1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "image_space.h" 18 19 #include <lz4.h> 20 #include <sys/statvfs.h> 21 #include <sys/types.h> 22 #include <unistd.h> 23 24 #include <random> 25 26 #include "android-base/stringprintf.h" 27 #include "android-base/strings.h" 28 29 #include "art_field-inl.h" 30 #include "art_method-inl.h" 31 #include "base/callee_save_type.h" 32 #include "base/enums.h" 33 #include "base/file_utils.h" 34 #include "base/macros.h" 35 #include "base/os.h" 36 #include "base/scoped_flock.h" 37 #include "base/stl_util.h" 38 #include "base/systrace.h" 39 #include "base/time_utils.h" 40 #include "base/utils.h" 41 #include "dex/art_dex_file_loader.h" 42 #include "dex/dex_file_loader.h" 43 #include "exec_utils.h" 44 #include "gc/accounting/space_bitmap-inl.h" 45 #include "image-inl.h" 46 #include "image_space_fs.h" 47 #include "mirror/class-inl.h" 48 #include "mirror/object-inl.h" 49 #include "mirror/object-refvisitor-inl.h" 50 #include "oat_file.h" 51 #include "runtime.h" 52 #include "space-inl.h" 53 54 namespace art { 55 namespace gc { 56 namespace space { 57 58 using android::base::StringAppendF; 59 using android::base::StringPrintf; 60 61 Atomic<uint32_t> ImageSpace::bitmap_index_(0); 62 63 ImageSpace::ImageSpace(const std::string& image_filename, 64 const char* image_location, 65 MemMap* mem_map, 66 accounting::ContinuousSpaceBitmap* live_bitmap, 67 uint8_t* end) 68 : MemMapSpace(image_filename, 69 mem_map, 70 mem_map->Begin(), 71 end, 72 end, 73 kGcRetentionPolicyNeverCollect), 74 oat_file_non_owned_(nullptr), 75 image_location_(image_location) { 76 DCHECK(live_bitmap != nullptr); 77 live_bitmap_.reset(live_bitmap); 78 } 79 80 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) { 81 CHECK_ALIGNED(min_delta, kPageSize); 82 CHECK_ALIGNED(max_delta, kPageSize); 83 CHECK_LT(min_delta, max_delta); 84 85 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta); 86 if (r % 2 == 0) { 87 r = RoundUp(r, kPageSize); 88 } else { 89 r = RoundDown(r, kPageSize); 90 } 91 CHECK_LE(min_delta, r); 92 CHECK_GE(max_delta, r); 93 CHECK_ALIGNED(r, kPageSize); 94 return r; 95 } 96 97 static int32_t ChooseRelocationOffsetDelta() { 98 return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA); 99 } 100 101 static bool GenerateImage(const std::string& image_filename, 102 InstructionSet image_isa, 103 std::string* error_msg) { 104 const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString()); 105 std::vector<std::string> boot_class_path; 106 Split(boot_class_path_string, ':', &boot_class_path); 107 if (boot_class_path.empty()) { 108 *error_msg = "Failed to generate image because no boot class path specified"; 109 return false; 110 } 111 // We should clean up so we are more likely to have room for the image. 112 if (Runtime::Current()->IsZygote()) { 113 LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile"; 114 PruneDalvikCache(image_isa); 115 } 116 117 std::vector<std::string> arg_vector; 118 119 std::string dex2oat(Runtime::Current()->GetCompilerExecutable()); 120 arg_vector.push_back(dex2oat); 121 122 std::string image_option_string("--image="); 123 image_option_string += image_filename; 124 arg_vector.push_back(image_option_string); 125 126 for (size_t i = 0; i < boot_class_path.size(); i++) { 127 arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]); 128 } 129 130 std::string oat_file_option_string("--oat-file="); 131 oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename); 132 arg_vector.push_back(oat_file_option_string); 133 134 // Note: we do not generate a fully debuggable boot image so we do not pass the 135 // compiler flag --debuggable here. 136 137 Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector); 138 CHECK_EQ(image_isa, kRuntimeISA) 139 << "We should always be generating an image for the current isa."; 140 141 int32_t base_offset = ChooseRelocationOffsetDelta(); 142 LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default " 143 << "art base address of 0x" << std::hex << ART_BASE_ADDRESS; 144 arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset)); 145 146 if (!kIsTargetBuild) { 147 arg_vector.push_back("--host"); 148 } 149 150 const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions(); 151 for (size_t i = 0; i < compiler_options.size(); ++i) { 152 arg_vector.push_back(compiler_options[i].c_str()); 153 } 154 155 std::string command_line(android::base::Join(arg_vector, ' ')); 156 LOG(INFO) << "GenerateImage: " << command_line; 157 return Exec(arg_vector, error_msg); 158 } 159 160 static bool FindImageFilenameImpl(const char* image_location, 161 const InstructionSet image_isa, 162 bool* has_system, 163 std::string* system_filename, 164 bool* dalvik_cache_exists, 165 std::string* dalvik_cache, 166 bool* is_global_cache, 167 bool* has_cache, 168 std::string* cache_filename) { 169 DCHECK(dalvik_cache != nullptr); 170 171 *has_system = false; 172 *has_cache = false; 173 // image_location = /system/framework/boot.art 174 // system_image_location = /system/framework/<image_isa>/boot.art 175 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa)); 176 if (OS::FileExists(system_image_filename.c_str())) { 177 *system_filename = system_image_filename; 178 *has_system = true; 179 } 180 181 bool have_android_data = false; 182 *dalvik_cache_exists = false; 183 GetDalvikCache(GetInstructionSetString(image_isa), 184 true, 185 dalvik_cache, 186 &have_android_data, 187 dalvik_cache_exists, 188 is_global_cache); 189 190 if (have_android_data && *dalvik_cache_exists) { 191 // Always set output location even if it does not exist, 192 // so that the caller knows where to create the image. 193 // 194 // image_location = /system/framework/boot.art 195 // *image_filename = /data/dalvik-cache/<image_isa>/boot.art 196 std::string error_msg; 197 if (!GetDalvikCacheFilename(image_location, 198 dalvik_cache->c_str(), 199 cache_filename, 200 &error_msg)) { 201 LOG(WARNING) << error_msg; 202 return *has_system; 203 } 204 *has_cache = OS::FileExists(cache_filename->c_str()); 205 } 206 return *has_system || *has_cache; 207 } 208 209 bool ImageSpace::FindImageFilename(const char* image_location, 210 const InstructionSet image_isa, 211 std::string* system_filename, 212 bool* has_system, 213 std::string* cache_filename, 214 bool* dalvik_cache_exists, 215 bool* has_cache, 216 bool* is_global_cache) { 217 std::string dalvik_cache_unused; 218 return FindImageFilenameImpl(image_location, 219 image_isa, 220 has_system, 221 system_filename, 222 dalvik_cache_exists, 223 &dalvik_cache_unused, 224 is_global_cache, 225 has_cache, 226 cache_filename); 227 } 228 229 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) { 230 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename)); 231 if (image_file.get() == nullptr) { 232 return false; 233 } 234 const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader)); 235 if (!success || !image_header->IsValid()) { 236 return false; 237 } 238 return true; 239 } 240 241 // Relocate the image at image_location to dest_filename and relocate it by a random amount. 242 static bool RelocateImage(const char* image_location, 243 const char* dest_directory, 244 InstructionSet isa, 245 std::string* error_msg) { 246 // We should clean up so we are more likely to have room for the image. 247 if (Runtime::Current()->IsZygote()) { 248 LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile"; 249 PruneDalvikCache(isa); 250 } 251 252 std::string patchoat(Runtime::Current()->GetPatchoatExecutable()); 253 254 std::string input_image_location_arg("--input-image-location="); 255 input_image_location_arg += image_location; 256 257 std::string output_image_directory_arg("--output-image-directory="); 258 output_image_directory_arg += dest_directory; 259 260 std::string instruction_set_arg("--instruction-set="); 261 instruction_set_arg += GetInstructionSetString(isa); 262 263 std::string base_offset_arg("--base-offset-delta="); 264 StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta()); 265 266 std::vector<std::string> argv; 267 argv.push_back(patchoat); 268 269 argv.push_back(input_image_location_arg); 270 argv.push_back(output_image_directory_arg); 271 272 argv.push_back(instruction_set_arg); 273 argv.push_back(base_offset_arg); 274 275 std::string command_line(android::base::Join(argv, ' ')); 276 LOG(INFO) << "RelocateImage: " << command_line; 277 return Exec(argv, error_msg); 278 } 279 280 static bool VerifyImage(const char* image_location, 281 const char* dest_directory, 282 InstructionSet isa, 283 std::string* error_msg) { 284 std::string patchoat(Runtime::Current()->GetPatchoatExecutable()); 285 286 std::string input_image_location_arg("--input-image-location="); 287 input_image_location_arg += image_location; 288 289 std::string output_image_directory_arg("--output-image-directory="); 290 output_image_directory_arg += dest_directory; 291 292 std::string instruction_set_arg("--instruction-set="); 293 instruction_set_arg += GetInstructionSetString(isa); 294 295 std::vector<std::string> argv; 296 argv.push_back(patchoat); 297 298 argv.push_back(input_image_location_arg); 299 argv.push_back(output_image_directory_arg); 300 301 argv.push_back(instruction_set_arg); 302 303 argv.push_back("--verify"); 304 305 std::string command_line(android::base::Join(argv, ' ')); 306 LOG(INFO) << "VerifyImage: " << command_line; 307 return Exec(argv, error_msg); 308 } 309 310 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) { 311 std::unique_ptr<ImageHeader> hdr(new ImageHeader); 312 if (!ReadSpecificImageHeader(filename, hdr.get())) { 313 *error_msg = StringPrintf("Unable to read image header for %s", filename); 314 return nullptr; 315 } 316 return hdr.release(); 317 } 318 319 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location, 320 const InstructionSet image_isa, 321 std::string* error_msg) { 322 std::string system_filename; 323 bool has_system = false; 324 std::string cache_filename; 325 bool has_cache = false; 326 bool dalvik_cache_exists = false; 327 bool is_global_cache = false; 328 if (FindImageFilename(image_location, image_isa, &system_filename, &has_system, 329 &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) { 330 if (Runtime::Current()->ShouldRelocate()) { 331 if (has_system && has_cache) { 332 std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader); 333 std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader); 334 if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) { 335 *error_msg = StringPrintf("Unable to read image header for %s at %s", 336 image_location, system_filename.c_str()); 337 return nullptr; 338 } 339 if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) { 340 *error_msg = StringPrintf("Unable to read image header for %s at %s", 341 image_location, cache_filename.c_str()); 342 return nullptr; 343 } 344 if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) { 345 *error_msg = StringPrintf("Unable to find a relocated version of image file %s", 346 image_location); 347 return nullptr; 348 } 349 return cache_hdr.release(); 350 } else if (!has_cache) { 351 *error_msg = StringPrintf("Unable to find a relocated version of image file %s", 352 image_location); 353 return nullptr; 354 } else if (!has_system && has_cache) { 355 // This can probably just use the cache one. 356 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); 357 } 358 } else { 359 // We don't want to relocate, Just pick the appropriate one if we have it and return. 360 if (has_system && has_cache) { 361 // We want the cache if the checksum matches, otherwise the system. 362 std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(), 363 error_msg)); 364 std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(), 365 error_msg)); 366 if (system.get() == nullptr || 367 (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) { 368 return cache.release(); 369 } else { 370 return system.release(); 371 } 372 } else if (has_system) { 373 return ReadSpecificImageHeader(system_filename.c_str(), error_msg); 374 } else if (has_cache) { 375 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); 376 } 377 } 378 } 379 380 *error_msg = StringPrintf("Unable to find image file for %s", image_location); 381 return nullptr; 382 } 383 384 static bool ChecksumsMatch(const char* image_a, const char* image_b, std::string* error_msg) { 385 DCHECK(error_msg != nullptr); 386 387 ImageHeader hdr_a; 388 ImageHeader hdr_b; 389 390 if (!ReadSpecificImageHeader(image_a, &hdr_a)) { 391 *error_msg = StringPrintf("Cannot read header of %s", image_a); 392 return false; 393 } 394 if (!ReadSpecificImageHeader(image_b, &hdr_b)) { 395 *error_msg = StringPrintf("Cannot read header of %s", image_b); 396 return false; 397 } 398 399 if (hdr_a.GetOatChecksum() != hdr_b.GetOatChecksum()) { 400 *error_msg = StringPrintf("Checksum mismatch: %u(%s) vs %u(%s)", 401 hdr_a.GetOatChecksum(), 402 image_a, 403 hdr_b.GetOatChecksum(), 404 image_b); 405 return false; 406 } 407 408 return true; 409 } 410 411 static bool CanWriteToDalvikCache(const InstructionSet isa) { 412 const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa)); 413 if (access(dalvik_cache.c_str(), O_RDWR) == 0) { 414 return true; 415 } else if (errno != EACCES) { 416 PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES"; 417 } 418 return false; 419 } 420 421 static bool ImageCreationAllowed(bool is_global_cache, 422 const InstructionSet isa, 423 std::string* error_msg) { 424 // Anyone can write into a "local" cache. 425 if (!is_global_cache) { 426 return true; 427 } 428 429 // Only the zygote running as root is allowed to create the global boot image. 430 // If the zygote is running as non-root (and cannot write to the dalvik-cache), 431 // then image creation is not allowed.. 432 if (Runtime::Current()->IsZygote()) { 433 return CanWriteToDalvikCache(isa); 434 } 435 436 *error_msg = "Only the zygote can create the global boot image."; 437 return false; 438 } 439 440 void ImageSpace::VerifyImageAllocations() { 441 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment); 442 while (current < End()) { 443 CHECK_ALIGNED(current, kObjectAlignment); 444 auto* obj = reinterpret_cast<mirror::Object*>(current); 445 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class"; 446 CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf(); 447 if (kUseBakerReadBarrier) { 448 obj->AssertReadBarrierState(); 449 } 450 current += RoundUp(obj->SizeOf(), kObjectAlignment); 451 } 452 } 453 454 // Helper class for relocating from one range of memory to another. 455 class RelocationRange { 456 public: 457 RelocationRange() = default; 458 RelocationRange(const RelocationRange&) = default; 459 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length) 460 : source_(source), 461 dest_(dest), 462 length_(length) {} 463 464 bool InSource(uintptr_t address) const { 465 return address - source_ < length_; 466 } 467 468 bool InDest(uintptr_t address) const { 469 return address - dest_ < length_; 470 } 471 472 // Translate a source address to the destination space. 473 uintptr_t ToDest(uintptr_t address) const { 474 DCHECK(InSource(address)); 475 return address + Delta(); 476 } 477 478 // Returns the delta between the dest from the source. 479 uintptr_t Delta() const { 480 return dest_ - source_; 481 } 482 483 uintptr_t Source() const { 484 return source_; 485 } 486 487 uintptr_t Dest() const { 488 return dest_; 489 } 490 491 uintptr_t Length() const { 492 return length_; 493 } 494 495 private: 496 const uintptr_t source_; 497 const uintptr_t dest_; 498 const uintptr_t length_; 499 }; 500 501 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) { 502 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-" 503 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->(" 504 << reinterpret_cast<const void*>(reloc.Dest()) << "-" 505 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")"; 506 } 507 508 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a 509 // friend class), but not declare functions in the header. 510 class ImageSpaceLoader { 511 public: 512 static std::unique_ptr<ImageSpace> Load(const char* image_location, 513 const std::string& image_filename, 514 bool is_zygote, 515 bool is_global_cache, 516 bool validate_oat_file, 517 std::string* error_msg) 518 REQUIRES_SHARED(Locks::mutator_lock_) { 519 // Should this be a RDWR lock? This is only a defensive measure, as at 520 // this point the image should exist. 521 // However, only the zygote can write into the global dalvik-cache, so 522 // restrict to zygote processes, or any process that isn't using 523 // /data/dalvik-cache (which we assume to be allowed to write there). 524 const bool rw_lock = is_zygote || !is_global_cache; 525 526 // Note that we must not use the file descriptor associated with 527 // ScopedFlock::GetFile to Init the image file. We want the file 528 // descriptor (and the associated exclusive lock) to be released when 529 // we leave Create. 530 ScopedFlock image = LockedFile::Open(image_filename.c_str(), 531 rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */, 532 true /* block */, 533 error_msg); 534 535 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location " 536 << image_location; 537 // If we are in /system we can assume the image is good. We can also 538 // assume this if we are using a relocated image (i.e. image checksum 539 // matches) since this is only different by the offset. We need this to 540 // make sure that host tests continue to work. 541 // Since we are the boot image, pass null since we load the oat file from the boot image oat 542 // file name. 543 return Init(image_filename.c_str(), 544 image_location, 545 validate_oat_file, 546 /* oat_file */nullptr, 547 error_msg); 548 } 549 550 static std::unique_ptr<ImageSpace> Init(const char* image_filename, 551 const char* image_location, 552 bool validate_oat_file, 553 const OatFile* oat_file, 554 std::string* error_msg) 555 REQUIRES_SHARED(Locks::mutator_lock_) { 556 CHECK(image_filename != nullptr); 557 CHECK(image_location != nullptr); 558 559 TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image)); 560 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename; 561 562 std::unique_ptr<File> file; 563 { 564 TimingLogger::ScopedTiming timing("OpenImageFile", &logger); 565 file.reset(OS::OpenFileForReading(image_filename)); 566 if (file == nullptr) { 567 *error_msg = StringPrintf("Failed to open '%s'", image_filename); 568 return nullptr; 569 } 570 } 571 ImageHeader temp_image_header; 572 ImageHeader* image_header = &temp_image_header; 573 { 574 TimingLogger::ScopedTiming timing("ReadImageHeader", &logger); 575 bool success = file->ReadFully(image_header, sizeof(*image_header)); 576 if (!success || !image_header->IsValid()) { 577 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename); 578 return nullptr; 579 } 580 } 581 // Check that the file is larger or equal to the header size + data size. 582 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength()); 583 if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) { 584 *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".", 585 image_file_size, 586 sizeof(ImageHeader) + image_header->GetDataSize()); 587 return nullptr; 588 } 589 590 if (oat_file != nullptr) { 591 // If we have an oat file, check the oat file checksum. The oat file is only non-null for the 592 // app image case. Otherwise, we open the oat file after the image and check the checksum there. 593 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); 594 const uint32_t image_oat_checksum = image_header->GetOatChecksum(); 595 if (oat_checksum != image_oat_checksum) { 596 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s", 597 oat_checksum, 598 image_oat_checksum, 599 image_filename); 600 return nullptr; 601 } 602 } 603 604 if (VLOG_IS_ON(startup)) { 605 LOG(INFO) << "Dumping image sections"; 606 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { 607 const auto section_idx = static_cast<ImageHeader::ImageSections>(i); 608 auto& section = image_header->GetImageSection(section_idx); 609 LOG(INFO) << section_idx << " start=" 610 << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " " 611 << section; 612 } 613 } 614 615 const auto& bitmap_section = image_header->GetImageBitmapSection(); 616 // The location we want to map from is the first aligned page after the end of the stored 617 // (possibly compressed) data. 618 const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(), 619 kPageSize); 620 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size(); 621 if (end_of_bitmap != image_file_size) { 622 *error_msg = StringPrintf( 623 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size, 624 end_of_bitmap); 625 return nullptr; 626 } 627 628 std::unique_ptr<MemMap> map; 629 630 // GetImageBegin is the preferred address to map the image. If we manage to map the 631 // image at the image begin, the amount of fixup work required is minimized. 632 // If it is pic we will retry with error_msg for the failure case. Pass a null error_msg to 633 // avoid reading proc maps for a mapping failure and slowing everything down. 634 map.reset(LoadImageFile(image_filename, 635 image_location, 636 *image_header, 637 image_header->GetImageBegin(), 638 file->Fd(), 639 logger, 640 image_header->IsPic() ? nullptr : error_msg)); 641 // If the header specifies PIC mode, we can also map at a random low_4gb address since we can 642 // relocate in-place. 643 if (map == nullptr && image_header->IsPic()) { 644 map.reset(LoadImageFile(image_filename, 645 image_location, 646 *image_header, 647 /* address */ nullptr, 648 file->Fd(), 649 logger, 650 error_msg)); 651 } 652 // Were we able to load something and continue? 653 if (map == nullptr) { 654 DCHECK(!error_msg->empty()); 655 return nullptr; 656 } 657 DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader))); 658 659 std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr, 660 bitmap_section.Size(), 661 PROT_READ, MAP_PRIVATE, 662 file->Fd(), 663 image_bitmap_offset, 664 /*low_4gb*/false, 665 /*reuse*/false, 666 image_filename, 667 error_msg)); 668 if (image_bitmap_map == nullptr) { 669 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str()); 670 return nullptr; 671 } 672 // Loaded the map, use the image header from the file now in case we patch it with 673 // RelocateInPlace. 674 image_header = reinterpret_cast<ImageHeader*>(map->Begin()); 675 const uint32_t bitmap_index = ImageSpace::bitmap_index_.FetchAndAddSequentiallyConsistent(1); 676 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u", 677 image_filename, 678 bitmap_index)); 679 // Bitmap only needs to cover until the end of the mirror objects section. 680 const ImageSection& image_objects = image_header->GetObjectsSection(); 681 // We only want the mirror object, not the ArtFields and ArtMethods. 682 uint8_t* const image_end = map->Begin() + image_objects.End(); 683 std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap; 684 { 685 TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger); 686 bitmap.reset( 687 accounting::ContinuousSpaceBitmap::CreateFromMemMap( 688 bitmap_name, 689 image_bitmap_map.release(), 690 reinterpret_cast<uint8_t*>(map->Begin()), 691 // Make sure the bitmap is aligned to card size instead of just bitmap word size. 692 RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize))); 693 if (bitmap == nullptr) { 694 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str()); 695 return nullptr; 696 } 697 } 698 { 699 TimingLogger::ScopedTiming timing("RelocateImage", &logger); 700 if (!RelocateInPlace(*image_header, 701 map->Begin(), 702 bitmap.get(), 703 oat_file, 704 error_msg)) { 705 return nullptr; 706 } 707 } 708 // We only want the mirror object, not the ArtFields and ArtMethods. 709 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename, 710 image_location, 711 map.release(), 712 bitmap.release(), 713 image_end)); 714 715 // VerifyImageAllocations() will be called later in Runtime::Init() 716 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_ 717 // and ArtField::java_lang_reflect_ArtField_, which are used from 718 // Object::SizeOf() which VerifyImageAllocations() calls, are not 719 // set yet at this point. 720 if (oat_file == nullptr) { 721 TimingLogger::ScopedTiming timing("OpenOatFile", &logger); 722 space->oat_file_ = OpenOatFile(*space, image_filename, error_msg); 723 if (space->oat_file_ == nullptr) { 724 DCHECK(!error_msg->empty()); 725 return nullptr; 726 } 727 space->oat_file_non_owned_ = space->oat_file_.get(); 728 } else { 729 space->oat_file_non_owned_ = oat_file; 730 } 731 732 if (validate_oat_file) { 733 TimingLogger::ScopedTiming timing("ValidateOatFile", &logger); 734 CHECK(space->oat_file_ != nullptr); 735 if (!ImageSpace::ValidateOatFile(*space->oat_file_, error_msg)) { 736 DCHECK(!error_msg->empty()); 737 return nullptr; 738 } 739 } 740 741 Runtime* runtime = Runtime::Current(); 742 743 // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space 744 // to set the runtime methods. 745 CHECK_EQ(oat_file != nullptr, image_header->IsAppImage()); 746 if (image_header->IsAppImage()) { 747 CHECK_EQ(runtime->GetResolutionMethod(), 748 image_header->GetImageMethod(ImageHeader::kResolutionMethod)); 749 CHECK_EQ(runtime->GetImtConflictMethod(), 750 image_header->GetImageMethod(ImageHeader::kImtConflictMethod)); 751 CHECK_EQ(runtime->GetImtUnimplementedMethod(), 752 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod)); 753 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves), 754 image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod)); 755 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly), 756 image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod)); 757 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs), 758 image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod)); 759 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything), 760 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod)); 761 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit), 762 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit)); 763 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck), 764 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck)); 765 } else if (!runtime->HasResolutionMethod()) { 766 runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet()); 767 runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod)); 768 runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod)); 769 runtime->SetImtUnimplementedMethod( 770 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod)); 771 runtime->SetCalleeSaveMethod( 772 image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod), 773 CalleeSaveType::kSaveAllCalleeSaves); 774 runtime->SetCalleeSaveMethod( 775 image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod), 776 CalleeSaveType::kSaveRefsOnly); 777 runtime->SetCalleeSaveMethod( 778 image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod), 779 CalleeSaveType::kSaveRefsAndArgs); 780 runtime->SetCalleeSaveMethod( 781 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod), 782 CalleeSaveType::kSaveEverything); 783 runtime->SetCalleeSaveMethod( 784 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit), 785 CalleeSaveType::kSaveEverythingForClinit); 786 runtime->SetCalleeSaveMethod( 787 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck), 788 CalleeSaveType::kSaveEverythingForSuspendCheck); 789 } 790 791 VLOG(image) << "ImageSpace::Init exiting " << *space.get(); 792 if (VLOG_IS_ON(image)) { 793 logger.Dump(LOG_STREAM(INFO)); 794 } 795 return space; 796 } 797 798 private: 799 static MemMap* LoadImageFile(const char* image_filename, 800 const char* image_location, 801 const ImageHeader& image_header, 802 uint8_t* address, 803 int fd, 804 TimingLogger& logger, 805 std::string* error_msg) { 806 TimingLogger::ScopedTiming timing("MapImageFile", &logger); 807 const ImageHeader::StorageMode storage_mode = image_header.GetStorageMode(); 808 if (storage_mode == ImageHeader::kStorageModeUncompressed) { 809 return MemMap::MapFileAtAddress(address, 810 image_header.GetImageSize(), 811 PROT_READ | PROT_WRITE, 812 MAP_PRIVATE, 813 fd, 814 0, 815 /*low_4gb*/true, 816 /*reuse*/false, 817 image_filename, 818 error_msg); 819 } 820 821 if (storage_mode != ImageHeader::kStorageModeLZ4 && 822 storage_mode != ImageHeader::kStorageModeLZ4HC) { 823 if (error_msg != nullptr) { 824 *error_msg = StringPrintf("Invalid storage mode in image header %d", 825 static_cast<int>(storage_mode)); 826 } 827 return nullptr; 828 } 829 830 // Reserve output and decompress into it. 831 std::unique_ptr<MemMap> map(MemMap::MapAnonymous(image_location, 832 address, 833 image_header.GetImageSize(), 834 PROT_READ | PROT_WRITE, 835 /*low_4gb*/true, 836 /*reuse*/false, 837 error_msg)); 838 if (map != nullptr) { 839 const size_t stored_size = image_header.GetDataSize(); 840 const size_t decompress_offset = sizeof(ImageHeader); // Skip the header. 841 std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size, 842 PROT_READ, 843 MAP_PRIVATE, 844 fd, 845 /*offset*/0, 846 /*low_4gb*/false, 847 image_filename, 848 error_msg)); 849 if (temp_map == nullptr) { 850 DCHECK(error_msg == nullptr || !error_msg->empty()); 851 return nullptr; 852 } 853 memcpy(map->Begin(), &image_header, sizeof(ImageHeader)); 854 const uint64_t start = NanoTime(); 855 // LZ4HC and LZ4 have same internal format, both use LZ4_decompress. 856 TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger); 857 const size_t decompressed_size = LZ4_decompress_safe( 858 reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader), 859 reinterpret_cast<char*>(map->Begin()) + decompress_offset, 860 stored_size, 861 map->Size() - decompress_offset); 862 const uint64_t time = NanoTime() - start; 863 // Add one 1 ns to prevent possible divide by 0. 864 VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " (" 865 << PrettySize(static_cast<uint64_t>(map->Size()) * MsToNs(1000) / (time + 1)) 866 << "/s)"; 867 if (decompressed_size + sizeof(ImageHeader) != image_header.GetImageSize()) { 868 if (error_msg != nullptr) { 869 *error_msg = StringPrintf( 870 "Decompressed size does not match expected image size %zu vs %zu", 871 decompressed_size + sizeof(ImageHeader), 872 image_header.GetImageSize()); 873 } 874 return nullptr; 875 } 876 } 877 878 return map.release(); 879 } 880 881 class FixupVisitor : public ValueObject { 882 public: 883 FixupVisitor(const RelocationRange& boot_image, 884 const RelocationRange& boot_oat, 885 const RelocationRange& app_image, 886 const RelocationRange& app_oat) 887 : boot_image_(boot_image), 888 boot_oat_(boot_oat), 889 app_image_(app_image), 890 app_oat_(app_oat) {} 891 892 // Return the relocated address of a heap object. 893 template <typename T> 894 ALWAYS_INLINE T* ForwardObject(T* src) const { 895 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src); 896 if (boot_image_.InSource(uint_src)) { 897 return reinterpret_cast<T*>(boot_image_.ToDest(uint_src)); 898 } 899 if (app_image_.InSource(uint_src)) { 900 return reinterpret_cast<T*>(app_image_.ToDest(uint_src)); 901 } 902 // Since we are fixing up the app image, there should only be pointers to the app image and 903 // boot image. 904 DCHECK(src == nullptr) << reinterpret_cast<const void*>(src); 905 return src; 906 } 907 908 // Return the relocated address of a code pointer (contained by an oat file). 909 ALWAYS_INLINE const void* ForwardCode(const void* src) const { 910 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src); 911 if (boot_oat_.InSource(uint_src)) { 912 return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src)); 913 } 914 if (app_oat_.InSource(uint_src)) { 915 return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src)); 916 } 917 DCHECK(src == nullptr) << src; 918 return src; 919 } 920 921 // Must be called on pointers that already have been relocated to the destination relocation. 922 ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const { 923 return app_image_.InDest(reinterpret_cast<uintptr_t>(object)); 924 } 925 926 protected: 927 // Source section. 928 const RelocationRange boot_image_; 929 const RelocationRange boot_oat_; 930 const RelocationRange app_image_; 931 const RelocationRange app_oat_; 932 }; 933 934 // Adapt for mirror::Class::FixupNativePointers. 935 class FixupObjectAdapter : public FixupVisitor { 936 public: 937 template<typename... Args> 938 explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {} 939 940 template <typename T> 941 T* operator()(T* obj, void** dest_addr ATTRIBUTE_UNUSED = nullptr) const { 942 return ForwardObject(obj); 943 } 944 }; 945 946 class FixupRootVisitor : public FixupVisitor { 947 public: 948 template<typename... Args> 949 explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {} 950 951 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 952 REQUIRES_SHARED(Locks::mutator_lock_) { 953 if (!root->IsNull()) { 954 VisitRoot(root); 955 } 956 } 957 958 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 959 REQUIRES_SHARED(Locks::mutator_lock_) { 960 mirror::Object* ref = root->AsMirrorPtr(); 961 mirror::Object* new_ref = ForwardObject(ref); 962 if (ref != new_ref) { 963 root->Assign(new_ref); 964 } 965 } 966 }; 967 968 class FixupObjectVisitor : public FixupVisitor { 969 public: 970 template<typename... Args> 971 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited, 972 const PointerSize pointer_size, 973 Args... args) 974 : FixupVisitor(args...), 975 pointer_size_(pointer_size), 976 visited_(visited) {} 977 978 // Fix up separately since we also need to fix up method entrypoints. 979 ALWAYS_INLINE void VisitRootIfNonNull( 980 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} 981 982 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) 983 const {} 984 985 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj, 986 MemberOffset offset, 987 bool is_static ATTRIBUTE_UNUSED) const 988 NO_THREAD_SAFETY_ANALYSIS { 989 // There could be overlap between ranges, we must avoid visiting the same reference twice. 990 // Avoid the class field since we already fixed it up in FixupClassVisitor. 991 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) { 992 // Space is not yet added to the heap, don't do a read barrier. 993 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>( 994 offset); 995 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the 996 // image. 997 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref)); 998 } 999 } 1000 1001 // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the 1002 // boot image. Uses the bitmap to ensure the same array is not visited multiple times. 1003 template <typename Visitor> 1004 void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const 1005 NO_THREAD_SAFETY_ANALYSIS { 1006 DCHECK(array != nullptr); 1007 DCHECK(visitor.IsInAppImage(array)); 1008 // The bit for the array contents is different than the bit for the array. Since we may have 1009 // already visited the array as a long / int array from walking the bitmap without knowing it 1010 // was a pointer array. 1011 static_assert(kObjectAlignment == 8u, "array bit may be in another object"); 1012 mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>( 1013 reinterpret_cast<uintptr_t>(array) + kObjectAlignment); 1014 // If the bit is not set then the contents have not yet been updated. 1015 if (!visited_->Test(contents_bit)) { 1016 array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor); 1017 visited_->Set(contents_bit); 1018 } 1019 } 1020 1021 // java.lang.ref.Reference visitor. 1022 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, 1023 ObjPtr<mirror::Reference> ref) const 1024 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { 1025 mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>(); 1026 ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( 1027 mirror::Reference::ReferentOffset(), 1028 ForwardObject(obj)); 1029 } 1030 1031 void operator()(mirror::Object* obj) const 1032 NO_THREAD_SAFETY_ANALYSIS { 1033 if (visited_->Test(obj)) { 1034 // Already visited. 1035 return; 1036 } 1037 visited_->Set(obj); 1038 1039 // Handle class specially first since we need it to be updated to properly visit the rest of 1040 // the instance fields. 1041 { 1042 mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>(); 1043 DCHECK(klass != nullptr) << "Null class in image"; 1044 // No AsClass since our fields aren't quite fixed up yet. 1045 mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass)); 1046 if (klass != new_klass) { 1047 obj->SetClass<kVerifyNone>(new_klass); 1048 } 1049 if (new_klass != klass && IsInAppImage(new_klass)) { 1050 // Make sure the klass contents are fixed up since we depend on it to walk the fields. 1051 operator()(new_klass); 1052 } 1053 } 1054 1055 if (obj->IsClass()) { 1056 mirror::Class* klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>(); 1057 // Fixup super class before visiting instance fields which require 1058 // information from their super class to calculate offsets. 1059 mirror::Class* super_class = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>(); 1060 if (super_class != nullptr) { 1061 mirror::Class* new_super_class = down_cast<mirror::Class*>(ForwardObject(super_class)); 1062 if (new_super_class != super_class && IsInAppImage(new_super_class)) { 1063 // Recursively fix all dependencies. 1064 operator()(new_super_class); 1065 } 1066 } 1067 } 1068 1069 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>( 1070 *this, 1071 *this); 1072 // Note that this code relies on no circular dependencies. 1073 // We want to use our own class loader and not the one in the image. 1074 if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) { 1075 mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>(); 1076 FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_); 1077 as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass, 1078 pointer_size_, 1079 visitor); 1080 // Deal with the pointer arrays. Use the helper function since multiple classes can reference 1081 // the same arrays. 1082 mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>(); 1083 if (vtable != nullptr && IsInAppImage(vtable)) { 1084 operator()(vtable); 1085 UpdatePointerArrayContents(vtable, visitor); 1086 } 1087 mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>(); 1088 // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid 1089 // contents. 1090 if (IsInAppImage(iftable)) { 1091 operator()(iftable); 1092 for (int32_t i = 0, count = iftable->Count(); i < count; ++i) { 1093 if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) { 1094 mirror::PointerArray* methods = 1095 iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i); 1096 if (visitor.IsInAppImage(methods)) { 1097 operator()(methods); 1098 DCHECK(methods != nullptr); 1099 UpdatePointerArrayContents(methods, visitor); 1100 } 1101 } 1102 } 1103 } 1104 } 1105 } 1106 1107 private: 1108 const PointerSize pointer_size_; 1109 gc::accounting::ContinuousSpaceBitmap* const visited_; 1110 }; 1111 1112 class ForwardObjectAdapter { 1113 public: 1114 ALWAYS_INLINE explicit ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {} 1115 1116 template <typename T> 1117 ALWAYS_INLINE T* operator()(T* src) const { 1118 return visitor_->ForwardObject(src); 1119 } 1120 1121 private: 1122 const FixupVisitor* const visitor_; 1123 }; 1124 1125 class ForwardCodeAdapter { 1126 public: 1127 ALWAYS_INLINE explicit ForwardCodeAdapter(const FixupVisitor* visitor) 1128 : visitor_(visitor) {} 1129 1130 template <typename T> 1131 ALWAYS_INLINE T* operator()(T* src) const { 1132 return visitor_->ForwardCode(src); 1133 } 1134 1135 private: 1136 const FixupVisitor* const visitor_; 1137 }; 1138 1139 class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor { 1140 public: 1141 template<typename... Args> 1142 explicit FixupArtMethodVisitor(bool fixup_heap_objects, PointerSize pointer_size, Args... args) 1143 : FixupVisitor(args...), 1144 fixup_heap_objects_(fixup_heap_objects), 1145 pointer_size_(pointer_size) {} 1146 1147 virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS { 1148 // TODO: Separate visitor for runtime vs normal methods. 1149 if (UNLIKELY(method->IsRuntimeMethod())) { 1150 ImtConflictTable* table = method->GetImtConflictTable(pointer_size_); 1151 if (table != nullptr) { 1152 ImtConflictTable* new_table = ForwardObject(table); 1153 if (table != new_table) { 1154 method->SetImtConflictTable(new_table, pointer_size_); 1155 } 1156 } 1157 const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_); 1158 const void* new_code = ForwardCode(old_code); 1159 if (old_code != new_code) { 1160 method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_); 1161 } 1162 } else { 1163 if (fixup_heap_objects_) { 1164 method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this)); 1165 } 1166 method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_); 1167 } 1168 } 1169 1170 private: 1171 const bool fixup_heap_objects_; 1172 const PointerSize pointer_size_; 1173 }; 1174 1175 class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor { 1176 public: 1177 template<typename... Args> 1178 explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {} 1179 1180 virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS { 1181 field->UpdateObjects(ForwardObjectAdapter(this)); 1182 } 1183 }; 1184 1185 // Relocate an image space mapped at target_base which possibly used to be at a different base 1186 // address. Only needs a single image space, not one for both source and destination. 1187 // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace 1188 // to another. 1189 static bool RelocateInPlace(ImageHeader& image_header, 1190 uint8_t* target_base, 1191 accounting::ContinuousSpaceBitmap* bitmap, 1192 const OatFile* app_oat_file, 1193 std::string* error_msg) { 1194 DCHECK(error_msg != nullptr); 1195 if (!image_header.IsPic()) { 1196 if (image_header.GetImageBegin() == target_base) { 1197 return true; 1198 } 1199 *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s", 1200 (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : ""); 1201 return false; 1202 } 1203 // Set up sections. 1204 uint32_t boot_image_begin = 0; 1205 uint32_t boot_image_end = 0; 1206 uint32_t boot_oat_begin = 0; 1207 uint32_t boot_oat_end = 0; 1208 const PointerSize pointer_size = image_header.GetPointerSize(); 1209 gc::Heap* const heap = Runtime::Current()->GetHeap(); 1210 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end); 1211 if (boot_image_begin == boot_image_end) { 1212 *error_msg = "Can not relocate app image without boot image space"; 1213 return false; 1214 } 1215 if (boot_oat_begin == boot_oat_end) { 1216 *error_msg = "Can not relocate app image without boot oat file"; 1217 return false; 1218 } 1219 const uint32_t boot_image_size = boot_image_end - boot_image_begin; 1220 const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin; 1221 const uint32_t image_header_boot_image_size = image_header.GetBootImageSize(); 1222 const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize(); 1223 if (boot_image_size != image_header_boot_image_size) { 1224 *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %" 1225 PRIu64, 1226 static_cast<uint64_t>(boot_image_size), 1227 static_cast<uint64_t>(image_header_boot_image_size)); 1228 return false; 1229 } 1230 if (boot_oat_size != image_header_boot_oat_size) { 1231 *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %" 1232 PRIu64, 1233 static_cast<uint64_t>(boot_oat_size), 1234 static_cast<uint64_t>(image_header_boot_oat_size)); 1235 return false; 1236 } 1237 TimingLogger logger(__FUNCTION__, true, false); 1238 RelocationRange boot_image(image_header.GetBootImageBegin(), 1239 boot_image_begin, 1240 boot_image_size); 1241 RelocationRange boot_oat(image_header.GetBootOatBegin(), 1242 boot_oat_begin, 1243 boot_oat_size); 1244 RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()), 1245 reinterpret_cast<uintptr_t>(target_base), 1246 image_header.GetImageSize()); 1247 // Use the oat data section since this is where the OatFile::Begin is. 1248 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()), 1249 // Not necessarily in low 4GB. 1250 reinterpret_cast<uintptr_t>(app_oat_file->Begin()), 1251 image_header.GetOatDataEnd() - image_header.GetOatDataBegin()); 1252 VLOG(image) << "App image " << app_image; 1253 VLOG(image) << "App oat " << app_oat; 1254 VLOG(image) << "Boot image " << boot_image; 1255 VLOG(image) << "Boot oat " << boot_oat; 1256 // True if we need to fixup any heap pointers, otherwise only code pointers. 1257 const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0; 1258 const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0; 1259 if (!fixup_image && !fixup_code) { 1260 // Nothing to fix up. 1261 return true; 1262 } 1263 ScopedDebugDisallowReadBarriers sddrb(Thread::Current()); 1264 // Need to update the image to be at the target base. 1265 const ImageSection& objects_section = image_header.GetObjectsSection(); 1266 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset()); 1267 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End()); 1268 FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat); 1269 if (fixup_image) { 1270 // Two pass approach, fix up all classes first, then fix up non class-objects. 1271 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice. 1272 std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap( 1273 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap", 1274 target_base, 1275 image_header.GetImageSize())); 1276 FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(), 1277 pointer_size, 1278 boot_image, 1279 boot_oat, 1280 app_image, 1281 app_oat); 1282 TimingLogger::ScopedTiming timing("Fixup classes", &logger); 1283 // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though 1284 // its probably not required. 1285 ScopedObjectAccess soa(Thread::Current()); 1286 timing.NewTiming("Fixup objects"); 1287 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor); 1288 // Fixup image roots. 1289 CHECK(app_image.InSource(reinterpret_cast<uintptr_t>( 1290 image_header.GetImageRoots<kWithoutReadBarrier>()))); 1291 image_header.RelocateImageObjects(app_image.Delta()); 1292 CHECK_EQ(image_header.GetImageBegin(), target_base); 1293 // Fix up dex cache DexFile pointers. 1294 auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)-> 1295 AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>(); 1296 for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) { 1297 mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i); 1298 // Fix up dex cache pointers. 1299 mirror::StringDexCacheType* strings = dex_cache->GetStrings(); 1300 if (strings != nullptr) { 1301 mirror::StringDexCacheType* new_strings = fixup_adapter.ForwardObject(strings); 1302 if (strings != new_strings) { 1303 dex_cache->SetStrings(new_strings); 1304 } 1305 dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter); 1306 } 1307 mirror::TypeDexCacheType* types = dex_cache->GetResolvedTypes(); 1308 if (types != nullptr) { 1309 mirror::TypeDexCacheType* new_types = fixup_adapter.ForwardObject(types); 1310 if (types != new_types) { 1311 dex_cache->SetResolvedTypes(new_types); 1312 } 1313 dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter); 1314 } 1315 mirror::MethodDexCacheType* methods = dex_cache->GetResolvedMethods(); 1316 if (methods != nullptr) { 1317 mirror::MethodDexCacheType* new_methods = fixup_adapter.ForwardObject(methods); 1318 if (methods != new_methods) { 1319 dex_cache->SetResolvedMethods(new_methods); 1320 } 1321 for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) { 1322 auto pair = mirror::DexCache::GetNativePairPtrSize(new_methods, j, pointer_size); 1323 ArtMethod* orig = pair.object; 1324 ArtMethod* copy = fixup_adapter.ForwardObject(orig); 1325 if (orig != copy) { 1326 pair.object = copy; 1327 mirror::DexCache::SetNativePairPtrSize(new_methods, j, pair, pointer_size); 1328 } 1329 } 1330 } 1331 mirror::FieldDexCacheType* fields = dex_cache->GetResolvedFields(); 1332 if (fields != nullptr) { 1333 mirror::FieldDexCacheType* new_fields = fixup_adapter.ForwardObject(fields); 1334 if (fields != new_fields) { 1335 dex_cache->SetResolvedFields(new_fields); 1336 } 1337 for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) { 1338 mirror::FieldDexCachePair orig = 1339 mirror::DexCache::GetNativePairPtrSize(new_fields, j, pointer_size); 1340 mirror::FieldDexCachePair copy(fixup_adapter.ForwardObject(orig.object), orig.index); 1341 if (orig.object != copy.object) { 1342 mirror::DexCache::SetNativePairPtrSize(new_fields, j, copy, pointer_size); 1343 } 1344 } 1345 } 1346 1347 mirror::MethodTypeDexCacheType* method_types = dex_cache->GetResolvedMethodTypes(); 1348 if (method_types != nullptr) { 1349 mirror::MethodTypeDexCacheType* new_method_types = 1350 fixup_adapter.ForwardObject(method_types); 1351 if (method_types != new_method_types) { 1352 dex_cache->SetResolvedMethodTypes(new_method_types); 1353 } 1354 dex_cache->FixupResolvedMethodTypes<kWithoutReadBarrier>(new_method_types, fixup_adapter); 1355 } 1356 GcRoot<mirror::CallSite>* call_sites = dex_cache->GetResolvedCallSites(); 1357 if (call_sites != nullptr) { 1358 GcRoot<mirror::CallSite>* new_call_sites = fixup_adapter.ForwardObject(call_sites); 1359 if (call_sites != new_call_sites) { 1360 dex_cache->SetResolvedCallSites(new_call_sites); 1361 } 1362 dex_cache->FixupResolvedCallSites<kWithoutReadBarrier>(new_call_sites, fixup_adapter); 1363 } 1364 } 1365 } 1366 { 1367 // Only touches objects in the app image, no need for mutator lock. 1368 TimingLogger::ScopedTiming timing("Fixup methods", &logger); 1369 FixupArtMethodVisitor method_visitor(fixup_image, 1370 pointer_size, 1371 boot_image, 1372 boot_oat, 1373 app_image, 1374 app_oat); 1375 image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size); 1376 } 1377 if (fixup_image) { 1378 { 1379 // Only touches objects in the app image, no need for mutator lock. 1380 TimingLogger::ScopedTiming timing("Fixup fields", &logger); 1381 FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat); 1382 image_header.VisitPackedArtFields(&field_visitor, target_base); 1383 } 1384 { 1385 TimingLogger::ScopedTiming timing("Fixup imt", &logger); 1386 image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size); 1387 } 1388 { 1389 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger); 1390 image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size); 1391 } 1392 // In the app image case, the image methods are actually in the boot image. 1393 image_header.RelocateImageMethods(boot_image.Delta()); 1394 const auto& class_table_section = image_header.GetClassTableSection(); 1395 if (class_table_section.Size() > 0u) { 1396 // Note that we require that ReadFromMemory does not make an internal copy of the elements. 1397 // This also relies on visit roots not doing any verification which could fail after we update 1398 // the roots to be the image addresses. 1399 ScopedObjectAccess soa(Thread::Current()); 1400 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); 1401 ClassTable temp_table; 1402 temp_table.ReadFromMemory(target_base + class_table_section.Offset()); 1403 FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat); 1404 temp_table.VisitRoots(root_visitor); 1405 } 1406 } 1407 if (VLOG_IS_ON(image)) { 1408 logger.Dump(LOG_STREAM(INFO)); 1409 } 1410 return true; 1411 } 1412 1413 static std::unique_ptr<OatFile> OpenOatFile(const ImageSpace& image, 1414 const char* image_path, 1415 std::string* error_msg) { 1416 const ImageHeader& image_header = image.GetImageHeader(); 1417 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path); 1418 1419 CHECK(image_header.GetOatDataBegin() != nullptr); 1420 1421 std::unique_ptr<OatFile> oat_file(OatFile::Open(/* zip_fd */ -1, 1422 oat_filename, 1423 oat_filename, 1424 image_header.GetOatDataBegin(), 1425 image_header.GetOatFileBegin(), 1426 !Runtime::Current()->IsAotCompiler(), 1427 /*low_4gb*/false, 1428 nullptr, 1429 error_msg)); 1430 if (oat_file == nullptr) { 1431 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s", 1432 oat_filename.c_str(), 1433 image.GetName(), 1434 error_msg->c_str()); 1435 return nullptr; 1436 } 1437 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); 1438 uint32_t image_oat_checksum = image_header.GetOatChecksum(); 1439 if (oat_checksum != image_oat_checksum) { 1440 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x" 1441 " in image %s", 1442 oat_checksum, 1443 image_oat_checksum, 1444 image.GetName()); 1445 return nullptr; 1446 } 1447 int32_t image_patch_delta = image_header.GetPatchDelta(); 1448 int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta(); 1449 if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) { 1450 // We should have already relocated by this point. Bail out. 1451 *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d " 1452 "in image %s", 1453 oat_patch_delta, 1454 image_patch_delta, 1455 image.GetName()); 1456 return nullptr; 1457 } 1458 1459 return oat_file; 1460 } 1461 }; 1462 1463 static constexpr uint64_t kLowSpaceValue = 50 * MB; 1464 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB; 1465 1466 // Read the free space of the cache partition and make a decision whether to keep the generated 1467 // image. This is to try to mitigate situations where the system might run out of space later. 1468 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) { 1469 // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes. 1470 struct statvfs buf; 1471 1472 int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf)); 1473 if (res != 0) { 1474 // Could not stat. Conservatively tell the system to delete the image. 1475 *error_msg = "Could not stat the filesystem, assuming low-memory situation."; 1476 return false; 1477 } 1478 1479 uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks); 1480 // Zygote is privileged, but other things are not. Use bavail. 1481 uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail); 1482 1483 // Take the overall size as an indicator for a tmpfs, which is being used for the decryption 1484 // environment. We do not want to fail quickening the boot image there, as it is beneficial 1485 // for time-to-UI. 1486 if (fs_overall_size > kTmpFsSentinelValue) { 1487 if (fs_free_size < kLowSpaceValue) { 1488 *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at " 1489 "least %" PRIu64 ".", 1490 static_cast<double>(fs_free_size) / MB, 1491 kLowSpaceValue / MB); 1492 return false; 1493 } 1494 } 1495 return true; 1496 } 1497 1498 std::unique_ptr<ImageSpace> ImageSpace::CreateBootImage(const char* image_location, 1499 const InstructionSet image_isa, 1500 bool secondary_image, 1501 std::string* error_msg) { 1502 ScopedTrace trace(__FUNCTION__); 1503 1504 // Step 0: Extra zygote work. 1505 1506 // Step 0.a: If we're the zygote, mark boot. 1507 const bool is_zygote = Runtime::Current()->IsZygote(); 1508 if (is_zygote && !secondary_image && CanWriteToDalvikCache(image_isa)) { 1509 MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots()); 1510 } 1511 1512 // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively, 1513 // if necessary. While the runtime may be fine (it is pretty tolerant to 1514 // out-of-disk-space situations), other parts of the platform are not. 1515 // 1516 // The advantage of doing this proactively is that the later steps are simplified, 1517 // i.e., we do not need to code retries. 1518 std::string system_filename; 1519 bool has_system = false; 1520 std::string cache_filename; 1521 bool has_cache = false; 1522 bool dalvik_cache_exists = false; 1523 bool is_global_cache = true; 1524 std::string dalvik_cache; 1525 bool found_image = FindImageFilenameImpl(image_location, 1526 image_isa, 1527 &has_system, 1528 &system_filename, 1529 &dalvik_cache_exists, 1530 &dalvik_cache, 1531 &is_global_cache, 1532 &has_cache, 1533 &cache_filename); 1534 1535 bool dex2oat_enabled = Runtime::Current()->IsImageDex2OatEnabled(); 1536 1537 if (is_zygote && dalvik_cache_exists && !secondary_image) { 1538 // Extra checks for the zygote. These only apply when loading the first image, explained below. 1539 DCHECK(!dalvik_cache.empty()); 1540 std::string local_error_msg; 1541 // All secondary images are verified when the primary image is verified. 1542 bool verified = VerifyImage(image_location, dalvik_cache.c_str(), image_isa, &local_error_msg); 1543 // If we prune for space at a secondary image, we may end up in a crash loop with the _exit 1544 // path. 1545 bool check_space = CheckSpace(dalvik_cache, &local_error_msg); 1546 if (!verified || !check_space) { 1547 // Note: it is important to only prune for space on the primary image, or we will hit the 1548 // restart path. 1549 LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache."; 1550 PruneDalvikCache(image_isa); 1551 1552 // Re-evaluate the image. 1553 found_image = FindImageFilenameImpl(image_location, 1554 image_isa, 1555 &has_system, 1556 &system_filename, 1557 &dalvik_cache_exists, 1558 &dalvik_cache, 1559 &is_global_cache, 1560 &has_cache, 1561 &cache_filename); 1562 } 1563 if (!check_space) { 1564 // Disable compilation/patching - we do not want to fill up the space again. 1565 dex2oat_enabled = false; 1566 } 1567 } 1568 1569 // Collect all the errors. 1570 std::vector<std::string> error_msgs; 1571 1572 // Step 1: Check if we have an existing and relocated image. 1573 1574 // Step 1.a: Have files in system and cache. Then they need to match. 1575 if (found_image && has_system && has_cache) { 1576 std::string local_error_msg; 1577 // Check that the files are matching. 1578 if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str(), &local_error_msg)) { 1579 std::unique_ptr<ImageSpace> relocated_space = 1580 ImageSpaceLoader::Load(image_location, 1581 cache_filename, 1582 is_zygote, 1583 is_global_cache, 1584 /* validate_oat_file */ false, 1585 &local_error_msg); 1586 if (relocated_space != nullptr) { 1587 return relocated_space; 1588 } 1589 } 1590 error_msgs.push_back(local_error_msg); 1591 } 1592 1593 // Step 1.b: Only have a cache file. 1594 if (found_image && !has_system && has_cache) { 1595 std::string local_error_msg; 1596 std::unique_ptr<ImageSpace> cache_space = 1597 ImageSpaceLoader::Load(image_location, 1598 cache_filename, 1599 is_zygote, 1600 is_global_cache, 1601 /* validate_oat_file */ true, 1602 &local_error_msg); 1603 if (cache_space != nullptr) { 1604 return cache_space; 1605 } 1606 error_msgs.push_back(local_error_msg); 1607 } 1608 1609 // Step 2: We have an existing image in /system. 1610 1611 // Step 2.a: We are not required to relocate it. Then we can use it directly. 1612 bool relocate = Runtime::Current()->ShouldRelocate(); 1613 1614 if (found_image && has_system && !relocate) { 1615 std::string local_error_msg; 1616 std::unique_ptr<ImageSpace> system_space = 1617 ImageSpaceLoader::Load(image_location, 1618 system_filename, 1619 is_zygote, 1620 is_global_cache, 1621 /* validate_oat_file */ false, 1622 &local_error_msg); 1623 if (system_space != nullptr) { 1624 return system_space; 1625 } 1626 error_msgs.push_back(local_error_msg); 1627 } 1628 1629 // Step 2.b: We require a relocated image. Then we must patch it. This step fails if this is a 1630 // secondary image. 1631 if (found_image && has_system && relocate) { 1632 std::string local_error_msg; 1633 if (!dex2oat_enabled) { 1634 local_error_msg = "Patching disabled."; 1635 } else if (secondary_image) { 1636 // We really want a working image. Prune and restart. 1637 PruneDalvikCache(image_isa); 1638 _exit(1); 1639 } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) { 1640 bool patch_success = 1641 RelocateImage(image_location, dalvik_cache.c_str(), image_isa, &local_error_msg); 1642 if (patch_success) { 1643 std::unique_ptr<ImageSpace> patched_space = 1644 ImageSpaceLoader::Load(image_location, 1645 cache_filename, 1646 is_zygote, 1647 is_global_cache, 1648 /* validate_oat_file */ false, 1649 &local_error_msg); 1650 if (patched_space != nullptr) { 1651 return patched_space; 1652 } 1653 } 1654 } 1655 error_msgs.push_back(StringPrintf("Cannot relocate image %s to %s: %s", 1656 image_location, 1657 cache_filename.c_str(), 1658 local_error_msg.c_str())); 1659 } 1660 1661 // Step 3: We do not have an existing image in /system, so generate an image into the dalvik 1662 // cache. This step fails if this is a secondary image. 1663 if (!has_system) { 1664 std::string local_error_msg; 1665 if (!dex2oat_enabled) { 1666 local_error_msg = "Image compilation disabled."; 1667 } else if (secondary_image) { 1668 local_error_msg = "Cannot compile a secondary image."; 1669 } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) { 1670 bool compilation_success = GenerateImage(cache_filename, image_isa, &local_error_msg); 1671 if (compilation_success) { 1672 std::unique_ptr<ImageSpace> compiled_space = 1673 ImageSpaceLoader::Load(image_location, 1674 cache_filename, 1675 is_zygote, 1676 is_global_cache, 1677 /* validate_oat_file */ false, 1678 &local_error_msg); 1679 if (compiled_space != nullptr) { 1680 return compiled_space; 1681 } 1682 } 1683 } 1684 error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s", 1685 cache_filename.c_str(), 1686 local_error_msg.c_str())); 1687 } 1688 1689 // We failed. Prune the cache the free up space, create a compound error message and return no 1690 // image. 1691 PruneDalvikCache(image_isa); 1692 1693 std::ostringstream oss; 1694 bool first = true; 1695 for (const auto& msg : error_msgs) { 1696 if (!first) { 1697 oss << "\n "; 1698 } 1699 oss << msg; 1700 } 1701 *error_msg = oss.str(); 1702 1703 return nullptr; 1704 } 1705 1706 bool ImageSpace::LoadBootImage(const std::string& image_file_name, 1707 const InstructionSet image_instruction_set, 1708 std::vector<space::ImageSpace*>* boot_image_spaces, 1709 uint8_t** oat_file_end) { 1710 DCHECK(boot_image_spaces != nullptr); 1711 DCHECK(boot_image_spaces->empty()); 1712 DCHECK(oat_file_end != nullptr); 1713 DCHECK_NE(image_instruction_set, InstructionSet::kNone); 1714 1715 if (image_file_name.empty()) { 1716 return false; 1717 } 1718 1719 // For code reuse, handle this like a work queue. 1720 std::vector<std::string> image_file_names; 1721 image_file_names.push_back(image_file_name); 1722 1723 bool error = false; 1724 uint8_t* oat_file_end_tmp = *oat_file_end; 1725 1726 for (size_t index = 0; index < image_file_names.size(); ++index) { 1727 std::string& image_name = image_file_names[index]; 1728 std::string error_msg; 1729 std::unique_ptr<space::ImageSpace> boot_image_space_uptr = CreateBootImage( 1730 image_name.c_str(), 1731 image_instruction_set, 1732 index > 0, 1733 &error_msg); 1734 if (boot_image_space_uptr != nullptr) { 1735 space::ImageSpace* boot_image_space = boot_image_space_uptr.release(); 1736 boot_image_spaces->push_back(boot_image_space); 1737 // Oat files referenced by image files immediately follow them in memory, ensure alloc space 1738 // isn't going to get in the middle 1739 uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd(); 1740 CHECK_GT(oat_file_end_addr, boot_image_space->End()); 1741 oat_file_end_tmp = AlignUp(oat_file_end_addr, kPageSize); 1742 1743 if (index == 0) { 1744 // If this was the first space, check whether there are more images to load. 1745 const OatFile* boot_oat_file = boot_image_space->GetOatFile(); 1746 if (boot_oat_file == nullptr) { 1747 continue; 1748 } 1749 1750 const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader(); 1751 const char* boot_classpath = 1752 boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey); 1753 if (boot_classpath == nullptr) { 1754 continue; 1755 } 1756 1757 ExtractMultiImageLocations(image_file_name, boot_classpath, &image_file_names); 1758 } 1759 } else { 1760 error = true; 1761 LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. " 1762 << "Attempting to fall back to imageless running. Error was: " << error_msg 1763 << "\nAttempted image: " << image_name; 1764 break; 1765 } 1766 } 1767 1768 if (error) { 1769 // Remove already loaded spaces. 1770 for (space::Space* loaded_space : *boot_image_spaces) { 1771 delete loaded_space; 1772 } 1773 boot_image_spaces->clear(); 1774 return false; 1775 } 1776 1777 *oat_file_end = oat_file_end_tmp; 1778 return true; 1779 } 1780 1781 ImageSpace::~ImageSpace() { 1782 Runtime* runtime = Runtime::Current(); 1783 if (runtime == nullptr) { 1784 return; 1785 } 1786 1787 if (GetImageHeader().IsAppImage()) { 1788 // This image space did not modify resolution method then in Init. 1789 return; 1790 } 1791 1792 if (!runtime->HasResolutionMethod()) { 1793 // Another image space has already unloaded the below methods. 1794 return; 1795 } 1796 1797 runtime->ClearInstructionSet(); 1798 runtime->ClearResolutionMethod(); 1799 runtime->ClearImtConflictMethod(); 1800 runtime->ClearImtUnimplementedMethod(); 1801 runtime->ClearCalleeSaveMethods(); 1802 } 1803 1804 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image, 1805 const OatFile* oat_file, 1806 std::string* error_msg) { 1807 return ImageSpaceLoader::Init(image, 1808 image, 1809 /*validate_oat_file*/false, 1810 oat_file, 1811 /*out*/error_msg); 1812 } 1813 1814 const OatFile* ImageSpace::GetOatFile() const { 1815 return oat_file_non_owned_; 1816 } 1817 1818 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() { 1819 CHECK(oat_file_ != nullptr); 1820 return std::move(oat_file_); 1821 } 1822 1823 void ImageSpace::Dump(std::ostream& os) const { 1824 os << GetType() 1825 << " begin=" << reinterpret_cast<void*>(Begin()) 1826 << ",end=" << reinterpret_cast<void*>(End()) 1827 << ",size=" << PrettySize(Size()) 1828 << ",name=\"" << GetName() << "\"]"; 1829 } 1830 1831 std::string ImageSpace::GetMultiImageBootClassPath( 1832 const std::vector<const char*>& dex_locations, 1833 const std::vector<const char*>& oat_filenames, 1834 const std::vector<const char*>& image_filenames) { 1835 DCHECK_GT(oat_filenames.size(), 1u); 1836 // If the image filename was adapted (e.g., for our tests), we need to change this here, 1837 // too, but need to strip all path components (they will be re-established when loading). 1838 std::ostringstream bootcp_oss; 1839 bool first_bootcp = true; 1840 for (size_t i = 0; i < dex_locations.size(); ++i) { 1841 if (!first_bootcp) { 1842 bootcp_oss << ":"; 1843 } 1844 1845 std::string dex_loc = dex_locations[i]; 1846 std::string image_filename = image_filenames[i]; 1847 1848 // Use the dex_loc path, but the image_filename name (without path elements). 1849 size_t dex_last_slash = dex_loc.rfind('/'); 1850 1851 // npos is max(size_t). That makes this a bit ugly. 1852 size_t image_last_slash = image_filename.rfind('/'); 1853 size_t image_last_at = image_filename.rfind('@'); 1854 size_t image_last_sep = (image_last_slash == std::string::npos) 1855 ? image_last_at 1856 : (image_last_at == std::string::npos) 1857 ? std::string::npos 1858 : std::max(image_last_slash, image_last_at); 1859 // Note: whenever image_last_sep == npos, +1 overflow means using the full string. 1860 1861 if (dex_last_slash == std::string::npos) { 1862 dex_loc = image_filename.substr(image_last_sep + 1); 1863 } else { 1864 dex_loc = dex_loc.substr(0, dex_last_slash + 1) + 1865 image_filename.substr(image_last_sep + 1); 1866 } 1867 1868 // Image filenames already end with .art, no need to replace. 1869 1870 bootcp_oss << dex_loc; 1871 first_bootcp = false; 1872 } 1873 return bootcp_oss.str(); 1874 } 1875 1876 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) { 1877 const ArtDexFileLoader dex_file_loader; 1878 for (const OatFile::OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) { 1879 const std::string& dex_file_location = oat_dex_file->GetDexFileLocation(); 1880 1881 // Skip multidex locations - These will be checked when we visit their 1882 // corresponding primary non-multidex location. 1883 if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) { 1884 continue; 1885 } 1886 1887 std::vector<uint32_t> checksums; 1888 if (!dex_file_loader.GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) { 1889 *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' " 1890 "referenced by oat file %s: %s", 1891 dex_file_location.c_str(), 1892 oat_file.GetLocation().c_str(), 1893 error_msg->c_str()); 1894 return false; 1895 } 1896 CHECK(!checksums.empty()); 1897 if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) { 1898 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " 1899 "'%s' and dex file '%s' (0x%x != 0x%x)", 1900 oat_file.GetLocation().c_str(), 1901 dex_file_location.c_str(), 1902 oat_dex_file->GetDexFileLocationChecksum(), 1903 checksums[0]); 1904 return false; 1905 } 1906 1907 // Verify checksums for any related multidex entries. 1908 for (size_t i = 1; i < checksums.size(); i++) { 1909 std::string multi_dex_location = DexFileLoader::GetMultiDexLocation( 1910 i, 1911 dex_file_location.c_str()); 1912 const OatFile::OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(), 1913 nullptr, 1914 error_msg); 1915 if (multi_dex == nullptr) { 1916 *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'", 1917 oat_file.GetLocation().c_str(), 1918 multi_dex_location.c_str()); 1919 return false; 1920 } 1921 1922 if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) { 1923 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " 1924 "'%s' and dex file '%s' (0x%x != 0x%x)", 1925 oat_file.GetLocation().c_str(), 1926 multi_dex_location.c_str(), 1927 multi_dex->GetDexFileLocationChecksum(), 1928 checksums[i]); 1929 return false; 1930 } 1931 } 1932 } 1933 return true; 1934 } 1935 1936 void ImageSpace::ExtractMultiImageLocations(const std::string& input_image_file_name, 1937 const std::string& boot_classpath, 1938 std::vector<std::string>* image_file_names) { 1939 DCHECK(image_file_names != nullptr); 1940 1941 std::vector<std::string> images; 1942 Split(boot_classpath, ':', &images); 1943 1944 // Add the rest into the list. We have to adjust locations, possibly: 1945 // 1946 // For example, image_file_name is /a/b/c/d/e.art 1947 // images[0] is f/c/d/e.art 1948 // ---------------------------------------------- 1949 // images[1] is g/h/i/j.art -> /a/b/h/i/j.art 1950 const std::string& first_image = images[0]; 1951 // Length of common suffix. 1952 size_t common = 0; 1953 while (common < input_image_file_name.size() && 1954 common < first_image.size() && 1955 *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) { 1956 ++common; 1957 } 1958 // We want to replace the prefix of the input image with the prefix of the boot class path. 1959 // This handles the case where the image file contains @ separators. 1960 // Example image_file_name is oats/system@framework (at) boot.art 1961 // images[0] is .../arm/boot.art 1962 // means that the image name prefix will be oats/system@framework@ 1963 // so that the other images are openable. 1964 const size_t old_prefix_length = first_image.size() - common; 1965 const std::string new_prefix = input_image_file_name.substr( 1966 0, 1967 input_image_file_name.size() - common); 1968 1969 // Apply pattern to images[1] .. images[n]. 1970 for (size_t i = 1; i < images.size(); ++i) { 1971 const std::string& image = images[i]; 1972 CHECK_GT(image.length(), old_prefix_length); 1973 std::string suffix = image.substr(old_prefix_length); 1974 image_file_names->push_back(new_prefix + suffix); 1975 } 1976 } 1977 1978 void ImageSpace::DumpSections(std::ostream& os) const { 1979 const uint8_t* base = Begin(); 1980 const ImageHeader& header = GetImageHeader(); 1981 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { 1982 auto section_type = static_cast<ImageHeader::ImageSections>(i); 1983 const ImageSection& section = header.GetImageSection(section_type); 1984 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset()) 1985 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n"; 1986 } 1987 } 1988 1989 } // namespace space 1990 } // namespace gc 1991 } // namespace art 1992