1 /* 2 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 8 /******************************************************************************* 9 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a 10 * plug-in component to the Secure Monitor, registered as a runtime service. The 11 * SPD is expected to be a functional extension of the Secure Payload (SP) that 12 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting 13 * the Trusted OS/Applications range to the dispatcher. The SPD will either 14 * handle the request locally or delegate it to the Secure Payload. It is also 15 * responsible for initialising and maintaining communication with the SP. 16 ******************************************************************************/ 17 #include <arch_helpers.h> 18 #include <assert.h> 19 #include <bl31.h> 20 #include <bl_common.h> 21 #include <context_mgmt.h> 22 #include <debug.h> 23 #include <errno.h> 24 #include <platform.h> 25 #include <runtime_svc.h> 26 #include <stddef.h> 27 #include <string.h> 28 #include <tsp.h> 29 #include <uuid.h> 30 #include "tspd_private.h" 31 32 /******************************************************************************* 33 * Address of the entrypoint vector table in the Secure Payload. It is 34 * initialised once on the primary core after a cold boot. 35 ******************************************************************************/ 36 tsp_vectors_t *tsp_vectors; 37 38 /******************************************************************************* 39 * Array to keep track of per-cpu Secure Payload state 40 ******************************************************************************/ 41 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT]; 42 43 44 /* TSP UID */ 45 DEFINE_SVC_UUID(tsp_uuid, 46 0x5b3056a0, 0x3291, 0x427b, 0x98, 0x11, 47 0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa); 48 49 int32_t tspd_init(void); 50 51 /* 52 * This helper function handles Secure EL1 preemption. The preemption could be 53 * due Non Secure interrupts or EL3 interrupts. In both the cases we context 54 * switch to the normal world and in case of EL3 interrupts, it will again be 55 * routed to EL3 which will get handled at the exception vectors. 56 */ 57 uint64_t tspd_handle_sp_preemption(void *handle) 58 { 59 cpu_context_t *ns_cpu_context; 60 61 assert(handle == cm_get_context(SECURE)); 62 cm_el1_sysregs_context_save(SECURE); 63 /* Get a reference to the non-secure context */ 64 ns_cpu_context = cm_get_context(NON_SECURE); 65 assert(ns_cpu_context); 66 67 /* 68 * To allow Secure EL1 interrupt handler to re-enter TSP while TSP 69 * is preempted, the secure system register context which will get 70 * overwritten must be additionally saved. This is currently done 71 * by the TSPD S-EL1 interrupt handler. 72 */ 73 74 /* 75 * Restore non-secure state. 76 */ 77 cm_el1_sysregs_context_restore(NON_SECURE); 78 cm_set_next_eret_context(NON_SECURE); 79 80 /* 81 * The TSP was preempted during execution of a Yielding SMC Call. 82 * Return back to the normal world with SMC_PREEMPTED as error 83 * code in x0. 84 */ 85 SMC_RET1(ns_cpu_context, SMC_PREEMPTED); 86 } 87 88 /******************************************************************************* 89 * This function is the handler registered for S-EL1 interrupts by the TSPD. It 90 * validates the interrupt and upon success arranges entry into the TSP at 91 * 'tsp_sel1_intr_entry()' for handling the interrupt. 92 ******************************************************************************/ 93 static uint64_t tspd_sel1_interrupt_handler(uint32_t id, 94 uint32_t flags, 95 void *handle, 96 void *cookie) 97 { 98 uint32_t linear_id; 99 tsp_context_t *tsp_ctx; 100 101 /* Check the security state when the exception was generated */ 102 assert(get_interrupt_src_ss(flags) == NON_SECURE); 103 104 /* Sanity check the pointer to this cpu's context */ 105 assert(handle == cm_get_context(NON_SECURE)); 106 107 /* Save the non-secure context before entering the TSP */ 108 cm_el1_sysregs_context_save(NON_SECURE); 109 110 /* Get a reference to this cpu's TSP context */ 111 linear_id = plat_my_core_pos(); 112 tsp_ctx = &tspd_sp_context[linear_id]; 113 assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE)); 114 115 /* 116 * Determine if the TSP was previously preempted. Its last known 117 * context has to be preserved in this case. 118 * The TSP should return control to the TSPD after handling this 119 * S-EL1 interrupt. Preserve essential EL3 context to allow entry into 120 * the TSP at the S-EL1 interrupt entry point using the 'cpu_context' 121 * structure. There is no need to save the secure system register 122 * context since the TSP is supposed to preserve it during S-EL1 123 * interrupt handling. 124 */ 125 if (get_yield_smc_active_flag(tsp_ctx->state)) { 126 tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx, 127 CTX_SPSR_EL3); 128 tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx, 129 CTX_ELR_EL3); 130 #if TSP_NS_INTR_ASYNC_PREEMPT 131 /*Need to save the previously interrupted secure context */ 132 memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE); 133 #endif 134 } 135 136 cm_el1_sysregs_context_restore(SECURE); 137 cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->sel1_intr_entry, 138 SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS)); 139 140 cm_set_next_eret_context(SECURE); 141 142 /* 143 * Tell the TSP that it has to handle a S-EL1 interrupt synchronously. 144 * Also the instruction in normal world where the interrupt was 145 * generated is passed for debugging purposes. It is safe to retrieve 146 * this address from ELR_EL3 as the secure context will not take effect 147 * until el3_exit(). 148 */ 149 SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_SEL1_INTR_AND_RETURN, read_elr_el3()); 150 } 151 152 #if TSP_NS_INTR_ASYNC_PREEMPT 153 /******************************************************************************* 154 * This function is the handler registered for Non secure interrupts by the 155 * TSPD. It validates the interrupt and upon success arranges entry into the 156 * normal world for handling the interrupt. 157 ******************************************************************************/ 158 static uint64_t tspd_ns_interrupt_handler(uint32_t id, 159 uint32_t flags, 160 void *handle, 161 void *cookie) 162 { 163 /* Check the security state when the exception was generated */ 164 assert(get_interrupt_src_ss(flags) == SECURE); 165 166 /* 167 * Disable the routing of NS interrupts from secure world to EL3 while 168 * interrupted on this core. 169 */ 170 disable_intr_rm_local(INTR_TYPE_NS, SECURE); 171 172 return tspd_handle_sp_preemption(handle); 173 } 174 #endif 175 176 /******************************************************************************* 177 * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type 178 * (aarch32/aarch64) if not already known and initialises the context for entry 179 * into the SP for its initialisation. 180 ******************************************************************************/ 181 int32_t tspd_setup(void) 182 { 183 entry_point_info_t *tsp_ep_info; 184 uint32_t linear_id; 185 186 linear_id = plat_my_core_pos(); 187 188 /* 189 * Get information about the Secure Payload (BL32) image. Its 190 * absence is a critical failure. TODO: Add support to 191 * conditionally include the SPD service 192 */ 193 tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE); 194 if (!tsp_ep_info) { 195 WARN("No TSP provided by BL2 boot loader, Booting device" 196 " without TSP initialization. SMC`s destined for TSP" 197 " will return SMC_UNK\n"); 198 return 1; 199 } 200 201 /* 202 * If there's no valid entry point for SP, we return a non-zero value 203 * signalling failure initializing the service. We bail out without 204 * registering any handlers 205 */ 206 if (!tsp_ep_info->pc) 207 return 1; 208 209 /* 210 * We could inspect the SP image and determine its execution 211 * state i.e whether AArch32 or AArch64. Assuming it's AArch64 212 * for the time being. 213 */ 214 tspd_init_tsp_ep_state(tsp_ep_info, 215 TSP_AARCH64, 216 tsp_ep_info->pc, 217 &tspd_sp_context[linear_id]); 218 219 #if TSP_INIT_ASYNC 220 bl31_set_next_image_type(SECURE); 221 #else 222 /* 223 * All TSPD initialization done. Now register our init function with 224 * BL31 for deferred invocation 225 */ 226 bl31_register_bl32_init(&tspd_init); 227 #endif 228 return 0; 229 } 230 231 /******************************************************************************* 232 * This function passes control to the Secure Payload image (BL32) for the first 233 * time on the primary cpu after a cold boot. It assumes that a valid secure 234 * context has already been created by tspd_setup() which can be directly used. 235 * It also assumes that a valid non-secure context has been initialised by PSCI 236 * so it does not need to save and restore any non-secure state. This function 237 * performs a synchronous entry into the Secure payload. The SP passes control 238 * back to this routine through a SMC. 239 ******************************************************************************/ 240 int32_t tspd_init(void) 241 { 242 uint32_t linear_id = plat_my_core_pos(); 243 tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; 244 entry_point_info_t *tsp_entry_point; 245 uint64_t rc; 246 247 /* 248 * Get information about the Secure Payload (BL32) image. Its 249 * absence is a critical failure. 250 */ 251 tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE); 252 assert(tsp_entry_point); 253 254 cm_init_my_context(tsp_entry_point); 255 256 /* 257 * Arrange for an entry into the test secure payload. It will be 258 * returned via TSP_ENTRY_DONE case 259 */ 260 rc = tspd_synchronous_sp_entry(tsp_ctx); 261 assert(rc != 0); 262 263 return rc; 264 } 265 266 267 /******************************************************************************* 268 * This function is responsible for handling all SMCs in the Trusted OS/App 269 * range from the non-secure state as defined in the SMC Calling Convention 270 * Document. It is also responsible for communicating with the Secure payload 271 * to delegate work and return results back to the non-secure state. Lastly it 272 * will also return any information that the secure payload needs to do the 273 * work assigned to it. 274 ******************************************************************************/ 275 uint64_t tspd_smc_handler(uint32_t smc_fid, 276 uint64_t x1, 277 uint64_t x2, 278 uint64_t x3, 279 uint64_t x4, 280 void *cookie, 281 void *handle, 282 uint64_t flags) 283 { 284 cpu_context_t *ns_cpu_context; 285 uint32_t linear_id = plat_my_core_pos(), ns; 286 tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; 287 uint64_t rc; 288 #if TSP_INIT_ASYNC 289 entry_point_info_t *next_image_info; 290 #endif 291 292 /* Determine which security state this SMC originated from */ 293 ns = is_caller_non_secure(flags); 294 295 switch (smc_fid) { 296 297 /* 298 * This function ID is used by TSP to indicate that it was 299 * preempted by a normal world IRQ. 300 * 301 */ 302 case TSP_PREEMPTED: 303 if (ns) 304 SMC_RET1(handle, SMC_UNK); 305 306 return tspd_handle_sp_preemption(handle); 307 308 /* 309 * This function ID is used only by the TSP to indicate that it has 310 * finished handling a S-EL1 interrupt or was preempted by a higher 311 * priority pending EL3 interrupt. Execution should resume 312 * in the normal world. 313 */ 314 case TSP_HANDLED_S_EL1_INTR: 315 if (ns) 316 SMC_RET1(handle, SMC_UNK); 317 318 assert(handle == cm_get_context(SECURE)); 319 320 /* 321 * Restore the relevant EL3 state which saved to service 322 * this SMC. 323 */ 324 if (get_yield_smc_active_flag(tsp_ctx->state)) { 325 SMC_SET_EL3(&tsp_ctx->cpu_ctx, 326 CTX_SPSR_EL3, 327 tsp_ctx->saved_spsr_el3); 328 SMC_SET_EL3(&tsp_ctx->cpu_ctx, 329 CTX_ELR_EL3, 330 tsp_ctx->saved_elr_el3); 331 #if TSP_NS_INTR_ASYNC_PREEMPT 332 /* 333 * Need to restore the previously interrupted 334 * secure context. 335 */ 336 memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx, 337 TSPD_SP_CTX_SIZE); 338 #endif 339 } 340 341 /* Get a reference to the non-secure context */ 342 ns_cpu_context = cm_get_context(NON_SECURE); 343 assert(ns_cpu_context); 344 345 /* 346 * Restore non-secure state. There is no need to save the 347 * secure system register context since the TSP was supposed 348 * to preserve it during S-EL1 interrupt handling. 349 */ 350 cm_el1_sysregs_context_restore(NON_SECURE); 351 cm_set_next_eret_context(NON_SECURE); 352 353 SMC_RET0((uint64_t) ns_cpu_context); 354 355 /* 356 * This function ID is used only by the SP to indicate it has 357 * finished initialising itself after a cold boot 358 */ 359 case TSP_ENTRY_DONE: 360 if (ns) 361 SMC_RET1(handle, SMC_UNK); 362 363 /* 364 * Stash the SP entry points information. This is done 365 * only once on the primary cpu 366 */ 367 assert(tsp_vectors == NULL); 368 tsp_vectors = (tsp_vectors_t *) x1; 369 370 if (tsp_vectors) { 371 set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON); 372 373 /* 374 * TSP has been successfully initialized. Register power 375 * managemnt hooks with PSCI 376 */ 377 psci_register_spd_pm_hook(&tspd_pm); 378 379 /* 380 * Register an interrupt handler for S-EL1 interrupts 381 * when generated during code executing in the 382 * non-secure state. 383 */ 384 flags = 0; 385 set_interrupt_rm_flag(flags, NON_SECURE); 386 rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, 387 tspd_sel1_interrupt_handler, 388 flags); 389 if (rc) 390 panic(); 391 392 #if TSP_NS_INTR_ASYNC_PREEMPT 393 /* 394 * Register an interrupt handler for NS interrupts when 395 * generated during code executing in secure state are 396 * routed to EL3. 397 */ 398 flags = 0; 399 set_interrupt_rm_flag(flags, SECURE); 400 401 rc = register_interrupt_type_handler(INTR_TYPE_NS, 402 tspd_ns_interrupt_handler, 403 flags); 404 if (rc) 405 panic(); 406 407 /* 408 * Disable the NS interrupt locally. 409 */ 410 disable_intr_rm_local(INTR_TYPE_NS, SECURE); 411 #endif 412 } 413 414 415 #if TSP_INIT_ASYNC 416 /* Save the Secure EL1 system register context */ 417 assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx); 418 cm_el1_sysregs_context_save(SECURE); 419 420 /* Program EL3 registers to enable entry into the next EL */ 421 next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE); 422 assert(next_image_info); 423 assert(NON_SECURE == 424 GET_SECURITY_STATE(next_image_info->h.attr)); 425 426 cm_init_my_context(next_image_info); 427 cm_prepare_el3_exit(NON_SECURE); 428 SMC_RET0(cm_get_context(NON_SECURE)); 429 #else 430 /* 431 * SP reports completion. The SPD must have initiated 432 * the original request through a synchronous entry 433 * into the SP. Jump back to the original C runtime 434 * context. 435 */ 436 tspd_synchronous_sp_exit(tsp_ctx, x1); 437 #endif 438 /* 439 * This function ID is used only by the SP to indicate it has finished 440 * aborting a preempted Yielding SMC Call. 441 */ 442 case TSP_ABORT_DONE: 443 444 /* 445 * These function IDs are used only by the SP to indicate it has 446 * finished: 447 * 1. turning itself on in response to an earlier psci 448 * cpu_on request 449 * 2. resuming itself after an earlier psci cpu_suspend 450 * request. 451 */ 452 case TSP_ON_DONE: 453 case TSP_RESUME_DONE: 454 455 /* 456 * These function IDs are used only by the SP to indicate it has 457 * finished: 458 * 1. suspending itself after an earlier psci cpu_suspend 459 * request. 460 * 2. turning itself off in response to an earlier psci 461 * cpu_off request. 462 */ 463 case TSP_OFF_DONE: 464 case TSP_SUSPEND_DONE: 465 case TSP_SYSTEM_OFF_DONE: 466 case TSP_SYSTEM_RESET_DONE: 467 if (ns) 468 SMC_RET1(handle, SMC_UNK); 469 470 /* 471 * SP reports completion. The SPD must have initiated the 472 * original request through a synchronous entry into the SP. 473 * Jump back to the original C runtime context, and pass x1 as 474 * return value to the caller 475 */ 476 tspd_synchronous_sp_exit(tsp_ctx, x1); 477 478 /* 479 * Request from non-secure client to perform an 480 * arithmetic operation or response from secure 481 * payload to an earlier request. 482 */ 483 case TSP_FAST_FID(TSP_ADD): 484 case TSP_FAST_FID(TSP_SUB): 485 case TSP_FAST_FID(TSP_MUL): 486 case TSP_FAST_FID(TSP_DIV): 487 488 case TSP_YIELD_FID(TSP_ADD): 489 case TSP_YIELD_FID(TSP_SUB): 490 case TSP_YIELD_FID(TSP_MUL): 491 case TSP_YIELD_FID(TSP_DIV): 492 if (ns) { 493 /* 494 * This is a fresh request from the non-secure client. 495 * The parameters are in x1 and x2. Figure out which 496 * registers need to be preserved, save the non-secure 497 * state and send the request to the secure payload. 498 */ 499 assert(handle == cm_get_context(NON_SECURE)); 500 501 /* Check if we are already preempted */ 502 if (get_yield_smc_active_flag(tsp_ctx->state)) 503 SMC_RET1(handle, SMC_UNK); 504 505 cm_el1_sysregs_context_save(NON_SECURE); 506 507 /* Save x1 and x2 for use by TSP_GET_ARGS call below */ 508 store_tsp_args(tsp_ctx, x1, x2); 509 510 /* 511 * We are done stashing the non-secure context. Ask the 512 * secure payload to do the work now. 513 */ 514 515 /* 516 * Verify if there is a valid context to use, copy the 517 * operation type and parameters to the secure context 518 * and jump to the fast smc entry point in the secure 519 * payload. Entry into S-EL1 will take place upon exit 520 * from this function. 521 */ 522 assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE)); 523 524 /* Set appropriate entry for SMC. 525 * We expect the TSP to manage the PSTATE.I and PSTATE.F 526 * flags as appropriate. 527 */ 528 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { 529 cm_set_elr_el3(SECURE, (uint64_t) 530 &tsp_vectors->fast_smc_entry); 531 } else { 532 set_yield_smc_active_flag(tsp_ctx->state); 533 cm_set_elr_el3(SECURE, (uint64_t) 534 &tsp_vectors->yield_smc_entry); 535 #if TSP_NS_INTR_ASYNC_PREEMPT 536 /* 537 * Enable the routing of NS interrupts to EL3 538 * during processing of a Yielding SMC Call on 539 * this core. 540 */ 541 enable_intr_rm_local(INTR_TYPE_NS, SECURE); 542 #endif 543 } 544 545 cm_el1_sysregs_context_restore(SECURE); 546 cm_set_next_eret_context(SECURE); 547 SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2); 548 } else { 549 /* 550 * This is the result from the secure client of an 551 * earlier request. The results are in x1-x3. Copy it 552 * into the non-secure context, save the secure state 553 * and return to the non-secure state. 554 */ 555 assert(handle == cm_get_context(SECURE)); 556 cm_el1_sysregs_context_save(SECURE); 557 558 /* Get a reference to the non-secure context */ 559 ns_cpu_context = cm_get_context(NON_SECURE); 560 assert(ns_cpu_context); 561 562 /* Restore non-secure state */ 563 cm_el1_sysregs_context_restore(NON_SECURE); 564 cm_set_next_eret_context(NON_SECURE); 565 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_YIELD) { 566 clr_yield_smc_active_flag(tsp_ctx->state); 567 #if TSP_NS_INTR_ASYNC_PREEMPT 568 /* 569 * Disable the routing of NS interrupts to EL3 570 * after processing of a Yielding SMC Call on 571 * this core is finished. 572 */ 573 disable_intr_rm_local(INTR_TYPE_NS, SECURE); 574 #endif 575 } 576 577 SMC_RET3(ns_cpu_context, x1, x2, x3); 578 } 579 580 break; 581 /* 582 * Request from the non-secure world to abort a preempted Yielding SMC 583 * Call. 584 */ 585 case TSP_FID_ABORT: 586 /* ABORT should only be invoked by normal world */ 587 if (!ns) { 588 assert(0); 589 break; 590 } 591 592 assert(handle == cm_get_context(NON_SECURE)); 593 cm_el1_sysregs_context_save(NON_SECURE); 594 595 /* Abort the preempted SMC request */ 596 if (!tspd_abort_preempted_smc(tsp_ctx)) { 597 /* 598 * If there was no preempted SMC to abort, return 599 * SMC_UNK. 600 * 601 * Restoring the NON_SECURE context is not necessary as 602 * the synchronous entry did not take place if the 603 * return code of tspd_abort_preempted_smc is zero. 604 */ 605 cm_set_next_eret_context(NON_SECURE); 606 break; 607 } 608 609 cm_el1_sysregs_context_restore(NON_SECURE); 610 cm_set_next_eret_context(NON_SECURE); 611 SMC_RET1(handle, SMC_OK); 612 613 /* 614 * Request from non secure world to resume the preempted 615 * Yielding SMC Call. 616 */ 617 case TSP_FID_RESUME: 618 /* RESUME should be invoked only by normal world */ 619 if (!ns) { 620 assert(0); 621 break; 622 } 623 624 /* 625 * This is a resume request from the non-secure client. 626 * save the non-secure state and send the request to 627 * the secure payload. 628 */ 629 assert(handle == cm_get_context(NON_SECURE)); 630 631 /* Check if we are already preempted before resume */ 632 if (!get_yield_smc_active_flag(tsp_ctx->state)) 633 SMC_RET1(handle, SMC_UNK); 634 635 cm_el1_sysregs_context_save(NON_SECURE); 636 637 /* 638 * We are done stashing the non-secure context. Ask the 639 * secure payload to do the work now. 640 */ 641 #if TSP_NS_INTR_ASYNC_PREEMPT 642 /* 643 * Enable the routing of NS interrupts to EL3 during resumption 644 * of a Yielding SMC Call on this core. 645 */ 646 enable_intr_rm_local(INTR_TYPE_NS, SECURE); 647 #endif 648 649 650 651 /* We just need to return to the preempted point in 652 * TSP and the execution will resume as normal. 653 */ 654 cm_el1_sysregs_context_restore(SECURE); 655 cm_set_next_eret_context(SECURE); 656 SMC_RET0(&tsp_ctx->cpu_ctx); 657 658 /* 659 * This is a request from the secure payload for more arguments 660 * for an ongoing arithmetic operation requested by the 661 * non-secure world. Simply return the arguments from the non- 662 * secure client in the original call. 663 */ 664 case TSP_GET_ARGS: 665 if (ns) 666 SMC_RET1(handle, SMC_UNK); 667 668 get_tsp_args(tsp_ctx, x1, x2); 669 SMC_RET2(handle, x1, x2); 670 671 case TOS_CALL_COUNT: 672 /* 673 * Return the number of service function IDs implemented to 674 * provide service to non-secure 675 */ 676 SMC_RET1(handle, TSP_NUM_FID); 677 678 case TOS_UID: 679 /* Return TSP UID to the caller */ 680 SMC_UUID_RET(handle, tsp_uuid); 681 682 case TOS_CALL_VERSION: 683 /* Return the version of current implementation */ 684 SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR); 685 686 default: 687 break; 688 } 689 690 SMC_RET1(handle, SMC_UNK); 691 } 692 693 /* Define a SPD runtime service descriptor for fast SMC calls */ 694 DECLARE_RT_SVC( 695 tspd_fast, 696 697 OEN_TOS_START, 698 OEN_TOS_END, 699 SMC_TYPE_FAST, 700 tspd_setup, 701 tspd_smc_handler 702 ); 703 704 /* Define a SPD runtime service descriptor for Yielding SMC Calls */ 705 DECLARE_RT_SVC( 706 tspd_std, 707 708 OEN_TOS_START, 709 OEN_TOS_END, 710 SMC_TYPE_YIELD, 711 NULL, 712 tspd_smc_handler 713 ); 714