Home | History | Annotate | Download | only in aarch32
      1 /*
      2  * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * SPDX-License-Identifier: BSD-3-Clause
      5  */
      6 
      7 #include <arch.h>
      8 #include <asm_macros.S>
      9 #include <bl_common.h>
     10 #include <context.h>
     11 #include <el3_common_macros.S>
     12 #include <runtime_svc.h>
     13 #include <smcc_helpers.h>
     14 #include <smcc_macros.S>
     15 #include <xlat_tables_defs.h>
     16 
     17 	.globl	sp_min_vector_table
     18 	.globl	sp_min_entrypoint
     19 	.globl	sp_min_warm_entrypoint
     20 
     21 	.macro route_fiq_to_sp_min reg
     22 		/* -----------------------------------------------------
     23 		 * FIQs are secure interrupts trapped by Monitor and non
     24 		 * secure is not allowed to mask the FIQs.
     25 		 * -----------------------------------------------------
     26 		 */
     27 		ldcopr	\reg, SCR
     28 		orr	\reg, \reg, #SCR_FIQ_BIT
     29 		bic	\reg, \reg, #SCR_FW_BIT
     30 		stcopr	\reg, SCR
     31 	.endm
     32 
     33 vector_base sp_min_vector_table
     34 	b	sp_min_entrypoint
     35 	b	plat_panic_handler	/* Undef */
     36 	b	handle_smc		/* Syscall */
     37 	b	plat_panic_handler	/* Prefetch abort */
     38 	b	plat_panic_handler	/* Data abort */
     39 	b	plat_panic_handler	/* Reserved */
     40 	b	plat_panic_handler	/* IRQ */
     41 	b	handle_fiq		/* FIQ */
     42 
     43 
     44 /*
     45  * The Cold boot/Reset entrypoint for SP_MIN
     46  */
     47 func sp_min_entrypoint
     48 #if !RESET_TO_SP_MIN
     49 	/* ---------------------------------------------------------------
     50 	 * Preceding bootloader has populated r0 with a pointer to a
     51 	 * 'bl_params_t' structure & r1 with a pointer to platform
     52 	 * specific structure
     53 	 * ---------------------------------------------------------------
     54 	 */
     55 	mov	r11, r0
     56 	mov	r12, r1
     57 
     58 	/* ---------------------------------------------------------------------
     59 	 * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches
     60 	 * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
     61 	 * and primary/secondary CPU logic should not be executed in this case.
     62 	 *
     63 	 * Also, assume that the previous bootloader has already initialised the
     64 	 * SCTLR, including the CPU endianness, and has initialised the memory.
     65 	 * ---------------------------------------------------------------------
     66 	 */
     67 	el3_entrypoint_common					\
     68 		_init_sctlr=0					\
     69 		_warm_boot_mailbox=0				\
     70 		_secondary_cold_boot=0				\
     71 		_init_memory=0					\
     72 		_init_c_runtime=1				\
     73 		_exception_vectors=sp_min_vector_table
     74 
     75 	/* ---------------------------------------------------------------------
     76 	 * Relay the previous bootloader's arguments to the platform layer
     77 	 * ---------------------------------------------------------------------
     78 	 */
     79 	mov	r0, r11
     80 	mov	r1, r12
     81 #else
     82 	/* ---------------------------------------------------------------------
     83 	 * For RESET_TO_SP_MIN systems which have a programmable reset address,
     84 	 * sp_min_entrypoint() is executed only on the cold boot path so we can
     85 	 * skip the warm boot mailbox mechanism.
     86 	 * ---------------------------------------------------------------------
     87 	 */
     88 	el3_entrypoint_common					\
     89 		_init_sctlr=1					\
     90 		_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS	\
     91 		_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU	\
     92 		_init_memory=1					\
     93 		_init_c_runtime=1				\
     94 		_exception_vectors=sp_min_vector_table
     95 
     96 	/* ---------------------------------------------------------------------
     97 	 * For RESET_TO_SP_MIN systems, BL32 (SP_MIN) is the first bootloader
     98 	 * to run so there's no argument to relay from a previous bootloader.
     99 	 * Zero the arguments passed to the platform layer to reflect that.
    100 	 * ---------------------------------------------------------------------
    101 	 */
    102 	mov	r0, #0
    103 	mov	r1, #0
    104 #endif /* RESET_TO_SP_MIN */
    105 
    106 #if SP_MIN_WITH_SECURE_FIQ
    107 	route_fiq_to_sp_min r4
    108 #endif
    109 
    110 	bl	sp_min_early_platform_setup
    111 	bl	sp_min_plat_arch_setup
    112 
    113 	/* Jump to the main function */
    114 	bl	sp_min_main
    115 
    116 	/* -------------------------------------------------------------
    117 	 * Clean the .data & .bss sections to main memory. This ensures
    118 	 * that any global data which was initialised by the primary CPU
    119 	 * is visible to secondary CPUs before they enable their data
    120 	 * caches and participate in coherency.
    121 	 * -------------------------------------------------------------
    122 	 */
    123 	ldr	r0, =__DATA_START__
    124 	ldr	r1, =__DATA_END__
    125 	sub	r1, r1, r0
    126 	bl	clean_dcache_range
    127 
    128 	ldr	r0, =__BSS_START__
    129 	ldr	r1, =__BSS_END__
    130 	sub	r1, r1, r0
    131 	bl	clean_dcache_range
    132 
    133 	bl	smc_get_next_ctx
    134 
    135 	/* r0 points to `smc_ctx_t` */
    136 	/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
    137 	b	sp_min_exit
    138 endfunc sp_min_entrypoint
    139 
    140 
    141 /*
    142  * SMC handling function for SP_MIN.
    143  */
    144 func handle_smc
    145 	/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
    146 	str	lr, [sp, #SMC_CTX_LR_MON]
    147 
    148 	smcc_save_gp_mode_regs
    149 
    150 	/*
    151 	 * `sp` still points to `smc_ctx_t`. Save it to a register
    152 	 * and restore the C runtime stack pointer to `sp`.
    153 	 */
    154 	mov	r2, sp				/* handle */
    155 	ldr	sp, [r2, #SMC_CTX_SP_MON]
    156 
    157 	ldr	r0, [r2, #SMC_CTX_SCR]
    158 	and	r3, r0, #SCR_NS_BIT		/* flags */
    159 
    160 	/* Switch to Secure Mode*/
    161 	bic	r0, #SCR_NS_BIT
    162 	stcopr	r0, SCR
    163 	isb
    164 
    165 	/*
    166 	 * Set PMCR.DP to 1 to prohibit cycle counting whilst in Secure Mode.
    167 	 * Also, the PMCR.LC field has an architecturally UNKNOWN value on reset
    168 	 * and so set to 1 as ARM has deprecated use of PMCR.LC=0.
    169 	 */
    170 	ldcopr	r0, PMCR
    171 	orr	r0, r0, #(PMCR_LC_BIT | PMCR_DP_BIT)
    172 	stcopr	r0, PMCR
    173 
    174 	ldr	r0, [r2, #SMC_CTX_GPREG_R0]	/* smc_fid */
    175 	/* Check whether an SMC64 is issued */
    176 	tst	r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT)
    177 	beq	1f
    178 	/* SMC32 is not detected. Return error back to caller */
    179 	mov	r0, #SMC_UNK
    180 	str	r0, [r2, #SMC_CTX_GPREG_R0]
    181 	mov	r0, r2
    182 	b	sp_min_exit
    183 1:
    184 	/* SMC32 is detected */
    185 	mov	r1, #0				/* cookie */
    186 	bl	handle_runtime_svc
    187 
    188 	/* `r0` points to `smc_ctx_t` */
    189 	b	sp_min_exit
    190 endfunc handle_smc
    191 
    192 /*
    193  * Secure Interrupts handling function for SP_MIN.
    194  */
    195 func handle_fiq
    196 #if !SP_MIN_WITH_SECURE_FIQ
    197 	b plat_panic_handler
    198 #else
    199 	/* FIQ has a +4 offset for lr compared to preferred return address */
    200 	sub	lr, lr, #4
    201 	/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
    202 	str	lr, [sp, #SMC_CTX_LR_MON]
    203 
    204 	smcc_save_gp_mode_regs
    205 
    206 	/*
    207 	 * AArch32 architectures need to clear the exclusive access when
    208 	 * entering Monitor mode.
    209 	 */
    210 	clrex
    211 
    212 	/* load run-time stack */
    213 	mov	r2, sp
    214 	ldr	sp, [r2, #SMC_CTX_SP_MON]
    215 
    216 	/* Switch to Secure Mode */
    217 	ldr	r0, [r2, #SMC_CTX_SCR]
    218 	bic	r0, #SCR_NS_BIT
    219 	stcopr	r0, SCR
    220 	isb
    221 
    222 	/*
    223 	 * Set PMCR.DP to 1 to prohibit cycle counting whilst in Secure Mode.
    224 	 * Also, the PMCR.LC field has an architecturally UNKNOWN value on reset
    225 	 * and so set to 1 as ARM has deprecated use of PMCR.LC=0.
    226 	 */
    227 	ldcopr	r0, PMCR
    228 	orr	r0, r0, #(PMCR_LC_BIT | PMCR_DP_BIT)
    229 	stcopr	r0, PMCR
    230 
    231 	push	{r2, r3}
    232 	bl	sp_min_fiq
    233 	pop	{r0, r3}
    234 
    235 	b	sp_min_exit
    236 #endif
    237 endfunc handle_fiq
    238 
    239 /*
    240  * The Warm boot entrypoint for SP_MIN.
    241  */
    242 func sp_min_warm_entrypoint
    243 	/*
    244 	 * On the warm boot path, most of the EL3 initialisations performed by
    245 	 * 'el3_entrypoint_common' must be skipped:
    246 	 *
    247 	 *  - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
    248 	 *    programming the reset address do we need to initialied the SCTLR.
    249 	 *    In other cases, we assume this has been taken care by the
    250 	 *    entrypoint code.
    251 	 *
    252 	 *  - No need to determine the type of boot, we know it is a warm boot.
    253 	 *
    254 	 *  - Do not try to distinguish between primary and secondary CPUs, this
    255 	 *    notion only exists for a cold boot.
    256 	 *
    257 	 *  - No need to initialise the memory or the C runtime environment,
    258 	 *    it has been done once and for all on the cold boot path.
    259 	 */
    260 	el3_entrypoint_common					\
    261 		_init_sctlr=PROGRAMMABLE_RESET_ADDRESS		\
    262 		_warm_boot_mailbox=0				\
    263 		_secondary_cold_boot=0				\
    264 		_init_memory=0					\
    265 		_init_c_runtime=0				\
    266 		_exception_vectors=sp_min_vector_table
    267 
    268 	/*
    269 	 * We're about to enable MMU and participate in PSCI state coordination.
    270 	 *
    271 	 * The PSCI implementation invokes platform routines that enable CPUs to
    272 	 * participate in coherency. On a system where CPUs are not
    273 	 * cache-coherent without appropriate platform specific programming,
    274 	 * having caches enabled until such time might lead to coherency issues
    275 	 * (resulting from stale data getting speculatively fetched, among
    276 	 * others). Therefore we keep data caches disabled even after enabling
    277 	 * the MMU for such platforms.
    278 	 *
    279 	 * On systems with hardware-assisted coherency, or on single cluster
    280 	 * platforms, such platform specific programming is not required to
    281 	 * enter coherency (as CPUs already are); and there's no reason to have
    282 	 * caches disabled either.
    283 	 */
    284 	mov	r0, #DISABLE_DCACHE
    285 	bl	bl32_plat_enable_mmu
    286 
    287 #if SP_MIN_WITH_SECURE_FIQ
    288 	route_fiq_to_sp_min r0
    289 #endif
    290 
    291 #if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
    292 	ldcopr	r0, SCTLR
    293 	orr	r0, r0, #SCTLR_C_BIT
    294 	stcopr	r0, SCTLR
    295 	isb
    296 #endif
    297 
    298 	bl	sp_min_warm_boot
    299 	bl	smc_get_next_ctx
    300 	/* r0 points to `smc_ctx_t` */
    301 	/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
    302 	b	sp_min_exit
    303 endfunc sp_min_warm_entrypoint
    304 
    305 /*
    306  * The function to restore the registers from SMC context and return
    307  * to the mode restored to SPSR.
    308  *
    309  * Arguments : r0 must point to the SMC context to restore from.
    310  */
    311 func sp_min_exit
    312 	monitor_exit
    313 endfunc sp_min_exit
    314