Home | History | Annotate | Download | only in space
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "image_space.h"
     18 
     19 #include <lz4.h>
     20 #include <sys/statvfs.h>
     21 #include <sys/types.h>
     22 #include <unistd.h>
     23 
     24 #include <random>
     25 
     26 #include "android-base/stringprintf.h"
     27 #include "android-base/strings.h"
     28 
     29 #include "art_field-inl.h"
     30 #include "art_method-inl.h"
     31 #include "base/callee_save_type.h"
     32 #include "base/enums.h"
     33 #include "base/file_utils.h"
     34 #include "base/macros.h"
     35 #include "base/os.h"
     36 #include "base/scoped_flock.h"
     37 #include "base/stl_util.h"
     38 #include "base/systrace.h"
     39 #include "base/time_utils.h"
     40 #include "base/utils.h"
     41 #include "dex/art_dex_file_loader.h"
     42 #include "dex/dex_file_loader.h"
     43 #include "exec_utils.h"
     44 #include "gc/accounting/space_bitmap-inl.h"
     45 #include "image-inl.h"
     46 #include "image_space_fs.h"
     47 #include "mirror/class-inl.h"
     48 #include "mirror/object-inl.h"
     49 #include "mirror/object-refvisitor-inl.h"
     50 #include "oat_file.h"
     51 #include "runtime.h"
     52 #include "space-inl.h"
     53 
     54 namespace art {
     55 namespace gc {
     56 namespace space {
     57 
     58 using android::base::StringAppendF;
     59 using android::base::StringPrintf;
     60 
     61 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
     62 
     63 ImageSpace::ImageSpace(const std::string& image_filename,
     64                        const char* image_location,
     65                        MemMap* mem_map,
     66                        accounting::ContinuousSpaceBitmap* live_bitmap,
     67                        uint8_t* end)
     68     : MemMapSpace(image_filename,
     69                   mem_map,
     70                   mem_map->Begin(),
     71                   end,
     72                   end,
     73                   kGcRetentionPolicyNeverCollect),
     74       oat_file_non_owned_(nullptr),
     75       image_location_(image_location) {
     76   DCHECK(live_bitmap != nullptr);
     77   live_bitmap_.reset(live_bitmap);
     78 }
     79 
     80 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
     81   CHECK_ALIGNED(min_delta, kPageSize);
     82   CHECK_ALIGNED(max_delta, kPageSize);
     83   CHECK_LT(min_delta, max_delta);
     84 
     85   int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
     86   if (r % 2 == 0) {
     87     r = RoundUp(r, kPageSize);
     88   } else {
     89     r = RoundDown(r, kPageSize);
     90   }
     91   CHECK_LE(min_delta, r);
     92   CHECK_GE(max_delta, r);
     93   CHECK_ALIGNED(r, kPageSize);
     94   return r;
     95 }
     96 
     97 static int32_t ChooseRelocationOffsetDelta() {
     98   return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
     99 }
    100 
    101 static bool GenerateImage(const std::string& image_filename,
    102                           InstructionSet image_isa,
    103                           std::string* error_msg) {
    104   const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
    105   std::vector<std::string> boot_class_path;
    106   Split(boot_class_path_string, ':', &boot_class_path);
    107   if (boot_class_path.empty()) {
    108     *error_msg = "Failed to generate image because no boot class path specified";
    109     return false;
    110   }
    111   // We should clean up so we are more likely to have room for the image.
    112   if (Runtime::Current()->IsZygote()) {
    113     LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
    114     PruneDalvikCache(image_isa);
    115   }
    116 
    117   std::vector<std::string> arg_vector;
    118 
    119   std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
    120   arg_vector.push_back(dex2oat);
    121 
    122   std::string image_option_string("--image=");
    123   image_option_string += image_filename;
    124   arg_vector.push_back(image_option_string);
    125 
    126   for (size_t i = 0; i < boot_class_path.size(); i++) {
    127     arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
    128   }
    129 
    130   std::string oat_file_option_string("--oat-file=");
    131   oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
    132   arg_vector.push_back(oat_file_option_string);
    133 
    134   // Note: we do not generate a fully debuggable boot image so we do not pass the
    135   // compiler flag --debuggable here.
    136 
    137   Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
    138   CHECK_EQ(image_isa, kRuntimeISA)
    139       << "We should always be generating an image for the current isa.";
    140 
    141   int32_t base_offset = ChooseRelocationOffsetDelta();
    142   LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
    143             << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
    144   arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
    145 
    146   if (!kIsTargetBuild) {
    147     arg_vector.push_back("--host");
    148   }
    149 
    150   const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
    151   for (size_t i = 0; i < compiler_options.size(); ++i) {
    152     arg_vector.push_back(compiler_options[i].c_str());
    153   }
    154 
    155   std::string command_line(android::base::Join(arg_vector, ' '));
    156   LOG(INFO) << "GenerateImage: " << command_line;
    157   return Exec(arg_vector, error_msg);
    158 }
    159 
    160 static bool FindImageFilenameImpl(const char* image_location,
    161                                   const InstructionSet image_isa,
    162                                   bool* has_system,
    163                                   std::string* system_filename,
    164                                   bool* dalvik_cache_exists,
    165                                   std::string* dalvik_cache,
    166                                   bool* is_global_cache,
    167                                   bool* has_cache,
    168                                   std::string* cache_filename) {
    169   DCHECK(dalvik_cache != nullptr);
    170 
    171   *has_system = false;
    172   *has_cache = false;
    173   // image_location = /system/framework/boot.art
    174   // system_image_location = /system/framework/<image_isa>/boot.art
    175   std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
    176   if (OS::FileExists(system_image_filename.c_str())) {
    177     *system_filename = system_image_filename;
    178     *has_system = true;
    179   }
    180 
    181   bool have_android_data = false;
    182   *dalvik_cache_exists = false;
    183   GetDalvikCache(GetInstructionSetString(image_isa),
    184                  true,
    185                  dalvik_cache,
    186                  &have_android_data,
    187                  dalvik_cache_exists,
    188                  is_global_cache);
    189 
    190   if (have_android_data && *dalvik_cache_exists) {
    191     // Always set output location even if it does not exist,
    192     // so that the caller knows where to create the image.
    193     //
    194     // image_location = /system/framework/boot.art
    195     // *image_filename = /data/dalvik-cache/<image_isa>/boot.art
    196     std::string error_msg;
    197     if (!GetDalvikCacheFilename(image_location,
    198                                 dalvik_cache->c_str(),
    199                                 cache_filename,
    200                                 &error_msg)) {
    201       LOG(WARNING) << error_msg;
    202       return *has_system;
    203     }
    204     *has_cache = OS::FileExists(cache_filename->c_str());
    205   }
    206   return *has_system || *has_cache;
    207 }
    208 
    209 bool ImageSpace::FindImageFilename(const char* image_location,
    210                                    const InstructionSet image_isa,
    211                                    std::string* system_filename,
    212                                    bool* has_system,
    213                                    std::string* cache_filename,
    214                                    bool* dalvik_cache_exists,
    215                                    bool* has_cache,
    216                                    bool* is_global_cache) {
    217   std::string dalvik_cache_unused;
    218   return FindImageFilenameImpl(image_location,
    219                                image_isa,
    220                                has_system,
    221                                system_filename,
    222                                dalvik_cache_exists,
    223                                &dalvik_cache_unused,
    224                                is_global_cache,
    225                                has_cache,
    226                                cache_filename);
    227 }
    228 
    229 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
    230     std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
    231     if (image_file.get() == nullptr) {
    232       return false;
    233     }
    234     const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
    235     if (!success || !image_header->IsValid()) {
    236       return false;
    237     }
    238     return true;
    239 }
    240 
    241 // Relocate the image at image_location to dest_filename and relocate it by a random amount.
    242 static bool RelocateImage(const char* image_location,
    243                           const char* dest_directory,
    244                           InstructionSet isa,
    245                           std::string* error_msg) {
    246   // We should clean up so we are more likely to have room for the image.
    247   if (Runtime::Current()->IsZygote()) {
    248     LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
    249     PruneDalvikCache(isa);
    250   }
    251 
    252   std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
    253 
    254   std::string input_image_location_arg("--input-image-location=");
    255   input_image_location_arg += image_location;
    256 
    257   std::string output_image_directory_arg("--output-image-directory=");
    258   output_image_directory_arg += dest_directory;
    259 
    260   std::string instruction_set_arg("--instruction-set=");
    261   instruction_set_arg += GetInstructionSetString(isa);
    262 
    263   std::string base_offset_arg("--base-offset-delta=");
    264   StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta());
    265 
    266   std::vector<std::string> argv;
    267   argv.push_back(patchoat);
    268 
    269   argv.push_back(input_image_location_arg);
    270   argv.push_back(output_image_directory_arg);
    271 
    272   argv.push_back(instruction_set_arg);
    273   argv.push_back(base_offset_arg);
    274 
    275   std::string command_line(android::base::Join(argv, ' '));
    276   LOG(INFO) << "RelocateImage: " << command_line;
    277   return Exec(argv, error_msg);
    278 }
    279 
    280 static bool VerifyImage(const char* image_location,
    281                         const char* dest_directory,
    282                         InstructionSet isa,
    283                         std::string* error_msg) {
    284   std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
    285 
    286   std::string input_image_location_arg("--input-image-location=");
    287   input_image_location_arg += image_location;
    288 
    289   std::string output_image_directory_arg("--output-image-directory=");
    290   output_image_directory_arg += dest_directory;
    291 
    292   std::string instruction_set_arg("--instruction-set=");
    293   instruction_set_arg += GetInstructionSetString(isa);
    294 
    295   std::vector<std::string> argv;
    296   argv.push_back(patchoat);
    297 
    298   argv.push_back(input_image_location_arg);
    299   argv.push_back(output_image_directory_arg);
    300 
    301   argv.push_back(instruction_set_arg);
    302 
    303   argv.push_back("--verify");
    304 
    305   std::string command_line(android::base::Join(argv, ' '));
    306   LOG(INFO) << "VerifyImage: " << command_line;
    307   return Exec(argv, error_msg);
    308 }
    309 
    310 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
    311   std::unique_ptr<ImageHeader> hdr(new ImageHeader);
    312   if (!ReadSpecificImageHeader(filename, hdr.get())) {
    313     *error_msg = StringPrintf("Unable to read image header for %s", filename);
    314     return nullptr;
    315   }
    316   return hdr.release();
    317 }
    318 
    319 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
    320                                          const InstructionSet image_isa,
    321                                          std::string* error_msg) {
    322   std::string system_filename;
    323   bool has_system = false;
    324   std::string cache_filename;
    325   bool has_cache = false;
    326   bool dalvik_cache_exists = false;
    327   bool is_global_cache = false;
    328   if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
    329                         &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
    330     if (Runtime::Current()->ShouldRelocate()) {
    331       if (has_system && has_cache) {
    332         std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
    333         std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
    334         if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
    335           *error_msg = StringPrintf("Unable to read image header for %s at %s",
    336                                     image_location, system_filename.c_str());
    337           return nullptr;
    338         }
    339         if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
    340           *error_msg = StringPrintf("Unable to read image header for %s at %s",
    341                                     image_location, cache_filename.c_str());
    342           return nullptr;
    343         }
    344         if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
    345           *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
    346                                     image_location);
    347           return nullptr;
    348         }
    349         return cache_hdr.release();
    350       } else if (!has_cache) {
    351         *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
    352                                   image_location);
    353         return nullptr;
    354       } else if (!has_system && has_cache) {
    355         // This can probably just use the cache one.
    356         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
    357       }
    358     } else {
    359       // We don't want to relocate, Just pick the appropriate one if we have it and return.
    360       if (has_system && has_cache) {
    361         // We want the cache if the checksum matches, otherwise the system.
    362         std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
    363                                                                     error_msg));
    364         std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
    365                                                                    error_msg));
    366         if (system.get() == nullptr ||
    367             (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
    368           return cache.release();
    369         } else {
    370           return system.release();
    371         }
    372       } else if (has_system) {
    373         return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
    374       } else if (has_cache) {
    375         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
    376       }
    377     }
    378   }
    379 
    380   *error_msg = StringPrintf("Unable to find image file for %s", image_location);
    381   return nullptr;
    382 }
    383 
    384 static bool ChecksumsMatch(const char* image_a, const char* image_b, std::string* error_msg) {
    385   DCHECK(error_msg != nullptr);
    386 
    387   ImageHeader hdr_a;
    388   ImageHeader hdr_b;
    389 
    390   if (!ReadSpecificImageHeader(image_a, &hdr_a)) {
    391     *error_msg = StringPrintf("Cannot read header of %s", image_a);
    392     return false;
    393   }
    394   if (!ReadSpecificImageHeader(image_b, &hdr_b)) {
    395     *error_msg = StringPrintf("Cannot read header of %s", image_b);
    396     return false;
    397   }
    398 
    399   if (hdr_a.GetOatChecksum() != hdr_b.GetOatChecksum()) {
    400     *error_msg = StringPrintf("Checksum mismatch: %u(%s) vs %u(%s)",
    401                               hdr_a.GetOatChecksum(),
    402                               image_a,
    403                               hdr_b.GetOatChecksum(),
    404                               image_b);
    405     return false;
    406   }
    407 
    408   return true;
    409 }
    410 
    411 static bool CanWriteToDalvikCache(const InstructionSet isa) {
    412   const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa));
    413   if (access(dalvik_cache.c_str(), O_RDWR) == 0) {
    414     return true;
    415   } else if (errno != EACCES) {
    416     PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES";
    417   }
    418   return false;
    419 }
    420 
    421 static bool ImageCreationAllowed(bool is_global_cache,
    422                                  const InstructionSet isa,
    423                                  std::string* error_msg) {
    424   // Anyone can write into a "local" cache.
    425   if (!is_global_cache) {
    426     return true;
    427   }
    428 
    429   // Only the zygote running as root is allowed to create the global boot image.
    430   // If the zygote is running as non-root (and cannot write to the dalvik-cache),
    431   // then image creation is not allowed..
    432   if (Runtime::Current()->IsZygote()) {
    433     return CanWriteToDalvikCache(isa);
    434   }
    435 
    436   *error_msg = "Only the zygote can create the global boot image.";
    437   return false;
    438 }
    439 
    440 void ImageSpace::VerifyImageAllocations() {
    441   uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
    442   while (current < End()) {
    443     CHECK_ALIGNED(current, kObjectAlignment);
    444     auto* obj = reinterpret_cast<mirror::Object*>(current);
    445     CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
    446     CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf();
    447     if (kUseBakerReadBarrier) {
    448       obj->AssertReadBarrierState();
    449     }
    450     current += RoundUp(obj->SizeOf(), kObjectAlignment);
    451   }
    452 }
    453 
    454 // Helper class for relocating from one range of memory to another.
    455 class RelocationRange {
    456  public:
    457   RelocationRange() = default;
    458   RelocationRange(const RelocationRange&) = default;
    459   RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
    460       : source_(source),
    461         dest_(dest),
    462         length_(length) {}
    463 
    464   bool InSource(uintptr_t address) const {
    465     return address - source_ < length_;
    466   }
    467 
    468   bool InDest(uintptr_t address) const {
    469     return address - dest_ < length_;
    470   }
    471 
    472   // Translate a source address to the destination space.
    473   uintptr_t ToDest(uintptr_t address) const {
    474     DCHECK(InSource(address));
    475     return address + Delta();
    476   }
    477 
    478   // Returns the delta between the dest from the source.
    479   uintptr_t Delta() const {
    480     return dest_ - source_;
    481   }
    482 
    483   uintptr_t Source() const {
    484     return source_;
    485   }
    486 
    487   uintptr_t Dest() const {
    488     return dest_;
    489   }
    490 
    491   uintptr_t Length() const {
    492     return length_;
    493   }
    494 
    495  private:
    496   const uintptr_t source_;
    497   const uintptr_t dest_;
    498   const uintptr_t length_;
    499 };
    500 
    501 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
    502   return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
    503             << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
    504             << reinterpret_cast<const void*>(reloc.Dest()) << "-"
    505             << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
    506 }
    507 
    508 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
    509 // friend class), but not declare functions in the header.
    510 class ImageSpaceLoader {
    511  public:
    512   static std::unique_ptr<ImageSpace> Load(const char* image_location,
    513                                           const std::string& image_filename,
    514                                           bool is_zygote,
    515                                           bool is_global_cache,
    516                                           bool validate_oat_file,
    517                                           std::string* error_msg)
    518       REQUIRES_SHARED(Locks::mutator_lock_) {
    519     // Should this be a RDWR lock? This is only a defensive measure, as at
    520     // this point the image should exist.
    521     // However, only the zygote can write into the global dalvik-cache, so
    522     // restrict to zygote processes, or any process that isn't using
    523     // /data/dalvik-cache (which we assume to be allowed to write there).
    524     const bool rw_lock = is_zygote || !is_global_cache;
    525 
    526     // Note that we must not use the file descriptor associated with
    527     // ScopedFlock::GetFile to Init the image file. We want the file
    528     // descriptor (and the associated exclusive lock) to be released when
    529     // we leave Create.
    530     ScopedFlock image = LockedFile::Open(image_filename.c_str(),
    531                                          rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
    532                                          true /* block */,
    533                                          error_msg);
    534 
    535     VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
    536                   << image_location;
    537     // If we are in /system we can assume the image is good. We can also
    538     // assume this if we are using a relocated image (i.e. image checksum
    539     // matches) since this is only different by the offset. We need this to
    540     // make sure that host tests continue to work.
    541     // Since we are the boot image, pass null since we load the oat file from the boot image oat
    542     // file name.
    543     return Init(image_filename.c_str(),
    544                 image_location,
    545                 validate_oat_file,
    546                 /* oat_file */nullptr,
    547                 error_msg);
    548   }
    549 
    550   static std::unique_ptr<ImageSpace> Init(const char* image_filename,
    551                                           const char* image_location,
    552                                           bool validate_oat_file,
    553                                           const OatFile* oat_file,
    554                                           std::string* error_msg)
    555       REQUIRES_SHARED(Locks::mutator_lock_) {
    556     CHECK(image_filename != nullptr);
    557     CHECK(image_location != nullptr);
    558 
    559     TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
    560     VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
    561 
    562     std::unique_ptr<File> file;
    563     {
    564       TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
    565       file.reset(OS::OpenFileForReading(image_filename));
    566       if (file == nullptr) {
    567         *error_msg = StringPrintf("Failed to open '%s'", image_filename);
    568         return nullptr;
    569       }
    570     }
    571     ImageHeader temp_image_header;
    572     ImageHeader* image_header = &temp_image_header;
    573     {
    574       TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
    575       bool success = file->ReadFully(image_header, sizeof(*image_header));
    576       if (!success || !image_header->IsValid()) {
    577         *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
    578         return nullptr;
    579       }
    580     }
    581     // Check that the file is larger or equal to the header size + data size.
    582     const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
    583     if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
    584       *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
    585                                 image_file_size,
    586                                 sizeof(ImageHeader) + image_header->GetDataSize());
    587       return nullptr;
    588     }
    589 
    590     if (oat_file != nullptr) {
    591       // If we have an oat file, check the oat file checksum. The oat file is only non-null for the
    592       // app image case. Otherwise, we open the oat file after the image and check the checksum there.
    593       const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
    594       const uint32_t image_oat_checksum = image_header->GetOatChecksum();
    595       if (oat_checksum != image_oat_checksum) {
    596         *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
    597                                   oat_checksum,
    598                                   image_oat_checksum,
    599                                   image_filename);
    600         return nullptr;
    601       }
    602     }
    603 
    604     if (VLOG_IS_ON(startup)) {
    605       LOG(INFO) << "Dumping image sections";
    606       for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
    607         const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
    608         auto& section = image_header->GetImageSection(section_idx);
    609         LOG(INFO) << section_idx << " start="
    610             << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
    611             << section;
    612       }
    613     }
    614 
    615     const auto& bitmap_section = image_header->GetImageBitmapSection();
    616     // The location we want to map from is the first aligned page after the end of the stored
    617     // (possibly compressed) data.
    618     const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
    619                                                kPageSize);
    620     const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
    621     if (end_of_bitmap != image_file_size) {
    622       *error_msg = StringPrintf(
    623           "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
    624           end_of_bitmap);
    625       return nullptr;
    626     }
    627 
    628     std::unique_ptr<MemMap> map;
    629 
    630     // GetImageBegin is the preferred address to map the image. If we manage to map the
    631     // image at the image begin, the amount of fixup work required is minimized.
    632     // If it is pic we will retry with error_msg for the failure case. Pass a null error_msg to
    633     // avoid reading proc maps for a mapping failure and slowing everything down.
    634     map.reset(LoadImageFile(image_filename,
    635                             image_location,
    636                             *image_header,
    637                             image_header->GetImageBegin(),
    638                             file->Fd(),
    639                             logger,
    640                             image_header->IsPic() ? nullptr : error_msg));
    641     // If the header specifies PIC mode, we can also map at a random low_4gb address since we can
    642     // relocate in-place.
    643     if (map == nullptr && image_header->IsPic()) {
    644       map.reset(LoadImageFile(image_filename,
    645                               image_location,
    646                               *image_header,
    647                               /* address */ nullptr,
    648                               file->Fd(),
    649                               logger,
    650                               error_msg));
    651     }
    652     // Were we able to load something and continue?
    653     if (map == nullptr) {
    654       DCHECK(!error_msg->empty());
    655       return nullptr;
    656     }
    657     DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));
    658 
    659     std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
    660                                                                       bitmap_section.Size(),
    661                                                                       PROT_READ, MAP_PRIVATE,
    662                                                                       file->Fd(),
    663                                                                       image_bitmap_offset,
    664                                                                       /*low_4gb*/false,
    665                                                                       /*reuse*/false,
    666                                                                       image_filename,
    667                                                                       error_msg));
    668     if (image_bitmap_map == nullptr) {
    669       *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
    670       return nullptr;
    671     }
    672     // Loaded the map, use the image header from the file now in case we patch it with
    673     // RelocateInPlace.
    674     image_header = reinterpret_cast<ImageHeader*>(map->Begin());
    675     const uint32_t bitmap_index = ImageSpace::bitmap_index_.FetchAndAddSequentiallyConsistent(1);
    676     std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
    677                                          image_filename,
    678                                          bitmap_index));
    679     // Bitmap only needs to cover until the end of the mirror objects section.
    680     const ImageSection& image_objects = image_header->GetObjectsSection();
    681     // We only want the mirror object, not the ArtFields and ArtMethods.
    682     uint8_t* const image_end = map->Begin() + image_objects.End();
    683     std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
    684     {
    685       TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
    686       bitmap.reset(
    687           accounting::ContinuousSpaceBitmap::CreateFromMemMap(
    688               bitmap_name,
    689               image_bitmap_map.release(),
    690               reinterpret_cast<uint8_t*>(map->Begin()),
    691               // Make sure the bitmap is aligned to card size instead of just bitmap word size.
    692               RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize)));
    693       if (bitmap == nullptr) {
    694         *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
    695         return nullptr;
    696       }
    697     }
    698     {
    699       TimingLogger::ScopedTiming timing("RelocateImage", &logger);
    700       if (!RelocateInPlace(*image_header,
    701                            map->Begin(),
    702                            bitmap.get(),
    703                            oat_file,
    704                            error_msg)) {
    705         return nullptr;
    706       }
    707     }
    708     // We only want the mirror object, not the ArtFields and ArtMethods.
    709     std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
    710                                                      image_location,
    711                                                      map.release(),
    712                                                      bitmap.release(),
    713                                                      image_end));
    714 
    715     // VerifyImageAllocations() will be called later in Runtime::Init()
    716     // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
    717     // and ArtField::java_lang_reflect_ArtField_, which are used from
    718     // Object::SizeOf() which VerifyImageAllocations() calls, are not
    719     // set yet at this point.
    720     if (oat_file == nullptr) {
    721       TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
    722       space->oat_file_ = OpenOatFile(*space, image_filename, error_msg);
    723       if (space->oat_file_ == nullptr) {
    724         DCHECK(!error_msg->empty());
    725         return nullptr;
    726       }
    727       space->oat_file_non_owned_ = space->oat_file_.get();
    728     } else {
    729       space->oat_file_non_owned_ = oat_file;
    730     }
    731 
    732     if (validate_oat_file) {
    733       TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
    734       CHECK(space->oat_file_ != nullptr);
    735       if (!ImageSpace::ValidateOatFile(*space->oat_file_, error_msg)) {
    736         DCHECK(!error_msg->empty());
    737         return nullptr;
    738       }
    739     }
    740 
    741     Runtime* runtime = Runtime::Current();
    742 
    743     // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
    744     // to set the runtime methods.
    745     CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
    746     if (image_header->IsAppImage()) {
    747       CHECK_EQ(runtime->GetResolutionMethod(),
    748                image_header->GetImageMethod(ImageHeader::kResolutionMethod));
    749       CHECK_EQ(runtime->GetImtConflictMethod(),
    750                image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
    751       CHECK_EQ(runtime->GetImtUnimplementedMethod(),
    752                image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
    753       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves),
    754                image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod));
    755       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly),
    756                image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod));
    757       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs),
    758                image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod));
    759       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything),
    760                image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod));
    761       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit),
    762                image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit));
    763       CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck),
    764                image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck));
    765     } else if (!runtime->HasResolutionMethod()) {
    766       runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
    767       runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
    768       runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
    769       runtime->SetImtUnimplementedMethod(
    770           image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
    771       runtime->SetCalleeSaveMethod(
    772           image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod),
    773           CalleeSaveType::kSaveAllCalleeSaves);
    774       runtime->SetCalleeSaveMethod(
    775           image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod),
    776           CalleeSaveType::kSaveRefsOnly);
    777       runtime->SetCalleeSaveMethod(
    778           image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod),
    779           CalleeSaveType::kSaveRefsAndArgs);
    780       runtime->SetCalleeSaveMethod(
    781           image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod),
    782           CalleeSaveType::kSaveEverything);
    783       runtime->SetCalleeSaveMethod(
    784           image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit),
    785           CalleeSaveType::kSaveEverythingForClinit);
    786       runtime->SetCalleeSaveMethod(
    787           image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck),
    788           CalleeSaveType::kSaveEverythingForSuspendCheck);
    789     }
    790 
    791     VLOG(image) << "ImageSpace::Init exiting " << *space.get();
    792     if (VLOG_IS_ON(image)) {
    793       logger.Dump(LOG_STREAM(INFO));
    794     }
    795     return space;
    796   }
    797 
    798  private:
    799   static MemMap* LoadImageFile(const char* image_filename,
    800                                const char* image_location,
    801                                const ImageHeader& image_header,
    802                                uint8_t* address,
    803                                int fd,
    804                                TimingLogger& logger,
    805                                std::string* error_msg) {
    806     TimingLogger::ScopedTiming timing("MapImageFile", &logger);
    807     const ImageHeader::StorageMode storage_mode = image_header.GetStorageMode();
    808     if (storage_mode == ImageHeader::kStorageModeUncompressed) {
    809       return MemMap::MapFileAtAddress(address,
    810                                       image_header.GetImageSize(),
    811                                       PROT_READ | PROT_WRITE,
    812                                       MAP_PRIVATE,
    813                                       fd,
    814                                       0,
    815                                       /*low_4gb*/true,
    816                                       /*reuse*/false,
    817                                       image_filename,
    818                                       error_msg);
    819     }
    820 
    821     if (storage_mode != ImageHeader::kStorageModeLZ4 &&
    822         storage_mode != ImageHeader::kStorageModeLZ4HC) {
    823       if (error_msg != nullptr) {
    824         *error_msg = StringPrintf("Invalid storage mode in image header %d",
    825                                   static_cast<int>(storage_mode));
    826       }
    827       return nullptr;
    828     }
    829 
    830     // Reserve output and decompress into it.
    831     std::unique_ptr<MemMap> map(MemMap::MapAnonymous(image_location,
    832                                                      address,
    833                                                      image_header.GetImageSize(),
    834                                                      PROT_READ | PROT_WRITE,
    835                                                      /*low_4gb*/true,
    836                                                      /*reuse*/false,
    837                                                      error_msg));
    838     if (map != nullptr) {
    839       const size_t stored_size = image_header.GetDataSize();
    840       const size_t decompress_offset = sizeof(ImageHeader);  // Skip the header.
    841       std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
    842                                                        PROT_READ,
    843                                                        MAP_PRIVATE,
    844                                                        fd,
    845                                                        /*offset*/0,
    846                                                        /*low_4gb*/false,
    847                                                        image_filename,
    848                                                        error_msg));
    849       if (temp_map == nullptr) {
    850         DCHECK(error_msg == nullptr || !error_msg->empty());
    851         return nullptr;
    852       }
    853       memcpy(map->Begin(), &image_header, sizeof(ImageHeader));
    854       const uint64_t start = NanoTime();
    855       // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
    856       TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
    857       const size_t decompressed_size = LZ4_decompress_safe(
    858           reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
    859           reinterpret_cast<char*>(map->Begin()) + decompress_offset,
    860           stored_size,
    861           map->Size() - decompress_offset);
    862       const uint64_t time = NanoTime() - start;
    863       // Add one 1 ns to prevent possible divide by 0.
    864       VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
    865                   << PrettySize(static_cast<uint64_t>(map->Size()) * MsToNs(1000) / (time + 1))
    866                   << "/s)";
    867       if (decompressed_size + sizeof(ImageHeader) != image_header.GetImageSize()) {
    868         if (error_msg != nullptr) {
    869           *error_msg = StringPrintf(
    870               "Decompressed size does not match expected image size %zu vs %zu",
    871               decompressed_size + sizeof(ImageHeader),
    872               image_header.GetImageSize());
    873         }
    874         return nullptr;
    875       }
    876     }
    877 
    878     return map.release();
    879   }
    880 
    881   class FixupVisitor : public ValueObject {
    882    public:
    883     FixupVisitor(const RelocationRange& boot_image,
    884                  const RelocationRange& boot_oat,
    885                  const RelocationRange& app_image,
    886                  const RelocationRange& app_oat)
    887         : boot_image_(boot_image),
    888           boot_oat_(boot_oat),
    889           app_image_(app_image),
    890           app_oat_(app_oat) {}
    891 
    892     // Return the relocated address of a heap object.
    893     template <typename T>
    894     ALWAYS_INLINE T* ForwardObject(T* src) const {
    895       const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
    896       if (boot_image_.InSource(uint_src)) {
    897         return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
    898       }
    899       if (app_image_.InSource(uint_src)) {
    900         return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
    901       }
    902       // Since we are fixing up the app image, there should only be pointers to the app image and
    903       // boot image.
    904       DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
    905       return src;
    906     }
    907 
    908     // Return the relocated address of a code pointer (contained by an oat file).
    909     ALWAYS_INLINE const void* ForwardCode(const void* src) const {
    910       const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
    911       if (boot_oat_.InSource(uint_src)) {
    912         return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
    913       }
    914       if (app_oat_.InSource(uint_src)) {
    915         return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
    916       }
    917       DCHECK(src == nullptr) << src;
    918       return src;
    919     }
    920 
    921     // Must be called on pointers that already have been relocated to the destination relocation.
    922     ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
    923       return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
    924     }
    925 
    926    protected:
    927     // Source section.
    928     const RelocationRange boot_image_;
    929     const RelocationRange boot_oat_;
    930     const RelocationRange app_image_;
    931     const RelocationRange app_oat_;
    932   };
    933 
    934   // Adapt for mirror::Class::FixupNativePointers.
    935   class FixupObjectAdapter : public FixupVisitor {
    936    public:
    937     template<typename... Args>
    938     explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}
    939 
    940     template <typename T>
    941     T* operator()(T* obj, void** dest_addr ATTRIBUTE_UNUSED = nullptr) const {
    942       return ForwardObject(obj);
    943     }
    944   };
    945 
    946   class FixupRootVisitor : public FixupVisitor {
    947    public:
    948     template<typename... Args>
    949     explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}
    950 
    951     ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    952         REQUIRES_SHARED(Locks::mutator_lock_) {
    953       if (!root->IsNull()) {
    954         VisitRoot(root);
    955       }
    956     }
    957 
    958     ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    959         REQUIRES_SHARED(Locks::mutator_lock_) {
    960       mirror::Object* ref = root->AsMirrorPtr();
    961       mirror::Object* new_ref = ForwardObject(ref);
    962       if (ref != new_ref) {
    963         root->Assign(new_ref);
    964       }
    965     }
    966   };
    967 
    968   class FixupObjectVisitor : public FixupVisitor {
    969    public:
    970     template<typename... Args>
    971     explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
    972                                 const PointerSize pointer_size,
    973                                 Args... args)
    974         : FixupVisitor(args...),
    975           pointer_size_(pointer_size),
    976           visited_(visited) {}
    977 
    978     // Fix up separately since we also need to fix up method entrypoints.
    979     ALWAYS_INLINE void VisitRootIfNonNull(
    980         mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
    981 
    982     ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
    983         const {}
    984 
    985     ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
    986                                   MemberOffset offset,
    987                                   bool is_static ATTRIBUTE_UNUSED) const
    988         NO_THREAD_SAFETY_ANALYSIS {
    989       // There could be overlap between ranges, we must avoid visiting the same reference twice.
    990       // Avoid the class field since we already fixed it up in FixupClassVisitor.
    991       if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
    992         // Space is not yet added to the heap, don't do a read barrier.
    993         mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
    994             offset);
    995         // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
    996         // image.
    997         obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
    998       }
    999     }
   1000 
   1001     // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
   1002     // boot image. Uses the bitmap to ensure the same array is not visited multiple times.
   1003     template <typename Visitor>
   1004     void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
   1005         NO_THREAD_SAFETY_ANALYSIS {
   1006       DCHECK(array != nullptr);
   1007       DCHECK(visitor.IsInAppImage(array));
   1008       // The bit for the array contents is different than the bit for the array. Since we may have
   1009       // already visited the array as a long / int array from walking the bitmap without knowing it
   1010       // was a pointer array.
   1011       static_assert(kObjectAlignment == 8u, "array bit may be in another object");
   1012       mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
   1013           reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
   1014       // If the bit is not set then the contents have not yet been updated.
   1015       if (!visited_->Test(contents_bit)) {
   1016         array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
   1017         visited_->Set(contents_bit);
   1018       }
   1019     }
   1020 
   1021     // java.lang.ref.Reference visitor.
   1022     void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
   1023                     ObjPtr<mirror::Reference> ref) const
   1024         REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
   1025       mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
   1026       ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
   1027           mirror::Reference::ReferentOffset(),
   1028           ForwardObject(obj));
   1029     }
   1030 
   1031     void operator()(mirror::Object* obj) const
   1032         NO_THREAD_SAFETY_ANALYSIS {
   1033       if (visited_->Test(obj)) {
   1034         // Already visited.
   1035         return;
   1036       }
   1037       visited_->Set(obj);
   1038 
   1039       // Handle class specially first since we need it to be updated to properly visit the rest of
   1040       // the instance fields.
   1041       {
   1042         mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
   1043         DCHECK(klass != nullptr) << "Null class in image";
   1044         // No AsClass since our fields aren't quite fixed up yet.
   1045         mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
   1046         if (klass != new_klass) {
   1047           obj->SetClass<kVerifyNone>(new_klass);
   1048         }
   1049         if (new_klass != klass && IsInAppImage(new_klass)) {
   1050           // Make sure the klass contents are fixed up since we depend on it to walk the fields.
   1051           operator()(new_klass);
   1052         }
   1053       }
   1054 
   1055       if (obj->IsClass()) {
   1056         mirror::Class* klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
   1057         // Fixup super class before visiting instance fields which require
   1058         // information from their super class to calculate offsets.
   1059         mirror::Class* super_class = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
   1060         if (super_class != nullptr) {
   1061           mirror::Class* new_super_class = down_cast<mirror::Class*>(ForwardObject(super_class));
   1062           if (new_super_class != super_class && IsInAppImage(new_super_class)) {
   1063             // Recursively fix all dependencies.
   1064             operator()(new_super_class);
   1065           }
   1066         }
   1067       }
   1068 
   1069       obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
   1070           *this,
   1071           *this);
   1072       // Note that this code relies on no circular dependencies.
   1073       // We want to use our own class loader and not the one in the image.
   1074       if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
   1075         mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
   1076         FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
   1077         as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
   1078                                                                         pointer_size_,
   1079                                                                         visitor);
   1080         // Deal with the pointer arrays. Use the helper function since multiple classes can reference
   1081         // the same arrays.
   1082         mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
   1083         if (vtable != nullptr && IsInAppImage(vtable)) {
   1084           operator()(vtable);
   1085           UpdatePointerArrayContents(vtable, visitor);
   1086         }
   1087         mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
   1088         // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
   1089         // contents.
   1090         if (IsInAppImage(iftable)) {
   1091           operator()(iftable);
   1092           for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
   1093             if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
   1094               mirror::PointerArray* methods =
   1095                   iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
   1096               if (visitor.IsInAppImage(methods)) {
   1097                 operator()(methods);
   1098                 DCHECK(methods != nullptr);
   1099                 UpdatePointerArrayContents(methods, visitor);
   1100               }
   1101             }
   1102           }
   1103         }
   1104       }
   1105     }
   1106 
   1107    private:
   1108     const PointerSize pointer_size_;
   1109     gc::accounting::ContinuousSpaceBitmap* const visited_;
   1110   };
   1111 
   1112   class ForwardObjectAdapter {
   1113    public:
   1114     ALWAYS_INLINE explicit ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}
   1115 
   1116     template <typename T>
   1117     ALWAYS_INLINE T* operator()(T* src) const {
   1118       return visitor_->ForwardObject(src);
   1119     }
   1120 
   1121    private:
   1122     const FixupVisitor* const visitor_;
   1123   };
   1124 
   1125   class ForwardCodeAdapter {
   1126    public:
   1127     ALWAYS_INLINE explicit ForwardCodeAdapter(const FixupVisitor* visitor)
   1128         : visitor_(visitor) {}
   1129 
   1130     template <typename T>
   1131     ALWAYS_INLINE T* operator()(T* src) const {
   1132       return visitor_->ForwardCode(src);
   1133     }
   1134 
   1135    private:
   1136     const FixupVisitor* const visitor_;
   1137   };
   1138 
   1139   class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
   1140    public:
   1141     template<typename... Args>
   1142     explicit FixupArtMethodVisitor(bool fixup_heap_objects, PointerSize pointer_size, Args... args)
   1143         : FixupVisitor(args...),
   1144           fixup_heap_objects_(fixup_heap_objects),
   1145           pointer_size_(pointer_size) {}
   1146 
   1147     virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
   1148       // TODO: Separate visitor for runtime vs normal methods.
   1149       if (UNLIKELY(method->IsRuntimeMethod())) {
   1150         ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
   1151         if (table != nullptr) {
   1152           ImtConflictTable* new_table = ForwardObject(table);
   1153           if (table != new_table) {
   1154             method->SetImtConflictTable(new_table, pointer_size_);
   1155           }
   1156         }
   1157         const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
   1158         const void* new_code = ForwardCode(old_code);
   1159         if (old_code != new_code) {
   1160           method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
   1161         }
   1162       } else {
   1163         if (fixup_heap_objects_) {
   1164           method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this));
   1165         }
   1166         method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
   1167       }
   1168     }
   1169 
   1170    private:
   1171     const bool fixup_heap_objects_;
   1172     const PointerSize pointer_size_;
   1173   };
   1174 
   1175   class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
   1176    public:
   1177     template<typename... Args>
   1178     explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}
   1179 
   1180     virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
   1181       field->UpdateObjects(ForwardObjectAdapter(this));
   1182     }
   1183   };
   1184 
   1185   // Relocate an image space mapped at target_base which possibly used to be at a different base
   1186   // address. Only needs a single image space, not one for both source and destination.
   1187   // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
   1188   // to another.
   1189   static bool RelocateInPlace(ImageHeader& image_header,
   1190                               uint8_t* target_base,
   1191                               accounting::ContinuousSpaceBitmap* bitmap,
   1192                               const OatFile* app_oat_file,
   1193                               std::string* error_msg) {
   1194     DCHECK(error_msg != nullptr);
   1195     if (!image_header.IsPic()) {
   1196       if (image_header.GetImageBegin() == target_base) {
   1197         return true;
   1198       }
   1199       *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
   1200                                 (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
   1201       return false;
   1202     }
   1203     // Set up sections.
   1204     uint32_t boot_image_begin = 0;
   1205     uint32_t boot_image_end = 0;
   1206     uint32_t boot_oat_begin = 0;
   1207     uint32_t boot_oat_end = 0;
   1208     const PointerSize pointer_size = image_header.GetPointerSize();
   1209     gc::Heap* const heap = Runtime::Current()->GetHeap();
   1210     heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
   1211     if (boot_image_begin == boot_image_end) {
   1212       *error_msg = "Can not relocate app image without boot image space";
   1213       return false;
   1214     }
   1215     if (boot_oat_begin == boot_oat_end) {
   1216       *error_msg = "Can not relocate app image without boot oat file";
   1217       return false;
   1218     }
   1219     const uint32_t boot_image_size = boot_image_end - boot_image_begin;
   1220     const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
   1221     const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
   1222     const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
   1223     if (boot_image_size != image_header_boot_image_size) {
   1224       *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
   1225                                     PRIu64,
   1226                                 static_cast<uint64_t>(boot_image_size),
   1227                                 static_cast<uint64_t>(image_header_boot_image_size));
   1228       return false;
   1229     }
   1230     if (boot_oat_size != image_header_boot_oat_size) {
   1231       *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
   1232                                     PRIu64,
   1233                                 static_cast<uint64_t>(boot_oat_size),
   1234                                 static_cast<uint64_t>(image_header_boot_oat_size));
   1235       return false;
   1236     }
   1237     TimingLogger logger(__FUNCTION__, true, false);
   1238     RelocationRange boot_image(image_header.GetBootImageBegin(),
   1239                                boot_image_begin,
   1240                                boot_image_size);
   1241     RelocationRange boot_oat(image_header.GetBootOatBegin(),
   1242                              boot_oat_begin,
   1243                              boot_oat_size);
   1244     RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
   1245                               reinterpret_cast<uintptr_t>(target_base),
   1246                               image_header.GetImageSize());
   1247     // Use the oat data section since this is where the OatFile::Begin is.
   1248     RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
   1249                             // Not necessarily in low 4GB.
   1250                             reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
   1251                             image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
   1252     VLOG(image) << "App image " << app_image;
   1253     VLOG(image) << "App oat " << app_oat;
   1254     VLOG(image) << "Boot image " << boot_image;
   1255     VLOG(image) << "Boot oat " << boot_oat;
   1256     // True if we need to fixup any heap pointers, otherwise only code pointers.
   1257     const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
   1258     const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
   1259     if (!fixup_image && !fixup_code) {
   1260       // Nothing to fix up.
   1261       return true;
   1262     }
   1263     ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
   1264     // Need to update the image to be at the target base.
   1265     const ImageSection& objects_section = image_header.GetObjectsSection();
   1266     uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
   1267     uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
   1268     FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
   1269     if (fixup_image) {
   1270       // Two pass approach, fix up all classes first, then fix up non class-objects.
   1271       // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
   1272       std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
   1273           gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
   1274                                                         target_base,
   1275                                                         image_header.GetImageSize()));
   1276       FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
   1277                                               pointer_size,
   1278                                               boot_image,
   1279                                               boot_oat,
   1280                                               app_image,
   1281                                               app_oat);
   1282       TimingLogger::ScopedTiming timing("Fixup classes", &logger);
   1283       // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
   1284       // its probably not required.
   1285       ScopedObjectAccess soa(Thread::Current());
   1286       timing.NewTiming("Fixup objects");
   1287       bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
   1288       // Fixup image roots.
   1289       CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
   1290           image_header.GetImageRoots<kWithoutReadBarrier>())));
   1291       image_header.RelocateImageObjects(app_image.Delta());
   1292       CHECK_EQ(image_header.GetImageBegin(), target_base);
   1293       // Fix up dex cache DexFile pointers.
   1294       auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
   1295           AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
   1296       for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
   1297         mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
   1298         // Fix up dex cache pointers.
   1299         mirror::StringDexCacheType* strings = dex_cache->GetStrings();
   1300         if (strings != nullptr) {
   1301           mirror::StringDexCacheType* new_strings = fixup_adapter.ForwardObject(strings);
   1302           if (strings != new_strings) {
   1303             dex_cache->SetStrings(new_strings);
   1304           }
   1305           dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
   1306         }
   1307         mirror::TypeDexCacheType* types = dex_cache->GetResolvedTypes();
   1308         if (types != nullptr) {
   1309           mirror::TypeDexCacheType* new_types = fixup_adapter.ForwardObject(types);
   1310           if (types != new_types) {
   1311             dex_cache->SetResolvedTypes(new_types);
   1312           }
   1313           dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
   1314         }
   1315         mirror::MethodDexCacheType* methods = dex_cache->GetResolvedMethods();
   1316         if (methods != nullptr) {
   1317           mirror::MethodDexCacheType* new_methods = fixup_adapter.ForwardObject(methods);
   1318           if (methods != new_methods) {
   1319             dex_cache->SetResolvedMethods(new_methods);
   1320           }
   1321           for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
   1322             auto pair = mirror::DexCache::GetNativePairPtrSize(new_methods, j, pointer_size);
   1323             ArtMethod* orig = pair.object;
   1324             ArtMethod* copy = fixup_adapter.ForwardObject(orig);
   1325             if (orig != copy) {
   1326               pair.object = copy;
   1327               mirror::DexCache::SetNativePairPtrSize(new_methods, j, pair, pointer_size);
   1328             }
   1329           }
   1330         }
   1331         mirror::FieldDexCacheType* fields = dex_cache->GetResolvedFields();
   1332         if (fields != nullptr) {
   1333           mirror::FieldDexCacheType* new_fields = fixup_adapter.ForwardObject(fields);
   1334           if (fields != new_fields) {
   1335             dex_cache->SetResolvedFields(new_fields);
   1336           }
   1337           for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
   1338             mirror::FieldDexCachePair orig =
   1339                 mirror::DexCache::GetNativePairPtrSize(new_fields, j, pointer_size);
   1340             mirror::FieldDexCachePair copy(fixup_adapter.ForwardObject(orig.object), orig.index);
   1341             if (orig.object != copy.object) {
   1342               mirror::DexCache::SetNativePairPtrSize(new_fields, j, copy, pointer_size);
   1343             }
   1344           }
   1345         }
   1346 
   1347         mirror::MethodTypeDexCacheType* method_types = dex_cache->GetResolvedMethodTypes();
   1348         if (method_types != nullptr) {
   1349           mirror::MethodTypeDexCacheType* new_method_types =
   1350               fixup_adapter.ForwardObject(method_types);
   1351           if (method_types != new_method_types) {
   1352             dex_cache->SetResolvedMethodTypes(new_method_types);
   1353           }
   1354           dex_cache->FixupResolvedMethodTypes<kWithoutReadBarrier>(new_method_types, fixup_adapter);
   1355         }
   1356         GcRoot<mirror::CallSite>* call_sites = dex_cache->GetResolvedCallSites();
   1357         if (call_sites != nullptr) {
   1358           GcRoot<mirror::CallSite>* new_call_sites = fixup_adapter.ForwardObject(call_sites);
   1359           if (call_sites != new_call_sites) {
   1360             dex_cache->SetResolvedCallSites(new_call_sites);
   1361           }
   1362           dex_cache->FixupResolvedCallSites<kWithoutReadBarrier>(new_call_sites, fixup_adapter);
   1363         }
   1364       }
   1365     }
   1366     {
   1367       // Only touches objects in the app image, no need for mutator lock.
   1368       TimingLogger::ScopedTiming timing("Fixup methods", &logger);
   1369       FixupArtMethodVisitor method_visitor(fixup_image,
   1370                                            pointer_size,
   1371                                            boot_image,
   1372                                            boot_oat,
   1373                                            app_image,
   1374                                            app_oat);
   1375       image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
   1376     }
   1377     if (fixup_image) {
   1378       {
   1379         // Only touches objects in the app image, no need for mutator lock.
   1380         TimingLogger::ScopedTiming timing("Fixup fields", &logger);
   1381         FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
   1382         image_header.VisitPackedArtFields(&field_visitor, target_base);
   1383       }
   1384       {
   1385         TimingLogger::ScopedTiming timing("Fixup imt", &logger);
   1386         image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size);
   1387       }
   1388       {
   1389         TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
   1390         image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
   1391       }
   1392       // In the app image case, the image methods are actually in the boot image.
   1393       image_header.RelocateImageMethods(boot_image.Delta());
   1394       const auto& class_table_section = image_header.GetClassTableSection();
   1395       if (class_table_section.Size() > 0u) {
   1396         // Note that we require that ReadFromMemory does not make an internal copy of the elements.
   1397         // This also relies on visit roots not doing any verification which could fail after we update
   1398         // the roots to be the image addresses.
   1399         ScopedObjectAccess soa(Thread::Current());
   1400         WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
   1401         ClassTable temp_table;
   1402         temp_table.ReadFromMemory(target_base + class_table_section.Offset());
   1403         FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
   1404         temp_table.VisitRoots(root_visitor);
   1405       }
   1406     }
   1407     if (VLOG_IS_ON(image)) {
   1408       logger.Dump(LOG_STREAM(INFO));
   1409     }
   1410     return true;
   1411   }
   1412 
   1413   static std::unique_ptr<OatFile> OpenOatFile(const ImageSpace& image,
   1414                                               const char* image_path,
   1415                                               std::string* error_msg) {
   1416     const ImageHeader& image_header = image.GetImageHeader();
   1417     std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
   1418 
   1419     CHECK(image_header.GetOatDataBegin() != nullptr);
   1420 
   1421     std::unique_ptr<OatFile> oat_file(OatFile::Open(/* zip_fd */ -1,
   1422                                                     oat_filename,
   1423                                                     oat_filename,
   1424                                                     image_header.GetOatDataBegin(),
   1425                                                     image_header.GetOatFileBegin(),
   1426                                                     !Runtime::Current()->IsAotCompiler(),
   1427                                                     /*low_4gb*/false,
   1428                                                     nullptr,
   1429                                                     error_msg));
   1430     if (oat_file == nullptr) {
   1431       *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
   1432                                 oat_filename.c_str(),
   1433                                 image.GetName(),
   1434                                 error_msg->c_str());
   1435       return nullptr;
   1436     }
   1437     uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
   1438     uint32_t image_oat_checksum = image_header.GetOatChecksum();
   1439     if (oat_checksum != image_oat_checksum) {
   1440       *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
   1441                                 " in image %s",
   1442                                 oat_checksum,
   1443                                 image_oat_checksum,
   1444                                 image.GetName());
   1445       return nullptr;
   1446     }
   1447     int32_t image_patch_delta = image_header.GetPatchDelta();
   1448     int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
   1449     if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
   1450       // We should have already relocated by this point. Bail out.
   1451       *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
   1452                                 "in image %s",
   1453                                 oat_patch_delta,
   1454                                 image_patch_delta,
   1455                                 image.GetName());
   1456       return nullptr;
   1457     }
   1458 
   1459     return oat_file;
   1460   }
   1461 };
   1462 
   1463 static constexpr uint64_t kLowSpaceValue = 50 * MB;
   1464 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
   1465 
   1466 // Read the free space of the cache partition and make a decision whether to keep the generated
   1467 // image. This is to try to mitigate situations where the system might run out of space later.
   1468 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
   1469   // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
   1470   struct statvfs buf;
   1471 
   1472   int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
   1473   if (res != 0) {
   1474     // Could not stat. Conservatively tell the system to delete the image.
   1475     *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
   1476     return false;
   1477   }
   1478 
   1479   uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
   1480   // Zygote is privileged, but other things are not. Use bavail.
   1481   uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
   1482 
   1483   // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
   1484   // environment. We do not want to fail quickening the boot image there, as it is beneficial
   1485   // for time-to-UI.
   1486   if (fs_overall_size > kTmpFsSentinelValue) {
   1487     if (fs_free_size < kLowSpaceValue) {
   1488       *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
   1489                                 "least %" PRIu64 ".",
   1490                                 static_cast<double>(fs_free_size) / MB,
   1491                                 kLowSpaceValue / MB);
   1492       return false;
   1493     }
   1494   }
   1495   return true;
   1496 }
   1497 
   1498 std::unique_ptr<ImageSpace> ImageSpace::CreateBootImage(const char* image_location,
   1499                                                         const InstructionSet image_isa,
   1500                                                         bool secondary_image,
   1501                                                         std::string* error_msg) {
   1502   ScopedTrace trace(__FUNCTION__);
   1503 
   1504   // Step 0: Extra zygote work.
   1505 
   1506   // Step 0.a: If we're the zygote, mark boot.
   1507   const bool is_zygote = Runtime::Current()->IsZygote();
   1508   if (is_zygote && !secondary_image && CanWriteToDalvikCache(image_isa)) {
   1509     MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
   1510   }
   1511 
   1512   // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively,
   1513   //           if necessary. While the runtime may be fine (it is pretty tolerant to
   1514   //           out-of-disk-space situations), other parts of the platform are not.
   1515   //
   1516   //           The advantage of doing this proactively is that the later steps are simplified,
   1517   //           i.e., we do not need to code retries.
   1518   std::string system_filename;
   1519   bool has_system = false;
   1520   std::string cache_filename;
   1521   bool has_cache = false;
   1522   bool dalvik_cache_exists = false;
   1523   bool is_global_cache = true;
   1524   std::string dalvik_cache;
   1525   bool found_image = FindImageFilenameImpl(image_location,
   1526                                            image_isa,
   1527                                            &has_system,
   1528                                            &system_filename,
   1529                                            &dalvik_cache_exists,
   1530                                            &dalvik_cache,
   1531                                            &is_global_cache,
   1532                                            &has_cache,
   1533                                            &cache_filename);
   1534 
   1535   bool dex2oat_enabled = Runtime::Current()->IsImageDex2OatEnabled();
   1536 
   1537   if (is_zygote && dalvik_cache_exists && !secondary_image) {
   1538     // Extra checks for the zygote. These only apply when loading the first image, explained below.
   1539     DCHECK(!dalvik_cache.empty());
   1540     std::string local_error_msg;
   1541     // All secondary images are verified when the primary image is verified.
   1542     bool verified = VerifyImage(image_location, dalvik_cache.c_str(), image_isa, &local_error_msg);
   1543     // If we prune for space at a secondary image, we may end up in a crash loop with the _exit
   1544     // path.
   1545     bool check_space = CheckSpace(dalvik_cache, &local_error_msg);
   1546     if (!verified || !check_space) {
   1547       // Note: it is important to only prune for space on the primary image, or we will hit the
   1548       //       restart path.
   1549       LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
   1550       PruneDalvikCache(image_isa);
   1551 
   1552       // Re-evaluate the image.
   1553       found_image = FindImageFilenameImpl(image_location,
   1554                                           image_isa,
   1555                                           &has_system,
   1556                                           &system_filename,
   1557                                           &dalvik_cache_exists,
   1558                                           &dalvik_cache,
   1559                                           &is_global_cache,
   1560                                           &has_cache,
   1561                                           &cache_filename);
   1562     }
   1563     if (!check_space) {
   1564       // Disable compilation/patching - we do not want to fill up the space again.
   1565       dex2oat_enabled = false;
   1566     }
   1567   }
   1568 
   1569   // Collect all the errors.
   1570   std::vector<std::string> error_msgs;
   1571 
   1572   // Step 1: Check if we have an existing and relocated image.
   1573 
   1574   // Step 1.a: Have files in system and cache. Then they need to match.
   1575   if (found_image && has_system && has_cache) {
   1576     std::string local_error_msg;
   1577     // Check that the files are matching.
   1578     if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str(), &local_error_msg)) {
   1579       std::unique_ptr<ImageSpace> relocated_space =
   1580           ImageSpaceLoader::Load(image_location,
   1581                                  cache_filename,
   1582                                  is_zygote,
   1583                                  is_global_cache,
   1584                                  /* validate_oat_file */ false,
   1585                                  &local_error_msg);
   1586       if (relocated_space != nullptr) {
   1587         return relocated_space;
   1588       }
   1589     }
   1590     error_msgs.push_back(local_error_msg);
   1591   }
   1592 
   1593   // Step 1.b: Only have a cache file.
   1594   if (found_image && !has_system && has_cache) {
   1595     std::string local_error_msg;
   1596     std::unique_ptr<ImageSpace> cache_space =
   1597         ImageSpaceLoader::Load(image_location,
   1598                                cache_filename,
   1599                                is_zygote,
   1600                                is_global_cache,
   1601                                /* validate_oat_file */ true,
   1602                                &local_error_msg);
   1603     if (cache_space != nullptr) {
   1604       return cache_space;
   1605     }
   1606     error_msgs.push_back(local_error_msg);
   1607   }
   1608 
   1609   // Step 2: We have an existing image in /system.
   1610 
   1611   // Step 2.a: We are not required to relocate it. Then we can use it directly.
   1612   bool relocate = Runtime::Current()->ShouldRelocate();
   1613 
   1614   if (found_image && has_system && !relocate) {
   1615     std::string local_error_msg;
   1616     std::unique_ptr<ImageSpace> system_space =
   1617         ImageSpaceLoader::Load(image_location,
   1618                                system_filename,
   1619                                is_zygote,
   1620                                is_global_cache,
   1621                                /* validate_oat_file */ false,
   1622                                &local_error_msg);
   1623     if (system_space != nullptr) {
   1624       return system_space;
   1625     }
   1626     error_msgs.push_back(local_error_msg);
   1627   }
   1628 
   1629   // Step 2.b: We require a relocated image. Then we must patch it. This step fails if this is a
   1630   //           secondary image.
   1631   if (found_image && has_system && relocate) {
   1632     std::string local_error_msg;
   1633     if (!dex2oat_enabled) {
   1634       local_error_msg = "Patching disabled.";
   1635     } else if (secondary_image) {
   1636       // We really want a working image. Prune and restart.
   1637       PruneDalvikCache(image_isa);
   1638       _exit(1);
   1639     } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
   1640       bool patch_success =
   1641           RelocateImage(image_location, dalvik_cache.c_str(), image_isa, &local_error_msg);
   1642       if (patch_success) {
   1643         std::unique_ptr<ImageSpace> patched_space =
   1644             ImageSpaceLoader::Load(image_location,
   1645                                    cache_filename,
   1646                                    is_zygote,
   1647                                    is_global_cache,
   1648                                    /* validate_oat_file */ false,
   1649                                    &local_error_msg);
   1650         if (patched_space != nullptr) {
   1651           return patched_space;
   1652         }
   1653       }
   1654     }
   1655     error_msgs.push_back(StringPrintf("Cannot relocate image %s to %s: %s",
   1656                                       image_location,
   1657                                       cache_filename.c_str(),
   1658                                       local_error_msg.c_str()));
   1659   }
   1660 
   1661   // Step 3: We do not have an existing image in /system, so generate an image into the dalvik
   1662   //         cache. This step fails if this is a secondary image.
   1663   if (!has_system) {
   1664     std::string local_error_msg;
   1665     if (!dex2oat_enabled) {
   1666       local_error_msg = "Image compilation disabled.";
   1667     } else if (secondary_image) {
   1668       local_error_msg = "Cannot compile a secondary image.";
   1669     } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
   1670       bool compilation_success = GenerateImage(cache_filename, image_isa, &local_error_msg);
   1671       if (compilation_success) {
   1672         std::unique_ptr<ImageSpace> compiled_space =
   1673             ImageSpaceLoader::Load(image_location,
   1674                                    cache_filename,
   1675                                    is_zygote,
   1676                                    is_global_cache,
   1677                                    /* validate_oat_file */ false,
   1678                                    &local_error_msg);
   1679         if (compiled_space != nullptr) {
   1680           return compiled_space;
   1681         }
   1682       }
   1683     }
   1684     error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
   1685                                       cache_filename.c_str(),
   1686                                       local_error_msg.c_str()));
   1687   }
   1688 
   1689   // We failed. Prune the cache the free up space, create a compound error message and return no
   1690   // image.
   1691   PruneDalvikCache(image_isa);
   1692 
   1693   std::ostringstream oss;
   1694   bool first = true;
   1695   for (const auto& msg : error_msgs) {
   1696     if (!first) {
   1697       oss << "\n    ";
   1698     }
   1699     oss << msg;
   1700   }
   1701   *error_msg = oss.str();
   1702 
   1703   return nullptr;
   1704 }
   1705 
   1706 bool ImageSpace::LoadBootImage(const std::string& image_file_name,
   1707                                const InstructionSet image_instruction_set,
   1708                                std::vector<space::ImageSpace*>* boot_image_spaces,
   1709                                uint8_t** oat_file_end) {
   1710   DCHECK(boot_image_spaces != nullptr);
   1711   DCHECK(boot_image_spaces->empty());
   1712   DCHECK(oat_file_end != nullptr);
   1713   DCHECK_NE(image_instruction_set, InstructionSet::kNone);
   1714 
   1715   if (image_file_name.empty()) {
   1716     return false;
   1717   }
   1718 
   1719   // For code reuse, handle this like a work queue.
   1720   std::vector<std::string> image_file_names;
   1721   image_file_names.push_back(image_file_name);
   1722 
   1723   bool error = false;
   1724   uint8_t* oat_file_end_tmp = *oat_file_end;
   1725 
   1726   for (size_t index = 0; index < image_file_names.size(); ++index) {
   1727     std::string& image_name = image_file_names[index];
   1728     std::string error_msg;
   1729     std::unique_ptr<space::ImageSpace> boot_image_space_uptr = CreateBootImage(
   1730         image_name.c_str(),
   1731         image_instruction_set,
   1732         index > 0,
   1733         &error_msg);
   1734     if (boot_image_space_uptr != nullptr) {
   1735       space::ImageSpace* boot_image_space = boot_image_space_uptr.release();
   1736       boot_image_spaces->push_back(boot_image_space);
   1737       // Oat files referenced by image files immediately follow them in memory, ensure alloc space
   1738       // isn't going to get in the middle
   1739       uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd();
   1740       CHECK_GT(oat_file_end_addr, boot_image_space->End());
   1741       oat_file_end_tmp = AlignUp(oat_file_end_addr, kPageSize);
   1742 
   1743       if (index == 0) {
   1744         // If this was the first space, check whether there are more images to load.
   1745         const OatFile* boot_oat_file = boot_image_space->GetOatFile();
   1746         if (boot_oat_file == nullptr) {
   1747           continue;
   1748         }
   1749 
   1750         const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader();
   1751         const char* boot_classpath =
   1752             boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
   1753         if (boot_classpath == nullptr) {
   1754           continue;
   1755         }
   1756 
   1757         ExtractMultiImageLocations(image_file_name, boot_classpath, &image_file_names);
   1758       }
   1759     } else {
   1760       error = true;
   1761       LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
   1762           << "Attempting to fall back to imageless running. Error was: " << error_msg
   1763           << "\nAttempted image: " << image_name;
   1764       break;
   1765     }
   1766   }
   1767 
   1768   if (error) {
   1769     // Remove already loaded spaces.
   1770     for (space::Space* loaded_space : *boot_image_spaces) {
   1771       delete loaded_space;
   1772     }
   1773     boot_image_spaces->clear();
   1774     return false;
   1775   }
   1776 
   1777   *oat_file_end = oat_file_end_tmp;
   1778   return true;
   1779 }
   1780 
   1781 ImageSpace::~ImageSpace() {
   1782   Runtime* runtime = Runtime::Current();
   1783   if (runtime == nullptr) {
   1784     return;
   1785   }
   1786 
   1787   if (GetImageHeader().IsAppImage()) {
   1788     // This image space did not modify resolution method then in Init.
   1789     return;
   1790   }
   1791 
   1792   if (!runtime->HasResolutionMethod()) {
   1793     // Another image space has already unloaded the below methods.
   1794     return;
   1795   }
   1796 
   1797   runtime->ClearInstructionSet();
   1798   runtime->ClearResolutionMethod();
   1799   runtime->ClearImtConflictMethod();
   1800   runtime->ClearImtUnimplementedMethod();
   1801   runtime->ClearCalleeSaveMethods();
   1802 }
   1803 
   1804 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
   1805                                                            const OatFile* oat_file,
   1806                                                            std::string* error_msg) {
   1807   return ImageSpaceLoader::Init(image,
   1808                                 image,
   1809                                 /*validate_oat_file*/false,
   1810                                 oat_file,
   1811                                 /*out*/error_msg);
   1812 }
   1813 
   1814 const OatFile* ImageSpace::GetOatFile() const {
   1815   return oat_file_non_owned_;
   1816 }
   1817 
   1818 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
   1819   CHECK(oat_file_ != nullptr);
   1820   return std::move(oat_file_);
   1821 }
   1822 
   1823 void ImageSpace::Dump(std::ostream& os) const {
   1824   os << GetType()
   1825       << " begin=" << reinterpret_cast<void*>(Begin())
   1826       << ",end=" << reinterpret_cast<void*>(End())
   1827       << ",size=" << PrettySize(Size())
   1828       << ",name=\"" << GetName() << "\"]";
   1829 }
   1830 
   1831 std::string ImageSpace::GetMultiImageBootClassPath(
   1832     const std::vector<const char*>& dex_locations,
   1833     const std::vector<const char*>& oat_filenames,
   1834     const std::vector<const char*>& image_filenames) {
   1835   DCHECK_GT(oat_filenames.size(), 1u);
   1836   // If the image filename was adapted (e.g., for our tests), we need to change this here,
   1837   // too, but need to strip all path components (they will be re-established when loading).
   1838   std::ostringstream bootcp_oss;
   1839   bool first_bootcp = true;
   1840   for (size_t i = 0; i < dex_locations.size(); ++i) {
   1841     if (!first_bootcp) {
   1842       bootcp_oss << ":";
   1843     }
   1844 
   1845     std::string dex_loc = dex_locations[i];
   1846     std::string image_filename = image_filenames[i];
   1847 
   1848     // Use the dex_loc path, but the image_filename name (without path elements).
   1849     size_t dex_last_slash = dex_loc.rfind('/');
   1850 
   1851     // npos is max(size_t). That makes this a bit ugly.
   1852     size_t image_last_slash = image_filename.rfind('/');
   1853     size_t image_last_at = image_filename.rfind('@');
   1854     size_t image_last_sep = (image_last_slash == std::string::npos)
   1855                                 ? image_last_at
   1856                                 : (image_last_at == std::string::npos)
   1857                                       ? std::string::npos
   1858                                       : std::max(image_last_slash, image_last_at);
   1859     // Note: whenever image_last_sep == npos, +1 overflow means using the full string.
   1860 
   1861     if (dex_last_slash == std::string::npos) {
   1862       dex_loc = image_filename.substr(image_last_sep + 1);
   1863     } else {
   1864       dex_loc = dex_loc.substr(0, dex_last_slash + 1) +
   1865           image_filename.substr(image_last_sep + 1);
   1866     }
   1867 
   1868     // Image filenames already end with .art, no need to replace.
   1869 
   1870     bootcp_oss << dex_loc;
   1871     first_bootcp = false;
   1872   }
   1873   return bootcp_oss.str();
   1874 }
   1875 
   1876 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
   1877   const ArtDexFileLoader dex_file_loader;
   1878   for (const OatFile::OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
   1879     const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
   1880 
   1881     // Skip multidex locations - These will be checked when we visit their
   1882     // corresponding primary non-multidex location.
   1883     if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) {
   1884       continue;
   1885     }
   1886 
   1887     std::vector<uint32_t> checksums;
   1888     if (!dex_file_loader.GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) {
   1889       *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
   1890                                 "referenced by oat file %s: %s",
   1891                                 dex_file_location.c_str(),
   1892                                 oat_file.GetLocation().c_str(),
   1893                                 error_msg->c_str());
   1894       return false;
   1895     }
   1896     CHECK(!checksums.empty());
   1897     if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
   1898       *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
   1899                                 "'%s' and dex file '%s' (0x%x != 0x%x)",
   1900                                 oat_file.GetLocation().c_str(),
   1901                                 dex_file_location.c_str(),
   1902                                 oat_dex_file->GetDexFileLocationChecksum(),
   1903                                 checksums[0]);
   1904       return false;
   1905     }
   1906 
   1907     // Verify checksums for any related multidex entries.
   1908     for (size_t i = 1; i < checksums.size(); i++) {
   1909       std::string multi_dex_location = DexFileLoader::GetMultiDexLocation(
   1910           i,
   1911           dex_file_location.c_str());
   1912       const OatFile::OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
   1913                                                                     nullptr,
   1914                                                                     error_msg);
   1915       if (multi_dex == nullptr) {
   1916         *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
   1917                                   oat_file.GetLocation().c_str(),
   1918                                   multi_dex_location.c_str());
   1919         return false;
   1920       }
   1921 
   1922       if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
   1923         *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
   1924                                   "'%s' and dex file '%s' (0x%x != 0x%x)",
   1925                                   oat_file.GetLocation().c_str(),
   1926                                   multi_dex_location.c_str(),
   1927                                   multi_dex->GetDexFileLocationChecksum(),
   1928                                   checksums[i]);
   1929         return false;
   1930       }
   1931     }
   1932   }
   1933   return true;
   1934 }
   1935 
   1936 void ImageSpace::ExtractMultiImageLocations(const std::string& input_image_file_name,
   1937                                             const std::string& boot_classpath,
   1938                                             std::vector<std::string>* image_file_names) {
   1939   DCHECK(image_file_names != nullptr);
   1940 
   1941   std::vector<std::string> images;
   1942   Split(boot_classpath, ':', &images);
   1943 
   1944   // Add the rest into the list. We have to adjust locations, possibly:
   1945   //
   1946   // For example, image_file_name is /a/b/c/d/e.art
   1947   //              images[0] is          f/c/d/e.art
   1948   // ----------------------------------------------
   1949   //              images[1] is          g/h/i/j.art  -> /a/b/h/i/j.art
   1950   const std::string& first_image = images[0];
   1951   // Length of common suffix.
   1952   size_t common = 0;
   1953   while (common < input_image_file_name.size() &&
   1954          common < first_image.size() &&
   1955          *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
   1956     ++common;
   1957   }
   1958   // We want to replace the prefix of the input image with the prefix of the boot class path.
   1959   // This handles the case where the image file contains @ separators.
   1960   // Example image_file_name is oats/system@framework (at) boot.art
   1961   // images[0] is .../arm/boot.art
   1962   // means that the image name prefix will be oats/system@framework@
   1963   // so that the other images are openable.
   1964   const size_t old_prefix_length = first_image.size() - common;
   1965   const std::string new_prefix = input_image_file_name.substr(
   1966       0,
   1967       input_image_file_name.size() - common);
   1968 
   1969   // Apply pattern to images[1] .. images[n].
   1970   for (size_t i = 1; i < images.size(); ++i) {
   1971     const std::string& image = images[i];
   1972     CHECK_GT(image.length(), old_prefix_length);
   1973     std::string suffix = image.substr(old_prefix_length);
   1974     image_file_names->push_back(new_prefix + suffix);
   1975   }
   1976 }
   1977 
   1978 void ImageSpace::DumpSections(std::ostream& os) const {
   1979   const uint8_t* base = Begin();
   1980   const ImageHeader& header = GetImageHeader();
   1981   for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
   1982     auto section_type = static_cast<ImageHeader::ImageSections>(i);
   1983     const ImageSection& section = header.GetImageSection(section_type);
   1984     os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
   1985        << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
   1986   }
   1987 }
   1988 
   1989 }  // namespace space
   1990 }  // namespace gc
   1991 }  // namespace art
   1992