Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with code generation of C++ expressions
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCUDARuntime.h"
     16 #include "CGCXXABI.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGObjCRuntime.h"
     19 #include "clang/CodeGen/CGFunctionInfo.h"
     20 #include "clang/Frontend/CodeGenOptions.h"
     21 #include "llvm/IR/CallSite.h"
     22 #include "llvm/IR/Intrinsics.h"
     23 
     24 using namespace clang;
     25 using namespace CodeGen;
     26 
     27 static RequiredArgs
     28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
     29                                   llvm::Value *This, llvm::Value *ImplicitParam,
     30                                   QualType ImplicitParamTy, const CallExpr *CE,
     31                                   CallArgList &Args) {
     32   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
     33          isa<CXXOperatorCallExpr>(CE));
     34   assert(MD->isInstance() &&
     35          "Trying to emit a member or operator call expr on a static method!");
     36 
     37   // C++11 [class.mfct.non-static]p2:
     38   //   If a non-static member function of a class X is called for an object that
     39   //   is not of type X, or of a type derived from X, the behavior is undefined.
     40   SourceLocation CallLoc;
     41   if (CE)
     42     CallLoc = CE->getExprLoc();
     43   CGF.EmitTypeCheck(
     44       isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall
     45                                   : CodeGenFunction::TCK_MemberCall,
     46       CallLoc, This, CGF.getContext().getRecordType(MD->getParent()));
     47 
     48   // Push the this ptr.
     49   Args.add(RValue::get(This), MD->getThisType(CGF.getContext()));
     50 
     51   // If there is an implicit parameter (e.g. VTT), emit it.
     52   if (ImplicitParam) {
     53     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
     54   }
     55 
     56   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
     57   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
     58 
     59   // And the rest of the call args.
     60   if (CE) {
     61     // Special case: skip first argument of CXXOperatorCall (it is "this").
     62     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
     63     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
     64                      CE->getDirectCallee());
     65   } else {
     66     assert(
     67         FPT->getNumParams() == 0 &&
     68         "No CallExpr specified for function with non-zero number of arguments");
     69   }
     70   return required;
     71 }
     72 
     73 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
     74     const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
     75     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
     76     const CallExpr *CE) {
     77   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
     78   CallArgList Args;
     79   RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
     80       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args);
     81   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
     82                   Callee, ReturnValue, Args, MD);
     83 }
     84 
     85 RValue CodeGenFunction::EmitCXXDestructorCall(
     86     const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This,
     87     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
     88     StructorType Type) {
     89   CallArgList Args;
     90   commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
     91                                     ImplicitParamTy, CE, Args);
     92   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
     93                   Callee, ReturnValueSlot(), Args, DD);
     94 }
     95 
     96 static CXXRecordDecl *getCXXRecord(const Expr *E) {
     97   QualType T = E->getType();
     98   if (const PointerType *PTy = T->getAs<PointerType>())
     99     T = PTy->getPointeeType();
    100   const RecordType *Ty = T->castAs<RecordType>();
    101   return cast<CXXRecordDecl>(Ty->getDecl());
    102 }
    103 
    104 // Note: This function also emit constructor calls to support a MSVC
    105 // extensions allowing explicit constructor function call.
    106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
    107                                               ReturnValueSlot ReturnValue) {
    108   const Expr *callee = CE->getCallee()->IgnoreParens();
    109 
    110   if (isa<BinaryOperator>(callee))
    111     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
    112 
    113   const MemberExpr *ME = cast<MemberExpr>(callee);
    114   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
    115 
    116   if (MD->isStatic()) {
    117     // The method is static, emit it as we would a regular call.
    118     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
    119     return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
    120                     ReturnValue);
    121   }
    122 
    123   bool HasQualifier = ME->hasQualifier();
    124   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
    125   bool IsArrow = ME->isArrow();
    126   const Expr *Base = ME->getBase();
    127 
    128   return EmitCXXMemberOrOperatorMemberCallExpr(
    129       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
    130 }
    131 
    132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
    133     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
    134     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
    135     const Expr *Base) {
    136   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
    137 
    138   // Compute the object pointer.
    139   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
    140 
    141   const CXXMethodDecl *DevirtualizedMethod = nullptr;
    142   if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
    143     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
    144     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
    145     assert(DevirtualizedMethod);
    146     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
    147     const Expr *Inner = Base->ignoreParenBaseCasts();
    148     if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
    149         MD->getReturnType().getCanonicalType())
    150       // If the return types are not the same, this might be a case where more
    151       // code needs to run to compensate for it. For example, the derived
    152       // method might return a type that inherits form from the return
    153       // type of MD and has a prefix.
    154       // For now we just avoid devirtualizing these covariant cases.
    155       DevirtualizedMethod = nullptr;
    156     else if (getCXXRecord(Inner) == DevirtualizedClass)
    157       // If the class of the Inner expression is where the dynamic method
    158       // is defined, build the this pointer from it.
    159       Base = Inner;
    160     else if (getCXXRecord(Base) != DevirtualizedClass) {
    161       // If the method is defined in a class that is not the best dynamic
    162       // one or the one of the full expression, we would have to build
    163       // a derived-to-base cast to compute the correct this pointer, but
    164       // we don't have support for that yet, so do a virtual call.
    165       DevirtualizedMethod = nullptr;
    166     }
    167   }
    168 
    169   Address This = Address::invalid();
    170   if (IsArrow)
    171     This = EmitPointerWithAlignment(Base);
    172   else
    173     This = EmitLValue(Base).getAddress();
    174 
    175 
    176   if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
    177     if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
    178     if (isa<CXXConstructorDecl>(MD) &&
    179         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
    180       return RValue::get(nullptr);
    181 
    182     if (!MD->getParent()->mayInsertExtraPadding()) {
    183       if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
    184         // We don't like to generate the trivial copy/move assignment operator
    185         // when it isn't necessary; just produce the proper effect here.
    186         // Special case: skip first argument of CXXOperatorCall (it is "this").
    187         unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
    188         Address RHS = EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
    189         EmitAggregateAssign(This, RHS, CE->getType());
    190         return RValue::get(This.getPointer());
    191       }
    192 
    193       if (isa<CXXConstructorDecl>(MD) &&
    194           cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
    195         // Trivial move and copy ctor are the same.
    196         assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
    197         Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
    198         EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
    199         return RValue::get(This.getPointer());
    200       }
    201       llvm_unreachable("unknown trivial member function");
    202     }
    203   }
    204 
    205   // Compute the function type we're calling.
    206   const CXXMethodDecl *CalleeDecl =
    207       DevirtualizedMethod ? DevirtualizedMethod : MD;
    208   const CGFunctionInfo *FInfo = nullptr;
    209   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
    210     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
    211         Dtor, StructorType::Complete);
    212   else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
    213     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
    214         Ctor, StructorType::Complete);
    215   else
    216     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
    217 
    218   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
    219 
    220   // C++ [class.virtual]p12:
    221   //   Explicit qualification with the scope operator (5.1) suppresses the
    222   //   virtual call mechanism.
    223   //
    224   // We also don't emit a virtual call if the base expression has a record type
    225   // because then we know what the type is.
    226   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
    227   llvm::Value *Callee;
    228 
    229   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
    230     assert(CE->arg_begin() == CE->arg_end() &&
    231            "Destructor shouldn't have explicit parameters");
    232     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
    233     if (UseVirtualCall) {
    234       CGM.getCXXABI().EmitVirtualDestructorCall(
    235           *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
    236     } else {
    237       if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
    238         Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
    239       else if (!DevirtualizedMethod)
    240         Callee =
    241             CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
    242       else {
    243         const CXXDestructorDecl *DDtor =
    244           cast<CXXDestructorDecl>(DevirtualizedMethod);
    245         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
    246       }
    247       EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
    248                                   /*ImplicitParam=*/nullptr, QualType(), CE);
    249     }
    250     return RValue::get(nullptr);
    251   }
    252 
    253   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
    254     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
    255   } else if (UseVirtualCall) {
    256     Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
    257                                                        CE->getLocStart());
    258   } else {
    259     if (SanOpts.has(SanitizerKind::CFINVCall) &&
    260         MD->getParent()->isDynamicClass()) {
    261       llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
    262       EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
    263                                 CE->getLocStart());
    264     }
    265 
    266     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
    267       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
    268     else if (!DevirtualizedMethod)
    269       Callee = CGM.GetAddrOfFunction(MD, Ty);
    270     else {
    271       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
    272     }
    273   }
    274 
    275   if (MD->isVirtual()) {
    276     This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
    277         *this, CalleeDecl, This, UseVirtualCall);
    278   }
    279 
    280   return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
    281                                      /*ImplicitParam=*/nullptr, QualType(), CE);
    282 }
    283 
    284 RValue
    285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
    286                                               ReturnValueSlot ReturnValue) {
    287   const BinaryOperator *BO =
    288       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
    289   const Expr *BaseExpr = BO->getLHS();
    290   const Expr *MemFnExpr = BO->getRHS();
    291 
    292   const MemberPointerType *MPT =
    293     MemFnExpr->getType()->castAs<MemberPointerType>();
    294 
    295   const FunctionProtoType *FPT =
    296     MPT->getPointeeType()->castAs<FunctionProtoType>();
    297   const CXXRecordDecl *RD =
    298     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
    299 
    300   // Get the member function pointer.
    301   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
    302 
    303   // Emit the 'this' pointer.
    304   Address This = Address::invalid();
    305   if (BO->getOpcode() == BO_PtrMemI)
    306     This = EmitPointerWithAlignment(BaseExpr);
    307   else
    308     This = EmitLValue(BaseExpr).getAddress();
    309 
    310   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
    311                 QualType(MPT->getClass(), 0));
    312 
    313   // Ask the ABI to load the callee.  Note that This is modified.
    314   llvm::Value *ThisPtrForCall = nullptr;
    315   llvm::Value *Callee =
    316     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
    317                                              ThisPtrForCall, MemFnPtr, MPT);
    318 
    319   CallArgList Args;
    320 
    321   QualType ThisType =
    322     getContext().getPointerType(getContext().getTagDeclType(RD));
    323 
    324   // Push the this ptr.
    325   Args.add(RValue::get(ThisPtrForCall), ThisType);
    326 
    327   RequiredArgs required =
    328       RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
    329 
    330   // And the rest of the call args
    331   EmitCallArgs(Args, FPT, E->arguments());
    332   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
    333                   Callee, ReturnValue, Args);
    334 }
    335 
    336 RValue
    337 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
    338                                                const CXXMethodDecl *MD,
    339                                                ReturnValueSlot ReturnValue) {
    340   assert(MD->isInstance() &&
    341          "Trying to emit a member call expr on a static method!");
    342   return EmitCXXMemberOrOperatorMemberCallExpr(
    343       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
    344       /*IsArrow=*/false, E->getArg(0));
    345 }
    346 
    347 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
    348                                                ReturnValueSlot ReturnValue) {
    349   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
    350 }
    351 
    352 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
    353                                             Address DestPtr,
    354                                             const CXXRecordDecl *Base) {
    355   if (Base->isEmpty())
    356     return;
    357 
    358   DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
    359 
    360   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
    361   CharUnits NVSize = Layout.getNonVirtualSize();
    362 
    363   // We cannot simply zero-initialize the entire base sub-object if vbptrs are
    364   // present, they are initialized by the most derived class before calling the
    365   // constructor.
    366   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
    367   Stores.emplace_back(CharUnits::Zero(), NVSize);
    368 
    369   // Each store is split by the existence of a vbptr.
    370   CharUnits VBPtrWidth = CGF.getPointerSize();
    371   std::vector<CharUnits> VBPtrOffsets =
    372       CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
    373   for (CharUnits VBPtrOffset : VBPtrOffsets) {
    374     // Stop before we hit any virtual base pointers located in virtual bases.
    375     if (VBPtrOffset >= NVSize)
    376       break;
    377     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
    378     CharUnits LastStoreOffset = LastStore.first;
    379     CharUnits LastStoreSize = LastStore.second;
    380 
    381     CharUnits SplitBeforeOffset = LastStoreOffset;
    382     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
    383     assert(!SplitBeforeSize.isNegative() && "negative store size!");
    384     if (!SplitBeforeSize.isZero())
    385       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
    386 
    387     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
    388     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
    389     assert(!SplitAfterSize.isNegative() && "negative store size!");
    390     if (!SplitAfterSize.isZero())
    391       Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
    392   }
    393 
    394   // If the type contains a pointer to data member we can't memset it to zero.
    395   // Instead, create a null constant and copy it to the destination.
    396   // TODO: there are other patterns besides zero that we can usefully memset,
    397   // like -1, which happens to be the pattern used by member-pointers.
    398   // TODO: isZeroInitializable can be over-conservative in the case where a
    399   // virtual base contains a member pointer.
    400   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
    401   if (!NullConstantForBase->isNullValue()) {
    402     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
    403         CGF.CGM.getModule(), NullConstantForBase->getType(),
    404         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
    405         NullConstantForBase, Twine());
    406 
    407     CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
    408                                DestPtr.getAlignment());
    409     NullVariable->setAlignment(Align.getQuantity());
    410 
    411     Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
    412 
    413     // Get and call the appropriate llvm.memcpy overload.
    414     for (std::pair<CharUnits, CharUnits> Store : Stores) {
    415       CharUnits StoreOffset = Store.first;
    416       CharUnits StoreSize = Store.second;
    417       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
    418       CGF.Builder.CreateMemCpy(
    419           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
    420           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
    421           StoreSizeVal);
    422     }
    423 
    424   // Otherwise, just memset the whole thing to zero.  This is legal
    425   // because in LLVM, all default initializers (other than the ones we just
    426   // handled above) are guaranteed to have a bit pattern of all zeros.
    427   } else {
    428     for (std::pair<CharUnits, CharUnits> Store : Stores) {
    429       CharUnits StoreOffset = Store.first;
    430       CharUnits StoreSize = Store.second;
    431       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
    432       CGF.Builder.CreateMemSet(
    433           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
    434           CGF.Builder.getInt8(0), StoreSizeVal);
    435     }
    436   }
    437 }
    438 
    439 void
    440 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
    441                                       AggValueSlot Dest) {
    442   assert(!Dest.isIgnored() && "Must have a destination!");
    443   const CXXConstructorDecl *CD = E->getConstructor();
    444 
    445   // If we require zero initialization before (or instead of) calling the
    446   // constructor, as can be the case with a non-user-provided default
    447   // constructor, emit the zero initialization now, unless destination is
    448   // already zeroed.
    449   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
    450     switch (E->getConstructionKind()) {
    451     case CXXConstructExpr::CK_Delegating:
    452     case CXXConstructExpr::CK_Complete:
    453       EmitNullInitialization(Dest.getAddress(), E->getType());
    454       break;
    455     case CXXConstructExpr::CK_VirtualBase:
    456     case CXXConstructExpr::CK_NonVirtualBase:
    457       EmitNullBaseClassInitialization(*this, Dest.getAddress(),
    458                                       CD->getParent());
    459       break;
    460     }
    461   }
    462 
    463   // If this is a call to a trivial default constructor, do nothing.
    464   if (CD->isTrivial() && CD->isDefaultConstructor())
    465     return;
    466 
    467   // Elide the constructor if we're constructing from a temporary.
    468   // The temporary check is required because Sema sets this on NRVO
    469   // returns.
    470   if (getLangOpts().ElideConstructors && E->isElidable()) {
    471     assert(getContext().hasSameUnqualifiedType(E->getType(),
    472                                                E->getArg(0)->getType()));
    473     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
    474       EmitAggExpr(E->getArg(0), Dest);
    475       return;
    476     }
    477   }
    478 
    479   if (const ArrayType *arrayType
    480         = getContext().getAsArrayType(E->getType())) {
    481     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
    482   } else {
    483     CXXCtorType Type = Ctor_Complete;
    484     bool ForVirtualBase = false;
    485     bool Delegating = false;
    486 
    487     switch (E->getConstructionKind()) {
    488      case CXXConstructExpr::CK_Delegating:
    489       // We should be emitting a constructor; GlobalDecl will assert this
    490       Type = CurGD.getCtorType();
    491       Delegating = true;
    492       break;
    493 
    494      case CXXConstructExpr::CK_Complete:
    495       Type = Ctor_Complete;
    496       break;
    497 
    498      case CXXConstructExpr::CK_VirtualBase:
    499       ForVirtualBase = true;
    500       // fall-through
    501 
    502      case CXXConstructExpr::CK_NonVirtualBase:
    503       Type = Ctor_Base;
    504     }
    505 
    506     // Call the constructor.
    507     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
    508                            Dest.getAddress(), E);
    509   }
    510 }
    511 
    512 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
    513                                                  const Expr *Exp) {
    514   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
    515     Exp = E->getSubExpr();
    516   assert(isa<CXXConstructExpr>(Exp) &&
    517          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
    518   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
    519   const CXXConstructorDecl *CD = E->getConstructor();
    520   RunCleanupsScope Scope(*this);
    521 
    522   // If we require zero initialization before (or instead of) calling the
    523   // constructor, as can be the case with a non-user-provided default
    524   // constructor, emit the zero initialization now.
    525   // FIXME. Do I still need this for a copy ctor synthesis?
    526   if (E->requiresZeroInitialization())
    527     EmitNullInitialization(Dest, E->getType());
    528 
    529   assert(!getContext().getAsConstantArrayType(E->getType())
    530          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
    531   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
    532 }
    533 
    534 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
    535                                         const CXXNewExpr *E) {
    536   if (!E->isArray())
    537     return CharUnits::Zero();
    538 
    539   // No cookie is required if the operator new[] being used is the
    540   // reserved placement operator new[].
    541   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
    542     return CharUnits::Zero();
    543 
    544   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
    545 }
    546 
    547 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
    548                                         const CXXNewExpr *e,
    549                                         unsigned minElements,
    550                                         llvm::Value *&numElements,
    551                                         llvm::Value *&sizeWithoutCookie) {
    552   QualType type = e->getAllocatedType();
    553 
    554   if (!e->isArray()) {
    555     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    556     sizeWithoutCookie
    557       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
    558     return sizeWithoutCookie;
    559   }
    560 
    561   // The width of size_t.
    562   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
    563 
    564   // Figure out the cookie size.
    565   llvm::APInt cookieSize(sizeWidth,
    566                          CalculateCookiePadding(CGF, e).getQuantity());
    567 
    568   // Emit the array size expression.
    569   // We multiply the size of all dimensions for NumElements.
    570   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
    571   numElements = CGF.EmitScalarExpr(e->getArraySize());
    572   assert(isa<llvm::IntegerType>(numElements->getType()));
    573 
    574   // The number of elements can be have an arbitrary integer type;
    575   // essentially, we need to multiply it by a constant factor, add a
    576   // cookie size, and verify that the result is representable as a
    577   // size_t.  That's just a gloss, though, and it's wrong in one
    578   // important way: if the count is negative, it's an error even if
    579   // the cookie size would bring the total size >= 0.
    580   bool isSigned
    581     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
    582   llvm::IntegerType *numElementsType
    583     = cast<llvm::IntegerType>(numElements->getType());
    584   unsigned numElementsWidth = numElementsType->getBitWidth();
    585 
    586   // Compute the constant factor.
    587   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
    588   while (const ConstantArrayType *CAT
    589              = CGF.getContext().getAsConstantArrayType(type)) {
    590     type = CAT->getElementType();
    591     arraySizeMultiplier *= CAT->getSize();
    592   }
    593 
    594   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    595   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
    596   typeSizeMultiplier *= arraySizeMultiplier;
    597 
    598   // This will be a size_t.
    599   llvm::Value *size;
    600 
    601   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
    602   // Don't bloat the -O0 code.
    603   if (llvm::ConstantInt *numElementsC =
    604         dyn_cast<llvm::ConstantInt>(numElements)) {
    605     const llvm::APInt &count = numElementsC->getValue();
    606 
    607     bool hasAnyOverflow = false;
    608 
    609     // If 'count' was a negative number, it's an overflow.
    610     if (isSigned && count.isNegative())
    611       hasAnyOverflow = true;
    612 
    613     // We want to do all this arithmetic in size_t.  If numElements is
    614     // wider than that, check whether it's already too big, and if so,
    615     // overflow.
    616     else if (numElementsWidth > sizeWidth &&
    617              numElementsWidth - sizeWidth > count.countLeadingZeros())
    618       hasAnyOverflow = true;
    619 
    620     // Okay, compute a count at the right width.
    621     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
    622 
    623     // If there is a brace-initializer, we cannot allocate fewer elements than
    624     // there are initializers. If we do, that's treated like an overflow.
    625     if (adjustedCount.ult(minElements))
    626       hasAnyOverflow = true;
    627 
    628     // Scale numElements by that.  This might overflow, but we don't
    629     // care because it only overflows if allocationSize does, too, and
    630     // if that overflows then we shouldn't use this.
    631     numElements = llvm::ConstantInt::get(CGF.SizeTy,
    632                                          adjustedCount * arraySizeMultiplier);
    633 
    634     // Compute the size before cookie, and track whether it overflowed.
    635     bool overflow;
    636     llvm::APInt allocationSize
    637       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
    638     hasAnyOverflow |= overflow;
    639 
    640     // Add in the cookie, and check whether it's overflowed.
    641     if (cookieSize != 0) {
    642       // Save the current size without a cookie.  This shouldn't be
    643       // used if there was overflow.
    644       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    645 
    646       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
    647       hasAnyOverflow |= overflow;
    648     }
    649 
    650     // On overflow, produce a -1 so operator new will fail.
    651     if (hasAnyOverflow) {
    652       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
    653     } else {
    654       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    655     }
    656 
    657   // Otherwise, we might need to use the overflow intrinsics.
    658   } else {
    659     // There are up to five conditions we need to test for:
    660     // 1) if isSigned, we need to check whether numElements is negative;
    661     // 2) if numElementsWidth > sizeWidth, we need to check whether
    662     //   numElements is larger than something representable in size_t;
    663     // 3) if minElements > 0, we need to check whether numElements is smaller
    664     //    than that.
    665     // 4) we need to compute
    666     //      sizeWithoutCookie := numElements * typeSizeMultiplier
    667     //    and check whether it overflows; and
    668     // 5) if we need a cookie, we need to compute
    669     //      size := sizeWithoutCookie + cookieSize
    670     //    and check whether it overflows.
    671 
    672     llvm::Value *hasOverflow = nullptr;
    673 
    674     // If numElementsWidth > sizeWidth, then one way or another, we're
    675     // going to have to do a comparison for (2), and this happens to
    676     // take care of (1), too.
    677     if (numElementsWidth > sizeWidth) {
    678       llvm::APInt threshold(numElementsWidth, 1);
    679       threshold <<= sizeWidth;
    680 
    681       llvm::Value *thresholdV
    682         = llvm::ConstantInt::get(numElementsType, threshold);
    683 
    684       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
    685       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
    686 
    687     // Otherwise, if we're signed, we want to sext up to size_t.
    688     } else if (isSigned) {
    689       if (numElementsWidth < sizeWidth)
    690         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
    691 
    692       // If there's a non-1 type size multiplier, then we can do the
    693       // signedness check at the same time as we do the multiply
    694       // because a negative number times anything will cause an
    695       // unsigned overflow.  Otherwise, we have to do it here. But at least
    696       // in this case, we can subsume the >= minElements check.
    697       if (typeSizeMultiplier == 1)
    698         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
    699                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
    700 
    701     // Otherwise, zext up to size_t if necessary.
    702     } else if (numElementsWidth < sizeWidth) {
    703       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
    704     }
    705 
    706     assert(numElements->getType() == CGF.SizeTy);
    707 
    708     if (minElements) {
    709       // Don't allow allocation of fewer elements than we have initializers.
    710       if (!hasOverflow) {
    711         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
    712                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
    713       } else if (numElementsWidth > sizeWidth) {
    714         // The other existing overflow subsumes this check.
    715         // We do an unsigned comparison, since any signed value < -1 is
    716         // taken care of either above or below.
    717         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
    718                           CGF.Builder.CreateICmpULT(numElements,
    719                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
    720       }
    721     }
    722 
    723     size = numElements;
    724 
    725     // Multiply by the type size if necessary.  This multiplier
    726     // includes all the factors for nested arrays.
    727     //
    728     // This step also causes numElements to be scaled up by the
    729     // nested-array factor if necessary.  Overflow on this computation
    730     // can be ignored because the result shouldn't be used if
    731     // allocation fails.
    732     if (typeSizeMultiplier != 1) {
    733       llvm::Value *umul_with_overflow
    734         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
    735 
    736       llvm::Value *tsmV =
    737         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
    738       llvm::Value *result =
    739           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
    740 
    741       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
    742       if (hasOverflow)
    743         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
    744       else
    745         hasOverflow = overflowed;
    746 
    747       size = CGF.Builder.CreateExtractValue(result, 0);
    748 
    749       // Also scale up numElements by the array size multiplier.
    750       if (arraySizeMultiplier != 1) {
    751         // If the base element type size is 1, then we can re-use the
    752         // multiply we just did.
    753         if (typeSize.isOne()) {
    754           assert(arraySizeMultiplier == typeSizeMultiplier);
    755           numElements = size;
    756 
    757         // Otherwise we need a separate multiply.
    758         } else {
    759           llvm::Value *asmV =
    760             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
    761           numElements = CGF.Builder.CreateMul(numElements, asmV);
    762         }
    763       }
    764     } else {
    765       // numElements doesn't need to be scaled.
    766       assert(arraySizeMultiplier == 1);
    767     }
    768 
    769     // Add in the cookie size if necessary.
    770     if (cookieSize != 0) {
    771       sizeWithoutCookie = size;
    772 
    773       llvm::Value *uadd_with_overflow
    774         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
    775 
    776       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
    777       llvm::Value *result =
    778           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
    779 
    780       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
    781       if (hasOverflow)
    782         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
    783       else
    784         hasOverflow = overflowed;
    785 
    786       size = CGF.Builder.CreateExtractValue(result, 0);
    787     }
    788 
    789     // If we had any possibility of dynamic overflow, make a select to
    790     // overwrite 'size' with an all-ones value, which should cause
    791     // operator new to throw.
    792     if (hasOverflow)
    793       size = CGF.Builder.CreateSelect(hasOverflow,
    794                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
    795                                       size);
    796   }
    797 
    798   if (cookieSize == 0)
    799     sizeWithoutCookie = size;
    800   else
    801     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
    802 
    803   return size;
    804 }
    805 
    806 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
    807                                     QualType AllocType, Address NewPtr) {
    808   // FIXME: Refactor with EmitExprAsInit.
    809   switch (CGF.getEvaluationKind(AllocType)) {
    810   case TEK_Scalar:
    811     CGF.EmitScalarInit(Init, nullptr,
    812                        CGF.MakeAddrLValue(NewPtr, AllocType), false);
    813     return;
    814   case TEK_Complex:
    815     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
    816                                   /*isInit*/ true);
    817     return;
    818   case TEK_Aggregate: {
    819     AggValueSlot Slot
    820       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
    821                               AggValueSlot::IsDestructed,
    822                               AggValueSlot::DoesNotNeedGCBarriers,
    823                               AggValueSlot::IsNotAliased);
    824     CGF.EmitAggExpr(Init, Slot);
    825     return;
    826   }
    827   }
    828   llvm_unreachable("bad evaluation kind");
    829 }
    830 
    831 void CodeGenFunction::EmitNewArrayInitializer(
    832     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
    833     Address BeginPtr, llvm::Value *NumElements,
    834     llvm::Value *AllocSizeWithoutCookie) {
    835   // If we have a type with trivial initialization and no initializer,
    836   // there's nothing to do.
    837   if (!E->hasInitializer())
    838     return;
    839 
    840   Address CurPtr = BeginPtr;
    841 
    842   unsigned InitListElements = 0;
    843 
    844   const Expr *Init = E->getInitializer();
    845   Address EndOfInit = Address::invalid();
    846   QualType::DestructionKind DtorKind = ElementType.isDestructedType();
    847   EHScopeStack::stable_iterator Cleanup;
    848   llvm::Instruction *CleanupDominator = nullptr;
    849 
    850   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
    851   CharUnits ElementAlign =
    852     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
    853 
    854   // If the initializer is an initializer list, first do the explicit elements.
    855   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
    856     InitListElements = ILE->getNumInits();
    857 
    858     // If this is a multi-dimensional array new, we will initialize multiple
    859     // elements with each init list element.
    860     QualType AllocType = E->getAllocatedType();
    861     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
    862             AllocType->getAsArrayTypeUnsafe())) {
    863       ElementTy = ConvertTypeForMem(AllocType);
    864       CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
    865       InitListElements *= getContext().getConstantArrayElementCount(CAT);
    866     }
    867 
    868     // Enter a partial-destruction Cleanup if necessary.
    869     if (needsEHCleanup(DtorKind)) {
    870       // In principle we could tell the Cleanup where we are more
    871       // directly, but the control flow can get so varied here that it
    872       // would actually be quite complex.  Therefore we go through an
    873       // alloca.
    874       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
    875                                    "array.init.end");
    876       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
    877       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
    878                                        ElementType, ElementAlign,
    879                                        getDestroyer(DtorKind));
    880       Cleanup = EHStack.stable_begin();
    881     }
    882 
    883     CharUnits StartAlign = CurPtr.getAlignment();
    884     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
    885       // Tell the cleanup that it needs to destroy up to this
    886       // element.  TODO: some of these stores can be trivially
    887       // observed to be unnecessary.
    888       if (EndOfInit.isValid()) {
    889         auto FinishedPtr =
    890           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
    891         Builder.CreateStore(FinishedPtr, EndOfInit);
    892       }
    893       // FIXME: If the last initializer is an incomplete initializer list for
    894       // an array, and we have an array filler, we can fold together the two
    895       // initialization loops.
    896       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
    897                               ILE->getInit(i)->getType(), CurPtr);
    898       CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
    899                                                  Builder.getSize(1),
    900                                                  "array.exp.next"),
    901                        StartAlign.alignmentAtOffset((i + 1) * ElementSize));
    902     }
    903 
    904     // The remaining elements are filled with the array filler expression.
    905     Init = ILE->getArrayFiller();
    906 
    907     // Extract the initializer for the individual array elements by pulling
    908     // out the array filler from all the nested initializer lists. This avoids
    909     // generating a nested loop for the initialization.
    910     while (Init && Init->getType()->isConstantArrayType()) {
    911       auto *SubILE = dyn_cast<InitListExpr>(Init);
    912       if (!SubILE)
    913         break;
    914       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
    915       Init = SubILE->getArrayFiller();
    916     }
    917 
    918     // Switch back to initializing one base element at a time.
    919     CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
    920   }
    921 
    922   // Attempt to perform zero-initialization using memset.
    923   auto TryMemsetInitialization = [&]() -> bool {
    924     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
    925     // we can initialize with a memset to -1.
    926     if (!CGM.getTypes().isZeroInitializable(ElementType))
    927       return false;
    928 
    929     // Optimization: since zero initialization will just set the memory
    930     // to all zeroes, generate a single memset to do it in one shot.
    931 
    932     // Subtract out the size of any elements we've already initialized.
    933     auto *RemainingSize = AllocSizeWithoutCookie;
    934     if (InitListElements) {
    935       // We know this can't overflow; we check this when doing the allocation.
    936       auto *InitializedSize = llvm::ConstantInt::get(
    937           RemainingSize->getType(),
    938           getContext().getTypeSizeInChars(ElementType).getQuantity() *
    939               InitListElements);
    940       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
    941     }
    942 
    943     // Create the memset.
    944     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
    945     return true;
    946   };
    947 
    948   // If all elements have already been initialized, skip any further
    949   // initialization.
    950   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
    951   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
    952     // If there was a Cleanup, deactivate it.
    953     if (CleanupDominator)
    954       DeactivateCleanupBlock(Cleanup, CleanupDominator);
    955     return;
    956   }
    957 
    958   assert(Init && "have trailing elements to initialize but no initializer");
    959 
    960   // If this is a constructor call, try to optimize it out, and failing that
    961   // emit a single loop to initialize all remaining elements.
    962   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
    963     CXXConstructorDecl *Ctor = CCE->getConstructor();
    964     if (Ctor->isTrivial()) {
    965       // If new expression did not specify value-initialization, then there
    966       // is no initialization.
    967       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
    968         return;
    969 
    970       if (TryMemsetInitialization())
    971         return;
    972     }
    973 
    974     // Store the new Cleanup position for irregular Cleanups.
    975     //
    976     // FIXME: Share this cleanup with the constructor call emission rather than
    977     // having it create a cleanup of its own.
    978     if (EndOfInit.isValid())
    979       Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
    980 
    981     // Emit a constructor call loop to initialize the remaining elements.
    982     if (InitListElements)
    983       NumElements = Builder.CreateSub(
    984           NumElements,
    985           llvm::ConstantInt::get(NumElements->getType(), InitListElements));
    986     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
    987                                CCE->requiresZeroInitialization());
    988     return;
    989   }
    990 
    991   // If this is value-initialization, we can usually use memset.
    992   ImplicitValueInitExpr IVIE(ElementType);
    993   if (isa<ImplicitValueInitExpr>(Init)) {
    994     if (TryMemsetInitialization())
    995       return;
    996 
    997     // Switch to an ImplicitValueInitExpr for the element type. This handles
    998     // only one case: multidimensional array new of pointers to members. In
    999     // all other cases, we already have an initializer for the array element.
   1000     Init = &IVIE;
   1001   }
   1002 
   1003   // At this point we should have found an initializer for the individual
   1004   // elements of the array.
   1005   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
   1006          "got wrong type of element to initialize");
   1007 
   1008   // If we have an empty initializer list, we can usually use memset.
   1009   if (auto *ILE = dyn_cast<InitListExpr>(Init))
   1010     if (ILE->getNumInits() == 0 && TryMemsetInitialization())
   1011       return;
   1012 
   1013   // If we have a struct whose every field is value-initialized, we can
   1014   // usually use memset.
   1015   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
   1016     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
   1017       if (RType->getDecl()->isStruct()) {
   1018         unsigned NumElements = 0;
   1019         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
   1020           NumElements = CXXRD->getNumBases();
   1021         for (auto *Field : RType->getDecl()->fields())
   1022           if (!Field->isUnnamedBitfield())
   1023             ++NumElements;
   1024         // FIXME: Recurse into nested InitListExprs.
   1025         if (ILE->getNumInits() == NumElements)
   1026           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
   1027             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
   1028               --NumElements;
   1029         if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
   1030           return;
   1031       }
   1032     }
   1033   }
   1034 
   1035   // Create the loop blocks.
   1036   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
   1037   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
   1038   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
   1039 
   1040   // Find the end of the array, hoisted out of the loop.
   1041   llvm::Value *EndPtr =
   1042     Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
   1043 
   1044   // If the number of elements isn't constant, we have to now check if there is
   1045   // anything left to initialize.
   1046   if (!ConstNum) {
   1047     llvm::Value *IsEmpty =
   1048       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
   1049     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
   1050   }
   1051 
   1052   // Enter the loop.
   1053   EmitBlock(LoopBB);
   1054 
   1055   // Set up the current-element phi.
   1056   llvm::PHINode *CurPtrPhi =
   1057     Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
   1058   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
   1059 
   1060   CurPtr = Address(CurPtrPhi, ElementAlign);
   1061 
   1062   // Store the new Cleanup position for irregular Cleanups.
   1063   if (EndOfInit.isValid())
   1064     Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
   1065 
   1066   // Enter a partial-destruction Cleanup if necessary.
   1067   if (!CleanupDominator && needsEHCleanup(DtorKind)) {
   1068     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
   1069                                    ElementType, ElementAlign,
   1070                                    getDestroyer(DtorKind));
   1071     Cleanup = EHStack.stable_begin();
   1072     CleanupDominator = Builder.CreateUnreachable();
   1073   }
   1074 
   1075   // Emit the initializer into this element.
   1076   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
   1077 
   1078   // Leave the Cleanup if we entered one.
   1079   if (CleanupDominator) {
   1080     DeactivateCleanupBlock(Cleanup, CleanupDominator);
   1081     CleanupDominator->eraseFromParent();
   1082   }
   1083 
   1084   // Advance to the next element by adjusting the pointer type as necessary.
   1085   llvm::Value *NextPtr =
   1086     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
   1087                                        "array.next");
   1088 
   1089   // Check whether we've gotten to the end of the array and, if so,
   1090   // exit the loop.
   1091   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
   1092   Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
   1093   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
   1094 
   1095   EmitBlock(ContBB);
   1096 }
   1097 
   1098 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
   1099                                QualType ElementType, llvm::Type *ElementTy,
   1100                                Address NewPtr, llvm::Value *NumElements,
   1101                                llvm::Value *AllocSizeWithoutCookie) {
   1102   ApplyDebugLocation DL(CGF, E);
   1103   if (E->isArray())
   1104     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
   1105                                 AllocSizeWithoutCookie);
   1106   else if (const Expr *Init = E->getInitializer())
   1107     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
   1108 }
   1109 
   1110 /// Emit a call to an operator new or operator delete function, as implicitly
   1111 /// created by new-expressions and delete-expressions.
   1112 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
   1113                                 const FunctionDecl *Callee,
   1114                                 const FunctionProtoType *CalleeType,
   1115                                 const CallArgList &Args) {
   1116   llvm::Instruction *CallOrInvoke;
   1117   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
   1118   RValue RV =
   1119       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
   1120                        Args, CalleeType, /*chainCall=*/false),
   1121                    CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
   1122 
   1123   /// C++1y [expr.new]p10:
   1124   ///   [In a new-expression,] an implementation is allowed to omit a call
   1125   ///   to a replaceable global allocation function.
   1126   ///
   1127   /// We model such elidable calls with the 'builtin' attribute.
   1128   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
   1129   if (Callee->isReplaceableGlobalAllocationFunction() &&
   1130       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
   1131     // FIXME: Add addAttribute to CallSite.
   1132     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
   1133       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
   1134                        llvm::Attribute::Builtin);
   1135     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
   1136       II->addAttribute(llvm::AttributeSet::FunctionIndex,
   1137                        llvm::Attribute::Builtin);
   1138     else
   1139       llvm_unreachable("unexpected kind of call instruction");
   1140   }
   1141 
   1142   return RV;
   1143 }
   1144 
   1145 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
   1146                                                  const Expr *Arg,
   1147                                                  bool IsDelete) {
   1148   CallArgList Args;
   1149   const Stmt *ArgS = Arg;
   1150   EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
   1151   // Find the allocation or deallocation function that we're calling.
   1152   ASTContext &Ctx = getContext();
   1153   DeclarationName Name = Ctx.DeclarationNames
   1154       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
   1155   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
   1156     if (auto *FD = dyn_cast<FunctionDecl>(Decl))
   1157       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
   1158         return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
   1159   llvm_unreachable("predeclared global operator new/delete is missing");
   1160 }
   1161 
   1162 namespace {
   1163   /// A cleanup to call the given 'operator delete' function upon
   1164   /// abnormal exit from a new expression.
   1165   class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
   1166     size_t NumPlacementArgs;
   1167     const FunctionDecl *OperatorDelete;
   1168     llvm::Value *Ptr;
   1169     llvm::Value *AllocSize;
   1170 
   1171     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
   1172 
   1173   public:
   1174     static size_t getExtraSize(size_t NumPlacementArgs) {
   1175       return NumPlacementArgs * sizeof(RValue);
   1176     }
   1177 
   1178     CallDeleteDuringNew(size_t NumPlacementArgs,
   1179                         const FunctionDecl *OperatorDelete,
   1180                         llvm::Value *Ptr,
   1181                         llvm::Value *AllocSize)
   1182       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
   1183         Ptr(Ptr), AllocSize(AllocSize) {}
   1184 
   1185     void setPlacementArg(unsigned I, RValue Arg) {
   1186       assert(I < NumPlacementArgs && "index out of range");
   1187       getPlacementArgs()[I] = Arg;
   1188     }
   1189 
   1190     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1191       const FunctionProtoType *FPT
   1192         = OperatorDelete->getType()->getAs<FunctionProtoType>();
   1193       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
   1194              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
   1195 
   1196       CallArgList DeleteArgs;
   1197 
   1198       // The first argument is always a void*.
   1199       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
   1200       DeleteArgs.add(RValue::get(Ptr), *AI++);
   1201 
   1202       // A member 'operator delete' can take an extra 'size_t' argument.
   1203       if (FPT->getNumParams() == NumPlacementArgs + 2)
   1204         DeleteArgs.add(RValue::get(AllocSize), *AI++);
   1205 
   1206       // Pass the rest of the arguments, which must match exactly.
   1207       for (unsigned I = 0; I != NumPlacementArgs; ++I)
   1208         DeleteArgs.add(getPlacementArgs()[I], *AI++);
   1209 
   1210       // Call 'operator delete'.
   1211       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
   1212     }
   1213   };
   1214 
   1215   /// A cleanup to call the given 'operator delete' function upon
   1216   /// abnormal exit from a new expression when the new expression is
   1217   /// conditional.
   1218   class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup {
   1219     size_t NumPlacementArgs;
   1220     const FunctionDecl *OperatorDelete;
   1221     DominatingValue<RValue>::saved_type Ptr;
   1222     DominatingValue<RValue>::saved_type AllocSize;
   1223 
   1224     DominatingValue<RValue>::saved_type *getPlacementArgs() {
   1225       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
   1226     }
   1227 
   1228   public:
   1229     static size_t getExtraSize(size_t NumPlacementArgs) {
   1230       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
   1231     }
   1232 
   1233     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
   1234                                    const FunctionDecl *OperatorDelete,
   1235                                    DominatingValue<RValue>::saved_type Ptr,
   1236                               DominatingValue<RValue>::saved_type AllocSize)
   1237       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
   1238         Ptr(Ptr), AllocSize(AllocSize) {}
   1239 
   1240     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
   1241       assert(I < NumPlacementArgs && "index out of range");
   1242       getPlacementArgs()[I] = Arg;
   1243     }
   1244 
   1245     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1246       const FunctionProtoType *FPT
   1247         = OperatorDelete->getType()->getAs<FunctionProtoType>();
   1248       assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
   1249              (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
   1250 
   1251       CallArgList DeleteArgs;
   1252 
   1253       // The first argument is always a void*.
   1254       FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
   1255       DeleteArgs.add(Ptr.restore(CGF), *AI++);
   1256 
   1257       // A member 'operator delete' can take an extra 'size_t' argument.
   1258       if (FPT->getNumParams() == NumPlacementArgs + 2) {
   1259         RValue RV = AllocSize.restore(CGF);
   1260         DeleteArgs.add(RV, *AI++);
   1261       }
   1262 
   1263       // Pass the rest of the arguments, which must match exactly.
   1264       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
   1265         RValue RV = getPlacementArgs()[I].restore(CGF);
   1266         DeleteArgs.add(RV, *AI++);
   1267       }
   1268 
   1269       // Call 'operator delete'.
   1270       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
   1271     }
   1272   };
   1273 }
   1274 
   1275 /// Enter a cleanup to call 'operator delete' if the initializer in a
   1276 /// new-expression throws.
   1277 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
   1278                                   const CXXNewExpr *E,
   1279                                   Address NewPtr,
   1280                                   llvm::Value *AllocSize,
   1281                                   const CallArgList &NewArgs) {
   1282   // If we're not inside a conditional branch, then the cleanup will
   1283   // dominate and we can do the easier (and more efficient) thing.
   1284   if (!CGF.isInConditionalBranch()) {
   1285     CallDeleteDuringNew *Cleanup = CGF.EHStack
   1286       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
   1287                                                  E->getNumPlacementArgs(),
   1288                                                  E->getOperatorDelete(),
   1289                                                  NewPtr.getPointer(),
   1290                                                  AllocSize);
   1291     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
   1292       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
   1293 
   1294     return;
   1295   }
   1296 
   1297   // Otherwise, we need to save all this stuff.
   1298   DominatingValue<RValue>::saved_type SavedNewPtr =
   1299     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
   1300   DominatingValue<RValue>::saved_type SavedAllocSize =
   1301     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
   1302 
   1303   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
   1304     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
   1305                                                  E->getNumPlacementArgs(),
   1306                                                  E->getOperatorDelete(),
   1307                                                  SavedNewPtr,
   1308                                                  SavedAllocSize);
   1309   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
   1310     Cleanup->setPlacementArg(I,
   1311                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
   1312 
   1313   CGF.initFullExprCleanup();
   1314 }
   1315 
   1316 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
   1317   // The element type being allocated.
   1318   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
   1319 
   1320   // 1. Build a call to the allocation function.
   1321   FunctionDecl *allocator = E->getOperatorNew();
   1322 
   1323   // If there is a brace-initializer, cannot allocate fewer elements than inits.
   1324   unsigned minElements = 0;
   1325   if (E->isArray() && E->hasInitializer()) {
   1326     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
   1327       minElements = ILE->getNumInits();
   1328   }
   1329 
   1330   llvm::Value *numElements = nullptr;
   1331   llvm::Value *allocSizeWithoutCookie = nullptr;
   1332   llvm::Value *allocSize =
   1333     EmitCXXNewAllocSize(*this, E, minElements, numElements,
   1334                         allocSizeWithoutCookie);
   1335 
   1336   // Emit the allocation call.  If the allocator is a global placement
   1337   // operator, just "inline" it directly.
   1338   Address allocation = Address::invalid();
   1339   CallArgList allocatorArgs;
   1340   if (allocator->isReservedGlobalPlacementOperator()) {
   1341     assert(E->getNumPlacementArgs() == 1);
   1342     const Expr *arg = *E->placement_arguments().begin();
   1343 
   1344     AlignmentSource alignSource;
   1345     allocation = EmitPointerWithAlignment(arg, &alignSource);
   1346 
   1347     // The pointer expression will, in many cases, be an opaque void*.
   1348     // In these cases, discard the computed alignment and use the
   1349     // formal alignment of the allocated type.
   1350     if (alignSource != AlignmentSource::Decl) {
   1351       allocation = Address(allocation.getPointer(),
   1352                            getContext().getTypeAlignInChars(allocType));
   1353     }
   1354 
   1355     // Set up allocatorArgs for the call to operator delete if it's not
   1356     // the reserved global operator.
   1357     if (E->getOperatorDelete() &&
   1358         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
   1359       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
   1360       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
   1361     }
   1362 
   1363   } else {
   1364     const FunctionProtoType *allocatorType =
   1365       allocator->getType()->castAs<FunctionProtoType>();
   1366 
   1367     // The allocation size is the first argument.
   1368     QualType sizeType = getContext().getSizeType();
   1369     allocatorArgs.add(RValue::get(allocSize), sizeType);
   1370 
   1371     // We start at 1 here because the first argument (the allocation size)
   1372     // has already been emitted.
   1373     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
   1374                  /* CalleeDecl */ nullptr,
   1375                  /*ParamsToSkip*/ 1);
   1376 
   1377     RValue RV =
   1378       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
   1379 
   1380     // For now, only assume that the allocation function returns
   1381     // something satisfactorily aligned for the element type, plus
   1382     // the cookie if we have one.
   1383     CharUnits allocationAlign =
   1384       getContext().getTypeAlignInChars(allocType);
   1385     if (allocSize != allocSizeWithoutCookie) {
   1386       CharUnits cookieAlign = getSizeAlign(); // FIXME?
   1387       allocationAlign = std::max(allocationAlign, cookieAlign);
   1388     }
   1389 
   1390     allocation = Address(RV.getScalarVal(), allocationAlign);
   1391   }
   1392 
   1393   // Emit a null check on the allocation result if the allocation
   1394   // function is allowed to return null (because it has a non-throwing
   1395   // exception spec or is the reserved placement new) and we have an
   1396   // interesting initializer.
   1397   bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
   1398     (!allocType.isPODType(getContext()) || E->hasInitializer());
   1399 
   1400   llvm::BasicBlock *nullCheckBB = nullptr;
   1401   llvm::BasicBlock *contBB = nullptr;
   1402 
   1403   // The null-check means that the initializer is conditionally
   1404   // evaluated.
   1405   ConditionalEvaluation conditional(*this);
   1406 
   1407   if (nullCheck) {
   1408     conditional.begin(*this);
   1409 
   1410     nullCheckBB = Builder.GetInsertBlock();
   1411     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
   1412     contBB = createBasicBlock("new.cont");
   1413 
   1414     llvm::Value *isNull =
   1415       Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
   1416     Builder.CreateCondBr(isNull, contBB, notNullBB);
   1417     EmitBlock(notNullBB);
   1418   }
   1419 
   1420   // If there's an operator delete, enter a cleanup to call it if an
   1421   // exception is thrown.
   1422   EHScopeStack::stable_iterator operatorDeleteCleanup;
   1423   llvm::Instruction *cleanupDominator = nullptr;
   1424   if (E->getOperatorDelete() &&
   1425       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
   1426     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
   1427     operatorDeleteCleanup = EHStack.stable_begin();
   1428     cleanupDominator = Builder.CreateUnreachable();
   1429   }
   1430 
   1431   assert((allocSize == allocSizeWithoutCookie) ==
   1432          CalculateCookiePadding(*this, E).isZero());
   1433   if (allocSize != allocSizeWithoutCookie) {
   1434     assert(E->isArray());
   1435     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
   1436                                                        numElements,
   1437                                                        E, allocType);
   1438   }
   1439 
   1440   llvm::Type *elementTy = ConvertTypeForMem(allocType);
   1441   Address result = Builder.CreateElementBitCast(allocation, elementTy);
   1442 
   1443   // Passing pointer through invariant.group.barrier to avoid propagation of
   1444   // vptrs information which may be included in previous type.
   1445   if (CGM.getCodeGenOpts().StrictVTablePointers &&
   1446       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
   1447       allocator->isReservedGlobalPlacementOperator())
   1448     result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
   1449                      result.getAlignment());
   1450 
   1451   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
   1452                      allocSizeWithoutCookie);
   1453   if (E->isArray()) {
   1454     // NewPtr is a pointer to the base element type.  If we're
   1455     // allocating an array of arrays, we'll need to cast back to the
   1456     // array pointer type.
   1457     llvm::Type *resultType = ConvertTypeForMem(E->getType());
   1458     if (result.getType() != resultType)
   1459       result = Builder.CreateBitCast(result, resultType);
   1460   }
   1461 
   1462   // Deactivate the 'operator delete' cleanup if we finished
   1463   // initialization.
   1464   if (operatorDeleteCleanup.isValid()) {
   1465     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
   1466     cleanupDominator->eraseFromParent();
   1467   }
   1468 
   1469   llvm::Value *resultPtr = result.getPointer();
   1470   if (nullCheck) {
   1471     conditional.end(*this);
   1472 
   1473     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
   1474     EmitBlock(contBB);
   1475 
   1476     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
   1477     PHI->addIncoming(resultPtr, notNullBB);
   1478     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
   1479                      nullCheckBB);
   1480 
   1481     resultPtr = PHI;
   1482   }
   1483 
   1484   return resultPtr;
   1485 }
   1486 
   1487 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
   1488                                      llvm::Value *Ptr,
   1489                                      QualType DeleteTy) {
   1490   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
   1491 
   1492   const FunctionProtoType *DeleteFTy =
   1493     DeleteFD->getType()->getAs<FunctionProtoType>();
   1494 
   1495   CallArgList DeleteArgs;
   1496 
   1497   // Check if we need to pass the size to the delete operator.
   1498   llvm::Value *Size = nullptr;
   1499   QualType SizeTy;
   1500   if (DeleteFTy->getNumParams() == 2) {
   1501     SizeTy = DeleteFTy->getParamType(1);
   1502     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
   1503     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
   1504                                   DeleteTypeSize.getQuantity());
   1505   }
   1506 
   1507   QualType ArgTy = DeleteFTy->getParamType(0);
   1508   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
   1509   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
   1510 
   1511   if (Size)
   1512     DeleteArgs.add(RValue::get(Size), SizeTy);
   1513 
   1514   // Emit the call to delete.
   1515   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
   1516 }
   1517 
   1518 namespace {
   1519   /// Calls the given 'operator delete' on a single object.
   1520   struct CallObjectDelete final : EHScopeStack::Cleanup {
   1521     llvm::Value *Ptr;
   1522     const FunctionDecl *OperatorDelete;
   1523     QualType ElementType;
   1524 
   1525     CallObjectDelete(llvm::Value *Ptr,
   1526                      const FunctionDecl *OperatorDelete,
   1527                      QualType ElementType)
   1528       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
   1529 
   1530     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1531       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
   1532     }
   1533   };
   1534 }
   1535 
   1536 void
   1537 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
   1538                                              llvm::Value *CompletePtr,
   1539                                              QualType ElementType) {
   1540   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
   1541                                         OperatorDelete, ElementType);
   1542 }
   1543 
   1544 /// Emit the code for deleting a single object.
   1545 static void EmitObjectDelete(CodeGenFunction &CGF,
   1546                              const CXXDeleteExpr *DE,
   1547                              Address Ptr,
   1548                              QualType ElementType) {
   1549   // Find the destructor for the type, if applicable.  If the
   1550   // destructor is virtual, we'll just emit the vcall and return.
   1551   const CXXDestructorDecl *Dtor = nullptr;
   1552   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
   1553     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1554     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
   1555       Dtor = RD->getDestructor();
   1556 
   1557       if (Dtor->isVirtual()) {
   1558         CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
   1559                                                     Dtor);
   1560         return;
   1561       }
   1562     }
   1563   }
   1564 
   1565   // Make sure that we call delete even if the dtor throws.
   1566   // This doesn't have to a conditional cleanup because we're going
   1567   // to pop it off in a second.
   1568   const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
   1569   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
   1570                                             Ptr.getPointer(),
   1571                                             OperatorDelete, ElementType);
   1572 
   1573   if (Dtor)
   1574     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
   1575                               /*ForVirtualBase=*/false,
   1576                               /*Delegating=*/false,
   1577                               Ptr);
   1578   else if (auto Lifetime = ElementType.getObjCLifetime()) {
   1579     switch (Lifetime) {
   1580     case Qualifiers::OCL_None:
   1581     case Qualifiers::OCL_ExplicitNone:
   1582     case Qualifiers::OCL_Autoreleasing:
   1583       break;
   1584 
   1585     case Qualifiers::OCL_Strong:
   1586       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
   1587       break;
   1588 
   1589     case Qualifiers::OCL_Weak:
   1590       CGF.EmitARCDestroyWeak(Ptr);
   1591       break;
   1592     }
   1593   }
   1594 
   1595   CGF.PopCleanupBlock();
   1596 }
   1597 
   1598 namespace {
   1599   /// Calls the given 'operator delete' on an array of objects.
   1600   struct CallArrayDelete final : EHScopeStack::Cleanup {
   1601     llvm::Value *Ptr;
   1602     const FunctionDecl *OperatorDelete;
   1603     llvm::Value *NumElements;
   1604     QualType ElementType;
   1605     CharUnits CookieSize;
   1606 
   1607     CallArrayDelete(llvm::Value *Ptr,
   1608                     const FunctionDecl *OperatorDelete,
   1609                     llvm::Value *NumElements,
   1610                     QualType ElementType,
   1611                     CharUnits CookieSize)
   1612       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
   1613         ElementType(ElementType), CookieSize(CookieSize) {}
   1614 
   1615     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1616       const FunctionProtoType *DeleteFTy =
   1617         OperatorDelete->getType()->getAs<FunctionProtoType>();
   1618       assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
   1619 
   1620       CallArgList Args;
   1621 
   1622       // Pass the pointer as the first argument.
   1623       QualType VoidPtrTy = DeleteFTy->getParamType(0);
   1624       llvm::Value *DeletePtr
   1625         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
   1626       Args.add(RValue::get(DeletePtr), VoidPtrTy);
   1627 
   1628       // Pass the original requested size as the second argument.
   1629       if (DeleteFTy->getNumParams() == 2) {
   1630         QualType size_t = DeleteFTy->getParamType(1);
   1631         llvm::IntegerType *SizeTy
   1632           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
   1633 
   1634         CharUnits ElementTypeSize =
   1635           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
   1636 
   1637         // The size of an element, multiplied by the number of elements.
   1638         llvm::Value *Size
   1639           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
   1640         if (NumElements)
   1641           Size = CGF.Builder.CreateMul(Size, NumElements);
   1642 
   1643         // Plus the size of the cookie if applicable.
   1644         if (!CookieSize.isZero()) {
   1645           llvm::Value *CookieSizeV
   1646             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
   1647           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
   1648         }
   1649 
   1650         Args.add(RValue::get(Size), size_t);
   1651       }
   1652 
   1653       // Emit the call to delete.
   1654       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
   1655     }
   1656   };
   1657 }
   1658 
   1659 /// Emit the code for deleting an array of objects.
   1660 static void EmitArrayDelete(CodeGenFunction &CGF,
   1661                             const CXXDeleteExpr *E,
   1662                             Address deletedPtr,
   1663                             QualType elementType) {
   1664   llvm::Value *numElements = nullptr;
   1665   llvm::Value *allocatedPtr = nullptr;
   1666   CharUnits cookieSize;
   1667   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
   1668                                       numElements, allocatedPtr, cookieSize);
   1669 
   1670   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
   1671 
   1672   // Make sure that we call delete even if one of the dtors throws.
   1673   const FunctionDecl *operatorDelete = E->getOperatorDelete();
   1674   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
   1675                                            allocatedPtr, operatorDelete,
   1676                                            numElements, elementType,
   1677                                            cookieSize);
   1678 
   1679   // Destroy the elements.
   1680   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
   1681     assert(numElements && "no element count for a type with a destructor!");
   1682 
   1683     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
   1684     CharUnits elementAlign =
   1685       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
   1686 
   1687     llvm::Value *arrayBegin = deletedPtr.getPointer();
   1688     llvm::Value *arrayEnd =
   1689       CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
   1690 
   1691     // Note that it is legal to allocate a zero-length array, and we
   1692     // can never fold the check away because the length should always
   1693     // come from a cookie.
   1694     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
   1695                          CGF.getDestroyer(dtorKind),
   1696                          /*checkZeroLength*/ true,
   1697                          CGF.needsEHCleanup(dtorKind));
   1698   }
   1699 
   1700   // Pop the cleanup block.
   1701   CGF.PopCleanupBlock();
   1702 }
   1703 
   1704 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
   1705   const Expr *Arg = E->getArgument();
   1706   Address Ptr = EmitPointerWithAlignment(Arg);
   1707 
   1708   // Null check the pointer.
   1709   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
   1710   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
   1711 
   1712   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
   1713 
   1714   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
   1715   EmitBlock(DeleteNotNull);
   1716 
   1717   // We might be deleting a pointer to array.  If so, GEP down to the
   1718   // first non-array element.
   1719   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
   1720   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
   1721   if (DeleteTy->isConstantArrayType()) {
   1722     llvm::Value *Zero = Builder.getInt32(0);
   1723     SmallVector<llvm::Value*,8> GEP;
   1724 
   1725     GEP.push_back(Zero); // point at the outermost array
   1726 
   1727     // For each layer of array type we're pointing at:
   1728     while (const ConstantArrayType *Arr
   1729              = getContext().getAsConstantArrayType(DeleteTy)) {
   1730       // 1. Unpeel the array type.
   1731       DeleteTy = Arr->getElementType();
   1732 
   1733       // 2. GEP to the first element of the array.
   1734       GEP.push_back(Zero);
   1735     }
   1736 
   1737     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
   1738                   Ptr.getAlignment());
   1739   }
   1740 
   1741   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
   1742 
   1743   if (E->isArrayForm()) {
   1744     EmitArrayDelete(*this, E, Ptr, DeleteTy);
   1745   } else {
   1746     EmitObjectDelete(*this, E, Ptr, DeleteTy);
   1747   }
   1748 
   1749   EmitBlock(DeleteEnd);
   1750 }
   1751 
   1752 static bool isGLValueFromPointerDeref(const Expr *E) {
   1753   E = E->IgnoreParens();
   1754 
   1755   if (const auto *CE = dyn_cast<CastExpr>(E)) {
   1756     if (!CE->getSubExpr()->isGLValue())
   1757       return false;
   1758     return isGLValueFromPointerDeref(CE->getSubExpr());
   1759   }
   1760 
   1761   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
   1762     return isGLValueFromPointerDeref(OVE->getSourceExpr());
   1763 
   1764   if (const auto *BO = dyn_cast<BinaryOperator>(E))
   1765     if (BO->getOpcode() == BO_Comma)
   1766       return isGLValueFromPointerDeref(BO->getRHS());
   1767 
   1768   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
   1769     return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
   1770            isGLValueFromPointerDeref(ACO->getFalseExpr());
   1771 
   1772   // C++11 [expr.sub]p1:
   1773   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2))
   1774   if (isa<ArraySubscriptExpr>(E))
   1775     return true;
   1776 
   1777   if (const auto *UO = dyn_cast<UnaryOperator>(E))
   1778     if (UO->getOpcode() == UO_Deref)
   1779       return true;
   1780 
   1781   return false;
   1782 }
   1783 
   1784 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
   1785                                          llvm::Type *StdTypeInfoPtrTy) {
   1786   // Get the vtable pointer.
   1787   Address ThisPtr = CGF.EmitLValue(E).getAddress();
   1788 
   1789   // C++ [expr.typeid]p2:
   1790   //   If the glvalue expression is obtained by applying the unary * operator to
   1791   //   a pointer and the pointer is a null pointer value, the typeid expression
   1792   //   throws the std::bad_typeid exception.
   1793   //
   1794   // However, this paragraph's intent is not clear.  We choose a very generous
   1795   // interpretation which implores us to consider comma operators, conditional
   1796   // operators, parentheses and other such constructs.
   1797   QualType SrcRecordTy = E->getType();
   1798   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
   1799           isGLValueFromPointerDeref(E), SrcRecordTy)) {
   1800     llvm::BasicBlock *BadTypeidBlock =
   1801         CGF.createBasicBlock("typeid.bad_typeid");
   1802     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
   1803 
   1804     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
   1805     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
   1806 
   1807     CGF.EmitBlock(BadTypeidBlock);
   1808     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
   1809     CGF.EmitBlock(EndBlock);
   1810   }
   1811 
   1812   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
   1813                                         StdTypeInfoPtrTy);
   1814 }
   1815 
   1816 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
   1817   llvm::Type *StdTypeInfoPtrTy =
   1818     ConvertType(E->getType())->getPointerTo();
   1819 
   1820   if (E->isTypeOperand()) {
   1821     llvm::Constant *TypeInfo =
   1822         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
   1823     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
   1824   }
   1825 
   1826   // C++ [expr.typeid]p2:
   1827   //   When typeid is applied to a glvalue expression whose type is a
   1828   //   polymorphic class type, the result refers to a std::type_info object
   1829   //   representing the type of the most derived object (that is, the dynamic
   1830   //   type) to which the glvalue refers.
   1831   if (E->isPotentiallyEvaluated())
   1832     return EmitTypeidFromVTable(*this, E->getExprOperand(),
   1833                                 StdTypeInfoPtrTy);
   1834 
   1835   QualType OperandTy = E->getExprOperand()->getType();
   1836   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
   1837                                StdTypeInfoPtrTy);
   1838 }
   1839 
   1840 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
   1841                                           QualType DestTy) {
   1842   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
   1843   if (DestTy->isPointerType())
   1844     return llvm::Constant::getNullValue(DestLTy);
   1845 
   1846   /// C++ [expr.dynamic.cast]p9:
   1847   ///   A failed cast to reference type throws std::bad_cast
   1848   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
   1849     return nullptr;
   1850 
   1851   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
   1852   return llvm::UndefValue::get(DestLTy);
   1853 }
   1854 
   1855 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
   1856                                               const CXXDynamicCastExpr *DCE) {
   1857   CGM.EmitExplicitCastExprType(DCE, this);
   1858   QualType DestTy = DCE->getTypeAsWritten();
   1859 
   1860   if (DCE->isAlwaysNull())
   1861     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
   1862       return T;
   1863 
   1864   QualType SrcTy = DCE->getSubExpr()->getType();
   1865 
   1866   // C++ [expr.dynamic.cast]p7:
   1867   //   If T is "pointer to cv void," then the result is a pointer to the most
   1868   //   derived object pointed to by v.
   1869   const PointerType *DestPTy = DestTy->getAs<PointerType>();
   1870 
   1871   bool isDynamicCastToVoid;
   1872   QualType SrcRecordTy;
   1873   QualType DestRecordTy;
   1874   if (DestPTy) {
   1875     isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
   1876     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
   1877     DestRecordTy = DestPTy->getPointeeType();
   1878   } else {
   1879     isDynamicCastToVoid = false;
   1880     SrcRecordTy = SrcTy;
   1881     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
   1882   }
   1883 
   1884   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
   1885 
   1886   // C++ [expr.dynamic.cast]p4:
   1887   //   If the value of v is a null pointer value in the pointer case, the result
   1888   //   is the null pointer value of type T.
   1889   bool ShouldNullCheckSrcValue =
   1890       CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
   1891                                                          SrcRecordTy);
   1892 
   1893   llvm::BasicBlock *CastNull = nullptr;
   1894   llvm::BasicBlock *CastNotNull = nullptr;
   1895   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
   1896 
   1897   if (ShouldNullCheckSrcValue) {
   1898     CastNull = createBasicBlock("dynamic_cast.null");
   1899     CastNotNull = createBasicBlock("dynamic_cast.notnull");
   1900 
   1901     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
   1902     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
   1903     EmitBlock(CastNotNull);
   1904   }
   1905 
   1906   llvm::Value *Value;
   1907   if (isDynamicCastToVoid) {
   1908     Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
   1909                                                   DestTy);
   1910   } else {
   1911     assert(DestRecordTy->isRecordType() &&
   1912            "destination type must be a record type!");
   1913     Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
   1914                                                 DestTy, DestRecordTy, CastEnd);
   1915     CastNotNull = Builder.GetInsertBlock();
   1916   }
   1917 
   1918   if (ShouldNullCheckSrcValue) {
   1919     EmitBranch(CastEnd);
   1920 
   1921     EmitBlock(CastNull);
   1922     EmitBranch(CastEnd);
   1923   }
   1924 
   1925   EmitBlock(CastEnd);
   1926 
   1927   if (ShouldNullCheckSrcValue) {
   1928     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
   1929     PHI->addIncoming(Value, CastNotNull);
   1930     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
   1931 
   1932     Value = PHI;
   1933   }
   1934 
   1935   return Value;
   1936 }
   1937 
   1938 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
   1939   RunCleanupsScope Scope(*this);
   1940   LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
   1941 
   1942   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
   1943   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
   1944                                                e = E->capture_init_end();
   1945        i != e; ++i, ++CurField) {
   1946     // Emit initialization
   1947     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
   1948     if (CurField->hasCapturedVLAType()) {
   1949       auto VAT = CurField->getCapturedVLAType();
   1950       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
   1951     } else {
   1952       ArrayRef<VarDecl *> ArrayIndexes;
   1953       if (CurField->getType()->isArrayType())
   1954         ArrayIndexes = E->getCaptureInitIndexVars(i);
   1955       EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
   1956     }
   1957   }
   1958 }
   1959