1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Operator.h" 37 using namespace clang; 38 using namespace CodeGen; 39 40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 41 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 42 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 43 CGBuilderInserterTy(this)), 44 CurFn(nullptr), ReturnValue(Address::invalid()), 45 CapturedStmtInfo(nullptr), 46 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 47 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 48 IsOutlinedSEHHelper(false), 49 BlockInfo(nullptr), BlockPointer(nullptr), 50 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 51 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 52 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 53 DebugInfo(CGM.getModuleDebugInfo()), 54 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 55 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 56 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 57 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 58 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 59 CXXStructorImplicitParamDecl(nullptr), 60 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 61 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 62 TerminateHandler(nullptr), TrapBB(nullptr) { 63 if (!suppressNewContext) 64 CGM.getCXXABI().getMangleContext().startNewFunction(); 65 66 llvm::FastMathFlags FMF; 67 if (CGM.getLangOpts().FastMath) 68 FMF.setUnsafeAlgebra(); 69 if (CGM.getLangOpts().FiniteMathOnly) { 70 FMF.setNoNaNs(); 71 FMF.setNoInfs(); 72 } 73 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 74 FMF.setNoNaNs(); 75 } 76 if (CGM.getCodeGenOpts().NoSignedZeros) { 77 FMF.setNoSignedZeros(); 78 } 79 if (CGM.getCodeGenOpts().ReciprocalMath) { 80 FMF.setAllowReciprocal(); 81 } 82 Builder.setFastMathFlags(FMF); 83 } 84 85 CodeGenFunction::~CodeGenFunction() { 86 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 87 88 // If there are any unclaimed block infos, go ahead and destroy them 89 // now. This can happen if IR-gen gets clever and skips evaluating 90 // something. 91 if (FirstBlockInfo) 92 destroyBlockInfos(FirstBlockInfo); 93 94 if (getLangOpts().OpenMP) { 95 CGM.getOpenMPRuntime().functionFinished(*this); 96 } 97 } 98 99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 100 AlignmentSource *Source) { 101 return getNaturalTypeAlignment(T->getPointeeType(), Source, 102 /*forPointee*/ true); 103 } 104 105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 106 AlignmentSource *Source, 107 bool forPointeeType) { 108 // Honor alignment typedef attributes even on incomplete types. 109 // We also honor them straight for C++ class types, even as pointees; 110 // there's an expressivity gap here. 111 if (auto TT = T->getAs<TypedefType>()) { 112 if (auto Align = TT->getDecl()->getMaxAlignment()) { 113 if (Source) *Source = AlignmentSource::AttributedType; 114 return getContext().toCharUnitsFromBits(Align); 115 } 116 } 117 118 if (Source) *Source = AlignmentSource::Type; 119 120 CharUnits Alignment; 121 if (T->isIncompleteType()) { 122 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 123 } else { 124 // For C++ class pointees, we don't know whether we're pointing at a 125 // base or a complete object, so we generally need to use the 126 // non-virtual alignment. 127 const CXXRecordDecl *RD; 128 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 129 Alignment = CGM.getClassPointerAlignment(RD); 130 } else { 131 Alignment = getContext().getTypeAlignInChars(T); 132 } 133 134 // Cap to the global maximum type alignment unless the alignment 135 // was somehow explicit on the type. 136 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 137 if (Alignment.getQuantity() > MaxAlign && 138 !getContext().isAlignmentRequired(T)) 139 Alignment = CharUnits::fromQuantity(MaxAlign); 140 } 141 } 142 return Alignment; 143 } 144 145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 146 AlignmentSource AlignSource; 147 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 148 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 149 CGM.getTBAAInfo(T)); 150 } 151 152 /// Given a value of type T* that may not be to a complete object, 153 /// construct an l-value with the natural pointee alignment of T. 154 LValue 155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 156 AlignmentSource AlignSource; 157 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 158 return MakeAddrLValue(Address(V, Align), T, AlignSource); 159 } 160 161 162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 163 return CGM.getTypes().ConvertTypeForMem(T); 164 } 165 166 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 167 return CGM.getTypes().ConvertType(T); 168 } 169 170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 171 type = type.getCanonicalType(); 172 while (true) { 173 switch (type->getTypeClass()) { 174 #define TYPE(name, parent) 175 #define ABSTRACT_TYPE(name, parent) 176 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 177 #define DEPENDENT_TYPE(name, parent) case Type::name: 178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 179 #include "clang/AST/TypeNodes.def" 180 llvm_unreachable("non-canonical or dependent type in IR-generation"); 181 182 case Type::Auto: 183 llvm_unreachable("undeduced auto type in IR-generation"); 184 185 // Various scalar types. 186 case Type::Builtin: 187 case Type::Pointer: 188 case Type::BlockPointer: 189 case Type::LValueReference: 190 case Type::RValueReference: 191 case Type::MemberPointer: 192 case Type::Vector: 193 case Type::ExtVector: 194 case Type::FunctionProto: 195 case Type::FunctionNoProto: 196 case Type::Enum: 197 case Type::ObjCObjectPointer: 198 case Type::Pipe: 199 return TEK_Scalar; 200 201 // Complexes. 202 case Type::Complex: 203 return TEK_Complex; 204 205 // Arrays, records, and Objective-C objects. 206 case Type::ConstantArray: 207 case Type::IncompleteArray: 208 case Type::VariableArray: 209 case Type::Record: 210 case Type::ObjCObject: 211 case Type::ObjCInterface: 212 return TEK_Aggregate; 213 214 // We operate on atomic values according to their underlying type. 215 case Type::Atomic: 216 type = cast<AtomicType>(type)->getValueType(); 217 continue; 218 } 219 llvm_unreachable("unknown type kind!"); 220 } 221 } 222 223 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 224 // For cleanliness, we try to avoid emitting the return block for 225 // simple cases. 226 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 227 228 if (CurBB) { 229 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 230 231 // We have a valid insert point, reuse it if it is empty or there are no 232 // explicit jumps to the return block. 233 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 234 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 235 delete ReturnBlock.getBlock(); 236 } else 237 EmitBlock(ReturnBlock.getBlock()); 238 return llvm::DebugLoc(); 239 } 240 241 // Otherwise, if the return block is the target of a single direct 242 // branch then we can just put the code in that block instead. This 243 // cleans up functions which started with a unified return block. 244 if (ReturnBlock.getBlock()->hasOneUse()) { 245 llvm::BranchInst *BI = 246 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 247 if (BI && BI->isUnconditional() && 248 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 249 // Record/return the DebugLoc of the simple 'return' expression to be used 250 // later by the actual 'ret' instruction. 251 llvm::DebugLoc Loc = BI->getDebugLoc(); 252 Builder.SetInsertPoint(BI->getParent()); 253 BI->eraseFromParent(); 254 delete ReturnBlock.getBlock(); 255 return Loc; 256 } 257 } 258 259 // FIXME: We are at an unreachable point, there is no reason to emit the block 260 // unless it has uses. However, we still need a place to put the debug 261 // region.end for now. 262 263 EmitBlock(ReturnBlock.getBlock()); 264 return llvm::DebugLoc(); 265 } 266 267 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 268 if (!BB) return; 269 if (!BB->use_empty()) 270 return CGF.CurFn->getBasicBlockList().push_back(BB); 271 delete BB; 272 } 273 274 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 275 assert(BreakContinueStack.empty() && 276 "mismatched push/pop in break/continue stack!"); 277 278 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 279 && NumSimpleReturnExprs == NumReturnExprs 280 && ReturnBlock.getBlock()->use_empty(); 281 // Usually the return expression is evaluated before the cleanup 282 // code. If the function contains only a simple return statement, 283 // such as a constant, the location before the cleanup code becomes 284 // the last useful breakpoint in the function, because the simple 285 // return expression will be evaluated after the cleanup code. To be 286 // safe, set the debug location for cleanup code to the location of 287 // the return statement. Otherwise the cleanup code should be at the 288 // end of the function's lexical scope. 289 // 290 // If there are multiple branches to the return block, the branch 291 // instructions will get the location of the return statements and 292 // all will be fine. 293 if (CGDebugInfo *DI = getDebugInfo()) { 294 if (OnlySimpleReturnStmts) 295 DI->EmitLocation(Builder, LastStopPoint); 296 else 297 DI->EmitLocation(Builder, EndLoc); 298 } 299 300 // Pop any cleanups that might have been associated with the 301 // parameters. Do this in whatever block we're currently in; it's 302 // important to do this before we enter the return block or return 303 // edges will be *really* confused. 304 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 305 bool HasOnlyLifetimeMarkers = 306 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 307 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 308 if (HasCleanups) { 309 // Make sure the line table doesn't jump back into the body for 310 // the ret after it's been at EndLoc. 311 if (CGDebugInfo *DI = getDebugInfo()) 312 if (OnlySimpleReturnStmts) 313 DI->EmitLocation(Builder, EndLoc); 314 315 PopCleanupBlocks(PrologueCleanupDepth); 316 } 317 318 // Emit function epilog (to return). 319 llvm::DebugLoc Loc = EmitReturnBlock(); 320 321 if (ShouldInstrumentFunction()) 322 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 323 324 // Emit debug descriptor for function end. 325 if (CGDebugInfo *DI = getDebugInfo()) 326 DI->EmitFunctionEnd(Builder); 327 328 // Reset the debug location to that of the simple 'return' expression, if any 329 // rather than that of the end of the function's scope '}'. 330 ApplyDebugLocation AL(*this, Loc); 331 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 332 EmitEndEHSpec(CurCodeDecl); 333 334 assert(EHStack.empty() && 335 "did not remove all scopes from cleanup stack!"); 336 337 // If someone did an indirect goto, emit the indirect goto block at the end of 338 // the function. 339 if (IndirectBranch) { 340 EmitBlock(IndirectBranch->getParent()); 341 Builder.ClearInsertionPoint(); 342 } 343 344 // If some of our locals escaped, insert a call to llvm.localescape in the 345 // entry block. 346 if (!EscapedLocals.empty()) { 347 // Invert the map from local to index into a simple vector. There should be 348 // no holes. 349 SmallVector<llvm::Value *, 4> EscapeArgs; 350 EscapeArgs.resize(EscapedLocals.size()); 351 for (auto &Pair : EscapedLocals) 352 EscapeArgs[Pair.second] = Pair.first; 353 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 354 &CGM.getModule(), llvm::Intrinsic::localescape); 355 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 356 } 357 358 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 359 llvm::Instruction *Ptr = AllocaInsertPt; 360 AllocaInsertPt = nullptr; 361 Ptr->eraseFromParent(); 362 363 // If someone took the address of a label but never did an indirect goto, we 364 // made a zero entry PHI node, which is illegal, zap it now. 365 if (IndirectBranch) { 366 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 367 if (PN->getNumIncomingValues() == 0) { 368 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 369 PN->eraseFromParent(); 370 } 371 } 372 373 EmitIfUsed(*this, EHResumeBlock); 374 EmitIfUsed(*this, TerminateLandingPad); 375 EmitIfUsed(*this, TerminateHandler); 376 EmitIfUsed(*this, UnreachableBlock); 377 378 if (CGM.getCodeGenOpts().EmitDeclMetadata) 379 EmitDeclMetadata(); 380 381 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 382 I = DeferredReplacements.begin(), 383 E = DeferredReplacements.end(); 384 I != E; ++I) { 385 I->first->replaceAllUsesWith(I->second); 386 I->first->eraseFromParent(); 387 } 388 } 389 390 /// ShouldInstrumentFunction - Return true if the current function should be 391 /// instrumented with __cyg_profile_func_* calls 392 bool CodeGenFunction::ShouldInstrumentFunction() { 393 if (!CGM.getCodeGenOpts().InstrumentFunctions) 394 return false; 395 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 396 return false; 397 return true; 398 } 399 400 /// ShouldXRayInstrument - Return true if the current function should be 401 /// instrumented with XRay nop sleds. 402 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 403 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 404 } 405 406 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 407 /// instrumentation function with the current function and the call site, if 408 /// function instrumentation is enabled. 409 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 410 auto NL = ApplyDebugLocation::CreateArtificial(*this); 411 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 412 llvm::PointerType *PointerTy = Int8PtrTy; 413 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 414 llvm::FunctionType *FunctionTy = 415 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 416 417 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 418 llvm::CallInst *CallSite = Builder.CreateCall( 419 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 420 llvm::ConstantInt::get(Int32Ty, 0), 421 "callsite"); 422 423 llvm::Value *args[] = { 424 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 425 CallSite 426 }; 427 428 EmitNounwindRuntimeCall(F, args); 429 } 430 431 void CodeGenFunction::EmitMCountInstrumentation() { 432 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 433 434 llvm::Constant *MCountFn = 435 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 436 EmitNounwindRuntimeCall(MCountFn); 437 } 438 439 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 440 // information in the program executable. The argument information stored 441 // includes the argument name, its type, the address and access qualifiers used. 442 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 443 CodeGenModule &CGM, llvm::LLVMContext &Context, 444 CGBuilderTy &Builder, ASTContext &ASTCtx) { 445 // Create MDNodes that represent the kernel arg metadata. 446 // Each MDNode is a list in the form of "key", N number of values which is 447 // the same number of values as their are kernel arguments. 448 449 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 450 451 // MDNode for the kernel argument address space qualifiers. 452 SmallVector<llvm::Metadata *, 8> addressQuals; 453 454 // MDNode for the kernel argument access qualifiers (images only). 455 SmallVector<llvm::Metadata *, 8> accessQuals; 456 457 // MDNode for the kernel argument type names. 458 SmallVector<llvm::Metadata *, 8> argTypeNames; 459 460 // MDNode for the kernel argument base type names. 461 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 462 463 // MDNode for the kernel argument type qualifiers. 464 SmallVector<llvm::Metadata *, 8> argTypeQuals; 465 466 // MDNode for the kernel argument names. 467 SmallVector<llvm::Metadata *, 8> argNames; 468 469 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 470 const ParmVarDecl *parm = FD->getParamDecl(i); 471 QualType ty = parm->getType(); 472 std::string typeQuals; 473 474 if (ty->isPointerType()) { 475 QualType pointeeTy = ty->getPointeeType(); 476 477 // Get address qualifier. 478 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 479 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace())))); 480 481 // Get argument type name. 482 std::string typeName = 483 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 484 485 // Turn "unsigned type" to "utype" 486 std::string::size_type pos = typeName.find("unsigned"); 487 if (pointeeTy.isCanonical() && pos != std::string::npos) 488 typeName.erase(pos+1, 8); 489 490 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 491 492 std::string baseTypeName = 493 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 494 Policy) + 495 "*"; 496 497 // Turn "unsigned type" to "utype" 498 pos = baseTypeName.find("unsigned"); 499 if (pos != std::string::npos) 500 baseTypeName.erase(pos+1, 8); 501 502 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 503 504 // Get argument type qualifiers: 505 if (ty.isRestrictQualified()) 506 typeQuals = "restrict"; 507 if (pointeeTy.isConstQualified() || 508 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 509 typeQuals += typeQuals.empty() ? "const" : " const"; 510 if (pointeeTy.isVolatileQualified()) 511 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 512 } else { 513 uint32_t AddrSpc = 0; 514 bool isPipe = ty->isPipeType(); 515 if (ty->isImageType() || isPipe) 516 AddrSpc = 517 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 518 519 addressQuals.push_back( 520 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 521 522 // Get argument type name. 523 std::string typeName; 524 if (isPipe) 525 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 526 .getAsString(Policy); 527 else 528 typeName = ty.getUnqualifiedType().getAsString(Policy); 529 530 // Turn "unsigned type" to "utype" 531 std::string::size_type pos = typeName.find("unsigned"); 532 if (ty.isCanonical() && pos != std::string::npos) 533 typeName.erase(pos+1, 8); 534 535 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 536 537 std::string baseTypeName; 538 if (isPipe) 539 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 540 ->getElementType().getCanonicalType() 541 .getAsString(Policy); 542 else 543 baseTypeName = 544 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 545 546 // Turn "unsigned type" to "utype" 547 pos = baseTypeName.find("unsigned"); 548 if (pos != std::string::npos) 549 baseTypeName.erase(pos+1, 8); 550 551 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 552 553 // Get argument type qualifiers: 554 if (ty.isConstQualified()) 555 typeQuals = "const"; 556 if (ty.isVolatileQualified()) 557 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 558 if (isPipe) 559 typeQuals = "pipe"; 560 } 561 562 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 563 564 // Get image and pipe access qualifier: 565 if (ty->isImageType()|| ty->isPipeType()) { 566 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 567 if (A && A->isWriteOnly()) 568 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 569 else if (A && A->isReadWrite()) 570 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 571 else 572 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 573 } else 574 accessQuals.push_back(llvm::MDString::get(Context, "none")); 575 576 // Get argument name. 577 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 578 } 579 580 Fn->setMetadata("kernel_arg_addr_space", 581 llvm::MDNode::get(Context, addressQuals)); 582 Fn->setMetadata("kernel_arg_access_qual", 583 llvm::MDNode::get(Context, accessQuals)); 584 Fn->setMetadata("kernel_arg_type", 585 llvm::MDNode::get(Context, argTypeNames)); 586 Fn->setMetadata("kernel_arg_base_type", 587 llvm::MDNode::get(Context, argBaseTypeNames)); 588 Fn->setMetadata("kernel_arg_type_qual", 589 llvm::MDNode::get(Context, argTypeQuals)); 590 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 591 Fn->setMetadata("kernel_arg_name", 592 llvm::MDNode::get(Context, argNames)); 593 } 594 595 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 596 llvm::Function *Fn) 597 { 598 if (!FD->hasAttr<OpenCLKernelAttr>()) 599 return; 600 601 llvm::LLVMContext &Context = getLLVMContext(); 602 603 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 604 605 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 606 QualType hintQTy = A->getTypeHint(); 607 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 608 bool isSignedInteger = 609 hintQTy->isSignedIntegerType() || 610 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 611 llvm::Metadata *attrMDArgs[] = { 612 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 613 CGM.getTypes().ConvertType(A->getTypeHint()))), 614 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 615 llvm::IntegerType::get(Context, 32), 616 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 617 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 618 } 619 620 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 621 llvm::Metadata *attrMDArgs[] = { 622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 624 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 625 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 626 } 627 628 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 629 llvm::Metadata *attrMDArgs[] = { 630 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 631 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 632 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 633 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 634 } 635 } 636 637 /// Determine whether the function F ends with a return stmt. 638 static bool endsWithReturn(const Decl* F) { 639 const Stmt *Body = nullptr; 640 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 641 Body = FD->getBody(); 642 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 643 Body = OMD->getBody(); 644 645 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 646 auto LastStmt = CS->body_rbegin(); 647 if (LastStmt != CS->body_rend()) 648 return isa<ReturnStmt>(*LastStmt); 649 } 650 return false; 651 } 652 653 void CodeGenFunction::StartFunction(GlobalDecl GD, 654 QualType RetTy, 655 llvm::Function *Fn, 656 const CGFunctionInfo &FnInfo, 657 const FunctionArgList &Args, 658 SourceLocation Loc, 659 SourceLocation StartLoc) { 660 assert(!CurFn && 661 "Do not use a CodeGenFunction object for more than one function"); 662 663 const Decl *D = GD.getDecl(); 664 665 DidCallStackSave = false; 666 CurCodeDecl = D; 667 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 668 if (FD->usesSEHTry()) 669 CurSEHParent = FD; 670 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 671 FnRetTy = RetTy; 672 CurFn = Fn; 673 CurFnInfo = &FnInfo; 674 assert(CurFn->isDeclaration() && "Function already has body?"); 675 676 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 677 SanOpts.clear(); 678 679 if (D) { 680 // Apply the no_sanitize* attributes to SanOpts. 681 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 682 SanOpts.Mask &= ~Attr->getMask(); 683 } 684 685 // Apply sanitizer attributes to the function. 686 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 687 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 688 if (SanOpts.has(SanitizerKind::Thread)) 689 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 690 if (SanOpts.has(SanitizerKind::Memory)) 691 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 692 if (SanOpts.has(SanitizerKind::SafeStack)) 693 Fn->addFnAttr(llvm::Attribute::SafeStack); 694 695 // Apply xray attributes to the function (as a string, for now) 696 if (D && ShouldXRayInstrumentFunction()) { 697 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 698 if (XRayAttr->alwaysXRayInstrument()) 699 Fn->addFnAttr("function-instrument", "xray-always"); 700 if (XRayAttr->neverXRayInstrument()) 701 Fn->addFnAttr("function-instrument", "xray-never"); 702 } else { 703 Fn->addFnAttr( 704 "xray-instruction-threshold", 705 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 706 } 707 } 708 709 // Pass inline keyword to optimizer if it appears explicitly on any 710 // declaration. Also, in the case of -fno-inline attach NoInline 711 // attribute to all functions that are not marked AlwaysInline, or 712 // to all functions that are not marked inline or implicitly inline 713 // in the case of -finline-hint-functions. 714 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 715 const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts(); 716 if (!CodeGenOpts.NoInline) { 717 for (auto RI : FD->redecls()) 718 if (RI->isInlineSpecified()) { 719 Fn->addFnAttr(llvm::Attribute::InlineHint); 720 break; 721 } 722 if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining && 723 !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint)) 724 Fn->addFnAttr(llvm::Attribute::NoInline); 725 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 726 Fn->addFnAttr(llvm::Attribute::NoInline); 727 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 728 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 729 } 730 731 // Add no-jump-tables value. 732 Fn->addFnAttr("no-jump-tables", 733 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 734 735 if (getLangOpts().OpenCL) { 736 // Add metadata for a kernel function. 737 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 738 EmitOpenCLKernelMetadata(FD, Fn); 739 } 740 741 // If we are checking function types, emit a function type signature as 742 // prologue data. 743 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 744 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 745 if (llvm::Constant *PrologueSig = 746 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 747 llvm::Constant *FTRTTIConst = 748 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 749 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 750 llvm::Constant *PrologueStructConst = 751 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 752 Fn->setPrologueData(PrologueStructConst); 753 } 754 } 755 } 756 757 // If we're in C++ mode and the function name is "main", it is guaranteed 758 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 759 // used within a program"). 760 if (getLangOpts().CPlusPlus) 761 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 762 if (FD->isMain()) 763 Fn->addFnAttr(llvm::Attribute::NoRecurse); 764 765 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 766 767 // Create a marker to make it easy to insert allocas into the entryblock 768 // later. Don't create this with the builder, because we don't want it 769 // folded. 770 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 771 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 772 773 ReturnBlock = getJumpDestInCurrentScope("return"); 774 775 Builder.SetInsertPoint(EntryBB); 776 777 // Emit subprogram debug descriptor. 778 if (CGDebugInfo *DI = getDebugInfo()) { 779 // Reconstruct the type from the argument list so that implicit parameters, 780 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 781 // convention. 782 CallingConv CC = CallingConv::CC_C; 783 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 784 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 785 CC = SrcFnTy->getCallConv(); 786 SmallVector<QualType, 16> ArgTypes; 787 for (const VarDecl *VD : Args) 788 ArgTypes.push_back(VD->getType()); 789 QualType FnType = getContext().getFunctionType( 790 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 791 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 792 } 793 794 if (ShouldInstrumentFunction()) 795 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 796 797 if (CGM.getCodeGenOpts().InstrumentForProfiling) 798 EmitMCountInstrumentation(); 799 800 if (RetTy->isVoidType()) { 801 // Void type; nothing to return. 802 ReturnValue = Address::invalid(); 803 804 // Count the implicit return. 805 if (!endsWithReturn(D)) 806 ++NumReturnExprs; 807 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 808 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 809 // Indirect aggregate return; emit returned value directly into sret slot. 810 // This reduces code size, and affects correctness in C++. 811 auto AI = CurFn->arg_begin(); 812 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 813 ++AI; 814 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 815 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 816 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 817 // Load the sret pointer from the argument struct and return into that. 818 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 819 llvm::Function::arg_iterator EI = CurFn->arg_end(); 820 --EI; 821 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 822 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 823 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 824 } else { 825 ReturnValue = CreateIRTemp(RetTy, "retval"); 826 827 // Tell the epilog emitter to autorelease the result. We do this 828 // now so that various specialized functions can suppress it 829 // during their IR-generation. 830 if (getLangOpts().ObjCAutoRefCount && 831 !CurFnInfo->isReturnsRetained() && 832 RetTy->isObjCRetainableType()) 833 AutoreleaseResult = true; 834 } 835 836 EmitStartEHSpec(CurCodeDecl); 837 838 PrologueCleanupDepth = EHStack.stable_begin(); 839 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 840 841 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 842 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 843 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 844 if (MD->getParent()->isLambda() && 845 MD->getOverloadedOperator() == OO_Call) { 846 // We're in a lambda; figure out the captures. 847 MD->getParent()->getCaptureFields(LambdaCaptureFields, 848 LambdaThisCaptureField); 849 if (LambdaThisCaptureField) { 850 // If the lambda captures the object referred to by '*this' - either by 851 // value or by reference, make sure CXXThisValue points to the correct 852 // object. 853 854 // Get the lvalue for the field (which is a copy of the enclosing object 855 // or contains the address of the enclosing object). 856 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 857 if (!LambdaThisCaptureField->getType()->isPointerType()) { 858 // If the enclosing object was captured by value, just use its address. 859 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 860 } else { 861 // Load the lvalue pointed to by the field, since '*this' was captured 862 // by reference. 863 CXXThisValue = 864 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 865 } 866 } 867 for (auto *FD : MD->getParent()->fields()) { 868 if (FD->hasCapturedVLAType()) { 869 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 870 SourceLocation()).getScalarVal(); 871 auto VAT = FD->getCapturedVLAType(); 872 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 873 } 874 } 875 } else { 876 // Not in a lambda; just use 'this' from the method. 877 // FIXME: Should we generate a new load for each use of 'this'? The 878 // fast register allocator would be happier... 879 CXXThisValue = CXXABIThisValue; 880 } 881 } 882 883 // If any of the arguments have a variably modified type, make sure to 884 // emit the type size. 885 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 886 i != e; ++i) { 887 const VarDecl *VD = *i; 888 889 // Dig out the type as written from ParmVarDecls; it's unclear whether 890 // the standard (C99 6.9.1p10) requires this, but we're following the 891 // precedent set by gcc. 892 QualType Ty; 893 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 894 Ty = PVD->getOriginalType(); 895 else 896 Ty = VD->getType(); 897 898 if (Ty->isVariablyModifiedType()) 899 EmitVariablyModifiedType(Ty); 900 } 901 // Emit a location at the end of the prologue. 902 if (CGDebugInfo *DI = getDebugInfo()) 903 DI->EmitLocation(Builder, StartLoc); 904 } 905 906 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 907 const Stmt *Body) { 908 incrementProfileCounter(Body); 909 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 910 EmitCompoundStmtWithoutScope(*S); 911 else 912 EmitStmt(Body); 913 } 914 915 /// When instrumenting to collect profile data, the counts for some blocks 916 /// such as switch cases need to not include the fall-through counts, so 917 /// emit a branch around the instrumentation code. When not instrumenting, 918 /// this just calls EmitBlock(). 919 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 920 const Stmt *S) { 921 llvm::BasicBlock *SkipCountBB = nullptr; 922 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 923 // When instrumenting for profiling, the fallthrough to certain 924 // statements needs to skip over the instrumentation code so that we 925 // get an accurate count. 926 SkipCountBB = createBasicBlock("skipcount"); 927 EmitBranch(SkipCountBB); 928 } 929 EmitBlock(BB); 930 uint64_t CurrentCount = getCurrentProfileCount(); 931 incrementProfileCounter(S); 932 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 933 if (SkipCountBB) 934 EmitBlock(SkipCountBB); 935 } 936 937 /// Tries to mark the given function nounwind based on the 938 /// non-existence of any throwing calls within it. We believe this is 939 /// lightweight enough to do at -O0. 940 static void TryMarkNoThrow(llvm::Function *F) { 941 // LLVM treats 'nounwind' on a function as part of the type, so we 942 // can't do this on functions that can be overwritten. 943 if (F->isInterposable()) return; 944 945 for (llvm::BasicBlock &BB : *F) 946 for (llvm::Instruction &I : BB) 947 if (I.mayThrow()) 948 return; 949 950 F->setDoesNotThrow(); 951 } 952 953 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 954 FunctionArgList &Args) { 955 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 956 QualType ResTy = FD->getReturnType(); 957 958 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 959 if (MD && MD->isInstance()) { 960 if (CGM.getCXXABI().HasThisReturn(GD)) 961 ResTy = MD->getThisType(getContext()); 962 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 963 ResTy = CGM.getContext().VoidPtrTy; 964 CGM.getCXXABI().buildThisParam(*this, Args); 965 } 966 967 // The base version of an inheriting constructor whose constructed base is a 968 // virtual base is not passed any arguments (because it doesn't actually call 969 // the inherited constructor). 970 bool PassedParams = true; 971 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 972 if (auto Inherited = CD->getInheritedConstructor()) 973 PassedParams = 974 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 975 976 if (PassedParams) { 977 for (auto *Param : FD->parameters()) { 978 Args.push_back(Param); 979 if (!Param->hasAttr<PassObjectSizeAttr>()) 980 continue; 981 982 IdentifierInfo *NoID = nullptr; 983 auto *Implicit = ImplicitParamDecl::Create( 984 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 985 getContext().getSizeType()); 986 SizeArguments[Param] = Implicit; 987 Args.push_back(Implicit); 988 } 989 } 990 991 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 992 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 993 994 return ResTy; 995 } 996 997 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 998 const CGFunctionInfo &FnInfo) { 999 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1000 CurGD = GD; 1001 1002 FunctionArgList Args; 1003 QualType ResTy = BuildFunctionArgList(GD, Args); 1004 1005 // Check if we should generate debug info for this function. 1006 if (FD->hasAttr<NoDebugAttr>()) 1007 DebugInfo = nullptr; // disable debug info indefinitely for this function 1008 1009 SourceRange BodyRange; 1010 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 1011 CurEHLocation = BodyRange.getEnd(); 1012 1013 // Use the location of the start of the function to determine where 1014 // the function definition is located. By default use the location 1015 // of the declaration as the location for the subprogram. A function 1016 // may lack a declaration in the source code if it is created by code 1017 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1018 SourceLocation Loc = FD->getLocation(); 1019 1020 // If this is a function specialization then use the pattern body 1021 // as the location for the function. 1022 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1023 if (SpecDecl->hasBody(SpecDecl)) 1024 Loc = SpecDecl->getLocation(); 1025 1026 // Emit the standard function prologue. 1027 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1028 1029 // Generate the body of the function. 1030 PGO.assignRegionCounters(GD, CurFn); 1031 if (isa<CXXDestructorDecl>(FD)) 1032 EmitDestructorBody(Args); 1033 else if (isa<CXXConstructorDecl>(FD)) 1034 EmitConstructorBody(Args); 1035 else if (getLangOpts().CUDA && 1036 !getLangOpts().CUDAIsDevice && 1037 FD->hasAttr<CUDAGlobalAttr>()) 1038 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1039 else if (isa<CXXConversionDecl>(FD) && 1040 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1041 // The lambda conversion to block pointer is special; the semantics can't be 1042 // expressed in the AST, so IRGen needs to special-case it. 1043 EmitLambdaToBlockPointerBody(Args); 1044 } else if (isa<CXXMethodDecl>(FD) && 1045 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1046 // The lambda static invoker function is special, because it forwards or 1047 // clones the body of the function call operator (but is actually static). 1048 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1049 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1050 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1051 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1052 // Implicit copy-assignment gets the same special treatment as implicit 1053 // copy-constructors. 1054 emitImplicitAssignmentOperatorBody(Args); 1055 } else if (Stmt *Body = FD->getBody()) { 1056 EmitFunctionBody(Args, Body); 1057 } else 1058 llvm_unreachable("no definition for emitted function"); 1059 1060 // C++11 [stmt.return]p2: 1061 // Flowing off the end of a function [...] results in undefined behavior in 1062 // a value-returning function. 1063 // C11 6.9.1p12: 1064 // If the '}' that terminates a function is reached, and the value of the 1065 // function call is used by the caller, the behavior is undefined. 1066 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1067 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1068 if (SanOpts.has(SanitizerKind::Return)) { 1069 SanitizerScope SanScope(this); 1070 llvm::Value *IsFalse = Builder.getFalse(); 1071 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1072 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1073 None); 1074 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1075 EmitTrapCall(llvm::Intrinsic::trap); 1076 } 1077 Builder.CreateUnreachable(); 1078 Builder.ClearInsertionPoint(); 1079 } 1080 1081 // Emit the standard function epilogue. 1082 FinishFunction(BodyRange.getEnd()); 1083 1084 // If we haven't marked the function nothrow through other means, do 1085 // a quick pass now to see if we can. 1086 if (!CurFn->doesNotThrow()) 1087 TryMarkNoThrow(CurFn); 1088 } 1089 1090 /// ContainsLabel - Return true if the statement contains a label in it. If 1091 /// this statement is not executed normally, it not containing a label means 1092 /// that we can just remove the code. 1093 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1094 // Null statement, not a label! 1095 if (!S) return false; 1096 1097 // If this is a label, we have to emit the code, consider something like: 1098 // if (0) { ... foo: bar(); } goto foo; 1099 // 1100 // TODO: If anyone cared, we could track __label__'s, since we know that you 1101 // can't jump to one from outside their declared region. 1102 if (isa<LabelStmt>(S)) 1103 return true; 1104 1105 // If this is a case/default statement, and we haven't seen a switch, we have 1106 // to emit the code. 1107 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1108 return true; 1109 1110 // If this is a switch statement, we want to ignore cases below it. 1111 if (isa<SwitchStmt>(S)) 1112 IgnoreCaseStmts = true; 1113 1114 // Scan subexpressions for verboten labels. 1115 for (const Stmt *SubStmt : S->children()) 1116 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1117 return true; 1118 1119 return false; 1120 } 1121 1122 /// containsBreak - Return true if the statement contains a break out of it. 1123 /// If the statement (recursively) contains a switch or loop with a break 1124 /// inside of it, this is fine. 1125 bool CodeGenFunction::containsBreak(const Stmt *S) { 1126 // Null statement, not a label! 1127 if (!S) return false; 1128 1129 // If this is a switch or loop that defines its own break scope, then we can 1130 // include it and anything inside of it. 1131 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1132 isa<ForStmt>(S)) 1133 return false; 1134 1135 if (isa<BreakStmt>(S)) 1136 return true; 1137 1138 // Scan subexpressions for verboten breaks. 1139 for (const Stmt *SubStmt : S->children()) 1140 if (containsBreak(SubStmt)) 1141 return true; 1142 1143 return false; 1144 } 1145 1146 1147 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1148 /// to a constant, or if it does but contains a label, return false. If it 1149 /// constant folds return true and set the boolean result in Result. 1150 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1151 bool &ResultBool, 1152 bool AllowLabels) { 1153 llvm::APSInt ResultInt; 1154 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1155 return false; 1156 1157 ResultBool = ResultInt.getBoolValue(); 1158 return true; 1159 } 1160 1161 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1162 /// to a constant, or if it does but contains a label, return false. If it 1163 /// constant folds return true and set the folded value. 1164 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1165 llvm::APSInt &ResultInt, 1166 bool AllowLabels) { 1167 // FIXME: Rename and handle conversion of other evaluatable things 1168 // to bool. 1169 llvm::APSInt Int; 1170 if (!Cond->EvaluateAsInt(Int, getContext())) 1171 return false; // Not foldable, not integer or not fully evaluatable. 1172 1173 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1174 return false; // Contains a label. 1175 1176 ResultInt = Int; 1177 return true; 1178 } 1179 1180 1181 1182 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1183 /// statement) to the specified blocks. Based on the condition, this might try 1184 /// to simplify the codegen of the conditional based on the branch. 1185 /// 1186 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1187 llvm::BasicBlock *TrueBlock, 1188 llvm::BasicBlock *FalseBlock, 1189 uint64_t TrueCount) { 1190 Cond = Cond->IgnoreParens(); 1191 1192 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1193 1194 // Handle X && Y in a condition. 1195 if (CondBOp->getOpcode() == BO_LAnd) { 1196 // If we have "1 && X", simplify the code. "0 && X" would have constant 1197 // folded if the case was simple enough. 1198 bool ConstantBool = false; 1199 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1200 ConstantBool) { 1201 // br(1 && X) -> br(X). 1202 incrementProfileCounter(CondBOp); 1203 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1204 TrueCount); 1205 } 1206 1207 // If we have "X && 1", simplify the code to use an uncond branch. 1208 // "X && 0" would have been constant folded to 0. 1209 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1210 ConstantBool) { 1211 // br(X && 1) -> br(X). 1212 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1213 TrueCount); 1214 } 1215 1216 // Emit the LHS as a conditional. If the LHS conditional is false, we 1217 // want to jump to the FalseBlock. 1218 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1219 // The counter tells us how often we evaluate RHS, and all of TrueCount 1220 // can be propagated to that branch. 1221 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1222 1223 ConditionalEvaluation eval(*this); 1224 { 1225 ApplyDebugLocation DL(*this, Cond); 1226 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1227 EmitBlock(LHSTrue); 1228 } 1229 1230 incrementProfileCounter(CondBOp); 1231 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1232 1233 // Any temporaries created here are conditional. 1234 eval.begin(*this); 1235 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1236 eval.end(*this); 1237 1238 return; 1239 } 1240 1241 if (CondBOp->getOpcode() == BO_LOr) { 1242 // If we have "0 || X", simplify the code. "1 || X" would have constant 1243 // folded if the case was simple enough. 1244 bool ConstantBool = false; 1245 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1246 !ConstantBool) { 1247 // br(0 || X) -> br(X). 1248 incrementProfileCounter(CondBOp); 1249 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1250 TrueCount); 1251 } 1252 1253 // If we have "X || 0", simplify the code to use an uncond branch. 1254 // "X || 1" would have been constant folded to 1. 1255 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1256 !ConstantBool) { 1257 // br(X || 0) -> br(X). 1258 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1259 TrueCount); 1260 } 1261 1262 // Emit the LHS as a conditional. If the LHS conditional is true, we 1263 // want to jump to the TrueBlock. 1264 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1265 // We have the count for entry to the RHS and for the whole expression 1266 // being true, so we can divy up True count between the short circuit and 1267 // the RHS. 1268 uint64_t LHSCount = 1269 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1270 uint64_t RHSCount = TrueCount - LHSCount; 1271 1272 ConditionalEvaluation eval(*this); 1273 { 1274 ApplyDebugLocation DL(*this, Cond); 1275 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1276 EmitBlock(LHSFalse); 1277 } 1278 1279 incrementProfileCounter(CondBOp); 1280 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1281 1282 // Any temporaries created here are conditional. 1283 eval.begin(*this); 1284 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1285 1286 eval.end(*this); 1287 1288 return; 1289 } 1290 } 1291 1292 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1293 // br(!x, t, f) -> br(x, f, t) 1294 if (CondUOp->getOpcode() == UO_LNot) { 1295 // Negate the count. 1296 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1297 // Negate the condition and swap the destination blocks. 1298 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1299 FalseCount); 1300 } 1301 } 1302 1303 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1304 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1305 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1306 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1307 1308 ConditionalEvaluation cond(*this); 1309 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1310 getProfileCount(CondOp)); 1311 1312 // When computing PGO branch weights, we only know the overall count for 1313 // the true block. This code is essentially doing tail duplication of the 1314 // naive code-gen, introducing new edges for which counts are not 1315 // available. Divide the counts proportionally between the LHS and RHS of 1316 // the conditional operator. 1317 uint64_t LHSScaledTrueCount = 0; 1318 if (TrueCount) { 1319 double LHSRatio = 1320 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1321 LHSScaledTrueCount = TrueCount * LHSRatio; 1322 } 1323 1324 cond.begin(*this); 1325 EmitBlock(LHSBlock); 1326 incrementProfileCounter(CondOp); 1327 { 1328 ApplyDebugLocation DL(*this, Cond); 1329 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1330 LHSScaledTrueCount); 1331 } 1332 cond.end(*this); 1333 1334 cond.begin(*this); 1335 EmitBlock(RHSBlock); 1336 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1337 TrueCount - LHSScaledTrueCount); 1338 cond.end(*this); 1339 1340 return; 1341 } 1342 1343 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1344 // Conditional operator handling can give us a throw expression as a 1345 // condition for a case like: 1346 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1347 // Fold this to: 1348 // br(c, throw x, br(y, t, f)) 1349 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1350 return; 1351 } 1352 1353 // If the branch has a condition wrapped by __builtin_unpredictable, 1354 // create metadata that specifies that the branch is unpredictable. 1355 // Don't bother if not optimizing because that metadata would not be used. 1356 llvm::MDNode *Unpredictable = nullptr; 1357 auto *Call = dyn_cast<CallExpr>(Cond); 1358 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1359 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1360 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1361 llvm::MDBuilder MDHelper(getLLVMContext()); 1362 Unpredictable = MDHelper.createUnpredictable(); 1363 } 1364 } 1365 1366 // Create branch weights based on the number of times we get here and the 1367 // number of times the condition should be true. 1368 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1369 llvm::MDNode *Weights = 1370 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1371 1372 // Emit the code with the fully general case. 1373 llvm::Value *CondV; 1374 { 1375 ApplyDebugLocation DL(*this, Cond); 1376 CondV = EvaluateExprAsBool(Cond); 1377 } 1378 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1379 } 1380 1381 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1382 /// specified stmt yet. 1383 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1384 CGM.ErrorUnsupported(S, Type); 1385 } 1386 1387 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1388 /// variable-length array whose elements have a non-zero bit-pattern. 1389 /// 1390 /// \param baseType the inner-most element type of the array 1391 /// \param src - a char* pointing to the bit-pattern for a single 1392 /// base element of the array 1393 /// \param sizeInChars - the total size of the VLA, in chars 1394 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1395 Address dest, Address src, 1396 llvm::Value *sizeInChars) { 1397 CGBuilderTy &Builder = CGF.Builder; 1398 1399 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1400 llvm::Value *baseSizeInChars 1401 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1402 1403 Address begin = 1404 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1405 llvm::Value *end = 1406 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1407 1408 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1409 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1410 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1411 1412 // Make a loop over the VLA. C99 guarantees that the VLA element 1413 // count must be nonzero. 1414 CGF.EmitBlock(loopBB); 1415 1416 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1417 cur->addIncoming(begin.getPointer(), originBB); 1418 1419 CharUnits curAlign = 1420 dest.getAlignment().alignmentOfArrayElement(baseSize); 1421 1422 // memcpy the individual element bit-pattern. 1423 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1424 /*volatile*/ false); 1425 1426 // Go to the next element. 1427 llvm::Value *next = 1428 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1429 1430 // Leave if that's the end of the VLA. 1431 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1432 Builder.CreateCondBr(done, contBB, loopBB); 1433 cur->addIncoming(next, loopBB); 1434 1435 CGF.EmitBlock(contBB); 1436 } 1437 1438 void 1439 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1440 // Ignore empty classes in C++. 1441 if (getLangOpts().CPlusPlus) { 1442 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1443 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1444 return; 1445 } 1446 } 1447 1448 // Cast the dest ptr to the appropriate i8 pointer type. 1449 if (DestPtr.getElementType() != Int8Ty) 1450 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1451 1452 // Get size and alignment info for this aggregate. 1453 CharUnits size = getContext().getTypeSizeInChars(Ty); 1454 1455 llvm::Value *SizeVal; 1456 const VariableArrayType *vla; 1457 1458 // Don't bother emitting a zero-byte memset. 1459 if (size.isZero()) { 1460 // But note that getTypeInfo returns 0 for a VLA. 1461 if (const VariableArrayType *vlaType = 1462 dyn_cast_or_null<VariableArrayType>( 1463 getContext().getAsArrayType(Ty))) { 1464 QualType eltType; 1465 llvm::Value *numElts; 1466 std::tie(numElts, eltType) = getVLASize(vlaType); 1467 1468 SizeVal = numElts; 1469 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1470 if (!eltSize.isOne()) 1471 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1472 vla = vlaType; 1473 } else { 1474 return; 1475 } 1476 } else { 1477 SizeVal = CGM.getSize(size); 1478 vla = nullptr; 1479 } 1480 1481 // If the type contains a pointer to data member we can't memset it to zero. 1482 // Instead, create a null constant and copy it to the destination. 1483 // TODO: there are other patterns besides zero that we can usefully memset, 1484 // like -1, which happens to be the pattern used by member-pointers. 1485 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1486 // For a VLA, emit a single element, then splat that over the VLA. 1487 if (vla) Ty = getContext().getBaseElementType(vla); 1488 1489 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1490 1491 llvm::GlobalVariable *NullVariable = 1492 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1493 /*isConstant=*/true, 1494 llvm::GlobalVariable::PrivateLinkage, 1495 NullConstant, Twine()); 1496 CharUnits NullAlign = DestPtr.getAlignment(); 1497 NullVariable->setAlignment(NullAlign.getQuantity()); 1498 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1499 NullAlign); 1500 1501 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1502 1503 // Get and call the appropriate llvm.memcpy overload. 1504 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1505 return; 1506 } 1507 1508 // Otherwise, just memset the whole thing to zero. This is legal 1509 // because in LLVM, all default initializers (other than the ones we just 1510 // handled above) are guaranteed to have a bit pattern of all zeros. 1511 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1512 } 1513 1514 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1515 // Make sure that there is a block for the indirect goto. 1516 if (!IndirectBranch) 1517 GetIndirectGotoBlock(); 1518 1519 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1520 1521 // Make sure the indirect branch includes all of the address-taken blocks. 1522 IndirectBranch->addDestination(BB); 1523 return llvm::BlockAddress::get(CurFn, BB); 1524 } 1525 1526 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1527 // If we already made the indirect branch for indirect goto, return its block. 1528 if (IndirectBranch) return IndirectBranch->getParent(); 1529 1530 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1531 1532 // Create the PHI node that indirect gotos will add entries to. 1533 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1534 "indirect.goto.dest"); 1535 1536 // Create the indirect branch instruction. 1537 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1538 return IndirectBranch->getParent(); 1539 } 1540 1541 /// Computes the length of an array in elements, as well as the base 1542 /// element type and a properly-typed first element pointer. 1543 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1544 QualType &baseType, 1545 Address &addr) { 1546 const ArrayType *arrayType = origArrayType; 1547 1548 // If it's a VLA, we have to load the stored size. Note that 1549 // this is the size of the VLA in bytes, not its size in elements. 1550 llvm::Value *numVLAElements = nullptr; 1551 if (isa<VariableArrayType>(arrayType)) { 1552 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1553 1554 // Walk into all VLAs. This doesn't require changes to addr, 1555 // which has type T* where T is the first non-VLA element type. 1556 do { 1557 QualType elementType = arrayType->getElementType(); 1558 arrayType = getContext().getAsArrayType(elementType); 1559 1560 // If we only have VLA components, 'addr' requires no adjustment. 1561 if (!arrayType) { 1562 baseType = elementType; 1563 return numVLAElements; 1564 } 1565 } while (isa<VariableArrayType>(arrayType)); 1566 1567 // We get out here only if we find a constant array type 1568 // inside the VLA. 1569 } 1570 1571 // We have some number of constant-length arrays, so addr should 1572 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1573 // down to the first element of addr. 1574 SmallVector<llvm::Value*, 8> gepIndices; 1575 1576 // GEP down to the array type. 1577 llvm::ConstantInt *zero = Builder.getInt32(0); 1578 gepIndices.push_back(zero); 1579 1580 uint64_t countFromCLAs = 1; 1581 QualType eltType; 1582 1583 llvm::ArrayType *llvmArrayType = 1584 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1585 while (llvmArrayType) { 1586 assert(isa<ConstantArrayType>(arrayType)); 1587 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1588 == llvmArrayType->getNumElements()); 1589 1590 gepIndices.push_back(zero); 1591 countFromCLAs *= llvmArrayType->getNumElements(); 1592 eltType = arrayType->getElementType(); 1593 1594 llvmArrayType = 1595 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1596 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1597 assert((!llvmArrayType || arrayType) && 1598 "LLVM and Clang types are out-of-synch"); 1599 } 1600 1601 if (arrayType) { 1602 // From this point onwards, the Clang array type has been emitted 1603 // as some other type (probably a packed struct). Compute the array 1604 // size, and just emit the 'begin' expression as a bitcast. 1605 while (arrayType) { 1606 countFromCLAs *= 1607 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1608 eltType = arrayType->getElementType(); 1609 arrayType = getContext().getAsArrayType(eltType); 1610 } 1611 1612 llvm::Type *baseType = ConvertType(eltType); 1613 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1614 } else { 1615 // Create the actual GEP. 1616 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1617 gepIndices, "array.begin"), 1618 addr.getAlignment()); 1619 } 1620 1621 baseType = eltType; 1622 1623 llvm::Value *numElements 1624 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1625 1626 // If we had any VLA dimensions, factor them in. 1627 if (numVLAElements) 1628 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1629 1630 return numElements; 1631 } 1632 1633 std::pair<llvm::Value*, QualType> 1634 CodeGenFunction::getVLASize(QualType type) { 1635 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1636 assert(vla && "type was not a variable array type!"); 1637 return getVLASize(vla); 1638 } 1639 1640 std::pair<llvm::Value*, QualType> 1641 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1642 // The number of elements so far; always size_t. 1643 llvm::Value *numElements = nullptr; 1644 1645 QualType elementType; 1646 do { 1647 elementType = type->getElementType(); 1648 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1649 assert(vlaSize && "no size for VLA!"); 1650 assert(vlaSize->getType() == SizeTy); 1651 1652 if (!numElements) { 1653 numElements = vlaSize; 1654 } else { 1655 // It's undefined behavior if this wraps around, so mark it that way. 1656 // FIXME: Teach -fsanitize=undefined to trap this. 1657 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1658 } 1659 } while ((type = getContext().getAsVariableArrayType(elementType))); 1660 1661 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1662 } 1663 1664 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1665 assert(type->isVariablyModifiedType() && 1666 "Must pass variably modified type to EmitVLASizes!"); 1667 1668 EnsureInsertPoint(); 1669 1670 // We're going to walk down into the type and look for VLA 1671 // expressions. 1672 do { 1673 assert(type->isVariablyModifiedType()); 1674 1675 const Type *ty = type.getTypePtr(); 1676 switch (ty->getTypeClass()) { 1677 1678 #define TYPE(Class, Base) 1679 #define ABSTRACT_TYPE(Class, Base) 1680 #define NON_CANONICAL_TYPE(Class, Base) 1681 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1682 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1683 #include "clang/AST/TypeNodes.def" 1684 llvm_unreachable("unexpected dependent type!"); 1685 1686 // These types are never variably-modified. 1687 case Type::Builtin: 1688 case Type::Complex: 1689 case Type::Vector: 1690 case Type::ExtVector: 1691 case Type::Record: 1692 case Type::Enum: 1693 case Type::Elaborated: 1694 case Type::TemplateSpecialization: 1695 case Type::ObjCObject: 1696 case Type::ObjCInterface: 1697 case Type::ObjCObjectPointer: 1698 llvm_unreachable("type class is never variably-modified!"); 1699 1700 case Type::Adjusted: 1701 type = cast<AdjustedType>(ty)->getAdjustedType(); 1702 break; 1703 1704 case Type::Decayed: 1705 type = cast<DecayedType>(ty)->getPointeeType(); 1706 break; 1707 1708 case Type::Pointer: 1709 type = cast<PointerType>(ty)->getPointeeType(); 1710 break; 1711 1712 case Type::BlockPointer: 1713 type = cast<BlockPointerType>(ty)->getPointeeType(); 1714 break; 1715 1716 case Type::LValueReference: 1717 case Type::RValueReference: 1718 type = cast<ReferenceType>(ty)->getPointeeType(); 1719 break; 1720 1721 case Type::MemberPointer: 1722 type = cast<MemberPointerType>(ty)->getPointeeType(); 1723 break; 1724 1725 case Type::ConstantArray: 1726 case Type::IncompleteArray: 1727 // Losing element qualification here is fine. 1728 type = cast<ArrayType>(ty)->getElementType(); 1729 break; 1730 1731 case Type::VariableArray: { 1732 // Losing element qualification here is fine. 1733 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1734 1735 // Unknown size indication requires no size computation. 1736 // Otherwise, evaluate and record it. 1737 if (const Expr *size = vat->getSizeExpr()) { 1738 // It's possible that we might have emitted this already, 1739 // e.g. with a typedef and a pointer to it. 1740 llvm::Value *&entry = VLASizeMap[size]; 1741 if (!entry) { 1742 llvm::Value *Size = EmitScalarExpr(size); 1743 1744 // C11 6.7.6.2p5: 1745 // If the size is an expression that is not an integer constant 1746 // expression [...] each time it is evaluated it shall have a value 1747 // greater than zero. 1748 if (SanOpts.has(SanitizerKind::VLABound) && 1749 size->getType()->isSignedIntegerType()) { 1750 SanitizerScope SanScope(this); 1751 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1752 llvm::Constant *StaticArgs[] = { 1753 EmitCheckSourceLocation(size->getLocStart()), 1754 EmitCheckTypeDescriptor(size->getType()) 1755 }; 1756 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1757 SanitizerKind::VLABound), 1758 "vla_bound_not_positive", StaticArgs, Size); 1759 } 1760 1761 // Always zexting here would be wrong if it weren't 1762 // undefined behavior to have a negative bound. 1763 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1764 } 1765 } 1766 type = vat->getElementType(); 1767 break; 1768 } 1769 1770 case Type::FunctionProto: 1771 case Type::FunctionNoProto: 1772 type = cast<FunctionType>(ty)->getReturnType(); 1773 break; 1774 1775 case Type::Paren: 1776 case Type::TypeOf: 1777 case Type::UnaryTransform: 1778 case Type::Attributed: 1779 case Type::SubstTemplateTypeParm: 1780 case Type::PackExpansion: 1781 // Keep walking after single level desugaring. 1782 type = type.getSingleStepDesugaredType(getContext()); 1783 break; 1784 1785 case Type::Typedef: 1786 case Type::Decltype: 1787 case Type::Auto: 1788 // Stop walking: nothing to do. 1789 return; 1790 1791 case Type::TypeOfExpr: 1792 // Stop walking: emit typeof expression. 1793 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1794 return; 1795 1796 case Type::Atomic: 1797 type = cast<AtomicType>(ty)->getValueType(); 1798 break; 1799 1800 case Type::Pipe: 1801 type = cast<PipeType>(ty)->getElementType(); 1802 break; 1803 } 1804 } while (type->isVariablyModifiedType()); 1805 } 1806 1807 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1808 if (getContext().getBuiltinVaListType()->isArrayType()) 1809 return EmitPointerWithAlignment(E); 1810 return EmitLValue(E).getAddress(); 1811 } 1812 1813 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1814 return EmitLValue(E).getAddress(); 1815 } 1816 1817 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1818 llvm::Constant *Init) { 1819 assert (Init && "Invalid DeclRefExpr initializer!"); 1820 if (CGDebugInfo *Dbg = getDebugInfo()) 1821 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1822 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1823 } 1824 1825 CodeGenFunction::PeepholeProtection 1826 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1827 // At the moment, the only aggressive peephole we do in IR gen 1828 // is trunc(zext) folding, but if we add more, we can easily 1829 // extend this protection. 1830 1831 if (!rvalue.isScalar()) return PeepholeProtection(); 1832 llvm::Value *value = rvalue.getScalarVal(); 1833 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1834 1835 // Just make an extra bitcast. 1836 assert(HaveInsertPoint()); 1837 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1838 Builder.GetInsertBlock()); 1839 1840 PeepholeProtection protection; 1841 protection.Inst = inst; 1842 return protection; 1843 } 1844 1845 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1846 if (!protection.Inst) return; 1847 1848 // In theory, we could try to duplicate the peepholes now, but whatever. 1849 protection.Inst->eraseFromParent(); 1850 } 1851 1852 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1853 llvm::Value *AnnotatedVal, 1854 StringRef AnnotationStr, 1855 SourceLocation Location) { 1856 llvm::Value *Args[4] = { 1857 AnnotatedVal, 1858 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1859 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1860 CGM.EmitAnnotationLineNo(Location) 1861 }; 1862 return Builder.CreateCall(AnnotationFn, Args); 1863 } 1864 1865 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1866 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1867 // FIXME We create a new bitcast for every annotation because that's what 1868 // llvm-gcc was doing. 1869 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1870 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1871 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1872 I->getAnnotation(), D->getLocation()); 1873 } 1874 1875 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1876 Address Addr) { 1877 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1878 llvm::Value *V = Addr.getPointer(); 1879 llvm::Type *VTy = V->getType(); 1880 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1881 CGM.Int8PtrTy); 1882 1883 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1884 // FIXME Always emit the cast inst so we can differentiate between 1885 // annotation on the first field of a struct and annotation on the struct 1886 // itself. 1887 if (VTy != CGM.Int8PtrTy) 1888 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1889 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1890 V = Builder.CreateBitCast(V, VTy); 1891 } 1892 1893 return Address(V, Addr.getAlignment()); 1894 } 1895 1896 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1897 1898 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1899 : CGF(CGF) { 1900 assert(!CGF->IsSanitizerScope); 1901 CGF->IsSanitizerScope = true; 1902 } 1903 1904 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1905 CGF->IsSanitizerScope = false; 1906 } 1907 1908 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1909 const llvm::Twine &Name, 1910 llvm::BasicBlock *BB, 1911 llvm::BasicBlock::iterator InsertPt) const { 1912 LoopStack.InsertHelper(I); 1913 if (IsSanitizerScope) 1914 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1915 } 1916 1917 void CGBuilderInserter::InsertHelper( 1918 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1919 llvm::BasicBlock::iterator InsertPt) const { 1920 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 1921 if (CGF) 1922 CGF->InsertHelper(I, Name, BB, InsertPt); 1923 } 1924 1925 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 1926 CodeGenModule &CGM, const FunctionDecl *FD, 1927 std::string &FirstMissing) { 1928 // If there aren't any required features listed then go ahead and return. 1929 if (ReqFeatures.empty()) 1930 return false; 1931 1932 // Now build up the set of caller features and verify that all the required 1933 // features are there. 1934 llvm::StringMap<bool> CallerFeatureMap; 1935 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1936 1937 // If we have at least one of the features in the feature list return 1938 // true, otherwise return false. 1939 return std::all_of( 1940 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 1941 SmallVector<StringRef, 1> OrFeatures; 1942 Feature.split(OrFeatures, "|"); 1943 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1944 [&](StringRef Feature) { 1945 if (!CallerFeatureMap.lookup(Feature)) { 1946 FirstMissing = Feature.str(); 1947 return false; 1948 } 1949 return true; 1950 }); 1951 }); 1952 } 1953 1954 // Emits an error if we don't have a valid set of target features for the 1955 // called function. 1956 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 1957 const FunctionDecl *TargetDecl) { 1958 // Early exit if this is an indirect call. 1959 if (!TargetDecl) 1960 return; 1961 1962 // Get the current enclosing function if it exists. If it doesn't 1963 // we can't check the target features anyhow. 1964 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 1965 if (!FD) 1966 return; 1967 1968 // Grab the required features for the call. For a builtin this is listed in 1969 // the td file with the default cpu, for an always_inline function this is any 1970 // listed cpu and any listed features. 1971 unsigned BuiltinID = TargetDecl->getBuiltinID(); 1972 std::string MissingFeature; 1973 if (BuiltinID) { 1974 SmallVector<StringRef, 1> ReqFeatures; 1975 const char *FeatureList = 1976 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1977 // Return if the builtin doesn't have any required features. 1978 if (!FeatureList || StringRef(FeatureList) == "") 1979 return; 1980 StringRef(FeatureList).split(ReqFeatures, ","); 1981 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1982 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 1983 << TargetDecl->getDeclName() 1984 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 1985 1986 } else if (TargetDecl->hasAttr<TargetAttr>()) { 1987 // Get the required features for the callee. 1988 SmallVector<StringRef, 1> ReqFeatures; 1989 llvm::StringMap<bool> CalleeFeatureMap; 1990 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 1991 for (const auto &F : CalleeFeatureMap) { 1992 // Only positive features are "required". 1993 if (F.getValue()) 1994 ReqFeatures.push_back(F.getKey()); 1995 } 1996 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 1997 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 1998 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 1999 } 2000 } 2001 2002 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2003 if (!CGM.getCodeGenOpts().SanitizeStats) 2004 return; 2005 2006 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2007 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2008 CGM.getSanStats().create(IRB, SSK); 2009 } 2010