Home | History | Annotate | Download | only in asm
      1 #! /usr/bin/env perl
      2 # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
      3 #
      4 # Licensed under the OpenSSL license (the "License").  You may not use
      5 # this file except in compliance with the License.  You can obtain a copy
      6 # in the file LICENSE in the source distribution or at
      7 # https://www.openssl.org/source/license.html
      8 
      9 #
     10 # ====================================================================
     11 # Written by Andy Polyakov <appro (at] openssl.org> for the OpenSSL
     12 # project. The module is, however, dual licensed under OpenSSL and
     13 # CRYPTOGAMS licenses depending on where you obtain it. For further
     14 # details see http://www.openssl.org/~appro/cryptogams/.
     15 # ====================================================================
     16 #
     17 # GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication.
     18 #
     19 # June 2014
     20 #
     21 # Initial version was developed in tight cooperation with Ard
     22 # Biesheuvel <ard.biesheuvel (at] linaro.org> from bits-n-pieces from
     23 # other assembly modules. Just like aesv8-armx.pl this module
     24 # supports both AArch32 and AArch64 execution modes.
     25 #
     26 # July 2014
     27 #
     28 # Implement 2x aggregated reduction [see ghash-x86.pl for background
     29 # information].
     30 #
     31 # Current performance in cycles per processed byte:
     32 #
     33 #		PMULL[2]	32-bit NEON(*)
     34 # Apple A7	0.92		5.62
     35 # Cortex-A53	1.01		8.39
     36 # Cortex-A57	1.17		7.61
     37 # Denver	0.71		6.02
     38 # Mongoose	1.10		8.06
     39 #
     40 # (*)	presented for reference/comparison purposes;
     41 
     42 $flavour = shift;
     43 $output  = shift;
     44 
     45 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
     46 ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
     47 ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
     48 die "can't locate arm-xlate.pl";
     49 
     50 open OUT,"| \"$^X\" $xlate $flavour $output";
     51 *STDOUT=*OUT;
     52 
     53 $Xi="x0";	# argument block
     54 $Htbl="x1";
     55 $inp="x2";
     56 $len="x3";
     57 
     58 $inc="x12";
     59 
     60 {
     61 my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
     62 my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14));
     63 
     64 $code=<<___;
     65 #include <openssl/arm_arch.h>
     66 
     67 .text
     68 ___
     69 $code.=".arch	armv8-a+crypto\n"	if ($flavour =~ /64/);
     70 $code.=<<___				if ($flavour !~ /64/);
     71 .fpu	neon
     72 .code	32
     73 #undef	__thumb2__
     74 ___
     75 
     76 ################################################################################
     77 # void gcm_init_v8(u128 Htable[16],const u64 H[2]);
     78 #
     79 # input:	128-bit H - secret parameter E(K,0^128)
     80 # output:	precomputed table filled with degrees of twisted H;
     81 #		H is twisted to handle reverse bitness of GHASH;
     82 #		only few of 16 slots of Htable[16] are used;
     83 #		data is opaque to outside world (which allows to
     84 #		optimize the code independently);
     85 #
     86 $code.=<<___;
     87 .global	gcm_init_v8
     88 .type	gcm_init_v8,%function
     89 .align	4
     90 gcm_init_v8:
     91 	vld1.64		{$t1},[x1]		@ load input H
     92 	vmov.i8		$xC2,#0xe1
     93 	vshl.i64	$xC2,$xC2,#57		@ 0xc2.0
     94 	vext.8		$IN,$t1,$t1,#8
     95 	vshr.u64	$t2,$xC2,#63
     96 	vdup.32		$t1,${t1}[1]
     97 	vext.8		$t0,$t2,$xC2,#8		@ t0=0xc2....01
     98 	vshr.u64	$t2,$IN,#63
     99 	vshr.s32	$t1,$t1,#31		@ broadcast carry bit
    100 	vand		$t2,$t2,$t0
    101 	vshl.i64	$IN,$IN,#1
    102 	vext.8		$t2,$t2,$t2,#8
    103 	vand		$t0,$t0,$t1
    104 	vorr		$IN,$IN,$t2		@ H<<<=1
    105 	veor		$H,$IN,$t0		@ twisted H
    106 	vst1.64		{$H},[x0],#16		@ store Htable[0]
    107 
    108 	@ calculate H^2
    109 	vext.8		$t0,$H,$H,#8		@ Karatsuba pre-processing
    110 	vpmull.p64	$Xl,$H,$H
    111 	veor		$t0,$t0,$H
    112 	vpmull2.p64	$Xh,$H,$H
    113 	vpmull.p64	$Xm,$t0,$t0
    114 
    115 	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
    116 	veor		$t2,$Xl,$Xh
    117 	veor		$Xm,$Xm,$t1
    118 	veor		$Xm,$Xm,$t2
    119 	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase
    120 
    121 	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
    122 	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
    123 	veor		$Xl,$Xm,$t2
    124 
    125 	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase
    126 	vpmull.p64	$Xl,$Xl,$xC2
    127 	veor		$t2,$t2,$Xh
    128 	veor		$H2,$Xl,$t2
    129 
    130 	vext.8		$t1,$H2,$H2,#8		@ Karatsuba pre-processing
    131 	veor		$t1,$t1,$H2
    132 	vext.8		$Hhl,$t0,$t1,#8		@ pack Karatsuba pre-processed
    133 	vst1.64		{$Hhl-$H2},[x0]		@ store Htable[1..2]
    134 
    135 	ret
    136 .size	gcm_init_v8,.-gcm_init_v8
    137 ___
    138 ################################################################################
    139 # void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]);
    140 #
    141 # input:	Xi - current hash value;
    142 #		Htable - table precomputed in gcm_init_v8;
    143 # output:	Xi - next hash value Xi;
    144 #
    145 $code.=<<___;
    146 .global	gcm_gmult_v8
    147 .type	gcm_gmult_v8,%function
    148 .align	4
    149 gcm_gmult_v8:
    150 	vld1.64		{$t1},[$Xi]		@ load Xi
    151 	vmov.i8		$xC2,#0xe1
    152 	vld1.64		{$H-$Hhl},[$Htbl]	@ load twisted H, ...
    153 	vshl.u64	$xC2,$xC2,#57
    154 #ifndef __ARMEB__
    155 	vrev64.8	$t1,$t1
    156 #endif
    157 	vext.8		$IN,$t1,$t1,#8
    158 
    159 	vpmull.p64	$Xl,$H,$IN		@ H.loXi.lo
    160 	veor		$t1,$t1,$IN		@ Karatsuba pre-processing
    161 	vpmull2.p64	$Xh,$H,$IN		@ H.hiXi.hi
    162 	vpmull.p64	$Xm,$Hhl,$t1		@ (H.lo+H.hi)(Xi.lo+Xi.hi)
    163 
    164 	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
    165 	veor		$t2,$Xl,$Xh
    166 	veor		$Xm,$Xm,$t1
    167 	veor		$Xm,$Xm,$t2
    168 	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
    169 
    170 	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
    171 	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
    172 	veor		$Xl,$Xm,$t2
    173 
    174 	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
    175 	vpmull.p64	$Xl,$Xl,$xC2
    176 	veor		$t2,$t2,$Xh
    177 	veor		$Xl,$Xl,$t2
    178 
    179 #ifndef __ARMEB__
    180 	vrev64.8	$Xl,$Xl
    181 #endif
    182 	vext.8		$Xl,$Xl,$Xl,#8
    183 	vst1.64		{$Xl},[$Xi]		@ write out Xi
    184 
    185 	ret
    186 .size	gcm_gmult_v8,.-gcm_gmult_v8
    187 ___
    188 ################################################################################
    189 # void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
    190 #
    191 # input:	table precomputed in gcm_init_v8;
    192 #		current hash value Xi;
    193 #		pointer to input data;
    194 #		length of input data in bytes, but divisible by block size;
    195 # output:	next hash value Xi;
    196 #
    197 $code.=<<___;
    198 .global	gcm_ghash_v8
    199 .type	gcm_ghash_v8,%function
    200 .align	4
    201 gcm_ghash_v8:
    202 ___
    203 $code.=<<___		if ($flavour !~ /64/);
    204 	vstmdb		sp!,{d8-d15}		@ 32-bit ABI says so
    205 ___
    206 $code.=<<___;
    207 	vld1.64		{$Xl},[$Xi]		@ load [rotated] Xi
    208 						@ "[rotated]" means that
    209 						@ loaded value would have
    210 						@ to be rotated in order to
    211 						@ make it appear as in
    212 						@ alorithm specification
    213 	subs		$len,$len,#32		@ see if $len is 32 or larger
    214 	mov		$inc,#16		@ $inc is used as post-
    215 						@ increment for input pointer;
    216 						@ as loop is modulo-scheduled
    217 						@ $inc is zeroed just in time
    218 						@ to preclude oversteping
    219 						@ inp[len], which means that
    220 						@ last block[s] are actually
    221 						@ loaded twice, but last
    222 						@ copy is not processed
    223 	vld1.64		{$H-$Hhl},[$Htbl],#32	@ load twisted H, ..., H^2
    224 	vmov.i8		$xC2,#0xe1
    225 	vld1.64		{$H2},[$Htbl]
    226 	cclr		$inc,eq			@ is it time to zero $inc?
    227 	vext.8		$Xl,$Xl,$Xl,#8		@ rotate Xi
    228 	vld1.64		{$t0},[$inp],#16	@ load [rotated] I[0]
    229 	vshl.u64	$xC2,$xC2,#57		@ compose 0xc2.0 constant
    230 #ifndef __ARMEB__
    231 	vrev64.8	$t0,$t0
    232 	vrev64.8	$Xl,$Xl
    233 #endif
    234 	vext.8		$IN,$t0,$t0,#8		@ rotate I[0]
    235 	b.lo		.Lodd_tail_v8		@ $len was less than 32
    236 ___
    237 { my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7));
    238 	#######
    239 	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
    240 	#	[(H*Ii+1) + (H*Xi+1)] mod P =
    241 	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
    242 	#
    243 $code.=<<___;
    244 	vld1.64		{$t1},[$inp],$inc	@ load [rotated] I[1]
    245 #ifndef __ARMEB__
    246 	vrev64.8	$t1,$t1
    247 #endif
    248 	vext.8		$In,$t1,$t1,#8
    249 	veor		$IN,$IN,$Xl		@ I[i]^=Xi
    250 	vpmull.p64	$Xln,$H,$In		@ HIi+1
    251 	veor		$t1,$t1,$In		@ Karatsuba pre-processing
    252 	vpmull2.p64	$Xhn,$H,$In
    253 	b		.Loop_mod2x_v8
    254 
    255 .align	4
    256 .Loop_mod2x_v8:
    257 	vext.8		$t2,$IN,$IN,#8
    258 	subs		$len,$len,#32		@ is there more data?
    259 	vpmull.p64	$Xl,$H2,$IN		@ H^2.loXi.lo
    260 	cclr		$inc,lo			@ is it time to zero $inc?
    261 
    262 	 vpmull.p64	$Xmn,$Hhl,$t1
    263 	veor		$t2,$t2,$IN		@ Karatsuba pre-processing
    264 	vpmull2.p64	$Xh,$H2,$IN		@ H^2.hiXi.hi
    265 	veor		$Xl,$Xl,$Xln		@ accumulate
    266 	vpmull2.p64	$Xm,$Hhl,$t2		@ (H^2.lo+H^2.hi)(Xi.lo+Xi.hi)
    267 	 vld1.64	{$t0},[$inp],$inc	@ load [rotated] I[i+2]
    268 
    269 	veor		$Xh,$Xh,$Xhn
    270 	 cclr		$inc,eq			@ is it time to zero $inc?
    271 	veor		$Xm,$Xm,$Xmn
    272 
    273 	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
    274 	veor		$t2,$Xl,$Xh
    275 	veor		$Xm,$Xm,$t1
    276 	 vld1.64	{$t1},[$inp],$inc	@ load [rotated] I[i+3]
    277 #ifndef __ARMEB__
    278 	 vrev64.8	$t0,$t0
    279 #endif
    280 	veor		$Xm,$Xm,$t2
    281 	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
    282 
    283 #ifndef __ARMEB__
    284 	 vrev64.8	$t1,$t1
    285 #endif
    286 	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
    287 	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
    288 	 vext.8		$In,$t1,$t1,#8
    289 	 vext.8		$IN,$t0,$t0,#8
    290 	veor		$Xl,$Xm,$t2
    291 	 vpmull.p64	$Xln,$H,$In		@ HIi+1
    292 	veor		$IN,$IN,$Xh		@ accumulate $IN early
    293 
    294 	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
    295 	vpmull.p64	$Xl,$Xl,$xC2
    296 	veor		$IN,$IN,$t2
    297 	 veor		$t1,$t1,$In		@ Karatsuba pre-processing
    298 	veor		$IN,$IN,$Xl
    299 	 vpmull2.p64	$Xhn,$H,$In
    300 	b.hs		.Loop_mod2x_v8		@ there was at least 32 more bytes
    301 
    302 	veor		$Xh,$Xh,$t2
    303 	vext.8		$IN,$t0,$t0,#8		@ re-construct $IN
    304 	adds		$len,$len,#32		@ re-construct $len
    305 	veor		$Xl,$Xl,$Xh		@ re-construct $Xl
    306 	b.eq		.Ldone_v8		@ is $len zero?
    307 ___
    308 }
    309 $code.=<<___;
    310 .Lodd_tail_v8:
    311 	vext.8		$t2,$Xl,$Xl,#8
    312 	veor		$IN,$IN,$Xl		@ inp^=Xi
    313 	veor		$t1,$t0,$t2		@ $t1 is rotated inp^Xi
    314 
    315 	vpmull.p64	$Xl,$H,$IN		@ H.loXi.lo
    316 	veor		$t1,$t1,$IN		@ Karatsuba pre-processing
    317 	vpmull2.p64	$Xh,$H,$IN		@ H.hiXi.hi
    318 	vpmull.p64	$Xm,$Hhl,$t1		@ (H.lo+H.hi)(Xi.lo+Xi.hi)
    319 
    320 	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
    321 	veor		$t2,$Xl,$Xh
    322 	veor		$Xm,$Xm,$t1
    323 	veor		$Xm,$Xm,$t2
    324 	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
    325 
    326 	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
    327 	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
    328 	veor		$Xl,$Xm,$t2
    329 
    330 	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
    331 	vpmull.p64	$Xl,$Xl,$xC2
    332 	veor		$t2,$t2,$Xh
    333 	veor		$Xl,$Xl,$t2
    334 
    335 .Ldone_v8:
    336 #ifndef __ARMEB__
    337 	vrev64.8	$Xl,$Xl
    338 #endif
    339 	vext.8		$Xl,$Xl,$Xl,#8
    340 	vst1.64		{$Xl},[$Xi]		@ write out Xi
    341 
    342 ___
    343 $code.=<<___		if ($flavour !~ /64/);
    344 	vldmia		sp!,{d8-d15}		@ 32-bit ABI says so
    345 ___
    346 $code.=<<___;
    347 	ret
    348 .size	gcm_ghash_v8,.-gcm_ghash_v8
    349 ___
    350 }
    351 $code.=<<___;
    352 .asciz  "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
    353 .align  2
    354 ___
    355 
    356 if ($flavour =~ /64/) {			######## 64-bit code
    357     sub unvmov {
    358 	my $arg=shift;
    359 
    360 	$arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o &&
    361 	sprintf	"ins	v%d.d[%d],v%d.d[%d]",$1,($2 eq "lo")?0:1,$3,($4 eq "lo")?0:1;
    362     }
    363     foreach(split("\n",$code)) {
    364 	s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel	$1$2,$1zr,$1$2,$3/o	or
    365 	s/vmov\.i8/movi/o		or	# fix up legacy mnemonics
    366 	s/vmov\s+(.*)/unvmov($1)/geo	or
    367 	s/vext\.8/ext/o			or
    368 	s/vshr\.s/sshr\.s/o		or
    369 	s/vshr/ushr/o			or
    370 	s/^(\s+)v/$1/o			or	# strip off v prefix
    371 	s/\bbx\s+lr\b/ret/o;
    372 
    373 	s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo;	# old->new registers
    374 	s/@\s/\/\//o;				# old->new style commentary
    375 
    376 	# fix up remainig legacy suffixes
    377 	s/\.[ui]?8(\s)/$1/o;
    378 	s/\.[uis]?32//o and s/\.16b/\.4s/go;
    379 	m/\.p64/o and s/\.16b/\.1q/o;		# 1st pmull argument
    380 	m/l\.p64/o and s/\.16b/\.1d/go;		# 2nd and 3rd pmull arguments
    381 	s/\.[uisp]?64//o and s/\.16b/\.2d/go;
    382 	s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o;
    383 
    384 	print $_,"\n";
    385     }
    386 } else {				######## 32-bit code
    387     sub unvdup32 {
    388 	my $arg=shift;
    389 
    390 	$arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o &&
    391 	sprintf	"vdup.32	q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1;
    392     }
    393     sub unvpmullp64 {
    394 	my ($mnemonic,$arg)=@_;
    395 
    396 	if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) {
    397 	    my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19)
    398 				 |(($2&7)<<17)|(($2&8)<<4)
    399 				 |(($3&7)<<1) |(($3&8)<<2);
    400 	    $word |= 0x00010001	 if ($mnemonic =~ "2");
    401 	    # since ARMv7 instructions are always encoded little-endian.
    402 	    # correct solution is to use .inst directive, but older
    403 	    # assemblers don't implement it:-(
    404 	    sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
    405 			$word&0xff,($word>>8)&0xff,
    406 			($word>>16)&0xff,($word>>24)&0xff,
    407 			$mnemonic,$arg;
    408 	}
    409     }
    410 
    411     foreach(split("\n",$code)) {
    412 	s/\b[wx]([0-9]+)\b/r$1/go;		# new->old registers
    413 	s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go;	# new->old registers
    414 	s/\/\/\s?/@ /o;				# new->old style commentary
    415 
    416 	# fix up remainig new-style suffixes
    417 	s/\],#[0-9]+/]!/o;
    418 
    419 	s/cclr\s+([^,]+),\s*([a-z]+)/mov$2	$1,#0/o			or
    420 	s/vdup\.32\s+(.*)/unvdup32($1)/geo				or
    421 	s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo		or
    422 	s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo	or
    423 	s/^(\s+)b\./$1b/o						or
    424 	s/^(\s+)ret/$1bx\tlr/o;
    425 
    426 	print $_,"\n";
    427     }
    428 }
    429 
    430 close STDOUT; # enforce flush
    431