Home | History | Annotate | Download | only in llvm-readobj
      1 //===-- ELFDumper.cpp - ELF-specific dumper ---------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief This file implements the ELF-specific dumper for llvm-readobj.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ARMAttributeParser.h"
     16 #include "ARMEHABIPrinter.h"
     17 #include "Error.h"
     18 #include "ObjDumper.h"
     19 #include "StackMapPrinter.h"
     20 #include "llvm-readobj.h"
     21 #include "llvm/ADT/Optional.h"
     22 #include "llvm/ADT/SmallString.h"
     23 #include "llvm/ADT/StringExtras.h"
     24 #include "llvm/Object/ELFObjectFile.h"
     25 #include "llvm/Support/ARMBuildAttributes.h"
     26 #include "llvm/Support/Compiler.h"
     27 #include "llvm/Support/Format.h"
     28 #include "llvm/Support/FormattedStream.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Support/MipsABIFlags.h"
     31 #include "llvm/Support/ScopedPrinter.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 
     34 using namespace llvm;
     35 using namespace llvm::object;
     36 using namespace ELF;
     37 
     38 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
     39   case ns::enum: return #enum;
     40 
     41 #define ENUM_ENT(enum, altName) \
     42   { #enum, altName, ELF::enum }
     43 
     44 #define ENUM_ENT_1(enum) \
     45   { #enum, #enum, ELF::enum }
     46 
     47 #define LLVM_READOBJ_PHDR_ENUM(ns, enum)                                       \
     48   case ns::enum:                                                               \
     49     return std::string(#enum).substr(3);
     50 
     51 #define TYPEDEF_ELF_TYPES(ELFT)                                                \
     52   typedef ELFFile<ELFT> ELFO;                                                  \
     53   typedef typename ELFO::Elf_Shdr Elf_Shdr;                                    \
     54   typedef typename ELFO::Elf_Sym Elf_Sym;                                      \
     55   typedef typename ELFO::Elf_Dyn Elf_Dyn;                                      \
     56   typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;                          \
     57   typedef typename ELFO::Elf_Rel Elf_Rel;                                      \
     58   typedef typename ELFO::Elf_Rela Elf_Rela;                                    \
     59   typedef typename ELFO::Elf_Rela_Range Elf_Rela_Range;                        \
     60   typedef typename ELFO::Elf_Phdr Elf_Phdr;                                    \
     61   typedef typename ELFO::Elf_Half Elf_Half;                                    \
     62   typedef typename ELFO::Elf_Ehdr Elf_Ehdr;                                    \
     63   typedef typename ELFO::Elf_Word Elf_Word;                                    \
     64   typedef typename ELFO::Elf_Hash Elf_Hash;                                    \
     65   typedef typename ELFO::Elf_GnuHash Elf_GnuHash;                              \
     66   typedef typename ELFO::uintX_t uintX_t;
     67 
     68 namespace {
     69 
     70 template <class ELFT> class DumpStyle;
     71 
     72 /// Represents a contiguous uniform range in the file. We cannot just create a
     73 /// range directly because when creating one of these from the .dynamic table
     74 /// the size, entity size and virtual address are different entries in arbitrary
     75 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
     76 struct DynRegionInfo {
     77   DynRegionInfo() : Addr(nullptr), Size(0), EntSize(0) {}
     78   DynRegionInfo(const void *A, uint64_t S, uint64_t ES)
     79       : Addr(A), Size(S), EntSize(ES) {}
     80   /// \brief Address in current address space.
     81   const void *Addr;
     82   /// \brief Size in bytes of the region.
     83   uint64_t Size;
     84   /// \brief Size of each entity in the region.
     85   uint64_t EntSize;
     86 
     87   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
     88     const Type *Start = reinterpret_cast<const Type *>(Addr);
     89     if (!Start)
     90       return {Start, Start};
     91     if (EntSize != sizeof(Type) || Size % EntSize)
     92       reportError("Invalid entity size");
     93     return {Start, Start + (Size / EntSize)};
     94   }
     95 };
     96 
     97 template<typename ELFT>
     98 class ELFDumper : public ObjDumper {
     99 public:
    100   ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer);
    101 
    102   void printFileHeaders() override;
    103   void printSections() override;
    104   void printRelocations() override;
    105   void printDynamicRelocations() override;
    106   void printSymbols() override;
    107   void printDynamicSymbols() override;
    108   void printUnwindInfo() override;
    109 
    110   void printDynamicTable() override;
    111   void printNeededLibraries() override;
    112   void printProgramHeaders() override;
    113   void printHashTable() override;
    114   void printGnuHashTable() override;
    115   void printLoadName() override;
    116   void printVersionInfo() override;
    117   void printGroupSections() override;
    118 
    119   void printAttributes() override;
    120   void printMipsPLTGOT() override;
    121   void printMipsABIFlags() override;
    122   void printMipsReginfo() override;
    123   void printMipsOptions() override;
    124 
    125   void printStackMap() const override;
    126 
    127   void printHashHistogram() override;
    128 
    129 private:
    130   std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
    131   typedef ELFFile<ELFT> ELFO;
    132   typedef typename ELFO::Elf_Shdr Elf_Shdr;
    133   typedef typename ELFO::Elf_Sym Elf_Sym;
    134   typedef typename ELFO::Elf_Sym_Range Elf_Sym_Range;
    135   typedef typename ELFO::Elf_Dyn Elf_Dyn;
    136   typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
    137   typedef typename ELFO::Elf_Rel Elf_Rel;
    138   typedef typename ELFO::Elf_Rela Elf_Rela;
    139   typedef typename ELFO::Elf_Rel_Range Elf_Rel_Range;
    140   typedef typename ELFO::Elf_Rela_Range Elf_Rela_Range;
    141   typedef typename ELFO::Elf_Phdr Elf_Phdr;
    142   typedef typename ELFO::Elf_Half Elf_Half;
    143   typedef typename ELFO::Elf_Hash Elf_Hash;
    144   typedef typename ELFO::Elf_GnuHash Elf_GnuHash;
    145   typedef typename ELFO::Elf_Ehdr Elf_Ehdr;
    146   typedef typename ELFO::Elf_Word Elf_Word;
    147   typedef typename ELFO::uintX_t uintX_t;
    148   typedef typename ELFO::Elf_Versym Elf_Versym;
    149   typedef typename ELFO::Elf_Verneed Elf_Verneed;
    150   typedef typename ELFO::Elf_Vernaux Elf_Vernaux;
    151   typedef typename ELFO::Elf_Verdef Elf_Verdef;
    152   typedef typename ELFO::Elf_Verdaux Elf_Verdaux;
    153 
    154   DynRegionInfo checkDRI(DynRegionInfo DRI) {
    155     if (DRI.Addr < Obj->base() ||
    156         (const uint8_t *)DRI.Addr + DRI.Size > Obj->base() + Obj->getBufSize())
    157       error(llvm::object::object_error::parse_failed);
    158     return DRI;
    159   }
    160 
    161   DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
    162     return checkDRI({Obj->base() + P->p_offset, P->p_filesz, EntSize});
    163   }
    164 
    165   DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
    166     return checkDRI({Obj->base() + S->sh_offset, S->sh_size, S->sh_entsize});
    167   }
    168 
    169   void parseDynamicTable(ArrayRef<const Elf_Phdr *> LoadSegments);
    170 
    171   void printValue(uint64_t Type, uint64_t Value);
    172 
    173   StringRef getDynamicString(uint64_t Offset) const;
    174   StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
    175                              bool &IsDefault) const;
    176   void LoadVersionMap() const;
    177   void LoadVersionNeeds(const Elf_Shdr *ec) const;
    178   void LoadVersionDefs(const Elf_Shdr *sec) const;
    179 
    180   const ELFO *Obj;
    181   DynRegionInfo DynRelRegion;
    182   DynRegionInfo DynRelaRegion;
    183   DynRegionInfo DynPLTRelRegion;
    184   DynRegionInfo DynSymRegion;
    185   DynRegionInfo DynamicTable;
    186   StringRef DynamicStringTable;
    187   StringRef SOName;
    188   const Elf_Hash *HashTable = nullptr;
    189   const Elf_GnuHash *GnuHashTable = nullptr;
    190   const Elf_Shdr *DotSymtabSec = nullptr;
    191   StringRef DynSymtabName;
    192   ArrayRef<Elf_Word> ShndxTable;
    193 
    194   const Elf_Shdr *dot_gnu_version_sec = nullptr;   // .gnu.version
    195   const Elf_Shdr *dot_gnu_version_r_sec = nullptr; // .gnu.version_r
    196   const Elf_Shdr *dot_gnu_version_d_sec = nullptr; // .gnu.version_d
    197 
    198   // Records for each version index the corresponding Verdef or Vernaux entry.
    199   // This is filled the first time LoadVersionMap() is called.
    200   class VersionMapEntry : public PointerIntPair<const void *, 1> {
    201   public:
    202     // If the integer is 0, this is an Elf_Verdef*.
    203     // If the integer is 1, this is an Elf_Vernaux*.
    204     VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
    205     VersionMapEntry(const Elf_Verdef *verdef)
    206         : PointerIntPair<const void *, 1>(verdef, 0) {}
    207     VersionMapEntry(const Elf_Vernaux *vernaux)
    208         : PointerIntPair<const void *, 1>(vernaux, 1) {}
    209     bool isNull() const { return getPointer() == nullptr; }
    210     bool isVerdef() const { return !isNull() && getInt() == 0; }
    211     bool isVernaux() const { return !isNull() && getInt() == 1; }
    212     const Elf_Verdef *getVerdef() const {
    213       return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
    214     }
    215     const Elf_Vernaux *getVernaux() const {
    216       return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
    217     }
    218   };
    219   mutable SmallVector<VersionMapEntry, 16> VersionMap;
    220 
    221 public:
    222   Elf_Dyn_Range dynamic_table() const {
    223     return DynamicTable.getAsArrayRef<Elf_Dyn>();
    224   }
    225 
    226   Elf_Sym_Range dynamic_symbols() const {
    227     return DynSymRegion.getAsArrayRef<Elf_Sym>();
    228   }
    229 
    230   Elf_Rel_Range dyn_rels() const;
    231   Elf_Rela_Range dyn_relas() const;
    232   std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
    233                                 bool IsDynamic) const;
    234 
    235   void printSymbolsHelper(bool IsDynamic) const;
    236   const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
    237   ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
    238   StringRef getDynamicStringTable() const { return DynamicStringTable; }
    239   const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
    240   const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
    241   const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
    242   const Elf_Hash *getHashTable() const { return HashTable; }
    243   const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
    244 };
    245 
    246 template <class ELFT>
    247 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
    248   StringRef StrTable, SymtabName;
    249   size_t Entries = 0;
    250   Elf_Sym_Range Syms(nullptr, nullptr);
    251   if (IsDynamic) {
    252     StrTable = DynamicStringTable;
    253     Syms = dynamic_symbols();
    254     SymtabName = DynSymtabName;
    255     if (DynSymRegion.Addr)
    256       Entries = DynSymRegion.Size / DynSymRegion.EntSize;
    257   } else {
    258     if (!DotSymtabSec)
    259       return;
    260     StrTable = unwrapOrError(Obj->getStringTableForSymtab(*DotSymtabSec));
    261     Syms = Obj->symbols(DotSymtabSec);
    262     SymtabName = unwrapOrError(Obj->getSectionName(DotSymtabSec));
    263     Entries = DotSymtabSec->getEntityCount();
    264   }
    265   if (Syms.begin() == Syms.end())
    266     return;
    267   ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries);
    268   for (const auto &Sym : Syms)
    269     ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic);
    270 }
    271 
    272 template <typename ELFT> class DumpStyle {
    273 public:
    274   using Elf_Shdr = typename ELFFile<ELFT>::Elf_Shdr;
    275   using Elf_Sym =  typename ELFFile<ELFT>::Elf_Sym;
    276 
    277   DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {}
    278   virtual ~DumpStyle() {}
    279   virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
    280   virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
    281   virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
    282   virtual void printSections(const ELFFile<ELFT> *Obj) = 0;
    283   virtual void printSymbols(const ELFFile<ELFT> *Obj) = 0;
    284   virtual void printDynamicSymbols(const ELFFile<ELFT> *Obj) = 0;
    285   virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
    286   virtual void printSymtabMessage(const ELFFile<ELFT> *obj, StringRef Name,
    287                                   size_t Offset) {
    288     return;
    289   }
    290   virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
    291                            const Elf_Sym *FirstSym, StringRef StrTable,
    292                            bool IsDynamic) = 0;
    293   virtual void printProgramHeaders(const ELFFile<ELFT> *Obj) = 0;
    294   virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0;
    295   const ELFDumper<ELFT> *dumper() const { return Dumper; }
    296 private:
    297   const ELFDumper<ELFT> *Dumper;
    298 };
    299 
    300 template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
    301   formatted_raw_ostream OS;
    302 public:
    303   TYPEDEF_ELF_TYPES(ELFT)
    304   GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
    305       : DumpStyle<ELFT>(Dumper), OS(W.getOStream()) {}
    306   void printFileHeaders(const ELFO *Obj) override;
    307   void printGroupSections(const ELFFile<ELFT> *Obj) override;
    308   void printRelocations(const ELFO *Obj) override;
    309   void printSections(const ELFO *Obj) override;
    310   void printSymbols(const ELFO *Obj) override;
    311   void printDynamicSymbols(const ELFO *Obj) override;
    312   void printDynamicRelocations(const ELFO *Obj) override;
    313   virtual void printSymtabMessage(const ELFO *Obj, StringRef Name,
    314                                   size_t Offset) override;
    315   void printProgramHeaders(const ELFO *Obj) override;
    316   void printHashHistogram(const ELFFile<ELFT> *Obj) override;
    317 
    318 private:
    319   struct Field {
    320     StringRef Str;
    321     unsigned Column;
    322     Field(StringRef S, unsigned Col) : Str(S), Column(Col) {}
    323     Field(unsigned Col) : Str(""), Column(Col) {}
    324   };
    325 
    326   template <typename T, typename TEnum>
    327   std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
    328     for (const auto &EnumItem : EnumValues)
    329       if (EnumItem.Value == Value)
    330         return EnumItem.AltName;
    331     return to_hexString(Value, false);
    332   }
    333 
    334   formatted_raw_ostream &printField(struct Field F) {
    335     if (F.Column != 0)
    336       OS.PadToColumn(F.Column);
    337     OS << F.Str;
    338     OS.flush();
    339     return OS;
    340   }
    341   void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
    342                        const Elf_Rela &R, bool IsRela);
    343   void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
    344                    StringRef StrTable, bool IsDynamic) override;
    345   std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
    346                                   const Elf_Sym *FirstSym);
    347   void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
    348   bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
    349   bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
    350   bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
    351   bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
    352 };
    353 
    354 template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
    355 public:
    356   TYPEDEF_ELF_TYPES(ELFT)
    357   LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
    358       : DumpStyle<ELFT>(Dumper), W(W) {}
    359 
    360   void printFileHeaders(const ELFO *Obj) override;
    361   void printGroupSections(const ELFFile<ELFT> *Obj) override;
    362   void printRelocations(const ELFO *Obj) override;
    363   void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
    364   void printSections(const ELFO *Obj) override;
    365   void printSymbols(const ELFO *Obj) override;
    366   void printDynamicSymbols(const ELFO *Obj) override;
    367   void printDynamicRelocations(const ELFO *Obj) override;
    368   void printProgramHeaders(const ELFO *Obj) override;
    369   void printHashHistogram(const ELFFile<ELFT> *Obj) override;
    370 
    371 private:
    372   void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab);
    373   void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
    374   void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
    375                    StringRef StrTable, bool IsDynamic) override;
    376   ScopedPrinter &W;
    377 };
    378 
    379 } // namespace
    380 
    381 namespace llvm {
    382 
    383 template <class ELFT>
    384 static std::error_code createELFDumper(const ELFFile<ELFT> *Obj,
    385                                        ScopedPrinter &Writer,
    386                                        std::unique_ptr<ObjDumper> &Result) {
    387   Result.reset(new ELFDumper<ELFT>(Obj, Writer));
    388   return readobj_error::success;
    389 }
    390 
    391 std::error_code createELFDumper(const object::ObjectFile *Obj,
    392                                 ScopedPrinter &Writer,
    393                                 std::unique_ptr<ObjDumper> &Result) {
    394   // Little-endian 32-bit
    395   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
    396     return createELFDumper(ELFObj->getELFFile(), Writer, Result);
    397 
    398   // Big-endian 32-bit
    399   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
    400     return createELFDumper(ELFObj->getELFFile(), Writer, Result);
    401 
    402   // Little-endian 64-bit
    403   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
    404     return createELFDumper(ELFObj->getELFFile(), Writer, Result);
    405 
    406   // Big-endian 64-bit
    407   if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
    408     return createELFDumper(ELFObj->getELFFile(), Writer, Result);
    409 
    410   return readobj_error::unsupported_obj_file_format;
    411 }
    412 
    413 } // namespace llvm
    414 
    415 // Iterate through the versions needed section, and place each Elf_Vernaux
    416 // in the VersionMap according to its index.
    417 template <class ELFT>
    418 void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
    419   unsigned vn_size = sec->sh_size;  // Size of section in bytes
    420   unsigned vn_count = sec->sh_info; // Number of Verneed entries
    421   const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
    422   const char *sec_end = sec_start + vn_size;
    423   // The first Verneed entry is at the start of the section.
    424   const char *p = sec_start;
    425   for (unsigned i = 0; i < vn_count; i++) {
    426     if (p + sizeof(Elf_Verneed) > sec_end)
    427       report_fatal_error("Section ended unexpectedly while scanning "
    428                          "version needed records.");
    429     const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
    430     if (vn->vn_version != ELF::VER_NEED_CURRENT)
    431       report_fatal_error("Unexpected verneed version");
    432     // Iterate through the Vernaux entries
    433     const char *paux = p + vn->vn_aux;
    434     for (unsigned j = 0; j < vn->vn_cnt; j++) {
    435       if (paux + sizeof(Elf_Vernaux) > sec_end)
    436         report_fatal_error("Section ended unexpected while scanning auxiliary "
    437                            "version needed records.");
    438       const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
    439       size_t index = vna->vna_other & ELF::VERSYM_VERSION;
    440       if (index >= VersionMap.size())
    441         VersionMap.resize(index + 1);
    442       VersionMap[index] = VersionMapEntry(vna);
    443       paux += vna->vna_next;
    444     }
    445     p += vn->vn_next;
    446   }
    447 }
    448 
    449 // Iterate through the version definitions, and place each Elf_Verdef
    450 // in the VersionMap according to its index.
    451 template <class ELFT>
    452 void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
    453   unsigned vd_size = sec->sh_size;  // Size of section in bytes
    454   unsigned vd_count = sec->sh_info; // Number of Verdef entries
    455   const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
    456   const char *sec_end = sec_start + vd_size;
    457   // The first Verdef entry is at the start of the section.
    458   const char *p = sec_start;
    459   for (unsigned i = 0; i < vd_count; i++) {
    460     if (p + sizeof(Elf_Verdef) > sec_end)
    461       report_fatal_error("Section ended unexpectedly while scanning "
    462                          "version definitions.");
    463     const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
    464     if (vd->vd_version != ELF::VER_DEF_CURRENT)
    465       report_fatal_error("Unexpected verdef version");
    466     size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
    467     if (index >= VersionMap.size())
    468       VersionMap.resize(index + 1);
    469     VersionMap[index] = VersionMapEntry(vd);
    470     p += vd->vd_next;
    471   }
    472 }
    473 
    474 template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const {
    475   // If there is no dynamic symtab or version table, there is nothing to do.
    476   if (!DynSymRegion.Addr || !dot_gnu_version_sec)
    477     return;
    478 
    479   // Has the VersionMap already been loaded?
    480   if (VersionMap.size() > 0)
    481     return;
    482 
    483   // The first two version indexes are reserved.
    484   // Index 0 is LOCAL, index 1 is GLOBAL.
    485   VersionMap.push_back(VersionMapEntry());
    486   VersionMap.push_back(VersionMapEntry());
    487 
    488   if (dot_gnu_version_d_sec)
    489     LoadVersionDefs(dot_gnu_version_d_sec);
    490 
    491   if (dot_gnu_version_r_sec)
    492     LoadVersionNeeds(dot_gnu_version_r_sec);
    493 }
    494 
    495 template <typename ELFO, class ELFT>
    496 static void printVersionSymbolSection(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
    497                                       const typename ELFO::Elf_Shdr *Sec,
    498                                       ScopedPrinter &W) {
    499   DictScope SS(W, "Version symbols");
    500   if (!Sec)
    501     return;
    502   StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
    503   W.printNumber("Section Name", Name, Sec->sh_name);
    504   W.printHex("Address", Sec->sh_addr);
    505   W.printHex("Offset", Sec->sh_offset);
    506   W.printNumber("Link", Sec->sh_link);
    507 
    508   const uint8_t *P = (const uint8_t *)Obj->base() + Sec->sh_offset;
    509   StringRef StrTable = Dumper->getDynamicStringTable();
    510 
    511   // Same number of entries in the dynamic symbol table (DT_SYMTAB).
    512   ListScope Syms(W, "Symbols");
    513   for (const typename ELFO::Elf_Sym &Sym : Dumper->dynamic_symbols()) {
    514     DictScope S(W, "Symbol");
    515     std::string FullSymbolName =
    516         Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */);
    517     W.printNumber("Version", *P);
    518     W.printString("Name", FullSymbolName);
    519     P += sizeof(typename ELFO::Elf_Half);
    520   }
    521 }
    522 
    523 static const EnumEntry<unsigned> SymVersionFlags[] = {
    524     {"Base", "BASE", VER_FLG_BASE},
    525     {"Weak", "WEAK", VER_FLG_WEAK},
    526     {"Info", "INFO", VER_FLG_INFO}};
    527 
    528 template <typename ELFO, class ELFT>
    529 static void printVersionDefinitionSection(ELFDumper<ELFT> *Dumper,
    530                                           const ELFO *Obj,
    531                                           const typename ELFO::Elf_Shdr *Sec,
    532                                           ScopedPrinter &W) {
    533   typedef typename ELFO::Elf_Verdef VerDef;
    534   typedef typename ELFO::Elf_Verdaux VerdAux;
    535 
    536   DictScope SD(W, "SHT_GNU_verdef");
    537   if (!Sec)
    538     return;
    539 
    540   // The number of entries in the section SHT_GNU_verdef
    541   // is determined by DT_VERDEFNUM tag.
    542   unsigned VerDefsNum = 0;
    543   for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table()) {
    544     if (Dyn.d_tag == DT_VERDEFNUM)
    545       VerDefsNum = Dyn.d_un.d_val;
    546   }
    547   const uint8_t *SecStartAddress =
    548       (const uint8_t *)Obj->base() + Sec->sh_offset;
    549   const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
    550   const uint8_t *P = SecStartAddress;
    551   const typename ELFO::Elf_Shdr *StrTab =
    552       unwrapOrError(Obj->getSection(Sec->sh_link));
    553 
    554   while (VerDefsNum--) {
    555     if (P + sizeof(VerDef) > SecEndAddress)
    556       report_fatal_error("invalid offset in the section");
    557 
    558     auto *VD = reinterpret_cast<const VerDef *>(P);
    559     DictScope Def(W, "Definition");
    560     W.printNumber("Version", VD->vd_version);
    561     W.printEnum("Flags", VD->vd_flags, makeArrayRef(SymVersionFlags));
    562     W.printNumber("Index", VD->vd_ndx);
    563     W.printNumber("Hash", VD->vd_hash);
    564     W.printString("Name",
    565                   StringRef((const char *)(Obj->base() + StrTab->sh_offset +
    566                                            VD->getAux()->vda_name)));
    567     if (!VD->vd_cnt)
    568       report_fatal_error("at least one definition string must exist");
    569     if (VD->vd_cnt > 2)
    570       report_fatal_error("more than one predecessor is not expected");
    571 
    572     if (VD->vd_cnt == 2) {
    573       const uint8_t *PAux = P + VD->vd_aux + VD->getAux()->vda_next;
    574       const VerdAux *Aux = reinterpret_cast<const VerdAux *>(PAux);
    575       W.printString("Predecessor",
    576                     StringRef((const char *)(Obj->base() + StrTab->sh_offset +
    577                                              Aux->vda_name)));
    578     }
    579 
    580     P += VD->vd_next;
    581   }
    582 }
    583 
    584 template <typename ELFO, class ELFT>
    585 static void printVersionDependencySection(ELFDumper<ELFT> *Dumper,
    586                                           const ELFO *Obj,
    587                                           const typename ELFO::Elf_Shdr *Sec,
    588                                           ScopedPrinter &W) {
    589   typedef typename ELFO::Elf_Verneed VerNeed;
    590   typedef typename ELFO::Elf_Vernaux VernAux;
    591 
    592   DictScope SD(W, "SHT_GNU_verneed");
    593   if (!Sec)
    594     return;
    595 
    596   unsigned VerNeedNum = 0;
    597   for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table())
    598     if (Dyn.d_tag == DT_VERNEEDNUM)
    599       VerNeedNum = Dyn.d_un.d_val;
    600 
    601   const uint8_t *SecData = (const uint8_t *)Obj->base() + Sec->sh_offset;
    602   const typename ELFO::Elf_Shdr *StrTab =
    603       unwrapOrError(Obj->getSection(Sec->sh_link));
    604 
    605   const uint8_t *P = SecData;
    606   for (unsigned I = 0; I < VerNeedNum; ++I) {
    607     const VerNeed *Need = reinterpret_cast<const VerNeed *>(P);
    608     DictScope Entry(W, "Dependency");
    609     W.printNumber("Version", Need->vn_version);
    610     W.printNumber("Count", Need->vn_cnt);
    611     W.printString("FileName",
    612                   StringRef((const char *)(Obj->base() + StrTab->sh_offset +
    613                                            Need->vn_file)));
    614 
    615     const uint8_t *PAux = P + Need->vn_aux;
    616     for (unsigned J = 0; J < Need->vn_cnt; ++J) {
    617       const VernAux *Aux = reinterpret_cast<const VernAux *>(PAux);
    618       DictScope Entry(W, "Entry");
    619       W.printNumber("Hash", Aux->vna_hash);
    620       W.printEnum("Flags", Aux->vna_flags, makeArrayRef(SymVersionFlags));
    621       W.printNumber("Index", Aux->vna_other);
    622       W.printString("Name",
    623                     StringRef((const char *)(Obj->base() + StrTab->sh_offset +
    624                                              Aux->vna_name)));
    625       PAux += Aux->vna_next;
    626     }
    627     P += Need->vn_next;
    628   }
    629 }
    630 
    631 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
    632   // Dump version symbol section.
    633   printVersionSymbolSection(this, Obj, dot_gnu_version_sec, W);
    634 
    635   // Dump version definition section.
    636   printVersionDefinitionSection(this, Obj, dot_gnu_version_d_sec, W);
    637 
    638   // Dump version dependency section.
    639   printVersionDependencySection(this, Obj, dot_gnu_version_r_sec, W);
    640 }
    641 
    642 template <typename ELFT>
    643 StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
    644                                             const Elf_Sym *symb,
    645                                             bool &IsDefault) const {
    646   // This is a dynamic symbol. Look in the GNU symbol version table.
    647   if (!dot_gnu_version_sec) {
    648     // No version table.
    649     IsDefault = false;
    650     return StringRef("");
    651   }
    652 
    653   // Determine the position in the symbol table of this entry.
    654   size_t entry_index = (reinterpret_cast<uintptr_t>(symb) -
    655                         reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) /
    656                        sizeof(Elf_Sym);
    657 
    658   // Get the corresponding version index entry
    659   const Elf_Versym *vs =
    660       Obj->template getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
    661   size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
    662 
    663   // Special markers for unversioned symbols.
    664   if (version_index == ELF::VER_NDX_LOCAL ||
    665       version_index == ELF::VER_NDX_GLOBAL) {
    666     IsDefault = false;
    667     return StringRef("");
    668   }
    669 
    670   // Lookup this symbol in the version table
    671   LoadVersionMap();
    672   if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
    673     reportError("Invalid version entry");
    674   const VersionMapEntry &entry = VersionMap[version_index];
    675 
    676   // Get the version name string
    677   size_t name_offset;
    678   if (entry.isVerdef()) {
    679     // The first Verdaux entry holds the name.
    680     name_offset = entry.getVerdef()->getAux()->vda_name;
    681     IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
    682   } else {
    683     name_offset = entry.getVernaux()->vna_name;
    684     IsDefault = false;
    685   }
    686   if (name_offset >= StrTab.size())
    687     reportError("Invalid string offset");
    688   return StringRef(StrTab.data() + name_offset);
    689 }
    690 
    691 template <typename ELFT>
    692 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
    693                                                StringRef StrTable,
    694                                                bool IsDynamic) const {
    695   StringRef SymbolName = unwrapOrError(Symbol->getName(StrTable));
    696   if (!IsDynamic)
    697     return SymbolName;
    698 
    699   std::string FullSymbolName(SymbolName);
    700 
    701   bool IsDefault;
    702   StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
    703   FullSymbolName += (IsDefault ? "@@" : "@");
    704   FullSymbolName += Version;
    705   return FullSymbolName;
    706 }
    707 
    708 template <typename ELFO>
    709 static void
    710 getSectionNameIndex(const ELFO &Obj, const typename ELFO::Elf_Sym *Symbol,
    711                     const typename ELFO::Elf_Sym *FirstSym,
    712                     ArrayRef<typename ELFO::Elf_Word> ShndxTable,
    713                     StringRef &SectionName, unsigned &SectionIndex) {
    714   SectionIndex = Symbol->st_shndx;
    715   if (Symbol->isUndefined())
    716     SectionName = "Undefined";
    717   else if (Symbol->isProcessorSpecific())
    718     SectionName = "Processor Specific";
    719   else if (Symbol->isOSSpecific())
    720     SectionName = "Operating System Specific";
    721   else if (Symbol->isAbsolute())
    722     SectionName = "Absolute";
    723   else if (Symbol->isCommon())
    724     SectionName = "Common";
    725   else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
    726     SectionName = "Reserved";
    727   else {
    728     if (SectionIndex == SHN_XINDEX)
    729       SectionIndex =
    730           Obj.getExtendedSymbolTableIndex(Symbol, FirstSym, ShndxTable);
    731     const typename ELFO::Elf_Shdr *Sec =
    732         unwrapOrError(Obj.getSection(SectionIndex));
    733     SectionName = unwrapOrError(Obj.getSectionName(Sec));
    734   }
    735 }
    736 
    737 template <class ELFO>
    738 static const typename ELFO::Elf_Shdr *
    739 findNotEmptySectionByAddress(const ELFO *Obj, uint64_t Addr) {
    740   for (const auto &Shdr : Obj->sections())
    741     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
    742       return &Shdr;
    743   return nullptr;
    744 }
    745 
    746 template <class ELFO>
    747 static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj,
    748                                                         StringRef Name) {
    749   for (const auto &Shdr : Obj.sections()) {
    750     if (Name == unwrapOrError(Obj.getSectionName(&Shdr)))
    751       return &Shdr;
    752   }
    753   return nullptr;
    754 }
    755 
    756 static const EnumEntry<unsigned> ElfClass[] = {
    757   {"None",   "none",   ELF::ELFCLASSNONE},
    758   {"32-bit", "ELF32",  ELF::ELFCLASS32},
    759   {"64-bit", "ELF64",  ELF::ELFCLASS64},
    760 };
    761 
    762 static const EnumEntry<unsigned> ElfDataEncoding[] = {
    763   {"None",         "none",                          ELF::ELFDATANONE},
    764   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
    765   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
    766 };
    767 
    768 static const EnumEntry<unsigned> ElfObjectFileType[] = {
    769   {"None",         "NONE (none)",              ELF::ET_NONE},
    770   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
    771   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
    772   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
    773   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
    774 };
    775 
    776 static const EnumEntry<unsigned> ElfOSABI[] = {
    777   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
    778   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
    779   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
    780   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
    781   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
    782   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
    783   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
    784   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
    785   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
    786   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
    787   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
    788   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
    789   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
    790   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
    791   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
    792   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
    793   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
    794   {"C6000_ELFABI", "Bare-metal C6000",     ELF::ELFOSABI_C6000_ELFABI},
    795   {"C6000_LINUX",  "Linux C6000",          ELF::ELFOSABI_C6000_LINUX},
    796   {"ARM",          "ARM",                  ELF::ELFOSABI_ARM},
    797   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
    798 };
    799 
    800 static const EnumEntry<unsigned> ElfMachineType[] = {
    801   ENUM_ENT(EM_NONE,          "None"),
    802   ENUM_ENT(EM_M32,           "WE32100"),
    803   ENUM_ENT(EM_SPARC,         "Sparc"),
    804   ENUM_ENT(EM_386,           "Intel 80386"),
    805   ENUM_ENT(EM_68K,           "MC68000"),
    806   ENUM_ENT(EM_88K,           "MC88000"),
    807   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
    808   ENUM_ENT(EM_860,           "Intel 80860"),
    809   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
    810   ENUM_ENT(EM_S370,          "IBM System/370"),
    811   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
    812   ENUM_ENT(EM_PARISC,        "HPPA"),
    813   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
    814   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
    815   ENUM_ENT(EM_960,           "Intel 80960"),
    816   ENUM_ENT(EM_PPC,           "PowerPC"),
    817   ENUM_ENT(EM_PPC64,         "PowerPC64"),
    818   ENUM_ENT(EM_S390,          "IBM S/390"),
    819   ENUM_ENT(EM_SPU,           "SPU"),
    820   ENUM_ENT(EM_V800,          "NEC V800 series"),
    821   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
    822   ENUM_ENT(EM_RH32,          "TRW RH-32"),
    823   ENUM_ENT(EM_RCE,           "Motorola RCE"),
    824   ENUM_ENT(EM_ARM,           "ARM"),
    825   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
    826   ENUM_ENT(EM_SH,            "Hitachi SH"),
    827   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
    828   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
    829   ENUM_ENT(EM_ARC,           "ARC"),
    830   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
    831   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
    832   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
    833   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
    834   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
    835   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
    836   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
    837   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
    838   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
    839   ENUM_ENT(EM_PCP,           "Siemens PCP"),
    840   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
    841   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
    842   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
    843   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
    844   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
    845   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
    846   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
    847   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
    848   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
    849   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
    850   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
    851   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
    852   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
    853   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
    854   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
    855   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
    856   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
    857   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
    858   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
    859   ENUM_ENT(EM_VAX,           "Digital VAX"),
    860   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
    861   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
    862   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
    863   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
    864   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
    865   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
    866   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
    867   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
    868   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
    869   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
    870   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
    871   ENUM_ENT(EM_V850,          "NEC v850"),
    872   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
    873   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
    874   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
    875   ENUM_ENT(EM_PJ,            "picoJava"),
    876   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
    877   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
    878   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
    879   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
    880   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
    881   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
    882   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
    883   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
    884   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
    885   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
    886   ENUM_ENT(EM_MAX,           "MAX Processor"),
    887   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
    888   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
    889   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
    890   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
    891   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
    892   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
    893   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
    894   ENUM_ENT(EM_UNICORE,       "Unicore"),
    895   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
    896   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
    897   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
    898   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
    899   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
    900   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
    901   ENUM_ENT(EM_M16C,          "Renesas M16C"),
    902   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
    903   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
    904   ENUM_ENT(EM_M32C,          "Renesas M32C"),
    905   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
    906   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
    907   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
    908   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
    909   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
    910   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
    911   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
    912   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
    913   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
    914   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
    915   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
    916   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
    917   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
    918   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
    919   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
    920   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
    921   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
    922   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
    923   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
    924   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
    925   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
    926   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
    927   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
    928   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
    929   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
    930   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
    931   ENUM_ENT(EM_RX,            "Renesas RX"),
    932   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
    933   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
    934   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
    935   ENUM_ENT(EM_CR16,          "Xilinx MicroBlaze"),
    936   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
    937   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
    938   ENUM_ENT(EM_L10M,          "EM_L10M"),
    939   ENUM_ENT(EM_K10M,          "EM_K10M"),
    940   ENUM_ENT(EM_AARCH64,       "AArch64"),
    941   ENUM_ENT(EM_AVR32,         "Atmel AVR 8-bit microcontroller"),
    942   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
    943   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
    944   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
    945   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
    946   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
    947   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
    948   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
    949   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
    950   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
    951   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
    952   ENUM_ENT(EM_RL78,          "Renesas RL78"),
    953   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
    954   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
    955   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
    956   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
    957   ENUM_ENT(EM_WEBASSEMBLY,   "EM_WEBASSEMBLY"),
    958   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
    959 };
    960 
    961 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
    962     {"Local",  "LOCAL",  ELF::STB_LOCAL},
    963     {"Global", "GLOBAL", ELF::STB_GLOBAL},
    964     {"Weak",   "WEAK",   ELF::STB_WEAK},
    965     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
    966 
    967 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
    968     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
    969     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
    970     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
    971     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
    972 
    973 static const EnumEntry<unsigned> ElfSymbolTypes[] = {
    974     {"None",      "NOTYPE",  ELF::STT_NOTYPE},
    975     {"Object",    "OBJECT",  ELF::STT_OBJECT},
    976     {"Function",  "FUNC",    ELF::STT_FUNC},
    977     {"Section",   "SECTION", ELF::STT_SECTION},
    978     {"File",      "FILE",    ELF::STT_FILE},
    979     {"Common",    "COMMON",  ELF::STT_COMMON},
    980     {"TLS",       "TLS",     ELF::STT_TLS},
    981     {"GNU_IFunc", "IFUNC",   ELF::STT_GNU_IFUNC}};
    982 
    983 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
    984   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL },
    985   { "AMDGPU_HSA_INDIRECT_FUNCTION", ELF::STT_AMDGPU_HSA_INDIRECT_FUNCTION },
    986   { "AMDGPU_HSA_METADATA",          ELF::STT_AMDGPU_HSA_METADATA }
    987 };
    988 
    989 static const char *getElfSectionType(unsigned Arch, unsigned Type) {
    990   switch (Arch) {
    991   case ELF::EM_ARM:
    992     switch (Type) {
    993     LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_EXIDX);
    994     LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
    995     LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
    996     LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
    997     LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
    998     }
    999   case ELF::EM_HEXAGON:
   1000     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
   1001   case ELF::EM_X86_64:
   1002     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
   1003   case ELF::EM_MIPS:
   1004   case ELF::EM_MIPS_RS3_LE:
   1005     switch (Type) {
   1006     LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
   1007     LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
   1008     LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
   1009     }
   1010   }
   1011 
   1012   switch (Type) {
   1013   LLVM_READOBJ_ENUM_CASE(ELF, SHT_NULL              );
   1014   LLVM_READOBJ_ENUM_CASE(ELF, SHT_PROGBITS          );
   1015   LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB            );
   1016   LLVM_READOBJ_ENUM_CASE(ELF, SHT_STRTAB            );
   1017   LLVM_READOBJ_ENUM_CASE(ELF, SHT_RELA              );
   1018   LLVM_READOBJ_ENUM_CASE(ELF, SHT_HASH              );
   1019   LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNAMIC           );
   1020   LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOTE              );
   1021   LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOBITS            );
   1022   LLVM_READOBJ_ENUM_CASE(ELF, SHT_REL               );
   1023   LLVM_READOBJ_ENUM_CASE(ELF, SHT_SHLIB             );
   1024   LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNSYM            );
   1025   LLVM_READOBJ_ENUM_CASE(ELF, SHT_INIT_ARRAY        );
   1026   LLVM_READOBJ_ENUM_CASE(ELF, SHT_FINI_ARRAY        );
   1027   LLVM_READOBJ_ENUM_CASE(ELF, SHT_PREINIT_ARRAY     );
   1028   LLVM_READOBJ_ENUM_CASE(ELF, SHT_GROUP             );
   1029   LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX      );
   1030   LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES    );
   1031   LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_HASH          );
   1032   LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verdef        );
   1033   LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verneed       );
   1034   LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_versym        );
   1035   default: return "";
   1036   }
   1037 }
   1038 
   1039 static const char *getGroupType(uint32_t Flag) {
   1040   if (Flag & ELF::GRP_COMDAT)
   1041     return "COMDAT";
   1042   else
   1043     return "(unknown)";
   1044 }
   1045 
   1046 static const EnumEntry<unsigned> ElfSectionFlags[] = {
   1047   ENUM_ENT(SHF_WRITE,            "W"),
   1048   ENUM_ENT(SHF_ALLOC,            "A"),
   1049   ENUM_ENT(SHF_EXCLUDE,          "E"),
   1050   ENUM_ENT(SHF_EXECINSTR,        "X"),
   1051   ENUM_ENT(SHF_MERGE,            "M"),
   1052   ENUM_ENT(SHF_STRINGS,          "S"),
   1053   ENUM_ENT(SHF_INFO_LINK,        "I"),
   1054   ENUM_ENT(SHF_LINK_ORDER,       "L"),
   1055   ENUM_ENT(SHF_OS_NONCONFORMING, "o"),
   1056   ENUM_ENT(SHF_GROUP,            "G"),
   1057   ENUM_ENT(SHF_TLS,              "T"),
   1058   ENUM_ENT(SHF_MASKOS,           "o"),
   1059   ENUM_ENT(SHF_MASKPROC,         "p"),
   1060   ENUM_ENT_1(SHF_COMPRESSED),
   1061 };
   1062 
   1063 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
   1064   LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
   1065   LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION)
   1066 };
   1067 
   1068 static const EnumEntry<unsigned> ElfAMDGPUSectionFlags[] = {
   1069   LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_GLOBAL),
   1070   LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_READONLY),
   1071   LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_CODE),
   1072   LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_AGENT)
   1073 };
   1074 
   1075 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
   1076   LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL)
   1077 };
   1078 
   1079 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
   1080   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES),
   1081   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES  ),
   1082   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL  ),
   1083   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP),
   1084   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL  ),
   1085   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE  ),
   1086   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR   ),
   1087   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING )
   1088 };
   1089 
   1090 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
   1091   LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE)
   1092 };
   1093 
   1094 static std::string getGNUFlags(uint64_t Flags) {
   1095   std::string Str;
   1096   for (auto Entry : ElfSectionFlags) {
   1097     uint64_t Flag = Entry.Value & Flags;
   1098     Flags &= ~Entry.Value;
   1099     switch (Flag) {
   1100     case ELF::SHF_WRITE:
   1101     case ELF::SHF_ALLOC:
   1102     case ELF::SHF_EXECINSTR:
   1103     case ELF::SHF_MERGE:
   1104     case ELF::SHF_STRINGS:
   1105     case ELF::SHF_INFO_LINK:
   1106     case ELF::SHF_LINK_ORDER:
   1107     case ELF::SHF_OS_NONCONFORMING:
   1108     case ELF::SHF_GROUP:
   1109     case ELF::SHF_TLS:
   1110     case ELF::SHF_EXCLUDE:
   1111       Str += Entry.AltName;
   1112       break;
   1113     default:
   1114       if (Flag & ELF::SHF_MASKOS)
   1115         Str += "o";
   1116       else if (Flag & ELF::SHF_MASKPROC)
   1117         Str += "p";
   1118       else if (Flag)
   1119         Str += "x";
   1120     }
   1121   }
   1122   return Str;
   1123 }
   1124 
   1125 static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
   1126   // Check potentially overlapped processor-specific
   1127   // program header type.
   1128   switch (Arch) {
   1129   case ELF::EM_AMDGPU:
   1130     switch (Type) {
   1131     LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM);
   1132     LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT);
   1133     LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_READONLY_AGENT);
   1134     LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_CODE_AGENT);
   1135     }
   1136   case ELF::EM_ARM:
   1137     switch (Type) {
   1138     LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX);
   1139     }
   1140   case ELF::EM_MIPS:
   1141   case ELF::EM_MIPS_RS3_LE:
   1142     switch (Type) {
   1143     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
   1144     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
   1145     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
   1146     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
   1147     }
   1148   }
   1149 
   1150   switch (Type) {
   1151   LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL   );
   1152   LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD   );
   1153   LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
   1154   LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
   1155   LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE   );
   1156   LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB  );
   1157   LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR   );
   1158   LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS    );
   1159 
   1160   LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
   1161   LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
   1162 
   1163   LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
   1164   LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
   1165   default: return "";
   1166   }
   1167 }
   1168 
   1169 static std::string getElfPtType(unsigned Arch, unsigned Type) {
   1170   switch (Type) {
   1171     LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
   1172     LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
   1173     LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
   1174     LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
   1175     LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
   1176     LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
   1177     LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
   1178     LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
   1179     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
   1180     LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
   1181     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
   1182     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
   1183   default:
   1184     // All machine specific PT_* types
   1185     switch (Arch) {
   1186     case ELF::EM_AMDGPU:
   1187       switch (Type) {
   1188         LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM);
   1189         LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT);
   1190         LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_READONLY_AGENT);
   1191         LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_CODE_AGENT);
   1192       }
   1193       return "";
   1194     case ELF::EM_ARM:
   1195       if (Type == ELF::PT_ARM_EXIDX)
   1196         return "EXIDX";
   1197       return "";
   1198     case ELF::EM_MIPS:
   1199     case ELF::EM_MIPS_RS3_LE:
   1200       switch (Type) {
   1201       case PT_MIPS_REGINFO:
   1202         return "REGINFO";
   1203       case PT_MIPS_RTPROC:
   1204         return "RTPROC";
   1205       case PT_MIPS_OPTIONS:
   1206         return "OPTIONS";
   1207       case PT_MIPS_ABIFLAGS:
   1208         return "ABIFLAGS";
   1209       }
   1210       return "";
   1211     }
   1212   }
   1213   return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
   1214 }
   1215 
   1216 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
   1217   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
   1218   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
   1219   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
   1220 };
   1221 
   1222 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
   1223   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NOREORDER),
   1224   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_PIC),
   1225   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_CPIC),
   1226   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI2),
   1227   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_32BITMODE),
   1228   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_FP64),
   1229   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NAN2008),
   1230   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O32),
   1231   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O64),
   1232   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI32),
   1233   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI64),
   1234   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_3900),
   1235   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4010),
   1236   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4100),
   1237   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4650),
   1238   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4120),
   1239   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4111),
   1240   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_SB1),
   1241   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON),
   1242   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_XLR),
   1243   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON2),
   1244   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON3),
   1245   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5400),
   1246   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5900),
   1247   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5500),
   1248   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_9000),
   1249   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2E),
   1250   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2F),
   1251   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS3A),
   1252   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MICROMIPS),
   1253   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_M16),
   1254   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_MDMX),
   1255   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_1),
   1256   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_2),
   1257   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_3),
   1258   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_4),
   1259   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_5),
   1260   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32),
   1261   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64),
   1262   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R2),
   1263   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R2),
   1264   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R6),
   1265   LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R6)
   1266 };
   1267 
   1268 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
   1269   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
   1270   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
   1271   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
   1272 };
   1273 
   1274 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
   1275   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
   1276   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
   1277   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
   1278   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
   1279 };
   1280 
   1281 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
   1282   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
   1283   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
   1284   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
   1285 };
   1286 
   1287 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
   1288   switch (Odk) {
   1289   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
   1290   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
   1291   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
   1292   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
   1293   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
   1294   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
   1295   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
   1296   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
   1297   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
   1298   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
   1299   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
   1300   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
   1301   default:
   1302     return "Unknown";
   1303   }
   1304 }
   1305 
   1306 template <typename ELFT>
   1307 ELFDumper<ELFT>::ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer)
   1308     : ObjDumper(Writer), Obj(Obj) {
   1309 
   1310   SmallVector<const Elf_Phdr *, 4> LoadSegments;
   1311   for (const Elf_Phdr &Phdr : Obj->program_headers()) {
   1312     if (Phdr.p_type == ELF::PT_DYNAMIC) {
   1313       DynamicTable = createDRIFrom(&Phdr, sizeof(Elf_Dyn));
   1314       continue;
   1315     }
   1316     if (Phdr.p_type != ELF::PT_LOAD || Phdr.p_filesz == 0)
   1317       continue;
   1318     LoadSegments.push_back(&Phdr);
   1319   }
   1320 
   1321   for (const Elf_Shdr &Sec : Obj->sections()) {
   1322     switch (Sec.sh_type) {
   1323     case ELF::SHT_SYMTAB:
   1324       if (DotSymtabSec != nullptr)
   1325         reportError("Multilpe SHT_SYMTAB");
   1326       DotSymtabSec = &Sec;
   1327       break;
   1328     case ELF::SHT_DYNSYM:
   1329       if (DynSymRegion.Size)
   1330         reportError("Multilpe SHT_DYNSYM");
   1331       DynSymRegion = createDRIFrom(&Sec);
   1332       // This is only used (if Elf_Shdr present)for naming section in GNU style
   1333       DynSymtabName = unwrapOrError(Obj->getSectionName(&Sec));
   1334       break;
   1335     case ELF::SHT_SYMTAB_SHNDX:
   1336       ShndxTable = unwrapOrError(Obj->getSHNDXTable(Sec));
   1337       break;
   1338     case ELF::SHT_GNU_versym:
   1339       if (dot_gnu_version_sec != nullptr)
   1340         reportError("Multiple SHT_GNU_versym");
   1341       dot_gnu_version_sec = &Sec;
   1342       break;
   1343     case ELF::SHT_GNU_verdef:
   1344       if (dot_gnu_version_d_sec != nullptr)
   1345         reportError("Multiple SHT_GNU_verdef");
   1346       dot_gnu_version_d_sec = &Sec;
   1347       break;
   1348     case ELF::SHT_GNU_verneed:
   1349       if (dot_gnu_version_r_sec != nullptr)
   1350         reportError("Multilpe SHT_GNU_verneed");
   1351       dot_gnu_version_r_sec = &Sec;
   1352       break;
   1353     }
   1354   }
   1355 
   1356   parseDynamicTable(LoadSegments);
   1357 
   1358   if (opts::Output == opts::GNU)
   1359     ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
   1360   else
   1361     ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
   1362 }
   1363 
   1364 template <typename ELFT>
   1365 void ELFDumper<ELFT>::parseDynamicTable(
   1366     ArrayRef<const Elf_Phdr *> LoadSegments) {
   1367   auto toMappedAddr = [&](uint64_t VAddr) -> const uint8_t * {
   1368     const Elf_Phdr *const *I = std::upper_bound(
   1369         LoadSegments.begin(), LoadSegments.end(), VAddr, compareAddr<ELFT>);
   1370     if (I == LoadSegments.begin())
   1371       report_fatal_error("Virtual address is not in any segment");
   1372     --I;
   1373     const Elf_Phdr &Phdr = **I;
   1374     uint64_t Delta = VAddr - Phdr.p_vaddr;
   1375     if (Delta >= Phdr.p_filesz)
   1376       report_fatal_error("Virtual address is not in any segment");
   1377     return Obj->base() + Phdr.p_offset + Delta;
   1378   };
   1379 
   1380   uint64_t SONameOffset = 0;
   1381   const char *StringTableBegin = nullptr;
   1382   uint64_t StringTableSize = 0;
   1383   for (const Elf_Dyn &Dyn : dynamic_table()) {
   1384     switch (Dyn.d_tag) {
   1385     case ELF::DT_HASH:
   1386       HashTable =
   1387           reinterpret_cast<const Elf_Hash *>(toMappedAddr(Dyn.getPtr()));
   1388       break;
   1389     case ELF::DT_GNU_HASH:
   1390       GnuHashTable =
   1391           reinterpret_cast<const Elf_GnuHash *>(toMappedAddr(Dyn.getPtr()));
   1392       break;
   1393     case ELF::DT_STRTAB:
   1394       StringTableBegin = (const char *)toMappedAddr(Dyn.getPtr());
   1395       break;
   1396     case ELF::DT_STRSZ:
   1397       StringTableSize = Dyn.getVal();
   1398       break;
   1399     case ELF::DT_SYMTAB:
   1400       DynSymRegion.Addr = toMappedAddr(Dyn.getPtr());
   1401       DynSymRegion.EntSize = sizeof(Elf_Sym);
   1402       break;
   1403     case ELF::DT_RELA:
   1404       DynRelaRegion.Addr = toMappedAddr(Dyn.getPtr());
   1405       break;
   1406     case ELF::DT_RELASZ:
   1407       DynRelaRegion.Size = Dyn.getVal();
   1408       break;
   1409     case ELF::DT_RELAENT:
   1410       DynRelaRegion.EntSize = Dyn.getVal();
   1411       break;
   1412     case ELF::DT_SONAME:
   1413       SONameOffset = Dyn.getVal();
   1414       break;
   1415     case ELF::DT_REL:
   1416       DynRelRegion.Addr = toMappedAddr(Dyn.getPtr());
   1417       break;
   1418     case ELF::DT_RELSZ:
   1419       DynRelRegion.Size = Dyn.getVal();
   1420       break;
   1421     case ELF::DT_RELENT:
   1422       DynRelRegion.EntSize = Dyn.getVal();
   1423       break;
   1424     case ELF::DT_PLTREL:
   1425       if (Dyn.getVal() == DT_REL)
   1426         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
   1427       else if (Dyn.getVal() == DT_RELA)
   1428         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
   1429       else
   1430         reportError(Twine("unknown DT_PLTREL value of ") +
   1431                     Twine((uint64_t)Dyn.getVal()));
   1432       break;
   1433     case ELF::DT_JMPREL:
   1434       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getPtr());
   1435       break;
   1436     case ELF::DT_PLTRELSZ:
   1437       DynPLTRelRegion.Size = Dyn.getVal();
   1438       break;
   1439     }
   1440   }
   1441   if (StringTableBegin)
   1442     DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
   1443   if (SONameOffset)
   1444     SOName = getDynamicString(SONameOffset);
   1445 }
   1446 
   1447 template <typename ELFT>
   1448 typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
   1449   return DynRelRegion.getAsArrayRef<Elf_Rel>();
   1450 }
   1451 
   1452 template <typename ELFT>
   1453 typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
   1454   return DynRelaRegion.getAsArrayRef<Elf_Rela>();
   1455 }
   1456 
   1457 template<class ELFT>
   1458 void ELFDumper<ELFT>::printFileHeaders() {
   1459   ELFDumperStyle->printFileHeaders(Obj);
   1460 }
   1461 
   1462 template<class ELFT>
   1463 void ELFDumper<ELFT>::printSections() {
   1464   ELFDumperStyle->printSections(Obj);
   1465 }
   1466 
   1467 template<class ELFT>
   1468 void ELFDumper<ELFT>::printRelocations() {
   1469   ELFDumperStyle->printRelocations(Obj);
   1470 }
   1471 
   1472 template <class ELFT> void ELFDumper<ELFT>::printProgramHeaders() {
   1473   ELFDumperStyle->printProgramHeaders(Obj);
   1474 }
   1475 
   1476 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
   1477   ELFDumperStyle->printDynamicRelocations(Obj);
   1478 }
   1479 
   1480 template<class ELFT>
   1481 void ELFDumper<ELFT>::printSymbols() {
   1482   ELFDumperStyle->printSymbols(Obj);
   1483 }
   1484 
   1485 template<class ELFT>
   1486 void ELFDumper<ELFT>::printDynamicSymbols() {
   1487   ELFDumperStyle->printDynamicSymbols(Obj);
   1488 }
   1489 
   1490 template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() {
   1491   ELFDumperStyle->printHashHistogram(Obj);
   1492 }
   1493 #define LLVM_READOBJ_TYPE_CASE(name) \
   1494   case DT_##name: return #name
   1495 
   1496 static const char *getTypeString(uint64_t Type) {
   1497   switch (Type) {
   1498   LLVM_READOBJ_TYPE_CASE(BIND_NOW);
   1499   LLVM_READOBJ_TYPE_CASE(DEBUG);
   1500   LLVM_READOBJ_TYPE_CASE(FINI);
   1501   LLVM_READOBJ_TYPE_CASE(FINI_ARRAY);
   1502   LLVM_READOBJ_TYPE_CASE(FINI_ARRAYSZ);
   1503   LLVM_READOBJ_TYPE_CASE(FLAGS);
   1504   LLVM_READOBJ_TYPE_CASE(FLAGS_1);
   1505   LLVM_READOBJ_TYPE_CASE(HASH);
   1506   LLVM_READOBJ_TYPE_CASE(INIT);
   1507   LLVM_READOBJ_TYPE_CASE(INIT_ARRAY);
   1508   LLVM_READOBJ_TYPE_CASE(INIT_ARRAYSZ);
   1509   LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAY);
   1510   LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAYSZ);
   1511   LLVM_READOBJ_TYPE_CASE(JMPREL);
   1512   LLVM_READOBJ_TYPE_CASE(NEEDED);
   1513   LLVM_READOBJ_TYPE_CASE(NULL);
   1514   LLVM_READOBJ_TYPE_CASE(PLTGOT);
   1515   LLVM_READOBJ_TYPE_CASE(PLTREL);
   1516   LLVM_READOBJ_TYPE_CASE(PLTRELSZ);
   1517   LLVM_READOBJ_TYPE_CASE(REL);
   1518   LLVM_READOBJ_TYPE_CASE(RELA);
   1519   LLVM_READOBJ_TYPE_CASE(RELENT);
   1520   LLVM_READOBJ_TYPE_CASE(RELSZ);
   1521   LLVM_READOBJ_TYPE_CASE(RELAENT);
   1522   LLVM_READOBJ_TYPE_CASE(RELASZ);
   1523   LLVM_READOBJ_TYPE_CASE(RPATH);
   1524   LLVM_READOBJ_TYPE_CASE(RUNPATH);
   1525   LLVM_READOBJ_TYPE_CASE(SONAME);
   1526   LLVM_READOBJ_TYPE_CASE(STRSZ);
   1527   LLVM_READOBJ_TYPE_CASE(STRTAB);
   1528   LLVM_READOBJ_TYPE_CASE(SYMBOLIC);
   1529   LLVM_READOBJ_TYPE_CASE(SYMENT);
   1530   LLVM_READOBJ_TYPE_CASE(SYMTAB);
   1531   LLVM_READOBJ_TYPE_CASE(TEXTREL);
   1532   LLVM_READOBJ_TYPE_CASE(VERDEF);
   1533   LLVM_READOBJ_TYPE_CASE(VERDEFNUM);
   1534   LLVM_READOBJ_TYPE_CASE(VERNEED);
   1535   LLVM_READOBJ_TYPE_CASE(VERNEEDNUM);
   1536   LLVM_READOBJ_TYPE_CASE(VERSYM);
   1537   LLVM_READOBJ_TYPE_CASE(RELACOUNT);
   1538   LLVM_READOBJ_TYPE_CASE(RELCOUNT);
   1539   LLVM_READOBJ_TYPE_CASE(GNU_HASH);
   1540   LLVM_READOBJ_TYPE_CASE(TLSDESC_PLT);
   1541   LLVM_READOBJ_TYPE_CASE(TLSDESC_GOT);
   1542   LLVM_READOBJ_TYPE_CASE(MIPS_RLD_VERSION);
   1543   LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP_REL);
   1544   LLVM_READOBJ_TYPE_CASE(MIPS_FLAGS);
   1545   LLVM_READOBJ_TYPE_CASE(MIPS_BASE_ADDRESS);
   1546   LLVM_READOBJ_TYPE_CASE(MIPS_LOCAL_GOTNO);
   1547   LLVM_READOBJ_TYPE_CASE(MIPS_SYMTABNO);
   1548   LLVM_READOBJ_TYPE_CASE(MIPS_UNREFEXTNO);
   1549   LLVM_READOBJ_TYPE_CASE(MIPS_GOTSYM);
   1550   LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP);
   1551   LLVM_READOBJ_TYPE_CASE(MIPS_PLTGOT);
   1552   LLVM_READOBJ_TYPE_CASE(MIPS_OPTIONS);
   1553   default: return "unknown";
   1554   }
   1555 }
   1556 
   1557 #undef LLVM_READOBJ_TYPE_CASE
   1558 
   1559 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
   1560   { #enum, prefix##_##enum }
   1561 
   1562 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
   1563   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
   1564   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
   1565   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
   1566   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
   1567   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
   1568 };
   1569 
   1570 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
   1571   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
   1572   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
   1573   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
   1574   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
   1575   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
   1576   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
   1577   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
   1578   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
   1579   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
   1580   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
   1581   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
   1582   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
   1583   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
   1584   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
   1585   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
   1586   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
   1587   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
   1588   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
   1589   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
   1590   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
   1591   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
   1592   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
   1593   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
   1594   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
   1595   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
   1596 };
   1597 
   1598 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
   1599   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
   1600   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
   1601   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
   1602   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
   1603   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
   1604   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
   1605   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
   1606   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
   1607   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
   1608   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
   1609   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
   1610   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
   1611   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
   1612   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
   1613   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
   1614   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
   1615 };
   1616 
   1617 #undef LLVM_READOBJ_DT_FLAG_ENT
   1618 
   1619 template <typename T, typename TFlag>
   1620 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
   1621   typedef EnumEntry<TFlag> FlagEntry;
   1622   typedef SmallVector<FlagEntry, 10> FlagVector;
   1623   FlagVector SetFlags;
   1624 
   1625   for (const auto &Flag : Flags) {
   1626     if (Flag.Value == 0)
   1627       continue;
   1628 
   1629     if ((Value & Flag.Value) == Flag.Value)
   1630       SetFlags.push_back(Flag);
   1631   }
   1632 
   1633   for (const auto &Flag : SetFlags) {
   1634     OS << Flag.Name << " ";
   1635   }
   1636 }
   1637 
   1638 template <class ELFT>
   1639 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
   1640   if (Value >= DynamicStringTable.size())
   1641     reportError("Invalid dynamic string table reference");
   1642   return StringRef(DynamicStringTable.data() + Value);
   1643 }
   1644 
   1645 template <class ELFT>
   1646 void ELFDumper<ELFT>::printValue(uint64_t Type, uint64_t Value) {
   1647   raw_ostream &OS = W.getOStream();
   1648   const char* ConvChar = (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
   1649   switch (Type) {
   1650   case DT_PLTREL:
   1651     if (Value == DT_REL) {
   1652       OS << "REL";
   1653       break;
   1654     } else if (Value == DT_RELA) {
   1655       OS << "RELA";
   1656       break;
   1657     }
   1658   // Fallthrough.
   1659   case DT_PLTGOT:
   1660   case DT_HASH:
   1661   case DT_STRTAB:
   1662   case DT_SYMTAB:
   1663   case DT_RELA:
   1664   case DT_INIT:
   1665   case DT_FINI:
   1666   case DT_REL:
   1667   case DT_JMPREL:
   1668   case DT_INIT_ARRAY:
   1669   case DT_FINI_ARRAY:
   1670   case DT_PREINIT_ARRAY:
   1671   case DT_DEBUG:
   1672   case DT_VERDEF:
   1673   case DT_VERNEED:
   1674   case DT_VERSYM:
   1675   case DT_GNU_HASH:
   1676   case DT_NULL:
   1677   case DT_MIPS_BASE_ADDRESS:
   1678   case DT_MIPS_GOTSYM:
   1679   case DT_MIPS_RLD_MAP:
   1680   case DT_MIPS_RLD_MAP_REL:
   1681   case DT_MIPS_PLTGOT:
   1682   case DT_MIPS_OPTIONS:
   1683     OS << format(ConvChar, Value);
   1684     break;
   1685   case DT_RELACOUNT:
   1686   case DT_RELCOUNT:
   1687   case DT_VERDEFNUM:
   1688   case DT_VERNEEDNUM:
   1689   case DT_MIPS_RLD_VERSION:
   1690   case DT_MIPS_LOCAL_GOTNO:
   1691   case DT_MIPS_SYMTABNO:
   1692   case DT_MIPS_UNREFEXTNO:
   1693     OS << Value;
   1694     break;
   1695   case DT_PLTRELSZ:
   1696   case DT_RELASZ:
   1697   case DT_RELAENT:
   1698   case DT_STRSZ:
   1699   case DT_SYMENT:
   1700   case DT_RELSZ:
   1701   case DT_RELENT:
   1702   case DT_INIT_ARRAYSZ:
   1703   case DT_FINI_ARRAYSZ:
   1704   case DT_PREINIT_ARRAYSZ:
   1705     OS << Value << " (bytes)";
   1706     break;
   1707   case DT_NEEDED:
   1708     OS << "SharedLibrary (" << getDynamicString(Value) << ")";
   1709     break;
   1710   case DT_SONAME:
   1711     OS << "LibrarySoname (" << getDynamicString(Value) << ")";
   1712     break;
   1713   case DT_RPATH:
   1714   case DT_RUNPATH:
   1715     OS << getDynamicString(Value);
   1716     break;
   1717   case DT_MIPS_FLAGS:
   1718     printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
   1719     break;
   1720   case DT_FLAGS:
   1721     printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
   1722     break;
   1723   case DT_FLAGS_1:
   1724     printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
   1725     break;
   1726   default:
   1727     OS << format(ConvChar, Value);
   1728     break;
   1729   }
   1730 }
   1731 
   1732 template<class ELFT>
   1733 void ELFDumper<ELFT>::printUnwindInfo() {
   1734   W.startLine() << "UnwindInfo not implemented.\n";
   1735 }
   1736 
   1737 namespace {
   1738 template <> void ELFDumper<ELFType<support::little, false>>::printUnwindInfo() {
   1739   const unsigned Machine = Obj->getHeader()->e_machine;
   1740   if (Machine == EM_ARM) {
   1741     ARM::EHABI::PrinterContext<ELFType<support::little, false>> Ctx(
   1742         W, Obj, DotSymtabSec);
   1743     return Ctx.PrintUnwindInformation();
   1744   }
   1745   W.startLine() << "UnwindInfo not implemented.\n";
   1746 }
   1747 }
   1748 
   1749 template<class ELFT>
   1750 void ELFDumper<ELFT>::printDynamicTable() {
   1751   auto I = dynamic_table().begin();
   1752   auto E = dynamic_table().end();
   1753 
   1754   if (I == E)
   1755     return;
   1756 
   1757   --E;
   1758   while (I != E && E->getTag() == ELF::DT_NULL)
   1759     --E;
   1760   if (E->getTag() != ELF::DT_NULL)
   1761     ++E;
   1762   ++E;
   1763 
   1764   ptrdiff_t Total = std::distance(I, E);
   1765   if (Total == 0)
   1766     return;
   1767 
   1768   raw_ostream &OS = W.getOStream();
   1769   W.startLine() << "DynamicSection [ (" << Total << " entries)\n";
   1770 
   1771   bool Is64 = ELFT::Is64Bits;
   1772 
   1773   W.startLine()
   1774      << "  Tag" << (Is64 ? "                " : "        ") << "Type"
   1775      << "                 " << "Name/Value\n";
   1776   while (I != E) {
   1777     const Elf_Dyn &Entry = *I;
   1778     uintX_t Tag = Entry.getTag();
   1779     ++I;
   1780     W.startLine() << "  " << format_hex(Tag, Is64 ? 18 : 10, opts::Output != opts::GNU) << " "
   1781                   << format("%-21s", getTypeString(Tag));
   1782     printValue(Tag, Entry.getVal());
   1783     OS << "\n";
   1784   }
   1785 
   1786   W.startLine() << "]\n";
   1787 }
   1788 
   1789 template<class ELFT>
   1790 void ELFDumper<ELFT>::printNeededLibraries() {
   1791   ListScope D(W, "NeededLibraries");
   1792 
   1793   typedef std::vector<StringRef> LibsTy;
   1794   LibsTy Libs;
   1795 
   1796   for (const auto &Entry : dynamic_table())
   1797     if (Entry.d_tag == ELF::DT_NEEDED)
   1798       Libs.push_back(getDynamicString(Entry.d_un.d_val));
   1799 
   1800   std::stable_sort(Libs.begin(), Libs.end());
   1801 
   1802   for (const auto &L : Libs) {
   1803     outs() << "  " << L << "\n";
   1804   }
   1805 }
   1806 
   1807 
   1808 template <typename ELFT>
   1809 void ELFDumper<ELFT>::printHashTable() {
   1810   DictScope D(W, "HashTable");
   1811   if (!HashTable)
   1812     return;
   1813   W.printNumber("Num Buckets", HashTable->nbucket);
   1814   W.printNumber("Num Chains", HashTable->nchain);
   1815   W.printList("Buckets", HashTable->buckets());
   1816   W.printList("Chains", HashTable->chains());
   1817 }
   1818 
   1819 template <typename ELFT>
   1820 void ELFDumper<ELFT>::printGnuHashTable() {
   1821   DictScope D(W, "GnuHashTable");
   1822   if (!GnuHashTable)
   1823     return;
   1824   W.printNumber("Num Buckets", GnuHashTable->nbuckets);
   1825   W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
   1826   W.printNumber("Num Mask Words", GnuHashTable->maskwords);
   1827   W.printNumber("Shift Count", GnuHashTable->shift2);
   1828   W.printHexList("Bloom Filter", GnuHashTable->filter());
   1829   W.printList("Buckets", GnuHashTable->buckets());
   1830   Elf_Sym_Range Syms = dynamic_symbols();
   1831   unsigned NumSyms = std::distance(Syms.begin(), Syms.end());
   1832   if (!NumSyms)
   1833     reportError("No dynamic symbol section");
   1834   W.printHexList("Values", GnuHashTable->values(NumSyms));
   1835 }
   1836 
   1837 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
   1838   outs() << "LoadName: " << SOName << '\n';
   1839 }
   1840 
   1841 template <class ELFT>
   1842 void ELFDumper<ELFT>::printAttributes() {
   1843   W.startLine() << "Attributes not implemented.\n";
   1844 }
   1845 
   1846 namespace {
   1847 template <> void ELFDumper<ELFType<support::little, false>>::printAttributes() {
   1848   if (Obj->getHeader()->e_machine != EM_ARM) {
   1849     W.startLine() << "Attributes not implemented.\n";
   1850     return;
   1851   }
   1852 
   1853   DictScope BA(W, "BuildAttributes");
   1854   for (const ELFO::Elf_Shdr &Sec : Obj->sections()) {
   1855     if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
   1856       continue;
   1857 
   1858     ArrayRef<uint8_t> Contents = unwrapOrError(Obj->getSectionContents(&Sec));
   1859     if (Contents[0] != ARMBuildAttrs::Format_Version) {
   1860       errs() << "unrecognised FormatVersion: 0x" << utohexstr(Contents[0])
   1861              << '\n';
   1862       continue;
   1863     }
   1864 
   1865     W.printHex("FormatVersion", Contents[0]);
   1866     if (Contents.size() == 1)
   1867       continue;
   1868 
   1869     ARMAttributeParser(W).Parse(Contents);
   1870   }
   1871 }
   1872 }
   1873 
   1874 namespace {
   1875 template <class ELFT> class MipsGOTParser {
   1876 public:
   1877   typedef object::ELFFile<ELFT> ELFO;
   1878   typedef typename ELFO::Elf_Shdr Elf_Shdr;
   1879   typedef typename ELFO::Elf_Sym Elf_Sym;
   1880   typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
   1881   typedef typename ELFO::Elf_Addr GOTEntry;
   1882   typedef typename ELFO::Elf_Rel Elf_Rel;
   1883   typedef typename ELFO::Elf_Rela Elf_Rela;
   1884 
   1885   MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
   1886                 Elf_Dyn_Range DynTable, ScopedPrinter &W);
   1887 
   1888   void parseGOT();
   1889   void parsePLT();
   1890 
   1891 private:
   1892   ELFDumper<ELFT> *Dumper;
   1893   const ELFO *Obj;
   1894   ScopedPrinter &W;
   1895   llvm::Optional<uint64_t> DtPltGot;
   1896   llvm::Optional<uint64_t> DtLocalGotNum;
   1897   llvm::Optional<uint64_t> DtGotSym;
   1898   llvm::Optional<uint64_t> DtMipsPltGot;
   1899   llvm::Optional<uint64_t> DtJmpRel;
   1900 
   1901   std::size_t getGOTTotal(ArrayRef<uint8_t> GOT) const;
   1902   const GOTEntry *makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum);
   1903 
   1904   void printGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
   1905                      const GOTEntry *It);
   1906   void printGlobalGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
   1907                            const GOTEntry *It, const Elf_Sym *Sym,
   1908                            StringRef StrTable, bool IsDynamic);
   1909   void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
   1910                      const GOTEntry *It, StringRef Purpose);
   1911   void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
   1912                      const GOTEntry *It, StringRef StrTable,
   1913                      const Elf_Sym *Sym);
   1914 };
   1915 }
   1916 
   1917 template <class ELFT>
   1918 MipsGOTParser<ELFT>::MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
   1919                                    Elf_Dyn_Range DynTable, ScopedPrinter &W)
   1920     : Dumper(Dumper), Obj(Obj), W(W) {
   1921   for (const auto &Entry : DynTable) {
   1922     switch (Entry.getTag()) {
   1923     case ELF::DT_PLTGOT:
   1924       DtPltGot = Entry.getVal();
   1925       break;
   1926     case ELF::DT_MIPS_LOCAL_GOTNO:
   1927       DtLocalGotNum = Entry.getVal();
   1928       break;
   1929     case ELF::DT_MIPS_GOTSYM:
   1930       DtGotSym = Entry.getVal();
   1931       break;
   1932     case ELF::DT_MIPS_PLTGOT:
   1933       DtMipsPltGot = Entry.getVal();
   1934       break;
   1935     case ELF::DT_JMPREL:
   1936       DtJmpRel = Entry.getVal();
   1937       break;
   1938     }
   1939   }
   1940 }
   1941 
   1942 template <class ELFT> void MipsGOTParser<ELFT>::parseGOT() {
   1943   // See "Global Offset Table" in Chapter 5 in the following document
   1944   // for detailed GOT description.
   1945   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
   1946   if (!DtPltGot) {
   1947     W.startLine() << "Cannot find PLTGOT dynamic table tag.\n";
   1948     return;
   1949   }
   1950   if (!DtLocalGotNum) {
   1951     W.startLine() << "Cannot find MIPS_LOCAL_GOTNO dynamic table tag.\n";
   1952     return;
   1953   }
   1954   if (!DtGotSym) {
   1955     W.startLine() << "Cannot find MIPS_GOTSYM dynamic table tag.\n";
   1956     return;
   1957   }
   1958 
   1959   StringRef StrTable = Dumper->getDynamicStringTable();
   1960   const Elf_Sym *DynSymBegin = Dumper->dynamic_symbols().begin();
   1961   const Elf_Sym *DynSymEnd = Dumper->dynamic_symbols().end();
   1962   std::size_t DynSymTotal = std::size_t(std::distance(DynSymBegin, DynSymEnd));
   1963 
   1964   if (*DtGotSym > DynSymTotal)
   1965     report_fatal_error("MIPS_GOTSYM exceeds a number of dynamic symbols");
   1966 
   1967   std::size_t GlobalGotNum = DynSymTotal - *DtGotSym;
   1968 
   1969   if (*DtLocalGotNum + GlobalGotNum == 0) {
   1970     W.startLine() << "GOT is empty.\n";
   1971     return;
   1972   }
   1973 
   1974   const Elf_Shdr *GOTShdr = findNotEmptySectionByAddress(Obj, *DtPltGot);
   1975   if (!GOTShdr)
   1976     report_fatal_error("There is no not empty GOT section at 0x" +
   1977                        Twine::utohexstr(*DtPltGot));
   1978 
   1979   ArrayRef<uint8_t> GOT = unwrapOrError(Obj->getSectionContents(GOTShdr));
   1980 
   1981   if (*DtLocalGotNum + GlobalGotNum > getGOTTotal(GOT))
   1982     report_fatal_error("Number of GOT entries exceeds the size of GOT section");
   1983 
   1984   const GOTEntry *GotBegin = makeGOTIter(GOT, 0);
   1985   const GOTEntry *GotLocalEnd = makeGOTIter(GOT, *DtLocalGotNum);
   1986   const GOTEntry *It = GotBegin;
   1987 
   1988   DictScope GS(W, "Primary GOT");
   1989 
   1990   W.printHex("Canonical gp value", GOTShdr->sh_addr + 0x7ff0);
   1991   {
   1992     ListScope RS(W, "Reserved entries");
   1993 
   1994     {
   1995       DictScope D(W, "Entry");
   1996       printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
   1997       W.printString("Purpose", StringRef("Lazy resolver"));
   1998     }
   1999 
   2000     if (It != GotLocalEnd && (*It >> (sizeof(GOTEntry) * 8 - 1)) != 0) {
   2001       DictScope D(W, "Entry");
   2002       printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
   2003       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
   2004     }
   2005   }
   2006   {
   2007     ListScope LS(W, "Local entries");
   2008     for (; It != GotLocalEnd; ++It) {
   2009       DictScope D(W, "Entry");
   2010       printGotEntry(GOTShdr->sh_addr, GotBegin, It);
   2011     }
   2012   }
   2013   {
   2014     ListScope GS(W, "Global entries");
   2015 
   2016     const GOTEntry *GotGlobalEnd =
   2017         makeGOTIter(GOT, *DtLocalGotNum + GlobalGotNum);
   2018     const Elf_Sym *GotDynSym = DynSymBegin + *DtGotSym;
   2019     for (; It != GotGlobalEnd; ++It) {
   2020       DictScope D(W, "Entry");
   2021       printGlobalGotEntry(GOTShdr->sh_addr, GotBegin, It, GotDynSym++, StrTable,
   2022                           true);
   2023     }
   2024   }
   2025 
   2026   std::size_t SpecGotNum = getGOTTotal(GOT) - *DtLocalGotNum - GlobalGotNum;
   2027   W.printNumber("Number of TLS and multi-GOT entries", uint64_t(SpecGotNum));
   2028 }
   2029 
   2030 template <class ELFT> void MipsGOTParser<ELFT>::parsePLT() {
   2031   if (!DtMipsPltGot) {
   2032     W.startLine() << "Cannot find MIPS_PLTGOT dynamic table tag.\n";
   2033     return;
   2034   }
   2035   if (!DtJmpRel) {
   2036     W.startLine() << "Cannot find JMPREL dynamic table tag.\n";
   2037     return;
   2038   }
   2039 
   2040   const Elf_Shdr *PLTShdr = findNotEmptySectionByAddress(Obj, *DtMipsPltGot);
   2041   if (!PLTShdr)
   2042     report_fatal_error("There is no not empty PLTGOT section at 0x " +
   2043                        Twine::utohexstr(*DtMipsPltGot));
   2044   ArrayRef<uint8_t> PLT = unwrapOrError(Obj->getSectionContents(PLTShdr));
   2045 
   2046   const Elf_Shdr *PLTRelShdr = findNotEmptySectionByAddress(Obj, *DtJmpRel);
   2047   if (!PLTRelShdr)
   2048     report_fatal_error("There is no not empty RELPLT section at 0x" +
   2049                        Twine::utohexstr(*DtJmpRel));
   2050   const Elf_Shdr *SymTable =
   2051       unwrapOrError(Obj->getSection(PLTRelShdr->sh_link));
   2052   StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTable));
   2053 
   2054   const GOTEntry *PLTBegin = makeGOTIter(PLT, 0);
   2055   const GOTEntry *PLTEnd = makeGOTIter(PLT, getGOTTotal(PLT));
   2056   const GOTEntry *It = PLTBegin;
   2057 
   2058   DictScope GS(W, "PLT GOT");
   2059   {
   2060     ListScope RS(W, "Reserved entries");
   2061     printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "PLT lazy resolver");
   2062     if (It != PLTEnd)
   2063       printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "Module pointer");
   2064   }
   2065   {
   2066     ListScope GS(W, "Entries");
   2067 
   2068     switch (PLTRelShdr->sh_type) {
   2069     case ELF::SHT_REL:
   2070       for (const Elf_Rel *RI = Obj->rel_begin(PLTRelShdr),
   2071                          *RE = Obj->rel_end(PLTRelShdr);
   2072            RI != RE && It != PLTEnd; ++RI, ++It) {
   2073         const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable);
   2074         printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, StrTable, Sym);
   2075       }
   2076       break;
   2077     case ELF::SHT_RELA:
   2078       for (const Elf_Rela *RI = Obj->rela_begin(PLTRelShdr),
   2079                           *RE = Obj->rela_end(PLTRelShdr);
   2080            RI != RE && It != PLTEnd; ++RI, ++It) {
   2081         const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable);
   2082         printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, StrTable, Sym);
   2083       }
   2084       break;
   2085     }
   2086   }
   2087 }
   2088 
   2089 template <class ELFT>
   2090 std::size_t MipsGOTParser<ELFT>::getGOTTotal(ArrayRef<uint8_t> GOT) const {
   2091   return GOT.size() / sizeof(GOTEntry);
   2092 }
   2093 
   2094 template <class ELFT>
   2095 const typename MipsGOTParser<ELFT>::GOTEntry *
   2096 MipsGOTParser<ELFT>::makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum) {
   2097   const char *Data = reinterpret_cast<const char *>(GOT.data());
   2098   return reinterpret_cast<const GOTEntry *>(Data + EntryNum * sizeof(GOTEntry));
   2099 }
   2100 
   2101 template <class ELFT>
   2102 void MipsGOTParser<ELFT>::printGotEntry(uint64_t GotAddr,
   2103                                         const GOTEntry *BeginIt,
   2104                                         const GOTEntry *It) {
   2105   int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
   2106   W.printHex("Address", GotAddr + Offset);
   2107   W.printNumber("Access", Offset - 0x7ff0);
   2108   W.printHex("Initial", *It);
   2109 }
   2110 
   2111 template <class ELFT>
   2112 void MipsGOTParser<ELFT>::printGlobalGotEntry(
   2113     uint64_t GotAddr, const GOTEntry *BeginIt, const GOTEntry *It,
   2114     const Elf_Sym *Sym, StringRef StrTable, bool IsDynamic) {
   2115   printGotEntry(GotAddr, BeginIt, It);
   2116 
   2117   W.printHex("Value", Sym->st_value);
   2118   W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
   2119 
   2120   unsigned SectionIndex = 0;
   2121   StringRef SectionName;
   2122   getSectionNameIndex(*Obj, Sym, Dumper->dynamic_symbols().begin(),
   2123                       Dumper->getShndxTable(), SectionName, SectionIndex);
   2124   W.printHex("Section", SectionName, SectionIndex);
   2125 
   2126   std::string FullSymbolName =
   2127       Dumper->getFullSymbolName(Sym, StrTable, IsDynamic);
   2128   W.printNumber("Name", FullSymbolName, Sym->st_name);
   2129 }
   2130 
   2131 template <class ELFT>
   2132 void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
   2133                                         const GOTEntry *BeginIt,
   2134                                         const GOTEntry *It, StringRef Purpose) {
   2135   DictScope D(W, "Entry");
   2136   int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
   2137   W.printHex("Address", PLTAddr + Offset);
   2138   W.printHex("Initial", *It);
   2139   W.printString("Purpose", Purpose);
   2140 }
   2141 
   2142 template <class ELFT>
   2143 void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
   2144                                         const GOTEntry *BeginIt,
   2145                                         const GOTEntry *It, StringRef StrTable,
   2146                                         const Elf_Sym *Sym) {
   2147   DictScope D(W, "Entry");
   2148   int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
   2149   W.printHex("Address", PLTAddr + Offset);
   2150   W.printHex("Initial", *It);
   2151   W.printHex("Value", Sym->st_value);
   2152   W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
   2153 
   2154   unsigned SectionIndex = 0;
   2155   StringRef SectionName;
   2156   getSectionNameIndex(*Obj, Sym, Dumper->dynamic_symbols().begin(),
   2157                       Dumper->getShndxTable(), SectionName, SectionIndex);
   2158   W.printHex("Section", SectionName, SectionIndex);
   2159 
   2160   std::string FullSymbolName = Dumper->getFullSymbolName(Sym, StrTable, true);
   2161   W.printNumber("Name", FullSymbolName, Sym->st_name);
   2162 }
   2163 
   2164 template <class ELFT> void ELFDumper<ELFT>::printMipsPLTGOT() {
   2165   if (Obj->getHeader()->e_machine != EM_MIPS) {
   2166     W.startLine() << "MIPS PLT GOT is available for MIPS targets only.\n";
   2167     return;
   2168   }
   2169 
   2170   MipsGOTParser<ELFT> GOTParser(this, Obj, dynamic_table(), W);
   2171   GOTParser.parseGOT();
   2172   GOTParser.parsePLT();
   2173 }
   2174 
   2175 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
   2176   {"None",                    Mips::AFL_EXT_NONE},
   2177   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
   2178   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
   2179   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
   2180   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
   2181   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
   2182   {"LSI R4010",               Mips::AFL_EXT_4010},
   2183   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
   2184   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
   2185   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
   2186   {"MIPS R4650",              Mips::AFL_EXT_4650},
   2187   {"MIPS R5900",              Mips::AFL_EXT_5900},
   2188   {"MIPS R10000",             Mips::AFL_EXT_10000},
   2189   {"NEC VR4100",              Mips::AFL_EXT_4100},
   2190   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
   2191   {"NEC VR4120",              Mips::AFL_EXT_4120},
   2192   {"NEC VR5400",              Mips::AFL_EXT_5400},
   2193   {"NEC VR5500",              Mips::AFL_EXT_5500},
   2194   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
   2195   {"Toshiba R3900",           Mips::AFL_EXT_3900}
   2196 };
   2197 
   2198 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
   2199   {"DSP",                Mips::AFL_ASE_DSP},
   2200   {"DSPR2",              Mips::AFL_ASE_DSPR2},
   2201   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
   2202   {"MCU",                Mips::AFL_ASE_MCU},
   2203   {"MDMX",               Mips::AFL_ASE_MDMX},
   2204   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
   2205   {"MT",                 Mips::AFL_ASE_MT},
   2206   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
   2207   {"VZ",                 Mips::AFL_ASE_VIRT},
   2208   {"MSA",                Mips::AFL_ASE_MSA},
   2209   {"MIPS16",             Mips::AFL_ASE_MIPS16},
   2210   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
   2211   {"XPA",                Mips::AFL_ASE_XPA}
   2212 };
   2213 
   2214 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
   2215   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
   2216   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
   2217   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
   2218   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
   2219   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
   2220    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
   2221   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
   2222   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
   2223   {"Hard float compat (32-bit CPU, 64-bit FPU)",
   2224    Mips::Val_GNU_MIPS_ABI_FP_64A}
   2225 };
   2226 
   2227 static const EnumEntry<unsigned> ElfMipsFlags1[] {
   2228   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
   2229 };
   2230 
   2231 static int getMipsRegisterSize(uint8_t Flag) {
   2232   switch (Flag) {
   2233   case Mips::AFL_REG_NONE:
   2234     return 0;
   2235   case Mips::AFL_REG_32:
   2236     return 32;
   2237   case Mips::AFL_REG_64:
   2238     return 64;
   2239   case Mips::AFL_REG_128:
   2240     return 128;
   2241   default:
   2242     return -1;
   2243   }
   2244 }
   2245 
   2246 template <class ELFT> void ELFDumper<ELFT>::printMipsABIFlags() {
   2247   const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags");
   2248   if (!Shdr) {
   2249     W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
   2250     return;
   2251   }
   2252   ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
   2253   if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
   2254     W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
   2255     return;
   2256   }
   2257 
   2258   auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
   2259 
   2260   raw_ostream &OS = W.getOStream();
   2261   DictScope GS(W, "MIPS ABI Flags");
   2262 
   2263   W.printNumber("Version", Flags->version);
   2264   W.startLine() << "ISA: ";
   2265   if (Flags->isa_rev <= 1)
   2266     OS << format("MIPS%u", Flags->isa_level);
   2267   else
   2268     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
   2269   OS << "\n";
   2270   W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
   2271   W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
   2272   W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
   2273   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
   2274   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
   2275   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
   2276   W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
   2277   W.printHex("Flags 2", Flags->flags2);
   2278 }
   2279 
   2280 template <class ELFT>
   2281 static void printMipsReginfoData(ScopedPrinter &W,
   2282                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
   2283   W.printHex("GP", Reginfo.ri_gp_value);
   2284   W.printHex("General Mask", Reginfo.ri_gprmask);
   2285   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
   2286   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
   2287   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
   2288   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
   2289 }
   2290 
   2291 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
   2292   const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo");
   2293   if (!Shdr) {
   2294     W.startLine() << "There is no .reginfo section in the file.\n";
   2295     return;
   2296   }
   2297   ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
   2298   if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
   2299     W.startLine() << "The .reginfo section has a wrong size.\n";
   2300     return;
   2301   }
   2302 
   2303   DictScope GS(W, "MIPS RegInfo");
   2304   auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
   2305   printMipsReginfoData(W, *Reginfo);
   2306 }
   2307 
   2308 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
   2309   const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.options");
   2310   if (!Shdr) {
   2311     W.startLine() << "There is no .MIPS.options section in the file.\n";
   2312     return;
   2313   }
   2314 
   2315   DictScope GS(W, "MIPS Options");
   2316 
   2317   ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
   2318   while (!Sec.empty()) {
   2319     if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
   2320       W.startLine() << "The .MIPS.options section has a wrong size.\n";
   2321       return;
   2322     }
   2323     auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
   2324     DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
   2325     switch (O->kind) {
   2326     case ODK_REGINFO:
   2327       printMipsReginfoData(W, O->getRegInfo());
   2328       break;
   2329     default:
   2330       W.startLine() << "Unsupported MIPS options tag.\n";
   2331       break;
   2332     }
   2333     Sec = Sec.slice(O->size);
   2334   }
   2335 }
   2336 
   2337 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
   2338   const Elf_Shdr *StackMapSection = nullptr;
   2339   for (const auto &Sec : Obj->sections()) {
   2340     StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
   2341     if (Name == ".llvm_stackmaps") {
   2342       StackMapSection = &Sec;
   2343       break;
   2344     }
   2345   }
   2346 
   2347   if (!StackMapSection)
   2348     return;
   2349 
   2350   StringRef StackMapContents;
   2351   ArrayRef<uint8_t> StackMapContentsArray =
   2352       unwrapOrError(Obj->getSectionContents(StackMapSection));
   2353 
   2354   prettyPrintStackMap(llvm::outs(), StackMapV1Parser<ELFT::TargetEndianness>(
   2355                                         StackMapContentsArray));
   2356 }
   2357 
   2358 template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
   2359   ELFDumperStyle->printGroupSections(Obj);
   2360 }
   2361 
   2362 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
   2363                                StringRef Str2) {
   2364   OS.PadToColumn(2u);
   2365   OS << Str1;
   2366   OS.PadToColumn(37u);
   2367   OS << Str2 << "\n";
   2368   OS.flush();
   2369 }
   2370 
   2371 template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
   2372   const Elf_Ehdr *e = Obj->getHeader();
   2373   OS << "ELF Header:\n";
   2374   OS << "  Magic:  ";
   2375   std::string Str;
   2376   for (int i = 0; i < ELF::EI_NIDENT; i++)
   2377     OS << format(" %02x", static_cast<int>(e->e_ident[i]));
   2378   OS << "\n";
   2379   Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
   2380   printFields(OS, "Class:", Str);
   2381   Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
   2382   printFields(OS, "Data:", Str);
   2383   OS.PadToColumn(2u);
   2384   OS << "Version:";
   2385   OS.PadToColumn(37u);
   2386   OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
   2387   if (e->e_version == ELF::EV_CURRENT)
   2388     OS << " (current)";
   2389   OS << "\n";
   2390   Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
   2391   printFields(OS, "OS/ABI:", Str);
   2392   Str = "0x" + to_hexString(e->e_version);
   2393   Str = to_hexString(e->e_ident[ELF::EI_ABIVERSION]);
   2394   printFields(OS, "ABI Version:", Str);
   2395   Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
   2396   printFields(OS, "Type:", Str);
   2397   Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
   2398   printFields(OS, "Machine:", Str);
   2399   Str = "0x" + to_hexString(e->e_version);
   2400   printFields(OS, "Version:", Str);
   2401   Str = "0x" + to_hexString(e->e_entry);
   2402   printFields(OS, "Entry point address:", Str);
   2403   Str = to_string(e->e_phoff) + " (bytes into file)";
   2404   printFields(OS, "Start of program headers:", Str);
   2405   Str = to_string(e->e_shoff) + " (bytes into file)";
   2406   printFields(OS, "Start of section headers:", Str);
   2407   Str = "0x" + to_hexString(e->e_flags);
   2408   printFields(OS, "Flags:", Str);
   2409   Str = to_string(e->e_ehsize) + " (bytes)";
   2410   printFields(OS, "Size of this header:", Str);
   2411   Str = to_string(e->e_phentsize) + " (bytes)";
   2412   printFields(OS, "Size of program headers:", Str);
   2413   Str = to_string(e->e_phnum);
   2414   printFields(OS, "Number of program headers:", Str);
   2415   Str = to_string(e->e_shentsize) + " (bytes)";
   2416   printFields(OS, "Size of section headers:", Str);
   2417   Str = to_string(e->e_shnum);
   2418   printFields(OS, "Number of section headers:", Str);
   2419   Str = to_string(e->e_shstrndx);
   2420   printFields(OS, "Section header string table index:", Str);
   2421 }
   2422 
   2423 template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
   2424   uint32_t SectionIndex = 0;
   2425   bool HasGroups = false;
   2426   for (const Elf_Shdr &Sec : Obj->sections()) {
   2427     if (Sec.sh_type == ELF::SHT_GROUP) {
   2428       HasGroups = true;
   2429       const Elf_Shdr *Symtab = unwrapOrError(Obj->getSection(Sec.sh_link));
   2430       StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
   2431       const Elf_Sym *Signature =
   2432           Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info);
   2433       ArrayRef<Elf_Word> Data = unwrapOrError(
   2434           Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
   2435       StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
   2436       OS << "\n" << getGroupType(Data[0]) << " group section ["
   2437          << format_decimal(SectionIndex, 5) << "] `" << Name << "' ["
   2438          << StrTable.data() + Signature->st_name << "] contains "
   2439          << (Data.size() - 1) << " sections:\n"
   2440          << "   [Index]    Name\n";
   2441       for (auto &Ndx : Data.slice(1)) {
   2442         auto Sec = unwrapOrError(Obj->getSection(Ndx));
   2443         const StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
   2444         OS << "   [" << format_decimal(Ndx, 5) << "]   " << Name
   2445            << "\n";
   2446       }
   2447     }
   2448     ++SectionIndex;
   2449   }
   2450   if (!HasGroups)
   2451     OS << "There are no section groups in this file.\n";
   2452 }
   2453 
   2454 template <class ELFT>
   2455 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
   2456                                      const Elf_Rela &R, bool IsRela) {
   2457   std::string Offset, Info, Addend = "", Value;
   2458   SmallString<32> RelocName;
   2459   StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
   2460   StringRef TargetName;
   2461   const Elf_Sym *Sym = nullptr;
   2462   unsigned Width = ELFT::Is64Bits ? 16 : 8;
   2463   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
   2464 
   2465   // First two fields are bit width dependent. The rest of them are after are
   2466   // fixed width.
   2467   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
   2468   Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
   2469   Sym = Obj->getRelocationSymbol(&R, SymTab);
   2470   if (Sym && Sym->getType() == ELF::STT_SECTION) {
   2471     const Elf_Shdr *Sec = unwrapOrError(
   2472         Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
   2473     TargetName = unwrapOrError(Obj->getSectionName(Sec));
   2474   } else if (Sym) {
   2475     TargetName = unwrapOrError(Sym->getName(StrTable));
   2476   }
   2477 
   2478   if (Sym && IsRela) {
   2479     if (R.r_addend < 0)
   2480       Addend = " - ";
   2481     else
   2482       Addend = " + ";
   2483   }
   2484 
   2485   Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
   2486   Info = to_string(format_hex_no_prefix(R.r_info, Width));
   2487 
   2488   int64_t RelAddend = R.r_addend;
   2489   if (IsRela)
   2490     Addend += to_hexString(std::abs(RelAddend), false);
   2491 
   2492   if (Sym)
   2493     Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
   2494 
   2495   Fields[0].Str = Offset;
   2496   Fields[1].Str = Info;
   2497   Fields[2].Str = RelocName;
   2498   Fields[3].Str = Value;
   2499   Fields[4].Str = TargetName;
   2500   for (auto &field : Fields)
   2501     printField(field);
   2502   OS << Addend;
   2503   OS << "\n";
   2504 }
   2505 
   2506 static inline void printRelocHeader(raw_ostream &OS, bool Is64, bool IsRela) {
   2507   if (Is64)
   2508     OS << "    Offset             Info             Type"
   2509        << "               Symbol's Value  Symbol's Name";
   2510   else
   2511     OS << " Offset     Info    Type                Sym. Value  "
   2512        << "Symbol's Name";
   2513   if (IsRela)
   2514     OS << (IsRela ? " + Addend" : "");
   2515   OS << "\n";
   2516 }
   2517 
   2518 template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
   2519   bool HasRelocSections = false;
   2520   for (const Elf_Shdr &Sec : Obj->sections()) {
   2521     if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA)
   2522       continue;
   2523     HasRelocSections = true;
   2524     StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
   2525     unsigned Entries = Sec.getEntityCount();
   2526     uintX_t Offset = Sec.sh_offset;
   2527     OS << "\nRelocation section '" << Name << "' at offset 0x"
   2528        << to_hexString(Offset, false) << " contains " << Entries
   2529        << " entries:\n";
   2530     printRelocHeader(OS,  ELFT::Is64Bits, (Sec.sh_type == ELF::SHT_RELA));
   2531     const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec.sh_link));
   2532     if (Sec.sh_type == ELF::SHT_REL) {
   2533       for (const auto &R : Obj->rels(&Sec)) {
   2534         Elf_Rela Rela;
   2535         Rela.r_offset = R.r_offset;
   2536         Rela.r_info = R.r_info;
   2537         Rela.r_addend = 0;
   2538         printRelocation(Obj, SymTab, Rela, false);
   2539       }
   2540     } else {
   2541       for (const auto &R : Obj->relas(&Sec))
   2542         printRelocation(Obj, SymTab, R, true);
   2543     }
   2544   }
   2545   if (!HasRelocSections)
   2546     OS << "\nThere are no relocations in this file.\n";
   2547 }
   2548 
   2549 std::string getSectionTypeString(unsigned Arch, unsigned Type) {
   2550   using namespace ELF;
   2551   switch (Arch) {
   2552   case EM_ARM:
   2553     switch (Type) {
   2554     case SHT_ARM_EXIDX:
   2555       return "ARM_EXIDX";
   2556     case SHT_ARM_PREEMPTMAP:
   2557       return "ARM_PREEMPTMAP";
   2558     case SHT_ARM_ATTRIBUTES:
   2559       return "ARM_ATTRIBUTES";
   2560     case SHT_ARM_DEBUGOVERLAY:
   2561       return "ARM_DEBUGOVERLAY";
   2562     case SHT_ARM_OVERLAYSECTION:
   2563       return "ARM_OVERLAYSECTION";
   2564     }
   2565   case EM_X86_64:
   2566     switch (Type) {
   2567     case SHT_X86_64_UNWIND:
   2568       return "X86_64_UNWIND";
   2569     }
   2570   case EM_MIPS:
   2571   case EM_MIPS_RS3_LE:
   2572     switch (Type) {
   2573     case SHT_MIPS_REGINFO:
   2574       return "MIPS_REGINFO";
   2575     case SHT_MIPS_OPTIONS:
   2576       return "MIPS_OPTIONS";
   2577     case SHT_MIPS_ABIFLAGS:
   2578       return "MIPS_ABIFLAGS";
   2579     }
   2580   }
   2581   switch (Type) {
   2582   case SHT_NULL:
   2583     return "NULL";
   2584   case SHT_PROGBITS:
   2585     return "PROGBITS";
   2586   case SHT_SYMTAB:
   2587     return "SYMTAB";
   2588   case SHT_STRTAB:
   2589     return "STRTAB";
   2590   case SHT_RELA:
   2591     return "RELA";
   2592   case SHT_HASH:
   2593     return "HASH";
   2594   case SHT_DYNAMIC:
   2595     return "DYNAMIC";
   2596   case SHT_NOTE:
   2597     return "NOTE";
   2598   case SHT_NOBITS:
   2599     return "NOBITS";
   2600   case SHT_REL:
   2601     return "REL";
   2602   case SHT_SHLIB:
   2603     return "SHLIB";
   2604   case SHT_DYNSYM:
   2605     return "DYNSYM";
   2606   case SHT_INIT_ARRAY:
   2607     return "INIT_ARRAY";
   2608   case SHT_FINI_ARRAY:
   2609     return "FINI_ARRAY";
   2610   case SHT_PREINIT_ARRAY:
   2611     return "PREINIT_ARRAY";
   2612   case SHT_GROUP:
   2613     return "GROUP";
   2614   case SHT_SYMTAB_SHNDX:
   2615     return "SYMTAB SECTION INDICES";
   2616   // FIXME: Parse processor specific GNU attributes
   2617   case SHT_GNU_ATTRIBUTES:
   2618     return "ATTRIBUTES";
   2619   case SHT_GNU_HASH:
   2620     return "GNU_HASH";
   2621   case SHT_GNU_verdef:
   2622     return "VERDEF";
   2623   case SHT_GNU_verneed:
   2624     return "VERNEED";
   2625   case SHT_GNU_versym:
   2626     return "VERSYM";
   2627   default:
   2628     return "";
   2629   }
   2630   return "";
   2631 }
   2632 
   2633 template <class ELFT> void GNUStyle<ELFT>::printSections(const ELFO *Obj) {
   2634   size_t SectionIndex = 0;
   2635   std::string Number, Type, Size, Address, Offset, Flags, Link, Info, EntrySize,
   2636       Alignment;
   2637   unsigned Bias;
   2638   unsigned Width;
   2639 
   2640   if (ELFT::Is64Bits) {
   2641     Bias = 0;
   2642     Width = 16;
   2643   } else {
   2644     Bias = 8;
   2645     Width = 8;
   2646   }
   2647   OS << "There are " << to_string(Obj->getHeader()->e_shnum)
   2648      << " section headers, starting at offset "
   2649      << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
   2650   OS << "Section Headers:\n";
   2651   Field Fields[11] = {{"[Nr]", 2},
   2652                       {"Name", 7},
   2653                       {"Type", 25},
   2654                       {"Address", 41},
   2655                       {"Off", 58 - Bias},
   2656                       {"Size", 65 - Bias},
   2657                       {"ES", 72 - Bias},
   2658                       {"Flg", 75 - Bias},
   2659                       {"Lk", 79 - Bias},
   2660                       {"Inf", 82 - Bias},
   2661                       {"Al", 86 - Bias}};
   2662   for (auto &f : Fields)
   2663     printField(f);
   2664   OS << "\n";
   2665 
   2666   for (const Elf_Shdr &Sec : Obj->sections()) {
   2667     Number = to_string(SectionIndex);
   2668     Fields[0].Str = Number;
   2669     Fields[1].Str = unwrapOrError(Obj->getSectionName(&Sec));
   2670     Type = getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
   2671     Fields[2].Str = Type;
   2672     Address = to_string(format_hex_no_prefix(Sec.sh_addr, Width));
   2673     Fields[3].Str = Address;
   2674     Offset = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
   2675     Fields[4].Str = Offset;
   2676     Size = to_string(format_hex_no_prefix(Sec.sh_size, 6));
   2677     Fields[5].Str = Size;
   2678     EntrySize = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
   2679     Fields[6].Str = EntrySize;
   2680     Flags = getGNUFlags(Sec.sh_flags);
   2681     Fields[7].Str = Flags;
   2682     Link = to_string(Sec.sh_link);
   2683     Fields[8].Str = Link;
   2684     Info = to_string(Sec.sh_info);
   2685     Fields[9].Str = Info;
   2686     Alignment = to_string(Sec.sh_addralign);
   2687     Fields[10].Str = Alignment;
   2688     OS.PadToColumn(Fields[0].Column);
   2689     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
   2690     for (int i = 1; i < 7; i++)
   2691       printField(Fields[i]);
   2692     OS.PadToColumn(Fields[7].Column);
   2693     OS << right_justify(Fields[7].Str, 3);
   2694     OS.PadToColumn(Fields[8].Column);
   2695     OS << right_justify(Fields[8].Str, 2);
   2696     OS.PadToColumn(Fields[9].Column);
   2697     OS << right_justify(Fields[9].Str, 3);
   2698     OS.PadToColumn(Fields[10].Column);
   2699     OS << right_justify(Fields[10].Str, 2);
   2700     OS << "\n";
   2701     ++SectionIndex;
   2702   }
   2703   OS << "Key to Flags:\n"
   2704      << "  W (write), A (alloc), X (execute), M (merge), S (strings), l "
   2705         "(large)\n"
   2706      << "  I (info), L (link order), G (group), T (TLS), E (exclude),\
   2707  x (unknown)\n"
   2708      << "  O (extra OS processing required) o (OS specific),\
   2709  p (processor specific)\n";
   2710 }
   2711 
   2712 template <class ELFT>
   2713 void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
   2714                                         size_t Entries) {
   2715   if (Name.size())
   2716     OS << "\nSymbol table '" << Name << "' contains " << Entries
   2717        << " entries:\n";
   2718   else
   2719     OS << "\n Symbol table for image:\n";
   2720 
   2721   if (ELFT::Is64Bits)
   2722     OS << "   Num:    Value          Size Type    Bind   Vis      Ndx Name\n";
   2723   else
   2724     OS << "   Num:    Value  Size Type    Bind   Vis      Ndx Name\n";
   2725 }
   2726 
   2727 template <class ELFT>
   2728 std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
   2729                                                 const Elf_Sym *Symbol,
   2730                                                 const Elf_Sym *FirstSym) {
   2731   unsigned SectionIndex = Symbol->st_shndx;
   2732   switch (SectionIndex) {
   2733   case ELF::SHN_UNDEF:
   2734     return "UND";
   2735   case ELF::SHN_ABS:
   2736     return "ABS";
   2737   case ELF::SHN_COMMON:
   2738     return "COM";
   2739   case ELF::SHN_XINDEX:
   2740     SectionIndex = Obj->getExtendedSymbolTableIndex(
   2741         Symbol, FirstSym, this->dumper()->getShndxTable());
   2742   default:
   2743     // Find if:
   2744     // Processor specific
   2745     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
   2746       return std::string("PRC[0x") +
   2747              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
   2748     // OS specific
   2749     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
   2750       return std::string("OS[0x") +
   2751              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
   2752     // Architecture reserved:
   2753     if (SectionIndex >= ELF::SHN_LORESERVE &&
   2754         SectionIndex <= ELF::SHN_HIRESERVE)
   2755       return std::string("RSV[0x") +
   2756              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
   2757     // A normal section with an index
   2758     return to_string(format_decimal(SectionIndex, 3));
   2759   }
   2760 }
   2761 
   2762 template <class ELFT>
   2763 void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
   2764                                  const Elf_Sym *FirstSym, StringRef StrTable,
   2765                                  bool IsDynamic) {
   2766   static int Idx = 0;
   2767   static bool Dynamic = true;
   2768   size_t Width;
   2769 
   2770   // If this function was called with a different value from IsDynamic
   2771   // from last call, happens when we move from dynamic to static symbol
   2772   // table, "Num" field should be reset.
   2773   if (!Dynamic != !IsDynamic) {
   2774     Idx = 0;
   2775     Dynamic = false;
   2776   }
   2777   std::string Num, Name, Value, Size, Binding, Type, Visibility, Section;
   2778   unsigned Bias = 0;
   2779   if (ELFT::Is64Bits) {
   2780     Bias = 8;
   2781     Width = 16;
   2782   } else {
   2783     Bias = 0;
   2784     Width = 8;
   2785   }
   2786   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
   2787                      31 + Bias, 38 + Bias, 47 + Bias, 51 + Bias};
   2788   Num = to_string(format_decimal(Idx++, 6)) + ":";
   2789   Value = to_string(format_hex_no_prefix(Symbol->st_value, Width));
   2790   Size = to_string(format_decimal(Symbol->st_size, 5));
   2791   unsigned char SymbolType = Symbol->getType();
   2792   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
   2793       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
   2794     Type = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
   2795   else
   2796     Type = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
   2797   unsigned Vis = Symbol->getVisibility();
   2798   Binding = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
   2799   Visibility = printEnum(Vis, makeArrayRef(ElfSymbolVisibilities));
   2800   Section = getSymbolSectionNdx(Obj, Symbol, FirstSym);
   2801   Name = this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
   2802   Fields[0].Str = Num;
   2803   Fields[1].Str = Value;
   2804   Fields[2].Str = Size;
   2805   Fields[3].Str = Type;
   2806   Fields[4].Str = Binding;
   2807   Fields[5].Str = Visibility;
   2808   Fields[6].Str = Section;
   2809   Fields[7].Str = Name;
   2810   for (auto &Entry : Fields)
   2811     printField(Entry);
   2812   OS << "\n";
   2813 }
   2814 
   2815 template <class ELFT> void GNUStyle<ELFT>::printSymbols(const ELFO *Obj) {
   2816   this->dumper()->printSymbolsHelper(true);
   2817   this->dumper()->printSymbolsHelper(false);
   2818 }
   2819 
   2820 template <class ELFT>
   2821 void GNUStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
   2822   this->dumper()->printSymbolsHelper(true);
   2823 }
   2824 
   2825 static inline std::string printPhdrFlags(unsigned Flag) {
   2826   std::string Str;
   2827   Str = (Flag & PF_R) ? "R" : " ";
   2828   Str += (Flag & PF_W) ? "W" : " ";
   2829   Str += (Flag & PF_X) ? "E" : " ";
   2830   return Str;
   2831 }
   2832 
   2833 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
   2834 // PT_TLS must only have SHF_TLS sections
   2835 template <class ELFT>
   2836 bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr,
   2837                                       const Elf_Shdr &Sec) {
   2838   return (((Sec.sh_flags & ELF::SHF_TLS) &&
   2839            ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
   2840             (Phdr.p_type == ELF::PT_GNU_RELRO))) ||
   2841           (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS));
   2842 }
   2843 
   2844 // Non-SHT_NOBITS must have its offset inside the segment
   2845 // Only non-zero section can be at end of segment
   2846 template <class ELFT>
   2847 bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
   2848   if (Sec.sh_type == ELF::SHT_NOBITS)
   2849     return true;
   2850   bool IsSpecial =
   2851       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
   2852   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
   2853   auto SectionSize =
   2854       (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
   2855   if (Sec.sh_offset >= Phdr.p_offset)
   2856     return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset)
   2857             /*only non-zero sized sections at end*/ &&
   2858             (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz));
   2859   return false;
   2860 }
   2861 
   2862 // SHF_ALLOC must have VMA inside segment
   2863 // Only non-zero section can be at end of segment
   2864 template <class ELFT>
   2865 bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
   2866   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
   2867     return true;
   2868   bool IsSpecial =
   2869       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
   2870   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
   2871   auto SectionSize =
   2872       (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
   2873   if (Sec.sh_addr >= Phdr.p_vaddr)
   2874     return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) &&
   2875             (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz));
   2876   return false;
   2877 }
   2878 
   2879 // No section with zero size must be at start or end of PT_DYNAMIC
   2880 template <class ELFT>
   2881 bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
   2882   if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0)
   2883     return true;
   2884   // Is section within the phdr both based on offset and VMA ?
   2885   return ((Sec.sh_type == ELF::SHT_NOBITS) ||
   2886           (Sec.sh_offset > Phdr.p_offset &&
   2887            Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) &&
   2888          (!(Sec.sh_flags & ELF::SHF_ALLOC) ||
   2889           (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz));
   2890 }
   2891 
   2892 template <class ELFT>
   2893 void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
   2894   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
   2895   unsigned Width = ELFT::Is64Bits ? 18 : 10;
   2896   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
   2897   std::string Type, Offset, VMA, LMA, FileSz, MemSz, Flag, Align;
   2898 
   2899   const Elf_Ehdr *Header = Obj->getHeader();
   2900   Field Fields[8] = {2,         17,        26,        37 + Bias,
   2901                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
   2902   OS << "\nElf file type is "
   2903      << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
   2904      << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
   2905      << "There are " << Header->e_phnum << " program headers,"
   2906      << " starting at offset " << Header->e_phoff << "\n\n"
   2907      << "Program Headers:\n";
   2908   if (ELFT::Is64Bits)
   2909     OS << "  Type           Offset   VirtAddr           PhysAddr         "
   2910        << "  FileSiz  MemSiz   Flg Align\n";
   2911   else
   2912     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
   2913        << "MemSiz  Flg Align\n";
   2914   for (const auto &Phdr : Obj->program_headers()) {
   2915     Type = getElfPtType(Header->e_machine, Phdr.p_type);
   2916     Offset = to_string(format_hex(Phdr.p_offset, 8));
   2917     VMA = to_string(format_hex(Phdr.p_vaddr, Width));
   2918     LMA = to_string(format_hex(Phdr.p_paddr, Width));
   2919     FileSz = to_string(format_hex(Phdr.p_filesz, SizeWidth));
   2920     MemSz = to_string(format_hex(Phdr.p_memsz, SizeWidth));
   2921     Flag = printPhdrFlags(Phdr.p_flags);
   2922     Align = to_string(format_hex(Phdr.p_align, 1));
   2923     Fields[0].Str = Type;
   2924     Fields[1].Str = Offset;
   2925     Fields[2].Str = VMA;
   2926     Fields[3].Str = LMA;
   2927     Fields[4].Str = FileSz;
   2928     Fields[5].Str = MemSz;
   2929     Fields[6].Str = Flag;
   2930     Fields[7].Str = Align;
   2931     for (auto Field : Fields)
   2932       printField(Field);
   2933     if (Phdr.p_type == ELF::PT_INTERP) {
   2934       OS << "\n      [Requesting program interpreter: ";
   2935       OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]";
   2936     }
   2937     OS << "\n";
   2938   }
   2939   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
   2940   int Phnum = 0;
   2941   for (const Elf_Phdr &Phdr : Obj->program_headers()) {
   2942     std::string Sections;
   2943     OS << format("   %2.2d     ", Phnum++);
   2944     for (const Elf_Shdr &Sec : Obj->sections()) {
   2945       // Check if each section is in a segment and then print mapping.
   2946       // readelf additionally makes sure it does not print zero sized sections
   2947       // at end of segments and for PT_DYNAMIC both start and end of section
   2948       // .tbss must only be shown in PT_TLS section.
   2949       bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) &&
   2950                           ((Sec.sh_flags & ELF::SHF_TLS) != 0) &&
   2951                           Phdr.p_type != ELF::PT_TLS;
   2952       if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) &&
   2953           checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) &&
   2954           checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL))
   2955         Sections += unwrapOrError(Obj->getSectionName(&Sec)).str() + " ";
   2956     }
   2957     OS << Sections << "\n";
   2958     OS.flush();
   2959   }
   2960 }
   2961 
   2962 template <class ELFT>
   2963 void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
   2964                                             bool IsRela) {
   2965   SmallString<32> RelocName;
   2966   StringRef SymbolName;
   2967   unsigned Width = ELFT::Is64Bits ? 16 : 8;
   2968   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
   2969   // First two fields are bit width dependent. The rest of them are after are
   2970   // fixed width.
   2971   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
   2972 
   2973   uint32_t SymIndex = R.getSymbol(Obj->isMips64EL());
   2974   const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
   2975   Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
   2976   SymbolName =
   2977       unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
   2978   std::string Addend = "", Info, Offset, Value;
   2979   Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
   2980   Info = to_string(format_hex_no_prefix(R.r_info, Width));
   2981   Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
   2982   int64_t RelAddend = R.r_addend;
   2983   if (SymbolName.size() && IsRela) {
   2984     if (R.r_addend < 0)
   2985       Addend = " - ";
   2986     else
   2987       Addend = " + ";
   2988   }
   2989 
   2990   if (!SymbolName.size() && Sym->getValue() == 0)
   2991     Value = "";
   2992 
   2993   if (IsRela)
   2994     Addend += to_string(format_hex_no_prefix(std::abs(RelAddend), 1));
   2995 
   2996 
   2997   Fields[0].Str = Offset;
   2998   Fields[1].Str = Info;
   2999   Fields[2].Str = RelocName.c_str();
   3000   Fields[3].Str = Value;
   3001   Fields[4].Str = SymbolName;
   3002   for (auto &Field : Fields)
   3003     printField(Field);
   3004   OS << Addend;
   3005   OS << "\n";
   3006 }
   3007 
   3008 template <class ELFT>
   3009 void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
   3010   const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
   3011   const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
   3012   const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
   3013   if (DynRelaRegion.Size > 0) {
   3014     OS << "\n'RELA' relocation section at offset "
   3015        << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
   3016                          Obj->base(),
   3017                      1) << " contains " << DynRelaRegion.Size << " bytes:\n";
   3018     printRelocHeader(OS, ELFT::Is64Bits, true);
   3019     for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
   3020       printDynamicRelocation(Obj, Rela, true);
   3021   }
   3022   if (DynRelRegion.Size > 0) {
   3023     OS << "\n'REL' relocation section at offset "
   3024        << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
   3025                          Obj->base(),
   3026                      1) << " contains " << DynRelRegion.Size << " bytes:\n";
   3027     printRelocHeader(OS, ELFT::Is64Bits, false);
   3028     for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
   3029       Elf_Rela Rela;
   3030       Rela.r_offset = Rel.r_offset;
   3031       Rela.r_info = Rel.r_info;
   3032       Rela.r_addend = 0;
   3033       printDynamicRelocation(Obj, Rela, false);
   3034     }
   3035   }
   3036   if (DynPLTRelRegion.Size) {
   3037     OS << "\n'PLT' relocation section at offset "
   3038        << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
   3039                          Obj->base(),
   3040                      1) << " contains " << DynPLTRelRegion.Size << " bytes:\n";
   3041   }
   3042   if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
   3043     printRelocHeader(OS, ELFT::Is64Bits, true);
   3044     for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
   3045       printDynamicRelocation(Obj, Rela, true);
   3046   } else {
   3047     printRelocHeader(OS, ELFT::Is64Bits, false);
   3048     for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
   3049       Elf_Rela Rela;
   3050       Rela.r_offset = Rel.r_offset;
   3051       Rela.r_info = Rel.r_info;
   3052       Rela.r_addend = 0;
   3053       printDynamicRelocation(Obj, Rela, false);
   3054     }
   3055   }
   3056 }
   3057 
   3058 // Hash histogram shows  statistics of how efficient the hash was for the
   3059 // dynamic symbol table. The table shows number of hash buckets for different
   3060 // lengths of chains as absolute number and percentage of the total buckets.
   3061 // Additionally cumulative coverage of symbols for each set of buckets.
   3062 template <class ELFT>
   3063 void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
   3064 
   3065   const Elf_Hash *HashTable = this->dumper()->getHashTable();
   3066   const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable();
   3067 
   3068   // Print histogram for .hash section
   3069   if (HashTable) {
   3070     size_t NBucket = HashTable->nbucket;
   3071     size_t NChain = HashTable->nchain;
   3072     ArrayRef<Elf_Word> Buckets = HashTable->buckets();
   3073     ArrayRef<Elf_Word> Chains = HashTable->chains();
   3074     size_t TotalSyms = 0;
   3075     // If hash table is correct, we have at least chains with 0 length
   3076     size_t MaxChain = 1;
   3077     size_t CumulativeNonZero = 0;
   3078 
   3079     if (NChain == 0 || NBucket == 0)
   3080       return;
   3081 
   3082     std::vector<size_t> ChainLen(NBucket, 0);
   3083     // Go over all buckets and and note chain lengths of each bucket (total
   3084     // unique chain lengths).
   3085     for (size_t B = 0; B < NBucket; B++) {
   3086       for (size_t C = Buckets[B]; C > 0 && C < NChain; C = Chains[C])
   3087         if (MaxChain <= ++ChainLen[B])
   3088           MaxChain++;
   3089       TotalSyms += ChainLen[B];
   3090     }
   3091 
   3092     if (!TotalSyms)
   3093       return;
   3094 
   3095     std::vector<size_t> Count(MaxChain, 0) ;
   3096     // Count how long is the chain for each bucket
   3097     for (size_t B = 0; B < NBucket; B++)
   3098       ++Count[ChainLen[B]];
   3099     // Print Number of buckets with each chain lengths and their cumulative
   3100     // coverage of the symbols
   3101     OS << "Histogram for bucket list length (total of " << NBucket
   3102        << " buckets)\n"
   3103        << " Length  Number     % of total  Coverage\n";
   3104     for (size_t I = 0; I < MaxChain; I++) {
   3105       CumulativeNonZero += Count[I] * I;
   3106       OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
   3107                    (Count[I] * 100.0) / NBucket,
   3108                    (CumulativeNonZero * 100.0) / TotalSyms);
   3109     }
   3110   }
   3111 
   3112   // Print histogram for .gnu.hash section
   3113   if (GnuHashTable) {
   3114     size_t NBucket = GnuHashTable->nbuckets;
   3115     ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
   3116     unsigned NumSyms = this->dumper()->dynamic_symbols().size();
   3117     if (!NumSyms)
   3118       return;
   3119     ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms);
   3120     size_t Symndx = GnuHashTable->symndx;
   3121     size_t TotalSyms = 0;
   3122     size_t MaxChain = 1;
   3123     size_t CumulativeNonZero = 0;
   3124 
   3125     if (Chains.size() == 0 || NBucket == 0)
   3126       return;
   3127 
   3128     std::vector<size_t> ChainLen(NBucket, 0);
   3129 
   3130     for (size_t B = 0; B < NBucket; B++) {
   3131       if (!Buckets[B])
   3132         continue;
   3133       size_t Len = 1;
   3134       for (size_t C = Buckets[B] - Symndx;
   3135            C < Chains.size() && (Chains[C] & 1) == 0; C++)
   3136         if (MaxChain < ++Len)
   3137           MaxChain++;
   3138       ChainLen[B] = Len;
   3139       TotalSyms += Len;
   3140     }
   3141     MaxChain++;
   3142 
   3143     if (!TotalSyms)
   3144       return;
   3145 
   3146     std::vector<size_t> Count(MaxChain, 0) ;
   3147     for (size_t B = 0; B < NBucket; B++)
   3148       ++Count[ChainLen[B]];
   3149     // Print Number of buckets with each chain lengths and their cumulative
   3150     // coverage of the symbols
   3151     OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
   3152        << " buckets)\n"
   3153        << " Length  Number     % of total  Coverage\n";
   3154     for (size_t I = 0; I <MaxChain; I++) {
   3155       CumulativeNonZero += Count[I] * I;
   3156       OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
   3157                    (Count[I] * 100.0) / NBucket,
   3158                    (CumulativeNonZero * 100.0) / TotalSyms);
   3159     }
   3160   }
   3161 }
   3162 
   3163 template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
   3164   const Elf_Ehdr *e = Obj->getHeader();
   3165   {
   3166     DictScope D(W, "ElfHeader");
   3167     {
   3168       DictScope D(W, "Ident");
   3169       W.printBinary("Magic", makeArrayRef(e->e_ident).slice(ELF::EI_MAG0, 4));
   3170       W.printEnum("Class", e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
   3171       W.printEnum("DataEncoding", e->e_ident[ELF::EI_DATA],
   3172                   makeArrayRef(ElfDataEncoding));
   3173       W.printNumber("FileVersion", e->e_ident[ELF::EI_VERSION]);
   3174 
   3175       // Handle architecture specific OS/ABI values.
   3176       if (e->e_machine == ELF::EM_AMDGPU &&
   3177           e->e_ident[ELF::EI_OSABI] == ELF::ELFOSABI_AMDGPU_HSA)
   3178         W.printHex("OS/ABI", "AMDGPU_HSA", ELF::ELFOSABI_AMDGPU_HSA);
   3179       else
   3180         W.printEnum("OS/ABI", e->e_ident[ELF::EI_OSABI],
   3181                     makeArrayRef(ElfOSABI));
   3182       W.printNumber("ABIVersion", e->e_ident[ELF::EI_ABIVERSION]);
   3183       W.printBinary("Unused", makeArrayRef(e->e_ident).slice(ELF::EI_PAD));
   3184     }
   3185 
   3186     W.printEnum("Type", e->e_type, makeArrayRef(ElfObjectFileType));
   3187     W.printEnum("Machine", e->e_machine, makeArrayRef(ElfMachineType));
   3188     W.printNumber("Version", e->e_version);
   3189     W.printHex("Entry", e->e_entry);
   3190     W.printHex("ProgramHeaderOffset", e->e_phoff);
   3191     W.printHex("SectionHeaderOffset", e->e_shoff);
   3192     if (e->e_machine == EM_MIPS)
   3193       W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
   3194                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
   3195                    unsigned(ELF::EF_MIPS_MACH));
   3196     else
   3197       W.printFlags("Flags", e->e_flags);
   3198     W.printNumber("HeaderSize", e->e_ehsize);
   3199     W.printNumber("ProgramHeaderEntrySize", e->e_phentsize);
   3200     W.printNumber("ProgramHeaderCount", e->e_phnum);
   3201     W.printNumber("SectionHeaderEntrySize", e->e_shentsize);
   3202     W.printNumber("SectionHeaderCount", e->e_shnum);
   3203     W.printNumber("StringTableSectionIndex", e->e_shstrndx);
   3204   }
   3205 }
   3206 
   3207 template <class ELFT>
   3208 void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
   3209   DictScope Lists(W, "Groups");
   3210   uint32_t SectionIndex = 0;
   3211   bool HasGroups = false;
   3212   for (const Elf_Shdr &Sec : Obj->sections()) {
   3213     if (Sec.sh_type == ELF::SHT_GROUP) {
   3214       HasGroups = true;
   3215       const Elf_Shdr *Symtab = unwrapOrError(Obj->getSection(Sec.sh_link));
   3216       StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
   3217       const Elf_Sym *Sym = Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info);
   3218       auto Data = unwrapOrError(
   3219           Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
   3220       DictScope D(W, "Group");
   3221       StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
   3222       W.printNumber("Name", Name, Sec.sh_name);
   3223       W.printNumber("Index", SectionIndex);
   3224       W.printHex("Type", getGroupType(Data[0]), Data[0]);
   3225       W.startLine() << "Signature: " << StrTable.data() + Sym->st_name << "\n";
   3226       {
   3227         ListScope L(W, "Section(s) in group");
   3228         size_t Member = 1;
   3229         while (Member < Data.size()) {
   3230           auto Sec = unwrapOrError(Obj->getSection(Data[Member]));
   3231           const StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
   3232           W.startLine() << Name << " (" << Data[Member++] << ")\n";
   3233         }
   3234       }
   3235     }
   3236     ++SectionIndex;
   3237   }
   3238   if (!HasGroups)
   3239     W.startLine() << "There are no group sections in the file.\n";
   3240 }
   3241 
   3242 template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
   3243   ListScope D(W, "Relocations");
   3244 
   3245   int SectionNumber = -1;
   3246   for (const Elf_Shdr &Sec : Obj->sections()) {
   3247     ++SectionNumber;
   3248 
   3249     if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA)
   3250       continue;
   3251 
   3252     StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
   3253 
   3254     W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
   3255     W.indent();
   3256 
   3257     printRelocations(&Sec, Obj);
   3258 
   3259     W.unindent();
   3260     W.startLine() << "}\n";
   3261   }
   3262 }
   3263 
   3264 template <class ELFT>
   3265 void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
   3266   const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec->sh_link));
   3267 
   3268   switch (Sec->sh_type) {
   3269   case ELF::SHT_REL:
   3270     for (const Elf_Rel &R : Obj->rels(Sec)) {
   3271       Elf_Rela Rela;
   3272       Rela.r_offset = R.r_offset;
   3273       Rela.r_info = R.r_info;
   3274       Rela.r_addend = 0;
   3275       printRelocation(Obj, Rela, SymTab);
   3276     }
   3277     break;
   3278   case ELF::SHT_RELA:
   3279     for (const Elf_Rela &R : Obj->relas(Sec))
   3280       printRelocation(Obj, R, SymTab);
   3281     break;
   3282   }
   3283 }
   3284 
   3285 template <class ELFT>
   3286 void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel,
   3287                                       const Elf_Shdr *SymTab) {
   3288   SmallString<32> RelocName;
   3289   Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
   3290   StringRef TargetName;
   3291   const Elf_Sym *Sym = Obj->getRelocationSymbol(&Rel, SymTab);
   3292   if (Sym && Sym->getType() == ELF::STT_SECTION) {
   3293     const Elf_Shdr *Sec = unwrapOrError(
   3294         Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
   3295     TargetName = unwrapOrError(Obj->getSectionName(Sec));
   3296   } else if (Sym) {
   3297     StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
   3298     TargetName = unwrapOrError(Sym->getName(StrTable));
   3299   }
   3300 
   3301   if (opts::ExpandRelocs) {
   3302     DictScope Group(W, "Relocation");
   3303     W.printHex("Offset", Rel.r_offset);
   3304     W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
   3305     W.printNumber("Symbol", TargetName.size() > 0 ? TargetName : "-",
   3306                   Rel.getSymbol(Obj->isMips64EL()));
   3307     W.printHex("Addend", Rel.r_addend);
   3308   } else {
   3309     raw_ostream &OS = W.startLine();
   3310     OS << W.hex(Rel.r_offset) << " " << RelocName << " "
   3311        << (TargetName.size() > 0 ? TargetName : "-") << " "
   3312        << W.hex(Rel.r_addend) << "\n";
   3313   }
   3314 }
   3315 
   3316 template <class ELFT> void LLVMStyle<ELFT>::printSections(const ELFO *Obj) {
   3317   ListScope SectionsD(W, "Sections");
   3318 
   3319   int SectionIndex = -1;
   3320   for (const Elf_Shdr &Sec : Obj->sections()) {
   3321     ++SectionIndex;
   3322 
   3323     StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
   3324 
   3325     DictScope SectionD(W, "Section");
   3326     W.printNumber("Index", SectionIndex);
   3327     W.printNumber("Name", Name, Sec.sh_name);
   3328     W.printHex("Type",
   3329                getElfSectionType(Obj->getHeader()->e_machine, Sec.sh_type),
   3330                Sec.sh_type);
   3331     std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags),
   3332                                                   std::end(ElfSectionFlags));
   3333     switch (Obj->getHeader()->e_machine) {
   3334     case EM_AMDGPU:
   3335       SectionFlags.insert(SectionFlags.end(), std::begin(ElfAMDGPUSectionFlags),
   3336                           std::end(ElfAMDGPUSectionFlags));
   3337       break;
   3338     case EM_HEXAGON:
   3339       SectionFlags.insert(SectionFlags.end(),
   3340                           std::begin(ElfHexagonSectionFlags),
   3341                           std::end(ElfHexagonSectionFlags));
   3342       break;
   3343     case EM_MIPS:
   3344       SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags),
   3345                           std::end(ElfMipsSectionFlags));
   3346       break;
   3347     case EM_X86_64:
   3348       SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags),
   3349                           std::end(ElfX86_64SectionFlags));
   3350       break;
   3351     case EM_XCORE:
   3352       SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags),
   3353                           std::end(ElfXCoreSectionFlags));
   3354       break;
   3355     default:
   3356       // Nothing to do.
   3357       break;
   3358     }
   3359     W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags));
   3360     W.printHex("Address", Sec.sh_addr);
   3361     W.printHex("Offset", Sec.sh_offset);
   3362     W.printNumber("Size", Sec.sh_size);
   3363     W.printNumber("Link", Sec.sh_link);
   3364     W.printNumber("Info", Sec.sh_info);
   3365     W.printNumber("AddressAlignment", Sec.sh_addralign);
   3366     W.printNumber("EntrySize", Sec.sh_entsize);
   3367 
   3368     if (opts::SectionRelocations) {
   3369       ListScope D(W, "Relocations");
   3370       printRelocations(&Sec, Obj);
   3371     }
   3372 
   3373     if (opts::SectionSymbols) {
   3374       ListScope D(W, "Symbols");
   3375       const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
   3376       StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
   3377 
   3378       for (const Elf_Sym &Sym : Obj->symbols(Symtab)) {
   3379         const Elf_Shdr *SymSec = unwrapOrError(
   3380             Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
   3381         if (SymSec == &Sec)
   3382           printSymbol(Obj, &Sym, Obj->symbol_begin(Symtab), StrTable, false);
   3383       }
   3384     }
   3385 
   3386     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
   3387       ArrayRef<uint8_t> Data = unwrapOrError(Obj->getSectionContents(&Sec));
   3388       W.printBinaryBlock("SectionData",
   3389                          StringRef((const char *)Data.data(), Data.size()));
   3390     }
   3391   }
   3392 }
   3393 
   3394 template <class ELFT>
   3395 void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
   3396                                   const Elf_Sym *First, StringRef StrTable,
   3397                                   bool IsDynamic) {
   3398   unsigned SectionIndex = 0;
   3399   StringRef SectionName;
   3400   getSectionNameIndex(*Obj, Symbol, First, this->dumper()->getShndxTable(),
   3401                       SectionName, SectionIndex);
   3402   std::string FullSymbolName =
   3403       this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
   3404   unsigned char SymbolType = Symbol->getType();
   3405 
   3406   DictScope D(W, "Symbol");
   3407   W.printNumber("Name", FullSymbolName, Symbol->st_name);
   3408   W.printHex("Value", Symbol->st_value);
   3409   W.printNumber("Size", Symbol->st_size);
   3410   W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
   3411   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
   3412       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
   3413     W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
   3414   else
   3415     W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
   3416   if (Symbol->st_other == 0)
   3417     // Usually st_other flag is zero. Do not pollute the output
   3418     // by flags enumeration in that case.
   3419     W.printNumber("Other", 0);
   3420   else {
   3421     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
   3422                                                    std::end(ElfSymOtherFlags));
   3423     if (Obj->getHeader()->e_machine == EM_MIPS) {
   3424       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
   3425       // flag overlapped with other ST_MIPS_xxx flags. So consider both
   3426       // cases separately.
   3427       if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
   3428         SymOtherFlags.insert(SymOtherFlags.end(),
   3429                              std::begin(ElfMips16SymOtherFlags),
   3430                              std::end(ElfMips16SymOtherFlags));
   3431       else
   3432         SymOtherFlags.insert(SymOtherFlags.end(),
   3433                              std::begin(ElfMipsSymOtherFlags),
   3434                              std::end(ElfMipsSymOtherFlags));
   3435     }
   3436     W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
   3437   }
   3438   W.printHex("Section", SectionName, SectionIndex);
   3439 }
   3440 
   3441 template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
   3442   ListScope Group(W, "Symbols");
   3443   this->dumper()->printSymbolsHelper(false);
   3444 }
   3445 
   3446 template <class ELFT>
   3447 void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
   3448   ListScope Group(W, "DynamicSymbols");
   3449   this->dumper()->printSymbolsHelper(true);
   3450 }
   3451 
   3452 template <class ELFT>
   3453 void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
   3454   const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
   3455   const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
   3456   const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
   3457   if (DynRelRegion.Size && DynRelaRegion.Size)
   3458     report_fatal_error("There are both REL and RELA dynamic relocations");
   3459   W.startLine() << "Dynamic Relocations {\n";
   3460   W.indent();
   3461   if (DynRelaRegion.Size > 0)
   3462     for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
   3463       printDynamicRelocation(Obj, Rela);
   3464   else
   3465     for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
   3466       Elf_Rela Rela;
   3467       Rela.r_offset = Rel.r_offset;
   3468       Rela.r_info = Rel.r_info;
   3469       Rela.r_addend = 0;
   3470       printDynamicRelocation(Obj, Rela);
   3471     }
   3472   if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
   3473     for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
   3474       printDynamicRelocation(Obj, Rela);
   3475   else
   3476     for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
   3477       Elf_Rela Rela;
   3478       Rela.r_offset = Rel.r_offset;
   3479       Rela.r_info = Rel.r_info;
   3480       Rela.r_addend = 0;
   3481       printDynamicRelocation(Obj, Rela);
   3482     }
   3483   W.unindent();
   3484   W.startLine() << "}\n";
   3485 }
   3486 
   3487 template <class ELFT>
   3488 void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
   3489   SmallString<32> RelocName;
   3490   Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
   3491   StringRef SymbolName;
   3492   uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL());
   3493   const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
   3494   SymbolName =
   3495       unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
   3496   if (opts::ExpandRelocs) {
   3497     DictScope Group(W, "Relocation");
   3498     W.printHex("Offset", Rel.r_offset);
   3499     W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
   3500     W.printString("Symbol", SymbolName.size() > 0 ? SymbolName : "-");
   3501     W.printHex("Addend", Rel.r_addend);
   3502   } else {
   3503     raw_ostream &OS = W.startLine();
   3504     OS << W.hex(Rel.r_offset) << " " << RelocName << " "
   3505        << (SymbolName.size() > 0 ? SymbolName : "-") << " "
   3506        << W.hex(Rel.r_addend) << "\n";
   3507   }
   3508 }
   3509 
   3510 template <class ELFT>
   3511 void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
   3512   ListScope L(W, "ProgramHeaders");
   3513 
   3514   for (const Elf_Phdr &Phdr : Obj->program_headers()) {
   3515     DictScope P(W, "ProgramHeader");
   3516     W.printHex("Type",
   3517                getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
   3518                Phdr.p_type);
   3519     W.printHex("Offset", Phdr.p_offset);
   3520     W.printHex("VirtualAddress", Phdr.p_vaddr);
   3521     W.printHex("PhysicalAddress", Phdr.p_paddr);
   3522     W.printNumber("FileSize", Phdr.p_filesz);
   3523     W.printNumber("MemSize", Phdr.p_memsz);
   3524     W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
   3525     W.printNumber("Alignment", Phdr.p_align);
   3526   }
   3527 }
   3528 template <class ELFT>
   3529 void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
   3530   W.startLine() << "Hash Histogram not implemented!\n";
   3531 }
   3532