Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #include "main.h"
     12 #include <Eigen/Geometry>
     13 #include <Eigen/LU>
     14 #include <Eigen/QR>
     15 
     16 template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane)
     17 {
     18   /* this test covers the following files:
     19      Hyperplane.h
     20   */
     21   using std::abs;
     22   typedef typename HyperplaneType::Index Index;
     23   const Index dim = _plane.dim();
     24   enum { Options = HyperplaneType::Options };
     25   typedef typename HyperplaneType::Scalar Scalar;
     26   typedef typename HyperplaneType::RealScalar RealScalar;
     27   typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
     28   typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
     29                          HyperplaneType::AmbientDimAtCompileTime> MatrixType;
     30 
     31   VectorType p0 = VectorType::Random(dim);
     32   VectorType p1 = VectorType::Random(dim);
     33 
     34   VectorType n0 = VectorType::Random(dim).normalized();
     35   VectorType n1 = VectorType::Random(dim).normalized();
     36 
     37   HyperplaneType pl0(n0, p0);
     38   HyperplaneType pl1(n1, p1);
     39   HyperplaneType pl2 = pl1;
     40 
     41   Scalar s0 = internal::random<Scalar>();
     42   Scalar s1 = internal::random<Scalar>();
     43 
     44   VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) );
     45 
     46   VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) );
     47   if(numext::abs2(s0)>RealScalar(1e-6))
     48     VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0);
     49   else
     50     VERIFY_IS_MUCH_SMALLER_THAN( abs(pl1.signedDistance(p1 + n1 * s0) - s0), Scalar(1) );
     51   VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) );
     52   VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 +  pl1.normal().unitOrthogonal() * s1), Scalar(1) );
     53 
     54   // transform
     55   if (!NumTraits<Scalar>::IsComplex)
     56   {
     57     MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ();
     58     DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random());
     59     Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random());
     60 
     61     while(scaling.diagonal().cwiseAbs().minCoeff()<RealScalar(1e-4)) scaling.diagonal() = VectorType::Random();
     62 
     63     pl2 = pl1;
     64     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) );
     65     pl2 = pl1;
     66     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) );
     67     pl2 = pl1;
     68     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) );
     69     VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
     70     pl2 = pl1;
     71     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation)
     72                                   .absDistance((rot*scaling*translation) * p1), Scalar(1) );
     73     VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
     74     pl2 = pl1;
     75     VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry)
     76                                  .absDistance((rot*translation) * p1), Scalar(1) );
     77     VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
     78   }
     79 
     80   // casting
     81   const int Dim = HyperplaneType::AmbientDimAtCompileTime;
     82   typedef typename GetDifferentType<Scalar>::type OtherScalar;
     83   Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>();
     84   VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1);
     85   Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>();
     86   VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1);
     87 }
     88 
     89 template<typename Scalar> void lines()
     90 {
     91   using std::abs;
     92   typedef Hyperplane<Scalar, 2> HLine;
     93   typedef ParametrizedLine<Scalar, 2> PLine;
     94   typedef Matrix<Scalar,2,1> Vector;
     95   typedef Matrix<Scalar,3,1> CoeffsType;
     96 
     97   for(int i = 0; i < 10; i++)
     98   {
     99     Vector center = Vector::Random();
    100     Vector u = Vector::Random();
    101     Vector v = Vector::Random();
    102     Scalar a = internal::random<Scalar>();
    103     while (abs(a-1) < Scalar(1e-4)) a = internal::random<Scalar>();
    104     while (u.norm() < Scalar(1e-4)) u = Vector::Random();
    105     while (v.norm() < Scalar(1e-4)) v = Vector::Random();
    106 
    107     HLine line_u = HLine::Through(center + u, center + a*u);
    108     HLine line_v = HLine::Through(center + v, center + a*v);
    109 
    110     // the line equations should be normalized so that a^2+b^2=1
    111     VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1));
    112     VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1));
    113 
    114     Vector result = line_u.intersection(line_v);
    115 
    116     // the lines should intersect at the point we called "center"
    117     if(abs(a-1) > Scalar(1e-2) && abs(v.normalized().dot(u.normalized()))<Scalar(0.9))
    118       VERIFY_IS_APPROX(result, center);
    119 
    120     // check conversions between two types of lines
    121     PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable
    122     HLine line_u2(pl);
    123     CoeffsType converted_coeffs = line_u2.coeffs();
    124     if(line_u2.normal().dot(line_u.normal())<Scalar(0))
    125       converted_coeffs = -line_u2.coeffs();
    126     VERIFY(line_u.coeffs().isApprox(converted_coeffs));
    127   }
    128 }
    129 
    130 template<typename Scalar> void planes()
    131 {
    132   using std::abs;
    133   typedef Hyperplane<Scalar, 3> Plane;
    134   typedef Matrix<Scalar,3,1> Vector;
    135 
    136   for(int i = 0; i < 10; i++)
    137   {
    138     Vector v0 = Vector::Random();
    139     Vector v1(v0), v2(v0);
    140     if(internal::random<double>(0,1)>0.25)
    141       v1 += Vector::Random();
    142     if(internal::random<double>(0,1)>0.25)
    143       v2 += v1 * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));
    144     if(internal::random<double>(0,1)>0.25)
    145       v2 += Vector::Random() * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));
    146 
    147     Plane p0 = Plane::Through(v0, v1, v2);
    148 
    149     VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1));
    150     VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1));
    151     VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1));
    152     VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1));
    153   }
    154 }
    155 
    156 template<typename Scalar> void hyperplane_alignment()
    157 {
    158   typedef Hyperplane<Scalar,3,AutoAlign> Plane3a;
    159   typedef Hyperplane<Scalar,3,DontAlign> Plane3u;
    160 
    161   EIGEN_ALIGN_MAX Scalar array1[4];
    162   EIGEN_ALIGN_MAX Scalar array2[4];
    163   EIGEN_ALIGN_MAX Scalar array3[4+1];
    164   Scalar* array3u = array3+1;
    165 
    166   Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a;
    167   Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u;
    168   Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u;
    169 
    170   p1->coeffs().setRandom();
    171   *p2 = *p1;
    172   *p3 = *p1;
    173 
    174   VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
    175   VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
    176 
    177   #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES > 0
    178   if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
    179     VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a));
    180   #endif
    181 }
    182 
    183 
    184 void test_geo_hyperplane()
    185 {
    186   for(int i = 0; i < g_repeat; i++) {
    187     CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) );
    188     CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) );
    189     CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) );
    190     CALL_SUBTEST_2( hyperplane_alignment<float>() );
    191     CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) );
    192     CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) );
    193     CALL_SUBTEST_1( lines<float>() );
    194     CALL_SUBTEST_3( lines<double>() );
    195     CALL_SUBTEST_2( planes<float>() );
    196     CALL_SUBTEST_5( planes<double>() );
    197   }
    198 }
    199