Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "instruction_builder.h"
     18 
     19 #include "art_method-inl.h"
     20 #include "base/arena_bit_vector.h"
     21 #include "base/bit_vector-inl.h"
     22 #include "block_builder.h"
     23 #include "class_linker.h"
     24 #include "data_type-inl.h"
     25 #include "dex/bytecode_utils.h"
     26 #include "dex/dex_instruction-inl.h"
     27 #include "driver/compiler_driver-inl.h"
     28 #include "driver/dex_compilation_unit.h"
     29 #include "driver/compiler_options.h"
     30 #include "imtable-inl.h"
     31 #include "mirror/dex_cache.h"
     32 #include "oat_file.h"
     33 #include "optimizing_compiler_stats.h"
     34 #include "quicken_info.h"
     35 #include "scoped_thread_state_change-inl.h"
     36 #include "sharpening.h"
     37 #include "ssa_builder.h"
     38 #include "well_known_classes.h"
     39 
     40 namespace art {
     41 
     42 HInstructionBuilder::HInstructionBuilder(HGraph* graph,
     43                                          HBasicBlockBuilder* block_builder,
     44                                          SsaBuilder* ssa_builder,
     45                                          const DexFile* dex_file,
     46                                          const CodeItemDebugInfoAccessor& accessor,
     47                                          DataType::Type return_type,
     48                                          const DexCompilationUnit* dex_compilation_unit,
     49                                          const DexCompilationUnit* outer_compilation_unit,
     50                                          CompilerDriver* compiler_driver,
     51                                          CodeGenerator* code_generator,
     52                                          ArrayRef<const uint8_t> interpreter_metadata,
     53                                          OptimizingCompilerStats* compiler_stats,
     54                                          VariableSizedHandleScope* handles,
     55                                          ScopedArenaAllocator* local_allocator)
     56     : allocator_(graph->GetAllocator()),
     57       graph_(graph),
     58       handles_(handles),
     59       dex_file_(dex_file),
     60       code_item_accessor_(accessor),
     61       return_type_(return_type),
     62       block_builder_(block_builder),
     63       ssa_builder_(ssa_builder),
     64       compiler_driver_(compiler_driver),
     65       code_generator_(code_generator),
     66       dex_compilation_unit_(dex_compilation_unit),
     67       outer_compilation_unit_(outer_compilation_unit),
     68       quicken_info_(interpreter_metadata),
     69       compilation_stats_(compiler_stats),
     70       local_allocator_(local_allocator),
     71       locals_for_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
     72       current_block_(nullptr),
     73       current_locals_(nullptr),
     74       latest_result_(nullptr),
     75       current_this_parameter_(nullptr),
     76       loop_headers_(local_allocator->Adapter(kArenaAllocGraphBuilder)) {
     77   loop_headers_.reserve(kDefaultNumberOfLoops);
     78 }
     79 
     80 HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
     81   return block_builder_->GetBlockAt(dex_pc);
     82 }
     83 
     84 inline ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
     85   ScopedArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
     86   const size_t vregs = graph_->GetNumberOfVRegs();
     87   if (locals->size() == vregs) {
     88     return locals;
     89   }
     90   return GetLocalsForWithAllocation(block, locals, vregs);
     91 }
     92 
     93 ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation(
     94     HBasicBlock* block,
     95     ScopedArenaVector<HInstruction*>* locals,
     96     const size_t vregs) {
     97   DCHECK_NE(locals->size(), vregs);
     98   locals->resize(vregs, nullptr);
     99   if (block->IsCatchBlock()) {
    100     // We record incoming inputs of catch phis at throwing instructions and
    101     // must therefore eagerly create the phis. Phis for undefined vregs will
    102     // be deleted when the first throwing instruction with the vreg undefined
    103     // is encountered. Unused phis will be removed by dead phi analysis.
    104     for (size_t i = 0; i < vregs; ++i) {
    105       // No point in creating the catch phi if it is already undefined at
    106       // the first throwing instruction.
    107       HInstruction* current_local_value = (*current_locals_)[i];
    108       if (current_local_value != nullptr) {
    109         HPhi* phi = new (allocator_) HPhi(
    110             allocator_,
    111             i,
    112             0,
    113             current_local_value->GetType());
    114         block->AddPhi(phi);
    115         (*locals)[i] = phi;
    116       }
    117     }
    118   }
    119   return locals;
    120 }
    121 
    122 inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
    123   ScopedArenaVector<HInstruction*>* locals = GetLocalsFor(block);
    124   return (*locals)[local];
    125 }
    126 
    127 void HInstructionBuilder::InitializeBlockLocals() {
    128   current_locals_ = GetLocalsFor(current_block_);
    129 
    130   if (current_block_->IsCatchBlock()) {
    131     // Catch phis were already created and inputs collected from throwing sites.
    132     if (kIsDebugBuild) {
    133       // Make sure there was at least one throwing instruction which initialized
    134       // locals (guaranteed by HGraphBuilder) and that all try blocks have been
    135       // visited already (from HTryBoundary scoping and reverse post order).
    136       bool catch_block_visited = false;
    137       for (HBasicBlock* current : graph_->GetReversePostOrder()) {
    138         if (current == current_block_) {
    139           catch_block_visited = true;
    140         } else if (current->IsTryBlock()) {
    141           const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
    142           if (try_entry.HasExceptionHandler(*current_block_)) {
    143             DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
    144           }
    145         }
    146       }
    147       DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
    148           << "No instructions throwing into a live catch block.";
    149     }
    150   } else if (current_block_->IsLoopHeader()) {
    151     // If the block is a loop header, we know we only have visited the pre header
    152     // because we are visiting in reverse post order. We create phis for all initialized
    153     // locals from the pre header. Their inputs will be populated at the end of
    154     // the analysis.
    155     for (size_t local = 0; local < current_locals_->size(); ++local) {
    156       HInstruction* incoming =
    157           ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
    158       if (incoming != nullptr) {
    159         HPhi* phi = new (allocator_) HPhi(
    160             allocator_,
    161             local,
    162             0,
    163             incoming->GetType());
    164         current_block_->AddPhi(phi);
    165         (*current_locals_)[local] = phi;
    166       }
    167     }
    168 
    169     // Save the loop header so that the last phase of the analysis knows which
    170     // blocks need to be updated.
    171     loop_headers_.push_back(current_block_);
    172   } else if (current_block_->GetPredecessors().size() > 0) {
    173     // All predecessors have already been visited because we are visiting in reverse post order.
    174     // We merge the values of all locals, creating phis if those values differ.
    175     for (size_t local = 0; local < current_locals_->size(); ++local) {
    176       bool one_predecessor_has_no_value = false;
    177       bool is_different = false;
    178       HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
    179 
    180       for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
    181         HInstruction* current = ValueOfLocalAt(predecessor, local);
    182         if (current == nullptr) {
    183           one_predecessor_has_no_value = true;
    184           break;
    185         } else if (current != value) {
    186           is_different = true;
    187         }
    188       }
    189 
    190       if (one_predecessor_has_no_value) {
    191         // If one predecessor has no value for this local, we trust the verifier has
    192         // successfully checked that there is a store dominating any read after this block.
    193         continue;
    194       }
    195 
    196       if (is_different) {
    197         HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
    198         HPhi* phi = new (allocator_) HPhi(
    199             allocator_,
    200             local,
    201             current_block_->GetPredecessors().size(),
    202             first_input->GetType());
    203         for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
    204           HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
    205           phi->SetRawInputAt(i, pred_value);
    206         }
    207         current_block_->AddPhi(phi);
    208         value = phi;
    209       }
    210       (*current_locals_)[local] = value;
    211     }
    212   }
    213 }
    214 
    215 void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
    216   const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
    217   for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
    218     ScopedArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
    219     DCHECK_EQ(handler_locals->size(), current_locals_->size());
    220     for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
    221       HInstruction* handler_value = (*handler_locals)[vreg];
    222       if (handler_value == nullptr) {
    223         // Vreg was undefined at a previously encountered throwing instruction
    224         // and the catch phi was deleted. Do not record the local value.
    225         continue;
    226       }
    227       DCHECK(handler_value->IsPhi());
    228 
    229       HInstruction* local_value = (*current_locals_)[vreg];
    230       if (local_value == nullptr) {
    231         // This is the first instruction throwing into `catch_block` where
    232         // `vreg` is undefined. Delete the catch phi.
    233         catch_block->RemovePhi(handler_value->AsPhi());
    234         (*handler_locals)[vreg] = nullptr;
    235       } else {
    236         // Vreg has been defined at all instructions throwing into `catch_block`
    237         // encountered so far. Record the local value in the catch phi.
    238         handler_value->AsPhi()->AddInput(local_value);
    239       }
    240     }
    241   }
    242 }
    243 
    244 void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
    245   current_block_->AddInstruction(instruction);
    246   InitializeInstruction(instruction);
    247 }
    248 
    249 void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
    250   if (current_block_->GetInstructions().IsEmpty()) {
    251     current_block_->AddInstruction(instruction);
    252   } else {
    253     current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
    254   }
    255   InitializeInstruction(instruction);
    256 }
    257 
    258 void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
    259   if (instruction->NeedsEnvironment()) {
    260     HEnvironment* environment = new (allocator_) HEnvironment(
    261         allocator_,
    262         current_locals_->size(),
    263         graph_->GetArtMethod(),
    264         instruction->GetDexPc(),
    265         instruction);
    266     environment->CopyFrom(ArrayRef<HInstruction* const>(*current_locals_));
    267     instruction->SetRawEnvironment(environment);
    268   }
    269 }
    270 
    271 HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) {
    272   HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference);
    273   if (!ref->CanBeNull()) {
    274     return ref;
    275   }
    276 
    277   HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc);
    278   AppendInstruction(null_check);
    279   return null_check;
    280 }
    281 
    282 void HInstructionBuilder::SetLoopHeaderPhiInputs() {
    283   for (size_t i = loop_headers_.size(); i > 0; --i) {
    284     HBasicBlock* block = loop_headers_[i - 1];
    285     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
    286       HPhi* phi = it.Current()->AsPhi();
    287       size_t vreg = phi->GetRegNumber();
    288       for (HBasicBlock* predecessor : block->GetPredecessors()) {
    289         HInstruction* value = ValueOfLocalAt(predecessor, vreg);
    290         if (value == nullptr) {
    291           // Vreg is undefined at this predecessor. Mark it dead and leave with
    292           // fewer inputs than predecessors. SsaChecker will fail if not removed.
    293           phi->SetDead();
    294           break;
    295         } else {
    296           phi->AddInput(value);
    297         }
    298       }
    299     }
    300   }
    301 }
    302 
    303 static bool IsBlockPopulated(HBasicBlock* block) {
    304   if (block->IsLoopHeader()) {
    305     // Suspend checks were inserted into loop headers during building of dominator tree.
    306     DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
    307     return block->GetFirstInstruction() != block->GetLastInstruction();
    308   } else {
    309     return !block->GetInstructions().IsEmpty();
    310   }
    311 }
    312 
    313 bool HInstructionBuilder::Build() {
    314   DCHECK(code_item_accessor_.HasCodeItem());
    315   locals_for_.resize(
    316       graph_->GetBlocks().size(),
    317       ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
    318 
    319   // Find locations where we want to generate extra stackmaps for native debugging.
    320   // This allows us to generate the info only at interesting points (for example,
    321   // at start of java statement) rather than before every dex instruction.
    322   const bool native_debuggable = compiler_driver_ != nullptr &&
    323                                  compiler_driver_->GetCompilerOptions().GetNativeDebuggable();
    324   ArenaBitVector* native_debug_info_locations = nullptr;
    325   if (native_debuggable) {
    326     native_debug_info_locations = FindNativeDebugInfoLocations();
    327   }
    328 
    329   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
    330     current_block_ = block;
    331     uint32_t block_dex_pc = current_block_->GetDexPc();
    332 
    333     InitializeBlockLocals();
    334 
    335     if (current_block_->IsEntryBlock()) {
    336       InitializeParameters();
    337       AppendInstruction(new (allocator_) HSuspendCheck(0u));
    338       AppendInstruction(new (allocator_) HGoto(0u));
    339       continue;
    340     } else if (current_block_->IsExitBlock()) {
    341       AppendInstruction(new (allocator_) HExit());
    342       continue;
    343     } else if (current_block_->IsLoopHeader()) {
    344       HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc());
    345       current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
    346       // This is slightly odd because the loop header might not be empty (TryBoundary).
    347       // But we're still creating the environment with locals from the top of the block.
    348       InsertInstructionAtTop(suspend_check);
    349     }
    350 
    351     if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
    352       // Synthetic block that does not need to be populated.
    353       DCHECK(IsBlockPopulated(current_block_));
    354       continue;
    355     }
    356 
    357     DCHECK(!IsBlockPopulated(current_block_));
    358 
    359     uint32_t quicken_index = 0;
    360     if (CanDecodeQuickenedInfo()) {
    361       quicken_index = block_builder_->GetQuickenIndex(block_dex_pc);
    362     }
    363 
    364     for (const DexInstructionPcPair& pair : code_item_accessor_.InstructionsFrom(block_dex_pc)) {
    365       if (current_block_ == nullptr) {
    366         // The previous instruction ended this block.
    367         break;
    368       }
    369 
    370       const uint32_t dex_pc = pair.DexPc();
    371       if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
    372         // This dex_pc starts a new basic block.
    373         break;
    374       }
    375 
    376       if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) {
    377         PropagateLocalsToCatchBlocks();
    378       }
    379 
    380       if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
    381         AppendInstruction(new (allocator_) HNativeDebugInfo(dex_pc));
    382       }
    383 
    384       if (!ProcessDexInstruction(pair.Inst(), dex_pc, quicken_index)) {
    385         return false;
    386       }
    387 
    388       if (QuickenInfoTable::NeedsIndexForInstruction(&pair.Inst())) {
    389         ++quicken_index;
    390       }
    391     }
    392 
    393     if (current_block_ != nullptr) {
    394       // Branching instructions clear current_block, so we know the last
    395       // instruction of the current block is not a branching instruction.
    396       // We add an unconditional Goto to the next block.
    397       DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
    398       AppendInstruction(new (allocator_) HGoto());
    399     }
    400   }
    401 
    402   SetLoopHeaderPhiInputs();
    403 
    404   return true;
    405 }
    406 
    407 void HInstructionBuilder::BuildIntrinsic(ArtMethod* method) {
    408   DCHECK(!code_item_accessor_.HasCodeItem());
    409   DCHECK(method->IsIntrinsic());
    410 
    411   locals_for_.resize(
    412       graph_->GetBlocks().size(),
    413       ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
    414 
    415   // Fill the entry block. Do not add suspend check, we do not want a suspend
    416   // check in intrinsics; intrinsic methods are supposed to be fast.
    417   current_block_ = graph_->GetEntryBlock();
    418   InitializeBlockLocals();
    419   InitializeParameters();
    420   AppendInstruction(new (allocator_) HGoto(0u));
    421 
    422   // Fill the body.
    423   current_block_ = current_block_->GetSingleSuccessor();
    424   InitializeBlockLocals();
    425   DCHECK(!IsBlockPopulated(current_block_));
    426 
    427   // Add the invoke and return instruction. Use HInvokeStaticOrDirect even
    428   // for methods that would normally use an HInvokeVirtual (sharpen the call).
    429   size_t in_vregs = graph_->GetNumberOfInVRegs();
    430   size_t number_of_arguments =
    431       in_vregs - std::count(current_locals_->end() - in_vregs, current_locals_->end(), nullptr);
    432   uint32_t method_idx = dex_compilation_unit_->GetDexMethodIndex();
    433   MethodReference target_method(dex_file_, method_idx);
    434   HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
    435       HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall,
    436       HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
    437       /* method_load_data */ 0u
    438   };
    439   InvokeType invoke_type = dex_compilation_unit_->IsStatic() ? kStatic : kDirect;
    440   HInvokeStaticOrDirect* invoke = new (allocator_) HInvokeStaticOrDirect(
    441       allocator_,
    442       number_of_arguments,
    443       return_type_,
    444       kNoDexPc,
    445       method_idx,
    446       method,
    447       dispatch_info,
    448       invoke_type,
    449       target_method,
    450       HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
    451   HandleInvoke(invoke,
    452                in_vregs,
    453                /* args */ nullptr,
    454                graph_->GetNumberOfVRegs() - in_vregs,
    455                /* is_range */ true,
    456                dex_file_->GetMethodShorty(method_idx),
    457                /* clinit_check */ nullptr,
    458                /* is_unresolved */ false);
    459 
    460   // Add the return instruction.
    461   if (return_type_ == DataType::Type::kVoid) {
    462     AppendInstruction(new (allocator_) HReturnVoid());
    463   } else {
    464     AppendInstruction(new (allocator_) HReturn(invoke));
    465   }
    466 
    467   // Fill the exit block.
    468   DCHECK_EQ(current_block_->GetSingleSuccessor(), graph_->GetExitBlock());
    469   current_block_ = graph_->GetExitBlock();
    470   InitializeBlockLocals();
    471   AppendInstruction(new (allocator_) HExit());
    472 }
    473 
    474 ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() {
    475   // The callback gets called when the line number changes.
    476   // In other words, it marks the start of new java statement.
    477   struct Callback {
    478     static bool Position(void* ctx, const DexFile::PositionInfo& entry) {
    479       static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_);
    480       return false;
    481     }
    482   };
    483   ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_,
    484                                                      code_item_accessor_.InsnsSizeInCodeUnits(),
    485                                                      /* expandable */ false,
    486                                                      kArenaAllocGraphBuilder);
    487   locations->ClearAllBits();
    488   dex_file_->DecodeDebugPositionInfo(code_item_accessor_.DebugInfoOffset(),
    489                                      Callback::Position,
    490                                      locations);
    491   // Instruction-specific tweaks.
    492   for (const DexInstructionPcPair& inst : code_item_accessor_) {
    493     switch (inst->Opcode()) {
    494       case Instruction::MOVE_EXCEPTION: {
    495         // Stop in native debugger after the exception has been moved.
    496         // The compiler also expects the move at the start of basic block so
    497         // we do not want to interfere by inserting native-debug-info before it.
    498         locations->ClearBit(inst.DexPc());
    499         DexInstructionIterator next = std::next(DexInstructionIterator(inst));
    500         DCHECK(next.DexPc() != inst.DexPc());
    501         if (next != code_item_accessor_.end()) {
    502           locations->SetBit(next.DexPc());
    503         }
    504         break;
    505       }
    506       default:
    507         break;
    508     }
    509   }
    510   return locations;
    511 }
    512 
    513 HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const {
    514   HInstruction* value = (*current_locals_)[reg_number];
    515   DCHECK(value != nullptr);
    516 
    517   // If the operation requests a specific type, we make sure its input is of that type.
    518   if (type != value->GetType()) {
    519     if (DataType::IsFloatingPointType(type)) {
    520       value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
    521     } else if (type == DataType::Type::kReference) {
    522       value = ssa_builder_->GetReferenceTypeEquivalent(value);
    523     }
    524     DCHECK(value != nullptr);
    525   }
    526 
    527   return value;
    528 }
    529 
    530 void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
    531   DataType::Type stored_type = stored_value->GetType();
    532   DCHECK_NE(stored_type, DataType::Type::kVoid);
    533 
    534   // Storing into vreg `reg_number` may implicitly invalidate the surrounding
    535   // registers. Consider the following cases:
    536   // (1) Storing a wide value must overwrite previous values in both `reg_number`
    537   //     and `reg_number+1`. We store `nullptr` in `reg_number+1`.
    538   // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
    539   //     must invalidate it. We store `nullptr` in `reg_number-1`.
    540   // Consequently, storing a wide value into the high vreg of another wide value
    541   // will invalidate both `reg_number-1` and `reg_number+1`.
    542 
    543   if (reg_number != 0) {
    544     HInstruction* local_low = (*current_locals_)[reg_number - 1];
    545     if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) {
    546       // The vreg we are storing into was previously the high vreg of a pair.
    547       // We need to invalidate its low vreg.
    548       DCHECK((*current_locals_)[reg_number] == nullptr);
    549       (*current_locals_)[reg_number - 1] = nullptr;
    550     }
    551   }
    552 
    553   (*current_locals_)[reg_number] = stored_value;
    554   if (DataType::Is64BitType(stored_type)) {
    555     // We are storing a pair. Invalidate the instruction in the high vreg.
    556     (*current_locals_)[reg_number + 1] = nullptr;
    557   }
    558 }
    559 
    560 void HInstructionBuilder::InitializeParameters() {
    561   DCHECK(current_block_->IsEntryBlock());
    562 
    563   // outer_compilation_unit_ is null only when unit testing.
    564   if (outer_compilation_unit_ == nullptr) {
    565     return;
    566   }
    567 
    568   const char* shorty = dex_compilation_unit_->GetShorty();
    569   uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
    570   uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
    571   uint16_t parameter_index = 0;
    572 
    573   const DexFile::MethodId& referrer_method_id =
    574       dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
    575   if (!dex_compilation_unit_->IsStatic()) {
    576     // Add the implicit 'this' argument, not expressed in the signature.
    577     HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_,
    578                                                               referrer_method_id.class_idx_,
    579                                                               parameter_index++,
    580                                                               DataType::Type::kReference,
    581                                                               /* is_this */ true);
    582     AppendInstruction(parameter);
    583     UpdateLocal(locals_index++, parameter);
    584     number_of_parameters--;
    585     current_this_parameter_ = parameter;
    586   } else {
    587     DCHECK(current_this_parameter_ == nullptr);
    588   }
    589 
    590   const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
    591   const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
    592   for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
    593     HParameterValue* parameter = new (allocator_) HParameterValue(
    594         *dex_file_,
    595         arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
    596         parameter_index++,
    597         DataType::FromShorty(shorty[shorty_pos]),
    598         /* is_this */ false);
    599     ++shorty_pos;
    600     AppendInstruction(parameter);
    601     // Store the parameter value in the local that the dex code will use
    602     // to reference that parameter.
    603     UpdateLocal(locals_index++, parameter);
    604     if (DataType::Is64BitType(parameter->GetType())) {
    605       i++;
    606       locals_index++;
    607       parameter_index++;
    608     }
    609   }
    610 }
    611 
    612 template<typename T>
    613 void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
    614   HInstruction* first = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
    615   HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
    616   T* comparison = new (allocator_) T(first, second, dex_pc);
    617   AppendInstruction(comparison);
    618   AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
    619   current_block_ = nullptr;
    620 }
    621 
    622 template<typename T>
    623 void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
    624   HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
    625   T* comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
    626   AppendInstruction(comparison);
    627   AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
    628   current_block_ = nullptr;
    629 }
    630 
    631 template<typename T>
    632 void HInstructionBuilder::Unop_12x(const Instruction& instruction,
    633                                    DataType::Type type,
    634                                    uint32_t dex_pc) {
    635   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    636   AppendInstruction(new (allocator_) T(type, first, dex_pc));
    637   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    638 }
    639 
    640 void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
    641                                          DataType::Type input_type,
    642                                          DataType::Type result_type,
    643                                          uint32_t dex_pc) {
    644   HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
    645   AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc));
    646   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    647 }
    648 
    649 template<typename T>
    650 void HInstructionBuilder::Binop_23x(const Instruction& instruction,
    651                                     DataType::Type type,
    652                                     uint32_t dex_pc) {
    653   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    654   HInstruction* second = LoadLocal(instruction.VRegC(), type);
    655   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
    656   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    657 }
    658 
    659 template<typename T>
    660 void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
    661                                           DataType::Type type,
    662                                           uint32_t dex_pc) {
    663   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    664   HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32);
    665   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
    666   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    667 }
    668 
    669 void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
    670                                         DataType::Type type,
    671                                         ComparisonBias bias,
    672                                         uint32_t dex_pc) {
    673   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    674   HInstruction* second = LoadLocal(instruction.VRegC(), type);
    675   AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc));
    676   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    677 }
    678 
    679 template<typename T>
    680 void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
    681                                           DataType::Type type,
    682                                           uint32_t dex_pc) {
    683   HInstruction* first = LoadLocal(instruction.VRegA(), type);
    684   HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
    685   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
    686   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    687 }
    688 
    689 template<typename T>
    690 void HInstructionBuilder::Binop_12x(const Instruction& instruction,
    691                                     DataType::Type type,
    692                                     uint32_t dex_pc) {
    693   HInstruction* first = LoadLocal(instruction.VRegA(), type);
    694   HInstruction* second = LoadLocal(instruction.VRegB(), type);
    695   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
    696   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    697 }
    698 
    699 template<typename T>
    700 void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
    701   HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
    702   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
    703   if (reverse) {
    704     std::swap(first, second);
    705   }
    706   AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
    707   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    708 }
    709 
    710 template<typename T>
    711 void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
    712   HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
    713   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
    714   if (reverse) {
    715     std::swap(first, second);
    716   }
    717   AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
    718   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    719 }
    720 
    721 // Does the method being compiled need any constructor barriers being inserted?
    722 // (Always 'false' for methods that aren't <init>.)
    723 static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, CompilerDriver* driver) {
    724   // Can be null in unit tests only.
    725   if (UNLIKELY(cu == nullptr)) {
    726     return false;
    727   }
    728 
    729   Thread* self = Thread::Current();
    730   return cu->IsConstructor()
    731       && !cu->IsStatic()
    732       // RequiresConstructorBarrier must only be queried for <init> methods;
    733       // it's effectively "false" for every other method.
    734       //
    735       // See CompilerDriver::RequiresConstructBarrier for more explanation.
    736       && driver->RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
    737 }
    738 
    739 // Returns true if `block` has only one successor which starts at the next
    740 // dex_pc after `instruction` at `dex_pc`.
    741 static bool IsFallthroughInstruction(const Instruction& instruction,
    742                                      uint32_t dex_pc,
    743                                      HBasicBlock* block) {
    744   uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
    745   return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
    746 }
    747 
    748 void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
    749   HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
    750   DexSwitchTable table(instruction, dex_pc);
    751 
    752   if (table.GetNumEntries() == 0) {
    753     // Empty Switch. Code falls through to the next block.
    754     DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
    755     AppendInstruction(new (allocator_) HGoto(dex_pc));
    756   } else if (table.ShouldBuildDecisionTree()) {
    757     for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
    758       HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
    759       HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc);
    760       AppendInstruction(comparison);
    761       AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
    762 
    763       if (!it.IsLast()) {
    764         current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
    765       }
    766     }
    767   } else {
    768     AppendInstruction(
    769         new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
    770   }
    771 
    772   current_block_ = nullptr;
    773 }
    774 
    775 void HInstructionBuilder::BuildReturn(const Instruction& instruction,
    776                                       DataType::Type type,
    777                                       uint32_t dex_pc) {
    778   if (type == DataType::Type::kVoid) {
    779     // Only <init> (which is a return-void) could possibly have a constructor fence.
    780     // This may insert additional redundant constructor fences from the super constructors.
    781     // TODO: remove redundant constructor fences (b/36656456).
    782     if (RequiresConstructorBarrier(dex_compilation_unit_, compiler_driver_)) {
    783       // Compiling instance constructor.
    784       DCHECK_STREQ("<init>", graph_->GetMethodName());
    785 
    786       HInstruction* fence_target = current_this_parameter_;
    787       DCHECK(fence_target != nullptr);
    788 
    789       AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_));
    790       MaybeRecordStat(
    791           compilation_stats_,
    792           MethodCompilationStat::kConstructorFenceGeneratedFinal);
    793     }
    794     AppendInstruction(new (allocator_) HReturnVoid(dex_pc));
    795   } else {
    796     DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_, compiler_driver_));
    797     HInstruction* value = LoadLocal(instruction.VRegA(), type);
    798     AppendInstruction(new (allocator_) HReturn(value, dex_pc));
    799   }
    800   current_block_ = nullptr;
    801 }
    802 
    803 static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
    804   switch (opcode) {
    805     case Instruction::INVOKE_STATIC:
    806     case Instruction::INVOKE_STATIC_RANGE:
    807       return kStatic;
    808     case Instruction::INVOKE_DIRECT:
    809     case Instruction::INVOKE_DIRECT_RANGE:
    810       return kDirect;
    811     case Instruction::INVOKE_VIRTUAL:
    812     case Instruction::INVOKE_VIRTUAL_QUICK:
    813     case Instruction::INVOKE_VIRTUAL_RANGE:
    814     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
    815       return kVirtual;
    816     case Instruction::INVOKE_INTERFACE:
    817     case Instruction::INVOKE_INTERFACE_RANGE:
    818       return kInterface;
    819     case Instruction::INVOKE_SUPER_RANGE:
    820     case Instruction::INVOKE_SUPER:
    821       return kSuper;
    822     default:
    823       LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
    824       UNREACHABLE();
    825   }
    826 }
    827 
    828 ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) {
    829   ScopedObjectAccess soa(Thread::Current());
    830 
    831   ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
    832   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
    833 
    834   ArtMethod* resolved_method =
    835       class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
    836           method_idx,
    837           dex_compilation_unit_->GetDexCache(),
    838           class_loader,
    839           graph_->GetArtMethod(),
    840           invoke_type);
    841 
    842   if (UNLIKELY(resolved_method == nullptr)) {
    843     // Clean up any exception left by type resolution.
    844     soa.Self()->ClearException();
    845     return nullptr;
    846   }
    847 
    848   // The referrer may be unresolved for AOT if we're compiling a class that cannot be
    849   // resolved because, for example, we don't find a superclass in the classpath.
    850   if (graph_->GetArtMethod() == nullptr) {
    851     // The class linker cannot check access without a referrer, so we have to do it.
    852     // Fall back to HInvokeUnresolved if the method isn't public.
    853     if (!resolved_method->IsPublic()) {
    854       return nullptr;
    855     }
    856   }
    857 
    858   // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
    859   // We need to look at the referrer's super class vtable. We need to do this to know if we need to
    860   // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
    861   // which require runtime handling.
    862   if (invoke_type == kSuper) {
    863     ObjPtr<mirror::Class> compiling_class = GetCompilingClass();
    864     if (compiling_class == nullptr) {
    865       // We could not determine the method's class we need to wait until runtime.
    866       DCHECK(Runtime::Current()->IsAotCompiler());
    867       return nullptr;
    868     }
    869     ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
    870         dex_compilation_unit_->GetDexFile()->GetMethodId(method_idx).class_idx_,
    871         dex_compilation_unit_->GetDexCache().Get(),
    872         class_loader.Get());
    873     DCHECK(referenced_class != nullptr);  // We have already resolved a method from this class.
    874     if (!referenced_class->IsAssignableFrom(compiling_class)) {
    875       // We cannot statically determine the target method. The runtime will throw a
    876       // NoSuchMethodError on this one.
    877       return nullptr;
    878     }
    879     ArtMethod* actual_method;
    880     if (referenced_class->IsInterface()) {
    881       actual_method = referenced_class->FindVirtualMethodForInterfaceSuper(
    882           resolved_method, class_linker->GetImagePointerSize());
    883     } else {
    884       uint16_t vtable_index = resolved_method->GetMethodIndex();
    885       actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
    886           vtable_index, class_linker->GetImagePointerSize());
    887     }
    888     if (actual_method != resolved_method &&
    889         !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
    890       // The back-end code generator relies on this check in order to ensure that it will not
    891       // attempt to read the dex_cache with a dex_method_index that is not from the correct
    892       // dex_file. If we didn't do this check then the dex_method_index will not be updated in the
    893       // builder, which means that the code-generator (and compiler driver during sharpening and
    894       // inliner, maybe) might invoke an incorrect method.
    895       // TODO: The actual method could still be referenced in the current dex file, so we
    896       //       could try locating it.
    897       // TODO: Remove the dex_file restriction.
    898       return nullptr;
    899     }
    900     if (!actual_method->IsInvokable()) {
    901       // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
    902       // could resolve the callee to the wrong method.
    903       return nullptr;
    904     }
    905     resolved_method = actual_method;
    906   }
    907 
    908   return resolved_method;
    909 }
    910 
    911 static bool IsStringConstructor(ArtMethod* method) {
    912   ScopedObjectAccess soa(Thread::Current());
    913   return method->GetDeclaringClass()->IsStringClass() && method->IsConstructor();
    914 }
    915 
    916 bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
    917                                       uint32_t dex_pc,
    918                                       uint32_t method_idx,
    919                                       uint32_t number_of_vreg_arguments,
    920                                       bool is_range,
    921                                       uint32_t* args,
    922                                       uint32_t register_index) {
    923   InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
    924   const char* descriptor = dex_file_->GetMethodShorty(method_idx);
    925   DataType::Type return_type = DataType::FromShorty(descriptor[0]);
    926 
    927   // Remove the return type from the 'proto'.
    928   size_t number_of_arguments = strlen(descriptor) - 1;
    929   if (invoke_type != kStatic) {  // instance call
    930     // One extra argument for 'this'.
    931     number_of_arguments++;
    932   }
    933 
    934   ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type);
    935 
    936   if (UNLIKELY(resolved_method == nullptr)) {
    937     MaybeRecordStat(compilation_stats_,
    938                     MethodCompilationStat::kUnresolvedMethod);
    939     HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_,
    940                                                          number_of_arguments,
    941                                                          return_type,
    942                                                          dex_pc,
    943                                                          method_idx,
    944                                                          invoke_type);
    945     return HandleInvoke(invoke,
    946                         number_of_vreg_arguments,
    947                         args,
    948                         register_index,
    949                         is_range,
    950                         descriptor,
    951                         nullptr, /* clinit_check */
    952                         true /* is_unresolved */);
    953   }
    954 
    955   // Replace calls to String.<init> with StringFactory.
    956   if (IsStringConstructor(resolved_method)) {
    957     uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method);
    958     HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
    959         HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
    960         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
    961         dchecked_integral_cast<uint64_t>(string_init_entry_point)
    962     };
    963     ScopedObjectAccess soa(Thread::Current());
    964     MethodReference target_method(resolved_method->GetDexFile(),
    965                                   resolved_method->GetDexMethodIndex());
    966     // We pass null for the resolved_method to ensure optimizations
    967     // don't rely on it.
    968     HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect(
    969         allocator_,
    970         number_of_arguments - 1,
    971         DataType::Type::kReference /*return_type */,
    972         dex_pc,
    973         method_idx,
    974         nullptr /* resolved_method */,
    975         dispatch_info,
    976         invoke_type,
    977         target_method,
    978         HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
    979     return HandleStringInit(invoke,
    980                             number_of_vreg_arguments,
    981                             args,
    982                             register_index,
    983                             is_range,
    984                             descriptor);
    985   }
    986 
    987   // Potential class initialization check, in the case of a static method call.
    988   HClinitCheck* clinit_check = nullptr;
    989   HInvoke* invoke = nullptr;
    990   if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
    991     // By default, consider that the called method implicitly requires
    992     // an initialization check of its declaring method.
    993     HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
    994         = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
    995     ScopedObjectAccess soa(Thread::Current());
    996     if (invoke_type == kStatic) {
    997       clinit_check = ProcessClinitCheckForInvoke(
    998           dex_pc, resolved_method, &clinit_check_requirement);
    999     } else if (invoke_type == kSuper) {
   1000       if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
   1001         // Update the method index to the one resolved. Note that this may be a no-op if
   1002         // we resolved to the method referenced by the instruction.
   1003         method_idx = resolved_method->GetDexMethodIndex();
   1004       }
   1005     }
   1006 
   1007     HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
   1008         HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall,
   1009         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
   1010         0u
   1011     };
   1012     MethodReference target_method(resolved_method->GetDexFile(),
   1013                                   resolved_method->GetDexMethodIndex());
   1014     invoke = new (allocator_) HInvokeStaticOrDirect(allocator_,
   1015                                                     number_of_arguments,
   1016                                                     return_type,
   1017                                                     dex_pc,
   1018                                                     method_idx,
   1019                                                     resolved_method,
   1020                                                     dispatch_info,
   1021                                                     invoke_type,
   1022                                                     target_method,
   1023                                                     clinit_check_requirement);
   1024   } else if (invoke_type == kVirtual) {
   1025     ScopedObjectAccess soa(Thread::Current());  // Needed for the method index
   1026     invoke = new (allocator_) HInvokeVirtual(allocator_,
   1027                                              number_of_arguments,
   1028                                              return_type,
   1029                                              dex_pc,
   1030                                              method_idx,
   1031                                              resolved_method,
   1032                                              resolved_method->GetMethodIndex());
   1033   } else {
   1034     DCHECK_EQ(invoke_type, kInterface);
   1035     ScopedObjectAccess soa(Thread::Current());  // Needed for the IMT index.
   1036     invoke = new (allocator_) HInvokeInterface(allocator_,
   1037                                                number_of_arguments,
   1038                                                return_type,
   1039                                                dex_pc,
   1040                                                method_idx,
   1041                                                resolved_method,
   1042                                                ImTable::GetImtIndex(resolved_method));
   1043   }
   1044 
   1045   return HandleInvoke(invoke,
   1046                       number_of_vreg_arguments,
   1047                       args,
   1048                       register_index,
   1049                       is_range,
   1050                       descriptor,
   1051                       clinit_check,
   1052                       false /* is_unresolved */);
   1053 }
   1054 
   1055 bool HInstructionBuilder::BuildInvokePolymorphic(const Instruction& instruction ATTRIBUTE_UNUSED,
   1056                                                  uint32_t dex_pc,
   1057                                                  uint32_t method_idx,
   1058                                                  uint32_t proto_idx,
   1059                                                  uint32_t number_of_vreg_arguments,
   1060                                                  bool is_range,
   1061                                                  uint32_t* args,
   1062                                                  uint32_t register_index) {
   1063   const char* descriptor = dex_file_->GetShorty(proto_idx);
   1064   DCHECK_EQ(1 + ArtMethod::NumArgRegisters(descriptor), number_of_vreg_arguments);
   1065   DataType::Type return_type = DataType::FromShorty(descriptor[0]);
   1066   size_t number_of_arguments = strlen(descriptor);
   1067   HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_,
   1068                                                         number_of_arguments,
   1069                                                         return_type,
   1070                                                         dex_pc,
   1071                                                         method_idx);
   1072   return HandleInvoke(invoke,
   1073                       number_of_vreg_arguments,
   1074                       args,
   1075                       register_index,
   1076                       is_range,
   1077                       descriptor,
   1078                       nullptr /* clinit_check */,
   1079                       false /* is_unresolved */);
   1080 }
   1081 
   1082 HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) {
   1083   ScopedObjectAccess soa(Thread::Current());
   1084 
   1085   HLoadClass* load_class = BuildLoadClass(type_index, dex_pc);
   1086 
   1087   HInstruction* cls = load_class;
   1088   Handle<mirror::Class> klass = load_class->GetClass();
   1089 
   1090   if (!IsInitialized(klass)) {
   1091     cls = new (allocator_) HClinitCheck(load_class, dex_pc);
   1092     AppendInstruction(cls);
   1093   }
   1094 
   1095   // Only the access check entrypoint handles the finalizable class case. If we
   1096   // need access checks, then we haven't resolved the method and the class may
   1097   // again be finalizable.
   1098   QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized;
   1099   if (load_class->NeedsAccessCheck() || klass->IsFinalizable() || !klass->IsInstantiable()) {
   1100     entrypoint = kQuickAllocObjectWithChecks;
   1101   }
   1102 
   1103   // Consider classes we haven't resolved as potentially finalizable.
   1104   bool finalizable = (klass == nullptr) || klass->IsFinalizable();
   1105 
   1106   HNewInstance* new_instance = new (allocator_) HNewInstance(
   1107       cls,
   1108       dex_pc,
   1109       type_index,
   1110       *dex_compilation_unit_->GetDexFile(),
   1111       finalizable,
   1112       entrypoint);
   1113   AppendInstruction(new_instance);
   1114 
   1115   return new_instance;
   1116 }
   1117 
   1118 void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) {
   1119   DCHECK(allocation != nullptr &&
   1120              (allocation->IsNewInstance() ||
   1121               allocation->IsNewArray()));  // corresponding to "new" keyword in JLS.
   1122 
   1123   if (allocation->IsNewInstance()) {
   1124     // STRING SPECIAL HANDLING:
   1125     // -------------------------------
   1126     // Strings have a real HNewInstance node but they end up always having 0 uses.
   1127     // All uses of a String HNewInstance are always transformed to replace their input
   1128     // of the HNewInstance with an input of the invoke to StringFactory.
   1129     //
   1130     // Do not emit an HConstructorFence here since it can inhibit some String new-instance
   1131     // optimizations (to pass checker tests that rely on those optimizations).
   1132     HNewInstance* new_inst = allocation->AsNewInstance();
   1133     HLoadClass* load_class = new_inst->GetLoadClass();
   1134 
   1135     Thread* self = Thread::Current();
   1136     ScopedObjectAccess soa(self);
   1137     StackHandleScope<1> hs(self);
   1138     Handle<mirror::Class> klass = load_class->GetClass();
   1139     if (klass != nullptr && klass->IsStringClass()) {
   1140       return;
   1141       // Note: Do not use allocation->IsStringAlloc which requires
   1142       // a valid ReferenceTypeInfo, but that doesn't get made until after reference type
   1143       // propagation (and instruction builder is too early).
   1144     }
   1145     // (In terms of correctness, the StringFactory needs to provide its own
   1146     // default initialization barrier, see below.)
   1147   }
   1148 
   1149   // JLS 17.4.5 "Happens-before Order" describes:
   1150   //
   1151   //   The default initialization of any object happens-before any other actions (other than
   1152   //   default-writes) of a program.
   1153   //
   1154   // In our implementation the default initialization of an object to type T means
   1155   // setting all of its initial data (object[0..size)) to 0, and setting the
   1156   // object's class header (i.e. object.getClass() == T.class).
   1157   //
   1158   // In practice this fence ensures that the writes to the object header
   1159   // are visible to other threads if this object escapes the current thread.
   1160   // (and in theory the 0-initializing, but that happens automatically
   1161   // when new memory pages are mapped in by the OS).
   1162   HConstructorFence* ctor_fence =
   1163       new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_);
   1164   AppendInstruction(ctor_fence);
   1165   MaybeRecordStat(
   1166       compilation_stats_,
   1167       MethodCompilationStat::kConstructorFenceGeneratedNew);
   1168 }
   1169 
   1170 static bool IsSubClass(ObjPtr<mirror::Class> to_test, ObjPtr<mirror::Class> super_class)
   1171     REQUIRES_SHARED(Locks::mutator_lock_) {
   1172   return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
   1173 }
   1174 
   1175 bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const {
   1176   if (cls == nullptr) {
   1177     return false;
   1178   }
   1179 
   1180   // `CanAssumeClassIsLoaded` will return true if we're JITting, or will
   1181   // check whether the class is in an image for the AOT compilation.
   1182   if (cls->IsInitialized() &&
   1183       compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) {
   1184     return true;
   1185   }
   1186 
   1187   if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) {
   1188     return true;
   1189   }
   1190 
   1191   // TODO: We should walk over the inlined methods, but we don't pass
   1192   //       that information to the builder.
   1193   if (IsSubClass(GetCompilingClass(), cls.Get())) {
   1194     return true;
   1195   }
   1196 
   1197   return false;
   1198 }
   1199 
   1200 HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
   1201       uint32_t dex_pc,
   1202       ArtMethod* resolved_method,
   1203       HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
   1204   Handle<mirror::Class> klass = handles_->NewHandle(resolved_method->GetDeclaringClass());
   1205 
   1206   HClinitCheck* clinit_check = nullptr;
   1207   if (IsInitialized(klass)) {
   1208     *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
   1209   } else {
   1210     HLoadClass* cls = BuildLoadClass(klass->GetDexTypeIndex(),
   1211                                      klass->GetDexFile(),
   1212                                      klass,
   1213                                      dex_pc,
   1214                                      /* needs_access_check */ false);
   1215     if (cls != nullptr) {
   1216       *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
   1217       clinit_check = new (allocator_) HClinitCheck(cls, dex_pc);
   1218       AppendInstruction(clinit_check);
   1219     }
   1220   }
   1221   return clinit_check;
   1222 }
   1223 
   1224 bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke,
   1225                                                uint32_t number_of_vreg_arguments,
   1226                                                uint32_t* args,
   1227                                                uint32_t register_index,
   1228                                                bool is_range,
   1229                                                const char* descriptor,
   1230                                                size_t start_index,
   1231                                                size_t* argument_index) {
   1232   uint32_t descriptor_index = 1;  // Skip the return type.
   1233 
   1234   for (size_t i = start_index;
   1235        // Make sure we don't go over the expected arguments or over the number of
   1236        // dex registers given. If the instruction was seen as dead by the verifier,
   1237        // it hasn't been properly checked.
   1238        (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments());
   1239        i++, (*argument_index)++) {
   1240     DataType::Type type = DataType::FromShorty(descriptor[descriptor_index++]);
   1241     bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
   1242     if (!is_range
   1243         && is_wide
   1244         && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
   1245       // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
   1246       // reject any class where this is violated. However, the verifier only does these checks
   1247       // on non trivially dead instructions, so we just bailout the compilation.
   1248       VLOG(compiler) << "Did not compile "
   1249                      << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
   1250                      << " because of non-sequential dex register pair in wide argument";
   1251       MaybeRecordStat(compilation_stats_,
   1252                       MethodCompilationStat::kNotCompiledMalformedOpcode);
   1253       return false;
   1254     }
   1255     HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
   1256     invoke->SetArgumentAt(*argument_index, arg);
   1257     if (is_wide) {
   1258       i++;
   1259     }
   1260   }
   1261 
   1262   if (*argument_index != invoke->GetNumberOfArguments()) {
   1263     VLOG(compiler) << "Did not compile "
   1264                    << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
   1265                    << " because of wrong number of arguments in invoke instruction";
   1266     MaybeRecordStat(compilation_stats_,
   1267                     MethodCompilationStat::kNotCompiledMalformedOpcode);
   1268     return false;
   1269   }
   1270 
   1271   if (invoke->IsInvokeStaticOrDirect() &&
   1272       HInvokeStaticOrDirect::NeedsCurrentMethodInput(
   1273           invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) {
   1274     invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
   1275     (*argument_index)++;
   1276   }
   1277 
   1278   return true;
   1279 }
   1280 
   1281 bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
   1282                                        uint32_t number_of_vreg_arguments,
   1283                                        uint32_t* args,
   1284                                        uint32_t register_index,
   1285                                        bool is_range,
   1286                                        const char* descriptor,
   1287                                        HClinitCheck* clinit_check,
   1288                                        bool is_unresolved) {
   1289   DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
   1290 
   1291   size_t start_index = 0;
   1292   size_t argument_index = 0;
   1293   if (invoke->GetInvokeType() != InvokeType::kStatic) {  // Instance call.
   1294     uint32_t obj_reg = is_range ? register_index : args[0];
   1295     HInstruction* arg = is_unresolved
   1296         ? LoadLocal(obj_reg, DataType::Type::kReference)
   1297         : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc());
   1298     invoke->SetArgumentAt(0, arg);
   1299     start_index = 1;
   1300     argument_index = 1;
   1301   }
   1302 
   1303   if (!SetupInvokeArguments(invoke,
   1304                             number_of_vreg_arguments,
   1305                             args,
   1306                             register_index,
   1307                             is_range,
   1308                             descriptor,
   1309                             start_index,
   1310                             &argument_index)) {
   1311     return false;
   1312   }
   1313 
   1314   if (clinit_check != nullptr) {
   1315     // Add the class initialization check as last input of `invoke`.
   1316     DCHECK(invoke->IsInvokeStaticOrDirect());
   1317     DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
   1318         == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
   1319     invoke->SetArgumentAt(argument_index, clinit_check);
   1320     argument_index++;
   1321   }
   1322 
   1323   AppendInstruction(invoke);
   1324   latest_result_ = invoke;
   1325 
   1326   return true;
   1327 }
   1328 
   1329 bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
   1330                                            uint32_t number_of_vreg_arguments,
   1331                                            uint32_t* args,
   1332                                            uint32_t register_index,
   1333                                            bool is_range,
   1334                                            const char* descriptor) {
   1335   DCHECK(invoke->IsInvokeStaticOrDirect());
   1336   DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
   1337 
   1338   size_t start_index = 1;
   1339   size_t argument_index = 0;
   1340   if (!SetupInvokeArguments(invoke,
   1341                             number_of_vreg_arguments,
   1342                             args,
   1343                             register_index,
   1344                             is_range,
   1345                             descriptor,
   1346                             start_index,
   1347                             &argument_index)) {
   1348     return false;
   1349   }
   1350 
   1351   AppendInstruction(invoke);
   1352 
   1353   // This is a StringFactory call, not an actual String constructor. Its result
   1354   // replaces the empty String pre-allocated by NewInstance.
   1355   uint32_t orig_this_reg = is_range ? register_index : args[0];
   1356   HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference);
   1357 
   1358   // Replacing the NewInstance might render it redundant. Keep a list of these
   1359   // to be visited once it is clear whether it is has remaining uses.
   1360   if (arg_this->IsNewInstance()) {
   1361     ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
   1362   } else {
   1363     DCHECK(arg_this->IsPhi());
   1364     // NewInstance is not the direct input of the StringFactory call. It might
   1365     // be redundant but optimizing this case is not worth the effort.
   1366   }
   1367 
   1368   // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
   1369   for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
   1370     if ((*current_locals_)[vreg] == arg_this) {
   1371       (*current_locals_)[vreg] = invoke;
   1372     }
   1373   }
   1374 
   1375   return true;
   1376 }
   1377 
   1378 static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
   1379   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index);
   1380   const char* type = dex_file.GetFieldTypeDescriptor(field_id);
   1381   return DataType::FromShorty(type[0]);
   1382 }
   1383 
   1384 bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
   1385                                                    uint32_t dex_pc,
   1386                                                    bool is_put,
   1387                                                    size_t quicken_index) {
   1388   uint32_t source_or_dest_reg = instruction.VRegA_22c();
   1389   uint32_t obj_reg = instruction.VRegB_22c();
   1390   uint16_t field_index;
   1391   if (instruction.IsQuickened()) {
   1392     if (!CanDecodeQuickenedInfo()) {
   1393       VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
   1394                      << instruction.Opcode();
   1395       return false;
   1396     }
   1397     field_index = LookupQuickenedInfo(quicken_index);
   1398   } else {
   1399     field_index = instruction.VRegC_22c();
   1400   }
   1401 
   1402   ScopedObjectAccess soa(Thread::Current());
   1403   ArtField* resolved_field = ResolveField(field_index, /* is_static */ false, is_put);
   1404 
   1405   // Generate an explicit null check on the reference, unless the field access
   1406   // is unresolved. In that case, we rely on the runtime to perform various
   1407   // checks first, followed by a null check.
   1408   HInstruction* object = (resolved_field == nullptr)
   1409       ? LoadLocal(obj_reg, DataType::Type::kReference)
   1410       : LoadNullCheckedLocal(obj_reg, dex_pc);
   1411 
   1412   DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
   1413   if (is_put) {
   1414     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
   1415     HInstruction* field_set = nullptr;
   1416     if (resolved_field == nullptr) {
   1417       MaybeRecordStat(compilation_stats_,
   1418                       MethodCompilationStat::kUnresolvedField);
   1419       field_set = new (allocator_) HUnresolvedInstanceFieldSet(object,
   1420                                                                value,
   1421                                                                field_type,
   1422                                                                field_index,
   1423                                                                dex_pc);
   1424     } else {
   1425       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
   1426       field_set = new (allocator_) HInstanceFieldSet(object,
   1427                                                      value,
   1428                                                      resolved_field,
   1429                                                      field_type,
   1430                                                      resolved_field->GetOffset(),
   1431                                                      resolved_field->IsVolatile(),
   1432                                                      field_index,
   1433                                                      class_def_index,
   1434                                                      *dex_file_,
   1435                                                      dex_pc);
   1436     }
   1437     AppendInstruction(field_set);
   1438   } else {
   1439     HInstruction* field_get = nullptr;
   1440     if (resolved_field == nullptr) {
   1441       MaybeRecordStat(compilation_stats_,
   1442                       MethodCompilationStat::kUnresolvedField);
   1443       field_get = new (allocator_) HUnresolvedInstanceFieldGet(object,
   1444                                                                field_type,
   1445                                                                field_index,
   1446                                                                dex_pc);
   1447     } else {
   1448       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
   1449       field_get = new (allocator_) HInstanceFieldGet(object,
   1450                                                      resolved_field,
   1451                                                      field_type,
   1452                                                      resolved_field->GetOffset(),
   1453                                                      resolved_field->IsVolatile(),
   1454                                                      field_index,
   1455                                                      class_def_index,
   1456                                                      *dex_file_,
   1457                                                      dex_pc);
   1458     }
   1459     AppendInstruction(field_get);
   1460     UpdateLocal(source_or_dest_reg, field_get);
   1461   }
   1462 
   1463   return true;
   1464 }
   1465 
   1466 static ObjPtr<mirror::Class> GetClassFrom(CompilerDriver* driver,
   1467                                           const DexCompilationUnit& compilation_unit) {
   1468   ScopedObjectAccess soa(Thread::Current());
   1469   Handle<mirror::ClassLoader> class_loader = compilation_unit.GetClassLoader();
   1470   Handle<mirror::DexCache> dex_cache = compilation_unit.GetDexCache();
   1471 
   1472   return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
   1473 }
   1474 
   1475 ObjPtr<mirror::Class> HInstructionBuilder::GetOutermostCompilingClass() const {
   1476   return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
   1477 }
   1478 
   1479 ObjPtr<mirror::Class> HInstructionBuilder::GetCompilingClass() const {
   1480   return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
   1481 }
   1482 
   1483 bool HInstructionBuilder::IsOutermostCompilingClass(dex::TypeIndex type_index) const {
   1484   ScopedObjectAccess soa(Thread::Current());
   1485   StackHandleScope<2> hs(soa.Self());
   1486   Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
   1487   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
   1488   Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
   1489       soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
   1490   Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
   1491 
   1492   // GetOutermostCompilingClass returns null when the class is unresolved
   1493   // (e.g. if it derives from an unresolved class). This is bogus knowing that
   1494   // we are compiling it.
   1495   // When this happens we cannot establish a direct relation between the current
   1496   // class and the outer class, so we return false.
   1497   // (Note that this is only used for optimizing invokes and field accesses)
   1498   return (cls != nullptr) && (outer_class.Get() == cls.Get());
   1499 }
   1500 
   1501 void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
   1502                                                            uint32_t dex_pc,
   1503                                                            bool is_put,
   1504                                                            DataType::Type field_type) {
   1505   uint32_t source_or_dest_reg = instruction.VRegA_21c();
   1506   uint16_t field_index = instruction.VRegB_21c();
   1507 
   1508   if (is_put) {
   1509     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
   1510     AppendInstruction(
   1511         new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
   1512   } else {
   1513     AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
   1514     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
   1515   }
   1516 }
   1517 
   1518 ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) {
   1519   ScopedObjectAccess soa(Thread::Current());
   1520   StackHandleScope<2> hs(soa.Self());
   1521 
   1522   ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
   1523   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
   1524   Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass()));
   1525 
   1526   ArtField* resolved_field = class_linker->ResolveField(field_idx,
   1527                                                         dex_compilation_unit_->GetDexCache(),
   1528                                                         class_loader,
   1529                                                         is_static);
   1530   if (UNLIKELY(resolved_field == nullptr)) {
   1531     // Clean up any exception left by type resolution.
   1532     soa.Self()->ClearException();
   1533     return nullptr;
   1534   }
   1535 
   1536   // Check static/instance. The class linker has a fast path for looking into the dex cache
   1537   // and does not check static/instance if it hits it.
   1538   if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
   1539     return nullptr;
   1540   }
   1541 
   1542   // Check access.
   1543   if (compiling_class == nullptr) {
   1544     if (!resolved_field->IsPublic()) {
   1545       return nullptr;
   1546     }
   1547   } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(),
   1548                                                       resolved_field,
   1549                                                       dex_compilation_unit_->GetDexCache().Get(),
   1550                                                       field_idx)) {
   1551     return nullptr;
   1552   }
   1553 
   1554   if (is_put &&
   1555       resolved_field->IsFinal() &&
   1556       (compiling_class.Get() != resolved_field->GetDeclaringClass())) {
   1557     // Final fields can only be updated within their own class.
   1558     // TODO: Only allow it in constructors. b/34966607.
   1559     return nullptr;
   1560   }
   1561 
   1562   return resolved_field;
   1563 }
   1564 
   1565 void HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
   1566                                                  uint32_t dex_pc,
   1567                                                  bool is_put) {
   1568   uint32_t source_or_dest_reg = instruction.VRegA_21c();
   1569   uint16_t field_index = instruction.VRegB_21c();
   1570 
   1571   ScopedObjectAccess soa(Thread::Current());
   1572   ArtField* resolved_field = ResolveField(field_index, /* is_static */ true, is_put);
   1573 
   1574   if (resolved_field == nullptr) {
   1575     MaybeRecordStat(compilation_stats_,
   1576                     MethodCompilationStat::kUnresolvedField);
   1577     DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
   1578     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
   1579     return;
   1580   }
   1581 
   1582   DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
   1583 
   1584   Handle<mirror::Class> klass = handles_->NewHandle(resolved_field->GetDeclaringClass());
   1585   HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(),
   1586                                         klass->GetDexFile(),
   1587                                         klass,
   1588                                         dex_pc,
   1589                                         /* needs_access_check */ false);
   1590 
   1591   if (constant == nullptr) {
   1592     // The class cannot be referenced from this compiled code. Generate
   1593     // an unresolved access.
   1594     MaybeRecordStat(compilation_stats_,
   1595                     MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
   1596     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
   1597     return;
   1598   }
   1599 
   1600   HInstruction* cls = constant;
   1601   if (!IsInitialized(klass)) {
   1602     cls = new (allocator_) HClinitCheck(constant, dex_pc);
   1603     AppendInstruction(cls);
   1604   }
   1605 
   1606   uint16_t class_def_index = klass->GetDexClassDefIndex();
   1607   if (is_put) {
   1608     // We need to keep the class alive before loading the value.
   1609     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
   1610     DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
   1611     AppendInstruction(new (allocator_) HStaticFieldSet(cls,
   1612                                                        value,
   1613                                                        resolved_field,
   1614                                                        field_type,
   1615                                                        resolved_field->GetOffset(),
   1616                                                        resolved_field->IsVolatile(),
   1617                                                        field_index,
   1618                                                        class_def_index,
   1619                                                        *dex_file_,
   1620                                                        dex_pc));
   1621   } else {
   1622     AppendInstruction(new (allocator_) HStaticFieldGet(cls,
   1623                                                        resolved_field,
   1624                                                        field_type,
   1625                                                        resolved_field->GetOffset(),
   1626                                                        resolved_field->IsVolatile(),
   1627                                                        field_index,
   1628                                                        class_def_index,
   1629                                                        *dex_file_,
   1630                                                        dex_pc));
   1631     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
   1632   }
   1633 }
   1634 
   1635 void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
   1636                                              uint16_t first_vreg,
   1637                                              int64_t second_vreg_or_constant,
   1638                                              uint32_t dex_pc,
   1639                                              DataType::Type type,
   1640                                              bool second_is_constant,
   1641                                              bool isDiv) {
   1642   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
   1643 
   1644   HInstruction* first = LoadLocal(first_vreg, type);
   1645   HInstruction* second = nullptr;
   1646   if (second_is_constant) {
   1647     if (type == DataType::Type::kInt32) {
   1648       second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
   1649     } else {
   1650       second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
   1651     }
   1652   } else {
   1653     second = LoadLocal(second_vreg_or_constant, type);
   1654   }
   1655 
   1656   if (!second_is_constant
   1657       || (type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0)
   1658       || (type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) {
   1659     second = new (allocator_) HDivZeroCheck(second, dex_pc);
   1660     AppendInstruction(second);
   1661   }
   1662 
   1663   if (isDiv) {
   1664     AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc));
   1665   } else {
   1666     AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc));
   1667   }
   1668   UpdateLocal(out_vreg, current_block_->GetLastInstruction());
   1669 }
   1670 
   1671 void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
   1672                                            uint32_t dex_pc,
   1673                                            bool is_put,
   1674                                            DataType::Type anticipated_type) {
   1675   uint8_t source_or_dest_reg = instruction.VRegA_23x();
   1676   uint8_t array_reg = instruction.VRegB_23x();
   1677   uint8_t index_reg = instruction.VRegC_23x();
   1678 
   1679   HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc);
   1680   HInstruction* length = new (allocator_) HArrayLength(object, dex_pc);
   1681   AppendInstruction(length);
   1682   HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32);
   1683   index = new (allocator_) HBoundsCheck(index, length, dex_pc);
   1684   AppendInstruction(index);
   1685   if (is_put) {
   1686     HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
   1687     // TODO: Insert a type check node if the type is Object.
   1688     HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
   1689     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1690     AppendInstruction(aset);
   1691   } else {
   1692     HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc);
   1693     ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
   1694     AppendInstruction(aget);
   1695     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
   1696   }
   1697   graph_->SetHasBoundsChecks(true);
   1698 }
   1699 
   1700 HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
   1701                                                     dex::TypeIndex type_index,
   1702                                                     uint32_t number_of_vreg_arguments,
   1703                                                     bool is_range,
   1704                                                     uint32_t* args,
   1705                                                     uint32_t register_index) {
   1706   HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc);
   1707   HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
   1708   HNewArray* const object = new (allocator_) HNewArray(cls, length, dex_pc);
   1709   AppendInstruction(object);
   1710 
   1711   const char* descriptor = dex_file_->StringByTypeIdx(type_index);
   1712   DCHECK_EQ(descriptor[0], '[') << descriptor;
   1713   char primitive = descriptor[1];
   1714   DCHECK(primitive == 'I'
   1715       || primitive == 'L'
   1716       || primitive == '[') << descriptor;
   1717   bool is_reference_array = (primitive == 'L') || (primitive == '[');
   1718   DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32;
   1719 
   1720   for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
   1721     HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type);
   1722     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
   1723     HArraySet* aset = new (allocator_) HArraySet(object, index, value, type, dex_pc);
   1724     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1725     AppendInstruction(aset);
   1726   }
   1727   latest_result_ = object;
   1728 
   1729   return object;
   1730 }
   1731 
   1732 template <typename T>
   1733 void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
   1734                                              const T* data,
   1735                                              uint32_t element_count,
   1736                                              DataType::Type anticipated_type,
   1737                                              uint32_t dex_pc) {
   1738   for (uint32_t i = 0; i < element_count; ++i) {
   1739     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
   1740     HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
   1741     HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
   1742     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1743     AppendInstruction(aset);
   1744   }
   1745 }
   1746 
   1747 void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
   1748   HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc);
   1749 
   1750   int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
   1751   const Instruction::ArrayDataPayload* payload =
   1752       reinterpret_cast<const Instruction::ArrayDataPayload*>(
   1753           code_item_accessor_.Insns() + payload_offset);
   1754   const uint8_t* data = payload->data;
   1755   uint32_t element_count = payload->element_count;
   1756 
   1757   if (element_count == 0u) {
   1758     // For empty payload we emit only the null check above.
   1759     return;
   1760   }
   1761 
   1762   HInstruction* length = new (allocator_) HArrayLength(array, dex_pc);
   1763   AppendInstruction(length);
   1764 
   1765   // Implementation of this DEX instruction seems to be that the bounds check is
   1766   // done before doing any stores.
   1767   HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
   1768   AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc));
   1769 
   1770   switch (payload->element_width) {
   1771     case 1:
   1772       BuildFillArrayData(array,
   1773                          reinterpret_cast<const int8_t*>(data),
   1774                          element_count,
   1775                          DataType::Type::kInt8,
   1776                          dex_pc);
   1777       break;
   1778     case 2:
   1779       BuildFillArrayData(array,
   1780                          reinterpret_cast<const int16_t*>(data),
   1781                          element_count,
   1782                          DataType::Type::kInt16,
   1783                          dex_pc);
   1784       break;
   1785     case 4:
   1786       BuildFillArrayData(array,
   1787                          reinterpret_cast<const int32_t*>(data),
   1788                          element_count,
   1789                          DataType::Type::kInt32,
   1790                          dex_pc);
   1791       break;
   1792     case 8:
   1793       BuildFillWideArrayData(array,
   1794                              reinterpret_cast<const int64_t*>(data),
   1795                              element_count,
   1796                              dex_pc);
   1797       break;
   1798     default:
   1799       LOG(FATAL) << "Unknown element width for " << payload->element_width;
   1800   }
   1801   graph_->SetHasBoundsChecks(true);
   1802 }
   1803 
   1804 void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
   1805                                                  const int64_t* data,
   1806                                                  uint32_t element_count,
   1807                                                  uint32_t dex_pc) {
   1808   for (uint32_t i = 0; i < element_count; ++i) {
   1809     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
   1810     HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
   1811     HArraySet* aset =
   1812         new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc);
   1813     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1814     AppendInstruction(aset);
   1815   }
   1816 }
   1817 
   1818 static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls)
   1819     REQUIRES_SHARED(Locks::mutator_lock_) {
   1820   if (cls == nullptr) {
   1821     return TypeCheckKind::kUnresolvedCheck;
   1822   } else if (cls->IsInterface()) {
   1823     return TypeCheckKind::kInterfaceCheck;
   1824   } else if (cls->IsArrayClass()) {
   1825     if (cls->GetComponentType()->IsObjectClass()) {
   1826       return TypeCheckKind::kArrayObjectCheck;
   1827     } else if (cls->CannotBeAssignedFromOtherTypes()) {
   1828       return TypeCheckKind::kExactCheck;
   1829     } else {
   1830       return TypeCheckKind::kArrayCheck;
   1831     }
   1832   } else if (cls->IsFinal()) {
   1833     return TypeCheckKind::kExactCheck;
   1834   } else if (cls->IsAbstract()) {
   1835     return TypeCheckKind::kAbstractClassCheck;
   1836   } else {
   1837     return TypeCheckKind::kClassHierarchyCheck;
   1838   }
   1839 }
   1840 
   1841 void HInstructionBuilder::BuildLoadString(dex::StringIndex string_index, uint32_t dex_pc) {
   1842   HLoadString* load_string =
   1843       new (allocator_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc);
   1844   HSharpening::ProcessLoadString(load_string,
   1845                                  code_generator_,
   1846                                  compiler_driver_,
   1847                                  *dex_compilation_unit_,
   1848                                  handles_);
   1849   AppendInstruction(load_string);
   1850 }
   1851 
   1852 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) {
   1853   ScopedObjectAccess soa(Thread::Current());
   1854   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
   1855   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
   1856   Handle<mirror::Class> klass = handles_->NewHandle(compiler_driver_->ResolveClass(
   1857       soa, dex_compilation_unit_->GetDexCache(), class_loader, type_index, dex_compilation_unit_));
   1858 
   1859   bool needs_access_check = true;
   1860   if (klass != nullptr) {
   1861     if (klass->IsPublic()) {
   1862       needs_access_check = false;
   1863     } else {
   1864       ObjPtr<mirror::Class> compiling_class = GetCompilingClass();
   1865       if (compiling_class != nullptr && compiling_class->CanAccess(klass.Get())) {
   1866         needs_access_check = false;
   1867       }
   1868     }
   1869   }
   1870 
   1871   return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
   1872 }
   1873 
   1874 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index,
   1875                                                 const DexFile& dex_file,
   1876                                                 Handle<mirror::Class> klass,
   1877                                                 uint32_t dex_pc,
   1878                                                 bool needs_access_check) {
   1879   // Try to find a reference in the compiling dex file.
   1880   const DexFile* actual_dex_file = &dex_file;
   1881   if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) {
   1882     dex::TypeIndex local_type_index =
   1883         klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile());
   1884     if (local_type_index.IsValid()) {
   1885       type_index = local_type_index;
   1886       actual_dex_file = dex_compilation_unit_->GetDexFile();
   1887     }
   1888   }
   1889 
   1890   // Note: `klass` must be from `handles_`.
   1891   HLoadClass* load_class = new (allocator_) HLoadClass(
   1892       graph_->GetCurrentMethod(),
   1893       type_index,
   1894       *actual_dex_file,
   1895       klass,
   1896       klass != nullptr && (klass.Get() == GetOutermostCompilingClass()),
   1897       dex_pc,
   1898       needs_access_check);
   1899 
   1900   HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class,
   1901                                                                      code_generator_,
   1902                                                                      compiler_driver_,
   1903                                                                      *dex_compilation_unit_);
   1904 
   1905   if (load_kind == HLoadClass::LoadKind::kInvalid) {
   1906     // We actually cannot reference this class, we're forced to bail.
   1907     return nullptr;
   1908   }
   1909   // Load kind must be set before inserting the instruction into the graph.
   1910   load_class->SetLoadKind(load_kind);
   1911   AppendInstruction(load_class);
   1912   return load_class;
   1913 }
   1914 
   1915 void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
   1916                                          uint8_t destination,
   1917                                          uint8_t reference,
   1918                                          dex::TypeIndex type_index,
   1919                                          uint32_t dex_pc) {
   1920   HInstruction* object = LoadLocal(reference, DataType::Type::kReference);
   1921   HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
   1922 
   1923   ScopedObjectAccess soa(Thread::Current());
   1924   TypeCheckKind check_kind = ComputeTypeCheckKind(cls->GetClass());
   1925   if (instruction.Opcode() == Instruction::INSTANCE_OF) {
   1926     AppendInstruction(new (allocator_) HInstanceOf(object, cls, check_kind, dex_pc));
   1927     UpdateLocal(destination, current_block_->GetLastInstruction());
   1928   } else {
   1929     DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
   1930     // We emit a CheckCast followed by a BoundType. CheckCast is a statement
   1931     // which may throw. If it succeeds BoundType sets the new type of `object`
   1932     // for all subsequent uses.
   1933     AppendInstruction(new (allocator_) HCheckCast(object, cls, check_kind, dex_pc));
   1934     AppendInstruction(new (allocator_) HBoundType(object, dex_pc));
   1935     UpdateLocal(reference, current_block_->GetLastInstruction());
   1936   }
   1937 }
   1938 
   1939 bool HInstructionBuilder::NeedsAccessCheck(dex::TypeIndex type_index, bool* finalizable) const {
   1940   return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
   1941       LookupReferrerClass(), LookupResolvedType(type_index, *dex_compilation_unit_), finalizable);
   1942 }
   1943 
   1944 bool HInstructionBuilder::CanDecodeQuickenedInfo() const {
   1945   return !quicken_info_.IsNull();
   1946 }
   1947 
   1948 uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t quicken_index) {
   1949   DCHECK(CanDecodeQuickenedInfo());
   1950   return quicken_info_.GetData(quicken_index);
   1951 }
   1952 
   1953 bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction,
   1954                                                 uint32_t dex_pc,
   1955                                                 size_t quicken_index) {
   1956   switch (instruction.Opcode()) {
   1957     case Instruction::CONST_4: {
   1958       int32_t register_index = instruction.VRegA();
   1959       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
   1960       UpdateLocal(register_index, constant);
   1961       break;
   1962     }
   1963 
   1964     case Instruction::CONST_16: {
   1965       int32_t register_index = instruction.VRegA();
   1966       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
   1967       UpdateLocal(register_index, constant);
   1968       break;
   1969     }
   1970 
   1971     case Instruction::CONST: {
   1972       int32_t register_index = instruction.VRegA();
   1973       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
   1974       UpdateLocal(register_index, constant);
   1975       break;
   1976     }
   1977 
   1978     case Instruction::CONST_HIGH16: {
   1979       int32_t register_index = instruction.VRegA();
   1980       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
   1981       UpdateLocal(register_index, constant);
   1982       break;
   1983     }
   1984 
   1985     case Instruction::CONST_WIDE_16: {
   1986       int32_t register_index = instruction.VRegA();
   1987       // Get 16 bits of constant value, sign extended to 64 bits.
   1988       int64_t value = instruction.VRegB_21s();
   1989       value <<= 48;
   1990       value >>= 48;
   1991       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
   1992       UpdateLocal(register_index, constant);
   1993       break;
   1994     }
   1995 
   1996     case Instruction::CONST_WIDE_32: {
   1997       int32_t register_index = instruction.VRegA();
   1998       // Get 32 bits of constant value, sign extended to 64 bits.
   1999       int64_t value = instruction.VRegB_31i();
   2000       value <<= 32;
   2001       value >>= 32;
   2002       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
   2003       UpdateLocal(register_index, constant);
   2004       break;
   2005     }
   2006 
   2007     case Instruction::CONST_WIDE: {
   2008       int32_t register_index = instruction.VRegA();
   2009       HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
   2010       UpdateLocal(register_index, constant);
   2011       break;
   2012     }
   2013 
   2014     case Instruction::CONST_WIDE_HIGH16: {
   2015       int32_t register_index = instruction.VRegA();
   2016       int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
   2017       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
   2018       UpdateLocal(register_index, constant);
   2019       break;
   2020     }
   2021 
   2022     // Note that the SSA building will refine the types.
   2023     case Instruction::MOVE:
   2024     case Instruction::MOVE_FROM16:
   2025     case Instruction::MOVE_16: {
   2026       HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
   2027       UpdateLocal(instruction.VRegA(), value);
   2028       break;
   2029     }
   2030 
   2031     // Note that the SSA building will refine the types.
   2032     case Instruction::MOVE_WIDE:
   2033     case Instruction::MOVE_WIDE_FROM16:
   2034     case Instruction::MOVE_WIDE_16: {
   2035       HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64);
   2036       UpdateLocal(instruction.VRegA(), value);
   2037       break;
   2038     }
   2039 
   2040     case Instruction::MOVE_OBJECT:
   2041     case Instruction::MOVE_OBJECT_16:
   2042     case Instruction::MOVE_OBJECT_FROM16: {
   2043       // The verifier has no notion of a null type, so a move-object of constant 0
   2044       // will lead to the same constant 0 in the destination register. To mimic
   2045       // this behavior, we just pretend we haven't seen a type change (int to reference)
   2046       // for the 0 constant and phis. We rely on our type propagation to eventually get the
   2047       // types correct.
   2048       uint32_t reg_number = instruction.VRegB();
   2049       HInstruction* value = (*current_locals_)[reg_number];
   2050       if (value->IsIntConstant()) {
   2051         DCHECK_EQ(value->AsIntConstant()->GetValue(), 0);
   2052       } else if (value->IsPhi()) {
   2053         DCHECK(value->GetType() == DataType::Type::kInt32 ||
   2054                value->GetType() == DataType::Type::kReference);
   2055       } else {
   2056         value = LoadLocal(reg_number, DataType::Type::kReference);
   2057       }
   2058       UpdateLocal(instruction.VRegA(), value);
   2059       break;
   2060     }
   2061 
   2062     case Instruction::RETURN_VOID_NO_BARRIER:
   2063     case Instruction::RETURN_VOID: {
   2064       BuildReturn(instruction, DataType::Type::kVoid, dex_pc);
   2065       break;
   2066     }
   2067 
   2068 #define IF_XX(comparison, cond) \
   2069     case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
   2070     case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
   2071 
   2072     IF_XX(HEqual, EQ);
   2073     IF_XX(HNotEqual, NE);
   2074     IF_XX(HLessThan, LT);
   2075     IF_XX(HLessThanOrEqual, LE);
   2076     IF_XX(HGreaterThan, GT);
   2077     IF_XX(HGreaterThanOrEqual, GE);
   2078 
   2079     case Instruction::GOTO:
   2080     case Instruction::GOTO_16:
   2081     case Instruction::GOTO_32: {
   2082       AppendInstruction(new (allocator_) HGoto(dex_pc));
   2083       current_block_ = nullptr;
   2084       break;
   2085     }
   2086 
   2087     case Instruction::RETURN: {
   2088       BuildReturn(instruction, return_type_, dex_pc);
   2089       break;
   2090     }
   2091 
   2092     case Instruction::RETURN_OBJECT: {
   2093       BuildReturn(instruction, return_type_, dex_pc);
   2094       break;
   2095     }
   2096 
   2097     case Instruction::RETURN_WIDE: {
   2098       BuildReturn(instruction, return_type_, dex_pc);
   2099       break;
   2100     }
   2101 
   2102     case Instruction::INVOKE_DIRECT:
   2103     case Instruction::INVOKE_INTERFACE:
   2104     case Instruction::INVOKE_STATIC:
   2105     case Instruction::INVOKE_SUPER:
   2106     case Instruction::INVOKE_VIRTUAL:
   2107     case Instruction::INVOKE_VIRTUAL_QUICK: {
   2108       uint16_t method_idx;
   2109       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
   2110         if (!CanDecodeQuickenedInfo()) {
   2111           VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
   2112                          << instruction.Opcode();
   2113           return false;
   2114         }
   2115         method_idx = LookupQuickenedInfo(quicken_index);
   2116       } else {
   2117         method_idx = instruction.VRegB_35c();
   2118       }
   2119       uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
   2120       uint32_t args[5];
   2121       instruction.GetVarArgs(args);
   2122       if (!BuildInvoke(instruction, dex_pc, method_idx,
   2123                        number_of_vreg_arguments, false, args, -1)) {
   2124         return false;
   2125       }
   2126       break;
   2127     }
   2128 
   2129     case Instruction::INVOKE_DIRECT_RANGE:
   2130     case Instruction::INVOKE_INTERFACE_RANGE:
   2131     case Instruction::INVOKE_STATIC_RANGE:
   2132     case Instruction::INVOKE_SUPER_RANGE:
   2133     case Instruction::INVOKE_VIRTUAL_RANGE:
   2134     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
   2135       uint16_t method_idx;
   2136       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
   2137         if (!CanDecodeQuickenedInfo()) {
   2138           VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
   2139                          << instruction.Opcode();
   2140           return false;
   2141         }
   2142         method_idx = LookupQuickenedInfo(quicken_index);
   2143       } else {
   2144         method_idx = instruction.VRegB_3rc();
   2145       }
   2146       uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
   2147       uint32_t register_index = instruction.VRegC();
   2148       if (!BuildInvoke(instruction, dex_pc, method_idx,
   2149                        number_of_vreg_arguments, true, nullptr, register_index)) {
   2150         return false;
   2151       }
   2152       break;
   2153     }
   2154 
   2155     case Instruction::INVOKE_POLYMORPHIC: {
   2156       uint16_t method_idx = instruction.VRegB_45cc();
   2157       uint16_t proto_idx = instruction.VRegH_45cc();
   2158       uint32_t number_of_vreg_arguments = instruction.VRegA_45cc();
   2159       uint32_t args[5];
   2160       instruction.GetVarArgs(args);
   2161       return BuildInvokePolymorphic(instruction,
   2162                                     dex_pc,
   2163                                     method_idx,
   2164                                     proto_idx,
   2165                                     number_of_vreg_arguments,
   2166                                     false,
   2167                                     args,
   2168                                     -1);
   2169     }
   2170 
   2171     case Instruction::INVOKE_POLYMORPHIC_RANGE: {
   2172       uint16_t method_idx = instruction.VRegB_4rcc();
   2173       uint16_t proto_idx = instruction.VRegH_4rcc();
   2174       uint32_t number_of_vreg_arguments = instruction.VRegA_4rcc();
   2175       uint32_t register_index = instruction.VRegC_4rcc();
   2176       return BuildInvokePolymorphic(instruction,
   2177                                     dex_pc,
   2178                                     method_idx,
   2179                                     proto_idx,
   2180                                     number_of_vreg_arguments,
   2181                                     true,
   2182                                     nullptr,
   2183                                     register_index);
   2184     }
   2185 
   2186     case Instruction::NEG_INT: {
   2187       Unop_12x<HNeg>(instruction, DataType::Type::kInt32, dex_pc);
   2188       break;
   2189     }
   2190 
   2191     case Instruction::NEG_LONG: {
   2192       Unop_12x<HNeg>(instruction, DataType::Type::kInt64, dex_pc);
   2193       break;
   2194     }
   2195 
   2196     case Instruction::NEG_FLOAT: {
   2197       Unop_12x<HNeg>(instruction, DataType::Type::kFloat32, dex_pc);
   2198       break;
   2199     }
   2200 
   2201     case Instruction::NEG_DOUBLE: {
   2202       Unop_12x<HNeg>(instruction, DataType::Type::kFloat64, dex_pc);
   2203       break;
   2204     }
   2205 
   2206     case Instruction::NOT_INT: {
   2207       Unop_12x<HNot>(instruction, DataType::Type::kInt32, dex_pc);
   2208       break;
   2209     }
   2210 
   2211     case Instruction::NOT_LONG: {
   2212       Unop_12x<HNot>(instruction, DataType::Type::kInt64, dex_pc);
   2213       break;
   2214     }
   2215 
   2216     case Instruction::INT_TO_LONG: {
   2217       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc);
   2218       break;
   2219     }
   2220 
   2221     case Instruction::INT_TO_FLOAT: {
   2222       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc);
   2223       break;
   2224     }
   2225 
   2226     case Instruction::INT_TO_DOUBLE: {
   2227       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc);
   2228       break;
   2229     }
   2230 
   2231     case Instruction::LONG_TO_INT: {
   2232       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc);
   2233       break;
   2234     }
   2235 
   2236     case Instruction::LONG_TO_FLOAT: {
   2237       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc);
   2238       break;
   2239     }
   2240 
   2241     case Instruction::LONG_TO_DOUBLE: {
   2242       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc);
   2243       break;
   2244     }
   2245 
   2246     case Instruction::FLOAT_TO_INT: {
   2247       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc);
   2248       break;
   2249     }
   2250 
   2251     case Instruction::FLOAT_TO_LONG: {
   2252       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc);
   2253       break;
   2254     }
   2255 
   2256     case Instruction::FLOAT_TO_DOUBLE: {
   2257       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc);
   2258       break;
   2259     }
   2260 
   2261     case Instruction::DOUBLE_TO_INT: {
   2262       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc);
   2263       break;
   2264     }
   2265 
   2266     case Instruction::DOUBLE_TO_LONG: {
   2267       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc);
   2268       break;
   2269     }
   2270 
   2271     case Instruction::DOUBLE_TO_FLOAT: {
   2272       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc);
   2273       break;
   2274     }
   2275 
   2276     case Instruction::INT_TO_BYTE: {
   2277       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc);
   2278       break;
   2279     }
   2280 
   2281     case Instruction::INT_TO_SHORT: {
   2282       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc);
   2283       break;
   2284     }
   2285 
   2286     case Instruction::INT_TO_CHAR: {
   2287       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc);
   2288       break;
   2289     }
   2290 
   2291     case Instruction::ADD_INT: {
   2292       Binop_23x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
   2293       break;
   2294     }
   2295 
   2296     case Instruction::ADD_LONG: {
   2297       Binop_23x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
   2298       break;
   2299     }
   2300 
   2301     case Instruction::ADD_DOUBLE: {
   2302       Binop_23x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
   2303       break;
   2304     }
   2305 
   2306     case Instruction::ADD_FLOAT: {
   2307       Binop_23x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
   2308       break;
   2309     }
   2310 
   2311     case Instruction::SUB_INT: {
   2312       Binop_23x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
   2313       break;
   2314     }
   2315 
   2316     case Instruction::SUB_LONG: {
   2317       Binop_23x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
   2318       break;
   2319     }
   2320 
   2321     case Instruction::SUB_FLOAT: {
   2322       Binop_23x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
   2323       break;
   2324     }
   2325 
   2326     case Instruction::SUB_DOUBLE: {
   2327       Binop_23x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
   2328       break;
   2329     }
   2330 
   2331     case Instruction::ADD_INT_2ADDR: {
   2332       Binop_12x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
   2333       break;
   2334     }
   2335 
   2336     case Instruction::MUL_INT: {
   2337       Binop_23x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
   2338       break;
   2339     }
   2340 
   2341     case Instruction::MUL_LONG: {
   2342       Binop_23x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
   2343       break;
   2344     }
   2345 
   2346     case Instruction::MUL_FLOAT: {
   2347       Binop_23x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
   2348       break;
   2349     }
   2350 
   2351     case Instruction::MUL_DOUBLE: {
   2352       Binop_23x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
   2353       break;
   2354     }
   2355 
   2356     case Instruction::DIV_INT: {
   2357       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2358                          dex_pc, DataType::Type::kInt32, false, true);
   2359       break;
   2360     }
   2361 
   2362     case Instruction::DIV_LONG: {
   2363       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2364                          dex_pc, DataType::Type::kInt64, false, true);
   2365       break;
   2366     }
   2367 
   2368     case Instruction::DIV_FLOAT: {
   2369       Binop_23x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
   2370       break;
   2371     }
   2372 
   2373     case Instruction::DIV_DOUBLE: {
   2374       Binop_23x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
   2375       break;
   2376     }
   2377 
   2378     case Instruction::REM_INT: {
   2379       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2380                          dex_pc, DataType::Type::kInt32, false, false);
   2381       break;
   2382     }
   2383 
   2384     case Instruction::REM_LONG: {
   2385       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2386                          dex_pc, DataType::Type::kInt64, false, false);
   2387       break;
   2388     }
   2389 
   2390     case Instruction::REM_FLOAT: {
   2391       Binop_23x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
   2392       break;
   2393     }
   2394 
   2395     case Instruction::REM_DOUBLE: {
   2396       Binop_23x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
   2397       break;
   2398     }
   2399 
   2400     case Instruction::AND_INT: {
   2401       Binop_23x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
   2402       break;
   2403     }
   2404 
   2405     case Instruction::AND_LONG: {
   2406       Binop_23x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
   2407       break;
   2408     }
   2409 
   2410     case Instruction::SHL_INT: {
   2411       Binop_23x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
   2412       break;
   2413     }
   2414 
   2415     case Instruction::SHL_LONG: {
   2416       Binop_23x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
   2417       break;
   2418     }
   2419 
   2420     case Instruction::SHR_INT: {
   2421       Binop_23x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
   2422       break;
   2423     }
   2424 
   2425     case Instruction::SHR_LONG: {
   2426       Binop_23x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
   2427       break;
   2428     }
   2429 
   2430     case Instruction::USHR_INT: {
   2431       Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
   2432       break;
   2433     }
   2434 
   2435     case Instruction::USHR_LONG: {
   2436       Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
   2437       break;
   2438     }
   2439 
   2440     case Instruction::OR_INT: {
   2441       Binop_23x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
   2442       break;
   2443     }
   2444 
   2445     case Instruction::OR_LONG: {
   2446       Binop_23x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
   2447       break;
   2448     }
   2449 
   2450     case Instruction::XOR_INT: {
   2451       Binop_23x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
   2452       break;
   2453     }
   2454 
   2455     case Instruction::XOR_LONG: {
   2456       Binop_23x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
   2457       break;
   2458     }
   2459 
   2460     case Instruction::ADD_LONG_2ADDR: {
   2461       Binop_12x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
   2462       break;
   2463     }
   2464 
   2465     case Instruction::ADD_DOUBLE_2ADDR: {
   2466       Binop_12x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
   2467       break;
   2468     }
   2469 
   2470     case Instruction::ADD_FLOAT_2ADDR: {
   2471       Binop_12x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
   2472       break;
   2473     }
   2474 
   2475     case Instruction::SUB_INT_2ADDR: {
   2476       Binop_12x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
   2477       break;
   2478     }
   2479 
   2480     case Instruction::SUB_LONG_2ADDR: {
   2481       Binop_12x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
   2482       break;
   2483     }
   2484 
   2485     case Instruction::SUB_FLOAT_2ADDR: {
   2486       Binop_12x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
   2487       break;
   2488     }
   2489 
   2490     case Instruction::SUB_DOUBLE_2ADDR: {
   2491       Binop_12x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
   2492       break;
   2493     }
   2494 
   2495     case Instruction::MUL_INT_2ADDR: {
   2496       Binop_12x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
   2497       break;
   2498     }
   2499 
   2500     case Instruction::MUL_LONG_2ADDR: {
   2501       Binop_12x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
   2502       break;
   2503     }
   2504 
   2505     case Instruction::MUL_FLOAT_2ADDR: {
   2506       Binop_12x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
   2507       break;
   2508     }
   2509 
   2510     case Instruction::MUL_DOUBLE_2ADDR: {
   2511       Binop_12x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
   2512       break;
   2513     }
   2514 
   2515     case Instruction::DIV_INT_2ADDR: {
   2516       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2517                          dex_pc, DataType::Type::kInt32, false, true);
   2518       break;
   2519     }
   2520 
   2521     case Instruction::DIV_LONG_2ADDR: {
   2522       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2523                          dex_pc, DataType::Type::kInt64, false, true);
   2524       break;
   2525     }
   2526 
   2527     case Instruction::REM_INT_2ADDR: {
   2528       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2529                          dex_pc, DataType::Type::kInt32, false, false);
   2530       break;
   2531     }
   2532 
   2533     case Instruction::REM_LONG_2ADDR: {
   2534       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2535                          dex_pc, DataType::Type::kInt64, false, false);
   2536       break;
   2537     }
   2538 
   2539     case Instruction::REM_FLOAT_2ADDR: {
   2540       Binop_12x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
   2541       break;
   2542     }
   2543 
   2544     case Instruction::REM_DOUBLE_2ADDR: {
   2545       Binop_12x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
   2546       break;
   2547     }
   2548 
   2549     case Instruction::SHL_INT_2ADDR: {
   2550       Binop_12x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
   2551       break;
   2552     }
   2553 
   2554     case Instruction::SHL_LONG_2ADDR: {
   2555       Binop_12x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
   2556       break;
   2557     }
   2558 
   2559     case Instruction::SHR_INT_2ADDR: {
   2560       Binop_12x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
   2561       break;
   2562     }
   2563 
   2564     case Instruction::SHR_LONG_2ADDR: {
   2565       Binop_12x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
   2566       break;
   2567     }
   2568 
   2569     case Instruction::USHR_INT_2ADDR: {
   2570       Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
   2571       break;
   2572     }
   2573 
   2574     case Instruction::USHR_LONG_2ADDR: {
   2575       Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
   2576       break;
   2577     }
   2578 
   2579     case Instruction::DIV_FLOAT_2ADDR: {
   2580       Binop_12x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
   2581       break;
   2582     }
   2583 
   2584     case Instruction::DIV_DOUBLE_2ADDR: {
   2585       Binop_12x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
   2586       break;
   2587     }
   2588 
   2589     case Instruction::AND_INT_2ADDR: {
   2590       Binop_12x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
   2591       break;
   2592     }
   2593 
   2594     case Instruction::AND_LONG_2ADDR: {
   2595       Binop_12x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
   2596       break;
   2597     }
   2598 
   2599     case Instruction::OR_INT_2ADDR: {
   2600       Binop_12x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
   2601       break;
   2602     }
   2603 
   2604     case Instruction::OR_LONG_2ADDR: {
   2605       Binop_12x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
   2606       break;
   2607     }
   2608 
   2609     case Instruction::XOR_INT_2ADDR: {
   2610       Binop_12x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
   2611       break;
   2612     }
   2613 
   2614     case Instruction::XOR_LONG_2ADDR: {
   2615       Binop_12x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
   2616       break;
   2617     }
   2618 
   2619     case Instruction::ADD_INT_LIT16: {
   2620       Binop_22s<HAdd>(instruction, false, dex_pc);
   2621       break;
   2622     }
   2623 
   2624     case Instruction::AND_INT_LIT16: {
   2625       Binop_22s<HAnd>(instruction, false, dex_pc);
   2626       break;
   2627     }
   2628 
   2629     case Instruction::OR_INT_LIT16: {
   2630       Binop_22s<HOr>(instruction, false, dex_pc);
   2631       break;
   2632     }
   2633 
   2634     case Instruction::XOR_INT_LIT16: {
   2635       Binop_22s<HXor>(instruction, false, dex_pc);
   2636       break;
   2637     }
   2638 
   2639     case Instruction::RSUB_INT: {
   2640       Binop_22s<HSub>(instruction, true, dex_pc);
   2641       break;
   2642     }
   2643 
   2644     case Instruction::MUL_INT_LIT16: {
   2645       Binop_22s<HMul>(instruction, false, dex_pc);
   2646       break;
   2647     }
   2648 
   2649     case Instruction::ADD_INT_LIT8: {
   2650       Binop_22b<HAdd>(instruction, false, dex_pc);
   2651       break;
   2652     }
   2653 
   2654     case Instruction::AND_INT_LIT8: {
   2655       Binop_22b<HAnd>(instruction, false, dex_pc);
   2656       break;
   2657     }
   2658 
   2659     case Instruction::OR_INT_LIT8: {
   2660       Binop_22b<HOr>(instruction, false, dex_pc);
   2661       break;
   2662     }
   2663 
   2664     case Instruction::XOR_INT_LIT8: {
   2665       Binop_22b<HXor>(instruction, false, dex_pc);
   2666       break;
   2667     }
   2668 
   2669     case Instruction::RSUB_INT_LIT8: {
   2670       Binop_22b<HSub>(instruction, true, dex_pc);
   2671       break;
   2672     }
   2673 
   2674     case Instruction::MUL_INT_LIT8: {
   2675       Binop_22b<HMul>(instruction, false, dex_pc);
   2676       break;
   2677     }
   2678 
   2679     case Instruction::DIV_INT_LIT16:
   2680     case Instruction::DIV_INT_LIT8: {
   2681       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2682                          dex_pc, DataType::Type::kInt32, true, true);
   2683       break;
   2684     }
   2685 
   2686     case Instruction::REM_INT_LIT16:
   2687     case Instruction::REM_INT_LIT8: {
   2688       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2689                          dex_pc, DataType::Type::kInt32, true, false);
   2690       break;
   2691     }
   2692 
   2693     case Instruction::SHL_INT_LIT8: {
   2694       Binop_22b<HShl>(instruction, false, dex_pc);
   2695       break;
   2696     }
   2697 
   2698     case Instruction::SHR_INT_LIT8: {
   2699       Binop_22b<HShr>(instruction, false, dex_pc);
   2700       break;
   2701     }
   2702 
   2703     case Instruction::USHR_INT_LIT8: {
   2704       Binop_22b<HUShr>(instruction, false, dex_pc);
   2705       break;
   2706     }
   2707 
   2708     case Instruction::NEW_INSTANCE: {
   2709       HNewInstance* new_instance =
   2710           BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc);
   2711       DCHECK(new_instance != nullptr);
   2712 
   2713       UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
   2714       BuildConstructorFenceForAllocation(new_instance);
   2715       break;
   2716     }
   2717 
   2718     case Instruction::NEW_ARRAY: {
   2719       dex::TypeIndex type_index(instruction.VRegC_22c());
   2720       HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32);
   2721       HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
   2722 
   2723       HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc);
   2724       AppendInstruction(new_array);
   2725       UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
   2726       BuildConstructorFenceForAllocation(new_array);
   2727       break;
   2728     }
   2729 
   2730     case Instruction::FILLED_NEW_ARRAY: {
   2731       uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
   2732       dex::TypeIndex type_index(instruction.VRegB_35c());
   2733       uint32_t args[5];
   2734       instruction.GetVarArgs(args);
   2735       HNewArray* new_array = BuildFilledNewArray(dex_pc,
   2736                                                  type_index,
   2737                                                  number_of_vreg_arguments,
   2738                                                  /* is_range */ false,
   2739                                                  args,
   2740                                                  /* register_index */ 0);
   2741       BuildConstructorFenceForAllocation(new_array);
   2742       break;
   2743     }
   2744 
   2745     case Instruction::FILLED_NEW_ARRAY_RANGE: {
   2746       uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
   2747       dex::TypeIndex type_index(instruction.VRegB_3rc());
   2748       uint32_t register_index = instruction.VRegC_3rc();
   2749       HNewArray* new_array = BuildFilledNewArray(dex_pc,
   2750                                                  type_index,
   2751                                                  number_of_vreg_arguments,
   2752                                                  /* is_range */ true,
   2753                                                  /* args*/ nullptr,
   2754                                                  register_index);
   2755       BuildConstructorFenceForAllocation(new_array);
   2756       break;
   2757     }
   2758 
   2759     case Instruction::FILL_ARRAY_DATA: {
   2760       BuildFillArrayData(instruction, dex_pc);
   2761       break;
   2762     }
   2763 
   2764     case Instruction::MOVE_RESULT:
   2765     case Instruction::MOVE_RESULT_WIDE:
   2766     case Instruction::MOVE_RESULT_OBJECT: {
   2767       DCHECK(latest_result_ != nullptr);
   2768       UpdateLocal(instruction.VRegA(), latest_result_);
   2769       latest_result_ = nullptr;
   2770       break;
   2771     }
   2772 
   2773     case Instruction::CMP_LONG: {
   2774       Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc);
   2775       break;
   2776     }
   2777 
   2778     case Instruction::CMPG_FLOAT: {
   2779       Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc);
   2780       break;
   2781     }
   2782 
   2783     case Instruction::CMPG_DOUBLE: {
   2784       Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc);
   2785       break;
   2786     }
   2787 
   2788     case Instruction::CMPL_FLOAT: {
   2789       Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc);
   2790       break;
   2791     }
   2792 
   2793     case Instruction::CMPL_DOUBLE: {
   2794       Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc);
   2795       break;
   2796     }
   2797 
   2798     case Instruction::NOP:
   2799       break;
   2800 
   2801     case Instruction::IGET:
   2802     case Instruction::IGET_QUICK:
   2803     case Instruction::IGET_WIDE:
   2804     case Instruction::IGET_WIDE_QUICK:
   2805     case Instruction::IGET_OBJECT:
   2806     case Instruction::IGET_OBJECT_QUICK:
   2807     case Instruction::IGET_BOOLEAN:
   2808     case Instruction::IGET_BOOLEAN_QUICK:
   2809     case Instruction::IGET_BYTE:
   2810     case Instruction::IGET_BYTE_QUICK:
   2811     case Instruction::IGET_CHAR:
   2812     case Instruction::IGET_CHAR_QUICK:
   2813     case Instruction::IGET_SHORT:
   2814     case Instruction::IGET_SHORT_QUICK: {
   2815       if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put */ false, quicken_index)) {
   2816         return false;
   2817       }
   2818       break;
   2819     }
   2820 
   2821     case Instruction::IPUT:
   2822     case Instruction::IPUT_QUICK:
   2823     case Instruction::IPUT_WIDE:
   2824     case Instruction::IPUT_WIDE_QUICK:
   2825     case Instruction::IPUT_OBJECT:
   2826     case Instruction::IPUT_OBJECT_QUICK:
   2827     case Instruction::IPUT_BOOLEAN:
   2828     case Instruction::IPUT_BOOLEAN_QUICK:
   2829     case Instruction::IPUT_BYTE:
   2830     case Instruction::IPUT_BYTE_QUICK:
   2831     case Instruction::IPUT_CHAR:
   2832     case Instruction::IPUT_CHAR_QUICK:
   2833     case Instruction::IPUT_SHORT:
   2834     case Instruction::IPUT_SHORT_QUICK: {
   2835       if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put */ true, quicken_index)) {
   2836         return false;
   2837       }
   2838       break;
   2839     }
   2840 
   2841     case Instruction::SGET:
   2842     case Instruction::SGET_WIDE:
   2843     case Instruction::SGET_OBJECT:
   2844     case Instruction::SGET_BOOLEAN:
   2845     case Instruction::SGET_BYTE:
   2846     case Instruction::SGET_CHAR:
   2847     case Instruction::SGET_SHORT: {
   2848       BuildStaticFieldAccess(instruction, dex_pc, /* is_put */ false);
   2849       break;
   2850     }
   2851 
   2852     case Instruction::SPUT:
   2853     case Instruction::SPUT_WIDE:
   2854     case Instruction::SPUT_OBJECT:
   2855     case Instruction::SPUT_BOOLEAN:
   2856     case Instruction::SPUT_BYTE:
   2857     case Instruction::SPUT_CHAR:
   2858     case Instruction::SPUT_SHORT: {
   2859       BuildStaticFieldAccess(instruction, dex_pc, /* is_put */ true);
   2860       break;
   2861     }
   2862 
   2863 #define ARRAY_XX(kind, anticipated_type)                                          \
   2864     case Instruction::AGET##kind: {                                               \
   2865       BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
   2866       break;                                                                      \
   2867     }                                                                             \
   2868     case Instruction::APUT##kind: {                                               \
   2869       BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
   2870       break;                                                                      \
   2871     }
   2872 
   2873     ARRAY_XX(, DataType::Type::kInt32);
   2874     ARRAY_XX(_WIDE, DataType::Type::kInt64);
   2875     ARRAY_XX(_OBJECT, DataType::Type::kReference);
   2876     ARRAY_XX(_BOOLEAN, DataType::Type::kBool);
   2877     ARRAY_XX(_BYTE, DataType::Type::kInt8);
   2878     ARRAY_XX(_CHAR, DataType::Type::kUint16);
   2879     ARRAY_XX(_SHORT, DataType::Type::kInt16);
   2880 
   2881     case Instruction::ARRAY_LENGTH: {
   2882       HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc);
   2883       AppendInstruction(new (allocator_) HArrayLength(object, dex_pc));
   2884       UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
   2885       break;
   2886     }
   2887 
   2888     case Instruction::CONST_STRING: {
   2889       dex::StringIndex string_index(instruction.VRegB_21c());
   2890       BuildLoadString(string_index, dex_pc);
   2891       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
   2892       break;
   2893     }
   2894 
   2895     case Instruction::CONST_STRING_JUMBO: {
   2896       dex::StringIndex string_index(instruction.VRegB_31c());
   2897       BuildLoadString(string_index, dex_pc);
   2898       UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
   2899       break;
   2900     }
   2901 
   2902     case Instruction::CONST_CLASS: {
   2903       dex::TypeIndex type_index(instruction.VRegB_21c());
   2904       BuildLoadClass(type_index, dex_pc);
   2905       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
   2906       break;
   2907     }
   2908 
   2909     case Instruction::MOVE_EXCEPTION: {
   2910       AppendInstruction(new (allocator_) HLoadException(dex_pc));
   2911       UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
   2912       AppendInstruction(new (allocator_) HClearException(dex_pc));
   2913       break;
   2914     }
   2915 
   2916     case Instruction::THROW: {
   2917       HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference);
   2918       AppendInstruction(new (allocator_) HThrow(exception, dex_pc));
   2919       // We finished building this block. Set the current block to null to avoid
   2920       // adding dead instructions to it.
   2921       current_block_ = nullptr;
   2922       break;
   2923     }
   2924 
   2925     case Instruction::INSTANCE_OF: {
   2926       uint8_t destination = instruction.VRegA_22c();
   2927       uint8_t reference = instruction.VRegB_22c();
   2928       dex::TypeIndex type_index(instruction.VRegC_22c());
   2929       BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
   2930       break;
   2931     }
   2932 
   2933     case Instruction::CHECK_CAST: {
   2934       uint8_t reference = instruction.VRegA_21c();
   2935       dex::TypeIndex type_index(instruction.VRegB_21c());
   2936       BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
   2937       break;
   2938     }
   2939 
   2940     case Instruction::MONITOR_ENTER: {
   2941       AppendInstruction(new (allocator_) HMonitorOperation(
   2942           LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
   2943           HMonitorOperation::OperationKind::kEnter,
   2944           dex_pc));
   2945       break;
   2946     }
   2947 
   2948     case Instruction::MONITOR_EXIT: {
   2949       AppendInstruction(new (allocator_) HMonitorOperation(
   2950           LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
   2951           HMonitorOperation::OperationKind::kExit,
   2952           dex_pc));
   2953       break;
   2954     }
   2955 
   2956     case Instruction::SPARSE_SWITCH:
   2957     case Instruction::PACKED_SWITCH: {
   2958       BuildSwitch(instruction, dex_pc);
   2959       break;
   2960     }
   2961 
   2962     default:
   2963       VLOG(compiler) << "Did not compile "
   2964                      << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
   2965                      << " because of unhandled instruction "
   2966                      << instruction.Name();
   2967       MaybeRecordStat(compilation_stats_,
   2968                       MethodCompilationStat::kNotCompiledUnhandledInstruction);
   2969       return false;
   2970   }
   2971   return true;
   2972 }  // NOLINT(readability/fn_size)
   2973 
   2974 ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType(
   2975     dex::TypeIndex type_index,
   2976     const DexCompilationUnit& compilation_unit) const {
   2977   return compilation_unit.GetClassLinker()->LookupResolvedType(
   2978         type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
   2979 }
   2980 
   2981 ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const {
   2982   // TODO: Cache the result in a Handle<mirror::Class>.
   2983   const DexFile::MethodId& method_id =
   2984       dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
   2985   return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_);
   2986 }
   2987 
   2988 }  // namespace art
   2989