Home | History | Annotate | Download | only in tspd
      1 /*
      2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * SPDX-License-Identifier: BSD-3-Clause
      5  */
      6 
      7 
      8 /*******************************************************************************
      9  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
     10  * plug-in component to the Secure Monitor, registered as a runtime service. The
     11  * SPD is expected to be a functional extension of the Secure Payload (SP) that
     12  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
     13  * the Trusted OS/Applications range to the dispatcher. The SPD will either
     14  * handle the request locally or delegate it to the Secure Payload. It is also
     15  * responsible for initialising and maintaining communication with the SP.
     16  ******************************************************************************/
     17 #include <arch_helpers.h>
     18 #include <assert.h>
     19 #include <bl31.h>
     20 #include <bl_common.h>
     21 #include <context_mgmt.h>
     22 #include <debug.h>
     23 #include <errno.h>
     24 #include <platform.h>
     25 #include <runtime_svc.h>
     26 #include <stddef.h>
     27 #include <string.h>
     28 #include <tsp.h>
     29 #include <uuid.h>
     30 #include "tspd_private.h"
     31 
     32 /*******************************************************************************
     33  * Address of the entrypoint vector table in the Secure Payload. It is
     34  * initialised once on the primary core after a cold boot.
     35  ******************************************************************************/
     36 tsp_vectors_t *tsp_vectors;
     37 
     38 /*******************************************************************************
     39  * Array to keep track of per-cpu Secure Payload state
     40  ******************************************************************************/
     41 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
     42 
     43 
     44 /* TSP UID */
     45 DEFINE_SVC_UUID(tsp_uuid,
     46 		0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11,
     47 		0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
     48 
     49 int32_t tspd_init(void);
     50 
     51 /*
     52  * This helper function handles Secure EL1 preemption. The preemption could be
     53  * due Non Secure interrupts or EL3 interrupts. In both the cases we context
     54  * switch to the normal world and in case of EL3 interrupts, it will again be
     55  * routed to EL3 which will get handled at the exception vectors.
     56  */
     57 uint64_t tspd_handle_sp_preemption(void *handle)
     58 {
     59 	cpu_context_t *ns_cpu_context;
     60 
     61 	assert(handle == cm_get_context(SECURE));
     62 	cm_el1_sysregs_context_save(SECURE);
     63 	/* Get a reference to the non-secure context */
     64 	ns_cpu_context = cm_get_context(NON_SECURE);
     65 	assert(ns_cpu_context);
     66 
     67 	/*
     68 	 * To allow Secure EL1 interrupt handler to re-enter TSP while TSP
     69 	 * is preempted, the secure system register context which will get
     70 	 * overwritten must be additionally saved. This is currently done
     71 	 * by the TSPD S-EL1 interrupt handler.
     72 	 */
     73 
     74 	/*
     75 	 * Restore non-secure state.
     76 	 */
     77 	cm_el1_sysregs_context_restore(NON_SECURE);
     78 	cm_set_next_eret_context(NON_SECURE);
     79 
     80 	/*
     81 	 * The TSP was preempted during execution of a Yielding SMC Call.
     82 	 * Return back to the normal world with SMC_PREEMPTED as error
     83 	 * code in x0.
     84 	 */
     85 	SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
     86 }
     87 
     88 /*******************************************************************************
     89  * This function is the handler registered for S-EL1 interrupts by the TSPD. It
     90  * validates the interrupt and upon success arranges entry into the TSP at
     91  * 'tsp_sel1_intr_entry()' for handling the interrupt.
     92  ******************************************************************************/
     93 static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
     94 					    uint32_t flags,
     95 					    void *handle,
     96 					    void *cookie)
     97 {
     98 	uint32_t linear_id;
     99 	tsp_context_t *tsp_ctx;
    100 
    101 	/* Check the security state when the exception was generated */
    102 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
    103 
    104 	/* Sanity check the pointer to this cpu's context */
    105 	assert(handle == cm_get_context(NON_SECURE));
    106 
    107 	/* Save the non-secure context before entering the TSP */
    108 	cm_el1_sysregs_context_save(NON_SECURE);
    109 
    110 	/* Get a reference to this cpu's TSP context */
    111 	linear_id = plat_my_core_pos();
    112 	tsp_ctx = &tspd_sp_context[linear_id];
    113 	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
    114 
    115 	/*
    116 	 * Determine if the TSP was previously preempted. Its last known
    117 	 * context has to be preserved in this case.
    118 	 * The TSP should return control to the TSPD after handling this
    119 	 * S-EL1 interrupt. Preserve essential EL3 context to allow entry into
    120 	 * the TSP at the S-EL1 interrupt entry point using the 'cpu_context'
    121 	 * structure. There is no need to save the secure system register
    122 	 * context since the TSP is supposed to preserve it during S-EL1
    123 	 * interrupt handling.
    124 	 */
    125 	if (get_yield_smc_active_flag(tsp_ctx->state)) {
    126 		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
    127 						      CTX_SPSR_EL3);
    128 		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
    129 						     CTX_ELR_EL3);
    130 #if TSP_NS_INTR_ASYNC_PREEMPT
    131 		/*Need to save the previously interrupted secure context */
    132 		memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE);
    133 #endif
    134 	}
    135 
    136 	cm_el1_sysregs_context_restore(SECURE);
    137 	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->sel1_intr_entry,
    138 		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
    139 
    140 	cm_set_next_eret_context(SECURE);
    141 
    142 	/*
    143 	 * Tell the TSP that it has to handle a S-EL1 interrupt synchronously.
    144 	 * Also the instruction in normal world where the interrupt was
    145 	 * generated is passed for debugging purposes. It is safe to retrieve
    146 	 * this address from ELR_EL3 as the secure context will not take effect
    147 	 * until el3_exit().
    148 	 */
    149 	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_SEL1_INTR_AND_RETURN, read_elr_el3());
    150 }
    151 
    152 #if TSP_NS_INTR_ASYNC_PREEMPT
    153 /*******************************************************************************
    154  * This function is the handler registered for Non secure interrupts by the
    155  * TSPD. It validates the interrupt and upon success arranges entry into the
    156  * normal world for handling the interrupt.
    157  ******************************************************************************/
    158 static uint64_t tspd_ns_interrupt_handler(uint32_t id,
    159 					    uint32_t flags,
    160 					    void *handle,
    161 					    void *cookie)
    162 {
    163 	/* Check the security state when the exception was generated */
    164 	assert(get_interrupt_src_ss(flags) == SECURE);
    165 
    166 	/*
    167 	 * Disable the routing of NS interrupts from secure world to EL3 while
    168 	 * interrupted on this core.
    169 	 */
    170 	disable_intr_rm_local(INTR_TYPE_NS, SECURE);
    171 
    172 	return tspd_handle_sp_preemption(handle);
    173 }
    174 #endif
    175 
    176 /*******************************************************************************
    177  * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
    178  * (aarch32/aarch64) if not already known and initialises the context for entry
    179  * into the SP for its initialisation.
    180  ******************************************************************************/
    181 int32_t tspd_setup(void)
    182 {
    183 	entry_point_info_t *tsp_ep_info;
    184 	uint32_t linear_id;
    185 
    186 	linear_id = plat_my_core_pos();
    187 
    188 	/*
    189 	 * Get information about the Secure Payload (BL32) image. Its
    190 	 * absence is a critical failure.  TODO: Add support to
    191 	 * conditionally include the SPD service
    192 	 */
    193 	tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
    194 	if (!tsp_ep_info) {
    195 		WARN("No TSP provided by BL2 boot loader, Booting device"
    196 			" without TSP initialization. SMC`s destined for TSP"
    197 			" will return SMC_UNK\n");
    198 		return 1;
    199 	}
    200 
    201 	/*
    202 	 * If there's no valid entry point for SP, we return a non-zero value
    203 	 * signalling failure initializing the service. We bail out without
    204 	 * registering any handlers
    205 	 */
    206 	if (!tsp_ep_info->pc)
    207 		return 1;
    208 
    209 	/*
    210 	 * We could inspect the SP image and determine its execution
    211 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
    212 	 * for the time being.
    213 	 */
    214 	tspd_init_tsp_ep_state(tsp_ep_info,
    215 				TSP_AARCH64,
    216 				tsp_ep_info->pc,
    217 				&tspd_sp_context[linear_id]);
    218 
    219 #if TSP_INIT_ASYNC
    220 	bl31_set_next_image_type(SECURE);
    221 #else
    222 	/*
    223 	 * All TSPD initialization done. Now register our init function with
    224 	 * BL31 for deferred invocation
    225 	 */
    226 	bl31_register_bl32_init(&tspd_init);
    227 #endif
    228 	return 0;
    229 }
    230 
    231 /*******************************************************************************
    232  * This function passes control to the Secure Payload image (BL32) for the first
    233  * time on the primary cpu after a cold boot. It assumes that a valid secure
    234  * context has already been created by tspd_setup() which can be directly used.
    235  * It also assumes that a valid non-secure context has been initialised by PSCI
    236  * so it does not need to save and restore any non-secure state. This function
    237  * performs a synchronous entry into the Secure payload. The SP passes control
    238  * back to this routine through a SMC.
    239  ******************************************************************************/
    240 int32_t tspd_init(void)
    241 {
    242 	uint32_t linear_id = plat_my_core_pos();
    243 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
    244 	entry_point_info_t *tsp_entry_point;
    245 	uint64_t rc;
    246 
    247 	/*
    248 	 * Get information about the Secure Payload (BL32) image. Its
    249 	 * absence is a critical failure.
    250 	 */
    251 	tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
    252 	assert(tsp_entry_point);
    253 
    254 	cm_init_my_context(tsp_entry_point);
    255 
    256 	/*
    257 	 * Arrange for an entry into the test secure payload. It will be
    258 	 * returned via TSP_ENTRY_DONE case
    259 	 */
    260 	rc = tspd_synchronous_sp_entry(tsp_ctx);
    261 	assert(rc != 0);
    262 
    263 	return rc;
    264 }
    265 
    266 
    267 /*******************************************************************************
    268  * This function is responsible for handling all SMCs in the Trusted OS/App
    269  * range from the non-secure state as defined in the SMC Calling Convention
    270  * Document. It is also responsible for communicating with the Secure payload
    271  * to delegate work and return results back to the non-secure state. Lastly it
    272  * will also return any information that the secure payload needs to do the
    273  * work assigned to it.
    274  ******************************************************************************/
    275 uint64_t tspd_smc_handler(uint32_t smc_fid,
    276 			 uint64_t x1,
    277 			 uint64_t x2,
    278 			 uint64_t x3,
    279 			 uint64_t x4,
    280 			 void *cookie,
    281 			 void *handle,
    282 			 uint64_t flags)
    283 {
    284 	cpu_context_t *ns_cpu_context;
    285 	uint32_t linear_id = plat_my_core_pos(), ns;
    286 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
    287 	uint64_t rc;
    288 #if TSP_INIT_ASYNC
    289 	entry_point_info_t *next_image_info;
    290 #endif
    291 
    292 	/* Determine which security state this SMC originated from */
    293 	ns = is_caller_non_secure(flags);
    294 
    295 	switch (smc_fid) {
    296 
    297 	/*
    298 	 * This function ID is used by TSP to indicate that it was
    299 	 * preempted by a normal world IRQ.
    300 	 *
    301 	 */
    302 	case TSP_PREEMPTED:
    303 		if (ns)
    304 			SMC_RET1(handle, SMC_UNK);
    305 
    306 		return tspd_handle_sp_preemption(handle);
    307 
    308 	/*
    309 	 * This function ID is used only by the TSP to indicate that it has
    310 	 * finished handling a S-EL1 interrupt or was preempted by a higher
    311 	 * priority pending EL3 interrupt. Execution should resume
    312 	 * in the normal world.
    313 	 */
    314 	case TSP_HANDLED_S_EL1_INTR:
    315 		if (ns)
    316 			SMC_RET1(handle, SMC_UNK);
    317 
    318 		assert(handle == cm_get_context(SECURE));
    319 
    320 		/*
    321 		 * Restore the relevant EL3 state which saved to service
    322 		 * this SMC.
    323 		 */
    324 		if (get_yield_smc_active_flag(tsp_ctx->state)) {
    325 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
    326 				    CTX_SPSR_EL3,
    327 				    tsp_ctx->saved_spsr_el3);
    328 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
    329 				    CTX_ELR_EL3,
    330 				    tsp_ctx->saved_elr_el3);
    331 #if TSP_NS_INTR_ASYNC_PREEMPT
    332 			/*
    333 			 * Need to restore the previously interrupted
    334 			 * secure context.
    335 			 */
    336 			memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx,
    337 				TSPD_SP_CTX_SIZE);
    338 #endif
    339 		}
    340 
    341 		/* Get a reference to the non-secure context */
    342 		ns_cpu_context = cm_get_context(NON_SECURE);
    343 		assert(ns_cpu_context);
    344 
    345 		/*
    346 		 * Restore non-secure state. There is no need to save the
    347 		 * secure system register context since the TSP was supposed
    348 		 * to preserve it during S-EL1 interrupt handling.
    349 		 */
    350 		cm_el1_sysregs_context_restore(NON_SECURE);
    351 		cm_set_next_eret_context(NON_SECURE);
    352 
    353 		SMC_RET0((uint64_t) ns_cpu_context);
    354 
    355 	/*
    356 	 * This function ID is used only by the SP to indicate it has
    357 	 * finished initialising itself after a cold boot
    358 	 */
    359 	case TSP_ENTRY_DONE:
    360 		if (ns)
    361 			SMC_RET1(handle, SMC_UNK);
    362 
    363 		/*
    364 		 * Stash the SP entry points information. This is done
    365 		 * only once on the primary cpu
    366 		 */
    367 		assert(tsp_vectors == NULL);
    368 		tsp_vectors = (tsp_vectors_t *) x1;
    369 
    370 		if (tsp_vectors) {
    371 			set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
    372 
    373 			/*
    374 			 * TSP has been successfully initialized. Register power
    375 			 * managemnt hooks with PSCI
    376 			 */
    377 			psci_register_spd_pm_hook(&tspd_pm);
    378 
    379 			/*
    380 			 * Register an interrupt handler for S-EL1 interrupts
    381 			 * when generated during code executing in the
    382 			 * non-secure state.
    383 			 */
    384 			flags = 0;
    385 			set_interrupt_rm_flag(flags, NON_SECURE);
    386 			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
    387 						tspd_sel1_interrupt_handler,
    388 						flags);
    389 			if (rc)
    390 				panic();
    391 
    392 #if TSP_NS_INTR_ASYNC_PREEMPT
    393 			/*
    394 			 * Register an interrupt handler for NS interrupts when
    395 			 * generated during code executing in secure state are
    396 			 * routed to EL3.
    397 			 */
    398 			flags = 0;
    399 			set_interrupt_rm_flag(flags, SECURE);
    400 
    401 			rc = register_interrupt_type_handler(INTR_TYPE_NS,
    402 						tspd_ns_interrupt_handler,
    403 						flags);
    404 			if (rc)
    405 				panic();
    406 
    407 			/*
    408 			 * Disable the NS interrupt locally.
    409 			 */
    410 			disable_intr_rm_local(INTR_TYPE_NS, SECURE);
    411 #endif
    412 		}
    413 
    414 
    415 #if TSP_INIT_ASYNC
    416 		/* Save the Secure EL1 system register context */
    417 		assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx);
    418 		cm_el1_sysregs_context_save(SECURE);
    419 
    420 		/* Program EL3 registers to enable entry into the next EL */
    421 		next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
    422 		assert(next_image_info);
    423 		assert(NON_SECURE ==
    424 				GET_SECURITY_STATE(next_image_info->h.attr));
    425 
    426 		cm_init_my_context(next_image_info);
    427 		cm_prepare_el3_exit(NON_SECURE);
    428 		SMC_RET0(cm_get_context(NON_SECURE));
    429 #else
    430 		/*
    431 		 * SP reports completion. The SPD must have initiated
    432 		 * the original request through a synchronous entry
    433 		 * into the SP. Jump back to the original C runtime
    434 		 * context.
    435 		 */
    436 		tspd_synchronous_sp_exit(tsp_ctx, x1);
    437 #endif
    438 	/*
    439 	 * This function ID is used only by the SP to indicate it has finished
    440 	 * aborting a preempted Yielding SMC Call.
    441 	 */
    442 	case TSP_ABORT_DONE:
    443 
    444 	/*
    445 	 * These function IDs are used only by the SP to indicate it has
    446 	 * finished:
    447 	 * 1. turning itself on in response to an earlier psci
    448 	 *    cpu_on request
    449 	 * 2. resuming itself after an earlier psci cpu_suspend
    450 	 *    request.
    451 	 */
    452 	case TSP_ON_DONE:
    453 	case TSP_RESUME_DONE:
    454 
    455 	/*
    456 	 * These function IDs are used only by the SP to indicate it has
    457 	 * finished:
    458 	 * 1. suspending itself after an earlier psci cpu_suspend
    459 	 *    request.
    460 	 * 2. turning itself off in response to an earlier psci
    461 	 *    cpu_off request.
    462 	 */
    463 	case TSP_OFF_DONE:
    464 	case TSP_SUSPEND_DONE:
    465 	case TSP_SYSTEM_OFF_DONE:
    466 	case TSP_SYSTEM_RESET_DONE:
    467 		if (ns)
    468 			SMC_RET1(handle, SMC_UNK);
    469 
    470 		/*
    471 		 * SP reports completion. The SPD must have initiated the
    472 		 * original request through a synchronous entry into the SP.
    473 		 * Jump back to the original C runtime context, and pass x1 as
    474 		 * return value to the caller
    475 		 */
    476 		tspd_synchronous_sp_exit(tsp_ctx, x1);
    477 
    478 		/*
    479 		 * Request from non-secure client to perform an
    480 		 * arithmetic operation or response from secure
    481 		 * payload to an earlier request.
    482 		 */
    483 	case TSP_FAST_FID(TSP_ADD):
    484 	case TSP_FAST_FID(TSP_SUB):
    485 	case TSP_FAST_FID(TSP_MUL):
    486 	case TSP_FAST_FID(TSP_DIV):
    487 
    488 	case TSP_YIELD_FID(TSP_ADD):
    489 	case TSP_YIELD_FID(TSP_SUB):
    490 	case TSP_YIELD_FID(TSP_MUL):
    491 	case TSP_YIELD_FID(TSP_DIV):
    492 		if (ns) {
    493 			/*
    494 			 * This is a fresh request from the non-secure client.
    495 			 * The parameters are in x1 and x2. Figure out which
    496 			 * registers need to be preserved, save the non-secure
    497 			 * state and send the request to the secure payload.
    498 			 */
    499 			assert(handle == cm_get_context(NON_SECURE));
    500 
    501 			/* Check if we are already preempted */
    502 			if (get_yield_smc_active_flag(tsp_ctx->state))
    503 				SMC_RET1(handle, SMC_UNK);
    504 
    505 			cm_el1_sysregs_context_save(NON_SECURE);
    506 
    507 			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
    508 			store_tsp_args(tsp_ctx, x1, x2);
    509 
    510 			/*
    511 			 * We are done stashing the non-secure context. Ask the
    512 			 * secure payload to do the work now.
    513 			 */
    514 
    515 			/*
    516 			 * Verify if there is a valid context to use, copy the
    517 			 * operation type and parameters to the secure context
    518 			 * and jump to the fast smc entry point in the secure
    519 			 * payload. Entry into S-EL1 will take place upon exit
    520 			 * from this function.
    521 			 */
    522 			assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
    523 
    524 			/* Set appropriate entry for SMC.
    525 			 * We expect the TSP to manage the PSTATE.I and PSTATE.F
    526 			 * flags as appropriate.
    527 			 */
    528 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
    529 				cm_set_elr_el3(SECURE, (uint64_t)
    530 						&tsp_vectors->fast_smc_entry);
    531 			} else {
    532 				set_yield_smc_active_flag(tsp_ctx->state);
    533 				cm_set_elr_el3(SECURE, (uint64_t)
    534 						&tsp_vectors->yield_smc_entry);
    535 #if TSP_NS_INTR_ASYNC_PREEMPT
    536 				/*
    537 				 * Enable the routing of NS interrupts to EL3
    538 				 * during processing of a Yielding SMC Call on
    539 				 * this core.
    540 				 */
    541 				enable_intr_rm_local(INTR_TYPE_NS, SECURE);
    542 #endif
    543 			}
    544 
    545 			cm_el1_sysregs_context_restore(SECURE);
    546 			cm_set_next_eret_context(SECURE);
    547 			SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
    548 		} else {
    549 			/*
    550 			 * This is the result from the secure client of an
    551 			 * earlier request. The results are in x1-x3. Copy it
    552 			 * into the non-secure context, save the secure state
    553 			 * and return to the non-secure state.
    554 			 */
    555 			assert(handle == cm_get_context(SECURE));
    556 			cm_el1_sysregs_context_save(SECURE);
    557 
    558 			/* Get a reference to the non-secure context */
    559 			ns_cpu_context = cm_get_context(NON_SECURE);
    560 			assert(ns_cpu_context);
    561 
    562 			/* Restore non-secure state */
    563 			cm_el1_sysregs_context_restore(NON_SECURE);
    564 			cm_set_next_eret_context(NON_SECURE);
    565 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_YIELD) {
    566 				clr_yield_smc_active_flag(tsp_ctx->state);
    567 #if TSP_NS_INTR_ASYNC_PREEMPT
    568 				/*
    569 				 * Disable the routing of NS interrupts to EL3
    570 				 * after processing of a Yielding SMC Call on
    571 				 * this core is finished.
    572 				 */
    573 				disable_intr_rm_local(INTR_TYPE_NS, SECURE);
    574 #endif
    575 			}
    576 
    577 			SMC_RET3(ns_cpu_context, x1, x2, x3);
    578 		}
    579 
    580 		break;
    581 	/*
    582 	 * Request from the non-secure world to abort a preempted Yielding SMC
    583 	 * Call.
    584 	 */
    585 	case TSP_FID_ABORT:
    586 		/* ABORT should only be invoked by normal world */
    587 		if (!ns) {
    588 			assert(0);
    589 			break;
    590 		}
    591 
    592 		assert(handle == cm_get_context(NON_SECURE));
    593 		cm_el1_sysregs_context_save(NON_SECURE);
    594 
    595 		/* Abort the preempted SMC request */
    596 		if (!tspd_abort_preempted_smc(tsp_ctx)) {
    597 			/*
    598 			 * If there was no preempted SMC to abort, return
    599 			 * SMC_UNK.
    600 			 *
    601 			 * Restoring the NON_SECURE context is not necessary as
    602 			 * the synchronous entry did not take place if the
    603 			 * return code of tspd_abort_preempted_smc is zero.
    604 			 */
    605 			cm_set_next_eret_context(NON_SECURE);
    606 			break;
    607 		}
    608 
    609 		cm_el1_sysregs_context_restore(NON_SECURE);
    610 		cm_set_next_eret_context(NON_SECURE);
    611 		SMC_RET1(handle, SMC_OK);
    612 
    613 		/*
    614 		 * Request from non secure world to resume the preempted
    615 		 * Yielding SMC Call.
    616 		 */
    617 	case TSP_FID_RESUME:
    618 		/* RESUME should be invoked only by normal world */
    619 		if (!ns) {
    620 			assert(0);
    621 			break;
    622 		}
    623 
    624 		/*
    625 		 * This is a resume request from the non-secure client.
    626 		 * save the non-secure state and send the request to
    627 		 * the secure payload.
    628 		 */
    629 		assert(handle == cm_get_context(NON_SECURE));
    630 
    631 		/* Check if we are already preempted before resume */
    632 		if (!get_yield_smc_active_flag(tsp_ctx->state))
    633 			SMC_RET1(handle, SMC_UNK);
    634 
    635 		cm_el1_sysregs_context_save(NON_SECURE);
    636 
    637 		/*
    638 		 * We are done stashing the non-secure context. Ask the
    639 		 * secure payload to do the work now.
    640 		 */
    641 #if TSP_NS_INTR_ASYNC_PREEMPT
    642 		/*
    643 		 * Enable the routing of NS interrupts to EL3 during resumption
    644 		 * of a Yielding SMC Call on this core.
    645 		 */
    646 		enable_intr_rm_local(INTR_TYPE_NS, SECURE);
    647 #endif
    648 
    649 
    650 
    651 		/* We just need to return to the preempted point in
    652 		 * TSP and the execution will resume as normal.
    653 		 */
    654 		cm_el1_sysregs_context_restore(SECURE);
    655 		cm_set_next_eret_context(SECURE);
    656 		SMC_RET0(&tsp_ctx->cpu_ctx);
    657 
    658 		/*
    659 		 * This is a request from the secure payload for more arguments
    660 		 * for an ongoing arithmetic operation requested by the
    661 		 * non-secure world. Simply return the arguments from the non-
    662 		 * secure client in the original call.
    663 		 */
    664 	case TSP_GET_ARGS:
    665 		if (ns)
    666 			SMC_RET1(handle, SMC_UNK);
    667 
    668 		get_tsp_args(tsp_ctx, x1, x2);
    669 		SMC_RET2(handle, x1, x2);
    670 
    671 	case TOS_CALL_COUNT:
    672 		/*
    673 		 * Return the number of service function IDs implemented to
    674 		 * provide service to non-secure
    675 		 */
    676 		SMC_RET1(handle, TSP_NUM_FID);
    677 
    678 	case TOS_UID:
    679 		/* Return TSP UID to the caller */
    680 		SMC_UUID_RET(handle, tsp_uuid);
    681 
    682 	case TOS_CALL_VERSION:
    683 		/* Return the version of current implementation */
    684 		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
    685 
    686 	default:
    687 		break;
    688 	}
    689 
    690 	SMC_RET1(handle, SMC_UNK);
    691 }
    692 
    693 /* Define a SPD runtime service descriptor for fast SMC calls */
    694 DECLARE_RT_SVC(
    695 	tspd_fast,
    696 
    697 	OEN_TOS_START,
    698 	OEN_TOS_END,
    699 	SMC_TYPE_FAST,
    700 	tspd_setup,
    701 	tspd_smc_handler
    702 );
    703 
    704 /* Define a SPD runtime service descriptor for Yielding SMC Calls */
    705 DECLARE_RT_SVC(
    706 	tspd_std,
    707 
    708 	OEN_TOS_START,
    709 	OEN_TOS_END,
    710 	SMC_TYPE_YIELD,
    711 	NULL,
    712 	tspd_smc_handler
    713 );
    714