Home | History | Annotate | Download | only in mips
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_
     18 #define ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_
     19 
     20 #include <deque>
     21 #include <utility>
     22 #include <vector>
     23 
     24 #include "arch/mips/instruction_set_features_mips.h"
     25 #include "base/arena_containers.h"
     26 #include "base/enums.h"
     27 #include "base/macros.h"
     28 #include "base/stl_util_identity.h"
     29 #include "constants_mips.h"
     30 #include "globals.h"
     31 #include "heap_poisoning.h"
     32 #include "managed_register_mips.h"
     33 #include "offsets.h"
     34 #include "utils/assembler.h"
     35 #include "utils/jni_macro_assembler.h"
     36 #include "utils/label.h"
     37 
     38 namespace art {
     39 namespace mips {
     40 
     41 static constexpr size_t kMipsHalfwordSize = 2;
     42 static constexpr size_t kMipsWordSize = 4;
     43 static constexpr size_t kMipsDoublewordSize = 8;
     44 
     45 enum LoadOperandType {
     46   kLoadSignedByte,
     47   kLoadUnsignedByte,
     48   kLoadSignedHalfword,
     49   kLoadUnsignedHalfword,
     50   kLoadWord,
     51   kLoadDoubleword,
     52   kLoadQuadword
     53 };
     54 
     55 enum StoreOperandType {
     56   kStoreByte,
     57   kStoreHalfword,
     58   kStoreWord,
     59   kStoreDoubleword,
     60   kStoreQuadword
     61 };
     62 
     63 // Used to test the values returned by ClassS/ClassD.
     64 enum FPClassMaskType {
     65   kSignalingNaN      = 0x001,
     66   kQuietNaN          = 0x002,
     67   kNegativeInfinity  = 0x004,
     68   kNegativeNormal    = 0x008,
     69   kNegativeSubnormal = 0x010,
     70   kNegativeZero      = 0x020,
     71   kPositiveInfinity  = 0x040,
     72   kPositiveNormal    = 0x080,
     73   kPositiveSubnormal = 0x100,
     74   kPositiveZero      = 0x200,
     75 };
     76 
     77 // Instruction description in terms of input and output registers.
     78 // Used for instruction reordering.
     79 struct InOutRegMasks {
     80   InOutRegMasks()
     81       : gpr_outs_(0), gpr_ins_(0), fpr_outs_(0), fpr_ins_(0), cc_outs_(0), cc_ins_(0) {}
     82 
     83   inline InOutRegMasks& GprOuts(Register reg) {
     84     gpr_outs_ |= (1u << reg);
     85     gpr_outs_ &= ~1u;  // Ignore register ZERO.
     86     return *this;
     87   }
     88   template<typename T, typename... Ts>
     89   inline InOutRegMasks& GprOuts(T one, Ts... more) { GprOuts(one); GprOuts(more...); return *this; }
     90 
     91   inline InOutRegMasks& GprIns(Register reg) {
     92     gpr_ins_ |= (1u << reg);
     93     gpr_ins_ &= ~1u;  // Ignore register ZERO.
     94     return *this;
     95   }
     96   template<typename T, typename... Ts>
     97   inline InOutRegMasks& GprIns(T one, Ts... more) { GprIns(one); GprIns(more...); return *this; }
     98 
     99   inline InOutRegMasks& GprInOuts(Register reg) { GprIns(reg); GprOuts(reg); return *this; }
    100   template<typename T, typename... Ts>
    101   inline InOutRegMasks& GprInOuts(T one, Ts... more) {
    102     GprInOuts(one);
    103     GprInOuts(more...);
    104     return *this;
    105   }
    106 
    107   inline InOutRegMasks& FprOuts(FRegister reg) { fpr_outs_ |= (1u << reg); return *this; }
    108   inline InOutRegMasks& FprOuts(VectorRegister reg) { return FprOuts(static_cast<FRegister>(reg)); }
    109   template<typename T, typename... Ts>
    110   inline InOutRegMasks& FprOuts(T one, Ts... more) { FprOuts(one); FprOuts(more...); return *this; }
    111 
    112   inline InOutRegMasks& FprIns(FRegister reg) { fpr_ins_ |= (1u << reg); return *this; }
    113   inline InOutRegMasks& FprIns(VectorRegister reg) { return FprIns(static_cast<FRegister>(reg)); }
    114   template<typename T, typename... Ts>
    115   inline InOutRegMasks& FprIns(T one, Ts... more) { FprIns(one); FprIns(more...); return *this; }
    116 
    117   inline InOutRegMasks& FprInOuts(FRegister reg) { FprIns(reg); FprOuts(reg); return *this; }
    118   inline InOutRegMasks& FprInOuts(VectorRegister reg) {
    119     return FprInOuts(static_cast<FRegister>(reg));
    120   }
    121   template<typename T, typename... Ts>
    122   inline InOutRegMasks& FprInOuts(T one, Ts... more) {
    123     FprInOuts(one);
    124     FprInOuts(more...);
    125     return *this;
    126   }
    127 
    128   inline InOutRegMasks& CcOuts(int cc) { cc_outs_ |= (1u << cc); return *this; }
    129   template<typename T, typename... Ts>
    130   inline InOutRegMasks& CcOuts(T one, Ts... more) { CcOuts(one); CcOuts(more...); return *this; }
    131 
    132   inline InOutRegMasks& CcIns(int cc) { cc_ins_ |= (1u << cc); return *this; }
    133   template<typename T, typename... Ts>
    134   inline InOutRegMasks& CcIns(T one, Ts... more) { CcIns(one); CcIns(more...); return *this; }
    135 
    136   // Mask of output GPRs for the instruction.
    137   uint32_t gpr_outs_;
    138   // Mask of input GPRs for the instruction.
    139   uint32_t gpr_ins_;
    140   // Mask of output FPRs for the instruction.
    141   uint32_t fpr_outs_;
    142   // Mask of input FPRs for the instruction.
    143   uint32_t fpr_ins_;
    144   // Mask of output FPU condition code flags for the instruction.
    145   uint32_t cc_outs_;
    146   // Mask of input FPU condition code flags for the instruction.
    147   uint32_t cc_ins_;
    148 
    149   // TODO: add LO and HI.
    150 };
    151 
    152 class MipsLabel : public Label {
    153  public:
    154   MipsLabel() : prev_branch_id_plus_one_(0) {}
    155 
    156   MipsLabel(MipsLabel&& src)
    157       : Label(std::move(src)), prev_branch_id_plus_one_(src.prev_branch_id_plus_one_) {}
    158 
    159   void AdjustBoundPosition(int delta) {
    160     CHECK(IsBound());
    161     // Bound label's position is negative, hence decrementing it.
    162     position_ -= delta;
    163   }
    164 
    165  private:
    166   uint32_t prev_branch_id_plus_one_;  // To get distance from preceding branch, if any.
    167 
    168   friend class MipsAssembler;
    169   DISALLOW_COPY_AND_ASSIGN(MipsLabel);
    170 };
    171 
    172 // Assembler literal is a value embedded in code, retrieved using a PC-relative load.
    173 class Literal {
    174  public:
    175   static constexpr size_t kMaxSize = 8;
    176 
    177   Literal(uint32_t size, const uint8_t* data)
    178       : label_(), size_(size) {
    179     DCHECK_LE(size, Literal::kMaxSize);
    180     memcpy(data_, data, size);
    181   }
    182 
    183   template <typename T>
    184   T GetValue() const {
    185     DCHECK_EQ(size_, sizeof(T));
    186     T value;
    187     memcpy(&value, data_, sizeof(T));
    188     return value;
    189   }
    190 
    191   uint32_t GetSize() const {
    192     return size_;
    193   }
    194 
    195   const uint8_t* GetData() const {
    196     return data_;
    197   }
    198 
    199   MipsLabel* GetLabel() {
    200     return &label_;
    201   }
    202 
    203   const MipsLabel* GetLabel() const {
    204     return &label_;
    205   }
    206 
    207  private:
    208   MipsLabel label_;
    209   const uint32_t size_;
    210   uint8_t data_[kMaxSize];
    211 
    212   DISALLOW_COPY_AND_ASSIGN(Literal);
    213 };
    214 
    215 // Jump table: table of labels emitted after the literals. Similar to literals.
    216 class JumpTable {
    217  public:
    218   explicit JumpTable(std::vector<MipsLabel*>&& labels)
    219       : label_(), labels_(std::move(labels)) {
    220   }
    221 
    222   uint32_t GetSize() const {
    223     return static_cast<uint32_t>(labels_.size()) * sizeof(uint32_t);
    224   }
    225 
    226   const std::vector<MipsLabel*>& GetData() const {
    227     return labels_;
    228   }
    229 
    230   MipsLabel* GetLabel() {
    231     return &label_;
    232   }
    233 
    234   const MipsLabel* GetLabel() const {
    235     return &label_;
    236   }
    237 
    238  private:
    239   MipsLabel label_;
    240   std::vector<MipsLabel*> labels_;
    241 
    242   DISALLOW_COPY_AND_ASSIGN(JumpTable);
    243 };
    244 
    245 // Slowpath entered when Thread::Current()->_exception is non-null.
    246 class MipsExceptionSlowPath {
    247  public:
    248   explicit MipsExceptionSlowPath(MipsManagedRegister scratch, size_t stack_adjust)
    249       : scratch_(scratch), stack_adjust_(stack_adjust) {}
    250 
    251   MipsExceptionSlowPath(MipsExceptionSlowPath&& src)
    252       : scratch_(src.scratch_),
    253         stack_adjust_(src.stack_adjust_),
    254         exception_entry_(std::move(src.exception_entry_)) {}
    255 
    256  private:
    257   MipsLabel* Entry() { return &exception_entry_; }
    258   const MipsManagedRegister scratch_;
    259   const size_t stack_adjust_;
    260   MipsLabel exception_entry_;
    261 
    262   friend class MipsAssembler;
    263   DISALLOW_COPY_AND_ASSIGN(MipsExceptionSlowPath);
    264 };
    265 
    266 class MipsAssembler FINAL : public Assembler, public JNIMacroAssembler<PointerSize::k32> {
    267  public:
    268   using JNIBase = JNIMacroAssembler<PointerSize::k32>;
    269 
    270   explicit MipsAssembler(ArenaAllocator* allocator,
    271                          const MipsInstructionSetFeatures* instruction_set_features = nullptr)
    272       : Assembler(allocator),
    273         overwriting_(false),
    274         overwrite_location_(0),
    275         reordering_(true),
    276         ds_fsm_state_(kExpectingLabel),
    277         ds_fsm_target_pc_(0),
    278         literals_(allocator->Adapter(kArenaAllocAssembler)),
    279         jump_tables_(allocator->Adapter(kArenaAllocAssembler)),
    280         last_position_adjustment_(0),
    281         last_old_position_(0),
    282         last_branch_id_(0),
    283         has_msa_(instruction_set_features != nullptr ? instruction_set_features->HasMsa() : false),
    284         isa_features_(instruction_set_features) {
    285     cfi().DelayEmittingAdvancePCs();
    286   }
    287 
    288   size_t CodeSize() const OVERRIDE { return Assembler::CodeSize(); }
    289   size_t CodePosition() OVERRIDE;
    290   DebugFrameOpCodeWriterForAssembler& cfi() { return Assembler::cfi(); }
    291 
    292   virtual ~MipsAssembler() {
    293     for (auto& branch : branches_) {
    294       CHECK(branch.IsResolved());
    295     }
    296   }
    297 
    298   // Emit Machine Instructions.
    299   void Addu(Register rd, Register rs, Register rt);
    300   void Addiu(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label);
    301   void Addiu(Register rt, Register rs, uint16_t imm16);
    302   void Subu(Register rd, Register rs, Register rt);
    303 
    304   void MultR2(Register rs, Register rt);  // R2
    305   void MultuR2(Register rs, Register rt);  // R2
    306   void DivR2(Register rs, Register rt);  // R2
    307   void DivuR2(Register rs, Register rt);  // R2
    308   void MulR2(Register rd, Register rs, Register rt);  // R2
    309   void DivR2(Register rd, Register rs, Register rt);  // R2
    310   void ModR2(Register rd, Register rs, Register rt);  // R2
    311   void DivuR2(Register rd, Register rs, Register rt);  // R2
    312   void ModuR2(Register rd, Register rs, Register rt);  // R2
    313   void MulR6(Register rd, Register rs, Register rt);  // R6
    314   void MuhR6(Register rd, Register rs, Register rt);  // R6
    315   void MuhuR6(Register rd, Register rs, Register rt);  // R6
    316   void DivR6(Register rd, Register rs, Register rt);  // R6
    317   void ModR6(Register rd, Register rs, Register rt);  // R6
    318   void DivuR6(Register rd, Register rs, Register rt);  // R6
    319   void ModuR6(Register rd, Register rs, Register rt);  // R6
    320 
    321   void And(Register rd, Register rs, Register rt);
    322   void Andi(Register rt, Register rs, uint16_t imm16);
    323   void Or(Register rd, Register rs, Register rt);
    324   void Ori(Register rt, Register rs, uint16_t imm16);
    325   void Xor(Register rd, Register rs, Register rt);
    326   void Xori(Register rt, Register rs, uint16_t imm16);
    327   void Nor(Register rd, Register rs, Register rt);
    328 
    329   void Movz(Register rd, Register rs, Register rt);  // R2
    330   void Movn(Register rd, Register rs, Register rt);  // R2
    331   void Seleqz(Register rd, Register rs, Register rt);  // R6
    332   void Selnez(Register rd, Register rs, Register rt);  // R6
    333   void ClzR6(Register rd, Register rs);
    334   void ClzR2(Register rd, Register rs);
    335   void CloR6(Register rd, Register rs);
    336   void CloR2(Register rd, Register rs);
    337 
    338   void Seb(Register rd, Register rt);  // R2+
    339   void Seh(Register rd, Register rt);  // R2+
    340   void Wsbh(Register rd, Register rt);  // R2+
    341   void Bitswap(Register rd, Register rt);  // R6
    342 
    343   void Sll(Register rd, Register rt, int shamt);
    344   void Srl(Register rd, Register rt, int shamt);
    345   void Rotr(Register rd, Register rt, int shamt);  // R2+
    346   void Sra(Register rd, Register rt, int shamt);
    347   void Sllv(Register rd, Register rt, Register rs);
    348   void Srlv(Register rd, Register rt, Register rs);
    349   void Rotrv(Register rd, Register rt, Register rs);  // R2+
    350   void Srav(Register rd, Register rt, Register rs);
    351   void Ext(Register rd, Register rt, int pos, int size);  // R2+
    352   void Ins(Register rd, Register rt, int pos, int size);  // R2+
    353   void Lsa(Register rd, Register rs, Register rt, int saPlusOne);  // R6
    354   void ShiftAndAdd(Register dst, Register src_idx, Register src_base, int shamt, Register tmp = AT);
    355 
    356   void Lb(Register rt, Register rs, uint16_t imm16);
    357   void Lh(Register rt, Register rs, uint16_t imm16);
    358   void Lw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label);
    359   void Lw(Register rt, Register rs, uint16_t imm16);
    360   void Lwl(Register rt, Register rs, uint16_t imm16);
    361   void Lwr(Register rt, Register rs, uint16_t imm16);
    362   void Lbu(Register rt, Register rs, uint16_t imm16);
    363   void Lhu(Register rt, Register rs, uint16_t imm16);
    364   void Lwpc(Register rs, uint32_t imm19);  // R6
    365   void Lui(Register rt, uint16_t imm16);
    366   void Aui(Register rt, Register rs, uint16_t imm16);  // R6
    367   void AddUpper(Register rt, Register rs, uint16_t imm16, Register tmp = AT);
    368   void Sync(uint32_t stype);
    369   void Mfhi(Register rd);  // R2
    370   void Mflo(Register rd);  // R2
    371 
    372   void Sb(Register rt, Register rs, uint16_t imm16);
    373   void Sh(Register rt, Register rs, uint16_t imm16);
    374   void Sw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label);
    375   void Sw(Register rt, Register rs, uint16_t imm16);
    376   void Swl(Register rt, Register rs, uint16_t imm16);
    377   void Swr(Register rt, Register rs, uint16_t imm16);
    378 
    379   void LlR2(Register rt, Register base, int16_t imm16 = 0);
    380   void ScR2(Register rt, Register base, int16_t imm16 = 0);
    381   void LlR6(Register rt, Register base, int16_t imm9 = 0);
    382   void ScR6(Register rt, Register base, int16_t imm9 = 0);
    383 
    384   void Slt(Register rd, Register rs, Register rt);
    385   void Sltu(Register rd, Register rs, Register rt);
    386   void Slti(Register rt, Register rs, uint16_t imm16);
    387   void Sltiu(Register rt, Register rs, uint16_t imm16);
    388 
    389   // Branches and jumps to immediate offsets/addresses do not take care of their
    390   // delay/forbidden slots and generally should not be used directly. This applies
    391   // to the following R2 and R6 branch/jump instructions with imm16, imm21, addr26
    392   // offsets/addresses.
    393   // Use branches/jumps to labels instead.
    394   void B(uint16_t imm16);
    395   void Bal(uint16_t imm16);
    396   void Beq(Register rs, Register rt, uint16_t imm16);
    397   void Bne(Register rs, Register rt, uint16_t imm16);
    398   void Beqz(Register rt, uint16_t imm16);
    399   void Bnez(Register rt, uint16_t imm16);
    400   void Bltz(Register rt, uint16_t imm16);
    401   void Bgez(Register rt, uint16_t imm16);
    402   void Blez(Register rt, uint16_t imm16);
    403   void Bgtz(Register rt, uint16_t imm16);
    404   void Bc1f(uint16_t imm16);  // R2
    405   void Bc1f(int cc, uint16_t imm16);  // R2
    406   void Bc1t(uint16_t imm16);  // R2
    407   void Bc1t(int cc, uint16_t imm16);  // R2
    408   void J(uint32_t addr26);
    409   void Jal(uint32_t addr26);
    410   // Jalr() and Jr() fill their delay slots when reordering is enabled.
    411   // When reordering is disabled, the delay slots must be filled manually.
    412   // You may use NopIfNoReordering() to fill them when reordering is disabled.
    413   void Jalr(Register rd, Register rs);
    414   void Jalr(Register rs);
    415   void Jr(Register rs);
    416   // Nal() does not fill its delay slot. It must be filled manually.
    417   void Nal();
    418   void Auipc(Register rs, uint16_t imm16);  // R6
    419   void Addiupc(Register rs, uint32_t imm19);  // R6
    420   void Bc(uint32_t imm26);  // R6
    421   void Balc(uint32_t imm26);  // R6
    422   void Jic(Register rt, uint16_t imm16);  // R6
    423   void Jialc(Register rt, uint16_t imm16);  // R6
    424   void Bltc(Register rs, Register rt, uint16_t imm16);  // R6
    425   void Bltzc(Register rt, uint16_t imm16);  // R6
    426   void Bgtzc(Register rt, uint16_t imm16);  // R6
    427   void Bgec(Register rs, Register rt, uint16_t imm16);  // R6
    428   void Bgezc(Register rt, uint16_t imm16);  // R6
    429   void Blezc(Register rt, uint16_t imm16);  // R6
    430   void Bltuc(Register rs, Register rt, uint16_t imm16);  // R6
    431   void Bgeuc(Register rs, Register rt, uint16_t imm16);  // R6
    432   void Beqc(Register rs, Register rt, uint16_t imm16);  // R6
    433   void Bnec(Register rs, Register rt, uint16_t imm16);  // R6
    434   void Beqzc(Register rs, uint32_t imm21);  // R6
    435   void Bnezc(Register rs, uint32_t imm21);  // R6
    436   void Bc1eqz(FRegister ft, uint16_t imm16);  // R6
    437   void Bc1nez(FRegister ft, uint16_t imm16);  // R6
    438 
    439   void AddS(FRegister fd, FRegister fs, FRegister ft);
    440   void SubS(FRegister fd, FRegister fs, FRegister ft);
    441   void MulS(FRegister fd, FRegister fs, FRegister ft);
    442   void DivS(FRegister fd, FRegister fs, FRegister ft);
    443   void AddD(FRegister fd, FRegister fs, FRegister ft);
    444   void SubD(FRegister fd, FRegister fs, FRegister ft);
    445   void MulD(FRegister fd, FRegister fs, FRegister ft);
    446   void DivD(FRegister fd, FRegister fs, FRegister ft);
    447   void SqrtS(FRegister fd, FRegister fs);
    448   void SqrtD(FRegister fd, FRegister fs);
    449   void AbsS(FRegister fd, FRegister fs);
    450   void AbsD(FRegister fd, FRegister fs);
    451   void MovS(FRegister fd, FRegister fs);
    452   void MovD(FRegister fd, FRegister fs);
    453   void NegS(FRegister fd, FRegister fs);
    454   void NegD(FRegister fd, FRegister fs);
    455 
    456   void CunS(FRegister fs, FRegister ft);  // R2
    457   void CunS(int cc, FRegister fs, FRegister ft);  // R2
    458   void CeqS(FRegister fs, FRegister ft);  // R2
    459   void CeqS(int cc, FRegister fs, FRegister ft);  // R2
    460   void CueqS(FRegister fs, FRegister ft);  // R2
    461   void CueqS(int cc, FRegister fs, FRegister ft);  // R2
    462   void ColtS(FRegister fs, FRegister ft);  // R2
    463   void ColtS(int cc, FRegister fs, FRegister ft);  // R2
    464   void CultS(FRegister fs, FRegister ft);  // R2
    465   void CultS(int cc, FRegister fs, FRegister ft);  // R2
    466   void ColeS(FRegister fs, FRegister ft);  // R2
    467   void ColeS(int cc, FRegister fs, FRegister ft);  // R2
    468   void CuleS(FRegister fs, FRegister ft);  // R2
    469   void CuleS(int cc, FRegister fs, FRegister ft);  // R2
    470   void CunD(FRegister fs, FRegister ft);  // R2
    471   void CunD(int cc, FRegister fs, FRegister ft);  // R2
    472   void CeqD(FRegister fs, FRegister ft);  // R2
    473   void CeqD(int cc, FRegister fs, FRegister ft);  // R2
    474   void CueqD(FRegister fs, FRegister ft);  // R2
    475   void CueqD(int cc, FRegister fs, FRegister ft);  // R2
    476   void ColtD(FRegister fs, FRegister ft);  // R2
    477   void ColtD(int cc, FRegister fs, FRegister ft);  // R2
    478   void CultD(FRegister fs, FRegister ft);  // R2
    479   void CultD(int cc, FRegister fs, FRegister ft);  // R2
    480   void ColeD(FRegister fs, FRegister ft);  // R2
    481   void ColeD(int cc, FRegister fs, FRegister ft);  // R2
    482   void CuleD(FRegister fs, FRegister ft);  // R2
    483   void CuleD(int cc, FRegister fs, FRegister ft);  // R2
    484   void CmpUnS(FRegister fd, FRegister fs, FRegister ft);  // R6
    485   void CmpEqS(FRegister fd, FRegister fs, FRegister ft);  // R6
    486   void CmpUeqS(FRegister fd, FRegister fs, FRegister ft);  // R6
    487   void CmpLtS(FRegister fd, FRegister fs, FRegister ft);  // R6
    488   void CmpUltS(FRegister fd, FRegister fs, FRegister ft);  // R6
    489   void CmpLeS(FRegister fd, FRegister fs, FRegister ft);  // R6
    490   void CmpUleS(FRegister fd, FRegister fs, FRegister ft);  // R6
    491   void CmpOrS(FRegister fd, FRegister fs, FRegister ft);  // R6
    492   void CmpUneS(FRegister fd, FRegister fs, FRegister ft);  // R6
    493   void CmpNeS(FRegister fd, FRegister fs, FRegister ft);  // R6
    494   void CmpUnD(FRegister fd, FRegister fs, FRegister ft);  // R6
    495   void CmpEqD(FRegister fd, FRegister fs, FRegister ft);  // R6
    496   void CmpUeqD(FRegister fd, FRegister fs, FRegister ft);  // R6
    497   void CmpLtD(FRegister fd, FRegister fs, FRegister ft);  // R6
    498   void CmpUltD(FRegister fd, FRegister fs, FRegister ft);  // R6
    499   void CmpLeD(FRegister fd, FRegister fs, FRegister ft);  // R6
    500   void CmpUleD(FRegister fd, FRegister fs, FRegister ft);  // R6
    501   void CmpOrD(FRegister fd, FRegister fs, FRegister ft);  // R6
    502   void CmpUneD(FRegister fd, FRegister fs, FRegister ft);  // R6
    503   void CmpNeD(FRegister fd, FRegister fs, FRegister ft);  // R6
    504   void Movf(Register rd, Register rs, int cc = 0);  // R2
    505   void Movt(Register rd, Register rs, int cc = 0);  // R2
    506   void MovfS(FRegister fd, FRegister fs, int cc = 0);  // R2
    507   void MovfD(FRegister fd, FRegister fs, int cc = 0);  // R2
    508   void MovtS(FRegister fd, FRegister fs, int cc = 0);  // R2
    509   void MovtD(FRegister fd, FRegister fs, int cc = 0);  // R2
    510   void MovzS(FRegister fd, FRegister fs, Register rt);  // R2
    511   void MovzD(FRegister fd, FRegister fs, Register rt);  // R2
    512   void MovnS(FRegister fd, FRegister fs, Register rt);  // R2
    513   void MovnD(FRegister fd, FRegister fs, Register rt);  // R2
    514   void SelS(FRegister fd, FRegister fs, FRegister ft);  // R6
    515   void SelD(FRegister fd, FRegister fs, FRegister ft);  // R6
    516   void SeleqzS(FRegister fd, FRegister fs, FRegister ft);  // R6
    517   void SeleqzD(FRegister fd, FRegister fs, FRegister ft);  // R6
    518   void SelnezS(FRegister fd, FRegister fs, FRegister ft);  // R6
    519   void SelnezD(FRegister fd, FRegister fs, FRegister ft);  // R6
    520   void ClassS(FRegister fd, FRegister fs);  // R6
    521   void ClassD(FRegister fd, FRegister fs);  // R6
    522   void MinS(FRegister fd, FRegister fs, FRegister ft);  // R6
    523   void MinD(FRegister fd, FRegister fs, FRegister ft);  // R6
    524   void MaxS(FRegister fd, FRegister fs, FRegister ft);  // R6
    525   void MaxD(FRegister fd, FRegister fs, FRegister ft);  // R6
    526 
    527   void TruncLS(FRegister fd, FRegister fs);  // R2+, FR=1
    528   void TruncLD(FRegister fd, FRegister fs);  // R2+, FR=1
    529   void TruncWS(FRegister fd, FRegister fs);
    530   void TruncWD(FRegister fd, FRegister fs);
    531   void Cvtsw(FRegister fd, FRegister fs);
    532   void Cvtdw(FRegister fd, FRegister fs);
    533   void Cvtsd(FRegister fd, FRegister fs);
    534   void Cvtds(FRegister fd, FRegister fs);
    535   void Cvtsl(FRegister fd, FRegister fs);  // R2+, FR=1
    536   void Cvtdl(FRegister fd, FRegister fs);  // R2+, FR=1
    537   void FloorWS(FRegister fd, FRegister fs);
    538   void FloorWD(FRegister fd, FRegister fs);
    539 
    540   // Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs
    541   // when loading the value as 32-bit halves. This applies to all 32-bit FPR loads:
    542   // Mtc1(), Mthc1(), MoveToFpuHigh(), Lwc1(). Even if you need two Mtc1()'s or two
    543   // Lwc1()'s to load a pair of 32-bit FPRs and these loads do not interfere with one
    544   // another (unlike Mtc1() and Mthc1() with 64-bit FPRs), maintain the order:
    545   // low then high.
    546   //
    547   // Also, prefer MoveFromFpuHigh()/MoveToFpuHigh() over Mfhc1()/Mthc1() and Mfc1()/Mtc1().
    548   // This will save you some if statements.
    549   FRegister GetFpuRegLow(FRegister reg);
    550   void Mfc1(Register rt, FRegister fs);
    551   void Mtc1(Register rt, FRegister fs);
    552   void Mfhc1(Register rt, FRegister fs);
    553   void Mthc1(Register rt, FRegister fs);
    554   void MoveFromFpuHigh(Register rt, FRegister fs);
    555   void MoveToFpuHigh(Register rt, FRegister fs);
    556   void Lwc1(FRegister ft, Register rs, uint16_t imm16);
    557   void Ldc1(FRegister ft, Register rs, uint16_t imm16);
    558   void Swc1(FRegister ft, Register rs, uint16_t imm16);
    559   void Sdc1(FRegister ft, Register rs, uint16_t imm16);
    560 
    561   void Break();
    562   void Nop();
    563   void NopIfNoReordering();
    564   void Move(Register rd, Register rs);
    565   void Clear(Register rd);
    566   void Not(Register rd, Register rs);
    567 
    568   // MSA instructions.
    569   void AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    570   void OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    571   void NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    572   void XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    573 
    574   void AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    575   void AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    576   void AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    577   void AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    578   void SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    579   void SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    580   void SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    581   void SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    582   void Asub_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    583   void Asub_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    584   void Asub_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    585   void Asub_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    586   void Asub_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    587   void Asub_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    588   void Asub_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    589   void Asub_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    590   void MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    591   void MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    592   void MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    593   void MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    594   void Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    595   void Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    596   void Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    597   void Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    598   void Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    599   void Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    600   void Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    601   void Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    602   void Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    603   void Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    604   void Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    605   void Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    606   void Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    607   void Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    608   void Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    609   void Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    610   void Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    611   void Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    612   void Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    613   void Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    614   void Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    615   void Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    616   void Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    617   void Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    618   void Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    619   void Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    620   void Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    621   void Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    622   void Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    623   void Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    624   void Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    625   void Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    626   void Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    627   void Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    628   void Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    629   void Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    630   void Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    631   void Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    632   void Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    633   void Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    634   void Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    635   void Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    636   void Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    637   void Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    638   void Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    639   void Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    640   void Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    641   void Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    642   void Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    643   void Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    644   void Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    645   void Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    646 
    647   void FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    648   void FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    649   void FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    650   void FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    651   void FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    652   void FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    653   void FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    654   void FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    655   void FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    656   void FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    657   void FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    658   void FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    659 
    660   void Ffint_sW(VectorRegister wd, VectorRegister ws);
    661   void Ffint_sD(VectorRegister wd, VectorRegister ws);
    662   void Ftint_sW(VectorRegister wd, VectorRegister ws);
    663   void Ftint_sD(VectorRegister wd, VectorRegister ws);
    664 
    665   void SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    666   void SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    667   void SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    668   void SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    669   void SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    670   void SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    671   void SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    672   void SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    673   void SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    674   void SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    675   void SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    676   void SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    677 
    678   // Immediate shift instructions, where shamtN denotes shift amount (must be between 0 and 2^N-1).
    679   void SlliB(VectorRegister wd, VectorRegister ws, int shamt3);
    680   void SlliH(VectorRegister wd, VectorRegister ws, int shamt4);
    681   void SlliW(VectorRegister wd, VectorRegister ws, int shamt5);
    682   void SlliD(VectorRegister wd, VectorRegister ws, int shamt6);
    683   void SraiB(VectorRegister wd, VectorRegister ws, int shamt3);
    684   void SraiH(VectorRegister wd, VectorRegister ws, int shamt4);
    685   void SraiW(VectorRegister wd, VectorRegister ws, int shamt5);
    686   void SraiD(VectorRegister wd, VectorRegister ws, int shamt6);
    687   void SrliB(VectorRegister wd, VectorRegister ws, int shamt3);
    688   void SrliH(VectorRegister wd, VectorRegister ws, int shamt4);
    689   void SrliW(VectorRegister wd, VectorRegister ws, int shamt5);
    690   void SrliD(VectorRegister wd, VectorRegister ws, int shamt6);
    691 
    692   void MoveV(VectorRegister wd, VectorRegister ws);
    693   void SplatiB(VectorRegister wd, VectorRegister ws, int n4);
    694   void SplatiH(VectorRegister wd, VectorRegister ws, int n3);
    695   void SplatiW(VectorRegister wd, VectorRegister ws, int n2);
    696   void SplatiD(VectorRegister wd, VectorRegister ws, int n1);
    697   void Copy_sB(Register rd, VectorRegister ws, int n4);
    698   void Copy_sH(Register rd, VectorRegister ws, int n3);
    699   void Copy_sW(Register rd, VectorRegister ws, int n2);
    700   void Copy_uB(Register rd, VectorRegister ws, int n4);
    701   void Copy_uH(Register rd, VectorRegister ws, int n3);
    702   void InsertB(VectorRegister wd, Register rs, int n4);
    703   void InsertH(VectorRegister wd, Register rs, int n3);
    704   void InsertW(VectorRegister wd, Register rs, int n2);
    705   void FillB(VectorRegister wd, Register rs);
    706   void FillH(VectorRegister wd, Register rs);
    707   void FillW(VectorRegister wd, Register rs);
    708 
    709   void LdiB(VectorRegister wd, int imm8);
    710   void LdiH(VectorRegister wd, int imm10);
    711   void LdiW(VectorRegister wd, int imm10);
    712   void LdiD(VectorRegister wd, int imm10);
    713   void LdB(VectorRegister wd, Register rs, int offset);
    714   void LdH(VectorRegister wd, Register rs, int offset);
    715   void LdW(VectorRegister wd, Register rs, int offset);
    716   void LdD(VectorRegister wd, Register rs, int offset);
    717   void StB(VectorRegister wd, Register rs, int offset);
    718   void StH(VectorRegister wd, Register rs, int offset);
    719   void StW(VectorRegister wd, Register rs, int offset);
    720   void StD(VectorRegister wd, Register rs, int offset);
    721 
    722   void IlvlB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    723   void IlvlH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    724   void IlvlW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    725   void IlvlD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    726   void IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    727   void IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    728   void IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    729   void IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    730   void IlvevB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    731   void IlvevH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    732   void IlvevW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    733   void IlvevD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    734   void IlvodB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    735   void IlvodH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    736   void IlvodW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    737   void IlvodD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    738 
    739   void MaddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    740   void MaddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    741   void MaddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    742   void MaddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    743   void MsubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    744   void MsubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    745   void MsubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    746   void MsubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    747   void FmaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    748   void FmaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    749   void FmsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    750   void FmsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    751 
    752   void Hadd_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    753   void Hadd_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    754   void Hadd_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    755   void Hadd_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    756   void Hadd_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    757   void Hadd_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
    758 
    759   // Helper for replicating floating point value in all destination elements.
    760   void ReplicateFPToVectorRegister(VectorRegister dst, FRegister src, bool is_double);
    761 
    762   // Higher level composite instructions.
    763   void LoadConst32(Register rd, int32_t value);
    764   void LoadConst64(Register reg_hi, Register reg_lo, int64_t value);
    765   void LoadDConst64(FRegister rd, int64_t value, Register temp);
    766   void LoadSConst32(FRegister r, int32_t value, Register temp);
    767   void Addiu32(Register rt, Register rs, int32_t value, Register rtmp = AT);
    768 
    769   void Bind(MipsLabel* label);
    770   // When `is_bare` is false, the branches will promote to long (if the range
    771   // of the individual branch instruction is insufficient) and the delay/
    772   // forbidden slots will be taken care of.
    773   // Use `is_bare = false` when the branch target may be out of reach of the
    774   // individual branch instruction. IOW, this is for general purpose use.
    775   //
    776   // When `is_bare` is true, just the branch instructions will be generated
    777   // leaving delay/forbidden slot filling up to the caller and the branches
    778   // won't promote to long if the range is insufficient (you'll get a
    779   // compilation error when the range is exceeded).
    780   // Use `is_bare = true` when the branch target is known to be within reach
    781   // of the individual branch instruction. This is intended for small local
    782   // optimizations around delay/forbidden slots.
    783   // Also prefer using `is_bare = true` if the code near the branch is to be
    784   // patched or analyzed at run time (e.g. introspection) to
    785   // - show the intent and
    786   // - fail during compilation rather than during patching/execution if the
    787   //   bare branch range is insufficent but the code size and layout are
    788   //   expected to remain unchanged
    789   //
    790   // R2 branches with delay slots that are also available on R6.
    791   // On R6 when `is_bare` is false these convert to equivalent R6 compact
    792   // branches (to reduce code size). On R2 or when `is_bare` is true they
    793   // remain R2 branches with delay slots.
    794   void B(MipsLabel* label, bool is_bare = false);
    795   void Bal(MipsLabel* label, bool is_bare = false);
    796   void Beq(Register rs, Register rt, MipsLabel* label, bool is_bare = false);
    797   void Bne(Register rs, Register rt, MipsLabel* label, bool is_bare = false);
    798   void Beqz(Register rt, MipsLabel* label, bool is_bare = false);
    799   void Bnez(Register rt, MipsLabel* label, bool is_bare = false);
    800   void Bltz(Register rt, MipsLabel* label, bool is_bare = false);
    801   void Bgez(Register rt, MipsLabel* label, bool is_bare = false);
    802   void Blez(Register rt, MipsLabel* label, bool is_bare = false);
    803   void Bgtz(Register rt, MipsLabel* label, bool is_bare = false);
    804   void Blt(Register rs, Register rt, MipsLabel* label, bool is_bare = false);
    805   void Bge(Register rs, Register rt, MipsLabel* label, bool is_bare = false);
    806   void Bltu(Register rs, Register rt, MipsLabel* label, bool is_bare = false);
    807   void Bgeu(Register rs, Register rt, MipsLabel* label, bool is_bare = false);
    808   // R2-only branches with delay slots.
    809   void Bc1f(MipsLabel* label, bool is_bare = false);  // R2
    810   void Bc1f(int cc, MipsLabel* label, bool is_bare = false);  // R2
    811   void Bc1t(MipsLabel* label, bool is_bare = false);  // R2
    812   void Bc1t(int cc, MipsLabel* label, bool is_bare = false);  // R2
    813   // R6-only compact branches without delay/forbidden slots.
    814   void Bc(MipsLabel* label, bool is_bare = false);  // R6
    815   void Balc(MipsLabel* label, bool is_bare = false);  // R6
    816   // R6-only compact branches with forbidden slots.
    817   void Beqc(Register rs, Register rt, MipsLabel* label, bool is_bare = false);  // R6
    818   void Bnec(Register rs, Register rt, MipsLabel* label, bool is_bare = false);  // R6
    819   void Beqzc(Register rt, MipsLabel* label, bool is_bare = false);  // R6
    820   void Bnezc(Register rt, MipsLabel* label, bool is_bare = false);  // R6
    821   void Bltzc(Register rt, MipsLabel* label, bool is_bare = false);  // R6
    822   void Bgezc(Register rt, MipsLabel* label, bool is_bare = false);  // R6
    823   void Blezc(Register rt, MipsLabel* label, bool is_bare = false);  // R6
    824   void Bgtzc(Register rt, MipsLabel* label, bool is_bare = false);  // R6
    825   void Bltc(Register rs, Register rt, MipsLabel* label, bool is_bare = false);  // R6
    826   void Bgec(Register rs, Register rt, MipsLabel* label, bool is_bare = false);  // R6
    827   void Bltuc(Register rs, Register rt, MipsLabel* label, bool is_bare = false);  // R6
    828   void Bgeuc(Register rs, Register rt, MipsLabel* label, bool is_bare = false);  // R6
    829   // R6-only branches with delay slots.
    830   void Bc1eqz(FRegister ft, MipsLabel* label, bool is_bare = false);  // R6
    831   void Bc1nez(FRegister ft, MipsLabel* label, bool is_bare = false);  // R6
    832 
    833   void EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset, size_t size);
    834   void AdjustBaseAndOffset(Register& base,
    835                            int32_t& offset,
    836                            bool is_doubleword,
    837                            bool is_float = false);
    838   void AdjustBaseOffsetAndElementSizeShift(Register& base,
    839                                            int32_t& offset,
    840                                            int& element_size_shift);
    841 
    842  private:
    843   // This will be used as an argument for loads/stores
    844   // when there is no need for implicit null checks.
    845   struct NoImplicitNullChecker {
    846     void operator()() const {}
    847   };
    848 
    849  public:
    850   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    851   void StoreConstToOffset(StoreOperandType type,
    852                           int64_t value,
    853                           Register base,
    854                           int32_t offset,
    855                           Register temp,
    856                           ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    857     // We permit `base` and `temp` to coincide (however, we check that neither is AT),
    858     // in which case the `base` register may be overwritten in the process.
    859     CHECK_NE(temp, AT);  // Must not use AT as temp, so as not to overwrite the adjusted base.
    860     AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
    861     uint32_t low = Low32Bits(value);
    862     uint32_t high = High32Bits(value);
    863     Register reg;
    864     // If the adjustment left `base` unchanged and equal to `temp`, we can't use `temp`
    865     // to load and hold the value but we can use AT instead as AT hasn't been used yet.
    866     // Otherwise, `temp` can be used for the value. And if `temp` is the same as the
    867     // original `base` (that is, `base` prior to the adjustment), the original `base`
    868     // register will be overwritten.
    869     if (base == temp) {
    870       temp = AT;
    871     }
    872     if (low == 0) {
    873       reg = ZERO;
    874     } else {
    875       reg = temp;
    876       LoadConst32(reg, low);
    877     }
    878     switch (type) {
    879       case kStoreByte:
    880         Sb(reg, base, offset);
    881         break;
    882       case kStoreHalfword:
    883         Sh(reg, base, offset);
    884         break;
    885       case kStoreWord:
    886         Sw(reg, base, offset);
    887         break;
    888       case kStoreDoubleword:
    889         Sw(reg, base, offset);
    890         null_checker();
    891         if (high == 0) {
    892           reg = ZERO;
    893         } else {
    894           reg = temp;
    895           if (high != low) {
    896             LoadConst32(reg, high);
    897           }
    898         }
    899         Sw(reg, base, offset + kMipsWordSize);
    900         break;
    901       default:
    902         LOG(FATAL) << "UNREACHABLE";
    903     }
    904     if (type != kStoreDoubleword) {
    905       null_checker();
    906     }
    907   }
    908 
    909   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    910   void LoadFromOffset(LoadOperandType type,
    911                       Register reg,
    912                       Register base,
    913                       int32_t offset,
    914                       ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    915     AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword));
    916     switch (type) {
    917       case kLoadSignedByte:
    918         Lb(reg, base, offset);
    919         break;
    920       case kLoadUnsignedByte:
    921         Lbu(reg, base, offset);
    922         break;
    923       case kLoadSignedHalfword:
    924         Lh(reg, base, offset);
    925         break;
    926       case kLoadUnsignedHalfword:
    927         Lhu(reg, base, offset);
    928         break;
    929       case kLoadWord:
    930         Lw(reg, base, offset);
    931         break;
    932       case kLoadDoubleword:
    933         if (reg == base) {
    934           // This will clobber the base when loading the lower register. Since we have to load the
    935           // higher register as well, this will fail. Solution: reverse the order.
    936           Lw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
    937           null_checker();
    938           Lw(reg, base, offset);
    939         } else {
    940           Lw(reg, base, offset);
    941           null_checker();
    942           Lw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
    943         }
    944         break;
    945       default:
    946         LOG(FATAL) << "UNREACHABLE";
    947     }
    948     if (type != kLoadDoubleword) {
    949       null_checker();
    950     }
    951   }
    952 
    953   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    954   void LoadSFromOffset(FRegister reg,
    955                        Register base,
    956                        int32_t offset,
    957                        ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    958     AdjustBaseAndOffset(base, offset, /* is_doubleword */ false, /* is_float */ true);
    959     Lwc1(reg, base, offset);
    960     null_checker();
    961   }
    962 
    963   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    964   void LoadDFromOffset(FRegister reg,
    965                        Register base,
    966                        int32_t offset,
    967                        ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    968     AdjustBaseAndOffset(base, offset, /* is_doubleword */ true, /* is_float */ true);
    969     if (IsAligned<kMipsDoublewordSize>(offset)) {
    970       Ldc1(reg, base, offset);
    971       null_checker();
    972     } else {
    973       if (Is32BitFPU()) {
    974         Lwc1(reg, base, offset);
    975         null_checker();
    976         Lwc1(static_cast<FRegister>(reg + 1), base, offset + kMipsWordSize);
    977       } else {
    978         // 64-bit FPU.
    979         Lwc1(reg, base, offset);
    980         null_checker();
    981         Lw(T8, base, offset + kMipsWordSize);
    982         Mthc1(T8, reg);
    983       }
    984     }
    985   }
    986 
    987   template <typename ImplicitNullChecker = NoImplicitNullChecker>
    988   void LoadQFromOffset(FRegister reg,
    989                        Register base,
    990                        int32_t offset,
    991                        ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
    992     int element_size_shift = -1;
    993     AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift);
    994     switch (element_size_shift) {
    995       case TIMES_1: LdB(static_cast<VectorRegister>(reg), base, offset); break;
    996       case TIMES_2: LdH(static_cast<VectorRegister>(reg), base, offset); break;
    997       case TIMES_4: LdW(static_cast<VectorRegister>(reg), base, offset); break;
    998       case TIMES_8: LdD(static_cast<VectorRegister>(reg), base, offset); break;
    999       default:
   1000         LOG(FATAL) << "UNREACHABLE";
   1001     }
   1002     null_checker();
   1003   }
   1004 
   1005   template <typename ImplicitNullChecker = NoImplicitNullChecker>
   1006   void StoreToOffset(StoreOperandType type,
   1007                      Register reg,
   1008                      Register base,
   1009                      int32_t offset,
   1010                      ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
   1011     // Must not use AT as `reg`, so as not to overwrite the value being stored
   1012     // with the adjusted `base`.
   1013     CHECK_NE(reg, AT);
   1014     AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
   1015     switch (type) {
   1016       case kStoreByte:
   1017         Sb(reg, base, offset);
   1018         break;
   1019       case kStoreHalfword:
   1020         Sh(reg, base, offset);
   1021         break;
   1022       case kStoreWord:
   1023         Sw(reg, base, offset);
   1024         break;
   1025       case kStoreDoubleword:
   1026         CHECK_NE(reg, base);
   1027         CHECK_NE(static_cast<Register>(reg + 1), base);
   1028         Sw(reg, base, offset);
   1029         null_checker();
   1030         Sw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
   1031         break;
   1032       default:
   1033         LOG(FATAL) << "UNREACHABLE";
   1034     }
   1035     if (type != kStoreDoubleword) {
   1036       null_checker();
   1037     }
   1038   }
   1039 
   1040   template <typename ImplicitNullChecker = NoImplicitNullChecker>
   1041   void StoreSToOffset(FRegister reg,
   1042                       Register base,
   1043                       int32_t offset,
   1044                       ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
   1045     AdjustBaseAndOffset(base, offset, /* is_doubleword */ false, /* is_float */ true);
   1046     Swc1(reg, base, offset);
   1047     null_checker();
   1048   }
   1049 
   1050   template <typename ImplicitNullChecker = NoImplicitNullChecker>
   1051   void StoreDToOffset(FRegister reg,
   1052                       Register base,
   1053                       int32_t offset,
   1054                       ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
   1055     AdjustBaseAndOffset(base, offset, /* is_doubleword */ true, /* is_float */ true);
   1056     if (IsAligned<kMipsDoublewordSize>(offset)) {
   1057       Sdc1(reg, base, offset);
   1058       null_checker();
   1059     } else {
   1060       if (Is32BitFPU()) {
   1061         Swc1(reg, base, offset);
   1062         null_checker();
   1063         Swc1(static_cast<FRegister>(reg + 1), base, offset + kMipsWordSize);
   1064       } else {
   1065         // 64-bit FPU.
   1066         Mfhc1(T8, reg);
   1067         Swc1(reg, base, offset);
   1068         null_checker();
   1069         Sw(T8, base, offset + kMipsWordSize);
   1070       }
   1071     }
   1072   }
   1073 
   1074   template <typename ImplicitNullChecker = NoImplicitNullChecker>
   1075   void StoreQToOffset(FRegister reg,
   1076                       Register base,
   1077                       int32_t offset,
   1078                       ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
   1079     int element_size_shift = -1;
   1080     AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift);
   1081     switch (element_size_shift) {
   1082       case TIMES_1: StB(static_cast<VectorRegister>(reg), base, offset); break;
   1083       case TIMES_2: StH(static_cast<VectorRegister>(reg), base, offset); break;
   1084       case TIMES_4: StW(static_cast<VectorRegister>(reg), base, offset); break;
   1085       case TIMES_8: StD(static_cast<VectorRegister>(reg), base, offset); break;
   1086       default:
   1087         LOG(FATAL) << "UNREACHABLE";
   1088     }
   1089     null_checker();
   1090   }
   1091 
   1092   void LoadFromOffset(LoadOperandType type, Register reg, Register base, int32_t offset);
   1093   void LoadSFromOffset(FRegister reg, Register base, int32_t offset);
   1094   void LoadDFromOffset(FRegister reg, Register base, int32_t offset);
   1095   void LoadQFromOffset(FRegister reg, Register base, int32_t offset);
   1096   void StoreToOffset(StoreOperandType type, Register reg, Register base, int32_t offset);
   1097   void StoreSToOffset(FRegister reg, Register base, int32_t offset);
   1098   void StoreDToOffset(FRegister reg, Register base, int32_t offset);
   1099   void StoreQToOffset(FRegister reg, Register base, int32_t offset);
   1100 
   1101   // Emit data (e.g. encoded instruction or immediate) to the instruction stream.
   1102   void Emit(uint32_t value);
   1103 
   1104   // Push/pop composite routines.
   1105   void Push(Register rs);
   1106   void Pop(Register rd);
   1107   void PopAndReturn(Register rd, Register rt);
   1108 
   1109   //
   1110   // Heap poisoning.
   1111   //
   1112 
   1113   // Poison a heap reference contained in `src` and store it in `dst`.
   1114   void PoisonHeapReference(Register dst, Register src) {
   1115     // dst = -src.
   1116     Subu(dst, ZERO, src);
   1117   }
   1118   // Poison a heap reference contained in `reg`.
   1119   void PoisonHeapReference(Register reg) {
   1120     // reg = -reg.
   1121     PoisonHeapReference(reg, reg);
   1122   }
   1123   // Unpoison a heap reference contained in `reg`.
   1124   void UnpoisonHeapReference(Register reg) {
   1125     // reg = -reg.
   1126     Subu(reg, ZERO, reg);
   1127   }
   1128   // Poison a heap reference contained in `reg` if heap poisoning is enabled.
   1129   void MaybePoisonHeapReference(Register reg) {
   1130     if (kPoisonHeapReferences) {
   1131       PoisonHeapReference(reg);
   1132     }
   1133   }
   1134   // Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
   1135   void MaybeUnpoisonHeapReference(Register reg) {
   1136     if (kPoisonHeapReferences) {
   1137       UnpoisonHeapReference(reg);
   1138     }
   1139   }
   1140 
   1141   void Bind(Label* label) OVERRIDE {
   1142     Bind(down_cast<MipsLabel*>(label));
   1143   }
   1144   void Jump(Label* label ATTRIBUTE_UNUSED) OVERRIDE {
   1145     UNIMPLEMENTED(FATAL) << "Do not use Jump for MIPS";
   1146   }
   1147 
   1148   // Don't warn about a different virtual Bind/Jump in the base class.
   1149   using JNIBase::Bind;
   1150   using JNIBase::Jump;
   1151 
   1152   // Create a new label that can be used with Jump/Bind calls.
   1153   std::unique_ptr<JNIMacroLabel> CreateLabel() OVERRIDE {
   1154     LOG(FATAL) << "Not implemented on MIPS32";
   1155     UNREACHABLE();
   1156   }
   1157   // Emit an unconditional jump to the label.
   1158   void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
   1159     LOG(FATAL) << "Not implemented on MIPS32";
   1160     UNREACHABLE();
   1161   }
   1162   // Emit a conditional jump to the label by applying a unary condition test to the register.
   1163   void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED,
   1164             JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED,
   1165             ManagedRegister test ATTRIBUTE_UNUSED) OVERRIDE {
   1166     LOG(FATAL) << "Not implemented on MIPS32";
   1167     UNREACHABLE();
   1168   }
   1169 
   1170   // Code at this offset will serve as the target for the Jump call.
   1171   void Bind(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
   1172     LOG(FATAL) << "Not implemented on MIPS32";
   1173     UNREACHABLE();
   1174   }
   1175 
   1176   // Create a new literal with a given value.
   1177   // NOTE: Force the template parameter to be explicitly specified.
   1178   template <typename T>
   1179   Literal* NewLiteral(typename Identity<T>::type value) {
   1180     static_assert(std::is_integral<T>::value, "T must be an integral type.");
   1181     return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value));
   1182   }
   1183 
   1184   // Load label address using PC-relative addressing.
   1185   // To be used with data labels in the literal / jump table area only and not
   1186   // with regular code labels.
   1187   //
   1188   // For R6 base_reg must be ZERO.
   1189   //
   1190   // On R2 there are two possible uses w.r.t. base_reg:
   1191   //
   1192   // - base_reg = ZERO:
   1193   //   The NAL instruction will be generated as part of the load and it will
   1194   //   clobber the RA register.
   1195   //
   1196   // - base_reg != ZERO:
   1197   //   The RA-clobbering NAL instruction won't be generated as part of the load.
   1198   //   The label pc_rel_base_label_ must be bound (with BindPcRelBaseLabel())
   1199   //   and base_reg must hold the address of the label. Example:
   1200   //     __ Nal();
   1201   //     __ Move(S3, RA);
   1202   //     __ BindPcRelBaseLabel();  // S3 holds the address of pc_rel_base_label_.
   1203   //     __ LoadLabelAddress(A0, S3, label1);
   1204   //     __ LoadLabelAddress(A1, S3, label2);
   1205   //     __ LoadLiteral(V0, S3, literal1);
   1206   //     __ LoadLiteral(V1, S3, literal2);
   1207   void LoadLabelAddress(Register dest_reg, Register base_reg, MipsLabel* label);
   1208 
   1209   // Create a new literal with the given data.
   1210   Literal* NewLiteral(size_t size, const uint8_t* data);
   1211 
   1212   // Load literal using PC-relative addressing.
   1213   // See the above comments for LoadLabelAddress() on the value of base_reg.
   1214   void LoadLiteral(Register dest_reg, Register base_reg, Literal* literal);
   1215 
   1216   // Create a jump table for the given labels that will be emitted when finalizing.
   1217   // When the table is emitted, offsets will be relative to the location of the table.
   1218   // The table location is determined by the location of its label (the label precedes
   1219   // the table data) and should be loaded using LoadLabelAddress().
   1220   JumpTable* CreateJumpTable(std::vector<MipsLabel*>&& labels);
   1221 
   1222   //
   1223   // Overridden common assembler high-level functionality.
   1224   //
   1225 
   1226   // Emit code that will create an activation on the stack.
   1227   void BuildFrame(size_t frame_size,
   1228                   ManagedRegister method_reg,
   1229                   ArrayRef<const ManagedRegister> callee_save_regs,
   1230                   const ManagedRegisterEntrySpills& entry_spills) OVERRIDE;
   1231 
   1232   // Emit code that will remove an activation from the stack.
   1233   void RemoveFrame(size_t frame_size,
   1234                    ArrayRef<const ManagedRegister> callee_save_regs,
   1235                    bool may_suspend) OVERRIDE;
   1236 
   1237   void IncreaseFrameSize(size_t adjust) OVERRIDE;
   1238   void DecreaseFrameSize(size_t adjust) OVERRIDE;
   1239 
   1240   // Store routines.
   1241   void Store(FrameOffset offs, ManagedRegister msrc, size_t size) OVERRIDE;
   1242   void StoreRef(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
   1243   void StoreRawPtr(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
   1244 
   1245   void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) OVERRIDE;
   1246 
   1247   void StoreStackOffsetToThread(ThreadOffset32 thr_offs,
   1248                                 FrameOffset fr_offs,
   1249                                 ManagedRegister mscratch) OVERRIDE;
   1250 
   1251   void StoreStackPointerToThread(ThreadOffset32 thr_offs) OVERRIDE;
   1252 
   1253   void StoreSpanning(FrameOffset dest,
   1254                      ManagedRegister msrc,
   1255                      FrameOffset in_off,
   1256                      ManagedRegister mscratch) OVERRIDE;
   1257 
   1258   // Load routines.
   1259   void Load(ManagedRegister mdest, FrameOffset src, size_t size) OVERRIDE;
   1260 
   1261   void LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) OVERRIDE;
   1262 
   1263   void LoadRef(ManagedRegister dest, FrameOffset src) OVERRIDE;
   1264 
   1265   void LoadRef(ManagedRegister mdest,
   1266                ManagedRegister base,
   1267                MemberOffset offs,
   1268                bool unpoison_reference) OVERRIDE;
   1269 
   1270   void LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) OVERRIDE;
   1271 
   1272   void LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) OVERRIDE;
   1273 
   1274   // Copying routines.
   1275   void Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) OVERRIDE;
   1276 
   1277   void CopyRawPtrFromThread(FrameOffset fr_offs,
   1278                             ThreadOffset32 thr_offs,
   1279                             ManagedRegister mscratch) OVERRIDE;
   1280 
   1281   void CopyRawPtrToThread(ThreadOffset32 thr_offs,
   1282                           FrameOffset fr_offs,
   1283                           ManagedRegister mscratch) OVERRIDE;
   1284 
   1285   void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) OVERRIDE;
   1286 
   1287   void Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) OVERRIDE;
   1288 
   1289   void Copy(FrameOffset dest,
   1290             ManagedRegister src_base,
   1291             Offset src_offset,
   1292             ManagedRegister mscratch,
   1293             size_t size) OVERRIDE;
   1294 
   1295   void Copy(ManagedRegister dest_base,
   1296             Offset dest_offset,
   1297             FrameOffset src,
   1298             ManagedRegister mscratch,
   1299             size_t size) OVERRIDE;
   1300 
   1301   void Copy(FrameOffset dest,
   1302             FrameOffset src_base,
   1303             Offset src_offset,
   1304             ManagedRegister mscratch,
   1305             size_t size) OVERRIDE;
   1306 
   1307   void Copy(ManagedRegister dest,
   1308             Offset dest_offset,
   1309             ManagedRegister src,
   1310             Offset src_offset,
   1311             ManagedRegister mscratch,
   1312             size_t size) OVERRIDE;
   1313 
   1314   void Copy(FrameOffset dest,
   1315             Offset dest_offset,
   1316             FrameOffset src,
   1317             Offset src_offset,
   1318             ManagedRegister mscratch,
   1319             size_t size) OVERRIDE;
   1320 
   1321   void MemoryBarrier(ManagedRegister) OVERRIDE;
   1322 
   1323   // Sign extension.
   1324   void SignExtend(ManagedRegister mreg, size_t size) OVERRIDE;
   1325 
   1326   // Zero extension.
   1327   void ZeroExtend(ManagedRegister mreg, size_t size) OVERRIDE;
   1328 
   1329   // Exploit fast access in managed code to Thread::Current().
   1330   void GetCurrentThread(ManagedRegister tr) OVERRIDE;
   1331   void GetCurrentThread(FrameOffset dest_offset, ManagedRegister mscratch) OVERRIDE;
   1332 
   1333   // Set up out_reg to hold a Object** into the handle scope, or to be null if the
   1334   // value is null and null_allowed. in_reg holds a possibly stale reference
   1335   // that can be used to avoid loading the handle scope entry to see if the value is
   1336   // null.
   1337   void CreateHandleScopeEntry(ManagedRegister out_reg,
   1338                               FrameOffset handlescope_offset,
   1339                               ManagedRegister in_reg,
   1340                               bool null_allowed) OVERRIDE;
   1341 
   1342   // Set up out_off to hold a Object** into the handle scope, or to be null if the
   1343   // value is null and null_allowed.
   1344   void CreateHandleScopeEntry(FrameOffset out_off,
   1345                               FrameOffset handlescope_offset,
   1346                               ManagedRegister mscratch,
   1347                               bool null_allowed) OVERRIDE;
   1348 
   1349   // src holds a handle scope entry (Object**) load this into dst.
   1350   void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) OVERRIDE;
   1351 
   1352   // Heap::VerifyObject on src. In some cases (such as a reference to this) we
   1353   // know that src may not be null.
   1354   void VerifyObject(ManagedRegister src, bool could_be_null) OVERRIDE;
   1355   void VerifyObject(FrameOffset src, bool could_be_null) OVERRIDE;
   1356 
   1357   // Call to address held at [base+offset].
   1358   void Call(ManagedRegister base, Offset offset, ManagedRegister mscratch) OVERRIDE;
   1359   void Call(FrameOffset base, Offset offset, ManagedRegister mscratch) OVERRIDE;
   1360   void CallFromThread(ThreadOffset32 offset, ManagedRegister mscratch) OVERRIDE;
   1361 
   1362   // Generate code to check if Thread::Current()->exception_ is non-null
   1363   // and branch to a ExceptionSlowPath if it is.
   1364   void ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) OVERRIDE;
   1365 
   1366   // Emit slow paths queued during assembly and promote short branches to long if needed.
   1367   void FinalizeCode() OVERRIDE;
   1368 
   1369   // Emit branches and finalize all instructions.
   1370   void FinalizeInstructions(const MemoryRegion& region);
   1371 
   1372   // Returns the (always-)current location of a label (can be used in class CodeGeneratorMIPS,
   1373   // must be used instead of MipsLabel::GetPosition()).
   1374   uint32_t GetLabelLocation(const MipsLabel* label) const;
   1375 
   1376   // Get the final position of a label after local fixup based on the old position
   1377   // recorded before FinalizeCode().
   1378   uint32_t GetAdjustedPosition(uint32_t old_position);
   1379 
   1380   // R2 doesn't have PC-relative addressing, which we need to access literals. We simulate it by
   1381   // reading the PC value into a general-purpose register with the NAL instruction and then loading
   1382   // literals through this base register. The code generator calls this method (at most once per
   1383   // method being compiled) to bind a label to the location for which the PC value is acquired.
   1384   // The assembler then computes literal offsets relative to this label.
   1385   void BindPcRelBaseLabel();
   1386 
   1387   // Returns the location of the label bound with BindPcRelBaseLabel().
   1388   uint32_t GetPcRelBaseLabelLocation() const;
   1389 
   1390   // Note that PC-relative literal loads are handled as pseudo branches because they need very
   1391   // similar relocation and may similarly expand in size to accomodate for larger offsets relative
   1392   // to PC.
   1393   enum BranchCondition {
   1394     kCondLT,
   1395     kCondGE,
   1396     kCondLE,
   1397     kCondGT,
   1398     kCondLTZ,
   1399     kCondGEZ,
   1400     kCondLEZ,
   1401     kCondGTZ,
   1402     kCondEQ,
   1403     kCondNE,
   1404     kCondEQZ,
   1405     kCondNEZ,
   1406     kCondLTU,
   1407     kCondGEU,
   1408     kCondF,    // Floating-point predicate false.
   1409     kCondT,    // Floating-point predicate true.
   1410     kUncond,
   1411   };
   1412   friend std::ostream& operator<<(std::ostream& os, const BranchCondition& rhs);
   1413 
   1414   // Enables or disables instruction reordering (IOW, automatic filling of delay slots)
   1415   // similarly to ".set reorder" / ".set noreorder" in traditional MIPS assembly.
   1416   // Returns the last state, which may be useful for temporary enabling/disabling of
   1417   // reordering.
   1418   bool SetReorder(bool enable);
   1419 
   1420  private:
   1421   // Description of the last instruction in terms of input and output registers.
   1422   // Used to make the decision of moving the instruction into a delay slot.
   1423   struct DelaySlot {
   1424     DelaySlot();
   1425 
   1426     // Encoded instruction that may be used to fill the delay slot or 0
   1427     // (0 conveniently represents NOP).
   1428     uint32_t instruction_;
   1429 
   1430     // Input/output register masks.
   1431     InOutRegMasks masks_;
   1432 
   1433     // Label for patchable instructions to allow moving them into delay slots.
   1434     MipsLabel* patcher_label_;
   1435   };
   1436 
   1437   // Delay slot finite state machine's (DS FSM's) state. The FSM state is updated
   1438   // upon every new instruction and label generated. The FSM detects instructions
   1439   // suitable for delay slots and immediately preceded with labels. These are target
   1440   // instructions for branches. If an unconditional R2 branch does not get its delay
   1441   // slot filled with the immediately preceding instruction, it may instead get the
   1442   // slot filled with the target instruction (the branch will need its offset
   1443   // incremented past the target instruction). We call this "absorption". The FSM
   1444   // records PCs of the target instructions suitable for this optimization.
   1445   enum DsFsmState {
   1446     kExpectingLabel,
   1447     kExpectingInstruction,
   1448     kExpectingCommit
   1449   };
   1450   friend std::ostream& operator<<(std::ostream& os, const DsFsmState& rhs);
   1451 
   1452   class Branch {
   1453    public:
   1454     enum Type {
   1455       // R2 short branches (can be promoted to long).
   1456       kUncondBranch,
   1457       kCondBranch,
   1458       kCall,
   1459       // R2 short branches (can't be promoted to long), delay slots filled manually.
   1460       kBareUncondBranch,
   1461       kBareCondBranch,
   1462       kBareCall,
   1463       // R2 near label.
   1464       kLabel,
   1465       // R2 near literal.
   1466       kLiteral,
   1467       // R2 long branches.
   1468       kLongUncondBranch,
   1469       kLongCondBranch,
   1470       kLongCall,
   1471       // R2 far label.
   1472       kFarLabel,
   1473       // R2 far literal.
   1474       kFarLiteral,
   1475       // R6 short branches (can be promoted to long).
   1476       kR6UncondBranch,
   1477       kR6CondBranch,
   1478       kR6Call,
   1479       // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually.
   1480       kR6BareUncondBranch,
   1481       kR6BareCondBranch,
   1482       kR6BareCall,
   1483       // R6 near label.
   1484       kR6Label,
   1485       // R6 near literal.
   1486       kR6Literal,
   1487       // R6 long branches.
   1488       kR6LongUncondBranch,
   1489       kR6LongCondBranch,
   1490       kR6LongCall,
   1491       // R6 far label.
   1492       kR6FarLabel,
   1493       // R6 far literal.
   1494       kR6FarLiteral,
   1495     };
   1496     // Bit sizes of offsets defined as enums to minimize chance of typos.
   1497     enum OffsetBits {
   1498       kOffset16 = 16,
   1499       kOffset18 = 18,
   1500       kOffset21 = 21,
   1501       kOffset23 = 23,
   1502       kOffset28 = 28,
   1503       kOffset32 = 32,
   1504     };
   1505 
   1506     static constexpr uint32_t kUnresolved = 0xffffffff;  // Unresolved target_
   1507     static constexpr int32_t kMaxBranchLength = 32;
   1508     static constexpr int32_t kMaxBranchSize = kMaxBranchLength * sizeof(uint32_t);
   1509     // The following two instruction encodings can never legally occur in branch delay
   1510     // slots and are used as markers.
   1511     //
   1512     // kUnfilledDelaySlot means that the branch may use either the preceding or the target
   1513     // instruction to fill its delay slot (the latter is only possible with unconditional
   1514     // R2 branches and is termed here as "absorption").
   1515     static constexpr uint32_t kUnfilledDelaySlot = 0x10000000;  // beq zero, zero, 0.
   1516     // kUnfillableDelaySlot means that the branch cannot use an instruction (other than NOP)
   1517     // to fill its delay slot. This is only used for unconditional R2 branches to prevent
   1518     // absorption of the target instruction when reordering is disabled.
   1519     static constexpr uint32_t kUnfillableDelaySlot = 0x13FF0000;  // beq ra, ra, 0.
   1520 
   1521     struct BranchInfo {
   1522       // Branch length as a number of 4-byte-long instructions.
   1523       uint32_t length;
   1524       // Ordinal number (0-based) of the first (or the only) instruction that contains the branch's
   1525       // PC-relative offset (or its most significant 16-bit half, which goes first).
   1526       uint32_t instr_offset;
   1527       // Different MIPS instructions with PC-relative offsets apply said offsets to slightly
   1528       // different origins, e.g. to PC or PC+4. Encode the origin distance (as a number of 4-byte
   1529       // instructions) from the instruction containing the offset.
   1530       uint32_t pc_org;
   1531       // How large (in bits) a PC-relative offset can be for a given type of branch (kR6CondBranch
   1532       // and kR6BareCondBranch are an exception: use kOffset23 for beqzc/bnezc).
   1533       OffsetBits offset_size;
   1534       // Some MIPS instructions with PC-relative offsets shift the offset by 2. Encode the shift
   1535       // count.
   1536       int offset_shift;
   1537     };
   1538     static const BranchInfo branch_info_[/* Type */];
   1539 
   1540     // Unconditional branch or call.
   1541     Branch(bool is_r6, uint32_t location, uint32_t target, bool is_call, bool is_bare);
   1542     // Conditional branch.
   1543     Branch(bool is_r6,
   1544            uint32_t location,
   1545            uint32_t target,
   1546            BranchCondition condition,
   1547            Register lhs_reg,
   1548            Register rhs_reg,
   1549            bool is_bare);
   1550     // Label address (in literal area) or literal.
   1551     Branch(bool is_r6,
   1552            uint32_t location,
   1553            Register dest_reg,
   1554            Register base_reg,
   1555            Type label_or_literal_type);
   1556 
   1557     // Some conditional branches with lhs = rhs are effectively NOPs, while some
   1558     // others are effectively unconditional. MIPSR6 conditional branches require lhs != rhs.
   1559     // So, we need a way to identify such branches in order to emit no instructions for them
   1560     // or change them to unconditional.
   1561     static bool IsNop(BranchCondition condition, Register lhs, Register rhs);
   1562     static bool IsUncond(BranchCondition condition, Register lhs, Register rhs);
   1563 
   1564     static BranchCondition OppositeCondition(BranchCondition cond);
   1565 
   1566     Type GetType() const;
   1567     BranchCondition GetCondition() const;
   1568     Register GetLeftRegister() const;
   1569     Register GetRightRegister() const;
   1570     uint32_t GetTarget() const;
   1571     uint32_t GetLocation() const;
   1572     uint32_t GetOldLocation() const;
   1573     uint32_t GetPrecedingInstructionLength(Type type) const;
   1574     uint32_t GetPrecedingInstructionSize(Type type) const;
   1575     uint32_t GetLength() const;
   1576     uint32_t GetOldLength() const;
   1577     uint32_t GetSize() const;
   1578     uint32_t GetOldSize() const;
   1579     uint32_t GetEndLocation() const;
   1580     uint32_t GetOldEndLocation() const;
   1581     bool IsBare() const;
   1582     bool IsLong() const;
   1583     bool IsResolved() const;
   1584 
   1585     // Various helpers for branch delay slot management.
   1586     bool CanHaveDelayedInstruction(const DelaySlot& delay_slot) const;
   1587     void SetDelayedInstruction(uint32_t instruction, MipsLabel* patcher_label = nullptr);
   1588     uint32_t GetDelayedInstruction() const;
   1589     MipsLabel* GetPatcherLabel() const;
   1590     void DecrementLocations();
   1591 
   1592     // Returns the bit size of the signed offset that the branch instruction can handle.
   1593     OffsetBits GetOffsetSize() const;
   1594 
   1595     // Calculates the distance between two byte locations in the assembler buffer and
   1596     // returns the number of bits needed to represent the distance as a signed integer.
   1597     //
   1598     // Branch instructions have signed offsets of 16, 19 (addiupc), 21 (beqzc/bnezc),
   1599     // and 26 (bc) bits, which are additionally shifted left 2 positions at run time.
   1600     //
   1601     // Composite branches (made of several instructions) with longer reach have 32-bit
   1602     // offsets encoded as 2 16-bit "halves" in two instructions (high half goes first).
   1603     // The composite branches cover the range of PC + +/-2GB on MIPS32 CPUs. However,
   1604     // the range is not end-to-end on MIPS64 (unless addresses are forced to zero- or
   1605     // sign-extend from 32 to 64 bits by the appropriate CPU configuration).
   1606     // Consider the following implementation of a long unconditional branch, for
   1607     // example:
   1608     //
   1609     //   auipc at, offset_31_16  // at = pc + sign_extend(offset_31_16) << 16
   1610     //   jic   at, offset_15_0   // pc = at + sign_extend(offset_15_0)
   1611     //
   1612     // Both of the above instructions take 16-bit signed offsets as immediate operands.
   1613     // When bit 15 of offset_15_0 is 1, it effectively causes subtraction of 0x10000
   1614     // due to sign extension. This must be compensated for by incrementing offset_31_16
   1615     // by 1. offset_31_16 can only be incremented by 1 if it's not 0x7FFF. If it is
   1616     // 0x7FFF, adding 1 will overflow the positive offset into the negative range.
   1617     // Therefore, the long branch range is something like from PC - 0x80000000 to
   1618     // PC + 0x7FFF7FFF, IOW, shorter by 32KB on one side.
   1619     //
   1620     // The returned values are therefore: 18, 21, 23, 28 and 32. There's also a special
   1621     // case with the addiu instruction and a 16 bit offset.
   1622     static OffsetBits GetOffsetSizeNeeded(uint32_t location, uint32_t target);
   1623 
   1624     // Resolve a branch when the target is known.
   1625     void Resolve(uint32_t target);
   1626 
   1627     // Relocate a branch by a given delta if needed due to expansion of this or another
   1628     // branch at a given location by this delta (just changes location_ and target_).
   1629     void Relocate(uint32_t expand_location, uint32_t delta);
   1630 
   1631     // If the branch is short, changes its type to long.
   1632     void PromoteToLong();
   1633 
   1634     // If necessary, updates the type by promoting a short branch to a long branch
   1635     // based on the branch location and target. Returns the amount (in bytes) by
   1636     // which the branch size has increased.
   1637     // max_short_distance caps the maximum distance between location_ and target_
   1638     // that is allowed for short branches. This is for debugging/testing purposes.
   1639     // max_short_distance = 0 forces all short branches to become long.
   1640     // Use the implicit default argument when not debugging/testing.
   1641     uint32_t PromoteIfNeeded(uint32_t location,
   1642                              uint32_t max_short_distance = std::numeric_limits<uint32_t>::max());
   1643 
   1644     // Returns the location of the instruction(s) containing the offset.
   1645     uint32_t GetOffsetLocation() const;
   1646 
   1647     // Calculates and returns the offset ready for encoding in the branch instruction(s).
   1648     uint32_t GetOffset(uint32_t location) const;
   1649 
   1650    private:
   1651     // Completes branch construction by determining and recording its type.
   1652     void InitializeType(Type initial_type, bool is_r6);
   1653     // Helper for the above.
   1654     void InitShortOrLong(OffsetBits ofs_size, Type short_type, Type long_type);
   1655 
   1656     uint32_t old_location_;         // Offset into assembler buffer in bytes.
   1657     uint32_t location_;             // Offset into assembler buffer in bytes.
   1658     uint32_t target_;               // Offset into assembler buffer in bytes.
   1659 
   1660     uint32_t lhs_reg_;              // Left-hand side register in conditional branches or
   1661                                     // FPU condition code. Destination register in literals.
   1662     uint32_t rhs_reg_;              // Right-hand side register in conditional branches.
   1663                                     // Base register in literals (ZERO on R6).
   1664     BranchCondition condition_;     // Condition for conditional branches.
   1665 
   1666     Type type_;                     // Current type of the branch.
   1667     Type old_type_;                 // Initial type of the branch.
   1668 
   1669     uint32_t delayed_instruction_;  // Encoded instruction for the delay slot or
   1670                                     // kUnfilledDelaySlot if none but fillable or
   1671                                     // kUnfillableDelaySlot if none and unfillable
   1672                                     // (the latter is only used for unconditional R2
   1673                                     // branches).
   1674 
   1675     MipsLabel* patcher_label_;      // Patcher label for the instruction in the delay slot.
   1676   };
   1677   friend std::ostream& operator<<(std::ostream& os, const Branch::Type& rhs);
   1678   friend std::ostream& operator<<(std::ostream& os, const Branch::OffsetBits& rhs);
   1679 
   1680   uint32_t EmitR(int opcode, Register rs, Register rt, Register rd, int shamt, int funct);
   1681   uint32_t EmitI(int opcode, Register rs, Register rt, uint16_t imm);
   1682   uint32_t EmitI21(int opcode, Register rs, uint32_t imm21);
   1683   uint32_t EmitI26(int opcode, uint32_t imm26);
   1684   uint32_t EmitFR(int opcode, int fmt, FRegister ft, FRegister fs, FRegister fd, int funct);
   1685   uint32_t EmitFI(int opcode, int fmt, FRegister rt, uint16_t imm);
   1686   void EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16);
   1687   void EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21);
   1688   uint32_t EmitMsa3R(int operation,
   1689                      int df,
   1690                      VectorRegister wt,
   1691                      VectorRegister ws,
   1692                      VectorRegister wd,
   1693                      int minor_opcode);
   1694   uint32_t EmitMsaBIT(int operation,
   1695                       int df_m,
   1696                       VectorRegister ws,
   1697                       VectorRegister wd,
   1698                       int minor_opcode);
   1699   uint32_t EmitMsaELM(int operation,
   1700                       int df_n,
   1701                       VectorRegister ws,
   1702                       VectorRegister wd,
   1703                       int minor_opcode);
   1704   uint32_t EmitMsaMI10(int s10, Register rs, VectorRegister wd, int minor_opcode, int df);
   1705   uint32_t EmitMsaI10(int operation, int df, int i10, VectorRegister wd, int minor_opcode);
   1706   uint32_t EmitMsa2R(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode);
   1707   uint32_t EmitMsa2RF(int operation,
   1708                       int df,
   1709                       VectorRegister ws,
   1710                       VectorRegister wd,
   1711                       int minor_opcode);
   1712 
   1713   void Buncond(MipsLabel* label, bool is_r6, bool is_bare);
   1714   void Bcond(MipsLabel* label,
   1715              bool is_r6,
   1716              bool is_bare,
   1717              BranchCondition condition,
   1718              Register lhs,
   1719              Register rhs = ZERO);
   1720   void Call(MipsLabel* label, bool is_r6, bool is_bare);
   1721   void FinalizeLabeledBranch(MipsLabel* label);
   1722 
   1723   // Various helpers for branch delay slot management.
   1724   InOutRegMasks& DsFsmInstr(uint32_t instruction, MipsLabel* patcher_label = nullptr);
   1725   void DsFsmInstrNop(uint32_t instruction);
   1726   void DsFsmLabel();
   1727   void DsFsmCommitLabel();
   1728   void DsFsmDropLabel();
   1729   void MoveInstructionToDelaySlot(Branch& branch);
   1730   bool CanExchangeWithSlt(Register rs, Register rt) const;
   1731   void ExchangeWithSlt(const DelaySlot& forwarded_slot);
   1732   void GenerateSltForCondBranch(bool unsigned_slt, Register rs, Register rt);
   1733 
   1734   Branch* GetBranch(uint32_t branch_id);
   1735   const Branch* GetBranch(uint32_t branch_id) const;
   1736   uint32_t GetBranchLocationOrPcRelBase(const MipsAssembler::Branch* branch) const;
   1737   uint32_t GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch* branch) const;
   1738   void BindRelativeToPrecedingBranch(MipsLabel* label,
   1739                                      uint32_t prev_branch_id_plus_one,
   1740                                      uint32_t position);
   1741 
   1742   void EmitLiterals();
   1743   void ReserveJumpTableSpace();
   1744   void EmitJumpTables();
   1745   void PromoteBranches();
   1746   void EmitBranch(uint32_t branch_id);
   1747   void EmitBranches();
   1748   void PatchCFI(size_t number_of_delayed_adjust_pcs);
   1749 
   1750   // Emits exception block.
   1751   void EmitExceptionPoll(MipsExceptionSlowPath* exception);
   1752 
   1753   bool HasMsa() const {
   1754     return has_msa_;
   1755   }
   1756 
   1757   bool IsR6() const {
   1758     if (isa_features_ != nullptr) {
   1759       return isa_features_->IsR6();
   1760     } else {
   1761       return false;
   1762     }
   1763   }
   1764 
   1765   bool Is32BitFPU() const {
   1766     if (isa_features_ != nullptr) {
   1767       return isa_features_->Is32BitFloatingPoint();
   1768     } else {
   1769       return true;
   1770     }
   1771   }
   1772 
   1773   // List of exception blocks to generate at the end of the code cache.
   1774   std::vector<MipsExceptionSlowPath> exception_blocks_;
   1775 
   1776   std::vector<Branch> branches_;
   1777 
   1778   // Whether appending instructions at the end of the buffer or overwriting the existing ones.
   1779   bool overwriting_;
   1780   // The current overwrite location.
   1781   uint32_t overwrite_location_;
   1782 
   1783   // Whether instruction reordering (IOW, automatic filling of delay slots) is enabled.
   1784   bool reordering_;
   1785   // Information about the last instruction that may be used to fill a branch delay slot.
   1786   DelaySlot delay_slot_;
   1787   // Delay slot FSM state.
   1788   DsFsmState ds_fsm_state_;
   1789   // PC of the current labeled target instruction.
   1790   uint32_t ds_fsm_target_pc_;
   1791   // PCs of labeled target instructions.
   1792   std::vector<uint32_t> ds_fsm_target_pcs_;
   1793 
   1794   // Use std::deque<> for literal labels to allow insertions at the end
   1795   // without invalidating pointers and references to existing elements.
   1796   ArenaDeque<Literal> literals_;
   1797 
   1798   // Jump table list.
   1799   ArenaDeque<JumpTable> jump_tables_;
   1800 
   1801   // There's no PC-relative addressing on MIPS32R2. So, in order to access literals relative to PC
   1802   // we get PC using the NAL instruction. This label marks the position within the assembler buffer
   1803   // that PC (from NAL) points to.
   1804   MipsLabel pc_rel_base_label_;
   1805 
   1806   // Data for GetAdjustedPosition(), see the description there.
   1807   uint32_t last_position_adjustment_;
   1808   uint32_t last_old_position_;
   1809   uint32_t last_branch_id_;
   1810 
   1811   const bool has_msa_;
   1812 
   1813   const MipsInstructionSetFeatures* isa_features_;
   1814 
   1815   DISALLOW_COPY_AND_ASSIGN(MipsAssembler);
   1816 };
   1817 
   1818 }  // namespace mips
   1819 }  // namespace art
   1820 
   1821 #endif  // ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_
   1822