Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
     18 #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
     19 
     20 #include "arch/instruction_set.h"
     21 #include "arch/instruction_set_features.h"
     22 #include "base/arena_containers.h"
     23 #include "base/arena_object.h"
     24 #include "base/bit_field.h"
     25 #include "base/bit_utils.h"
     26 #include "base/enums.h"
     27 #include "dex/string_reference.h"
     28 #include "dex/type_reference.h"
     29 #include "globals.h"
     30 #include "graph_visualizer.h"
     31 #include "locations.h"
     32 #include "memory_region.h"
     33 #include "nodes.h"
     34 #include "optimizing_compiler_stats.h"
     35 #include "read_barrier_option.h"
     36 #include "stack.h"
     37 #include "stack_map.h"
     38 #include "utils/label.h"
     39 
     40 namespace art {
     41 
     42 // Binary encoding of 2^32 for type double.
     43 static int64_t constexpr k2Pow32EncodingForDouble = INT64_C(0x41F0000000000000);
     44 // Binary encoding of 2^31 for type double.
     45 static int64_t constexpr k2Pow31EncodingForDouble = INT64_C(0x41E0000000000000);
     46 
     47 // Minimum value for a primitive integer.
     48 static int32_t constexpr kPrimIntMin = 0x80000000;
     49 // Minimum value for a primitive long.
     50 static int64_t constexpr kPrimLongMin = INT64_C(0x8000000000000000);
     51 
     52 // Maximum value for a primitive integer.
     53 static int32_t constexpr kPrimIntMax = 0x7fffffff;
     54 // Maximum value for a primitive long.
     55 static int64_t constexpr kPrimLongMax = INT64_C(0x7fffffffffffffff);
     56 
     57 static constexpr ReadBarrierOption kCompilerReadBarrierOption =
     58     kEmitCompilerReadBarrier ? kWithReadBarrier : kWithoutReadBarrier;
     59 
     60 class Assembler;
     61 class CodeGenerator;
     62 class CompilerDriver;
     63 class CompilerOptions;
     64 class StackMapStream;
     65 class ParallelMoveResolver;
     66 
     67 namespace linker {
     68 class LinkerPatch;
     69 }  // namespace linker
     70 
     71 class CodeAllocator {
     72  public:
     73   CodeAllocator() {}
     74   virtual ~CodeAllocator() {}
     75 
     76   virtual uint8_t* Allocate(size_t size) = 0;
     77 
     78  private:
     79   DISALLOW_COPY_AND_ASSIGN(CodeAllocator);
     80 };
     81 
     82 class SlowPathCode : public DeletableArenaObject<kArenaAllocSlowPaths> {
     83  public:
     84   explicit SlowPathCode(HInstruction* instruction) : instruction_(instruction) {
     85     for (size_t i = 0; i < kMaximumNumberOfExpectedRegisters; ++i) {
     86       saved_core_stack_offsets_[i] = kRegisterNotSaved;
     87       saved_fpu_stack_offsets_[i] = kRegisterNotSaved;
     88     }
     89   }
     90 
     91   virtual ~SlowPathCode() {}
     92 
     93   virtual void EmitNativeCode(CodeGenerator* codegen) = 0;
     94 
     95   // Save live core and floating-point caller-save registers and
     96   // update the stack mask in `locations` for registers holding object
     97   // references.
     98   virtual void SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
     99   // Restore live core and floating-point caller-save registers.
    100   virtual void RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
    101 
    102   bool IsCoreRegisterSaved(int reg) const {
    103     return saved_core_stack_offsets_[reg] != kRegisterNotSaved;
    104   }
    105 
    106   bool IsFpuRegisterSaved(int reg) const {
    107     return saved_fpu_stack_offsets_[reg] != kRegisterNotSaved;
    108   }
    109 
    110   uint32_t GetStackOffsetOfCoreRegister(int reg) const {
    111     return saved_core_stack_offsets_[reg];
    112   }
    113 
    114   uint32_t GetStackOffsetOfFpuRegister(int reg) const {
    115     return saved_fpu_stack_offsets_[reg];
    116   }
    117 
    118   virtual bool IsFatal() const { return false; }
    119 
    120   virtual const char* GetDescription() const = 0;
    121 
    122   Label* GetEntryLabel() { return &entry_label_; }
    123   Label* GetExitLabel() { return &exit_label_; }
    124 
    125   HInstruction* GetInstruction() const {
    126     return instruction_;
    127   }
    128 
    129   uint32_t GetDexPc() const {
    130     return instruction_ != nullptr ? instruction_->GetDexPc() : kNoDexPc;
    131   }
    132 
    133  protected:
    134   static constexpr size_t kMaximumNumberOfExpectedRegisters = 32;
    135   static constexpr uint32_t kRegisterNotSaved = -1;
    136   // The instruction where this slow path is happening.
    137   HInstruction* instruction_;
    138   uint32_t saved_core_stack_offsets_[kMaximumNumberOfExpectedRegisters];
    139   uint32_t saved_fpu_stack_offsets_[kMaximumNumberOfExpectedRegisters];
    140 
    141  private:
    142   Label entry_label_;
    143   Label exit_label_;
    144 
    145   DISALLOW_COPY_AND_ASSIGN(SlowPathCode);
    146 };
    147 
    148 class InvokeDexCallingConventionVisitor {
    149  public:
    150   virtual Location GetNextLocation(DataType::Type type) = 0;
    151   virtual Location GetReturnLocation(DataType::Type type) const = 0;
    152   virtual Location GetMethodLocation() const = 0;
    153 
    154  protected:
    155   InvokeDexCallingConventionVisitor() {}
    156   virtual ~InvokeDexCallingConventionVisitor() {}
    157 
    158   // The current index for core registers.
    159   uint32_t gp_index_ = 0u;
    160   // The current index for floating-point registers.
    161   uint32_t float_index_ = 0u;
    162   // The current stack index.
    163   uint32_t stack_index_ = 0u;
    164 
    165  private:
    166   DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitor);
    167 };
    168 
    169 class FieldAccessCallingConvention {
    170  public:
    171   virtual Location GetObjectLocation() const = 0;
    172   virtual Location GetFieldIndexLocation() const = 0;
    173   virtual Location GetReturnLocation(DataType::Type type) const = 0;
    174   virtual Location GetSetValueLocation(DataType::Type type, bool is_instance) const = 0;
    175   virtual Location GetFpuLocation(DataType::Type type) const = 0;
    176   virtual ~FieldAccessCallingConvention() {}
    177 
    178  protected:
    179   FieldAccessCallingConvention() {}
    180 
    181  private:
    182   DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConvention);
    183 };
    184 
    185 class CodeGenerator : public DeletableArenaObject<kArenaAllocCodeGenerator> {
    186  public:
    187   // Compiles the graph to executable instructions.
    188   void Compile(CodeAllocator* allocator);
    189   static std::unique_ptr<CodeGenerator> Create(HGraph* graph,
    190                                                InstructionSet instruction_set,
    191                                                const InstructionSetFeatures& isa_features,
    192                                                const CompilerOptions& compiler_options,
    193                                                OptimizingCompilerStats* stats = nullptr);
    194   virtual ~CodeGenerator();
    195 
    196   // Get the graph. This is the outermost graph, never the graph of a method being inlined.
    197   HGraph* GetGraph() const { return graph_; }
    198 
    199   HBasicBlock* GetNextBlockToEmit() const;
    200   HBasicBlock* FirstNonEmptyBlock(HBasicBlock* block) const;
    201   bool GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const;
    202 
    203   size_t GetStackSlotOfParameter(HParameterValue* parameter) const {
    204     // Note that this follows the current calling convention.
    205     return GetFrameSize()
    206         + static_cast<size_t>(InstructionSetPointerSize(GetInstructionSet()))  // Art method
    207         + parameter->GetIndex() * kVRegSize;
    208   }
    209 
    210   virtual void Initialize() = 0;
    211   virtual void Finalize(CodeAllocator* allocator);
    212   virtual void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches);
    213   virtual void GenerateFrameEntry() = 0;
    214   virtual void GenerateFrameExit() = 0;
    215   virtual void Bind(HBasicBlock* block) = 0;
    216   virtual void MoveConstant(Location destination, int32_t value) = 0;
    217   virtual void MoveLocation(Location dst, Location src, DataType::Type dst_type) = 0;
    218   virtual void AddLocationAsTemp(Location location, LocationSummary* locations) = 0;
    219 
    220   virtual Assembler* GetAssembler() = 0;
    221   virtual const Assembler& GetAssembler() const = 0;
    222   virtual size_t GetWordSize() const = 0;
    223   virtual size_t GetFloatingPointSpillSlotSize() const = 0;
    224   virtual uintptr_t GetAddressOf(HBasicBlock* block) = 0;
    225   void InitializeCodeGeneration(size_t number_of_spill_slots,
    226                                 size_t maximum_safepoint_spill_size,
    227                                 size_t number_of_out_slots,
    228                                 const ArenaVector<HBasicBlock*>& block_order);
    229   // Backends can override this as necessary. For most, no special alignment is required.
    230   virtual uint32_t GetPreferredSlotsAlignment() const { return 1; }
    231 
    232   uint32_t GetFrameSize() const { return frame_size_; }
    233   void SetFrameSize(uint32_t size) { frame_size_ = size; }
    234   uint32_t GetCoreSpillMask() const { return core_spill_mask_; }
    235   uint32_t GetFpuSpillMask() const { return fpu_spill_mask_; }
    236 
    237   size_t GetNumberOfCoreRegisters() const { return number_of_core_registers_; }
    238   size_t GetNumberOfFloatingPointRegisters() const { return number_of_fpu_registers_; }
    239   virtual void SetupBlockedRegisters() const = 0;
    240 
    241   virtual void ComputeSpillMask() {
    242     core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
    243     DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
    244     fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
    245   }
    246 
    247   static uint32_t ComputeRegisterMask(const int* registers, size_t length) {
    248     uint32_t mask = 0;
    249     for (size_t i = 0, e = length; i < e; ++i) {
    250       mask |= (1 << registers[i]);
    251     }
    252     return mask;
    253   }
    254 
    255   virtual void DumpCoreRegister(std::ostream& stream, int reg) const = 0;
    256   virtual void DumpFloatingPointRegister(std::ostream& stream, int reg) const = 0;
    257   virtual InstructionSet GetInstructionSet() const = 0;
    258 
    259   const CompilerOptions& GetCompilerOptions() const { return compiler_options_; }
    260 
    261   // Saves the register in the stack. Returns the size taken on stack.
    262   virtual size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
    263   // Restores the register from the stack. Returns the size taken on stack.
    264   virtual size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
    265 
    266   virtual size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
    267   virtual size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
    268 
    269   virtual bool NeedsTwoRegisters(DataType::Type type) const = 0;
    270   // Returns whether we should split long moves in parallel moves.
    271   virtual bool ShouldSplitLongMoves() const { return false; }
    272 
    273   size_t GetNumberOfCoreCalleeSaveRegisters() const {
    274     return POPCOUNT(core_callee_save_mask_);
    275   }
    276 
    277   size_t GetNumberOfCoreCallerSaveRegisters() const {
    278     DCHECK_GE(GetNumberOfCoreRegisters(), GetNumberOfCoreCalleeSaveRegisters());
    279     return GetNumberOfCoreRegisters() - GetNumberOfCoreCalleeSaveRegisters();
    280   }
    281 
    282   bool IsCoreCalleeSaveRegister(int reg) const {
    283     return (core_callee_save_mask_ & (1 << reg)) != 0;
    284   }
    285 
    286   bool IsFloatingPointCalleeSaveRegister(int reg) const {
    287     return (fpu_callee_save_mask_ & (1 << reg)) != 0;
    288   }
    289 
    290   uint32_t GetSlowPathSpills(LocationSummary* locations, bool core_registers) const {
    291     DCHECK(locations->OnlyCallsOnSlowPath() ||
    292            (locations->Intrinsified() && locations->CallsOnMainAndSlowPath() &&
    293                !locations->HasCustomSlowPathCallingConvention()));
    294     uint32_t live_registers = core_registers
    295         ? locations->GetLiveRegisters()->GetCoreRegisters()
    296         : locations->GetLiveRegisters()->GetFloatingPointRegisters();
    297     if (locations->HasCustomSlowPathCallingConvention()) {
    298       // Save only the live registers that the custom calling convention wants us to save.
    299       uint32_t caller_saves = core_registers
    300           ? locations->GetCustomSlowPathCallerSaves().GetCoreRegisters()
    301           : locations->GetCustomSlowPathCallerSaves().GetFloatingPointRegisters();
    302       return live_registers & caller_saves;
    303     } else {
    304       // Default ABI, we need to spill non-callee-save live registers.
    305       uint32_t callee_saves = core_registers ? core_callee_save_mask_ : fpu_callee_save_mask_;
    306       return live_registers & ~callee_saves;
    307     }
    308   }
    309 
    310   size_t GetNumberOfSlowPathSpills(LocationSummary* locations, bool core_registers) const {
    311     return POPCOUNT(GetSlowPathSpills(locations, core_registers));
    312   }
    313 
    314   size_t GetStackOffsetOfShouldDeoptimizeFlag() const {
    315     DCHECK(GetGraph()->HasShouldDeoptimizeFlag());
    316     DCHECK_GE(GetFrameSize(), FrameEntrySpillSize() + kShouldDeoptimizeFlagSize);
    317     return GetFrameSize() - FrameEntrySpillSize() - kShouldDeoptimizeFlagSize;
    318   }
    319 
    320   // Record native to dex mapping for a suspend point.  Required by runtime.
    321   void RecordPcInfo(HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path = nullptr);
    322   // Check whether we have already recorded mapping at this PC.
    323   bool HasStackMapAtCurrentPc();
    324   // Record extra stack maps if we support native debugging.
    325   void MaybeRecordNativeDebugInfo(HInstruction* instruction,
    326                                   uint32_t dex_pc,
    327                                   SlowPathCode* slow_path = nullptr);
    328 
    329   bool CanMoveNullCheckToUser(HNullCheck* null_check);
    330   void MaybeRecordImplicitNullCheck(HInstruction* instruction);
    331   LocationSummary* CreateThrowingSlowPathLocations(
    332       HInstruction* instruction, RegisterSet caller_saves = RegisterSet::Empty());
    333   void GenerateNullCheck(HNullCheck* null_check);
    334   virtual void GenerateImplicitNullCheck(HNullCheck* null_check) = 0;
    335   virtual void GenerateExplicitNullCheck(HNullCheck* null_check) = 0;
    336 
    337   // Records a stack map which the runtime might use to set catch phi values
    338   // during exception delivery.
    339   // TODO: Replace with a catch-entering instruction that records the environment.
    340   void RecordCatchBlockInfo();
    341 
    342   // Get the ScopedArenaAllocator used for codegen memory allocation.
    343   ScopedArenaAllocator* GetScopedAllocator();
    344 
    345   void AddSlowPath(SlowPathCode* slow_path);
    346 
    347   void BuildStackMaps(MemoryRegion stack_map_region,
    348                       MemoryRegion method_info_region,
    349                       const DexFile::CodeItem* code_item_for_osr_check);
    350   void ComputeStackMapAndMethodInfoSize(size_t* stack_map_size, size_t* method_info_size);
    351   size_t GetNumberOfJitRoots() const;
    352 
    353   // Fills the `literals` array with literals collected during code generation.
    354   // Also emits literal patches.
    355   void EmitJitRoots(uint8_t* code,
    356                     Handle<mirror::ObjectArray<mirror::Object>> roots,
    357                     const uint8_t* roots_data)
    358       REQUIRES_SHARED(Locks::mutator_lock_);
    359 
    360   bool IsLeafMethod() const {
    361     return is_leaf_;
    362   }
    363 
    364   void MarkNotLeaf() {
    365     is_leaf_ = false;
    366     requires_current_method_ = true;
    367   }
    368 
    369   void SetRequiresCurrentMethod() {
    370     requires_current_method_ = true;
    371   }
    372 
    373   bool RequiresCurrentMethod() const {
    374     return requires_current_method_;
    375   }
    376 
    377   // Clears the spill slots taken by loop phis in the `LocationSummary` of the
    378   // suspend check. This is called when the code generator generates code
    379   // for the suspend check at the back edge (instead of where the suspend check
    380   // is, which is the loop entry). At this point, the spill slots for the phis
    381   // have not been written to.
    382   void ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
    383                                              HParallelMove* spills) const;
    384 
    385   bool* GetBlockedCoreRegisters() const { return blocked_core_registers_; }
    386   bool* GetBlockedFloatingPointRegisters() const { return blocked_fpu_registers_; }
    387 
    388   bool IsBlockedCoreRegister(size_t i) { return blocked_core_registers_[i]; }
    389   bool IsBlockedFloatingPointRegister(size_t i) { return blocked_fpu_registers_[i]; }
    390 
    391   // Helper that returns the offset of the array's length field.
    392   // Note: Besides the normal arrays, we also use the HArrayLength for
    393   // accessing the String's `count` field in String intrinsics.
    394   static uint32_t GetArrayLengthOffset(HArrayLength* array_length);
    395 
    396   // Helper that returns the offset of the array's data.
    397   // Note: Besides the normal arrays, we also use the HArrayGet for
    398   // accessing the String's `value` field in String intrinsics.
    399   static uint32_t GetArrayDataOffset(HArrayGet* array_get);
    400 
    401   void EmitParallelMoves(Location from1,
    402                          Location to1,
    403                          DataType::Type type1,
    404                          Location from2,
    405                          Location to2,
    406                          DataType::Type type2);
    407 
    408   static bool InstanceOfNeedsReadBarrier(HInstanceOf* instance_of) {
    409     // Used only for kExactCheck, kAbstractClassCheck, kClassHierarchyCheck and kArrayObjectCheck.
    410     DCHECK(instance_of->GetTypeCheckKind() == TypeCheckKind::kExactCheck ||
    411            instance_of->GetTypeCheckKind() == TypeCheckKind::kAbstractClassCheck ||
    412            instance_of->GetTypeCheckKind() == TypeCheckKind::kClassHierarchyCheck ||
    413            instance_of->GetTypeCheckKind() == TypeCheckKind::kArrayObjectCheck)
    414         << instance_of->GetTypeCheckKind();
    415     // If the target class is in the boot image, it's non-moveable and it doesn't matter
    416     // if we compare it with a from-space or to-space reference, the result is the same.
    417     // It's OK to traverse a class hierarchy jumping between from-space and to-space.
    418     return kEmitCompilerReadBarrier && !instance_of->GetTargetClass()->IsInBootImage();
    419   }
    420 
    421   static ReadBarrierOption ReadBarrierOptionForInstanceOf(HInstanceOf* instance_of) {
    422     return InstanceOfNeedsReadBarrier(instance_of) ? kWithReadBarrier : kWithoutReadBarrier;
    423   }
    424 
    425   static bool IsTypeCheckSlowPathFatal(HCheckCast* check_cast) {
    426     switch (check_cast->GetTypeCheckKind()) {
    427       case TypeCheckKind::kExactCheck:
    428       case TypeCheckKind::kAbstractClassCheck:
    429       case TypeCheckKind::kClassHierarchyCheck:
    430       case TypeCheckKind::kArrayObjectCheck:
    431       case TypeCheckKind::kInterfaceCheck: {
    432         bool needs_read_barrier =
    433             kEmitCompilerReadBarrier && !check_cast->GetTargetClass()->IsInBootImage();
    434         // We do not emit read barriers for HCheckCast, so we can get false negatives
    435         // and the slow path shall re-check and simply return if the cast is actually OK.
    436         return !needs_read_barrier;
    437       }
    438       case TypeCheckKind::kArrayCheck:
    439       case TypeCheckKind::kUnresolvedCheck:
    440         return false;
    441     }
    442     LOG(FATAL) << "Unreachable";
    443     UNREACHABLE();
    444   }
    445 
    446   static LocationSummary::CallKind GetCheckCastCallKind(HCheckCast* check_cast) {
    447     return (IsTypeCheckSlowPathFatal(check_cast) && !check_cast->CanThrowIntoCatchBlock())
    448         ? LocationSummary::kNoCall  // In fact, call on a fatal (non-returning) slow path.
    449         : LocationSummary::kCallOnSlowPath;
    450   }
    451 
    452   static bool StoreNeedsWriteBarrier(DataType::Type type, HInstruction* value) {
    453     // Check that null value is not represented as an integer constant.
    454     DCHECK(type != DataType::Type::kReference || !value->IsIntConstant());
    455     return type == DataType::Type::kReference && !value->IsNullConstant();
    456   }
    457 
    458 
    459   // Performs checks pertaining to an InvokeRuntime call.
    460   void ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
    461                              HInstruction* instruction,
    462                              SlowPathCode* slow_path);
    463 
    464   // Performs checks pertaining to an InvokeRuntimeWithoutRecordingPcInfo call.
    465   static void ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
    466                                                           SlowPathCode* slow_path);
    467 
    468   void AddAllocatedRegister(Location location) {
    469     allocated_registers_.Add(location);
    470   }
    471 
    472   bool HasAllocatedRegister(bool is_core, int reg) const {
    473     return is_core
    474         ? allocated_registers_.ContainsCoreRegister(reg)
    475         : allocated_registers_.ContainsFloatingPointRegister(reg);
    476   }
    477 
    478   void AllocateLocations(HInstruction* instruction);
    479 
    480   // Tells whether the stack frame of the compiled method is
    481   // considered "empty", that is either actually having a size of zero,
    482   // or just containing the saved return address register.
    483   bool HasEmptyFrame() const {
    484     return GetFrameSize() == (CallPushesPC() ? GetWordSize() : 0);
    485   }
    486 
    487   static int8_t GetInt8ValueOf(HConstant* constant) {
    488     DCHECK(constant->IsIntConstant());
    489     return constant->AsIntConstant()->GetValue();
    490   }
    491 
    492   static int16_t GetInt16ValueOf(HConstant* constant) {
    493     DCHECK(constant->IsIntConstant());
    494     return constant->AsIntConstant()->GetValue();
    495   }
    496 
    497   static int32_t GetInt32ValueOf(HConstant* constant) {
    498     if (constant->IsIntConstant()) {
    499       return constant->AsIntConstant()->GetValue();
    500     } else if (constant->IsNullConstant()) {
    501       return 0;
    502     } else {
    503       DCHECK(constant->IsFloatConstant());
    504       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
    505     }
    506   }
    507 
    508   static int64_t GetInt64ValueOf(HConstant* constant) {
    509     if (constant->IsIntConstant()) {
    510       return constant->AsIntConstant()->GetValue();
    511     } else if (constant->IsNullConstant()) {
    512       return 0;
    513     } else if (constant->IsFloatConstant()) {
    514       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
    515     } else if (constant->IsLongConstant()) {
    516       return constant->AsLongConstant()->GetValue();
    517     } else {
    518       DCHECK(constant->IsDoubleConstant());
    519       return bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue());
    520     }
    521   }
    522 
    523   size_t GetFirstRegisterSlotInSlowPath() const {
    524     return first_register_slot_in_slow_path_;
    525   }
    526 
    527   uint32_t FrameEntrySpillSize() const {
    528     return GetFpuSpillSize() + GetCoreSpillSize();
    529   }
    530 
    531   virtual ParallelMoveResolver* GetMoveResolver() = 0;
    532 
    533   static void CreateCommonInvokeLocationSummary(
    534       HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor);
    535 
    536   void GenerateInvokeStaticOrDirectRuntimeCall(
    537       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path);
    538   void GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke);
    539 
    540   void GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke);
    541 
    542   void CreateUnresolvedFieldLocationSummary(
    543       HInstruction* field_access,
    544       DataType::Type field_type,
    545       const FieldAccessCallingConvention& calling_convention);
    546 
    547   void GenerateUnresolvedFieldAccess(
    548       HInstruction* field_access,
    549       DataType::Type field_type,
    550       uint32_t field_index,
    551       uint32_t dex_pc,
    552       const FieldAccessCallingConvention& calling_convention);
    553 
    554   static void CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
    555                                                         Location runtime_type_index_location,
    556                                                         Location runtime_return_location);
    557   void GenerateLoadClassRuntimeCall(HLoadClass* cls);
    558 
    559   static void CreateSystemArrayCopyLocationSummary(HInvoke* invoke);
    560 
    561   void SetDisassemblyInformation(DisassemblyInformation* info) { disasm_info_ = info; }
    562   DisassemblyInformation* GetDisassemblyInformation() const { return disasm_info_; }
    563 
    564   virtual void InvokeRuntime(QuickEntrypointEnum entrypoint,
    565                              HInstruction* instruction,
    566                              uint32_t dex_pc,
    567                              SlowPathCode* slow_path = nullptr) = 0;
    568 
    569   // Check if the desired_string_load_kind is supported. If it is, return it,
    570   // otherwise return a fall-back kind that should be used instead.
    571   virtual HLoadString::LoadKind GetSupportedLoadStringKind(
    572       HLoadString::LoadKind desired_string_load_kind) = 0;
    573 
    574   // Check if the desired_class_load_kind is supported. If it is, return it,
    575   // otherwise return a fall-back kind that should be used instead.
    576   virtual HLoadClass::LoadKind GetSupportedLoadClassKind(
    577       HLoadClass::LoadKind desired_class_load_kind) = 0;
    578 
    579   static LocationSummary::CallKind GetLoadStringCallKind(HLoadString* load) {
    580     switch (load->GetLoadKind()) {
    581       case HLoadString::LoadKind::kBssEntry:
    582         DCHECK(load->NeedsEnvironment());
    583         return LocationSummary::kCallOnSlowPath;
    584       case HLoadString::LoadKind::kRuntimeCall:
    585         DCHECK(load->NeedsEnvironment());
    586         return LocationSummary::kCallOnMainOnly;
    587       case HLoadString::LoadKind::kJitTableAddress:
    588         DCHECK(!load->NeedsEnvironment());
    589         return kEmitCompilerReadBarrier
    590             ? LocationSummary::kCallOnSlowPath
    591             : LocationSummary::kNoCall;
    592         break;
    593       default:
    594         DCHECK(!load->NeedsEnvironment());
    595         return LocationSummary::kNoCall;
    596     }
    597   }
    598 
    599   // Check if the desired_dispatch_info is supported. If it is, return it,
    600   // otherwise return a fall-back info that should be used instead.
    601   virtual HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
    602       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
    603       HInvokeStaticOrDirect* invoke) = 0;
    604 
    605   // Generate a call to a static or direct method.
    606   virtual void GenerateStaticOrDirectCall(
    607       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
    608   // Generate a call to a virtual method.
    609   virtual void GenerateVirtualCall(
    610       HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
    611 
    612   // Copy the result of a call into the given target.
    613   virtual void MoveFromReturnRegister(Location trg, DataType::Type type) = 0;
    614 
    615   virtual void GenerateNop() = 0;
    616 
    617   static QuickEntrypointEnum GetArrayAllocationEntrypoint(Handle<mirror::Class> array_klass);
    618 
    619  protected:
    620   // Patch info used for recording locations of required linker patches and their targets,
    621   // i.e. target method, string, type or code identified by their dex file and index,
    622   // or .data.bimg.rel.ro entries identified by the boot image offset.
    623   template <typename LabelType>
    624   struct PatchInfo {
    625     PatchInfo(const DexFile* dex_file, uint32_t off_or_idx)
    626         : target_dex_file(dex_file), offset_or_index(off_or_idx), label() { }
    627 
    628     // Target dex file or null for .data.bmig.rel.ro patches.
    629     const DexFile* target_dex_file;
    630     // Either the boot image offset (to write to .data.bmig.rel.ro) or string/type/method index.
    631     uint32_t offset_or_index;
    632     // Label for the instruction to patch.
    633     LabelType label;
    634   };
    635 
    636   CodeGenerator(HGraph* graph,
    637                 size_t number_of_core_registers,
    638                 size_t number_of_fpu_registers,
    639                 size_t number_of_register_pairs,
    640                 uint32_t core_callee_save_mask,
    641                 uint32_t fpu_callee_save_mask,
    642                 const CompilerOptions& compiler_options,
    643                 OptimizingCompilerStats* stats);
    644 
    645   virtual HGraphVisitor* GetLocationBuilder() = 0;
    646   virtual HGraphVisitor* GetInstructionVisitor() = 0;
    647 
    648   // Returns the location of the first spilled entry for floating point registers,
    649   // relative to the stack pointer.
    650   uint32_t GetFpuSpillStart() const {
    651     return GetFrameSize() - FrameEntrySpillSize();
    652   }
    653 
    654   uint32_t GetFpuSpillSize() const {
    655     return POPCOUNT(fpu_spill_mask_) * GetFloatingPointSpillSlotSize();
    656   }
    657 
    658   uint32_t GetCoreSpillSize() const {
    659     return POPCOUNT(core_spill_mask_) * GetWordSize();
    660   }
    661 
    662   virtual bool HasAllocatedCalleeSaveRegisters() const {
    663     // We check the core registers against 1 because it always comprises the return PC.
    664     return (POPCOUNT(allocated_registers_.GetCoreRegisters() & core_callee_save_mask_) != 1)
    665       || (POPCOUNT(allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_) != 0);
    666   }
    667 
    668   bool CallPushesPC() const {
    669     InstructionSet instruction_set = GetInstructionSet();
    670     return instruction_set == InstructionSet::kX86 || instruction_set == InstructionSet::kX86_64;
    671   }
    672 
    673   // Arm64 has its own type for a label, so we need to templatize these methods
    674   // to share the logic.
    675 
    676   template <typename LabelType>
    677   LabelType* CommonInitializeLabels() {
    678     // We use raw array allocations instead of ArenaVector<> because Labels are
    679     // non-constructible and non-movable and as such cannot be held in a vector.
    680     size_t size = GetGraph()->GetBlocks().size();
    681     LabelType* labels =
    682         GetGraph()->GetAllocator()->AllocArray<LabelType>(size, kArenaAllocCodeGenerator);
    683     for (size_t i = 0; i != size; ++i) {
    684       new(labels + i) LabelType();
    685     }
    686     return labels;
    687   }
    688 
    689   template <typename LabelType>
    690   LabelType* CommonGetLabelOf(LabelType* raw_pointer_to_labels_array, HBasicBlock* block) const {
    691     block = FirstNonEmptyBlock(block);
    692     return raw_pointer_to_labels_array + block->GetBlockId();
    693   }
    694 
    695   SlowPathCode* GetCurrentSlowPath() {
    696     return current_slow_path_;
    697   }
    698 
    699   StackMapStream* GetStackMapStream();
    700 
    701   void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string);
    702   uint64_t GetJitStringRootIndex(StringReference string_reference);
    703   void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass);
    704   uint64_t GetJitClassRootIndex(TypeReference type_reference);
    705 
    706   // Emit the patches assocatied with JIT roots. Only applies to JIT compiled code.
    707   virtual void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data);
    708 
    709   // Frame size required for this method.
    710   uint32_t frame_size_;
    711   uint32_t core_spill_mask_;
    712   uint32_t fpu_spill_mask_;
    713   uint32_t first_register_slot_in_slow_path_;
    714 
    715   // Registers that were allocated during linear scan.
    716   RegisterSet allocated_registers_;
    717 
    718   // Arrays used when doing register allocation to know which
    719   // registers we can allocate. `SetupBlockedRegisters` updates the
    720   // arrays.
    721   bool* const blocked_core_registers_;
    722   bool* const blocked_fpu_registers_;
    723   size_t number_of_core_registers_;
    724   size_t number_of_fpu_registers_;
    725   size_t number_of_register_pairs_;
    726   const uint32_t core_callee_save_mask_;
    727   const uint32_t fpu_callee_save_mask_;
    728 
    729   // The order to use for code generation.
    730   const ArenaVector<HBasicBlock*>* block_order_;
    731 
    732   DisassemblyInformation* disasm_info_;
    733 
    734  private:
    735   class CodeGenerationData;
    736 
    737   void InitializeCodeGenerationData();
    738   size_t GetStackOffsetOfSavedRegister(size_t index);
    739   void GenerateSlowPaths();
    740   void BlockIfInRegister(Location location, bool is_out = false) const;
    741   void EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path);
    742 
    743   OptimizingCompilerStats* stats_;
    744 
    745   HGraph* const graph_;
    746   const CompilerOptions& compiler_options_;
    747 
    748   // The current slow-path that we're generating code for.
    749   SlowPathCode* current_slow_path_;
    750 
    751   // The current block index in `block_order_` of the block
    752   // we are generating code for.
    753   size_t current_block_index_;
    754 
    755   // Whether the method is a leaf method.
    756   bool is_leaf_;
    757 
    758   // Whether an instruction in the graph accesses the current method.
    759   // TODO: Rename: this actually indicates that some instruction in the method
    760   // needs the environment including a valid stack frame.
    761   bool requires_current_method_;
    762 
    763   // The CodeGenerationData contains a ScopedArenaAllocator intended for reusing the
    764   // ArenaStack memory allocated in previous passes instead of adding to the memory
    765   // held by the ArenaAllocator. This ScopedArenaAllocator is created in
    766   // CodeGenerator::Compile() and remains alive until the CodeGenerator is destroyed.
    767   std::unique_ptr<CodeGenerationData> code_generation_data_;
    768 
    769   friend class OptimizingCFITest;
    770 
    771   DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
    772 };
    773 
    774 template <typename C, typename F>
    775 class CallingConvention {
    776  public:
    777   CallingConvention(const C* registers,
    778                     size_t number_of_registers,
    779                     const F* fpu_registers,
    780                     size_t number_of_fpu_registers,
    781                     PointerSize pointer_size)
    782       : registers_(registers),
    783         number_of_registers_(number_of_registers),
    784         fpu_registers_(fpu_registers),
    785         number_of_fpu_registers_(number_of_fpu_registers),
    786         pointer_size_(pointer_size) {}
    787 
    788   size_t GetNumberOfRegisters() const { return number_of_registers_; }
    789   size_t GetNumberOfFpuRegisters() const { return number_of_fpu_registers_; }
    790 
    791   C GetRegisterAt(size_t index) const {
    792     DCHECK_LT(index, number_of_registers_);
    793     return registers_[index];
    794   }
    795 
    796   F GetFpuRegisterAt(size_t index) const {
    797     DCHECK_LT(index, number_of_fpu_registers_);
    798     return fpu_registers_[index];
    799   }
    800 
    801   size_t GetStackOffsetOf(size_t index) const {
    802     // We still reserve the space for parameters passed by registers.
    803     // Add space for the method pointer.
    804     return static_cast<size_t>(pointer_size_) + index * kVRegSize;
    805   }
    806 
    807  private:
    808   const C* registers_;
    809   const size_t number_of_registers_;
    810   const F* fpu_registers_;
    811   const size_t number_of_fpu_registers_;
    812   const PointerSize pointer_size_;
    813 
    814   DISALLOW_COPY_AND_ASSIGN(CallingConvention);
    815 };
    816 
    817 /**
    818  * A templated class SlowPathGenerator with a templated method NewSlowPath()
    819  * that can be used by any code generator to share equivalent slow-paths with
    820  * the objective of reducing generated code size.
    821  *
    822  * InstructionType:  instruction that requires SlowPathCodeType
    823  * SlowPathCodeType: subclass of SlowPathCode, with constructor SlowPathCodeType(InstructionType *)
    824  */
    825 template <typename InstructionType>
    826 class SlowPathGenerator {
    827   static_assert(std::is_base_of<HInstruction, InstructionType>::value,
    828                 "InstructionType is not a subclass of art::HInstruction");
    829 
    830  public:
    831   SlowPathGenerator(HGraph* graph, CodeGenerator* codegen)
    832       : graph_(graph),
    833         codegen_(codegen),
    834         slow_path_map_(std::less<uint32_t>(),
    835                        graph->GetAllocator()->Adapter(kArenaAllocSlowPaths)) {}
    836 
    837   // Creates and adds a new slow-path, if needed, or returns existing one otherwise.
    838   // Templating the method (rather than the whole class) on the slow-path type enables
    839   // keeping this code at a generic, non architecture-specific place.
    840   //
    841   // NOTE: This approach assumes each InstructionType only generates one SlowPathCodeType.
    842   //       To relax this requirement, we would need some RTTI on the stored slow-paths,
    843   //       or template the class as a whole on SlowPathType.
    844   template <typename SlowPathCodeType>
    845   SlowPathCodeType* NewSlowPath(InstructionType* instruction) {
    846     static_assert(std::is_base_of<SlowPathCode, SlowPathCodeType>::value,
    847                   "SlowPathCodeType is not a subclass of art::SlowPathCode");
    848     static_assert(std::is_constructible<SlowPathCodeType, InstructionType*>::value,
    849                   "SlowPathCodeType is not constructible from InstructionType*");
    850     // Iterate over potential candidates for sharing. Currently, only same-typed
    851     // slow-paths with exactly the same dex-pc are viable candidates.
    852     // TODO: pass dex-pc/slow-path-type to run-time to allow even more sharing?
    853     const uint32_t dex_pc = instruction->GetDexPc();
    854     auto iter = slow_path_map_.find(dex_pc);
    855     if (iter != slow_path_map_.end()) {
    856       const ArenaVector<std::pair<InstructionType*, SlowPathCode*>>& candidates = iter->second;
    857       for (const auto& it : candidates) {
    858         InstructionType* other_instruction = it.first;
    859         SlowPathCodeType* other_slow_path = down_cast<SlowPathCodeType*>(it.second);
    860         // Determine if the instructions allow for slow-path sharing.
    861         if (HaveSameLiveRegisters(instruction, other_instruction) &&
    862             HaveSameStackMap(instruction, other_instruction)) {
    863           // Can share: reuse existing one.
    864           return other_slow_path;
    865         }
    866       }
    867     } else {
    868       // First time this dex-pc is seen.
    869       iter = slow_path_map_.Put(dex_pc,
    870                                 {{}, {graph_->GetAllocator()->Adapter(kArenaAllocSlowPaths)}});
    871     }
    872     // Cannot share: create and add new slow-path for this particular dex-pc.
    873     SlowPathCodeType* slow_path =
    874         new (codegen_->GetScopedAllocator()) SlowPathCodeType(instruction);
    875     iter->second.emplace_back(std::make_pair(instruction, slow_path));
    876     codegen_->AddSlowPath(slow_path);
    877     return slow_path;
    878   }
    879 
    880  private:
    881   // Tests if both instructions have same set of live physical registers. This ensures
    882   // the slow-path has exactly the same preamble on saving these registers to stack.
    883   bool HaveSameLiveRegisters(const InstructionType* i1, const InstructionType* i2) const {
    884     const uint32_t core_spill = ~codegen_->GetCoreSpillMask();
    885     const uint32_t fpu_spill = ~codegen_->GetFpuSpillMask();
    886     RegisterSet* live1 = i1->GetLocations()->GetLiveRegisters();
    887     RegisterSet* live2 = i2->GetLocations()->GetLiveRegisters();
    888     return (((live1->GetCoreRegisters() & core_spill) ==
    889              (live2->GetCoreRegisters() & core_spill)) &&
    890             ((live1->GetFloatingPointRegisters() & fpu_spill) ==
    891              (live2->GetFloatingPointRegisters() & fpu_spill)));
    892   }
    893 
    894   // Tests if both instructions have the same stack map. This ensures the interpreter
    895   // will find exactly the same dex-registers at the same entries.
    896   bool HaveSameStackMap(const InstructionType* i1, const InstructionType* i2) const {
    897     DCHECK(i1->HasEnvironment());
    898     DCHECK(i2->HasEnvironment());
    899     // We conservatively test if the two instructions find exactly the same instructions
    900     // and location in each dex-register. This guarantees they will have the same stack map.
    901     HEnvironment* e1 = i1->GetEnvironment();
    902     HEnvironment* e2 = i2->GetEnvironment();
    903     if (e1->GetParent() != e2->GetParent() || e1->Size() != e2->Size()) {
    904       return false;
    905     }
    906     for (size_t i = 0, sz = e1->Size(); i < sz; ++i) {
    907       if (e1->GetInstructionAt(i) != e2->GetInstructionAt(i) ||
    908           !e1->GetLocationAt(i).Equals(e2->GetLocationAt(i))) {
    909         return false;
    910       }
    911     }
    912     return true;
    913   }
    914 
    915   HGraph* const graph_;
    916   CodeGenerator* const codegen_;
    917 
    918   // Map from dex-pc to vector of already existing instruction/slow-path pairs.
    919   ArenaSafeMap<uint32_t, ArenaVector<std::pair<InstructionType*, SlowPathCode*>>> slow_path_map_;
    920 
    921   DISALLOW_COPY_AND_ASSIGN(SlowPathGenerator);
    922 };
    923 
    924 class InstructionCodeGenerator : public HGraphVisitor {
    925  public:
    926   InstructionCodeGenerator(HGraph* graph, CodeGenerator* codegen)
    927       : HGraphVisitor(graph),
    928         deopt_slow_paths_(graph, codegen) {}
    929 
    930  protected:
    931   // Add slow-path generator for each instruction/slow-path combination that desires sharing.
    932   // TODO: under current regime, only deopt sharing make sense; extend later.
    933   SlowPathGenerator<HDeoptimize> deopt_slow_paths_;
    934 };
    935 
    936 }  // namespace art
    937 
    938 #endif  // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
    939