_copy_at_end_of_block(block); 443 444 if (end_pcopy && end_pcopy != start_pcopy) 445 aggressive_coalesce_parallel_copy(end_pcopy, state); 446 447 return true; 448 } 449 450 static nir_register * 451 create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl) 452 { 453 nir_register *reg = nir_local_reg_create(impl); 454 455 reg->name = def->name; 456 reg->num_components = def->num_components; 457 reg->bit_size = def->bit_size; 458 reg->num_array_elems = 0; 459 460 return reg; 461 } 462 463 static bool 464 rewrite_ssa_def(nir_ssa_def *def, void *void_state) 465 { 466 struct from_ssa_state *state = void_state; 467 nir_register *reg; 468 469 struct hash_entry *entry = 470 _mesa_hash_table_search(state->merge_node_table, def); 471 if (entry) { 472 /* In this case, we're part of a phi web. Use the web's register. */ 473 merge_node *node = (merge_node *)entry->data; 474 475 /* If it doesn't have a register yet, create one. Note that all of 476 * the things in the merge set should be the same so it doesn't 477 * matter which node's definition we use. 478 */ 479 if (node->set->reg == NULL) 480 node->set->reg = create_reg_for_ssa_def(def, state->builder.impl); 481 482 reg = node->set->reg; 483 } else { 484 if (state->phi_webs_only) 485 return true; 486 487 /* We leave load_const SSA values alone. They act as immediates to 488 * the backend. If it got coalesced into a phi, that's ok. 489 */ 490 if (def->parent_instr->type == nir_instr_type_load_const) 491 return true; 492 493 reg = create_reg_for_ssa_def(def, state->builder.impl); 494 } 495 496 nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg)); 497 assert(list_empty(&def->uses) && list_empty(&def->if_uses)); 498 499 if (def->parent_instr->type == nir_instr_type_ssa_undef) { 500 /* If it's an ssa_undef instruction, remove it since we know we just got 501 * rid of all its uses. 502 */ 503 nir_instr *parent_instr = def->parent_instr; 504 nir_instr_remove(parent_instr); 505 ralloc_steal(state->dead_ctx, parent_instr); 506 return true; 507 } 508 509 assert(def->parent_instr->type != nir_instr_type_load_const); 510 511 /* At this point we know a priori that this SSA def is part of a 512 * nir_dest. We can use exec_node_data to get the dest pointer. 513 */ 514 nir_dest *dest = exec_node_data(nir_dest, def, ssa); 515 516 nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg)); 517 518 return true; 519 } 520 521 /* Resolves ssa definitions to registers. While we're at it, we also 522 * remove phi nodes. 523 */ 524 static bool 525 resolve_registers_block(nir_block *block, struct from_ssa_state *state) 526 { 527 nir_foreach_instr_safe(instr, block) { 528 state->instr = instr; 529 nir_foreach_ssa_def(instr, rewrite_ssa_def, state); 530 531 if (instr->type == nir_instr_type_phi) { 532 nir_instr_remove(instr); 533 ralloc_steal(state->dead_ctx, instr); 534 } 535 } 536 state->instr = NULL; 537 538 return true; 539 } 540 541 static void 542 emit_copy(nir_builder *b, nir_src src, nir_src dest_src) 543 { 544 assert(!dest_src.is_ssa && 545 dest_src.reg.indirect == NULL && 546 dest_src.reg.base_offset == 0); 547 548 if (src.is_ssa) 549 assert(src.ssa->num_components >= dest_src.reg.reg->num_components); 550 else 551 assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components); 552 553 nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_imov); 554 nir_src_copy(&mov->src[0].src, &src, mov); 555 mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg); 556 mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1; 557 558 nir_builder_instr_insert(b, &mov->instr); 559 } 560 561 /* Resolves a single parallel copy operation into a sequence of mov's 562 * 563 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for 564 * Correctness, Code Quality, and Efficiency" by Boissinot et. al.. 565 * However, I never got the algorithm to work as written, so this version 566 * is slightly modified. 567 * 568 * The algorithm works by playing this little shell game with the values. 569 * We start by recording where every source value is and which source value 570 * each destination value should receive. We then grab any copy whose 571 * destination is "empty", i.e. not used as a source, and do the following: 572 * - Find where its source value currently lives 573 * - Emit the move instruction 574 * - Set the location of the source value to the destination 575 * - Mark the location containing the source value 576 * - Mark the destination as no longer needing to be copied 577 * 578 * When we run out of "empty" destinations, we have a cycle and so we 579 * create a temporary register, copy to that register, and mark the value 580 * we copied as living in that temporary. Now, the cycle is broken, so we 581 * can continue with the above steps. 582 */ 583 static void 584 resolve_parallel_copy(nir_parallel_copy_instr *pcopy, 585 struct from_ssa_state *state) 586 { 587 unsigned num_copies = 0; 588 nir_foreach_parallel_copy_entry(entry, pcopy) { 589 /* Sources may be SSA */ 590 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) 591 continue; 592 593 num_copies++; 594 } 595 596 if (num_copies == 0) { 597 /* Hooray, we don't need any copies! */ 598 nir_instr_remove(&pcopy->instr); 599 return; 600 } 601 602 /* The register/source corresponding to the given index */ 603 NIR_VLA_ZERO(nir_src, values, num_copies * 2); 604 605 /* The current location of a given piece of data. We will use -1 for "null" */ 606 NIR_VLA_FILL(int, loc, num_copies * 2, -1); 607 608 /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */ 609 NIR_VLA_FILL(int, pred, num_copies * 2, -1); 610 611 /* The destinations we have yet to properly fill */ 612 NIR_VLA(int, to_do, num_copies * 2); 613 int to_do_idx = -1; 614 615 state->builder.cursor = nir_before_instr(&pcopy->instr); 616 617 /* Now we set everything up: 618 * - All values get assigned a temporary index 619 * - Current locations are set from sources 620 * - Predicessors are recorded from sources and destinations 621 */ 622 int num_vals = 0; 623 nir_foreach_parallel_copy_entry(entry, pcopy) { 624 /* Sources may be SSA */ 625 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) 626 continue; 627 628 int src_idx = -1; 629 for (int i = 0; i < num_vals; ++i) { 630 if (nir_srcs_equal(values[i], entry->src)) 631 src_idx = i; 632 } 633 if (src_idx < 0) { 634 src_idx = num_vals++; 635 values[src_idx] = entry->src; 636 } 637 638 nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg); 639 640 int dest_idx = -1; 641 for (int i = 0; i < num_vals; ++i) { 642 if (nir_srcs_equal(values[i], dest_src)) { 643 /* Each destination of a parallel copy instruction should be 644 * unique. A destination may get used as a source, so we still 645 * have to walk the list. However, the predecessor should not, 646 * at this point, be set yet, so we should have -1 here. 647 */ 648 assert(pred[i] == -1); 649 dest_idx = i; 650 } 651 } 652 if (dest_idx < 0) { 653 dest_idx = num_vals++; 654 values[dest_idx] = dest_src; 655 } 656 657 loc[src_idx] = src_idx; 658 pred[dest_idx] = src_idx; 659 660 to_do[++to_do_idx] = dest_idx; 661 } 662 663 /* Currently empty destinations we can go ahead and fill */ 664 NIR_VLA(int, ready, num_copies * 2); 665 int ready_idx = -1; 666 667 /* Mark the ones that are ready for copying. We know an index is a 668 * destination if it has a predecessor and it's ready for copying if 669 * it's not marked as containing data. 670 */ 671 for (int i = 0; i < num_vals; i++) { 672 if (pred[i] != -1 && loc[i] == -1) 673 ready[++ready_idx] = i; 674 } 675 676 while (to_do_idx >= 0) { 677 while (ready_idx >= 0) { 678 int b = ready[ready_idx--]; 679 int a = pred[b]; 680 emit_copy(&state->builder, values[loc[a]], values[b]); 681 682 /* If any other copies want a they can find it at b */ 683 loc[a] = b; 684 685 /* b has been filled, mark it as not needing to be copied */ 686 pred[b] = -1; 687 688 /* If a needs to be filled, it's ready for copying now */ 689 if (pred[a] != -1) 690 ready[++ready_idx] = a; 691 } 692 int b = to_do[to_do_idx--]; 693 if (pred[b] == -1) 694 continue; 695 696 /* If we got here, then we don't have any more trivial copies that we 697 * can do. We have to break a cycle, so we create a new temporary 698 * register for that purpose. Normally, if going out of SSA after 699 * register allocation, you would want to avoid creating temporary 700 * registers. However, we are going out of SSA before register 701 * allocation, so we would rather not create extra register 702 * dependencies for the backend to deal with. If it wants, the 703 * backend can coalesce the (possibly multiple) temporaries. 704 */ 705 assert(num_vals < num_copies * 2); 706 nir_register *reg = nir_local_reg_create(state->builder.impl); 707 reg->name = "copy_temp"; 708 reg->num_array_elems = 0; 709 if (values[b].is_ssa) 710 reg->num_components = values[b].ssa->num_components; 711 else 712 reg->num_components = values[b].reg.reg->num_components; 713 values[num_vals].is_ssa = false; 714 values[num_vals].reg.reg = reg; 715 716 emit_copy(&state->builder, values[b], values[num_vals]); 717 loc[b] = num_vals; 718 ready[++ready_idx] = b; 719 num_vals++; 720 } 721 722 nir_instr_remove(&pcopy->instr); 723 } 724 725 /* Resolves the parallel copies in a block. Each block can have at most 726 * two: One at the beginning, right after all the phi noces, and one at 727 * the end (or right before the final jump if it exists). 728 */ 729 static bool 730 resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state) 731 { 732 /* At this point, we have removed all of the phi nodes. If a parallel 733 * copy existed right after the phi nodes in this block, it is now the 734 * first instruction. 735 */ 736 nir_instr *first_instr = nir_block_first_instr(block); 737 if (first_instr == NULL) 738 return true; /* Empty, nothing to do. */ 739 740 if (first_instr->type == nir_instr_type_parallel_copy) { 741 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr); 742 743 resolve_parallel_copy(pcopy, state); 744 } 745 746 /* It's possible that the above code already cleaned up the end parallel 747 * copy. However, doing so removed it form the instructions list so we 748 * won't find it here. Therefore, it's safe to go ahead and just look 749 * for one and clean it up if it exists. 750 */ 751 nir_parallel_copy_instr *end_pcopy = 752 get_parallel_copy_at_end_of_block(block); 753 if (end_pcopy) 754 resolve_parallel_copy(end_pcopy, state); 755 756 return true; 757 } 758 759 static void 760 nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only) 761 { 762 struct from_ssa_state state; 763 764 nir_builder_init(&state.builder, impl); 765 state.dead_ctx = ralloc_context(NULL); 766 state.phi_webs_only = phi_webs_only; 767 state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer, 768 _mesa_key_pointer_equal); 769 770 nir_foreach_block(block, impl) { 771 add_parallel_copy_to_end_of_block(block, state.dead_ctx); 772 } 773 774 nir_foreach_block(block, impl) { 775 isolate_phi_nodes_block(block, state.dead_ctx); 776 } 777 778 /* Mark metadata as dirty before we ask for liveness analysis */ 779 nir_metadata_preserve(impl, nir_metadata_block_index | 780 nir_metadata_dominance); 781 782 nir_metadata_require(impl, nir_metadata_live_ssa_defs | 783 nir_metadata_dominance); 784 785 nir_foreach_block(block, impl) { 786 coalesce_phi_nodes_block(block, &state); 787 } 788 789 nir_foreach_block(block, impl) { 790 aggressive_coalesce_block(block, &state); 791 } 792 793 nir_foreach_block(block, impl) { 794 resolve_registers_block(block, &state); 795 } 796 797 nir_foreach_block(block, impl) { 798 resolve_parallel_copies_block(block, &state); 799 } 800 801 nir_metadata_preserve(impl, nir_metadata_block_index | 802 nir_metadata_dominance); 803 804 /* Clean up dead instructions and the hash tables */ 805 _mesa_hash_table_destroy(state.merge_node_table, NULL); 806 ralloc_free(state.dead_ctx); 807 } 808 809 void 810 nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only) 811 { 812 nir_foreach_function(function, shader) { 813 if (function->impl) 814 nir_convert_from_ssa_impl(function->impl, phi_webs_only); 815 } 816 } 817 818 819 static void 820 place_phi_read(nir_shader *shader, nir_register *reg, 821 nir_ssa_def *def, nir_block *block) 822 { 823 if (block != def->parent_instr->block) { 824 /* Try to go up the single-successor tree */ 825 bool all_single_successors = true; 826 struct set_entry *entry; 827 set_foreach(block->predecessors, entry) { 828 nir_block *pred = (nir_block *)entry->key; 829 if (pred->successors[0] && pred->successors[1]) { 830 all_single_successors = false; 831 break; 832 } 833 } 834 835 if (all_single_successors) { 836 /* All predecessors of this block have exactly one successor and it 837 * is this block so they must eventually lead here without 838 * intersecting each other. Place the reads in the predecessors 839 * instead of this block. 840 */ 841 set_foreach(block->predecessors, entry) 842 place_phi_read(shader, reg, def, (nir_block *)entry->key); 843 return; 844 } 845 } 846 847 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov); 848 mov->src[0].src = nir_src_for_ssa(def); 849 mov->dest.dest = nir_dest_for_reg(reg); 850 mov->dest.write_mask = (1 << reg->num_components) - 1; 851 nir_instr_insert(nir_after_block_before_jump(block), &mov->instr); 852 } 853 854 /** Lower all of the phi nodes in a block to imov's to and from a register 855 * 856 * This provides a very quick-and-dirty out-of-SSA pass that you can run on a 857 * single block to convert all of it's phis to a register and some imov's. 858 * The code that is generated, while not optimal for actual codegen in a 859 * back-end, is easy to generate, correct, and will turn into the same set of 860 * phis after you call regs_to_ssa and do some copy propagation. 861 * 862 * The one intelligent thing this pass does is that it places the moves from 863 * the phi sources as high up the predecessor tree as possible instead of in 864 * the exact predecessor. This means that, in particular, it will crawl into 865 * the deepest nesting of any if-ladders. In order to ensure that doing so is 866 * safe, it stops as soon as one of the predecessors has multiple successors. 867 */ 868 bool 869 nir_lower_phis_to_regs_block(nir_block *block) 870 { 871 nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); 872 nir_shader *shader = impl->function->shader; 873 874 bool progress = false; 875 nir_foreach_instr_safe(instr, block) { 876 if (instr->type != nir_instr_type_phi) 877 break; 878 879 nir_phi_instr *phi = nir_instr_as_phi(instr); 880 assert(phi->dest.is_ssa); 881 882 nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, impl); 883 884 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov); 885 mov->src[0].src = nir_src_for_reg(reg); 886 mov->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1; 887 nir_ssa_dest_init(&mov->instr, &mov->dest.dest, 888 phi->dest.ssa.num_components, phi->dest.ssa.bit_size, 889 phi->dest.ssa.name); 890 nir_instr_insert(nir_after_instr(&phi->instr), &mov->instr); 891 892 nir_ssa_def_rewrite_uses(&phi->dest.ssa, 893 nir_src_for_ssa(&mov->dest.dest.ssa)); 894 895 nir_foreach_phi_src(src, phi) { 896 assert(src->src.is_ssa); 897 place_phi_read(shader, reg, src->src.ssa, src->pred); 898 } 899 900 nir_instr_remove(&phi->instr); 901 902 progress = true; 903 } 904 905 return progress; 906 } 907 908 struct ssa_def_to_reg_state { 909 nir_function_impl *impl; 910 bool progress; 911 }; 912 913 static bool 914 dest_replace_ssa_with_reg(nir_dest *dest, void *void_state) 915 { 916 struct ssa_def_to_reg_state *state = void_state; 917 918 if (!dest->is_ssa) 919 return true; 920 921 nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl); 922 923 nir_ssa_def_rewrite_uses(&dest->ssa, nir_src_for_reg(reg)); 924 925 nir_instr *instr = dest->ssa.parent_instr; 926 *dest = nir_dest_for_reg(reg); 927 dest->reg.parent_instr = instr; 928 list_addtail(&dest->reg.def_link, ®->defs); 929 930 state->progress = true; 931 932 return true; 933 } 934 935 /** Lower all of the SSA defs in a block to registers 936 * 937 * This performs the very simple operation of blindly replacing all of the SSA 938 * defs in the given block with registers. If not used carefully, this may 939 * result in phi nodes with register sources which is technically invalid. 940 * Fortunately, the register-based into-SSA pass handles them anyway. 941 */ 942 bool 943 nir_lower_ssa_defs_to_regs_block(nir_block *block) 944 { 945 nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); 946 nir_shader *shader = impl->function->shader; 947 948 struct ssa_def_to_reg_state state = { 949 .impl = impl, 950 .progress = false, 951 }; 952 953 nir_foreach_instr(instr, block) { 954 if (instr->type == nir_instr_type_ssa_undef) { 955 /* Undefs are just a read of something never written. */ 956 nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr); 957 nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl); 958 nir_ssa_def_rewrite_uses(&undef->def, nir_src_for_reg(reg)); 959 } else if (instr->type == nir_instr_type_load_const) { 960 /* Constant loads are SSA-only, we need to insert a move */ 961 nir_load_const_instr *load = nir_instr_as_load_const(instr); 962 nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl); 963 nir_ssa_def_rewrite_uses(&load->def, nir_src_for_reg(reg)); 964 965 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov); 966 mov->src[0].src = nir_src_for_ssa(&load->def); 967 mov->dest.dest = nir_dest_for_reg(reg); 968 mov->dest.write_mask = (1 << reg->num_components) - 1; 969 nir_instr_insert(nir_after_instr(&load->instr), &mov->instr); 970 } else { 971 nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state); 972 } 973 } 974 975 return state.progress; 976 } 977