1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with code generation of C++ expressions 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "clang/Frontend/CodeGenOptions.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 static RequiredArgs 28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 29 llvm::Value *This, llvm::Value *ImplicitParam, 30 QualType ImplicitParamTy, const CallExpr *CE, 31 CallArgList &Args) { 32 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 33 isa<CXXOperatorCallExpr>(CE)); 34 assert(MD->isInstance() && 35 "Trying to emit a member or operator call expr on a static method!"); 36 37 // C++11 [class.mfct.non-static]p2: 38 // If a non-static member function of a class X is called for an object that 39 // is not of type X, or of a type derived from X, the behavior is undefined. 40 SourceLocation CallLoc; 41 if (CE) 42 CallLoc = CE->getExprLoc(); 43 CGF.EmitTypeCheck( 44 isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall 45 : CodeGenFunction::TCK_MemberCall, 46 CallLoc, This, CGF.getContext().getRecordType(MD->getParent())); 47 48 // Push the this ptr. 49 Args.add(RValue::get(This), MD->getThisType(CGF.getContext())); 50 51 // If there is an implicit parameter (e.g. VTT), emit it. 52 if (ImplicitParam) { 53 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 54 } 55 56 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 57 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD); 58 59 // And the rest of the call args. 60 if (CE) { 61 // Special case: skip first argument of CXXOperatorCall (it is "this"). 62 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 63 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 64 CE->getDirectCallee()); 65 } else { 66 assert( 67 FPT->getNumParams() == 0 && 68 "No CallExpr specified for function with non-zero number of arguments"); 69 } 70 return required; 71 } 72 73 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 74 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue, 75 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 76 const CallExpr *CE) { 77 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 78 CallArgList Args; 79 RequiredArgs required = commonEmitCXXMemberOrOperatorCall( 80 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args); 81 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 82 Callee, ReturnValue, Args, MD); 83 } 84 85 RValue CodeGenFunction::EmitCXXDestructorCall( 86 const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This, 87 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, 88 StructorType Type) { 89 CallArgList Args; 90 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam, 91 ImplicitParamTy, CE, Args); 92 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type), 93 Callee, ReturnValueSlot(), Args, DD); 94 } 95 96 static CXXRecordDecl *getCXXRecord(const Expr *E) { 97 QualType T = E->getType(); 98 if (const PointerType *PTy = T->getAs<PointerType>()) 99 T = PTy->getPointeeType(); 100 const RecordType *Ty = T->castAs<RecordType>(); 101 return cast<CXXRecordDecl>(Ty->getDecl()); 102 } 103 104 // Note: This function also emit constructor calls to support a MSVC 105 // extensions allowing explicit constructor function call. 106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 107 ReturnValueSlot ReturnValue) { 108 const Expr *callee = CE->getCallee()->IgnoreParens(); 109 110 if (isa<BinaryOperator>(callee)) 111 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 112 113 const MemberExpr *ME = cast<MemberExpr>(callee); 114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 115 116 if (MD->isStatic()) { 117 // The method is static, emit it as we would a regular call. 118 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 119 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE, 120 ReturnValue); 121 } 122 123 bool HasQualifier = ME->hasQualifier(); 124 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 125 bool IsArrow = ME->isArrow(); 126 const Expr *Base = ME->getBase(); 127 128 return EmitCXXMemberOrOperatorMemberCallExpr( 129 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 130 } 131 132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 133 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 134 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 135 const Expr *Base) { 136 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 137 138 // Compute the object pointer. 139 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 140 141 const CXXMethodDecl *DevirtualizedMethod = nullptr; 142 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) { 143 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 144 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 145 assert(DevirtualizedMethod); 146 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 147 const Expr *Inner = Base->ignoreParenBaseCasts(); 148 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 149 MD->getReturnType().getCanonicalType()) 150 // If the return types are not the same, this might be a case where more 151 // code needs to run to compensate for it. For example, the derived 152 // method might return a type that inherits form from the return 153 // type of MD and has a prefix. 154 // For now we just avoid devirtualizing these covariant cases. 155 DevirtualizedMethod = nullptr; 156 else if (getCXXRecord(Inner) == DevirtualizedClass) 157 // If the class of the Inner expression is where the dynamic method 158 // is defined, build the this pointer from it. 159 Base = Inner; 160 else if (getCXXRecord(Base) != DevirtualizedClass) { 161 // If the method is defined in a class that is not the best dynamic 162 // one or the one of the full expression, we would have to build 163 // a derived-to-base cast to compute the correct this pointer, but 164 // we don't have support for that yet, so do a virtual call. 165 DevirtualizedMethod = nullptr; 166 } 167 } 168 169 Address This = Address::invalid(); 170 if (IsArrow) 171 This = EmitPointerWithAlignment(Base); 172 else 173 This = EmitLValue(Base).getAddress(); 174 175 176 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) { 177 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr); 178 if (isa<CXXConstructorDecl>(MD) && 179 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 180 return RValue::get(nullptr); 181 182 if (!MD->getParent()->mayInsertExtraPadding()) { 183 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 184 // We don't like to generate the trivial copy/move assignment operator 185 // when it isn't necessary; just produce the proper effect here. 186 // Special case: skip first argument of CXXOperatorCall (it is "this"). 187 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 188 Address RHS = EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress(); 189 EmitAggregateAssign(This, RHS, CE->getType()); 190 return RValue::get(This.getPointer()); 191 } 192 193 if (isa<CXXConstructorDecl>(MD) && 194 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 195 // Trivial move and copy ctor are the same. 196 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 197 Address RHS = EmitLValue(*CE->arg_begin()).getAddress(); 198 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType()); 199 return RValue::get(This.getPointer()); 200 } 201 llvm_unreachable("unknown trivial member function"); 202 } 203 } 204 205 // Compute the function type we're calling. 206 const CXXMethodDecl *CalleeDecl = 207 DevirtualizedMethod ? DevirtualizedMethod : MD; 208 const CGFunctionInfo *FInfo = nullptr; 209 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 210 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 211 Dtor, StructorType::Complete); 212 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 213 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 214 Ctor, StructorType::Complete); 215 else 216 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 217 218 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 219 220 // C++ [class.virtual]p12: 221 // Explicit qualification with the scope operator (5.1) suppresses the 222 // virtual call mechanism. 223 // 224 // We also don't emit a virtual call if the base expression has a record type 225 // because then we know what the type is. 226 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 227 llvm::Value *Callee; 228 229 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 230 assert(CE->arg_begin() == CE->arg_end() && 231 "Destructor shouldn't have explicit parameters"); 232 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 233 if (UseVirtualCall) { 234 CGM.getCXXABI().EmitVirtualDestructorCall( 235 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE)); 236 } else { 237 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 238 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 239 else if (!DevirtualizedMethod) 240 Callee = 241 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty); 242 else { 243 const CXXDestructorDecl *DDtor = 244 cast<CXXDestructorDecl>(DevirtualizedMethod); 245 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 246 } 247 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 248 /*ImplicitParam=*/nullptr, QualType(), CE); 249 } 250 return RValue::get(nullptr); 251 } 252 253 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 254 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 255 } else if (UseVirtualCall) { 256 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty, 257 CE->getLocStart()); 258 } else { 259 if (SanOpts.has(SanitizerKind::CFINVCall) && 260 MD->getParent()->isDynamicClass()) { 261 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent()); 262 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall, 263 CE->getLocStart()); 264 } 265 266 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 267 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 268 else if (!DevirtualizedMethod) 269 Callee = CGM.GetAddrOfFunction(MD, Ty); 270 else { 271 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 272 } 273 } 274 275 if (MD->isVirtual()) { 276 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 277 *this, CalleeDecl, This, UseVirtualCall); 278 } 279 280 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(), 281 /*ImplicitParam=*/nullptr, QualType(), CE); 282 } 283 284 RValue 285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 286 ReturnValueSlot ReturnValue) { 287 const BinaryOperator *BO = 288 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 289 const Expr *BaseExpr = BO->getLHS(); 290 const Expr *MemFnExpr = BO->getRHS(); 291 292 const MemberPointerType *MPT = 293 MemFnExpr->getType()->castAs<MemberPointerType>(); 294 295 const FunctionProtoType *FPT = 296 MPT->getPointeeType()->castAs<FunctionProtoType>(); 297 const CXXRecordDecl *RD = 298 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 299 300 // Get the member function pointer. 301 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 302 303 // Emit the 'this' pointer. 304 Address This = Address::invalid(); 305 if (BO->getOpcode() == BO_PtrMemI) 306 This = EmitPointerWithAlignment(BaseExpr); 307 else 308 This = EmitLValue(BaseExpr).getAddress(); 309 310 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 311 QualType(MPT->getClass(), 0)); 312 313 // Ask the ABI to load the callee. Note that This is modified. 314 llvm::Value *ThisPtrForCall = nullptr; 315 llvm::Value *Callee = 316 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 317 ThisPtrForCall, MemFnPtr, MPT); 318 319 CallArgList Args; 320 321 QualType ThisType = 322 getContext().getPointerType(getContext().getTagDeclType(RD)); 323 324 // Push the this ptr. 325 Args.add(RValue::get(ThisPtrForCall), ThisType); 326 327 RequiredArgs required = 328 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr); 329 330 // And the rest of the call args 331 EmitCallArgs(Args, FPT, E->arguments()); 332 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 333 Callee, ReturnValue, Args); 334 } 335 336 RValue 337 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 338 const CXXMethodDecl *MD, 339 ReturnValueSlot ReturnValue) { 340 assert(MD->isInstance() && 341 "Trying to emit a member call expr on a static method!"); 342 return EmitCXXMemberOrOperatorMemberCallExpr( 343 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 344 /*IsArrow=*/false, E->getArg(0)); 345 } 346 347 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 348 ReturnValueSlot ReturnValue) { 349 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 350 } 351 352 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 353 Address DestPtr, 354 const CXXRecordDecl *Base) { 355 if (Base->isEmpty()) 356 return; 357 358 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 359 360 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 361 CharUnits NVSize = Layout.getNonVirtualSize(); 362 363 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 364 // present, they are initialized by the most derived class before calling the 365 // constructor. 366 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 367 Stores.emplace_back(CharUnits::Zero(), NVSize); 368 369 // Each store is split by the existence of a vbptr. 370 CharUnits VBPtrWidth = CGF.getPointerSize(); 371 std::vector<CharUnits> VBPtrOffsets = 372 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 373 for (CharUnits VBPtrOffset : VBPtrOffsets) { 374 // Stop before we hit any virtual base pointers located in virtual bases. 375 if (VBPtrOffset >= NVSize) 376 break; 377 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 378 CharUnits LastStoreOffset = LastStore.first; 379 CharUnits LastStoreSize = LastStore.second; 380 381 CharUnits SplitBeforeOffset = LastStoreOffset; 382 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 383 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 384 if (!SplitBeforeSize.isZero()) 385 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 386 387 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 388 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 389 assert(!SplitAfterSize.isNegative() && "negative store size!"); 390 if (!SplitAfterSize.isZero()) 391 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 392 } 393 394 // If the type contains a pointer to data member we can't memset it to zero. 395 // Instead, create a null constant and copy it to the destination. 396 // TODO: there are other patterns besides zero that we can usefully memset, 397 // like -1, which happens to be the pattern used by member-pointers. 398 // TODO: isZeroInitializable can be over-conservative in the case where a 399 // virtual base contains a member pointer. 400 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 401 if (!NullConstantForBase->isNullValue()) { 402 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 403 CGF.CGM.getModule(), NullConstantForBase->getType(), 404 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 405 NullConstantForBase, Twine()); 406 407 CharUnits Align = std::max(Layout.getNonVirtualAlignment(), 408 DestPtr.getAlignment()); 409 NullVariable->setAlignment(Align.getQuantity()); 410 411 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align); 412 413 // Get and call the appropriate llvm.memcpy overload. 414 for (std::pair<CharUnits, CharUnits> Store : Stores) { 415 CharUnits StoreOffset = Store.first; 416 CharUnits StoreSize = Store.second; 417 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 418 CGF.Builder.CreateMemCpy( 419 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 420 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 421 StoreSizeVal); 422 } 423 424 // Otherwise, just memset the whole thing to zero. This is legal 425 // because in LLVM, all default initializers (other than the ones we just 426 // handled above) are guaranteed to have a bit pattern of all zeros. 427 } else { 428 for (std::pair<CharUnits, CharUnits> Store : Stores) { 429 CharUnits StoreOffset = Store.first; 430 CharUnits StoreSize = Store.second; 431 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 432 CGF.Builder.CreateMemSet( 433 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 434 CGF.Builder.getInt8(0), StoreSizeVal); 435 } 436 } 437 } 438 439 void 440 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 441 AggValueSlot Dest) { 442 assert(!Dest.isIgnored() && "Must have a destination!"); 443 const CXXConstructorDecl *CD = E->getConstructor(); 444 445 // If we require zero initialization before (or instead of) calling the 446 // constructor, as can be the case with a non-user-provided default 447 // constructor, emit the zero initialization now, unless destination is 448 // already zeroed. 449 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 450 switch (E->getConstructionKind()) { 451 case CXXConstructExpr::CK_Delegating: 452 case CXXConstructExpr::CK_Complete: 453 EmitNullInitialization(Dest.getAddress(), E->getType()); 454 break; 455 case CXXConstructExpr::CK_VirtualBase: 456 case CXXConstructExpr::CK_NonVirtualBase: 457 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 458 CD->getParent()); 459 break; 460 } 461 } 462 463 // If this is a call to a trivial default constructor, do nothing. 464 if (CD->isTrivial() && CD->isDefaultConstructor()) 465 return; 466 467 // Elide the constructor if we're constructing from a temporary. 468 // The temporary check is required because Sema sets this on NRVO 469 // returns. 470 if (getLangOpts().ElideConstructors && E->isElidable()) { 471 assert(getContext().hasSameUnqualifiedType(E->getType(), 472 E->getArg(0)->getType())); 473 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 474 EmitAggExpr(E->getArg(0), Dest); 475 return; 476 } 477 } 478 479 if (const ArrayType *arrayType 480 = getContext().getAsArrayType(E->getType())) { 481 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E); 482 } else { 483 CXXCtorType Type = Ctor_Complete; 484 bool ForVirtualBase = false; 485 bool Delegating = false; 486 487 switch (E->getConstructionKind()) { 488 case CXXConstructExpr::CK_Delegating: 489 // We should be emitting a constructor; GlobalDecl will assert this 490 Type = CurGD.getCtorType(); 491 Delegating = true; 492 break; 493 494 case CXXConstructExpr::CK_Complete: 495 Type = Ctor_Complete; 496 break; 497 498 case CXXConstructExpr::CK_VirtualBase: 499 ForVirtualBase = true; 500 // fall-through 501 502 case CXXConstructExpr::CK_NonVirtualBase: 503 Type = Ctor_Base; 504 } 505 506 // Call the constructor. 507 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, 508 Dest.getAddress(), E); 509 } 510 } 511 512 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 513 const Expr *Exp) { 514 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 515 Exp = E->getSubExpr(); 516 assert(isa<CXXConstructExpr>(Exp) && 517 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 518 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 519 const CXXConstructorDecl *CD = E->getConstructor(); 520 RunCleanupsScope Scope(*this); 521 522 // If we require zero initialization before (or instead of) calling the 523 // constructor, as can be the case with a non-user-provided default 524 // constructor, emit the zero initialization now. 525 // FIXME. Do I still need this for a copy ctor synthesis? 526 if (E->requiresZeroInitialization()) 527 EmitNullInitialization(Dest, E->getType()); 528 529 assert(!getContext().getAsConstantArrayType(E->getType()) 530 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 531 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 532 } 533 534 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 535 const CXXNewExpr *E) { 536 if (!E->isArray()) 537 return CharUnits::Zero(); 538 539 // No cookie is required if the operator new[] being used is the 540 // reserved placement operator new[]. 541 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 542 return CharUnits::Zero(); 543 544 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 545 } 546 547 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 548 const CXXNewExpr *e, 549 unsigned minElements, 550 llvm::Value *&numElements, 551 llvm::Value *&sizeWithoutCookie) { 552 QualType type = e->getAllocatedType(); 553 554 if (!e->isArray()) { 555 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 556 sizeWithoutCookie 557 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 558 return sizeWithoutCookie; 559 } 560 561 // The width of size_t. 562 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 563 564 // Figure out the cookie size. 565 llvm::APInt cookieSize(sizeWidth, 566 CalculateCookiePadding(CGF, e).getQuantity()); 567 568 // Emit the array size expression. 569 // We multiply the size of all dimensions for NumElements. 570 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 571 numElements = CGF.EmitScalarExpr(e->getArraySize()); 572 assert(isa<llvm::IntegerType>(numElements->getType())); 573 574 // The number of elements can be have an arbitrary integer type; 575 // essentially, we need to multiply it by a constant factor, add a 576 // cookie size, and verify that the result is representable as a 577 // size_t. That's just a gloss, though, and it's wrong in one 578 // important way: if the count is negative, it's an error even if 579 // the cookie size would bring the total size >= 0. 580 bool isSigned 581 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 582 llvm::IntegerType *numElementsType 583 = cast<llvm::IntegerType>(numElements->getType()); 584 unsigned numElementsWidth = numElementsType->getBitWidth(); 585 586 // Compute the constant factor. 587 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 588 while (const ConstantArrayType *CAT 589 = CGF.getContext().getAsConstantArrayType(type)) { 590 type = CAT->getElementType(); 591 arraySizeMultiplier *= CAT->getSize(); 592 } 593 594 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 595 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 596 typeSizeMultiplier *= arraySizeMultiplier; 597 598 // This will be a size_t. 599 llvm::Value *size; 600 601 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 602 // Don't bloat the -O0 code. 603 if (llvm::ConstantInt *numElementsC = 604 dyn_cast<llvm::ConstantInt>(numElements)) { 605 const llvm::APInt &count = numElementsC->getValue(); 606 607 bool hasAnyOverflow = false; 608 609 // If 'count' was a negative number, it's an overflow. 610 if (isSigned && count.isNegative()) 611 hasAnyOverflow = true; 612 613 // We want to do all this arithmetic in size_t. If numElements is 614 // wider than that, check whether it's already too big, and if so, 615 // overflow. 616 else if (numElementsWidth > sizeWidth && 617 numElementsWidth - sizeWidth > count.countLeadingZeros()) 618 hasAnyOverflow = true; 619 620 // Okay, compute a count at the right width. 621 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 622 623 // If there is a brace-initializer, we cannot allocate fewer elements than 624 // there are initializers. If we do, that's treated like an overflow. 625 if (adjustedCount.ult(minElements)) 626 hasAnyOverflow = true; 627 628 // Scale numElements by that. This might overflow, but we don't 629 // care because it only overflows if allocationSize does, too, and 630 // if that overflows then we shouldn't use this. 631 numElements = llvm::ConstantInt::get(CGF.SizeTy, 632 adjustedCount * arraySizeMultiplier); 633 634 // Compute the size before cookie, and track whether it overflowed. 635 bool overflow; 636 llvm::APInt allocationSize 637 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 638 hasAnyOverflow |= overflow; 639 640 // Add in the cookie, and check whether it's overflowed. 641 if (cookieSize != 0) { 642 // Save the current size without a cookie. This shouldn't be 643 // used if there was overflow. 644 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 645 646 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 647 hasAnyOverflow |= overflow; 648 } 649 650 // On overflow, produce a -1 so operator new will fail. 651 if (hasAnyOverflow) { 652 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 653 } else { 654 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 655 } 656 657 // Otherwise, we might need to use the overflow intrinsics. 658 } else { 659 // There are up to five conditions we need to test for: 660 // 1) if isSigned, we need to check whether numElements is negative; 661 // 2) if numElementsWidth > sizeWidth, we need to check whether 662 // numElements is larger than something representable in size_t; 663 // 3) if minElements > 0, we need to check whether numElements is smaller 664 // than that. 665 // 4) we need to compute 666 // sizeWithoutCookie := numElements * typeSizeMultiplier 667 // and check whether it overflows; and 668 // 5) if we need a cookie, we need to compute 669 // size := sizeWithoutCookie + cookieSize 670 // and check whether it overflows. 671 672 llvm::Value *hasOverflow = nullptr; 673 674 // If numElementsWidth > sizeWidth, then one way or another, we're 675 // going to have to do a comparison for (2), and this happens to 676 // take care of (1), too. 677 if (numElementsWidth > sizeWidth) { 678 llvm::APInt threshold(numElementsWidth, 1); 679 threshold <<= sizeWidth; 680 681 llvm::Value *thresholdV 682 = llvm::ConstantInt::get(numElementsType, threshold); 683 684 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 685 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 686 687 // Otherwise, if we're signed, we want to sext up to size_t. 688 } else if (isSigned) { 689 if (numElementsWidth < sizeWidth) 690 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 691 692 // If there's a non-1 type size multiplier, then we can do the 693 // signedness check at the same time as we do the multiply 694 // because a negative number times anything will cause an 695 // unsigned overflow. Otherwise, we have to do it here. But at least 696 // in this case, we can subsume the >= minElements check. 697 if (typeSizeMultiplier == 1) 698 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 699 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 700 701 // Otherwise, zext up to size_t if necessary. 702 } else if (numElementsWidth < sizeWidth) { 703 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 704 } 705 706 assert(numElements->getType() == CGF.SizeTy); 707 708 if (minElements) { 709 // Don't allow allocation of fewer elements than we have initializers. 710 if (!hasOverflow) { 711 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 712 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 713 } else if (numElementsWidth > sizeWidth) { 714 // The other existing overflow subsumes this check. 715 // We do an unsigned comparison, since any signed value < -1 is 716 // taken care of either above or below. 717 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 718 CGF.Builder.CreateICmpULT(numElements, 719 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 720 } 721 } 722 723 size = numElements; 724 725 // Multiply by the type size if necessary. This multiplier 726 // includes all the factors for nested arrays. 727 // 728 // This step also causes numElements to be scaled up by the 729 // nested-array factor if necessary. Overflow on this computation 730 // can be ignored because the result shouldn't be used if 731 // allocation fails. 732 if (typeSizeMultiplier != 1) { 733 llvm::Value *umul_with_overflow 734 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 735 736 llvm::Value *tsmV = 737 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 738 llvm::Value *result = 739 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 740 741 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 742 if (hasOverflow) 743 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 744 else 745 hasOverflow = overflowed; 746 747 size = CGF.Builder.CreateExtractValue(result, 0); 748 749 // Also scale up numElements by the array size multiplier. 750 if (arraySizeMultiplier != 1) { 751 // If the base element type size is 1, then we can re-use the 752 // multiply we just did. 753 if (typeSize.isOne()) { 754 assert(arraySizeMultiplier == typeSizeMultiplier); 755 numElements = size; 756 757 // Otherwise we need a separate multiply. 758 } else { 759 llvm::Value *asmV = 760 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 761 numElements = CGF.Builder.CreateMul(numElements, asmV); 762 } 763 } 764 } else { 765 // numElements doesn't need to be scaled. 766 assert(arraySizeMultiplier == 1); 767 } 768 769 // Add in the cookie size if necessary. 770 if (cookieSize != 0) { 771 sizeWithoutCookie = size; 772 773 llvm::Value *uadd_with_overflow 774 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 775 776 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 777 llvm::Value *result = 778 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 779 780 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 781 if (hasOverflow) 782 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 783 else 784 hasOverflow = overflowed; 785 786 size = CGF.Builder.CreateExtractValue(result, 0); 787 } 788 789 // If we had any possibility of dynamic overflow, make a select to 790 // overwrite 'size' with an all-ones value, which should cause 791 // operator new to throw. 792 if (hasOverflow) 793 size = CGF.Builder.CreateSelect(hasOverflow, 794 llvm::Constant::getAllOnesValue(CGF.SizeTy), 795 size); 796 } 797 798 if (cookieSize == 0) 799 sizeWithoutCookie = size; 800 else 801 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 802 803 return size; 804 } 805 806 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 807 QualType AllocType, Address NewPtr) { 808 // FIXME: Refactor with EmitExprAsInit. 809 switch (CGF.getEvaluationKind(AllocType)) { 810 case TEK_Scalar: 811 CGF.EmitScalarInit(Init, nullptr, 812 CGF.MakeAddrLValue(NewPtr, AllocType), false); 813 return; 814 case TEK_Complex: 815 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 816 /*isInit*/ true); 817 return; 818 case TEK_Aggregate: { 819 AggValueSlot Slot 820 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 821 AggValueSlot::IsDestructed, 822 AggValueSlot::DoesNotNeedGCBarriers, 823 AggValueSlot::IsNotAliased); 824 CGF.EmitAggExpr(Init, Slot); 825 return; 826 } 827 } 828 llvm_unreachable("bad evaluation kind"); 829 } 830 831 void CodeGenFunction::EmitNewArrayInitializer( 832 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 833 Address BeginPtr, llvm::Value *NumElements, 834 llvm::Value *AllocSizeWithoutCookie) { 835 // If we have a type with trivial initialization and no initializer, 836 // there's nothing to do. 837 if (!E->hasInitializer()) 838 return; 839 840 Address CurPtr = BeginPtr; 841 842 unsigned InitListElements = 0; 843 844 const Expr *Init = E->getInitializer(); 845 Address EndOfInit = Address::invalid(); 846 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 847 EHScopeStack::stable_iterator Cleanup; 848 llvm::Instruction *CleanupDominator = nullptr; 849 850 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 851 CharUnits ElementAlign = 852 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 853 854 // If the initializer is an initializer list, first do the explicit elements. 855 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 856 InitListElements = ILE->getNumInits(); 857 858 // If this is a multi-dimensional array new, we will initialize multiple 859 // elements with each init list element. 860 QualType AllocType = E->getAllocatedType(); 861 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 862 AllocType->getAsArrayTypeUnsafe())) { 863 ElementTy = ConvertTypeForMem(AllocType); 864 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 865 InitListElements *= getContext().getConstantArrayElementCount(CAT); 866 } 867 868 // Enter a partial-destruction Cleanup if necessary. 869 if (needsEHCleanup(DtorKind)) { 870 // In principle we could tell the Cleanup where we are more 871 // directly, but the control flow can get so varied here that it 872 // would actually be quite complex. Therefore we go through an 873 // alloca. 874 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 875 "array.init.end"); 876 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 877 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 878 ElementType, ElementAlign, 879 getDestroyer(DtorKind)); 880 Cleanup = EHStack.stable_begin(); 881 } 882 883 CharUnits StartAlign = CurPtr.getAlignment(); 884 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 885 // Tell the cleanup that it needs to destroy up to this 886 // element. TODO: some of these stores can be trivially 887 // observed to be unnecessary. 888 if (EndOfInit.isValid()) { 889 auto FinishedPtr = 890 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 891 Builder.CreateStore(FinishedPtr, EndOfInit); 892 } 893 // FIXME: If the last initializer is an incomplete initializer list for 894 // an array, and we have an array filler, we can fold together the two 895 // initialization loops. 896 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 897 ILE->getInit(i)->getType(), CurPtr); 898 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(), 899 Builder.getSize(1), 900 "array.exp.next"), 901 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 902 } 903 904 // The remaining elements are filled with the array filler expression. 905 Init = ILE->getArrayFiller(); 906 907 // Extract the initializer for the individual array elements by pulling 908 // out the array filler from all the nested initializer lists. This avoids 909 // generating a nested loop for the initialization. 910 while (Init && Init->getType()->isConstantArrayType()) { 911 auto *SubILE = dyn_cast<InitListExpr>(Init); 912 if (!SubILE) 913 break; 914 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 915 Init = SubILE->getArrayFiller(); 916 } 917 918 // Switch back to initializing one base element at a time. 919 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType()); 920 } 921 922 // Attempt to perform zero-initialization using memset. 923 auto TryMemsetInitialization = [&]() -> bool { 924 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 925 // we can initialize with a memset to -1. 926 if (!CGM.getTypes().isZeroInitializable(ElementType)) 927 return false; 928 929 // Optimization: since zero initialization will just set the memory 930 // to all zeroes, generate a single memset to do it in one shot. 931 932 // Subtract out the size of any elements we've already initialized. 933 auto *RemainingSize = AllocSizeWithoutCookie; 934 if (InitListElements) { 935 // We know this can't overflow; we check this when doing the allocation. 936 auto *InitializedSize = llvm::ConstantInt::get( 937 RemainingSize->getType(), 938 getContext().getTypeSizeInChars(ElementType).getQuantity() * 939 InitListElements); 940 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 941 } 942 943 // Create the memset. 944 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 945 return true; 946 }; 947 948 // If all elements have already been initialized, skip any further 949 // initialization. 950 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 951 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 952 // If there was a Cleanup, deactivate it. 953 if (CleanupDominator) 954 DeactivateCleanupBlock(Cleanup, CleanupDominator); 955 return; 956 } 957 958 assert(Init && "have trailing elements to initialize but no initializer"); 959 960 // If this is a constructor call, try to optimize it out, and failing that 961 // emit a single loop to initialize all remaining elements. 962 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 963 CXXConstructorDecl *Ctor = CCE->getConstructor(); 964 if (Ctor->isTrivial()) { 965 // If new expression did not specify value-initialization, then there 966 // is no initialization. 967 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 968 return; 969 970 if (TryMemsetInitialization()) 971 return; 972 } 973 974 // Store the new Cleanup position for irregular Cleanups. 975 // 976 // FIXME: Share this cleanup with the constructor call emission rather than 977 // having it create a cleanup of its own. 978 if (EndOfInit.isValid()) 979 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 980 981 // Emit a constructor call loop to initialize the remaining elements. 982 if (InitListElements) 983 NumElements = Builder.CreateSub( 984 NumElements, 985 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 986 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 987 CCE->requiresZeroInitialization()); 988 return; 989 } 990 991 // If this is value-initialization, we can usually use memset. 992 ImplicitValueInitExpr IVIE(ElementType); 993 if (isa<ImplicitValueInitExpr>(Init)) { 994 if (TryMemsetInitialization()) 995 return; 996 997 // Switch to an ImplicitValueInitExpr for the element type. This handles 998 // only one case: multidimensional array new of pointers to members. In 999 // all other cases, we already have an initializer for the array element. 1000 Init = &IVIE; 1001 } 1002 1003 // At this point we should have found an initializer for the individual 1004 // elements of the array. 1005 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1006 "got wrong type of element to initialize"); 1007 1008 // If we have an empty initializer list, we can usually use memset. 1009 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1010 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1011 return; 1012 1013 // If we have a struct whose every field is value-initialized, we can 1014 // usually use memset. 1015 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1016 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1017 if (RType->getDecl()->isStruct()) { 1018 unsigned NumElements = 0; 1019 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1020 NumElements = CXXRD->getNumBases(); 1021 for (auto *Field : RType->getDecl()->fields()) 1022 if (!Field->isUnnamedBitfield()) 1023 ++NumElements; 1024 // FIXME: Recurse into nested InitListExprs. 1025 if (ILE->getNumInits() == NumElements) 1026 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1027 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1028 --NumElements; 1029 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1030 return; 1031 } 1032 } 1033 } 1034 1035 // Create the loop blocks. 1036 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1037 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1038 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1039 1040 // Find the end of the array, hoisted out of the loop. 1041 llvm::Value *EndPtr = 1042 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end"); 1043 1044 // If the number of elements isn't constant, we have to now check if there is 1045 // anything left to initialize. 1046 if (!ConstNum) { 1047 llvm::Value *IsEmpty = 1048 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1049 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1050 } 1051 1052 // Enter the loop. 1053 EmitBlock(LoopBB); 1054 1055 // Set up the current-element phi. 1056 llvm::PHINode *CurPtrPhi = 1057 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1058 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1059 1060 CurPtr = Address(CurPtrPhi, ElementAlign); 1061 1062 // Store the new Cleanup position for irregular Cleanups. 1063 if (EndOfInit.isValid()) 1064 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1065 1066 // Enter a partial-destruction Cleanup if necessary. 1067 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1068 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1069 ElementType, ElementAlign, 1070 getDestroyer(DtorKind)); 1071 Cleanup = EHStack.stable_begin(); 1072 CleanupDominator = Builder.CreateUnreachable(); 1073 } 1074 1075 // Emit the initializer into this element. 1076 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr); 1077 1078 // Leave the Cleanup if we entered one. 1079 if (CleanupDominator) { 1080 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1081 CleanupDominator->eraseFromParent(); 1082 } 1083 1084 // Advance to the next element by adjusting the pointer type as necessary. 1085 llvm::Value *NextPtr = 1086 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1087 "array.next"); 1088 1089 // Check whether we've gotten to the end of the array and, if so, 1090 // exit the loop. 1091 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1092 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1093 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1094 1095 EmitBlock(ContBB); 1096 } 1097 1098 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1099 QualType ElementType, llvm::Type *ElementTy, 1100 Address NewPtr, llvm::Value *NumElements, 1101 llvm::Value *AllocSizeWithoutCookie) { 1102 ApplyDebugLocation DL(CGF, E); 1103 if (E->isArray()) 1104 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1105 AllocSizeWithoutCookie); 1106 else if (const Expr *Init = E->getInitializer()) 1107 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1108 } 1109 1110 /// Emit a call to an operator new or operator delete function, as implicitly 1111 /// created by new-expressions and delete-expressions. 1112 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1113 const FunctionDecl *Callee, 1114 const FunctionProtoType *CalleeType, 1115 const CallArgList &Args) { 1116 llvm::Instruction *CallOrInvoke; 1117 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1118 RValue RV = 1119 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1120 Args, CalleeType, /*chainCall=*/false), 1121 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); 1122 1123 /// C++1y [expr.new]p10: 1124 /// [In a new-expression,] an implementation is allowed to omit a call 1125 /// to a replaceable global allocation function. 1126 /// 1127 /// We model such elidable calls with the 'builtin' attribute. 1128 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1129 if (Callee->isReplaceableGlobalAllocationFunction() && 1130 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1131 // FIXME: Add addAttribute to CallSite. 1132 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1133 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1134 llvm::Attribute::Builtin); 1135 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1136 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1137 llvm::Attribute::Builtin); 1138 else 1139 llvm_unreachable("unexpected kind of call instruction"); 1140 } 1141 1142 return RV; 1143 } 1144 1145 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1146 const Expr *Arg, 1147 bool IsDelete) { 1148 CallArgList Args; 1149 const Stmt *ArgS = Arg; 1150 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS)); 1151 // Find the allocation or deallocation function that we're calling. 1152 ASTContext &Ctx = getContext(); 1153 DeclarationName Name = Ctx.DeclarationNames 1154 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1155 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1156 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1157 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1158 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args); 1159 llvm_unreachable("predeclared global operator new/delete is missing"); 1160 } 1161 1162 namespace { 1163 /// A cleanup to call the given 'operator delete' function upon 1164 /// abnormal exit from a new expression. 1165 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1166 size_t NumPlacementArgs; 1167 const FunctionDecl *OperatorDelete; 1168 llvm::Value *Ptr; 1169 llvm::Value *AllocSize; 1170 1171 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1172 1173 public: 1174 static size_t getExtraSize(size_t NumPlacementArgs) { 1175 return NumPlacementArgs * sizeof(RValue); 1176 } 1177 1178 CallDeleteDuringNew(size_t NumPlacementArgs, 1179 const FunctionDecl *OperatorDelete, 1180 llvm::Value *Ptr, 1181 llvm::Value *AllocSize) 1182 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1183 Ptr(Ptr), AllocSize(AllocSize) {} 1184 1185 void setPlacementArg(unsigned I, RValue Arg) { 1186 assert(I < NumPlacementArgs && "index out of range"); 1187 getPlacementArgs()[I] = Arg; 1188 } 1189 1190 void Emit(CodeGenFunction &CGF, Flags flags) override { 1191 const FunctionProtoType *FPT 1192 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1193 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1194 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1195 1196 CallArgList DeleteArgs; 1197 1198 // The first argument is always a void*. 1199 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1200 DeleteArgs.add(RValue::get(Ptr), *AI++); 1201 1202 // A member 'operator delete' can take an extra 'size_t' argument. 1203 if (FPT->getNumParams() == NumPlacementArgs + 2) 1204 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1205 1206 // Pass the rest of the arguments, which must match exactly. 1207 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1208 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1209 1210 // Call 'operator delete'. 1211 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1212 } 1213 }; 1214 1215 /// A cleanup to call the given 'operator delete' function upon 1216 /// abnormal exit from a new expression when the new expression is 1217 /// conditional. 1218 class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup { 1219 size_t NumPlacementArgs; 1220 const FunctionDecl *OperatorDelete; 1221 DominatingValue<RValue>::saved_type Ptr; 1222 DominatingValue<RValue>::saved_type AllocSize; 1223 1224 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1225 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1226 } 1227 1228 public: 1229 static size_t getExtraSize(size_t NumPlacementArgs) { 1230 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1231 } 1232 1233 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1234 const FunctionDecl *OperatorDelete, 1235 DominatingValue<RValue>::saved_type Ptr, 1236 DominatingValue<RValue>::saved_type AllocSize) 1237 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1238 Ptr(Ptr), AllocSize(AllocSize) {} 1239 1240 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1241 assert(I < NumPlacementArgs && "index out of range"); 1242 getPlacementArgs()[I] = Arg; 1243 } 1244 1245 void Emit(CodeGenFunction &CGF, Flags flags) override { 1246 const FunctionProtoType *FPT 1247 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1248 assert(FPT->getNumParams() == NumPlacementArgs + 1 || 1249 (FPT->getNumParams() == 2 && NumPlacementArgs == 0)); 1250 1251 CallArgList DeleteArgs; 1252 1253 // The first argument is always a void*. 1254 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin(); 1255 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1256 1257 // A member 'operator delete' can take an extra 'size_t' argument. 1258 if (FPT->getNumParams() == NumPlacementArgs + 2) { 1259 RValue RV = AllocSize.restore(CGF); 1260 DeleteArgs.add(RV, *AI++); 1261 } 1262 1263 // Pass the rest of the arguments, which must match exactly. 1264 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1265 RValue RV = getPlacementArgs()[I].restore(CGF); 1266 DeleteArgs.add(RV, *AI++); 1267 } 1268 1269 // Call 'operator delete'. 1270 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1271 } 1272 }; 1273 } 1274 1275 /// Enter a cleanup to call 'operator delete' if the initializer in a 1276 /// new-expression throws. 1277 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1278 const CXXNewExpr *E, 1279 Address NewPtr, 1280 llvm::Value *AllocSize, 1281 const CallArgList &NewArgs) { 1282 // If we're not inside a conditional branch, then the cleanup will 1283 // dominate and we can do the easier (and more efficient) thing. 1284 if (!CGF.isInConditionalBranch()) { 1285 CallDeleteDuringNew *Cleanup = CGF.EHStack 1286 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1287 E->getNumPlacementArgs(), 1288 E->getOperatorDelete(), 1289 NewPtr.getPointer(), 1290 AllocSize); 1291 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1292 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1293 1294 return; 1295 } 1296 1297 // Otherwise, we need to save all this stuff. 1298 DominatingValue<RValue>::saved_type SavedNewPtr = 1299 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1300 DominatingValue<RValue>::saved_type SavedAllocSize = 1301 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1302 1303 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1304 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1305 E->getNumPlacementArgs(), 1306 E->getOperatorDelete(), 1307 SavedNewPtr, 1308 SavedAllocSize); 1309 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1310 Cleanup->setPlacementArg(I, 1311 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1312 1313 CGF.initFullExprCleanup(); 1314 } 1315 1316 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1317 // The element type being allocated. 1318 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1319 1320 // 1. Build a call to the allocation function. 1321 FunctionDecl *allocator = E->getOperatorNew(); 1322 1323 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1324 unsigned minElements = 0; 1325 if (E->isArray() && E->hasInitializer()) { 1326 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1327 minElements = ILE->getNumInits(); 1328 } 1329 1330 llvm::Value *numElements = nullptr; 1331 llvm::Value *allocSizeWithoutCookie = nullptr; 1332 llvm::Value *allocSize = 1333 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1334 allocSizeWithoutCookie); 1335 1336 // Emit the allocation call. If the allocator is a global placement 1337 // operator, just "inline" it directly. 1338 Address allocation = Address::invalid(); 1339 CallArgList allocatorArgs; 1340 if (allocator->isReservedGlobalPlacementOperator()) { 1341 assert(E->getNumPlacementArgs() == 1); 1342 const Expr *arg = *E->placement_arguments().begin(); 1343 1344 AlignmentSource alignSource; 1345 allocation = EmitPointerWithAlignment(arg, &alignSource); 1346 1347 // The pointer expression will, in many cases, be an opaque void*. 1348 // In these cases, discard the computed alignment and use the 1349 // formal alignment of the allocated type. 1350 if (alignSource != AlignmentSource::Decl) { 1351 allocation = Address(allocation.getPointer(), 1352 getContext().getTypeAlignInChars(allocType)); 1353 } 1354 1355 // Set up allocatorArgs for the call to operator delete if it's not 1356 // the reserved global operator. 1357 if (E->getOperatorDelete() && 1358 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1359 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1360 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1361 } 1362 1363 } else { 1364 const FunctionProtoType *allocatorType = 1365 allocator->getType()->castAs<FunctionProtoType>(); 1366 1367 // The allocation size is the first argument. 1368 QualType sizeType = getContext().getSizeType(); 1369 allocatorArgs.add(RValue::get(allocSize), sizeType); 1370 1371 // We start at 1 here because the first argument (the allocation size) 1372 // has already been emitted. 1373 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1374 /* CalleeDecl */ nullptr, 1375 /*ParamsToSkip*/ 1); 1376 1377 RValue RV = 1378 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1379 1380 // For now, only assume that the allocation function returns 1381 // something satisfactorily aligned for the element type, plus 1382 // the cookie if we have one. 1383 CharUnits allocationAlign = 1384 getContext().getTypeAlignInChars(allocType); 1385 if (allocSize != allocSizeWithoutCookie) { 1386 CharUnits cookieAlign = getSizeAlign(); // FIXME? 1387 allocationAlign = std::max(allocationAlign, cookieAlign); 1388 } 1389 1390 allocation = Address(RV.getScalarVal(), allocationAlign); 1391 } 1392 1393 // Emit a null check on the allocation result if the allocation 1394 // function is allowed to return null (because it has a non-throwing 1395 // exception spec or is the reserved placement new) and we have an 1396 // interesting initializer. 1397 bool nullCheck = E->shouldNullCheckAllocation(getContext()) && 1398 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1399 1400 llvm::BasicBlock *nullCheckBB = nullptr; 1401 llvm::BasicBlock *contBB = nullptr; 1402 1403 // The null-check means that the initializer is conditionally 1404 // evaluated. 1405 ConditionalEvaluation conditional(*this); 1406 1407 if (nullCheck) { 1408 conditional.begin(*this); 1409 1410 nullCheckBB = Builder.GetInsertBlock(); 1411 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1412 contBB = createBasicBlock("new.cont"); 1413 1414 llvm::Value *isNull = 1415 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1416 Builder.CreateCondBr(isNull, contBB, notNullBB); 1417 EmitBlock(notNullBB); 1418 } 1419 1420 // If there's an operator delete, enter a cleanup to call it if an 1421 // exception is thrown. 1422 EHScopeStack::stable_iterator operatorDeleteCleanup; 1423 llvm::Instruction *cleanupDominator = nullptr; 1424 if (E->getOperatorDelete() && 1425 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1426 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1427 operatorDeleteCleanup = EHStack.stable_begin(); 1428 cleanupDominator = Builder.CreateUnreachable(); 1429 } 1430 1431 assert((allocSize == allocSizeWithoutCookie) == 1432 CalculateCookiePadding(*this, E).isZero()); 1433 if (allocSize != allocSizeWithoutCookie) { 1434 assert(E->isArray()); 1435 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1436 numElements, 1437 E, allocType); 1438 } 1439 1440 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1441 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1442 1443 // Passing pointer through invariant.group.barrier to avoid propagation of 1444 // vptrs information which may be included in previous type. 1445 if (CGM.getCodeGenOpts().StrictVTablePointers && 1446 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1447 allocator->isReservedGlobalPlacementOperator()) 1448 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()), 1449 result.getAlignment()); 1450 1451 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1452 allocSizeWithoutCookie); 1453 if (E->isArray()) { 1454 // NewPtr is a pointer to the base element type. If we're 1455 // allocating an array of arrays, we'll need to cast back to the 1456 // array pointer type. 1457 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1458 if (result.getType() != resultType) 1459 result = Builder.CreateBitCast(result, resultType); 1460 } 1461 1462 // Deactivate the 'operator delete' cleanup if we finished 1463 // initialization. 1464 if (operatorDeleteCleanup.isValid()) { 1465 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1466 cleanupDominator->eraseFromParent(); 1467 } 1468 1469 llvm::Value *resultPtr = result.getPointer(); 1470 if (nullCheck) { 1471 conditional.end(*this); 1472 1473 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1474 EmitBlock(contBB); 1475 1476 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1477 PHI->addIncoming(resultPtr, notNullBB); 1478 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1479 nullCheckBB); 1480 1481 resultPtr = PHI; 1482 } 1483 1484 return resultPtr; 1485 } 1486 1487 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1488 llvm::Value *Ptr, 1489 QualType DeleteTy) { 1490 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1491 1492 const FunctionProtoType *DeleteFTy = 1493 DeleteFD->getType()->getAs<FunctionProtoType>(); 1494 1495 CallArgList DeleteArgs; 1496 1497 // Check if we need to pass the size to the delete operator. 1498 llvm::Value *Size = nullptr; 1499 QualType SizeTy; 1500 if (DeleteFTy->getNumParams() == 2) { 1501 SizeTy = DeleteFTy->getParamType(1); 1502 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1503 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1504 DeleteTypeSize.getQuantity()); 1505 } 1506 1507 QualType ArgTy = DeleteFTy->getParamType(0); 1508 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1509 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1510 1511 if (Size) 1512 DeleteArgs.add(RValue::get(Size), SizeTy); 1513 1514 // Emit the call to delete. 1515 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1516 } 1517 1518 namespace { 1519 /// Calls the given 'operator delete' on a single object. 1520 struct CallObjectDelete final : EHScopeStack::Cleanup { 1521 llvm::Value *Ptr; 1522 const FunctionDecl *OperatorDelete; 1523 QualType ElementType; 1524 1525 CallObjectDelete(llvm::Value *Ptr, 1526 const FunctionDecl *OperatorDelete, 1527 QualType ElementType) 1528 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1529 1530 void Emit(CodeGenFunction &CGF, Flags flags) override { 1531 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1532 } 1533 }; 1534 } 1535 1536 void 1537 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1538 llvm::Value *CompletePtr, 1539 QualType ElementType) { 1540 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1541 OperatorDelete, ElementType); 1542 } 1543 1544 /// Emit the code for deleting a single object. 1545 static void EmitObjectDelete(CodeGenFunction &CGF, 1546 const CXXDeleteExpr *DE, 1547 Address Ptr, 1548 QualType ElementType) { 1549 // Find the destructor for the type, if applicable. If the 1550 // destructor is virtual, we'll just emit the vcall and return. 1551 const CXXDestructorDecl *Dtor = nullptr; 1552 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1553 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1554 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1555 Dtor = RD->getDestructor(); 1556 1557 if (Dtor->isVirtual()) { 1558 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1559 Dtor); 1560 return; 1561 } 1562 } 1563 } 1564 1565 // Make sure that we call delete even if the dtor throws. 1566 // This doesn't have to a conditional cleanup because we're going 1567 // to pop it off in a second. 1568 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1569 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1570 Ptr.getPointer(), 1571 OperatorDelete, ElementType); 1572 1573 if (Dtor) 1574 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1575 /*ForVirtualBase=*/false, 1576 /*Delegating=*/false, 1577 Ptr); 1578 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1579 switch (Lifetime) { 1580 case Qualifiers::OCL_None: 1581 case Qualifiers::OCL_ExplicitNone: 1582 case Qualifiers::OCL_Autoreleasing: 1583 break; 1584 1585 case Qualifiers::OCL_Strong: 1586 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1587 break; 1588 1589 case Qualifiers::OCL_Weak: 1590 CGF.EmitARCDestroyWeak(Ptr); 1591 break; 1592 } 1593 } 1594 1595 CGF.PopCleanupBlock(); 1596 } 1597 1598 namespace { 1599 /// Calls the given 'operator delete' on an array of objects. 1600 struct CallArrayDelete final : EHScopeStack::Cleanup { 1601 llvm::Value *Ptr; 1602 const FunctionDecl *OperatorDelete; 1603 llvm::Value *NumElements; 1604 QualType ElementType; 1605 CharUnits CookieSize; 1606 1607 CallArrayDelete(llvm::Value *Ptr, 1608 const FunctionDecl *OperatorDelete, 1609 llvm::Value *NumElements, 1610 QualType ElementType, 1611 CharUnits CookieSize) 1612 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1613 ElementType(ElementType), CookieSize(CookieSize) {} 1614 1615 void Emit(CodeGenFunction &CGF, Flags flags) override { 1616 const FunctionProtoType *DeleteFTy = 1617 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1618 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2); 1619 1620 CallArgList Args; 1621 1622 // Pass the pointer as the first argument. 1623 QualType VoidPtrTy = DeleteFTy->getParamType(0); 1624 llvm::Value *DeletePtr 1625 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1626 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1627 1628 // Pass the original requested size as the second argument. 1629 if (DeleteFTy->getNumParams() == 2) { 1630 QualType size_t = DeleteFTy->getParamType(1); 1631 llvm::IntegerType *SizeTy 1632 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1633 1634 CharUnits ElementTypeSize = 1635 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1636 1637 // The size of an element, multiplied by the number of elements. 1638 llvm::Value *Size 1639 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1640 if (NumElements) 1641 Size = CGF.Builder.CreateMul(Size, NumElements); 1642 1643 // Plus the size of the cookie if applicable. 1644 if (!CookieSize.isZero()) { 1645 llvm::Value *CookieSizeV 1646 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1647 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1648 } 1649 1650 Args.add(RValue::get(Size), size_t); 1651 } 1652 1653 // Emit the call to delete. 1654 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1655 } 1656 }; 1657 } 1658 1659 /// Emit the code for deleting an array of objects. 1660 static void EmitArrayDelete(CodeGenFunction &CGF, 1661 const CXXDeleteExpr *E, 1662 Address deletedPtr, 1663 QualType elementType) { 1664 llvm::Value *numElements = nullptr; 1665 llvm::Value *allocatedPtr = nullptr; 1666 CharUnits cookieSize; 1667 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1668 numElements, allocatedPtr, cookieSize); 1669 1670 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1671 1672 // Make sure that we call delete even if one of the dtors throws. 1673 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1674 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1675 allocatedPtr, operatorDelete, 1676 numElements, elementType, 1677 cookieSize); 1678 1679 // Destroy the elements. 1680 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1681 assert(numElements && "no element count for a type with a destructor!"); 1682 1683 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1684 CharUnits elementAlign = 1685 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 1686 1687 llvm::Value *arrayBegin = deletedPtr.getPointer(); 1688 llvm::Value *arrayEnd = 1689 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end"); 1690 1691 // Note that it is legal to allocate a zero-length array, and we 1692 // can never fold the check away because the length should always 1693 // come from a cookie. 1694 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 1695 CGF.getDestroyer(dtorKind), 1696 /*checkZeroLength*/ true, 1697 CGF.needsEHCleanup(dtorKind)); 1698 } 1699 1700 // Pop the cleanup block. 1701 CGF.PopCleanupBlock(); 1702 } 1703 1704 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1705 const Expr *Arg = E->getArgument(); 1706 Address Ptr = EmitPointerWithAlignment(Arg); 1707 1708 // Null check the pointer. 1709 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1710 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1711 1712 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 1713 1714 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1715 EmitBlock(DeleteNotNull); 1716 1717 // We might be deleting a pointer to array. If so, GEP down to the 1718 // first non-array element. 1719 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1720 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1721 if (DeleteTy->isConstantArrayType()) { 1722 llvm::Value *Zero = Builder.getInt32(0); 1723 SmallVector<llvm::Value*,8> GEP; 1724 1725 GEP.push_back(Zero); // point at the outermost array 1726 1727 // For each layer of array type we're pointing at: 1728 while (const ConstantArrayType *Arr 1729 = getContext().getAsConstantArrayType(DeleteTy)) { 1730 // 1. Unpeel the array type. 1731 DeleteTy = Arr->getElementType(); 1732 1733 // 2. GEP to the first element of the array. 1734 GEP.push_back(Zero); 1735 } 1736 1737 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"), 1738 Ptr.getAlignment()); 1739 } 1740 1741 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 1742 1743 if (E->isArrayForm()) { 1744 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1745 } else { 1746 EmitObjectDelete(*this, E, Ptr, DeleteTy); 1747 } 1748 1749 EmitBlock(DeleteEnd); 1750 } 1751 1752 static bool isGLValueFromPointerDeref(const Expr *E) { 1753 E = E->IgnoreParens(); 1754 1755 if (const auto *CE = dyn_cast<CastExpr>(E)) { 1756 if (!CE->getSubExpr()->isGLValue()) 1757 return false; 1758 return isGLValueFromPointerDeref(CE->getSubExpr()); 1759 } 1760 1761 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 1762 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 1763 1764 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 1765 if (BO->getOpcode() == BO_Comma) 1766 return isGLValueFromPointerDeref(BO->getRHS()); 1767 1768 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 1769 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 1770 isGLValueFromPointerDeref(ACO->getFalseExpr()); 1771 1772 // C++11 [expr.sub]p1: 1773 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 1774 if (isa<ArraySubscriptExpr>(E)) 1775 return true; 1776 1777 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 1778 if (UO->getOpcode() == UO_Deref) 1779 return true; 1780 1781 return false; 1782 } 1783 1784 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 1785 llvm::Type *StdTypeInfoPtrTy) { 1786 // Get the vtable pointer. 1787 Address ThisPtr = CGF.EmitLValue(E).getAddress(); 1788 1789 // C++ [expr.typeid]p2: 1790 // If the glvalue expression is obtained by applying the unary * operator to 1791 // a pointer and the pointer is a null pointer value, the typeid expression 1792 // throws the std::bad_typeid exception. 1793 // 1794 // However, this paragraph's intent is not clear. We choose a very generous 1795 // interpretation which implores us to consider comma operators, conditional 1796 // operators, parentheses and other such constructs. 1797 QualType SrcRecordTy = E->getType(); 1798 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 1799 isGLValueFromPointerDeref(E), SrcRecordTy)) { 1800 llvm::BasicBlock *BadTypeidBlock = 1801 CGF.createBasicBlock("typeid.bad_typeid"); 1802 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 1803 1804 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 1805 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1806 1807 CGF.EmitBlock(BadTypeidBlock); 1808 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 1809 CGF.EmitBlock(EndBlock); 1810 } 1811 1812 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 1813 StdTypeInfoPtrTy); 1814 } 1815 1816 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1817 llvm::Type *StdTypeInfoPtrTy = 1818 ConvertType(E->getType())->getPointerTo(); 1819 1820 if (E->isTypeOperand()) { 1821 llvm::Constant *TypeInfo = 1822 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 1823 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1824 } 1825 1826 // C++ [expr.typeid]p2: 1827 // When typeid is applied to a glvalue expression whose type is a 1828 // polymorphic class type, the result refers to a std::type_info object 1829 // representing the type of the most derived object (that is, the dynamic 1830 // type) to which the glvalue refers. 1831 if (E->isPotentiallyEvaluated()) 1832 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1833 StdTypeInfoPtrTy); 1834 1835 QualType OperandTy = E->getExprOperand()->getType(); 1836 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1837 StdTypeInfoPtrTy); 1838 } 1839 1840 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1841 QualType DestTy) { 1842 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1843 if (DestTy->isPointerType()) 1844 return llvm::Constant::getNullValue(DestLTy); 1845 1846 /// C++ [expr.dynamic.cast]p9: 1847 /// A failed cast to reference type throws std::bad_cast 1848 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 1849 return nullptr; 1850 1851 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1852 return llvm::UndefValue::get(DestLTy); 1853 } 1854 1855 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 1856 const CXXDynamicCastExpr *DCE) { 1857 CGM.EmitExplicitCastExprType(DCE, this); 1858 QualType DestTy = DCE->getTypeAsWritten(); 1859 1860 if (DCE->isAlwaysNull()) 1861 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 1862 return T; 1863 1864 QualType SrcTy = DCE->getSubExpr()->getType(); 1865 1866 // C++ [expr.dynamic.cast]p7: 1867 // If T is "pointer to cv void," then the result is a pointer to the most 1868 // derived object pointed to by v. 1869 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 1870 1871 bool isDynamicCastToVoid; 1872 QualType SrcRecordTy; 1873 QualType DestRecordTy; 1874 if (DestPTy) { 1875 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 1876 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1877 DestRecordTy = DestPTy->getPointeeType(); 1878 } else { 1879 isDynamicCastToVoid = false; 1880 SrcRecordTy = SrcTy; 1881 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1882 } 1883 1884 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1885 1886 // C++ [expr.dynamic.cast]p4: 1887 // If the value of v is a null pointer value in the pointer case, the result 1888 // is the null pointer value of type T. 1889 bool ShouldNullCheckSrcValue = 1890 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 1891 SrcRecordTy); 1892 1893 llvm::BasicBlock *CastNull = nullptr; 1894 llvm::BasicBlock *CastNotNull = nullptr; 1895 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1896 1897 if (ShouldNullCheckSrcValue) { 1898 CastNull = createBasicBlock("dynamic_cast.null"); 1899 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1900 1901 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 1902 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1903 EmitBlock(CastNotNull); 1904 } 1905 1906 llvm::Value *Value; 1907 if (isDynamicCastToVoid) { 1908 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 1909 DestTy); 1910 } else { 1911 assert(DestRecordTy->isRecordType() && 1912 "destination type must be a record type!"); 1913 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 1914 DestTy, DestRecordTy, CastEnd); 1915 CastNotNull = Builder.GetInsertBlock(); 1916 } 1917 1918 if (ShouldNullCheckSrcValue) { 1919 EmitBranch(CastEnd); 1920 1921 EmitBlock(CastNull); 1922 EmitBranch(CastEnd); 1923 } 1924 1925 EmitBlock(CastEnd); 1926 1927 if (ShouldNullCheckSrcValue) { 1928 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1929 PHI->addIncoming(Value, CastNotNull); 1930 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1931 1932 Value = PHI; 1933 } 1934 1935 return Value; 1936 } 1937 1938 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1939 RunCleanupsScope Scope(*this); 1940 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType()); 1941 1942 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1943 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1944 e = E->capture_init_end(); 1945 i != e; ++i, ++CurField) { 1946 // Emit initialization 1947 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1948 if (CurField->hasCapturedVLAType()) { 1949 auto VAT = CurField->getCapturedVLAType(); 1950 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1951 } else { 1952 ArrayRef<VarDecl *> ArrayIndexes; 1953 if (CurField->getType()->isArrayType()) 1954 ArrayIndexes = E->getCaptureInitIndexVars(i); 1955 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1956 } 1957 } 1958 } 1959