1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // Copyright (C) 2010,2012 Jitse Niesen <jitse (at) maths.leeds.ac.uk> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_EIGENSOLVER_H 12 #define EIGEN_EIGENSOLVER_H 13 14 #include "./RealSchur.h" 15 16 namespace Eigen { 17 18 /** \eigenvalues_module \ingroup Eigenvalues_Module 19 * 20 * 21 * \class EigenSolver 22 * 23 * \brief Computes eigenvalues and eigenvectors of general matrices 24 * 25 * \tparam _MatrixType the type of the matrix of which we are computing the 26 * eigendecomposition; this is expected to be an instantiation of the Matrix 27 * class template. Currently, only real matrices are supported. 28 * 29 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 30 * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If 31 * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and 32 * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = 33 * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we 34 * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition. 35 * 36 * The eigenvalues and eigenvectors of a matrix may be complex, even when the 37 * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D 38 * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the 39 * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to 40 * have blocks of the form 41 * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f] 42 * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These 43 * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call 44 * this variant of the eigendecomposition the pseudo-eigendecomposition. 45 * 46 * Call the function compute() to compute the eigenvalues and eigenvectors of 47 * a given matrix. Alternatively, you can use the 48 * EigenSolver(const MatrixType&, bool) constructor which computes the 49 * eigenvalues and eigenvectors at construction time. Once the eigenvalue and 50 * eigenvectors are computed, they can be retrieved with the eigenvalues() and 51 * eigenvectors() functions. The pseudoEigenvalueMatrix() and 52 * pseudoEigenvectors() methods allow the construction of the 53 * pseudo-eigendecomposition. 54 * 55 * The documentation for EigenSolver(const MatrixType&, bool) contains an 56 * example of the typical use of this class. 57 * 58 * \note The implementation is adapted from 59 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain). 60 * Their code is based on EISPACK. 61 * 62 * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver 63 */ 64 template<typename _MatrixType> class EigenSolver 65 { 66 public: 67 68 /** \brief Synonym for the template parameter \p _MatrixType. */ 69 typedef _MatrixType MatrixType; 70 71 enum { 72 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 73 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 74 Options = MatrixType::Options, 75 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 76 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime 77 }; 78 79 /** \brief Scalar type for matrices of type #MatrixType. */ 80 typedef typename MatrixType::Scalar Scalar; 81 typedef typename NumTraits<Scalar>::Real RealScalar; 82 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 83 84 /** \brief Complex scalar type for #MatrixType. 85 * 86 * This is \c std::complex<Scalar> if #Scalar is real (e.g., 87 * \c float or \c double) and just \c Scalar if #Scalar is 88 * complex. 89 */ 90 typedef std::complex<RealScalar> ComplexScalar; 91 92 /** \brief Type for vector of eigenvalues as returned by eigenvalues(). 93 * 94 * This is a column vector with entries of type #ComplexScalar. 95 * The length of the vector is the size of #MatrixType. 96 */ 97 typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; 98 99 /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 100 * 101 * This is a square matrix with entries of type #ComplexScalar. 102 * The size is the same as the size of #MatrixType. 103 */ 104 typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType; 105 106 /** \brief Default constructor. 107 * 108 * The default constructor is useful in cases in which the user intends to 109 * perform decompositions via EigenSolver::compute(const MatrixType&, bool). 110 * 111 * \sa compute() for an example. 112 */ 113 EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {} 114 115 /** \brief Default constructor with memory preallocation 116 * 117 * Like the default constructor but with preallocation of the internal data 118 * according to the specified problem \a size. 119 * \sa EigenSolver() 120 */ 121 explicit EigenSolver(Index size) 122 : m_eivec(size, size), 123 m_eivalues(size), 124 m_isInitialized(false), 125 m_eigenvectorsOk(false), 126 m_realSchur(size), 127 m_matT(size, size), 128 m_tmp(size) 129 {} 130 131 /** \brief Constructor; computes eigendecomposition of given matrix. 132 * 133 * \param[in] matrix Square matrix whose eigendecomposition is to be computed. 134 * \param[in] computeEigenvectors If true, both the eigenvectors and the 135 * eigenvalues are computed; if false, only the eigenvalues are 136 * computed. 137 * 138 * This constructor calls compute() to compute the eigenvalues 139 * and eigenvectors. 140 * 141 * Example: \include EigenSolver_EigenSolver_MatrixType.cpp 142 * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out 143 * 144 * \sa compute() 145 */ 146 template<typename InputType> 147 explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true) 148 : m_eivec(matrix.rows(), matrix.cols()), 149 m_eivalues(matrix.cols()), 150 m_isInitialized(false), 151 m_eigenvectorsOk(false), 152 m_realSchur(matrix.cols()), 153 m_matT(matrix.rows(), matrix.cols()), 154 m_tmp(matrix.cols()) 155 { 156 compute(matrix.derived(), computeEigenvectors); 157 } 158 159 /** \brief Returns the eigenvectors of given matrix. 160 * 161 * \returns %Matrix whose columns are the (possibly complex) eigenvectors. 162 * 163 * \pre Either the constructor 164 * EigenSolver(const MatrixType&,bool) or the member function 165 * compute(const MatrixType&, bool) has been called before, and 166 * \p computeEigenvectors was set to true (the default). 167 * 168 * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding 169 * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The 170 * eigenvectors are normalized to have (Euclidean) norm equal to one. The 171 * matrix returned by this function is the matrix \f$ V \f$ in the 172 * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists. 173 * 174 * Example: \include EigenSolver_eigenvectors.cpp 175 * Output: \verbinclude EigenSolver_eigenvectors.out 176 * 177 * \sa eigenvalues(), pseudoEigenvectors() 178 */ 179 EigenvectorsType eigenvectors() const; 180 181 /** \brief Returns the pseudo-eigenvectors of given matrix. 182 * 183 * \returns Const reference to matrix whose columns are the pseudo-eigenvectors. 184 * 185 * \pre Either the constructor 186 * EigenSolver(const MatrixType&,bool) or the member function 187 * compute(const MatrixType&, bool) has been called before, and 188 * \p computeEigenvectors was set to true (the default). 189 * 190 * The real matrix \f$ V \f$ returned by this function and the 191 * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix() 192 * satisfy \f$ AV = VD \f$. 193 * 194 * Example: \include EigenSolver_pseudoEigenvectors.cpp 195 * Output: \verbinclude EigenSolver_pseudoEigenvectors.out 196 * 197 * \sa pseudoEigenvalueMatrix(), eigenvectors() 198 */ 199 const MatrixType& pseudoEigenvectors() const 200 { 201 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 202 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 203 return m_eivec; 204 } 205 206 /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition. 207 * 208 * \returns A block-diagonal matrix. 209 * 210 * \pre Either the constructor 211 * EigenSolver(const MatrixType&,bool) or the member function 212 * compute(const MatrixType&, bool) has been called before. 213 * 214 * The matrix \f$ D \f$ returned by this function is real and 215 * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2 216 * blocks of the form 217 * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$. 218 * These blocks are not sorted in any particular order. 219 * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by 220 * pseudoEigenvectors() satisfy \f$ AV = VD \f$. 221 * 222 * \sa pseudoEigenvectors() for an example, eigenvalues() 223 */ 224 MatrixType pseudoEigenvalueMatrix() const; 225 226 /** \brief Returns the eigenvalues of given matrix. 227 * 228 * \returns A const reference to the column vector containing the eigenvalues. 229 * 230 * \pre Either the constructor 231 * EigenSolver(const MatrixType&,bool) or the member function 232 * compute(const MatrixType&, bool) has been called before. 233 * 234 * The eigenvalues are repeated according to their algebraic multiplicity, 235 * so there are as many eigenvalues as rows in the matrix. The eigenvalues 236 * are not sorted in any particular order. 237 * 238 * Example: \include EigenSolver_eigenvalues.cpp 239 * Output: \verbinclude EigenSolver_eigenvalues.out 240 * 241 * \sa eigenvectors(), pseudoEigenvalueMatrix(), 242 * MatrixBase::eigenvalues() 243 */ 244 const EigenvalueType& eigenvalues() const 245 { 246 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 247 return m_eivalues; 248 } 249 250 /** \brief Computes eigendecomposition of given matrix. 251 * 252 * \param[in] matrix Square matrix whose eigendecomposition is to be computed. 253 * \param[in] computeEigenvectors If true, both the eigenvectors and the 254 * eigenvalues are computed; if false, only the eigenvalues are 255 * computed. 256 * \returns Reference to \c *this 257 * 258 * This function computes the eigenvalues of the real matrix \p matrix. 259 * The eigenvalues() function can be used to retrieve them. If 260 * \p computeEigenvectors is true, then the eigenvectors are also computed 261 * and can be retrieved by calling eigenvectors(). 262 * 263 * The matrix is first reduced to real Schur form using the RealSchur 264 * class. The Schur decomposition is then used to compute the eigenvalues 265 * and eigenvectors. 266 * 267 * The cost of the computation is dominated by the cost of the 268 * Schur decomposition, which is very approximately \f$ 25n^3 \f$ 269 * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors 270 * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false. 271 * 272 * This method reuses of the allocated data in the EigenSolver object. 273 * 274 * Example: \include EigenSolver_compute.cpp 275 * Output: \verbinclude EigenSolver_compute.out 276 */ 277 template<typename InputType> 278 EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true); 279 280 /** \returns NumericalIssue if the input contains INF or NaN values or overflow occured. Returns Success otherwise. */ 281 ComputationInfo info() const 282 { 283 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 284 return m_info; 285 } 286 287 /** \brief Sets the maximum number of iterations allowed. */ 288 EigenSolver& setMaxIterations(Index maxIters) 289 { 290 m_realSchur.setMaxIterations(maxIters); 291 return *this; 292 } 293 294 /** \brief Returns the maximum number of iterations. */ 295 Index getMaxIterations() 296 { 297 return m_realSchur.getMaxIterations(); 298 } 299 300 private: 301 void doComputeEigenvectors(); 302 303 protected: 304 305 static void check_template_parameters() 306 { 307 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); 308 EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); 309 } 310 311 MatrixType m_eivec; 312 EigenvalueType m_eivalues; 313 bool m_isInitialized; 314 bool m_eigenvectorsOk; 315 ComputationInfo m_info; 316 RealSchur<MatrixType> m_realSchur; 317 MatrixType m_matT; 318 319 typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; 320 ColumnVectorType m_tmp; 321 }; 322 323 template<typename MatrixType> 324 MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const 325 { 326 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 327 const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon(); 328 Index n = m_eivalues.rows(); 329 MatrixType matD = MatrixType::Zero(n,n); 330 for (Index i=0; i<n; ++i) 331 { 332 if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision)) 333 matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i)); 334 else 335 { 336 matD.template block<2,2>(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)), 337 -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)); 338 ++i; 339 } 340 } 341 return matD; 342 } 343 344 template<typename MatrixType> 345 typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const 346 { 347 eigen_assert(m_isInitialized && "EigenSolver is not initialized."); 348 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); 349 const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon(); 350 Index n = m_eivec.cols(); 351 EigenvectorsType matV(n,n); 352 for (Index j=0; j<n; ++j) 353 { 354 if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n) 355 { 356 // we have a real eigen value 357 matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>(); 358 matV.col(j).normalize(); 359 } 360 else 361 { 362 // we have a pair of complex eigen values 363 for (Index i=0; i<n; ++i) 364 { 365 matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1)); 366 matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1)); 367 } 368 matV.col(j).normalize(); 369 matV.col(j+1).normalize(); 370 ++j; 371 } 372 } 373 return matV; 374 } 375 376 template<typename MatrixType> 377 template<typename InputType> 378 EigenSolver<MatrixType>& 379 EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors) 380 { 381 check_template_parameters(); 382 383 using std::sqrt; 384 using std::abs; 385 using numext::isfinite; 386 eigen_assert(matrix.cols() == matrix.rows()); 387 388 // Reduce to real Schur form. 389 m_realSchur.compute(matrix.derived(), computeEigenvectors); 390 391 m_info = m_realSchur.info(); 392 393 if (m_info == Success) 394 { 395 m_matT = m_realSchur.matrixT(); 396 if (computeEigenvectors) 397 m_eivec = m_realSchur.matrixU(); 398 399 // Compute eigenvalues from matT 400 m_eivalues.resize(matrix.cols()); 401 Index i = 0; 402 while (i < matrix.cols()) 403 { 404 if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) 405 { 406 m_eivalues.coeffRef(i) = m_matT.coeff(i, i); 407 if(!(isfinite)(m_eivalues.coeffRef(i))) 408 { 409 m_isInitialized = true; 410 m_eigenvectorsOk = false; 411 m_info = NumericalIssue; 412 return *this; 413 } 414 ++i; 415 } 416 else 417 { 418 Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1)); 419 Scalar z; 420 // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1))); 421 // without overflow 422 { 423 Scalar t0 = m_matT.coeff(i+1, i); 424 Scalar t1 = m_matT.coeff(i, i+1); 425 Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1))); 426 t0 /= maxval; 427 t1 /= maxval; 428 Scalar p0 = p/maxval; 429 z = maxval * sqrt(abs(p0 * p0 + t0 * t1)); 430 } 431 432 m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z); 433 m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z); 434 if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1)))) 435 { 436 m_isInitialized = true; 437 m_eigenvectorsOk = false; 438 m_info = NumericalIssue; 439 return *this; 440 } 441 i += 2; 442 } 443 } 444 445 // Compute eigenvectors. 446 if (computeEigenvectors) 447 doComputeEigenvectors(); 448 } 449 450 m_isInitialized = true; 451 m_eigenvectorsOk = computeEigenvectors; 452 453 return *this; 454 } 455 456 457 template<typename MatrixType> 458 void EigenSolver<MatrixType>::doComputeEigenvectors() 459 { 460 using std::abs; 461 const Index size = m_eivec.cols(); 462 const Scalar eps = NumTraits<Scalar>::epsilon(); 463 464 // inefficient! this is already computed in RealSchur 465 Scalar norm(0); 466 for (Index j = 0; j < size; ++j) 467 { 468 norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum(); 469 } 470 471 // Backsubstitute to find vectors of upper triangular form 472 if (norm == Scalar(0)) 473 { 474 return; 475 } 476 477 for (Index n = size-1; n >= 0; n--) 478 { 479 Scalar p = m_eivalues.coeff(n).real(); 480 Scalar q = m_eivalues.coeff(n).imag(); 481 482 // Scalar vector 483 if (q == Scalar(0)) 484 { 485 Scalar lastr(0), lastw(0); 486 Index l = n; 487 488 m_matT.coeffRef(n,n) = Scalar(1); 489 for (Index i = n-1; i >= 0; i--) 490 { 491 Scalar w = m_matT.coeff(i,i) - p; 492 Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); 493 494 if (m_eivalues.coeff(i).imag() < Scalar(0)) 495 { 496 lastw = w; 497 lastr = r; 498 } 499 else 500 { 501 l = i; 502 if (m_eivalues.coeff(i).imag() == Scalar(0)) 503 { 504 if (w != Scalar(0)) 505 m_matT.coeffRef(i,n) = -r / w; 506 else 507 m_matT.coeffRef(i,n) = -r / (eps * norm); 508 } 509 else // Solve real equations 510 { 511 Scalar x = m_matT.coeff(i,i+1); 512 Scalar y = m_matT.coeff(i+1,i); 513 Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag(); 514 Scalar t = (x * lastr - lastw * r) / denom; 515 m_matT.coeffRef(i,n) = t; 516 if (abs(x) > abs(lastw)) 517 m_matT.coeffRef(i+1,n) = (-r - w * t) / x; 518 else 519 m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw; 520 } 521 522 // Overflow control 523 Scalar t = abs(m_matT.coeff(i,n)); 524 if ((eps * t) * t > Scalar(1)) 525 m_matT.col(n).tail(size-i) /= t; 526 } 527 } 528 } 529 else if (q < Scalar(0) && n > 0) // Complex vector 530 { 531 Scalar lastra(0), lastsa(0), lastw(0); 532 Index l = n-1; 533 534 // Last vector component imaginary so matrix is triangular 535 if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n))) 536 { 537 m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1); 538 m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1); 539 } 540 else 541 { 542 ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q); 543 m_matT.coeffRef(n-1,n-1) = numext::real(cc); 544 m_matT.coeffRef(n-1,n) = numext::imag(cc); 545 } 546 m_matT.coeffRef(n,n-1) = Scalar(0); 547 m_matT.coeffRef(n,n) = Scalar(1); 548 for (Index i = n-2; i >= 0; i--) 549 { 550 Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1)); 551 Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); 552 Scalar w = m_matT.coeff(i,i) - p; 553 554 if (m_eivalues.coeff(i).imag() < Scalar(0)) 555 { 556 lastw = w; 557 lastra = ra; 558 lastsa = sa; 559 } 560 else 561 { 562 l = i; 563 if (m_eivalues.coeff(i).imag() == RealScalar(0)) 564 { 565 ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q); 566 m_matT.coeffRef(i,n-1) = numext::real(cc); 567 m_matT.coeffRef(i,n) = numext::imag(cc); 568 } 569 else 570 { 571 // Solve complex equations 572 Scalar x = m_matT.coeff(i,i+1); 573 Scalar y = m_matT.coeff(i+1,i); 574 Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q; 575 Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q; 576 if ((vr == Scalar(0)) && (vi == Scalar(0))) 577 vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw)); 578 579 ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi); 580 m_matT.coeffRef(i,n-1) = numext::real(cc); 581 m_matT.coeffRef(i,n) = numext::imag(cc); 582 if (abs(x) > (abs(lastw) + abs(q))) 583 { 584 m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x; 585 m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x; 586 } 587 else 588 { 589 cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q); 590 m_matT.coeffRef(i+1,n-1) = numext::real(cc); 591 m_matT.coeffRef(i+1,n) = numext::imag(cc); 592 } 593 } 594 595 // Overflow control 596 Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n))); 597 if ((eps * t) * t > Scalar(1)) 598 m_matT.block(i, n-1, size-i, 2) /= t; 599 600 } 601 } 602 603 // We handled a pair of complex conjugate eigenvalues, so need to skip them both 604 n--; 605 } 606 else 607 { 608 eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen 609 } 610 } 611 612 // Back transformation to get eigenvectors of original matrix 613 for (Index j = size-1; j >= 0; j--) 614 { 615 m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1); 616 m_eivec.col(j) = m_tmp; 617 } 618 } 619 620 } // end namespace Eigen 621 622 #endif // EIGEN_EIGENSOLVER_H 623