1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines BugReporter, a utility class for generating 11 // PathDiagnostics. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ParentMap.h" 21 #include "clang/AST/StmtCXX.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Analysis/CFG.h" 24 #include "clang/Analysis/ProgramPoint.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 27 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/IntrusiveRefCntPtr.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallString.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <memory> 36 #include <queue> 37 38 using namespace clang; 39 using namespace ento; 40 41 #define DEBUG_TYPE "BugReporter" 42 43 STATISTIC(MaxBugClassSize, 44 "The maximum number of bug reports in the same equivalence class"); 45 STATISTIC(MaxValidBugClassSize, 46 "The maximum number of bug reports in the same equivalence class " 47 "where at least one report is valid (not suppressed)"); 48 49 BugReporterVisitor::~BugReporterVisitor() {} 50 51 void BugReporterContext::anchor() {} 52 53 //===----------------------------------------------------------------------===// 54 // Helper routines for walking the ExplodedGraph and fetching statements. 55 //===----------------------------------------------------------------------===// 56 57 static const Stmt *GetPreviousStmt(const ExplodedNode *N) { 58 for (N = N->getFirstPred(); N; N = N->getFirstPred()) 59 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 60 return S; 61 62 return nullptr; 63 } 64 65 static inline const Stmt* 66 GetCurrentOrPreviousStmt(const ExplodedNode *N) { 67 if (const Stmt *S = PathDiagnosticLocation::getStmt(N)) 68 return S; 69 70 return GetPreviousStmt(N); 71 } 72 73 //===----------------------------------------------------------------------===// 74 // Diagnostic cleanup. 75 //===----------------------------------------------------------------------===// 76 77 static PathDiagnosticEventPiece * 78 eventsDescribeSameCondition(PathDiagnosticEventPiece *X, 79 PathDiagnosticEventPiece *Y) { 80 // Prefer diagnostics that come from ConditionBRVisitor over 81 // those that came from TrackConstraintBRVisitor. 82 const void *tagPreferred = ConditionBRVisitor::getTag(); 83 const void *tagLesser = TrackConstraintBRVisitor::getTag(); 84 85 if (X->getLocation() != Y->getLocation()) 86 return nullptr; 87 88 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser) 89 return X; 90 91 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser) 92 return Y; 93 94 return nullptr; 95 } 96 97 /// An optimization pass over PathPieces that removes redundant diagnostics 98 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both 99 /// BugReporterVisitors use different methods to generate diagnostics, with 100 /// one capable of emitting diagnostics in some cases but not in others. This 101 /// can lead to redundant diagnostic pieces at the same point in a path. 102 static void removeRedundantMsgs(PathPieces &path) { 103 unsigned N = path.size(); 104 if (N < 2) 105 return; 106 // NOTE: this loop intentionally is not using an iterator. Instead, we 107 // are streaming the path and modifying it in place. This is done by 108 // grabbing the front, processing it, and if we decide to keep it append 109 // it to the end of the path. The entire path is processed in this way. 110 for (unsigned i = 0; i < N; ++i) { 111 IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front()); 112 path.pop_front(); 113 114 switch (piece->getKind()) { 115 case clang::ento::PathDiagnosticPiece::Call: 116 removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path); 117 break; 118 case clang::ento::PathDiagnosticPiece::Macro: 119 removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces); 120 break; 121 case clang::ento::PathDiagnosticPiece::ControlFlow: 122 break; 123 case clang::ento::PathDiagnosticPiece::Event: { 124 if (i == N-1) 125 break; 126 127 if (PathDiagnosticEventPiece *nextEvent = 128 dyn_cast<PathDiagnosticEventPiece>(path.front().get())) { 129 PathDiagnosticEventPiece *event = 130 cast<PathDiagnosticEventPiece>(piece); 131 // Check to see if we should keep one of the two pieces. If we 132 // come up with a preference, record which piece to keep, and consume 133 // another piece from the path. 134 if (PathDiagnosticEventPiece *pieceToKeep = 135 eventsDescribeSameCondition(event, nextEvent)) { 136 piece = pieceToKeep; 137 path.pop_front(); 138 ++i; 139 } 140 } 141 break; 142 } 143 } 144 path.push_back(piece); 145 } 146 } 147 148 /// A map from PathDiagnosticPiece to the LocationContext of the inlined 149 /// function call it represents. 150 typedef llvm::DenseMap<const PathPieces *, const LocationContext *> 151 LocationContextMap; 152 153 /// Recursively scan through a path and prune out calls and macros pieces 154 /// that aren't needed. Return true if afterwards the path contains 155 /// "interesting stuff" which means it shouldn't be pruned from the parent path. 156 static bool removeUnneededCalls(PathPieces &pieces, BugReport *R, 157 LocationContextMap &LCM) { 158 bool containsSomethingInteresting = false; 159 const unsigned N = pieces.size(); 160 161 for (unsigned i = 0 ; i < N ; ++i) { 162 // Remove the front piece from the path. If it is still something we 163 // want to keep once we are done, we will push it back on the end. 164 IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front()); 165 pieces.pop_front(); 166 167 switch (piece->getKind()) { 168 case PathDiagnosticPiece::Call: { 169 PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece); 170 // Check if the location context is interesting. 171 assert(LCM.count(&call->path)); 172 if (R->isInteresting(LCM[&call->path])) { 173 containsSomethingInteresting = true; 174 break; 175 } 176 177 if (!removeUnneededCalls(call->path, R, LCM)) 178 continue; 179 180 containsSomethingInteresting = true; 181 break; 182 } 183 case PathDiagnosticPiece::Macro: { 184 PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece); 185 if (!removeUnneededCalls(macro->subPieces, R, LCM)) 186 continue; 187 containsSomethingInteresting = true; 188 break; 189 } 190 case PathDiagnosticPiece::Event: { 191 PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece); 192 193 // We never throw away an event, but we do throw it away wholesale 194 // as part of a path if we throw the entire path away. 195 containsSomethingInteresting |= !event->isPrunable(); 196 break; 197 } 198 case PathDiagnosticPiece::ControlFlow: 199 break; 200 } 201 202 pieces.push_back(piece); 203 } 204 205 return containsSomethingInteresting; 206 } 207 208 /// Returns true if the given decl has been implicitly given a body, either by 209 /// the analyzer or by the compiler proper. 210 static bool hasImplicitBody(const Decl *D) { 211 assert(D); 212 return D->isImplicit() || !D->hasBody(); 213 } 214 215 /// Recursively scan through a path and make sure that all call pieces have 216 /// valid locations. 217 static void 218 adjustCallLocations(PathPieces &Pieces, 219 PathDiagnosticLocation *LastCallLocation = nullptr) { 220 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) { 221 PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I); 222 223 if (!Call) { 224 assert((*I)->getLocation().asLocation().isValid()); 225 continue; 226 } 227 228 if (LastCallLocation) { 229 bool CallerIsImplicit = hasImplicitBody(Call->getCaller()); 230 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid()) 231 Call->callEnter = *LastCallLocation; 232 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid()) 233 Call->callReturn = *LastCallLocation; 234 } 235 236 // Recursively clean out the subclass. Keep this call around if 237 // it contains any informative diagnostics. 238 PathDiagnosticLocation *ThisCallLocation; 239 if (Call->callEnterWithin.asLocation().isValid() && 240 !hasImplicitBody(Call->getCallee())) 241 ThisCallLocation = &Call->callEnterWithin; 242 else 243 ThisCallLocation = &Call->callEnter; 244 245 assert(ThisCallLocation && "Outermost call has an invalid location"); 246 adjustCallLocations(Call->path, ThisCallLocation); 247 } 248 } 249 250 /// Remove edges in and out of C++ default initializer expressions. These are 251 /// for fields that have in-class initializers, as opposed to being initialized 252 /// explicitly in a constructor or braced list. 253 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) { 254 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 255 if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I)) 256 removeEdgesToDefaultInitializers(C->path); 257 258 if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I)) 259 removeEdgesToDefaultInitializers(M->subPieces); 260 261 if (PathDiagnosticControlFlowPiece *CF = 262 dyn_cast<PathDiagnosticControlFlowPiece>(*I)) { 263 const Stmt *Start = CF->getStartLocation().asStmt(); 264 const Stmt *End = CF->getEndLocation().asStmt(); 265 if (Start && isa<CXXDefaultInitExpr>(Start)) { 266 I = Pieces.erase(I); 267 continue; 268 } else if (End && isa<CXXDefaultInitExpr>(End)) { 269 PathPieces::iterator Next = std::next(I); 270 if (Next != E) { 271 if (PathDiagnosticControlFlowPiece *NextCF = 272 dyn_cast<PathDiagnosticControlFlowPiece>(*Next)) { 273 NextCF->setStartLocation(CF->getStartLocation()); 274 } 275 } 276 I = Pieces.erase(I); 277 continue; 278 } 279 } 280 281 I++; 282 } 283 } 284 285 /// Remove all pieces with invalid locations as these cannot be serialized. 286 /// We might have pieces with invalid locations as a result of inlining Body 287 /// Farm generated functions. 288 static void removePiecesWithInvalidLocations(PathPieces &Pieces) { 289 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) { 290 if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I)) 291 removePiecesWithInvalidLocations(C->path); 292 293 if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I)) 294 removePiecesWithInvalidLocations(M->subPieces); 295 296 if (!(*I)->getLocation().isValid() || 297 !(*I)->getLocation().asLocation().isValid()) { 298 I = Pieces.erase(I); 299 continue; 300 } 301 I++; 302 } 303 } 304 305 //===----------------------------------------------------------------------===// 306 // PathDiagnosticBuilder and its associated routines and helper objects. 307 //===----------------------------------------------------------------------===// 308 309 namespace { 310 class NodeMapClosure : public BugReport::NodeResolver { 311 InterExplodedGraphMap &M; 312 public: 313 NodeMapClosure(InterExplodedGraphMap &m) : M(m) {} 314 315 const ExplodedNode *getOriginalNode(const ExplodedNode *N) override { 316 return M.lookup(N); 317 } 318 }; 319 320 class PathDiagnosticBuilder : public BugReporterContext { 321 BugReport *R; 322 PathDiagnosticConsumer *PDC; 323 NodeMapClosure NMC; 324 public: 325 const LocationContext *LC; 326 327 PathDiagnosticBuilder(GRBugReporter &br, 328 BugReport *r, InterExplodedGraphMap &Backmap, 329 PathDiagnosticConsumer *pdc) 330 : BugReporterContext(br), 331 R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext()) 332 {} 333 334 PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N); 335 336 PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os, 337 const ExplodedNode *N); 338 339 BugReport *getBugReport() { return R; } 340 341 Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); } 342 343 ParentMap& getParentMap() { return LC->getParentMap(); } 344 345 const Stmt *getParent(const Stmt *S) { 346 return getParentMap().getParent(S); 347 } 348 349 NodeMapClosure& getNodeResolver() override { return NMC; } 350 351 PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S); 352 353 PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const { 354 return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive; 355 } 356 357 bool supportsLogicalOpControlFlow() const { 358 return PDC ? PDC->supportsLogicalOpControlFlow() : true; 359 } 360 }; 361 } // end anonymous namespace 362 363 PathDiagnosticLocation 364 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) { 365 if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N)) 366 return PathDiagnosticLocation(S, getSourceManager(), LC); 367 368 return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(), 369 getSourceManager()); 370 } 371 372 PathDiagnosticLocation 373 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os, 374 const ExplodedNode *N) { 375 376 // Slow, but probably doesn't matter. 377 if (os.str().empty()) 378 os << ' '; 379 380 const PathDiagnosticLocation &Loc = ExecutionContinues(N); 381 382 if (Loc.asStmt()) 383 os << "Execution continues on line " 384 << getSourceManager().getExpansionLineNumber(Loc.asLocation()) 385 << '.'; 386 else { 387 os << "Execution jumps to the end of the "; 388 const Decl *D = N->getLocationContext()->getDecl(); 389 if (isa<ObjCMethodDecl>(D)) 390 os << "method"; 391 else if (isa<FunctionDecl>(D)) 392 os << "function"; 393 else { 394 assert(isa<BlockDecl>(D)); 395 os << "anonymous block"; 396 } 397 os << '.'; 398 } 399 400 return Loc; 401 } 402 403 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) { 404 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) 405 return PM.getParentIgnoreParens(S); 406 407 const Stmt *Parent = PM.getParentIgnoreParens(S); 408 if (!Parent) 409 return nullptr; 410 411 switch (Parent->getStmtClass()) { 412 case Stmt::ForStmtClass: 413 case Stmt::DoStmtClass: 414 case Stmt::WhileStmtClass: 415 case Stmt::ObjCForCollectionStmtClass: 416 case Stmt::CXXForRangeStmtClass: 417 return Parent; 418 default: 419 break; 420 } 421 422 return nullptr; 423 } 424 425 static PathDiagnosticLocation 426 getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P, 427 const LocationContext *LC, bool allowNestedContexts) { 428 if (!S) 429 return PathDiagnosticLocation(); 430 431 while (const Stmt *Parent = getEnclosingParent(S, P)) { 432 switch (Parent->getStmtClass()) { 433 case Stmt::BinaryOperatorClass: { 434 const BinaryOperator *B = cast<BinaryOperator>(Parent); 435 if (B->isLogicalOp()) 436 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC); 437 break; 438 } 439 case Stmt::CompoundStmtClass: 440 case Stmt::StmtExprClass: 441 return PathDiagnosticLocation(S, SMgr, LC); 442 case Stmt::ChooseExprClass: 443 // Similar to '?' if we are referring to condition, just have the edge 444 // point to the entire choose expression. 445 if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S) 446 return PathDiagnosticLocation(Parent, SMgr, LC); 447 else 448 return PathDiagnosticLocation(S, SMgr, LC); 449 case Stmt::BinaryConditionalOperatorClass: 450 case Stmt::ConditionalOperatorClass: 451 // For '?', if we are referring to condition, just have the edge point 452 // to the entire '?' expression. 453 if (allowNestedContexts || 454 cast<AbstractConditionalOperator>(Parent)->getCond() == S) 455 return PathDiagnosticLocation(Parent, SMgr, LC); 456 else 457 return PathDiagnosticLocation(S, SMgr, LC); 458 case Stmt::CXXForRangeStmtClass: 459 if (cast<CXXForRangeStmt>(Parent)->getBody() == S) 460 return PathDiagnosticLocation(S, SMgr, LC); 461 break; 462 case Stmt::DoStmtClass: 463 return PathDiagnosticLocation(S, SMgr, LC); 464 case Stmt::ForStmtClass: 465 if (cast<ForStmt>(Parent)->getBody() == S) 466 return PathDiagnosticLocation(S, SMgr, LC); 467 break; 468 case Stmt::IfStmtClass: 469 if (cast<IfStmt>(Parent)->getCond() != S) 470 return PathDiagnosticLocation(S, SMgr, LC); 471 break; 472 case Stmt::ObjCForCollectionStmtClass: 473 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) 474 return PathDiagnosticLocation(S, SMgr, LC); 475 break; 476 case Stmt::WhileStmtClass: 477 if (cast<WhileStmt>(Parent)->getCond() != S) 478 return PathDiagnosticLocation(S, SMgr, LC); 479 break; 480 default: 481 break; 482 } 483 484 S = Parent; 485 } 486 487 assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); 488 489 return PathDiagnosticLocation(S, SMgr, LC); 490 } 491 492 PathDiagnosticLocation 493 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) { 494 assert(S && "Null Stmt passed to getEnclosingStmtLocation"); 495 return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC, 496 /*allowNestedContexts=*/false); 497 } 498 499 //===----------------------------------------------------------------------===// 500 // "Visitors only" path diagnostic generation algorithm. 501 //===----------------------------------------------------------------------===// 502 static bool GenerateVisitorsOnlyPathDiagnostic( 503 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 504 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 505 // All path generation skips the very first node (the error node). 506 // This is because there is special handling for the end-of-path note. 507 N = N->getFirstPred(); 508 if (!N) 509 return true; 510 511 BugReport *R = PDB.getBugReport(); 512 while (const ExplodedNode *Pred = N->getFirstPred()) { 513 for (auto &V : visitors) { 514 // Visit all the node pairs, but throw the path pieces away. 515 PathDiagnosticPiece *Piece = V->VisitNode(N, Pred, PDB, *R); 516 delete Piece; 517 } 518 519 N = Pred; 520 } 521 522 return R->isValid(); 523 } 524 525 //===----------------------------------------------------------------------===// 526 // "Minimal" path diagnostic generation algorithm. 527 //===----------------------------------------------------------------------===// 528 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair; 529 typedef SmallVector<StackDiagPair, 6> StackDiagVector; 530 531 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P, 532 StackDiagVector &CallStack) { 533 // If the piece contains a special message, add it to all the call 534 // pieces on the active stack. 535 if (PathDiagnosticEventPiece *ep = 536 dyn_cast<PathDiagnosticEventPiece>(P)) { 537 538 if (ep->hasCallStackHint()) 539 for (StackDiagVector::iterator I = CallStack.begin(), 540 E = CallStack.end(); I != E; ++I) { 541 PathDiagnosticCallPiece *CP = I->first; 542 const ExplodedNode *N = I->second; 543 std::string stackMsg = ep->getCallStackMessage(N); 544 545 // The last message on the path to final bug is the most important 546 // one. Since we traverse the path backwards, do not add the message 547 // if one has been previously added. 548 if (!CP->hasCallStackMessage()) 549 CP->setCallStackMessage(stackMsg); 550 } 551 } 552 } 553 554 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM); 555 556 static bool GenerateMinimalPathDiagnostic( 557 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 558 LocationContextMap &LCM, 559 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 560 561 SourceManager& SMgr = PDB.getSourceManager(); 562 const LocationContext *LC = PDB.LC; 563 const ExplodedNode *NextNode = N->pred_empty() 564 ? nullptr : *(N->pred_begin()); 565 566 StackDiagVector CallStack; 567 568 while (NextNode) { 569 N = NextNode; 570 PDB.LC = N->getLocationContext(); 571 NextNode = N->getFirstPred(); 572 573 ProgramPoint P = N->getLocation(); 574 575 do { 576 if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 577 PathDiagnosticCallPiece *C = 578 PathDiagnosticCallPiece::construct(N, *CE, SMgr); 579 // Record the mapping from call piece to LocationContext. 580 LCM[&C->path] = CE->getCalleeContext(); 581 PD.getActivePath().push_front(C); 582 PD.pushActivePath(&C->path); 583 CallStack.push_back(StackDiagPair(C, N)); 584 break; 585 } 586 587 if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { 588 // Flush all locations, and pop the active path. 589 bool VisitedEntireCall = PD.isWithinCall(); 590 PD.popActivePath(); 591 592 // Either we just added a bunch of stuff to the top-level path, or 593 // we have a previous CallExitEnd. If the former, it means that the 594 // path terminated within a function call. We must then take the 595 // current contents of the active path and place it within 596 // a new PathDiagnosticCallPiece. 597 PathDiagnosticCallPiece *C; 598 if (VisitedEntireCall) { 599 C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front()); 600 } else { 601 const Decl *Caller = CE->getLocationContext()->getDecl(); 602 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 603 // Record the mapping from call piece to LocationContext. 604 LCM[&C->path] = CE->getCalleeContext(); 605 } 606 607 C->setCallee(*CE, SMgr); 608 if (!CallStack.empty()) { 609 assert(CallStack.back().first == C); 610 CallStack.pop_back(); 611 } 612 break; 613 } 614 615 if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) { 616 const CFGBlock *Src = BE->getSrc(); 617 const CFGBlock *Dst = BE->getDst(); 618 const Stmt *T = Src->getTerminator(); 619 620 if (!T) 621 break; 622 623 PathDiagnosticLocation Start = 624 PathDiagnosticLocation::createBegin(T, SMgr, 625 N->getLocationContext()); 626 627 switch (T->getStmtClass()) { 628 default: 629 break; 630 631 case Stmt::GotoStmtClass: 632 case Stmt::IndirectGotoStmtClass: { 633 const Stmt *S = PathDiagnosticLocation::getNextStmt(N); 634 635 if (!S) 636 break; 637 638 std::string sbuf; 639 llvm::raw_string_ostream os(sbuf); 640 const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S); 641 642 os << "Control jumps to line " 643 << End.asLocation().getExpansionLineNumber(); 644 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 645 Start, End, os.str())); 646 break; 647 } 648 649 case Stmt::SwitchStmtClass: { 650 // Figure out what case arm we took. 651 std::string sbuf; 652 llvm::raw_string_ostream os(sbuf); 653 654 if (const Stmt *S = Dst->getLabel()) { 655 PathDiagnosticLocation End(S, SMgr, LC); 656 657 switch (S->getStmtClass()) { 658 default: 659 os << "No cases match in the switch statement. " 660 "Control jumps to line " 661 << End.asLocation().getExpansionLineNumber(); 662 break; 663 case Stmt::DefaultStmtClass: 664 os << "Control jumps to the 'default' case at line " 665 << End.asLocation().getExpansionLineNumber(); 666 break; 667 668 case Stmt::CaseStmtClass: { 669 os << "Control jumps to 'case "; 670 const CaseStmt *Case = cast<CaseStmt>(S); 671 const Expr *LHS = Case->getLHS()->IgnoreParenCasts(); 672 673 // Determine if it is an enum. 674 bool GetRawInt = true; 675 676 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) { 677 // FIXME: Maybe this should be an assertion. Are there cases 678 // were it is not an EnumConstantDecl? 679 const EnumConstantDecl *D = 680 dyn_cast<EnumConstantDecl>(DR->getDecl()); 681 682 if (D) { 683 GetRawInt = false; 684 os << *D; 685 } 686 } 687 688 if (GetRawInt) 689 os << LHS->EvaluateKnownConstInt(PDB.getASTContext()); 690 691 os << ":' at line " 692 << End.asLocation().getExpansionLineNumber(); 693 break; 694 } 695 } 696 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 697 Start, End, os.str())); 698 } 699 else { 700 os << "'Default' branch taken. "; 701 const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N); 702 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 703 Start, End, os.str())); 704 } 705 706 break; 707 } 708 709 case Stmt::BreakStmtClass: 710 case Stmt::ContinueStmtClass: { 711 std::string sbuf; 712 llvm::raw_string_ostream os(sbuf); 713 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 714 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 715 Start, End, os.str())); 716 break; 717 } 718 719 // Determine control-flow for ternary '?'. 720 case Stmt::BinaryConditionalOperatorClass: 721 case Stmt::ConditionalOperatorClass: { 722 std::string sbuf; 723 llvm::raw_string_ostream os(sbuf); 724 os << "'?' condition is "; 725 726 if (*(Src->succ_begin()+1) == Dst) 727 os << "false"; 728 else 729 os << "true"; 730 731 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 732 733 if (const Stmt *S = End.asStmt()) 734 End = PDB.getEnclosingStmtLocation(S); 735 736 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 737 Start, End, os.str())); 738 break; 739 } 740 741 // Determine control-flow for short-circuited '&&' and '||'. 742 case Stmt::BinaryOperatorClass: { 743 if (!PDB.supportsLogicalOpControlFlow()) 744 break; 745 746 const BinaryOperator *B = cast<BinaryOperator>(T); 747 std::string sbuf; 748 llvm::raw_string_ostream os(sbuf); 749 os << "Left side of '"; 750 751 if (B->getOpcode() == BO_LAnd) { 752 os << "&&" << "' is "; 753 754 if (*(Src->succ_begin()+1) == Dst) { 755 os << "false"; 756 PathDiagnosticLocation End(B->getLHS(), SMgr, LC); 757 PathDiagnosticLocation Start = 758 PathDiagnosticLocation::createOperatorLoc(B, SMgr); 759 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 760 Start, End, os.str())); 761 } 762 else { 763 os << "true"; 764 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); 765 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 766 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 767 Start, End, os.str())); 768 } 769 } 770 else { 771 assert(B->getOpcode() == BO_LOr); 772 os << "||" << "' is "; 773 774 if (*(Src->succ_begin()+1) == Dst) { 775 os << "false"; 776 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); 777 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 778 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 779 Start, End, os.str())); 780 } 781 else { 782 os << "true"; 783 PathDiagnosticLocation End(B->getLHS(), SMgr, LC); 784 PathDiagnosticLocation Start = 785 PathDiagnosticLocation::createOperatorLoc(B, SMgr); 786 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 787 Start, End, os.str())); 788 } 789 } 790 791 break; 792 } 793 794 case Stmt::DoStmtClass: { 795 if (*(Src->succ_begin()) == Dst) { 796 std::string sbuf; 797 llvm::raw_string_ostream os(sbuf); 798 799 os << "Loop condition is true. "; 800 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 801 802 if (const Stmt *S = End.asStmt()) 803 End = PDB.getEnclosingStmtLocation(S); 804 805 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 806 Start, End, os.str())); 807 } 808 else { 809 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 810 811 if (const Stmt *S = End.asStmt()) 812 End = PDB.getEnclosingStmtLocation(S); 813 814 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 815 Start, End, "Loop condition is false. Exiting loop")); 816 } 817 818 break; 819 } 820 821 case Stmt::WhileStmtClass: 822 case Stmt::ForStmtClass: { 823 if (*(Src->succ_begin()+1) == Dst) { 824 std::string sbuf; 825 llvm::raw_string_ostream os(sbuf); 826 827 os << "Loop condition is false. "; 828 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 829 if (const Stmt *S = End.asStmt()) 830 End = PDB.getEnclosingStmtLocation(S); 831 832 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 833 Start, End, os.str())); 834 } 835 else { 836 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 837 if (const Stmt *S = End.asStmt()) 838 End = PDB.getEnclosingStmtLocation(S); 839 840 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 841 Start, End, "Loop condition is true. Entering loop body")); 842 } 843 844 break; 845 } 846 847 case Stmt::IfStmtClass: { 848 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 849 850 if (const Stmt *S = End.asStmt()) 851 End = PDB.getEnclosingStmtLocation(S); 852 853 if (*(Src->succ_begin()+1) == Dst) 854 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 855 Start, End, "Taking false branch")); 856 else 857 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece( 858 Start, End, "Taking true branch")); 859 860 break; 861 } 862 } 863 } 864 } while(0); 865 866 if (NextNode) { 867 // Add diagnostic pieces from custom visitors. 868 BugReport *R = PDB.getBugReport(); 869 for (auto &V : visitors) { 870 if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *R)) { 871 PD.getActivePath().push_front(p); 872 updateStackPiecesWithMessage(p, CallStack); 873 } 874 } 875 } 876 } 877 878 if (!PDB.getBugReport()->isValid()) 879 return false; 880 881 // After constructing the full PathDiagnostic, do a pass over it to compact 882 // PathDiagnosticPieces that occur within a macro. 883 CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager()); 884 return true; 885 } 886 887 //===----------------------------------------------------------------------===// 888 // "Extensive" PathDiagnostic generation. 889 //===----------------------------------------------------------------------===// 890 891 static bool IsControlFlowExpr(const Stmt *S) { 892 const Expr *E = dyn_cast<Expr>(S); 893 894 if (!E) 895 return false; 896 897 E = E->IgnoreParenCasts(); 898 899 if (isa<AbstractConditionalOperator>(E)) 900 return true; 901 902 if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E)) 903 if (B->isLogicalOp()) 904 return true; 905 906 return false; 907 } 908 909 namespace { 910 class ContextLocation : public PathDiagnosticLocation { 911 bool IsDead; 912 public: 913 ContextLocation(const PathDiagnosticLocation &L, bool isdead = false) 914 : PathDiagnosticLocation(L), IsDead(isdead) {} 915 916 void markDead() { IsDead = true; } 917 bool isDead() const { return IsDead; } 918 }; 919 920 static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L, 921 const LocationContext *LC, 922 bool firstCharOnly = false) { 923 if (const Stmt *S = L.asStmt()) { 924 const Stmt *Original = S; 925 while (1) { 926 // Adjust the location for some expressions that are best referenced 927 // by one of their subexpressions. 928 switch (S->getStmtClass()) { 929 default: 930 break; 931 case Stmt::ParenExprClass: 932 case Stmt::GenericSelectionExprClass: 933 S = cast<Expr>(S)->IgnoreParens(); 934 firstCharOnly = true; 935 continue; 936 case Stmt::BinaryConditionalOperatorClass: 937 case Stmt::ConditionalOperatorClass: 938 S = cast<AbstractConditionalOperator>(S)->getCond(); 939 firstCharOnly = true; 940 continue; 941 case Stmt::ChooseExprClass: 942 S = cast<ChooseExpr>(S)->getCond(); 943 firstCharOnly = true; 944 continue; 945 case Stmt::BinaryOperatorClass: 946 S = cast<BinaryOperator>(S)->getLHS(); 947 firstCharOnly = true; 948 continue; 949 } 950 951 break; 952 } 953 954 if (S != Original) 955 L = PathDiagnosticLocation(S, L.getManager(), LC); 956 } 957 958 if (firstCharOnly) 959 L = PathDiagnosticLocation::createSingleLocation(L); 960 961 return L; 962 } 963 964 class EdgeBuilder { 965 std::vector<ContextLocation> CLocs; 966 typedef std::vector<ContextLocation>::iterator iterator; 967 PathDiagnostic &PD; 968 PathDiagnosticBuilder &PDB; 969 PathDiagnosticLocation PrevLoc; 970 971 bool IsConsumedExpr(const PathDiagnosticLocation &L); 972 973 bool containsLocation(const PathDiagnosticLocation &Container, 974 const PathDiagnosticLocation &Containee); 975 976 PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L); 977 978 979 980 void popLocation() { 981 if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) { 982 // For contexts, we only one the first character as the range. 983 rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true)); 984 } 985 CLocs.pop_back(); 986 } 987 988 public: 989 EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb) 990 : PD(pd), PDB(pdb) { 991 992 // If the PathDiagnostic already has pieces, add the enclosing statement 993 // of the first piece as a context as well. 994 if (!PD.path.empty()) { 995 PrevLoc = (*PD.path.begin())->getLocation(); 996 997 if (const Stmt *S = PrevLoc.asStmt()) 998 addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); 999 } 1000 } 1001 1002 ~EdgeBuilder() { 1003 while (!CLocs.empty()) popLocation(); 1004 1005 // Finally, add an initial edge from the start location of the first 1006 // statement (if it doesn't already exist). 1007 PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin( 1008 PDB.LC, 1009 PDB.getSourceManager()); 1010 if (L.isValid()) 1011 rawAddEdge(L); 1012 } 1013 1014 void flushLocations() { 1015 while (!CLocs.empty()) 1016 popLocation(); 1017 PrevLoc = PathDiagnosticLocation(); 1018 } 1019 1020 void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false, 1021 bool IsPostJump = false); 1022 1023 void rawAddEdge(PathDiagnosticLocation NewLoc); 1024 1025 void addContext(const Stmt *S); 1026 void addContext(const PathDiagnosticLocation &L); 1027 void addExtendedContext(const Stmt *S); 1028 }; 1029 } // end anonymous namespace 1030 1031 1032 PathDiagnosticLocation 1033 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) { 1034 if (const Stmt *S = L.asStmt()) { 1035 if (IsControlFlowExpr(S)) 1036 return L; 1037 1038 return PDB.getEnclosingStmtLocation(S); 1039 } 1040 1041 return L; 1042 } 1043 1044 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container, 1045 const PathDiagnosticLocation &Containee) { 1046 1047 if (Container == Containee) 1048 return true; 1049 1050 if (Container.asDecl()) 1051 return true; 1052 1053 if (const Stmt *S = Containee.asStmt()) 1054 if (const Stmt *ContainerS = Container.asStmt()) { 1055 while (S) { 1056 if (S == ContainerS) 1057 return true; 1058 S = PDB.getParent(S); 1059 } 1060 return false; 1061 } 1062 1063 // Less accurate: compare using source ranges. 1064 SourceRange ContainerR = Container.asRange(); 1065 SourceRange ContaineeR = Containee.asRange(); 1066 1067 SourceManager &SM = PDB.getSourceManager(); 1068 SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin()); 1069 SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd()); 1070 SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin()); 1071 SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd()); 1072 1073 unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg); 1074 unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd); 1075 unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg); 1076 unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd); 1077 1078 assert(ContainerBegLine <= ContainerEndLine); 1079 assert(ContaineeBegLine <= ContaineeEndLine); 1080 1081 return (ContainerBegLine <= ContaineeBegLine && 1082 ContainerEndLine >= ContaineeEndLine && 1083 (ContainerBegLine != ContaineeBegLine || 1084 SM.getExpansionColumnNumber(ContainerRBeg) <= 1085 SM.getExpansionColumnNumber(ContaineeRBeg)) && 1086 (ContainerEndLine != ContaineeEndLine || 1087 SM.getExpansionColumnNumber(ContainerREnd) >= 1088 SM.getExpansionColumnNumber(ContaineeREnd))); 1089 } 1090 1091 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) { 1092 if (!PrevLoc.isValid()) { 1093 PrevLoc = NewLoc; 1094 return; 1095 } 1096 1097 const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC); 1098 const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC); 1099 1100 if (PrevLocClean.asLocation().isInvalid()) { 1101 PrevLoc = NewLoc; 1102 return; 1103 } 1104 1105 if (NewLocClean.asLocation() == PrevLocClean.asLocation()) 1106 return; 1107 1108 // FIXME: Ignore intra-macro edges for now. 1109 if (NewLocClean.asLocation().getExpansionLoc() == 1110 PrevLocClean.asLocation().getExpansionLoc()) 1111 return; 1112 1113 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean)); 1114 PrevLoc = NewLoc; 1115 } 1116 1117 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd, 1118 bool IsPostJump) { 1119 1120 if (!alwaysAdd && NewLoc.asLocation().isMacroID()) 1121 return; 1122 1123 const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc); 1124 1125 while (!CLocs.empty()) { 1126 ContextLocation &TopContextLoc = CLocs.back(); 1127 1128 // Is the top location context the same as the one for the new location? 1129 if (TopContextLoc == CLoc) { 1130 if (alwaysAdd) { 1131 if (IsConsumedExpr(TopContextLoc)) 1132 TopContextLoc.markDead(); 1133 1134 rawAddEdge(NewLoc); 1135 } 1136 1137 if (IsPostJump) 1138 TopContextLoc.markDead(); 1139 return; 1140 } 1141 1142 if (containsLocation(TopContextLoc, CLoc)) { 1143 if (alwaysAdd) { 1144 rawAddEdge(NewLoc); 1145 1146 if (IsConsumedExpr(CLoc)) { 1147 CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true)); 1148 return; 1149 } 1150 } 1151 1152 CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump)); 1153 return; 1154 } 1155 1156 // Context does not contain the location. Flush it. 1157 popLocation(); 1158 } 1159 1160 // If we reach here, there is no enclosing context. Just add the edge. 1161 rawAddEdge(NewLoc); 1162 } 1163 1164 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) { 1165 if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt())) 1166 return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X); 1167 1168 return false; 1169 } 1170 1171 void EdgeBuilder::addExtendedContext(const Stmt *S) { 1172 if (!S) 1173 return; 1174 1175 const Stmt *Parent = PDB.getParent(S); 1176 while (Parent) { 1177 if (isa<CompoundStmt>(Parent)) 1178 Parent = PDB.getParent(Parent); 1179 else 1180 break; 1181 } 1182 1183 if (Parent) { 1184 switch (Parent->getStmtClass()) { 1185 case Stmt::DoStmtClass: 1186 case Stmt::ObjCAtSynchronizedStmtClass: 1187 addContext(Parent); 1188 default: 1189 break; 1190 } 1191 } 1192 1193 addContext(S); 1194 } 1195 1196 void EdgeBuilder::addContext(const Stmt *S) { 1197 if (!S) 1198 return; 1199 1200 PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC); 1201 addContext(L); 1202 } 1203 1204 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) { 1205 while (!CLocs.empty()) { 1206 const PathDiagnosticLocation &TopContextLoc = CLocs.back(); 1207 1208 // Is the top location context the same as the one for the new location? 1209 if (TopContextLoc == L) 1210 return; 1211 1212 if (containsLocation(TopContextLoc, L)) { 1213 CLocs.push_back(L); 1214 return; 1215 } 1216 1217 // Context does not contain the location. Flush it. 1218 popLocation(); 1219 } 1220 1221 CLocs.push_back(L); 1222 } 1223 1224 // Cone-of-influence: support the reverse propagation of "interesting" symbols 1225 // and values by tracing interesting calculations backwards through evaluated 1226 // expressions along a path. This is probably overly complicated, but the idea 1227 // is that if an expression computed an "interesting" value, the child 1228 // expressions are are also likely to be "interesting" as well (which then 1229 // propagates to the values they in turn compute). This reverse propagation 1230 // is needed to track interesting correlations across function call boundaries, 1231 // where formal arguments bind to actual arguments, etc. This is also needed 1232 // because the constraint solver sometimes simplifies certain symbolic values 1233 // into constants when appropriate, and this complicates reasoning about 1234 // interesting values. 1235 typedef llvm::DenseSet<const Expr *> InterestingExprs; 1236 1237 static void reversePropagateIntererstingSymbols(BugReport &R, 1238 InterestingExprs &IE, 1239 const ProgramState *State, 1240 const Expr *Ex, 1241 const LocationContext *LCtx) { 1242 SVal V = State->getSVal(Ex, LCtx); 1243 if (!(R.isInteresting(V) || IE.count(Ex))) 1244 return; 1245 1246 switch (Ex->getStmtClass()) { 1247 default: 1248 if (!isa<CastExpr>(Ex)) 1249 break; 1250 // Fall through. 1251 case Stmt::BinaryOperatorClass: 1252 case Stmt::UnaryOperatorClass: { 1253 for (const Stmt *SubStmt : Ex->children()) { 1254 if (const Expr *child = dyn_cast_or_null<Expr>(SubStmt)) { 1255 IE.insert(child); 1256 SVal ChildV = State->getSVal(child, LCtx); 1257 R.markInteresting(ChildV); 1258 } 1259 } 1260 break; 1261 } 1262 } 1263 1264 R.markInteresting(V); 1265 } 1266 1267 static void reversePropagateInterestingSymbols(BugReport &R, 1268 InterestingExprs &IE, 1269 const ProgramState *State, 1270 const LocationContext *CalleeCtx, 1271 const LocationContext *CallerCtx) 1272 { 1273 // FIXME: Handle non-CallExpr-based CallEvents. 1274 const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame(); 1275 const Stmt *CallSite = Callee->getCallSite(); 1276 if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) { 1277 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) { 1278 FunctionDecl::param_const_iterator PI = FD->param_begin(), 1279 PE = FD->param_end(); 1280 CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end(); 1281 for (; AI != AE && PI != PE; ++AI, ++PI) { 1282 if (const Expr *ArgE = *AI) { 1283 if (const ParmVarDecl *PD = *PI) { 1284 Loc LV = State->getLValue(PD, CalleeCtx); 1285 if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV))) 1286 IE.insert(ArgE); 1287 } 1288 } 1289 } 1290 } 1291 } 1292 } 1293 1294 //===----------------------------------------------------------------------===// 1295 // Functions for determining if a loop was executed 0 times. 1296 //===----------------------------------------------------------------------===// 1297 1298 static bool isLoop(const Stmt *Term) { 1299 switch (Term->getStmtClass()) { 1300 case Stmt::ForStmtClass: 1301 case Stmt::WhileStmtClass: 1302 case Stmt::ObjCForCollectionStmtClass: 1303 case Stmt::CXXForRangeStmtClass: 1304 return true; 1305 default: 1306 // Note that we intentionally do not include do..while here. 1307 return false; 1308 } 1309 } 1310 1311 static bool isJumpToFalseBranch(const BlockEdge *BE) { 1312 const CFGBlock *Src = BE->getSrc(); 1313 assert(Src->succ_size() == 2); 1314 return (*(Src->succ_begin()+1) == BE->getDst()); 1315 } 1316 1317 /// Return true if the terminator is a loop and the destination is the 1318 /// false branch. 1319 static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) { 1320 if (!isLoop(Term)) 1321 return false; 1322 1323 // Did we take the false branch? 1324 return isJumpToFalseBranch(BE); 1325 } 1326 1327 static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) { 1328 while (SubS) { 1329 if (SubS == S) 1330 return true; 1331 SubS = PM.getParent(SubS); 1332 } 1333 return false; 1334 } 1335 1336 static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term, 1337 const ExplodedNode *N) { 1338 while (N) { 1339 Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>(); 1340 if (SP) { 1341 const Stmt *S = SP->getStmt(); 1342 if (!isContainedByStmt(PM, Term, S)) 1343 return S; 1344 } 1345 N = N->getFirstPred(); 1346 } 1347 return nullptr; 1348 } 1349 1350 static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) { 1351 const Stmt *LoopBody = nullptr; 1352 switch (Term->getStmtClass()) { 1353 case Stmt::CXXForRangeStmtClass: { 1354 const CXXForRangeStmt *FR = cast<CXXForRangeStmt>(Term); 1355 if (isContainedByStmt(PM, FR->getInc(), S)) 1356 return true; 1357 if (isContainedByStmt(PM, FR->getLoopVarStmt(), S)) 1358 return true; 1359 LoopBody = FR->getBody(); 1360 break; 1361 } 1362 case Stmt::ForStmtClass: { 1363 const ForStmt *FS = cast<ForStmt>(Term); 1364 if (isContainedByStmt(PM, FS->getInc(), S)) 1365 return true; 1366 LoopBody = FS->getBody(); 1367 break; 1368 } 1369 case Stmt::ObjCForCollectionStmtClass: { 1370 const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term); 1371 LoopBody = FC->getBody(); 1372 break; 1373 } 1374 case Stmt::WhileStmtClass: 1375 LoopBody = cast<WhileStmt>(Term)->getBody(); 1376 break; 1377 default: 1378 return false; 1379 } 1380 return isContainedByStmt(PM, LoopBody, S); 1381 } 1382 1383 //===----------------------------------------------------------------------===// 1384 // Top-level logic for generating extensive path diagnostics. 1385 //===----------------------------------------------------------------------===// 1386 1387 static bool GenerateExtensivePathDiagnostic( 1388 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 1389 LocationContextMap &LCM, 1390 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 1391 EdgeBuilder EB(PD, PDB); 1392 const SourceManager& SM = PDB.getSourceManager(); 1393 StackDiagVector CallStack; 1394 InterestingExprs IE; 1395 1396 const ExplodedNode *NextNode = N->pred_empty() ? nullptr : *(N->pred_begin()); 1397 while (NextNode) { 1398 N = NextNode; 1399 NextNode = N->getFirstPred(); 1400 ProgramPoint P = N->getLocation(); 1401 1402 do { 1403 if (Optional<PostStmt> PS = P.getAs<PostStmt>()) { 1404 if (const Expr *Ex = PS->getStmtAs<Expr>()) 1405 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1406 N->getState().get(), Ex, 1407 N->getLocationContext()); 1408 } 1409 1410 if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 1411 const Stmt *S = CE->getCalleeContext()->getCallSite(); 1412 if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) { 1413 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1414 N->getState().get(), Ex, 1415 N->getLocationContext()); 1416 } 1417 1418 PathDiagnosticCallPiece *C = 1419 PathDiagnosticCallPiece::construct(N, *CE, SM); 1420 LCM[&C->path] = CE->getCalleeContext(); 1421 1422 EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true); 1423 EB.flushLocations(); 1424 1425 PD.getActivePath().push_front(C); 1426 PD.pushActivePath(&C->path); 1427 CallStack.push_back(StackDiagPair(C, N)); 1428 break; 1429 } 1430 1431 // Pop the call hierarchy if we are done walking the contents 1432 // of a function call. 1433 if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { 1434 // Add an edge to the start of the function. 1435 const Decl *D = CE->getCalleeContext()->getDecl(); 1436 PathDiagnosticLocation pos = 1437 PathDiagnosticLocation::createBegin(D, SM); 1438 EB.addEdge(pos); 1439 1440 // Flush all locations, and pop the active path. 1441 bool VisitedEntireCall = PD.isWithinCall(); 1442 EB.flushLocations(); 1443 PD.popActivePath(); 1444 PDB.LC = N->getLocationContext(); 1445 1446 // Either we just added a bunch of stuff to the top-level path, or 1447 // we have a previous CallExitEnd. If the former, it means that the 1448 // path terminated within a function call. We must then take the 1449 // current contents of the active path and place it within 1450 // a new PathDiagnosticCallPiece. 1451 PathDiagnosticCallPiece *C; 1452 if (VisitedEntireCall) { 1453 C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front()); 1454 } else { 1455 const Decl *Caller = CE->getLocationContext()->getDecl(); 1456 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 1457 LCM[&C->path] = CE->getCalleeContext(); 1458 } 1459 1460 C->setCallee(*CE, SM); 1461 EB.addContext(C->getLocation()); 1462 1463 if (!CallStack.empty()) { 1464 assert(CallStack.back().first == C); 1465 CallStack.pop_back(); 1466 } 1467 break; 1468 } 1469 1470 // Note that is important that we update the LocationContext 1471 // after looking at CallExits. CallExit basically adds an 1472 // edge in the *caller*, so we don't want to update the LocationContext 1473 // too soon. 1474 PDB.LC = N->getLocationContext(); 1475 1476 // Block edges. 1477 if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) { 1478 // Does this represent entering a call? If so, look at propagating 1479 // interesting symbols across call boundaries. 1480 if (NextNode) { 1481 const LocationContext *CallerCtx = NextNode->getLocationContext(); 1482 const LocationContext *CalleeCtx = PDB.LC; 1483 if (CallerCtx != CalleeCtx) { 1484 reversePropagateInterestingSymbols(*PDB.getBugReport(), IE, 1485 N->getState().get(), 1486 CalleeCtx, CallerCtx); 1487 } 1488 } 1489 1490 // Are we jumping to the head of a loop? Add a special diagnostic. 1491 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { 1492 PathDiagnosticLocation L(Loop, SM, PDB.LC); 1493 const CompoundStmt *CS = nullptr; 1494 1495 if (const ForStmt *FS = dyn_cast<ForStmt>(Loop)) 1496 CS = dyn_cast<CompoundStmt>(FS->getBody()); 1497 else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop)) 1498 CS = dyn_cast<CompoundStmt>(WS->getBody()); 1499 1500 PathDiagnosticEventPiece *p = 1501 new PathDiagnosticEventPiece(L, 1502 "Looping back to the head of the loop"); 1503 p->setPrunable(true); 1504 1505 EB.addEdge(p->getLocation(), true); 1506 PD.getActivePath().push_front(p); 1507 1508 if (CS) { 1509 PathDiagnosticLocation BL = 1510 PathDiagnosticLocation::createEndBrace(CS, SM); 1511 EB.addEdge(BL); 1512 } 1513 } 1514 1515 const CFGBlock *BSrc = BE->getSrc(); 1516 ParentMap &PM = PDB.getParentMap(); 1517 1518 if (const Stmt *Term = BSrc->getTerminator()) { 1519 // Are we jumping past the loop body without ever executing the 1520 // loop (because the condition was false)? 1521 if (isLoopJumpPastBody(Term, &*BE) && 1522 !isInLoopBody(PM, 1523 getStmtBeforeCond(PM, 1524 BSrc->getTerminatorCondition(), 1525 N), 1526 Term)) { 1527 PathDiagnosticLocation L(Term, SM, PDB.LC); 1528 PathDiagnosticEventPiece *PE = 1529 new PathDiagnosticEventPiece(L, "Loop body executed 0 times"); 1530 PE->setPrunable(true); 1531 1532 EB.addEdge(PE->getLocation(), true); 1533 PD.getActivePath().push_front(PE); 1534 } 1535 1536 // In any case, add the terminator as the current statement 1537 // context for control edges. 1538 EB.addContext(Term); 1539 } 1540 1541 break; 1542 } 1543 1544 if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) { 1545 Optional<CFGElement> First = BE->getFirstElement(); 1546 if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) { 1547 const Stmt *stmt = S->getStmt(); 1548 if (IsControlFlowExpr(stmt)) { 1549 // Add the proper context for '&&', '||', and '?'. 1550 EB.addContext(stmt); 1551 } 1552 else 1553 EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt()); 1554 } 1555 1556 break; 1557 } 1558 1559 1560 } while (0); 1561 1562 if (!NextNode) 1563 continue; 1564 1565 // Add pieces from custom visitors. 1566 BugReport *R = PDB.getBugReport(); 1567 for (auto &V : visitors) { 1568 if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *R)) { 1569 const PathDiagnosticLocation &Loc = p->getLocation(); 1570 EB.addEdge(Loc, true); 1571 PD.getActivePath().push_front(p); 1572 updateStackPiecesWithMessage(p, CallStack); 1573 1574 if (const Stmt *S = Loc.asStmt()) 1575 EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); 1576 } 1577 } 1578 } 1579 1580 return PDB.getBugReport()->isValid(); 1581 } 1582 1583 /// \brief Adds a sanitized control-flow diagnostic edge to a path. 1584 static void addEdgeToPath(PathPieces &path, 1585 PathDiagnosticLocation &PrevLoc, 1586 PathDiagnosticLocation NewLoc, 1587 const LocationContext *LC) { 1588 if (!NewLoc.isValid()) 1589 return; 1590 1591 SourceLocation NewLocL = NewLoc.asLocation(); 1592 if (NewLocL.isInvalid()) 1593 return; 1594 1595 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) { 1596 PrevLoc = NewLoc; 1597 return; 1598 } 1599 1600 // Ignore self-edges, which occur when there are multiple nodes at the same 1601 // statement. 1602 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt()) 1603 return; 1604 1605 path.push_front(new PathDiagnosticControlFlowPiece(NewLoc, 1606 PrevLoc)); 1607 PrevLoc = NewLoc; 1608 } 1609 1610 /// A customized wrapper for CFGBlock::getTerminatorCondition() 1611 /// which returns the element for ObjCForCollectionStmts. 1612 static const Stmt *getTerminatorCondition(const CFGBlock *B) { 1613 const Stmt *S = B->getTerminatorCondition(); 1614 if (const ObjCForCollectionStmt *FS = 1615 dyn_cast_or_null<ObjCForCollectionStmt>(S)) 1616 return FS->getElement(); 1617 return S; 1618 } 1619 1620 static const char StrEnteringLoop[] = "Entering loop body"; 1621 static const char StrLoopBodyZero[] = "Loop body executed 0 times"; 1622 static const char StrLoopRangeEmpty[] = 1623 "Loop body skipped when range is empty"; 1624 static const char StrLoopCollectionEmpty[] = 1625 "Loop body skipped when collection is empty"; 1626 1627 static bool GenerateAlternateExtensivePathDiagnostic( 1628 PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N, 1629 LocationContextMap &LCM, 1630 ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) { 1631 1632 BugReport *report = PDB.getBugReport(); 1633 const SourceManager& SM = PDB.getSourceManager(); 1634 StackDiagVector CallStack; 1635 InterestingExprs IE; 1636 1637 PathDiagnosticLocation PrevLoc = PD.getLocation(); 1638 1639 const ExplodedNode *NextNode = N->getFirstPred(); 1640 while (NextNode) { 1641 N = NextNode; 1642 NextNode = N->getFirstPred(); 1643 ProgramPoint P = N->getLocation(); 1644 1645 do { 1646 // Have we encountered an entrance to a call? It may be 1647 // the case that we have not encountered a matching 1648 // call exit before this point. This means that the path 1649 // terminated within the call itself. 1650 if (Optional<CallEnter> CE = P.getAs<CallEnter>()) { 1651 // Add an edge to the start of the function. 1652 const StackFrameContext *CalleeLC = CE->getCalleeContext(); 1653 const Decl *D = CalleeLC->getDecl(); 1654 addEdgeToPath(PD.getActivePath(), PrevLoc, 1655 PathDiagnosticLocation::createBegin(D, SM), 1656 CalleeLC); 1657 1658 // Did we visit an entire call? 1659 bool VisitedEntireCall = PD.isWithinCall(); 1660 PD.popActivePath(); 1661 1662 PathDiagnosticCallPiece *C; 1663 if (VisitedEntireCall) { 1664 PathDiagnosticPiece *P = PD.getActivePath().front().get(); 1665 C = cast<PathDiagnosticCallPiece>(P); 1666 } else { 1667 const Decl *Caller = CE->getLocationContext()->getDecl(); 1668 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller); 1669 1670 // Since we just transferred the path over to the call piece, 1671 // reset the mapping from active to location context. 1672 assert(PD.getActivePath().size() == 1 && 1673 PD.getActivePath().front() == C); 1674 LCM[&PD.getActivePath()] = nullptr; 1675 1676 // Record the location context mapping for the path within 1677 // the call. 1678 assert(LCM[&C->path] == nullptr || 1679 LCM[&C->path] == CE->getCalleeContext()); 1680 LCM[&C->path] = CE->getCalleeContext(); 1681 1682 // If this is the first item in the active path, record 1683 // the new mapping from active path to location context. 1684 const LocationContext *&NewLC = LCM[&PD.getActivePath()]; 1685 if (!NewLC) 1686 NewLC = N->getLocationContext(); 1687 1688 PDB.LC = NewLC; 1689 } 1690 C->setCallee(*CE, SM); 1691 1692 // Update the previous location in the active path. 1693 PrevLoc = C->getLocation(); 1694 1695 if (!CallStack.empty()) { 1696 assert(CallStack.back().first == C); 1697 CallStack.pop_back(); 1698 } 1699 break; 1700 } 1701 1702 // Query the location context here and the previous location 1703 // as processing CallEnter may change the active path. 1704 PDB.LC = N->getLocationContext(); 1705 1706 // Record the mapping from the active path to the location 1707 // context. 1708 assert(!LCM[&PD.getActivePath()] || 1709 LCM[&PD.getActivePath()] == PDB.LC); 1710 LCM[&PD.getActivePath()] = PDB.LC; 1711 1712 // Have we encountered an exit from a function call? 1713 if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) { 1714 const Stmt *S = CE->getCalleeContext()->getCallSite(); 1715 // Propagate the interesting symbols accordingly. 1716 if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) { 1717 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1718 N->getState().get(), Ex, 1719 N->getLocationContext()); 1720 } 1721 1722 // We are descending into a call (backwards). Construct 1723 // a new call piece to contain the path pieces for that call. 1724 PathDiagnosticCallPiece *C = 1725 PathDiagnosticCallPiece::construct(N, *CE, SM); 1726 1727 // Record the location context for this call piece. 1728 LCM[&C->path] = CE->getCalleeContext(); 1729 1730 // Add the edge to the return site. 1731 addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC); 1732 PD.getActivePath().push_front(C); 1733 PrevLoc.invalidate(); 1734 1735 // Make the contents of the call the active path for now. 1736 PD.pushActivePath(&C->path); 1737 CallStack.push_back(StackDiagPair(C, N)); 1738 break; 1739 } 1740 1741 if (Optional<PostStmt> PS = P.getAs<PostStmt>()) { 1742 // For expressions, make sure we propagate the 1743 // interesting symbols correctly. 1744 if (const Expr *Ex = PS->getStmtAs<Expr>()) 1745 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE, 1746 N->getState().get(), Ex, 1747 N->getLocationContext()); 1748 1749 // Add an edge. If this is an ObjCForCollectionStmt do 1750 // not add an edge here as it appears in the CFG both 1751 // as a terminator and as a terminator condition. 1752 if (!isa<ObjCForCollectionStmt>(PS->getStmt())) { 1753 PathDiagnosticLocation L = 1754 PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC); 1755 addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC); 1756 } 1757 break; 1758 } 1759 1760 // Block edges. 1761 if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) { 1762 // Does this represent entering a call? If so, look at propagating 1763 // interesting symbols across call boundaries. 1764 if (NextNode) { 1765 const LocationContext *CallerCtx = NextNode->getLocationContext(); 1766 const LocationContext *CalleeCtx = PDB.LC; 1767 if (CallerCtx != CalleeCtx) { 1768 reversePropagateInterestingSymbols(*PDB.getBugReport(), IE, 1769 N->getState().get(), 1770 CalleeCtx, CallerCtx); 1771 } 1772 } 1773 1774 // Are we jumping to the head of a loop? Add a special diagnostic. 1775 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) { 1776 PathDiagnosticLocation L(Loop, SM, PDB.LC); 1777 const Stmt *Body = nullptr; 1778 1779 if (const ForStmt *FS = dyn_cast<ForStmt>(Loop)) 1780 Body = FS->getBody(); 1781 else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop)) 1782 Body = WS->getBody(); 1783 else if (const ObjCForCollectionStmt *OFS = 1784 dyn_cast<ObjCForCollectionStmt>(Loop)) { 1785 Body = OFS->getBody(); 1786 } else if (const CXXForRangeStmt *FRS = 1787 dyn_cast<CXXForRangeStmt>(Loop)) { 1788 Body = FRS->getBody(); 1789 } 1790 // do-while statements are explicitly excluded here 1791 1792 PathDiagnosticEventPiece *p = 1793 new PathDiagnosticEventPiece(L, "Looping back to the head " 1794 "of the loop"); 1795 p->setPrunable(true); 1796 1797 addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC); 1798 PD.getActivePath().push_front(p); 1799 1800 if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 1801 addEdgeToPath(PD.getActivePath(), PrevLoc, 1802 PathDiagnosticLocation::createEndBrace(CS, SM), 1803 PDB.LC); 1804 } 1805 } 1806 1807 const CFGBlock *BSrc = BE->getSrc(); 1808 ParentMap &PM = PDB.getParentMap(); 1809 1810 if (const Stmt *Term = BSrc->getTerminator()) { 1811 // Are we jumping past the loop body without ever executing the 1812 // loop (because the condition was false)? 1813 if (isLoop(Term)) { 1814 const Stmt *TermCond = getTerminatorCondition(BSrc); 1815 bool IsInLoopBody = 1816 isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term); 1817 1818 const char *str = nullptr; 1819 1820 if (isJumpToFalseBranch(&*BE)) { 1821 if (!IsInLoopBody) { 1822 if (isa<ObjCForCollectionStmt>(Term)) { 1823 str = StrLoopCollectionEmpty; 1824 } else if (isa<CXXForRangeStmt>(Term)) { 1825 str = StrLoopRangeEmpty; 1826 } else { 1827 str = StrLoopBodyZero; 1828 } 1829 } 1830 } else { 1831 str = StrEnteringLoop; 1832 } 1833 1834 if (str) { 1835 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC); 1836 PathDiagnosticEventPiece *PE = 1837 new PathDiagnosticEventPiece(L, str); 1838 PE->setPrunable(true); 1839 addEdgeToPath(PD.getActivePath(), PrevLoc, 1840 PE->getLocation(), PDB.LC); 1841 PD.getActivePath().push_front(PE); 1842 } 1843 } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) || 1844 isa<GotoStmt>(Term)) { 1845 PathDiagnosticLocation L(Term, SM, PDB.LC); 1846 addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC); 1847 } 1848 } 1849 break; 1850 } 1851 } while (0); 1852 1853 if (!NextNode) 1854 continue; 1855 1856 // Add pieces from custom visitors. 1857 for (auto &V : visitors) { 1858 if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *report)) { 1859 addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC); 1860 PD.getActivePath().push_front(p); 1861 updateStackPiecesWithMessage(p, CallStack); 1862 } 1863 } 1864 } 1865 1866 // Add an edge to the start of the function. 1867 // We'll prune it out later, but it helps make diagnostics more uniform. 1868 const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame(); 1869 const Decl *D = CalleeLC->getDecl(); 1870 addEdgeToPath(PD.getActivePath(), PrevLoc, 1871 PathDiagnosticLocation::createBegin(D, SM), 1872 CalleeLC); 1873 1874 return report->isValid(); 1875 } 1876 1877 static const Stmt *getLocStmt(PathDiagnosticLocation L) { 1878 if (!L.isValid()) 1879 return nullptr; 1880 return L.asStmt(); 1881 } 1882 1883 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) { 1884 if (!S) 1885 return nullptr; 1886 1887 while (true) { 1888 S = PM.getParentIgnoreParens(S); 1889 1890 if (!S) 1891 break; 1892 1893 if (isa<ExprWithCleanups>(S) || 1894 isa<CXXBindTemporaryExpr>(S) || 1895 isa<SubstNonTypeTemplateParmExpr>(S)) 1896 continue; 1897 1898 break; 1899 } 1900 1901 return S; 1902 } 1903 1904 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) { 1905 switch (S->getStmtClass()) { 1906 case Stmt::BinaryOperatorClass: { 1907 const BinaryOperator *BO = cast<BinaryOperator>(S); 1908 if (!BO->isLogicalOp()) 1909 return false; 1910 return BO->getLHS() == Cond || BO->getRHS() == Cond; 1911 } 1912 case Stmt::IfStmtClass: 1913 return cast<IfStmt>(S)->getCond() == Cond; 1914 case Stmt::ForStmtClass: 1915 return cast<ForStmt>(S)->getCond() == Cond; 1916 case Stmt::WhileStmtClass: 1917 return cast<WhileStmt>(S)->getCond() == Cond; 1918 case Stmt::DoStmtClass: 1919 return cast<DoStmt>(S)->getCond() == Cond; 1920 case Stmt::ChooseExprClass: 1921 return cast<ChooseExpr>(S)->getCond() == Cond; 1922 case Stmt::IndirectGotoStmtClass: 1923 return cast<IndirectGotoStmt>(S)->getTarget() == Cond; 1924 case Stmt::SwitchStmtClass: 1925 return cast<SwitchStmt>(S)->getCond() == Cond; 1926 case Stmt::BinaryConditionalOperatorClass: 1927 return cast<BinaryConditionalOperator>(S)->getCond() == Cond; 1928 case Stmt::ConditionalOperatorClass: { 1929 const ConditionalOperator *CO = cast<ConditionalOperator>(S); 1930 return CO->getCond() == Cond || 1931 CO->getLHS() == Cond || 1932 CO->getRHS() == Cond; 1933 } 1934 case Stmt::ObjCForCollectionStmtClass: 1935 return cast<ObjCForCollectionStmt>(S)->getElement() == Cond; 1936 case Stmt::CXXForRangeStmtClass: { 1937 const CXXForRangeStmt *FRS = cast<CXXForRangeStmt>(S); 1938 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond; 1939 } 1940 default: 1941 return false; 1942 } 1943 } 1944 1945 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) { 1946 if (const ForStmt *FS = dyn_cast<ForStmt>(FL)) 1947 return FS->getInc() == S || FS->getInit() == S; 1948 if (const CXXForRangeStmt *FRS = dyn_cast<CXXForRangeStmt>(FL)) 1949 return FRS->getInc() == S || FRS->getRangeStmt() == S || 1950 FRS->getLoopVarStmt() || FRS->getRangeInit() == S; 1951 return false; 1952 } 1953 1954 typedef llvm::DenseSet<const PathDiagnosticCallPiece *> 1955 OptimizedCallsSet; 1956 1957 /// Adds synthetic edges from top-level statements to their subexpressions. 1958 /// 1959 /// This avoids a "swoosh" effect, where an edge from a top-level statement A 1960 /// points to a sub-expression B.1 that's not at the start of B. In these cases, 1961 /// we'd like to see an edge from A to B, then another one from B to B.1. 1962 static void addContextEdges(PathPieces &pieces, SourceManager &SM, 1963 const ParentMap &PM, const LocationContext *LCtx) { 1964 PathPieces::iterator Prev = pieces.end(); 1965 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E; 1966 Prev = I, ++I) { 1967 PathDiagnosticControlFlowPiece *Piece = 1968 dyn_cast<PathDiagnosticControlFlowPiece>(*I); 1969 1970 if (!Piece) 1971 continue; 1972 1973 PathDiagnosticLocation SrcLoc = Piece->getStartLocation(); 1974 SmallVector<PathDiagnosticLocation, 4> SrcContexts; 1975 1976 PathDiagnosticLocation NextSrcContext = SrcLoc; 1977 const Stmt *InnerStmt = nullptr; 1978 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) { 1979 SrcContexts.push_back(NextSrcContext); 1980 InnerStmt = NextSrcContext.asStmt(); 1981 NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx, 1982 /*allowNested=*/true); 1983 } 1984 1985 // Repeatedly split the edge as necessary. 1986 // This is important for nested logical expressions (||, &&, ?:) where we 1987 // want to show all the levels of context. 1988 while (true) { 1989 const Stmt *Dst = getLocStmt(Piece->getEndLocation()); 1990 1991 // We are looking at an edge. Is the destination within a larger 1992 // expression? 1993 PathDiagnosticLocation DstContext = 1994 getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true); 1995 if (!DstContext.isValid() || DstContext.asStmt() == Dst) 1996 break; 1997 1998 // If the source is in the same context, we're already good. 1999 if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) != 2000 SrcContexts.end()) 2001 break; 2002 2003 // Update the subexpression node to point to the context edge. 2004 Piece->setStartLocation(DstContext); 2005 2006 // Try to extend the previous edge if it's at the same level as the source 2007 // context. 2008 if (Prev != E) { 2009 PathDiagnosticControlFlowPiece *PrevPiece = 2010 dyn_cast<PathDiagnosticControlFlowPiece>(*Prev); 2011 2012 if (PrevPiece) { 2013 if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) { 2014 const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM); 2015 if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) { 2016 PrevPiece->setEndLocation(DstContext); 2017 break; 2018 } 2019 } 2020 } 2021 } 2022 2023 // Otherwise, split the current edge into a context edge and a 2024 // subexpression edge. Note that the context statement may itself have 2025 // context. 2026 Piece = new PathDiagnosticControlFlowPiece(SrcLoc, DstContext); 2027 I = pieces.insert(I, Piece); 2028 } 2029 } 2030 } 2031 2032 /// \brief Move edges from a branch condition to a branch target 2033 /// when the condition is simple. 2034 /// 2035 /// This restructures some of the work of addContextEdges. That function 2036 /// creates edges this may destroy, but they work together to create a more 2037 /// aesthetically set of edges around branches. After the call to 2038 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from 2039 /// the branch to the branch condition, and (3) an edge from the branch 2040 /// condition to the branch target. We keep (1), but may wish to remove (2) 2041 /// and move the source of (3) to the branch if the branch condition is simple. 2042 /// 2043 static void simplifySimpleBranches(PathPieces &pieces) { 2044 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) { 2045 2046 PathDiagnosticControlFlowPiece *PieceI = 2047 dyn_cast<PathDiagnosticControlFlowPiece>(*I); 2048 2049 if (!PieceI) 2050 continue; 2051 2052 const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); 2053 const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); 2054 2055 if (!s1Start || !s1End) 2056 continue; 2057 2058 PathPieces::iterator NextI = I; ++NextI; 2059 if (NextI == E) 2060 break; 2061 2062 PathDiagnosticControlFlowPiece *PieceNextI = nullptr; 2063 2064 while (true) { 2065 if (NextI == E) 2066 break; 2067 2068 PathDiagnosticEventPiece *EV = dyn_cast<PathDiagnosticEventPiece>(*NextI); 2069 if (EV) { 2070 StringRef S = EV->getString(); 2071 if (S == StrEnteringLoop || S == StrLoopBodyZero || 2072 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) { 2073 ++NextI; 2074 continue; 2075 } 2076 break; 2077 } 2078 2079 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI); 2080 break; 2081 } 2082 2083 if (!PieceNextI) 2084 continue; 2085 2086 const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); 2087 const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); 2088 2089 if (!s2Start || !s2End || s1End != s2Start) 2090 continue; 2091 2092 // We only perform this transformation for specific branch kinds. 2093 // We don't want to do this for do..while, for example. 2094 if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) || 2095 isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) || 2096 isa<CXXForRangeStmt>(s1Start))) 2097 continue; 2098 2099 // Is s1End the branch condition? 2100 if (!isConditionForTerminator(s1Start, s1End)) 2101 continue; 2102 2103 // Perform the hoisting by eliminating (2) and changing the start 2104 // location of (3). 2105 PieceNextI->setStartLocation(PieceI->getStartLocation()); 2106 I = pieces.erase(I); 2107 } 2108 } 2109 2110 /// Returns the number of bytes in the given (character-based) SourceRange. 2111 /// 2112 /// If the locations in the range are not on the same line, returns None. 2113 /// 2114 /// Note that this does not do a precise user-visible character or column count. 2115 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM, 2116 SourceRange Range) { 2117 SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()), 2118 SM.getExpansionRange(Range.getEnd()).second); 2119 2120 FileID FID = SM.getFileID(ExpansionRange.getBegin()); 2121 if (FID != SM.getFileID(ExpansionRange.getEnd())) 2122 return None; 2123 2124 bool Invalid; 2125 const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid); 2126 if (Invalid) 2127 return None; 2128 2129 unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin()); 2130 unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd()); 2131 StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset); 2132 2133 // We're searching the raw bytes of the buffer here, which might include 2134 // escaped newlines and such. That's okay; we're trying to decide whether the 2135 // SourceRange is covering a large or small amount of space in the user's 2136 // editor. 2137 if (Snippet.find_first_of("\r\n") != StringRef::npos) 2138 return None; 2139 2140 // This isn't Unicode-aware, but it doesn't need to be. 2141 return Snippet.size(); 2142 } 2143 2144 /// \sa getLengthOnSingleLine(SourceManager, SourceRange) 2145 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM, 2146 const Stmt *S) { 2147 return getLengthOnSingleLine(SM, S->getSourceRange()); 2148 } 2149 2150 /// Eliminate two-edge cycles created by addContextEdges(). 2151 /// 2152 /// Once all the context edges are in place, there are plenty of cases where 2153 /// there's a single edge from a top-level statement to a subexpression, 2154 /// followed by a single path note, and then a reverse edge to get back out to 2155 /// the top level. If the statement is simple enough, the subexpression edges 2156 /// just add noise and make it harder to understand what's going on. 2157 /// 2158 /// This function only removes edges in pairs, because removing only one edge 2159 /// might leave other edges dangling. 2160 /// 2161 /// This will not remove edges in more complicated situations: 2162 /// - if there is more than one "hop" leading to or from a subexpression. 2163 /// - if there is an inlined call between the edges instead of a single event. 2164 /// - if the whole statement is large enough that having subexpression arrows 2165 /// might be helpful. 2166 static void removeContextCycles(PathPieces &Path, SourceManager &SM, 2167 ParentMap &PM) { 2168 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) { 2169 // Pattern match the current piece and its successor. 2170 PathDiagnosticControlFlowPiece *PieceI = 2171 dyn_cast<PathDiagnosticControlFlowPiece>(*I); 2172 2173 if (!PieceI) { 2174 ++I; 2175 continue; 2176 } 2177 2178 const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); 2179 const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); 2180 2181 PathPieces::iterator NextI = I; ++NextI; 2182 if (NextI == E) 2183 break; 2184 2185 PathDiagnosticControlFlowPiece *PieceNextI = 2186 dyn_cast<PathDiagnosticControlFlowPiece>(*NextI); 2187 2188 if (!PieceNextI) { 2189 if (isa<PathDiagnosticEventPiece>(*NextI)) { 2190 ++NextI; 2191 if (NextI == E) 2192 break; 2193 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI); 2194 } 2195 2196 if (!PieceNextI) { 2197 ++I; 2198 continue; 2199 } 2200 } 2201 2202 const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); 2203 const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); 2204 2205 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) { 2206 const size_t MAX_SHORT_LINE_LENGTH = 80; 2207 Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start); 2208 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) { 2209 Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start); 2210 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) { 2211 Path.erase(I); 2212 I = Path.erase(NextI); 2213 continue; 2214 } 2215 } 2216 } 2217 2218 ++I; 2219 } 2220 } 2221 2222 /// \brief Return true if X is contained by Y. 2223 static bool lexicalContains(ParentMap &PM, 2224 const Stmt *X, 2225 const Stmt *Y) { 2226 while (X) { 2227 if (X == Y) 2228 return true; 2229 X = PM.getParent(X); 2230 } 2231 return false; 2232 } 2233 2234 // Remove short edges on the same line less than 3 columns in difference. 2235 static void removePunyEdges(PathPieces &path, 2236 SourceManager &SM, 2237 ParentMap &PM) { 2238 2239 bool erased = false; 2240 2241 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; 2242 erased ? I : ++I) { 2243 2244 erased = false; 2245 2246 PathDiagnosticControlFlowPiece *PieceI = 2247 dyn_cast<PathDiagnosticControlFlowPiece>(*I); 2248 2249 if (!PieceI) 2250 continue; 2251 2252 const Stmt *start = getLocStmt(PieceI->getStartLocation()); 2253 const Stmt *end = getLocStmt(PieceI->getEndLocation()); 2254 2255 if (!start || !end) 2256 continue; 2257 2258 const Stmt *endParent = PM.getParent(end); 2259 if (!endParent) 2260 continue; 2261 2262 if (isConditionForTerminator(end, endParent)) 2263 continue; 2264 2265 SourceLocation FirstLoc = start->getLocStart(); 2266 SourceLocation SecondLoc = end->getLocStart(); 2267 2268 if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc)) 2269 continue; 2270 if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc)) 2271 std::swap(SecondLoc, FirstLoc); 2272 2273 SourceRange EdgeRange(FirstLoc, SecondLoc); 2274 Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange); 2275 2276 // If the statements are on different lines, continue. 2277 if (!ByteWidth) 2278 continue; 2279 2280 const size_t MAX_PUNY_EDGE_LENGTH = 2; 2281 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) { 2282 // FIXME: There are enough /bytes/ between the endpoints of the edge, but 2283 // there might not be enough /columns/. A proper user-visible column count 2284 // is probably too expensive, though. 2285 I = path.erase(I); 2286 erased = true; 2287 continue; 2288 } 2289 } 2290 } 2291 2292 static void removeIdenticalEvents(PathPieces &path) { 2293 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) { 2294 PathDiagnosticEventPiece *PieceI = 2295 dyn_cast<PathDiagnosticEventPiece>(*I); 2296 2297 if (!PieceI) 2298 continue; 2299 2300 PathPieces::iterator NextI = I; ++NextI; 2301 if (NextI == E) 2302 return; 2303 2304 PathDiagnosticEventPiece *PieceNextI = 2305 dyn_cast<PathDiagnosticEventPiece>(*NextI); 2306 2307 if (!PieceNextI) 2308 continue; 2309 2310 // Erase the second piece if it has the same exact message text. 2311 if (PieceI->getString() == PieceNextI->getString()) { 2312 path.erase(NextI); 2313 } 2314 } 2315 } 2316 2317 static bool optimizeEdges(PathPieces &path, SourceManager &SM, 2318 OptimizedCallsSet &OCS, 2319 LocationContextMap &LCM) { 2320 bool hasChanges = false; 2321 const LocationContext *LC = LCM[&path]; 2322 assert(LC); 2323 ParentMap &PM = LC->getParentMap(); 2324 2325 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) { 2326 // Optimize subpaths. 2327 if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){ 2328 // Record the fact that a call has been optimized so we only do the 2329 // effort once. 2330 if (!OCS.count(CallI)) { 2331 while (optimizeEdges(CallI->path, SM, OCS, LCM)) {} 2332 OCS.insert(CallI); 2333 } 2334 ++I; 2335 continue; 2336 } 2337 2338 // Pattern match the current piece and its successor. 2339 PathDiagnosticControlFlowPiece *PieceI = 2340 dyn_cast<PathDiagnosticControlFlowPiece>(*I); 2341 2342 if (!PieceI) { 2343 ++I; 2344 continue; 2345 } 2346 2347 const Stmt *s1Start = getLocStmt(PieceI->getStartLocation()); 2348 const Stmt *s1End = getLocStmt(PieceI->getEndLocation()); 2349 const Stmt *level1 = getStmtParent(s1Start, PM); 2350 const Stmt *level2 = getStmtParent(s1End, PM); 2351 2352 PathPieces::iterator NextI = I; ++NextI; 2353 if (NextI == E) 2354 break; 2355 2356 PathDiagnosticControlFlowPiece *PieceNextI = 2357 dyn_cast<PathDiagnosticControlFlowPiece>(*NextI); 2358 2359 if (!PieceNextI) { 2360 ++I; 2361 continue; 2362 } 2363 2364 const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation()); 2365 const Stmt *s2End = getLocStmt(PieceNextI->getEndLocation()); 2366 const Stmt *level3 = getStmtParent(s2Start, PM); 2367 const Stmt *level4 = getStmtParent(s2End, PM); 2368 2369 // Rule I. 2370 // 2371 // If we have two consecutive control edges whose end/begin locations 2372 // are at the same level (e.g. statements or top-level expressions within 2373 // a compound statement, or siblings share a single ancestor expression), 2374 // then merge them if they have no interesting intermediate event. 2375 // 2376 // For example: 2377 // 2378 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common 2379 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements. 2380 // 2381 // NOTE: this will be limited later in cases where we add barriers 2382 // to prevent this optimization. 2383 // 2384 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) { 2385 PieceI->setEndLocation(PieceNextI->getEndLocation()); 2386 path.erase(NextI); 2387 hasChanges = true; 2388 continue; 2389 } 2390 2391 // Rule II. 2392 // 2393 // Eliminate edges between subexpressions and parent expressions 2394 // when the subexpression is consumed. 2395 // 2396 // NOTE: this will be limited later in cases where we add barriers 2397 // to prevent this optimization. 2398 // 2399 if (s1End && s1End == s2Start && level2) { 2400 bool removeEdge = false; 2401 // Remove edges into the increment or initialization of a 2402 // loop that have no interleaving event. This means that 2403 // they aren't interesting. 2404 if (isIncrementOrInitInForLoop(s1End, level2)) 2405 removeEdge = true; 2406 // Next only consider edges that are not anchored on 2407 // the condition of a terminator. This are intermediate edges 2408 // that we might want to trim. 2409 else if (!isConditionForTerminator(level2, s1End)) { 2410 // Trim edges on expressions that are consumed by 2411 // the parent expression. 2412 if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) { 2413 removeEdge = true; 2414 } 2415 // Trim edges where a lexical containment doesn't exist. 2416 // For example: 2417 // 2418 // X -> Y -> Z 2419 // 2420 // If 'Z' lexically contains Y (it is an ancestor) and 2421 // 'X' does not lexically contain Y (it is a descendant OR 2422 // it has no lexical relationship at all) then trim. 2423 // 2424 // This can eliminate edges where we dive into a subexpression 2425 // and then pop back out, etc. 2426 else if (s1Start && s2End && 2427 lexicalContains(PM, s2Start, s2End) && 2428 !lexicalContains(PM, s1End, s1Start)) { 2429 removeEdge = true; 2430 } 2431 // Trim edges from a subexpression back to the top level if the 2432 // subexpression is on a different line. 2433 // 2434 // A.1 -> A -> B 2435 // becomes 2436 // A.1 -> B 2437 // 2438 // These edges just look ugly and don't usually add anything. 2439 else if (s1Start && s2End && 2440 lexicalContains(PM, s1Start, s1End)) { 2441 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(), 2442 PieceI->getStartLocation().asLocation()); 2443 if (!getLengthOnSingleLine(SM, EdgeRange).hasValue()) 2444 removeEdge = true; 2445 } 2446 } 2447 2448 if (removeEdge) { 2449 PieceI->setEndLocation(PieceNextI->getEndLocation()); 2450 path.erase(NextI); 2451 hasChanges = true; 2452 continue; 2453 } 2454 } 2455 2456 // Optimize edges for ObjC fast-enumeration loops. 2457 // 2458 // (X -> collection) -> (collection -> element) 2459 // 2460 // becomes: 2461 // 2462 // (X -> element) 2463 if (s1End == s2Start) { 2464 const ObjCForCollectionStmt *FS = 2465 dyn_cast_or_null<ObjCForCollectionStmt>(level3); 2466 if (FS && FS->getCollection()->IgnoreParens() == s2Start && 2467 s2End == FS->getElement()) { 2468 PieceI->setEndLocation(PieceNextI->getEndLocation()); 2469 path.erase(NextI); 2470 hasChanges = true; 2471 continue; 2472 } 2473 } 2474 2475 // No changes at this index? Move to the next one. 2476 ++I; 2477 } 2478 2479 if (!hasChanges) { 2480 // Adjust edges into subexpressions to make them more uniform 2481 // and aesthetically pleasing. 2482 addContextEdges(path, SM, PM, LC); 2483 // Remove "cyclical" edges that include one or more context edges. 2484 removeContextCycles(path, SM, PM); 2485 // Hoist edges originating from branch conditions to branches 2486 // for simple branches. 2487 simplifySimpleBranches(path); 2488 // Remove any puny edges left over after primary optimization pass. 2489 removePunyEdges(path, SM, PM); 2490 // Remove identical events. 2491 removeIdenticalEvents(path); 2492 } 2493 2494 return hasChanges; 2495 } 2496 2497 /// Drop the very first edge in a path, which should be a function entry edge. 2498 /// 2499 /// If the first edge is not a function entry edge (say, because the first 2500 /// statement had an invalid source location), this function does nothing. 2501 // FIXME: We should just generate invalid edges anyway and have the optimizer 2502 // deal with them. 2503 static void dropFunctionEntryEdge(PathPieces &Path, 2504 LocationContextMap &LCM, 2505 SourceManager &SM) { 2506 const PathDiagnosticControlFlowPiece *FirstEdge = 2507 dyn_cast<PathDiagnosticControlFlowPiece>(Path.front()); 2508 if (!FirstEdge) 2509 return; 2510 2511 const Decl *D = LCM[&Path]->getDecl(); 2512 PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM); 2513 if (FirstEdge->getStartLocation() != EntryLoc) 2514 return; 2515 2516 Path.pop_front(); 2517 } 2518 2519 2520 //===----------------------------------------------------------------------===// 2521 // Methods for BugType and subclasses. 2522 //===----------------------------------------------------------------------===// 2523 void BugType::anchor() { } 2524 2525 void BugType::FlushReports(BugReporter &BR) {} 2526 2527 void BuiltinBug::anchor() {} 2528 2529 //===----------------------------------------------------------------------===// 2530 // Methods for BugReport and subclasses. 2531 //===----------------------------------------------------------------------===// 2532 2533 void BugReport::NodeResolver::anchor() {} 2534 2535 void BugReport::addVisitor(std::unique_ptr<BugReporterVisitor> visitor) { 2536 if (!visitor) 2537 return; 2538 2539 llvm::FoldingSetNodeID ID; 2540 visitor->Profile(ID); 2541 void *InsertPos; 2542 2543 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) 2544 return; 2545 2546 CallbacksSet.InsertNode(visitor.get(), InsertPos); 2547 Callbacks.push_back(std::move(visitor)); 2548 ++ConfigurationChangeToken; 2549 } 2550 2551 BugReport::~BugReport() { 2552 while (!interestingSymbols.empty()) { 2553 popInterestingSymbolsAndRegions(); 2554 } 2555 } 2556 2557 const Decl *BugReport::getDeclWithIssue() const { 2558 if (DeclWithIssue) 2559 return DeclWithIssue; 2560 2561 const ExplodedNode *N = getErrorNode(); 2562 if (!N) 2563 return nullptr; 2564 2565 const LocationContext *LC = N->getLocationContext(); 2566 return LC->getCurrentStackFrame()->getDecl(); 2567 } 2568 2569 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const { 2570 hash.AddPointer(&BT); 2571 hash.AddString(Description); 2572 PathDiagnosticLocation UL = getUniqueingLocation(); 2573 if (UL.isValid()) { 2574 UL.Profile(hash); 2575 } else if (Location.isValid()) { 2576 Location.Profile(hash); 2577 } else { 2578 assert(ErrorNode); 2579 hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode)); 2580 } 2581 2582 for (SourceRange range : Ranges) { 2583 if (!range.isValid()) 2584 continue; 2585 hash.AddInteger(range.getBegin().getRawEncoding()); 2586 hash.AddInteger(range.getEnd().getRawEncoding()); 2587 } 2588 } 2589 2590 void BugReport::markInteresting(SymbolRef sym) { 2591 if (!sym) 2592 return; 2593 2594 // If the symbol wasn't already in our set, note a configuration change. 2595 if (getInterestingSymbols().insert(sym).second) 2596 ++ConfigurationChangeToken; 2597 2598 if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym)) 2599 getInterestingRegions().insert(meta->getRegion()); 2600 } 2601 2602 void BugReport::markInteresting(const MemRegion *R) { 2603 if (!R) 2604 return; 2605 2606 // If the base region wasn't already in our set, note a configuration change. 2607 R = R->getBaseRegion(); 2608 if (getInterestingRegions().insert(R).second) 2609 ++ConfigurationChangeToken; 2610 2611 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 2612 getInterestingSymbols().insert(SR->getSymbol()); 2613 } 2614 2615 void BugReport::markInteresting(SVal V) { 2616 markInteresting(V.getAsRegion()); 2617 markInteresting(V.getAsSymbol()); 2618 } 2619 2620 void BugReport::markInteresting(const LocationContext *LC) { 2621 if (!LC) 2622 return; 2623 InterestingLocationContexts.insert(LC); 2624 } 2625 2626 bool BugReport::isInteresting(SVal V) { 2627 return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol()); 2628 } 2629 2630 bool BugReport::isInteresting(SymbolRef sym) { 2631 if (!sym) 2632 return false; 2633 // We don't currently consider metadata symbols to be interesting 2634 // even if we know their region is interesting. Is that correct behavior? 2635 return getInterestingSymbols().count(sym); 2636 } 2637 2638 bool BugReport::isInteresting(const MemRegion *R) { 2639 if (!R) 2640 return false; 2641 R = R->getBaseRegion(); 2642 bool b = getInterestingRegions().count(R); 2643 if (b) 2644 return true; 2645 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 2646 return getInterestingSymbols().count(SR->getSymbol()); 2647 return false; 2648 } 2649 2650 bool BugReport::isInteresting(const LocationContext *LC) { 2651 if (!LC) 2652 return false; 2653 return InterestingLocationContexts.count(LC); 2654 } 2655 2656 void BugReport::lazyInitializeInterestingSets() { 2657 if (interestingSymbols.empty()) { 2658 interestingSymbols.push_back(new Symbols()); 2659 interestingRegions.push_back(new Regions()); 2660 } 2661 } 2662 2663 BugReport::Symbols &BugReport::getInterestingSymbols() { 2664 lazyInitializeInterestingSets(); 2665 return *interestingSymbols.back(); 2666 } 2667 2668 BugReport::Regions &BugReport::getInterestingRegions() { 2669 lazyInitializeInterestingSets(); 2670 return *interestingRegions.back(); 2671 } 2672 2673 void BugReport::pushInterestingSymbolsAndRegions() { 2674 interestingSymbols.push_back(new Symbols(getInterestingSymbols())); 2675 interestingRegions.push_back(new Regions(getInterestingRegions())); 2676 } 2677 2678 void BugReport::popInterestingSymbolsAndRegions() { 2679 delete interestingSymbols.pop_back_val(); 2680 delete interestingRegions.pop_back_val(); 2681 } 2682 2683 const Stmt *BugReport::getStmt() const { 2684 if (!ErrorNode) 2685 return nullptr; 2686 2687 ProgramPoint ProgP = ErrorNode->getLocation(); 2688 const Stmt *S = nullptr; 2689 2690 if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) { 2691 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); 2692 if (BE->getBlock() == &Exit) 2693 S = GetPreviousStmt(ErrorNode); 2694 } 2695 if (!S) 2696 S = PathDiagnosticLocation::getStmt(ErrorNode); 2697 2698 return S; 2699 } 2700 2701 llvm::iterator_range<BugReport::ranges_iterator> BugReport::getRanges() { 2702 // If no custom ranges, add the range of the statement corresponding to 2703 // the error node. 2704 if (Ranges.empty()) { 2705 if (const Expr *E = dyn_cast_or_null<Expr>(getStmt())) 2706 addRange(E->getSourceRange()); 2707 else 2708 return llvm::make_range(ranges_iterator(), ranges_iterator()); 2709 } 2710 2711 // User-specified absence of range info. 2712 if (Ranges.size() == 1 && !Ranges.begin()->isValid()) 2713 return llvm::make_range(ranges_iterator(), ranges_iterator()); 2714 2715 return llvm::make_range(Ranges.begin(), Ranges.end()); 2716 } 2717 2718 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const { 2719 if (ErrorNode) { 2720 assert(!Location.isValid() && 2721 "Either Location or ErrorNode should be specified but not both."); 2722 return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM); 2723 } 2724 2725 assert(Location.isValid()); 2726 return Location; 2727 } 2728 2729 //===----------------------------------------------------------------------===// 2730 // Methods for BugReporter and subclasses. 2731 //===----------------------------------------------------------------------===// 2732 2733 BugReportEquivClass::~BugReportEquivClass() { } 2734 GRBugReporter::~GRBugReporter() { } 2735 BugReporterData::~BugReporterData() {} 2736 2737 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); } 2738 2739 ProgramStateManager& 2740 GRBugReporter::getStateManager() { return Eng.getStateManager(); } 2741 2742 BugReporter::~BugReporter() { 2743 FlushReports(); 2744 2745 // Free the bug reports we are tracking. 2746 typedef std::vector<BugReportEquivClass *> ContTy; 2747 for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end(); 2748 I != E; ++I) { 2749 delete *I; 2750 } 2751 } 2752 2753 void BugReporter::FlushReports() { 2754 if (BugTypes.isEmpty()) 2755 return; 2756 2757 // First flush the warnings for each BugType. This may end up creating new 2758 // warnings and new BugTypes. 2759 // FIXME: Only NSErrorChecker needs BugType's FlushReports. 2760 // Turn NSErrorChecker into a proper checker and remove this. 2761 SmallVector<const BugType *, 16> bugTypes(BugTypes.begin(), BugTypes.end()); 2762 for (SmallVectorImpl<const BugType *>::iterator 2763 I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I) 2764 const_cast<BugType*>(*I)->FlushReports(*this); 2765 2766 // We need to flush reports in deterministic order to ensure the order 2767 // of the reports is consistent between runs. 2768 typedef std::vector<BugReportEquivClass *> ContVecTy; 2769 for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end(); 2770 EI != EE; ++EI){ 2771 BugReportEquivClass& EQ = **EI; 2772 FlushReport(EQ); 2773 } 2774 2775 // BugReporter owns and deletes only BugTypes created implicitly through 2776 // EmitBasicReport. 2777 // FIXME: There are leaks from checkers that assume that the BugTypes they 2778 // create will be destroyed by the BugReporter. 2779 llvm::DeleteContainerSeconds(StrBugTypes); 2780 2781 // Remove all references to the BugType objects. 2782 BugTypes = F.getEmptySet(); 2783 } 2784 2785 //===----------------------------------------------------------------------===// 2786 // PathDiagnostics generation. 2787 //===----------------------------------------------------------------------===// 2788 2789 namespace { 2790 /// A wrapper around a report graph, which contains only a single path, and its 2791 /// node maps. 2792 class ReportGraph { 2793 public: 2794 InterExplodedGraphMap BackMap; 2795 std::unique_ptr<ExplodedGraph> Graph; 2796 const ExplodedNode *ErrorNode; 2797 size_t Index; 2798 }; 2799 2800 /// A wrapper around a trimmed graph and its node maps. 2801 class TrimmedGraph { 2802 InterExplodedGraphMap InverseMap; 2803 2804 typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy; 2805 PriorityMapTy PriorityMap; 2806 2807 typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair; 2808 SmallVector<NodeIndexPair, 32> ReportNodes; 2809 2810 std::unique_ptr<ExplodedGraph> G; 2811 2812 /// A helper class for sorting ExplodedNodes by priority. 2813 template <bool Descending> 2814 class PriorityCompare { 2815 const PriorityMapTy &PriorityMap; 2816 2817 public: 2818 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {} 2819 2820 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const { 2821 PriorityMapTy::const_iterator LI = PriorityMap.find(LHS); 2822 PriorityMapTy::const_iterator RI = PriorityMap.find(RHS); 2823 PriorityMapTy::const_iterator E = PriorityMap.end(); 2824 2825 if (LI == E) 2826 return Descending; 2827 if (RI == E) 2828 return !Descending; 2829 2830 return Descending ? LI->second > RI->second 2831 : LI->second < RI->second; 2832 } 2833 2834 bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const { 2835 return (*this)(LHS.first, RHS.first); 2836 } 2837 }; 2838 2839 public: 2840 TrimmedGraph(const ExplodedGraph *OriginalGraph, 2841 ArrayRef<const ExplodedNode *> Nodes); 2842 2843 bool popNextReportGraph(ReportGraph &GraphWrapper); 2844 }; 2845 } 2846 2847 TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph, 2848 ArrayRef<const ExplodedNode *> Nodes) { 2849 // The trimmed graph is created in the body of the constructor to ensure 2850 // that the DenseMaps have been initialized already. 2851 InterExplodedGraphMap ForwardMap; 2852 G = OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap); 2853 2854 // Find the (first) error node in the trimmed graph. We just need to consult 2855 // the node map which maps from nodes in the original graph to nodes 2856 // in the new graph. 2857 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes; 2858 2859 for (unsigned i = 0, count = Nodes.size(); i < count; ++i) { 2860 if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) { 2861 ReportNodes.push_back(std::make_pair(NewNode, i)); 2862 RemainingNodes.insert(NewNode); 2863 } 2864 } 2865 2866 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph"); 2867 2868 // Perform a forward BFS to find all the shortest paths. 2869 std::queue<const ExplodedNode *> WS; 2870 2871 assert(G->num_roots() == 1); 2872 WS.push(*G->roots_begin()); 2873 unsigned Priority = 0; 2874 2875 while (!WS.empty()) { 2876 const ExplodedNode *Node = WS.front(); 2877 WS.pop(); 2878 2879 PriorityMapTy::iterator PriorityEntry; 2880 bool IsNew; 2881 std::tie(PriorityEntry, IsNew) = 2882 PriorityMap.insert(std::make_pair(Node, Priority)); 2883 ++Priority; 2884 2885 if (!IsNew) { 2886 assert(PriorityEntry->second <= Priority); 2887 continue; 2888 } 2889 2890 if (RemainingNodes.erase(Node)) 2891 if (RemainingNodes.empty()) 2892 break; 2893 2894 for (ExplodedNode::const_pred_iterator I = Node->succ_begin(), 2895 E = Node->succ_end(); 2896 I != E; ++I) 2897 WS.push(*I); 2898 } 2899 2900 // Sort the error paths from longest to shortest. 2901 std::sort(ReportNodes.begin(), ReportNodes.end(), 2902 PriorityCompare<true>(PriorityMap)); 2903 } 2904 2905 bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) { 2906 if (ReportNodes.empty()) 2907 return false; 2908 2909 const ExplodedNode *OrigN; 2910 std::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val(); 2911 assert(PriorityMap.find(OrigN) != PriorityMap.end() && 2912 "error node not accessible from root"); 2913 2914 // Create a new graph with a single path. This is the graph 2915 // that will be returned to the caller. 2916 auto GNew = llvm::make_unique<ExplodedGraph>(); 2917 GraphWrapper.BackMap.clear(); 2918 2919 // Now walk from the error node up the BFS path, always taking the 2920 // predeccessor with the lowest number. 2921 ExplodedNode *Succ = nullptr; 2922 while (true) { 2923 // Create the equivalent node in the new graph with the same state 2924 // and location. 2925 ExplodedNode *NewN = GNew->createUncachedNode(OrigN->getLocation(), OrigN->getState(), 2926 OrigN->isSink()); 2927 2928 // Store the mapping to the original node. 2929 InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN); 2930 assert(IMitr != InverseMap.end() && "No mapping to original node."); 2931 GraphWrapper.BackMap[NewN] = IMitr->second; 2932 2933 // Link up the new node with the previous node. 2934 if (Succ) 2935 Succ->addPredecessor(NewN, *GNew); 2936 else 2937 GraphWrapper.ErrorNode = NewN; 2938 2939 Succ = NewN; 2940 2941 // Are we at the final node? 2942 if (OrigN->pred_empty()) { 2943 GNew->addRoot(NewN); 2944 break; 2945 } 2946 2947 // Find the next predeccessor node. We choose the node that is marked 2948 // with the lowest BFS number. 2949 OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(), 2950 PriorityCompare<false>(PriorityMap)); 2951 } 2952 2953 GraphWrapper.Graph = std::move(GNew); 2954 2955 return true; 2956 } 2957 2958 2959 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object 2960 /// and collapses PathDiagosticPieces that are expanded by macros. 2961 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) { 2962 typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>, 2963 SourceLocation> > MacroStackTy; 2964 2965 typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> > 2966 PiecesTy; 2967 2968 MacroStackTy MacroStack; 2969 PiecesTy Pieces; 2970 2971 for (PathPieces::const_iterator I = path.begin(), E = path.end(); 2972 I!=E; ++I) { 2973 2974 PathDiagnosticPiece *piece = I->get(); 2975 2976 // Recursively compact calls. 2977 if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){ 2978 CompactPathDiagnostic(call->path, SM); 2979 } 2980 2981 // Get the location of the PathDiagnosticPiece. 2982 const FullSourceLoc Loc = piece->getLocation().asLocation(); 2983 2984 // Determine the instantiation location, which is the location we group 2985 // related PathDiagnosticPieces. 2986 SourceLocation InstantiationLoc = Loc.isMacroID() ? 2987 SM.getExpansionLoc(Loc) : 2988 SourceLocation(); 2989 2990 if (Loc.isFileID()) { 2991 MacroStack.clear(); 2992 Pieces.push_back(piece); 2993 continue; 2994 } 2995 2996 assert(Loc.isMacroID()); 2997 2998 // Is the PathDiagnosticPiece within the same macro group? 2999 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { 3000 MacroStack.back().first->subPieces.push_back(piece); 3001 continue; 3002 } 3003 3004 // We aren't in the same group. Are we descending into a new macro 3005 // or are part of an old one? 3006 IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup; 3007 3008 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? 3009 SM.getExpansionLoc(Loc) : 3010 SourceLocation(); 3011 3012 // Walk the entire macro stack. 3013 while (!MacroStack.empty()) { 3014 if (InstantiationLoc == MacroStack.back().second) { 3015 MacroGroup = MacroStack.back().first; 3016 break; 3017 } 3018 3019 if (ParentInstantiationLoc == MacroStack.back().second) { 3020 MacroGroup = MacroStack.back().first; 3021 break; 3022 } 3023 3024 MacroStack.pop_back(); 3025 } 3026 3027 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { 3028 // Create a new macro group and add it to the stack. 3029 PathDiagnosticMacroPiece *NewGroup = 3030 new PathDiagnosticMacroPiece( 3031 PathDiagnosticLocation::createSingleLocation(piece->getLocation())); 3032 3033 if (MacroGroup) 3034 MacroGroup->subPieces.push_back(NewGroup); 3035 else { 3036 assert(InstantiationLoc.isFileID()); 3037 Pieces.push_back(NewGroup); 3038 } 3039 3040 MacroGroup = NewGroup; 3041 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); 3042 } 3043 3044 // Finally, add the PathDiagnosticPiece to the group. 3045 MacroGroup->subPieces.push_back(piece); 3046 } 3047 3048 // Now take the pieces and construct a new PathDiagnostic. 3049 path.clear(); 3050 3051 path.insert(path.end(), Pieces.begin(), Pieces.end()); 3052 } 3053 3054 bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD, 3055 PathDiagnosticConsumer &PC, 3056 ArrayRef<BugReport *> &bugReports) { 3057 assert(!bugReports.empty()); 3058 3059 bool HasValid = false; 3060 bool HasInvalid = false; 3061 SmallVector<const ExplodedNode *, 32> errorNodes; 3062 for (ArrayRef<BugReport*>::iterator I = bugReports.begin(), 3063 E = bugReports.end(); I != E; ++I) { 3064 if ((*I)->isValid()) { 3065 HasValid = true; 3066 errorNodes.push_back((*I)->getErrorNode()); 3067 } else { 3068 // Keep the errorNodes list in sync with the bugReports list. 3069 HasInvalid = true; 3070 errorNodes.push_back(nullptr); 3071 } 3072 } 3073 3074 // If all the reports have been marked invalid by a previous path generation, 3075 // we're done. 3076 if (!HasValid) 3077 return false; 3078 3079 typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme; 3080 PathGenerationScheme ActiveScheme = PC.getGenerationScheme(); 3081 3082 if (ActiveScheme == PathDiagnosticConsumer::Extensive) { 3083 AnalyzerOptions &options = getAnalyzerOptions(); 3084 if (options.getBooleanOption("path-diagnostics-alternate", true)) { 3085 ActiveScheme = PathDiagnosticConsumer::AlternateExtensive; 3086 } 3087 } 3088 3089 TrimmedGraph TrimG(&getGraph(), errorNodes); 3090 ReportGraph ErrorGraph; 3091 3092 while (TrimG.popNextReportGraph(ErrorGraph)) { 3093 // Find the BugReport with the original location. 3094 assert(ErrorGraph.Index < bugReports.size()); 3095 BugReport *R = bugReports[ErrorGraph.Index]; 3096 assert(R && "No original report found for sliced graph."); 3097 assert(R->isValid() && "Report selected by trimmed graph marked invalid."); 3098 3099 // Start building the path diagnostic... 3100 PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC); 3101 const ExplodedNode *N = ErrorGraph.ErrorNode; 3102 3103 // Register additional node visitors. 3104 R->addVisitor(llvm::make_unique<NilReceiverBRVisitor>()); 3105 R->addVisitor(llvm::make_unique<ConditionBRVisitor>()); 3106 R->addVisitor(llvm::make_unique<LikelyFalsePositiveSuppressionBRVisitor>()); 3107 3108 BugReport::VisitorList visitors; 3109 unsigned origReportConfigToken, finalReportConfigToken; 3110 LocationContextMap LCM; 3111 3112 // While generating diagnostics, it's possible the visitors will decide 3113 // new symbols and regions are interesting, or add other visitors based on 3114 // the information they find. If they do, we need to regenerate the path 3115 // based on our new report configuration. 3116 do { 3117 // Get a clean copy of all the visitors. 3118 for (BugReport::visitor_iterator I = R->visitor_begin(), 3119 E = R->visitor_end(); I != E; ++I) 3120 visitors.push_back((*I)->clone()); 3121 3122 // Clear out the active path from any previous work. 3123 PD.resetPath(); 3124 origReportConfigToken = R->getConfigurationChangeToken(); 3125 3126 // Generate the very last diagnostic piece - the piece is visible before 3127 // the trace is expanded. 3128 std::unique_ptr<PathDiagnosticPiece> LastPiece; 3129 for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end(); 3130 I != E; ++I) { 3131 if (std::unique_ptr<PathDiagnosticPiece> Piece = 3132 (*I)->getEndPath(PDB, N, *R)) { 3133 assert (!LastPiece && 3134 "There can only be one final piece in a diagnostic."); 3135 LastPiece = std::move(Piece); 3136 } 3137 } 3138 3139 if (ActiveScheme != PathDiagnosticConsumer::None) { 3140 if (!LastPiece) 3141 LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R); 3142 assert(LastPiece); 3143 PD.setEndOfPath(std::move(LastPiece)); 3144 } 3145 3146 // Make sure we get a clean location context map so we don't 3147 // hold onto old mappings. 3148 LCM.clear(); 3149 3150 switch (ActiveScheme) { 3151 case PathDiagnosticConsumer::AlternateExtensive: 3152 GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors); 3153 break; 3154 case PathDiagnosticConsumer::Extensive: 3155 GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors); 3156 break; 3157 case PathDiagnosticConsumer::Minimal: 3158 GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors); 3159 break; 3160 case PathDiagnosticConsumer::None: 3161 GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors); 3162 break; 3163 } 3164 3165 // Clean up the visitors we used. 3166 visitors.clear(); 3167 3168 // Did anything change while generating this path? 3169 finalReportConfigToken = R->getConfigurationChangeToken(); 3170 } while (finalReportConfigToken != origReportConfigToken); 3171 3172 if (!R->isValid()) 3173 continue; 3174 3175 // Finally, prune the diagnostic path of uninteresting stuff. 3176 if (!PD.path.empty()) { 3177 if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) { 3178 bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM); 3179 assert(stillHasNotes); 3180 (void)stillHasNotes; 3181 } 3182 3183 // Redirect all call pieces to have valid locations. 3184 adjustCallLocations(PD.getMutablePieces()); 3185 removePiecesWithInvalidLocations(PD.getMutablePieces()); 3186 3187 if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) { 3188 SourceManager &SM = getSourceManager(); 3189 3190 // Reduce the number of edges from a very conservative set 3191 // to an aesthetically pleasing subset that conveys the 3192 // necessary information. 3193 OptimizedCallsSet OCS; 3194 while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {} 3195 3196 // Drop the very first function-entry edge. It's not really necessary 3197 // for top-level functions. 3198 dropFunctionEntryEdge(PD.getMutablePieces(), LCM, SM); 3199 } 3200 3201 // Remove messages that are basically the same, and edges that may not 3202 // make sense. 3203 // We have to do this after edge optimization in the Extensive mode. 3204 removeRedundantMsgs(PD.getMutablePieces()); 3205 removeEdgesToDefaultInitializers(PD.getMutablePieces()); 3206 } 3207 3208 // We found a report and didn't suppress it. 3209 return true; 3210 } 3211 3212 // We suppressed all the reports in this equivalence class. 3213 assert(!HasInvalid && "Inconsistent suppression"); 3214 (void)HasInvalid; 3215 return false; 3216 } 3217 3218 void BugReporter::Register(BugType *BT) { 3219 BugTypes = F.add(BugTypes, BT); 3220 } 3221 3222 void BugReporter::emitReport(std::unique_ptr<BugReport> R) { 3223 if (const ExplodedNode *E = R->getErrorNode()) { 3224 // An error node must either be a sink or have a tag, otherwise 3225 // it could get reclaimed before the path diagnostic is created. 3226 assert((E->isSink() || E->getLocation().getTag()) && 3227 "Error node must either be a sink or have a tag"); 3228 3229 const AnalysisDeclContext *DeclCtx = 3230 E->getLocationContext()->getAnalysisDeclContext(); 3231 // The source of autosynthesized body can be handcrafted AST or a model 3232 // file. The locations from handcrafted ASTs have no valid source locations 3233 // and have to be discarded. Locations from model files should be preserved 3234 // for processing and reporting. 3235 if (DeclCtx->isBodyAutosynthesized() && 3236 !DeclCtx->isBodyAutosynthesizedFromModelFile()) 3237 return; 3238 } 3239 3240 bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid(); 3241 assert(ValidSourceLoc); 3242 // If we mess up in a release build, we'd still prefer to just drop the bug 3243 // instead of trying to go on. 3244 if (!ValidSourceLoc) 3245 return; 3246 3247 // Compute the bug report's hash to determine its equivalence class. 3248 llvm::FoldingSetNodeID ID; 3249 R->Profile(ID); 3250 3251 // Lookup the equivance class. If there isn't one, create it. 3252 BugType& BT = R->getBugType(); 3253 Register(&BT); 3254 void *InsertPos; 3255 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); 3256 3257 if (!EQ) { 3258 EQ = new BugReportEquivClass(std::move(R)); 3259 EQClasses.InsertNode(EQ, InsertPos); 3260 EQClassesVector.push_back(EQ); 3261 } else 3262 EQ->AddReport(std::move(R)); 3263 } 3264 3265 3266 //===----------------------------------------------------------------------===// 3267 // Emitting reports in equivalence classes. 3268 //===----------------------------------------------------------------------===// 3269 3270 namespace { 3271 struct FRIEC_WLItem { 3272 const ExplodedNode *N; 3273 ExplodedNode::const_succ_iterator I, E; 3274 3275 FRIEC_WLItem(const ExplodedNode *n) 3276 : N(n), I(N->succ_begin()), E(N->succ_end()) {} 3277 }; 3278 } 3279 3280 static BugReport * 3281 FindReportInEquivalenceClass(BugReportEquivClass& EQ, 3282 SmallVectorImpl<BugReport*> &bugReports) { 3283 3284 BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end(); 3285 assert(I != E); 3286 BugType& BT = I->getBugType(); 3287 3288 // If we don't need to suppress any of the nodes because they are 3289 // post-dominated by a sink, simply add all the nodes in the equivalence class 3290 // to 'Nodes'. Any of the reports will serve as a "representative" report. 3291 if (!BT.isSuppressOnSink()) { 3292 BugReport *R = &*I; 3293 for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) { 3294 const ExplodedNode *N = I->getErrorNode(); 3295 if (N) { 3296 R = &*I; 3297 bugReports.push_back(R); 3298 } 3299 } 3300 return R; 3301 } 3302 3303 // For bug reports that should be suppressed when all paths are post-dominated 3304 // by a sink node, iterate through the reports in the equivalence class 3305 // until we find one that isn't post-dominated (if one exists). We use a 3306 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write 3307 // this as a recursive function, but we don't want to risk blowing out the 3308 // stack for very long paths. 3309 BugReport *exampleReport = nullptr; 3310 3311 for (; I != E; ++I) { 3312 const ExplodedNode *errorNode = I->getErrorNode(); 3313 3314 if (!errorNode) 3315 continue; 3316 if (errorNode->isSink()) { 3317 llvm_unreachable( 3318 "BugType::isSuppressSink() should not be 'true' for sink end nodes"); 3319 } 3320 // No successors? By definition this nodes isn't post-dominated by a sink. 3321 if (errorNode->succ_empty()) { 3322 bugReports.push_back(&*I); 3323 if (!exampleReport) 3324 exampleReport = &*I; 3325 continue; 3326 } 3327 3328 // At this point we know that 'N' is not a sink and it has at least one 3329 // successor. Use a DFS worklist to find a non-sink end-of-path node. 3330 typedef FRIEC_WLItem WLItem; 3331 typedef SmallVector<WLItem, 10> DFSWorkList; 3332 llvm::DenseMap<const ExplodedNode *, unsigned> Visited; 3333 3334 DFSWorkList WL; 3335 WL.push_back(errorNode); 3336 Visited[errorNode] = 1; 3337 3338 while (!WL.empty()) { 3339 WLItem &WI = WL.back(); 3340 assert(!WI.N->succ_empty()); 3341 3342 for (; WI.I != WI.E; ++WI.I) { 3343 const ExplodedNode *Succ = *WI.I; 3344 // End-of-path node? 3345 if (Succ->succ_empty()) { 3346 // If we found an end-of-path node that is not a sink. 3347 if (!Succ->isSink()) { 3348 bugReports.push_back(&*I); 3349 if (!exampleReport) 3350 exampleReport = &*I; 3351 WL.clear(); 3352 break; 3353 } 3354 // Found a sink? Continue on to the next successor. 3355 continue; 3356 } 3357 // Mark the successor as visited. If it hasn't been explored, 3358 // enqueue it to the DFS worklist. 3359 unsigned &mark = Visited[Succ]; 3360 if (!mark) { 3361 mark = 1; 3362 WL.push_back(Succ); 3363 break; 3364 } 3365 } 3366 3367 // The worklist may have been cleared at this point. First 3368 // check if it is empty before checking the last item. 3369 if (!WL.empty() && &WL.back() == &WI) 3370 WL.pop_back(); 3371 } 3372 } 3373 3374 // ExampleReport will be NULL if all the nodes in the equivalence class 3375 // were post-dominated by sinks. 3376 return exampleReport; 3377 } 3378 3379 void BugReporter::FlushReport(BugReportEquivClass& EQ) { 3380 SmallVector<BugReport*, 10> bugReports; 3381 BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports); 3382 if (exampleReport) { 3383 for (PathDiagnosticConsumer *PDC : getPathDiagnosticConsumers()) { 3384 FlushReport(exampleReport, *PDC, bugReports); 3385 } 3386 } 3387 } 3388 3389 void BugReporter::FlushReport(BugReport *exampleReport, 3390 PathDiagnosticConsumer &PD, 3391 ArrayRef<BugReport*> bugReports) { 3392 3393 // FIXME: Make sure we use the 'R' for the path that was actually used. 3394 // Probably doesn't make a difference in practice. 3395 BugType& BT = exampleReport->getBugType(); 3396 3397 std::unique_ptr<PathDiagnostic> D(new PathDiagnostic( 3398 exampleReport->getBugType().getCheckName(), 3399 exampleReport->getDeclWithIssue(), exampleReport->getBugType().getName(), 3400 exampleReport->getDescription(), 3401 exampleReport->getShortDescription(/*Fallback=*/false), BT.getCategory(), 3402 exampleReport->getUniqueingLocation(), 3403 exampleReport->getUniqueingDecl())); 3404 3405 MaxBugClassSize = std::max(bugReports.size(), 3406 static_cast<size_t>(MaxBugClassSize)); 3407 3408 // Generate the full path diagnostic, using the generation scheme 3409 // specified by the PathDiagnosticConsumer. Note that we have to generate 3410 // path diagnostics even for consumers which do not support paths, because 3411 // the BugReporterVisitors may mark this bug as a false positive. 3412 if (!bugReports.empty()) 3413 if (!generatePathDiagnostic(*D.get(), PD, bugReports)) 3414 return; 3415 3416 MaxValidBugClassSize = std::max(bugReports.size(), 3417 static_cast<size_t>(MaxValidBugClassSize)); 3418 3419 // Examine the report and see if the last piece is in a header. Reset the 3420 // report location to the last piece in the main source file. 3421 AnalyzerOptions& Opts = getAnalyzerOptions(); 3422 if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll) 3423 D->resetDiagnosticLocationToMainFile(); 3424 3425 // If the path is empty, generate a single step path with the location 3426 // of the issue. 3427 if (D->path.empty()) { 3428 PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager()); 3429 auto piece = llvm::make_unique<PathDiagnosticEventPiece>( 3430 L, exampleReport->getDescription()); 3431 for (SourceRange Range : exampleReport->getRanges()) 3432 piece->addRange(Range); 3433 D->setEndOfPath(std::move(piece)); 3434 } 3435 3436 // Get the meta data. 3437 const BugReport::ExtraTextList &Meta = exampleReport->getExtraText(); 3438 for (BugReport::ExtraTextList::const_iterator i = Meta.begin(), 3439 e = Meta.end(); i != e; ++i) { 3440 D->addMeta(*i); 3441 } 3442 3443 PD.HandlePathDiagnostic(std::move(D)); 3444 } 3445 3446 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3447 const CheckerBase *Checker, 3448 StringRef Name, StringRef Category, 3449 StringRef Str, PathDiagnosticLocation Loc, 3450 ArrayRef<SourceRange> Ranges) { 3451 EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str, 3452 Loc, Ranges); 3453 } 3454 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue, 3455 CheckName CheckName, 3456 StringRef name, StringRef category, 3457 StringRef str, PathDiagnosticLocation Loc, 3458 ArrayRef<SourceRange> Ranges) { 3459 3460 // 'BT' is owned by BugReporter. 3461 BugType *BT = getBugTypeForName(CheckName, name, category); 3462 auto R = llvm::make_unique<BugReport>(*BT, str, Loc); 3463 R->setDeclWithIssue(DeclWithIssue); 3464 for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end(); 3465 I != E; ++I) 3466 R->addRange(*I); 3467 emitReport(std::move(R)); 3468 } 3469 3470 BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name, 3471 StringRef category) { 3472 SmallString<136> fullDesc; 3473 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name 3474 << ":" << category; 3475 BugType *&BT = StrBugTypes[fullDesc]; 3476 if (!BT) 3477 BT = new BugType(CheckName, name, category); 3478 return BT; 3479 } 3480 3481 LLVM_DUMP_METHOD void PathPieces::dump() const { 3482 unsigned index = 0; 3483 for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) { 3484 llvm::errs() << "[" << index++ << "] "; 3485 (*I)->dump(); 3486 llvm::errs() << "\n"; 3487 } 3488 } 3489 3490 LLVM_DUMP_METHOD void PathDiagnosticCallPiece::dump() const { 3491 llvm::errs() << "CALL\n--------------\n"; 3492 3493 if (const Stmt *SLoc = getLocStmt(getLocation())) 3494 SLoc->dump(); 3495 else if (const NamedDecl *ND = dyn_cast<NamedDecl>(getCallee())) 3496 llvm::errs() << *ND << "\n"; 3497 else 3498 getLocation().dump(); 3499 } 3500 3501 LLVM_DUMP_METHOD void PathDiagnosticEventPiece::dump() const { 3502 llvm::errs() << "EVENT\n--------------\n"; 3503 llvm::errs() << getString() << "\n"; 3504 llvm::errs() << " ---- at ----\n"; 3505 getLocation().dump(); 3506 } 3507 3508 LLVM_DUMP_METHOD void PathDiagnosticControlFlowPiece::dump() const { 3509 llvm::errs() << "CONTROL\n--------------\n"; 3510 getStartLocation().dump(); 3511 llvm::errs() << " ---- to ----\n"; 3512 getEndLocation().dump(); 3513 } 3514 3515 LLVM_DUMP_METHOD void PathDiagnosticMacroPiece::dump() const { 3516 llvm::errs() << "MACRO\n--------------\n"; 3517 // FIXME: Print which macro is being invoked. 3518 } 3519 3520 LLVM_DUMP_METHOD void PathDiagnosticLocation::dump() const { 3521 if (!isValid()) { 3522 llvm::errs() << "<INVALID>\n"; 3523 return; 3524 } 3525 3526 switch (K) { 3527 case RangeK: 3528 // FIXME: actually print the range. 3529 llvm::errs() << "<range>\n"; 3530 break; 3531 case SingleLocK: 3532 asLocation().dump(); 3533 llvm::errs() << "\n"; 3534 break; 3535 case StmtK: 3536 if (S) 3537 S->dump(); 3538 else 3539 llvm::errs() << "<NULL STMT>\n"; 3540 break; 3541 case DeclK: 3542 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D)) 3543 llvm::errs() << *ND << "\n"; 3544 else if (isa<BlockDecl>(D)) 3545 // FIXME: Make this nicer. 3546 llvm::errs() << "<block>\n"; 3547 else if (D) 3548 llvm::errs() << "<unknown decl>\n"; 3549 else 3550 llvm::errs() << "<NULL DECL>\n"; 3551 break; 3552 } 3553 } 3554