Home | History | Annotate | Download | only in Analysis
      1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the primary stateless implementation of the
     11 // Alias Analysis interface that implements identities (two different
     12 // globals cannot alias, etc), but does no stateful analysis.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Analysis/BasicAliasAnalysis.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/ADT/Statistic.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/CFG.h"
     21 #include "llvm/Analysis/CaptureTracking.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/LoopInfo.h"
     24 #include "llvm/Analysis/MemoryBuiltins.h"
     25 #include "llvm/Analysis/ValueTracking.h"
     26 #include "llvm/Analysis/AssumptionCache.h"
     27 #include "llvm/IR/Constants.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/Dominators.h"
     31 #include "llvm/IR/GlobalAlias.h"
     32 #include "llvm/IR/GlobalVariable.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/LLVMContext.h"
     36 #include "llvm/IR/Operator.h"
     37 #include "llvm/Pass.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include <algorithm>
     40 
     41 #define DEBUG_TYPE "basicaa"
     42 
     43 using namespace llvm;
     44 
     45 /// Enable analysis of recursive PHI nodes.
     46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
     47                                           cl::init(false));
     48 /// SearchLimitReached / SearchTimes shows how often the limit of
     49 /// to decompose GEPs is reached. It will affect the precision
     50 /// of basic alias analysis.
     51 STATISTIC(SearchLimitReached, "Number of times the limit to "
     52                               "decompose GEPs is reached");
     53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
     54 
     55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
     56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
     57 /// careful with value equivalence. We use reachability to make sure a value
     58 /// cannot be involved in a cycle.
     59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
     60 
     61 // The max limit of the search depth in DecomposeGEPExpression() and
     62 // GetUnderlyingObject(), both functions need to use the same search
     63 // depth otherwise the algorithm in aliasGEP will assert.
     64 static const unsigned MaxLookupSearchDepth = 6;
     65 
     66 //===----------------------------------------------------------------------===//
     67 // Useful predicates
     68 //===----------------------------------------------------------------------===//
     69 
     70 /// Returns true if the pointer is to a function-local object that never
     71 /// escapes from the function.
     72 static bool isNonEscapingLocalObject(const Value *V) {
     73   // If this is a local allocation, check to see if it escapes.
     74   if (isa<AllocaInst>(V) || isNoAliasCall(V))
     75     // Set StoreCaptures to True so that we can assume in our callers that the
     76     // pointer is not the result of a load instruction. Currently
     77     // PointerMayBeCaptured doesn't have any special analysis for the
     78     // StoreCaptures=false case; if it did, our callers could be refined to be
     79     // more precise.
     80     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
     81 
     82   // If this is an argument that corresponds to a byval or noalias argument,
     83   // then it has not escaped before entering the function.  Check if it escapes
     84   // inside the function.
     85   if (const Argument *A = dyn_cast<Argument>(V))
     86     if (A->hasByValAttr() || A->hasNoAliasAttr())
     87       // Note even if the argument is marked nocapture, we still need to check
     88       // for copies made inside the function. The nocapture attribute only
     89       // specifies that there are no copies made that outlive the function.
     90       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
     91 
     92   return false;
     93 }
     94 
     95 /// Returns true if the pointer is one which would have been considered an
     96 /// escape by isNonEscapingLocalObject.
     97 static bool isEscapeSource(const Value *V) {
     98   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
     99     return true;
    100 
    101   // The load case works because isNonEscapingLocalObject considers all
    102   // stores to be escapes (it passes true for the StoreCaptures argument
    103   // to PointerMayBeCaptured).
    104   if (isa<LoadInst>(V))
    105     return true;
    106 
    107   return false;
    108 }
    109 
    110 /// Returns the size of the object specified by V or UnknownSize if unknown.
    111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
    112                               const TargetLibraryInfo &TLI,
    113                               bool RoundToAlign = false) {
    114   uint64_t Size;
    115   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
    116     return Size;
    117   return MemoryLocation::UnknownSize;
    118 }
    119 
    120 /// Returns true if we can prove that the object specified by V is smaller than
    121 /// Size.
    122 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
    123                                 const DataLayout &DL,
    124                                 const TargetLibraryInfo &TLI) {
    125   // Note that the meanings of the "object" are slightly different in the
    126   // following contexts:
    127   //    c1: llvm::getObjectSize()
    128   //    c2: llvm.objectsize() intrinsic
    129   //    c3: isObjectSmallerThan()
    130   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
    131   // refers to the "entire object".
    132   //
    133   //  Consider this example:
    134   //     char *p = (char*)malloc(100)
    135   //     char *q = p+80;
    136   //
    137   //  In the context of c1 and c2, the "object" pointed by q refers to the
    138   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
    139   //
    140   //  However, in the context of c3, the "object" refers to the chunk of memory
    141   // being allocated. So, the "object" has 100 bytes, and q points to the middle
    142   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
    143   // parameter, before the llvm::getObjectSize() is called to get the size of
    144   // entire object, we should:
    145   //    - either rewind the pointer q to the base-address of the object in
    146   //      question (in this case rewind to p), or
    147   //    - just give up. It is up to caller to make sure the pointer is pointing
    148   //      to the base address the object.
    149   //
    150   // We go for 2nd option for simplicity.
    151   if (!isIdentifiedObject(V))
    152     return false;
    153 
    154   // This function needs to use the aligned object size because we allow
    155   // reads a bit past the end given sufficient alignment.
    156   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
    157 
    158   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
    159 }
    160 
    161 /// Returns true if we can prove that the object specified by V has size Size.
    162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
    163                          const TargetLibraryInfo &TLI) {
    164   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
    165   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
    166 }
    167 
    168 //===----------------------------------------------------------------------===//
    169 // GetElementPtr Instruction Decomposition and Analysis
    170 //===----------------------------------------------------------------------===//
    171 
    172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
    173 /// B are constant integers.
    174 ///
    175 /// Returns the scale and offset values as APInts and return V as a Value*, and
    176 /// return whether we looked through any sign or zero extends.  The incoming
    177 /// Value is known to have IntegerType, and it may already be sign or zero
    178 /// extended.
    179 ///
    180 /// Note that this looks through extends, so the high bits may not be
    181 /// represented in the result.
    182 /*static*/ const Value *BasicAAResult::GetLinearExpression(
    183     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
    184     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
    185     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
    186   assert(V->getType()->isIntegerTy() && "Not an integer value");
    187 
    188   // Limit our recursion depth.
    189   if (Depth == 6) {
    190     Scale = 1;
    191     Offset = 0;
    192     return V;
    193   }
    194 
    195   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
    196     // If it's a constant, just convert it to an offset and remove the variable.
    197     // If we've been called recursively, the Offset bit width will be greater
    198     // than the constant's (the Offset's always as wide as the outermost call),
    199     // so we'll zext here and process any extension in the isa<SExtInst> &
    200     // isa<ZExtInst> cases below.
    201     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
    202     assert(Scale == 0 && "Constant values don't have a scale");
    203     return V;
    204   }
    205 
    206   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
    207     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
    208 
    209       // If we've been called recursively, then Offset and Scale will be wider
    210       // than the BOp operands. We'll always zext it here as we'll process sign
    211       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
    212       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
    213 
    214       switch (BOp->getOpcode()) {
    215       default:
    216         // We don't understand this instruction, so we can't decompose it any
    217         // further.
    218         Scale = 1;
    219         Offset = 0;
    220         return V;
    221       case Instruction::Or:
    222         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
    223         // analyze it.
    224         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
    225                                BOp, DT)) {
    226           Scale = 1;
    227           Offset = 0;
    228           return V;
    229         }
    230       // FALL THROUGH.
    231       case Instruction::Add:
    232         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
    233                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
    234         Offset += RHS;
    235         break;
    236       case Instruction::Sub:
    237         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
    238                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
    239         Offset -= RHS;
    240         break;
    241       case Instruction::Mul:
    242         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
    243                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
    244         Offset *= RHS;
    245         Scale *= RHS;
    246         break;
    247       case Instruction::Shl:
    248         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
    249                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
    250         Offset <<= RHS.getLimitedValue();
    251         Scale <<= RHS.getLimitedValue();
    252         // the semantics of nsw and nuw for left shifts don't match those of
    253         // multiplications, so we won't propagate them.
    254         NSW = NUW = false;
    255         return V;
    256       }
    257 
    258       if (isa<OverflowingBinaryOperator>(BOp)) {
    259         NUW &= BOp->hasNoUnsignedWrap();
    260         NSW &= BOp->hasNoSignedWrap();
    261       }
    262       return V;
    263     }
    264   }
    265 
    266   // Since GEP indices are sign extended anyway, we don't care about the high
    267   // bits of a sign or zero extended value - just scales and offsets.  The
    268   // extensions have to be consistent though.
    269   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
    270     Value *CastOp = cast<CastInst>(V)->getOperand(0);
    271     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
    272     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
    273     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
    274     const Value *Result =
    275         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
    276                             Depth + 1, AC, DT, NSW, NUW);
    277 
    278     // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
    279     // by just incrementing the number of bits we've extended by.
    280     unsigned ExtendedBy = NewWidth - SmallWidth;
    281 
    282     if (isa<SExtInst>(V) && ZExtBits == 0) {
    283       // sext(sext(%x, a), b) == sext(%x, a + b)
    284 
    285       if (NSW) {
    286         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
    287         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
    288         unsigned OldWidth = Offset.getBitWidth();
    289         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
    290       } else {
    291         // We may have signed-wrapped, so don't decompose sext(%x + c) into
    292         // sext(%x) + sext(c)
    293         Scale = 1;
    294         Offset = 0;
    295         Result = CastOp;
    296         ZExtBits = OldZExtBits;
    297         SExtBits = OldSExtBits;
    298       }
    299       SExtBits += ExtendedBy;
    300     } else {
    301       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
    302 
    303       if (!NUW) {
    304         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
    305         // zext(%x) + zext(c)
    306         Scale = 1;
    307         Offset = 0;
    308         Result = CastOp;
    309         ZExtBits = OldZExtBits;
    310         SExtBits = OldSExtBits;
    311       }
    312       ZExtBits += ExtendedBy;
    313     }
    314 
    315     return Result;
    316   }
    317 
    318   Scale = 1;
    319   Offset = 0;
    320   return V;
    321 }
    322 
    323 /// To ensure a pointer offset fits in an integer of size PointerSize
    324 /// (in bits) when that size is smaller than 64. This is an issue in
    325 /// particular for 32b programs with negative indices that rely on two's
    326 /// complement wrap-arounds for precise alias information.
    327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
    328   assert(PointerSize <= 64 && "Invalid PointerSize!");
    329   unsigned ShiftBits = 64 - PointerSize;
    330   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
    331 }
    332 
    333 /// If V is a symbolic pointer expression, decompose it into a base pointer
    334 /// with a constant offset and a number of scaled symbolic offsets.
    335 ///
    336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
    337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
    338 /// specified amount, but which may have other unrepresented high bits. As
    339 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
    340 ///
    341 /// When DataLayout is around, this function is capable of analyzing everything
    342 /// that GetUnderlyingObject can look through. To be able to do that
    343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
    344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
    345 /// through pointer casts.
    346 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
    347        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
    348        DominatorTree *DT) {
    349   // Limit recursion depth to limit compile time in crazy cases.
    350   unsigned MaxLookup = MaxLookupSearchDepth;
    351   SearchTimes++;
    352 
    353   Decomposed.StructOffset = 0;
    354   Decomposed.OtherOffset = 0;
    355   Decomposed.VarIndices.clear();
    356   do {
    357     // See if this is a bitcast or GEP.
    358     const Operator *Op = dyn_cast<Operator>(V);
    359     if (!Op) {
    360       // The only non-operator case we can handle are GlobalAliases.
    361       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    362         if (!GA->isInterposable()) {
    363           V = GA->getAliasee();
    364           continue;
    365         }
    366       }
    367       Decomposed.Base = V;
    368       return false;
    369     }
    370 
    371     if (Op->getOpcode() == Instruction::BitCast ||
    372         Op->getOpcode() == Instruction::AddrSpaceCast) {
    373       V = Op->getOperand(0);
    374       continue;
    375     }
    376 
    377     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
    378     if (!GEPOp) {
    379       if (auto CS = ImmutableCallSite(V))
    380         if (const Value *RV = CS.getReturnedArgOperand()) {
    381           V = RV;
    382           continue;
    383         }
    384 
    385       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
    386       // can come up with something. This matches what GetUnderlyingObject does.
    387       if (const Instruction *I = dyn_cast<Instruction>(V))
    388         // TODO: Get a DominatorTree and AssumptionCache and use them here
    389         // (these are both now available in this function, but this should be
    390         // updated when GetUnderlyingObject is updated). TLI should be
    391         // provided also.
    392         if (const Value *Simplified =
    393                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
    394           V = Simplified;
    395           continue;
    396         }
    397 
    398       Decomposed.Base = V;
    399       return false;
    400     }
    401 
    402     // Don't attempt to analyze GEPs over unsized objects.
    403     if (!GEPOp->getSourceElementType()->isSized()) {
    404       Decomposed.Base = V;
    405       return false;
    406     }
    407 
    408     unsigned AS = GEPOp->getPointerAddressSpace();
    409     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
    410     gep_type_iterator GTI = gep_type_begin(GEPOp);
    411     unsigned PointerSize = DL.getPointerSizeInBits(AS);
    412     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
    413          I != E; ++I) {
    414       const Value *Index = *I;
    415       // Compute the (potentially symbolic) offset in bytes for this index.
    416       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
    417         // For a struct, add the member offset.
    418         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
    419         if (FieldNo == 0)
    420           continue;
    421 
    422         Decomposed.StructOffset +=
    423           DL.getStructLayout(STy)->getElementOffset(FieldNo);
    424         continue;
    425       }
    426 
    427       // For an array/pointer, add the element offset, explicitly scaled.
    428       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
    429         if (CIdx->isZero())
    430           continue;
    431         Decomposed.OtherOffset +=
    432           DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
    433         continue;
    434       }
    435 
    436       uint64_t Scale = DL.getTypeAllocSize(*GTI);
    437       unsigned ZExtBits = 0, SExtBits = 0;
    438 
    439       // If the integer type is smaller than the pointer size, it is implicitly
    440       // sign extended to pointer size.
    441       unsigned Width = Index->getType()->getIntegerBitWidth();
    442       if (PointerSize > Width)
    443         SExtBits += PointerSize - Width;
    444 
    445       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
    446       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
    447       bool NSW = true, NUW = true;
    448       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
    449                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
    450 
    451       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
    452       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
    453       Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
    454       Scale *= IndexScale.getSExtValue();
    455 
    456       // If we already had an occurrence of this index variable, merge this
    457       // scale into it.  For example, we want to handle:
    458       //   A[x][x] -> x*16 + x*4 -> x*20
    459       // This also ensures that 'x' only appears in the index list once.
    460       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
    461         if (Decomposed.VarIndices[i].V == Index &&
    462             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
    463             Decomposed.VarIndices[i].SExtBits == SExtBits) {
    464           Scale += Decomposed.VarIndices[i].Scale;
    465           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
    466           break;
    467         }
    468       }
    469 
    470       // Make sure that we have a scale that makes sense for this target's
    471       // pointer size.
    472       Scale = adjustToPointerSize(Scale, PointerSize);
    473 
    474       if (Scale) {
    475         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
    476                                   static_cast<int64_t>(Scale)};
    477         Decomposed.VarIndices.push_back(Entry);
    478       }
    479     }
    480 
    481     // Take care of wrap-arounds
    482     Decomposed.StructOffset =
    483       adjustToPointerSize(Decomposed.StructOffset, PointerSize);
    484     Decomposed.OtherOffset =
    485       adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
    486 
    487     // Analyze the base pointer next.
    488     V = GEPOp->getOperand(0);
    489   } while (--MaxLookup);
    490 
    491   // If the chain of expressions is too deep, just return early.
    492   Decomposed.Base = V;
    493   SearchLimitReached++;
    494   return true;
    495 }
    496 
    497 /// Returns whether the given pointer value points to memory that is local to
    498 /// the function, with global constants being considered local to all
    499 /// functions.
    500 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
    501                                            bool OrLocal) {
    502   assert(Visited.empty() && "Visited must be cleared after use!");
    503 
    504   unsigned MaxLookup = 8;
    505   SmallVector<const Value *, 16> Worklist;
    506   Worklist.push_back(Loc.Ptr);
    507   do {
    508     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
    509     if (!Visited.insert(V).second) {
    510       Visited.clear();
    511       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    512     }
    513 
    514     // An alloca instruction defines local memory.
    515     if (OrLocal && isa<AllocaInst>(V))
    516       continue;
    517 
    518     // A global constant counts as local memory for our purposes.
    519     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    520       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
    521       // global to be marked constant in some modules and non-constant in
    522       // others.  GV may even be a declaration, not a definition.
    523       if (!GV->isConstant()) {
    524         Visited.clear();
    525         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    526       }
    527       continue;
    528     }
    529 
    530     // If both select values point to local memory, then so does the select.
    531     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
    532       Worklist.push_back(SI->getTrueValue());
    533       Worklist.push_back(SI->getFalseValue());
    534       continue;
    535     }
    536 
    537     // If all values incoming to a phi node point to local memory, then so does
    538     // the phi.
    539     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
    540       // Don't bother inspecting phi nodes with many operands.
    541       if (PN->getNumIncomingValues() > MaxLookup) {
    542         Visited.clear();
    543         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    544       }
    545       for (Value *IncValue : PN->incoming_values())
    546         Worklist.push_back(IncValue);
    547       continue;
    548     }
    549 
    550     // Otherwise be conservative.
    551     Visited.clear();
    552     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    553 
    554   } while (!Worklist.empty() && --MaxLookup);
    555 
    556   Visited.clear();
    557   return Worklist.empty();
    558 }
    559 
    560 /// Returns the behavior when calling the given call site.
    561 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
    562   if (CS.doesNotAccessMemory())
    563     // Can't do better than this.
    564     return FMRB_DoesNotAccessMemory;
    565 
    566   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
    567 
    568   // If the callsite knows it only reads memory, don't return worse
    569   // than that.
    570   if (CS.onlyReadsMemory())
    571     Min = FMRB_OnlyReadsMemory;
    572   else if (CS.doesNotReadMemory())
    573     Min = FMRB_DoesNotReadMemory;
    574 
    575   if (CS.onlyAccessesArgMemory())
    576     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
    577 
    578   // If CS has operand bundles then aliasing attributes from the function it
    579   // calls do not directly apply to the CallSite.  This can be made more
    580   // precise in the future.
    581   if (!CS.hasOperandBundles())
    582     if (const Function *F = CS.getCalledFunction())
    583       Min =
    584           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
    585 
    586   return Min;
    587 }
    588 
    589 /// Returns the behavior when calling the given function. For use when the call
    590 /// site is not known.
    591 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
    592   // If the function declares it doesn't access memory, we can't do better.
    593   if (F->doesNotAccessMemory())
    594     return FMRB_DoesNotAccessMemory;
    595 
    596   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
    597 
    598   // If the function declares it only reads memory, go with that.
    599   if (F->onlyReadsMemory())
    600     Min = FMRB_OnlyReadsMemory;
    601   else if (F->doesNotReadMemory())
    602     Min = FMRB_DoesNotReadMemory;
    603 
    604   if (F->onlyAccessesArgMemory())
    605     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
    606 
    607   return Min;
    608 }
    609 
    610 /// Returns true if this is a writeonly (i.e Mod only) parameter.
    611 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
    612                              const TargetLibraryInfo &TLI) {
    613   if (CS.paramHasAttr(ArgIdx + 1, Attribute::WriteOnly))
    614     return true;
    615 
    616   // We can bound the aliasing properties of memset_pattern16 just as we can
    617   // for memcpy/memset.  This is particularly important because the
    618   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
    619   // whenever possible.
    620   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
    621   // attributes.
    622   LibFunc::Func F;
    623   if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
    624       F == LibFunc::memset_pattern16 && TLI.has(F))
    625     if (ArgIdx == 0)
    626       return true;
    627 
    628   // TODO: memset_pattern4, memset_pattern8
    629   // TODO: _chk variants
    630   // TODO: strcmp, strcpy
    631 
    632   return false;
    633 }
    634 
    635 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
    636                                            unsigned ArgIdx) {
    637 
    638   // Checking for known builtin intrinsics and target library functions.
    639   if (isWriteOnlyParam(CS, ArgIdx, TLI))
    640     return MRI_Mod;
    641 
    642   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
    643     return MRI_Ref;
    644 
    645   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
    646     return MRI_NoModRef;
    647 
    648   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
    649 }
    650 
    651 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
    652   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
    653   return II && II->getIntrinsicID() == IID;
    654 }
    655 
    656 #ifndef NDEBUG
    657 static const Function *getParent(const Value *V) {
    658   if (const Instruction *inst = dyn_cast<Instruction>(V))
    659     return inst->getParent()->getParent();
    660 
    661   if (const Argument *arg = dyn_cast<Argument>(V))
    662     return arg->getParent();
    663 
    664   return nullptr;
    665 }
    666 
    667 static bool notDifferentParent(const Value *O1, const Value *O2) {
    668 
    669   const Function *F1 = getParent(O1);
    670   const Function *F2 = getParent(O2);
    671 
    672   return !F1 || !F2 || F1 == F2;
    673 }
    674 #endif
    675 
    676 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
    677                                  const MemoryLocation &LocB) {
    678   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
    679          "BasicAliasAnalysis doesn't support interprocedural queries.");
    680 
    681   // If we have a directly cached entry for these locations, we have recursed
    682   // through this once, so just return the cached results. Notably, when this
    683   // happens, we don't clear the cache.
    684   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
    685   if (CacheIt != AliasCache.end())
    686     return CacheIt->second;
    687 
    688   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
    689                                  LocB.Size, LocB.AATags);
    690   // AliasCache rarely has more than 1 or 2 elements, always use
    691   // shrink_and_clear so it quickly returns to the inline capacity of the
    692   // SmallDenseMap if it ever grows larger.
    693   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
    694   AliasCache.shrink_and_clear();
    695   VisitedPhiBBs.clear();
    696   return Alias;
    697 }
    698 
    699 /// Checks to see if the specified callsite can clobber the specified memory
    700 /// object.
    701 ///
    702 /// Since we only look at local properties of this function, we really can't
    703 /// say much about this query.  We do, however, use simple "address taken"
    704 /// analysis on local objects.
    705 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
    706                                         const MemoryLocation &Loc) {
    707   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
    708          "AliasAnalysis query involving multiple functions!");
    709 
    710   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
    711 
    712   // If this is a tail call and Loc.Ptr points to a stack location, we know that
    713   // the tail call cannot access or modify the local stack.
    714   // We cannot exclude byval arguments here; these belong to the caller of
    715   // the current function not to the current function, and a tail callee
    716   // may reference them.
    717   if (isa<AllocaInst>(Object))
    718     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
    719       if (CI->isTailCall())
    720         return MRI_NoModRef;
    721 
    722   // If the pointer is to a locally allocated object that does not escape,
    723   // then the call can not mod/ref the pointer unless the call takes the pointer
    724   // as an argument, and itself doesn't capture it.
    725   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
    726       isNonEscapingLocalObject(Object)) {
    727     bool PassedAsArg = false;
    728     unsigned OperandNo = 0;
    729     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
    730          CI != CE; ++CI, ++OperandNo) {
    731       // Only look at the no-capture or byval pointer arguments.  If this
    732       // pointer were passed to arguments that were neither of these, then it
    733       // couldn't be no-capture.
    734       if (!(*CI)->getType()->isPointerTy() ||
    735           (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
    736         continue;
    737 
    738       // If this is a no-capture pointer argument, see if we can tell that it
    739       // is impossible to alias the pointer we're checking.  If not, we have to
    740       // assume that the call could touch the pointer, even though it doesn't
    741       // escape.
    742       AliasResult AR =
    743           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
    744       if (AR) {
    745         PassedAsArg = true;
    746         break;
    747       }
    748     }
    749 
    750     if (!PassedAsArg)
    751       return MRI_NoModRef;
    752   }
    753 
    754   // If the CallSite is to malloc or calloc, we can assume that it doesn't
    755   // modify any IR visible value.  This is only valid because we assume these
    756   // routines do not read values visible in the IR.  TODO: Consider special
    757   // casing realloc and strdup routines which access only their arguments as
    758   // well.  Or alternatively, replace all of this with inaccessiblememonly once
    759   // that's implemented fully.
    760   auto *Inst = CS.getInstruction();
    761   if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) {
    762     // Be conservative if the accessed pointer may alias the allocation -
    763     // fallback to the generic handling below.
    764     if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
    765       return MRI_NoModRef;
    766   }
    767 
    768   // While the assume intrinsic is marked as arbitrarily writing so that
    769   // proper control dependencies will be maintained, it never aliases any
    770   // particular memory location.
    771   if (isIntrinsicCall(CS, Intrinsic::assume))
    772     return MRI_NoModRef;
    773 
    774   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
    775   // that proper control dependencies are maintained but they never mods any
    776   // particular memory location.
    777   //
    778   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
    779   // heap state at the point the guard is issued needs to be consistent in case
    780   // the guard invokes the "deopt" continuation.
    781   if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
    782     return MRI_Ref;
    783 
    784   // The AAResultBase base class has some smarts, lets use them.
    785   return AAResultBase::getModRefInfo(CS, Loc);
    786 }
    787 
    788 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
    789                                         ImmutableCallSite CS2) {
    790   // While the assume intrinsic is marked as arbitrarily writing so that
    791   // proper control dependencies will be maintained, it never aliases any
    792   // particular memory location.
    793   if (isIntrinsicCall(CS1, Intrinsic::assume) ||
    794       isIntrinsicCall(CS2, Intrinsic::assume))
    795     return MRI_NoModRef;
    796 
    797   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
    798   // that proper control dependencies are maintained but they never mod any
    799   // particular memory location.
    800   //
    801   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
    802   // heap state at the point the guard is issued needs to be consistent in case
    803   // the guard invokes the "deopt" continuation.
    804 
    805   // NB! This function is *not* commutative, so we specical case two
    806   // possibilities for guard intrinsics.
    807 
    808   if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
    809     return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef;
    810 
    811   if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
    812     return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef;
    813 
    814   // The AAResultBase base class has some smarts, lets use them.
    815   return AAResultBase::getModRefInfo(CS1, CS2);
    816 }
    817 
    818 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
    819 /// both having the exact same pointer operand.
    820 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
    821                                             uint64_t V1Size,
    822                                             const GEPOperator *GEP2,
    823                                             uint64_t V2Size,
    824                                             const DataLayout &DL) {
    825 
    826   assert(GEP1->getPointerOperand()->stripPointerCasts() ==
    827          GEP2->getPointerOperand()->stripPointerCasts() &&
    828          GEP1->getPointerOperand()->getType() ==
    829          GEP2->getPointerOperand()->getType() &&
    830          "Expected GEPs with the same pointer operand");
    831 
    832   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
    833   // such that the struct field accesses provably cannot alias.
    834   // We also need at least two indices (the pointer, and the struct field).
    835   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
    836       GEP1->getNumIndices() < 2)
    837     return MayAlias;
    838 
    839   // If we don't know the size of the accesses through both GEPs, we can't
    840   // determine whether the struct fields accessed can't alias.
    841   if (V1Size == MemoryLocation::UnknownSize ||
    842       V2Size == MemoryLocation::UnknownSize)
    843     return MayAlias;
    844 
    845   ConstantInt *C1 =
    846       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
    847   ConstantInt *C2 =
    848       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
    849 
    850   // If the last (struct) indices are constants and are equal, the other indices
    851   // might be also be dynamically equal, so the GEPs can alias.
    852   if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
    853     return MayAlias;
    854 
    855   // Find the last-indexed type of the GEP, i.e., the type you'd get if
    856   // you stripped the last index.
    857   // On the way, look at each indexed type.  If there's something other
    858   // than an array, different indices can lead to different final types.
    859   SmallVector<Value *, 8> IntermediateIndices;
    860 
    861   // Insert the first index; we don't need to check the type indexed
    862   // through it as it only drops the pointer indirection.
    863   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
    864   IntermediateIndices.push_back(GEP1->getOperand(1));
    865 
    866   // Insert all the remaining indices but the last one.
    867   // Also, check that they all index through arrays.
    868   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
    869     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
    870             GEP1->getSourceElementType(), IntermediateIndices)))
    871       return MayAlias;
    872     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
    873   }
    874 
    875   auto *Ty = GetElementPtrInst::getIndexedType(
    876     GEP1->getSourceElementType(), IntermediateIndices);
    877   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
    878 
    879   if (isa<SequentialType>(Ty)) {
    880     // We know that:
    881     // - both GEPs begin indexing from the exact same pointer;
    882     // - the last indices in both GEPs are constants, indexing into a sequential
    883     //   type (array or pointer);
    884     // - both GEPs only index through arrays prior to that.
    885     //
    886     // Because array indices greater than the number of elements are valid in
    887     // GEPs, unless we know the intermediate indices are identical between
    888     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
    889     // partially overlap. We also need to check that the loaded size matches
    890     // the element size, otherwise we could still have overlap.
    891     const uint64_t ElementSize =
    892         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
    893     if (V1Size != ElementSize || V2Size != ElementSize)
    894       return MayAlias;
    895 
    896     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
    897       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
    898         return MayAlias;
    899 
    900     // Now we know that the array/pointer that GEP1 indexes into and that
    901     // that GEP2 indexes into must either precisely overlap or be disjoint.
    902     // Because they cannot partially overlap and because fields in an array
    903     // cannot overlap, if we can prove the final indices are different between
    904     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
    905 
    906     // If the last indices are constants, we've already checked they don't
    907     // equal each other so we can exit early.
    908     if (C1 && C2)
    909       return NoAlias;
    910     if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
    911                         GEP2->getOperand(GEP2->getNumOperands() - 1),
    912                         DL))
    913       return NoAlias;
    914     return MayAlias;
    915   } else if (!LastIndexedStruct || !C1 || !C2) {
    916     return MayAlias;
    917   }
    918 
    919   // We know that:
    920   // - both GEPs begin indexing from the exact same pointer;
    921   // - the last indices in both GEPs are constants, indexing into a struct;
    922   // - said indices are different, hence, the pointed-to fields are different;
    923   // - both GEPs only index through arrays prior to that.
    924   //
    925   // This lets us determine that the struct that GEP1 indexes into and the
    926   // struct that GEP2 indexes into must either precisely overlap or be
    927   // completely disjoint.  Because they cannot partially overlap, indexing into
    928   // different non-overlapping fields of the struct will never alias.
    929 
    930   // Therefore, the only remaining thing needed to show that both GEPs can't
    931   // alias is that the fields are not overlapping.
    932   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
    933   const uint64_t StructSize = SL->getSizeInBytes();
    934   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
    935   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
    936 
    937   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
    938                                       uint64_t V2Off, uint64_t V2Size) {
    939     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
    940            ((V2Off + V2Size <= StructSize) ||
    941             (V2Off + V2Size - StructSize <= V1Off));
    942   };
    943 
    944   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
    945       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
    946     return NoAlias;
    947 
    948   return MayAlias;
    949 }
    950 
    951 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
    952 // beginning of the object the GEP points would have a negative offset with
    953 // repsect to the alloca, that means the GEP can not alias pointer (b).
    954 // Note that the pointer based on the alloca may not be a GEP. For
    955 // example, it may be the alloca itself.
    956 // The same applies if (b) is based on a GlobalVariable. Note that just being
    957 // based on isIdentifiedObject() is not enough - we need an identified object
    958 // that does not permit access to negative offsets. For example, a negative
    959 // offset from a noalias argument or call can be inbounds w.r.t the actual
    960 // underlying object.
    961 //
    962 // For example, consider:
    963 //
    964 //   struct { int f0, int f1, ...} foo;
    965 //   foo alloca;
    966 //   foo* random = bar(alloca);
    967 //   int *f0 = &alloca.f0
    968 //   int *f1 = &random->f1;
    969 //
    970 // Which is lowered, approximately, to:
    971 //
    972 //  %alloca = alloca %struct.foo
    973 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
    974 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
    975 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
    976 //
    977 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
    978 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
    979 // point into the same object. But since %f0 points to the beginning of %alloca,
    980 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
    981 // than (%alloca - 1), and so is not inbounds, a contradiction.
    982 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
    983       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
    984       uint64_t ObjectAccessSize) {
    985   // If the object access size is unknown, or the GEP isn't inbounds, bail.
    986   if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds())
    987     return false;
    988 
    989   // We need the object to be an alloca or a globalvariable, and want to know
    990   // the offset of the pointer from the object precisely, so no variable
    991   // indices are allowed.
    992   if (!(isa<AllocaInst>(DecompObject.Base) ||
    993         isa<GlobalVariable>(DecompObject.Base)) ||
    994       !DecompObject.VarIndices.empty())
    995     return false;
    996 
    997   int64_t ObjectBaseOffset = DecompObject.StructOffset +
    998                              DecompObject.OtherOffset;
    999 
   1000   // If the GEP has no variable indices, we know the precise offset
   1001   // from the base, then use it. If the GEP has variable indices, we're in
   1002   // a bit more trouble: we can't count on the constant offsets that come
   1003   // from non-struct sources, since these can be "rewound" by a negative
   1004   // variable offset. So use only offsets that came from structs.
   1005   int64_t GEPBaseOffset = DecompGEP.StructOffset;
   1006   if (DecompGEP.VarIndices.empty())
   1007     GEPBaseOffset += DecompGEP.OtherOffset;
   1008 
   1009   return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
   1010 }
   1011 
   1012 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
   1013 /// another pointer.
   1014 ///
   1015 /// We know that V1 is a GEP, but we don't know anything about V2.
   1016 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
   1017 /// V2.
   1018 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
   1019                                     const AAMDNodes &V1AAInfo, const Value *V2,
   1020                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
   1021                                     const Value *UnderlyingV1,
   1022                                     const Value *UnderlyingV2) {
   1023   DecomposedGEP DecompGEP1, DecompGEP2;
   1024   bool GEP1MaxLookupReached =
   1025     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
   1026   bool GEP2MaxLookupReached =
   1027     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
   1028 
   1029   int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
   1030   int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
   1031 
   1032   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
   1033          "DecomposeGEPExpression returned a result different from "
   1034          "GetUnderlyingObject");
   1035 
   1036   // If the GEP's offset relative to its base is such that the base would
   1037   // fall below the start of the object underlying V2, then the GEP and V2
   1038   // cannot alias.
   1039   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
   1040       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
   1041     return NoAlias;
   1042   // If we have two gep instructions with must-alias or not-alias'ing base
   1043   // pointers, figure out if the indexes to the GEP tell us anything about the
   1044   // derived pointer.
   1045   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
   1046     // Check for the GEP base being at a negative offset, this time in the other
   1047     // direction.
   1048     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
   1049         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
   1050       return NoAlias;
   1051     // Do the base pointers alias?
   1052     AliasResult BaseAlias =
   1053         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
   1054                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
   1055 
   1056     // Check for geps of non-aliasing underlying pointers where the offsets are
   1057     // identical.
   1058     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
   1059       // Do the base pointers alias assuming type and size.
   1060       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
   1061                                                 UnderlyingV2, V2Size, V2AAInfo);
   1062       if (PreciseBaseAlias == NoAlias) {
   1063         // See if the computed offset from the common pointer tells us about the
   1064         // relation of the resulting pointer.
   1065         // If the max search depth is reached the result is undefined
   1066         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
   1067           return MayAlias;
   1068 
   1069         // Same offsets.
   1070         if (GEP1BaseOffset == GEP2BaseOffset &&
   1071             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
   1072           return NoAlias;
   1073       }
   1074     }
   1075 
   1076     // If we get a No or May, then return it immediately, no amount of analysis
   1077     // will improve this situation.
   1078     if (BaseAlias != MustAlias)
   1079       return BaseAlias;
   1080 
   1081     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
   1082     // exactly, see if the computed offset from the common pointer tells us
   1083     // about the relation of the resulting pointer.
   1084     // If we know the two GEPs are based off of the exact same pointer (and not
   1085     // just the same underlying object), see if that tells us anything about
   1086     // the resulting pointers.
   1087     if (GEP1->getPointerOperand()->stripPointerCasts() ==
   1088         GEP2->getPointerOperand()->stripPointerCasts() &&
   1089         GEP1->getPointerOperand()->getType() ==
   1090         GEP2->getPointerOperand()->getType()) {
   1091       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
   1092       // If we couldn't find anything interesting, don't abandon just yet.
   1093       if (R != MayAlias)
   1094         return R;
   1095     }
   1096 
   1097     // If the max search depth is reached, the result is undefined
   1098     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
   1099       return MayAlias;
   1100 
   1101     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
   1102     // symbolic difference.
   1103     GEP1BaseOffset -= GEP2BaseOffset;
   1104     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
   1105 
   1106   } else {
   1107     // Check to see if these two pointers are related by the getelementptr
   1108     // instruction.  If one pointer is a GEP with a non-zero index of the other
   1109     // pointer, we know they cannot alias.
   1110 
   1111     // If both accesses are unknown size, we can't do anything useful here.
   1112     if (V1Size == MemoryLocation::UnknownSize &&
   1113         V2Size == MemoryLocation::UnknownSize)
   1114       return MayAlias;
   1115 
   1116     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
   1117                                AAMDNodes(), V2, V2Size, V2AAInfo);
   1118     if (R != MustAlias)
   1119       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
   1120       // If V2 is known not to alias GEP base pointer, then the two values
   1121       // cannot alias per GEP semantics: "A pointer value formed from a
   1122       // getelementptr instruction is associated with the addresses associated
   1123       // with the first operand of the getelementptr".
   1124       return R;
   1125 
   1126     // If the max search depth is reached the result is undefined
   1127     if (GEP1MaxLookupReached)
   1128       return MayAlias;
   1129   }
   1130 
   1131   // In the two GEP Case, if there is no difference in the offsets of the
   1132   // computed pointers, the resultant pointers are a must alias.  This
   1133   // happens when we have two lexically identical GEP's (for example).
   1134   //
   1135   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
   1136   // must aliases the GEP, the end result is a must alias also.
   1137   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
   1138     return MustAlias;
   1139 
   1140   // If there is a constant difference between the pointers, but the difference
   1141   // is less than the size of the associated memory object, then we know
   1142   // that the objects are partially overlapping.  If the difference is
   1143   // greater, we know they do not overlap.
   1144   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
   1145     if (GEP1BaseOffset >= 0) {
   1146       if (V2Size != MemoryLocation::UnknownSize) {
   1147         if ((uint64_t)GEP1BaseOffset < V2Size)
   1148           return PartialAlias;
   1149         return NoAlias;
   1150       }
   1151     } else {
   1152       // We have the situation where:
   1153       // +                +
   1154       // | BaseOffset     |
   1155       // ---------------->|
   1156       // |-->V1Size       |-------> V2Size
   1157       // GEP1             V2
   1158       // We need to know that V2Size is not unknown, otherwise we might have
   1159       // stripped a gep with negative index ('gep <ptr>, -1, ...).
   1160       if (V1Size != MemoryLocation::UnknownSize &&
   1161           V2Size != MemoryLocation::UnknownSize) {
   1162         if (-(uint64_t)GEP1BaseOffset < V1Size)
   1163           return PartialAlias;
   1164         return NoAlias;
   1165       }
   1166     }
   1167   }
   1168 
   1169   if (!DecompGEP1.VarIndices.empty()) {
   1170     uint64_t Modulo = 0;
   1171     bool AllPositive = true;
   1172     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
   1173 
   1174       // Try to distinguish something like &A[i][1] against &A[42][0].
   1175       // Grab the least significant bit set in any of the scales. We
   1176       // don't need std::abs here (even if the scale's negative) as we'll
   1177       // be ^'ing Modulo with itself later.
   1178       Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;
   1179 
   1180       if (AllPositive) {
   1181         // If the Value could change between cycles, then any reasoning about
   1182         // the Value this cycle may not hold in the next cycle. We'll just
   1183         // give up if we can't determine conditions that hold for every cycle:
   1184         const Value *V = DecompGEP1.VarIndices[i].V;
   1185 
   1186         bool SignKnownZero, SignKnownOne;
   1187         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
   1188                        0, &AC, nullptr, DT);
   1189 
   1190         // Zero-extension widens the variable, and so forces the sign
   1191         // bit to zero.
   1192         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
   1193         SignKnownZero |= IsZExt;
   1194         SignKnownOne &= !IsZExt;
   1195 
   1196         // If the variable begins with a zero then we know it's
   1197         // positive, regardless of whether the value is signed or
   1198         // unsigned.
   1199         int64_t Scale = DecompGEP1.VarIndices[i].Scale;
   1200         AllPositive =
   1201             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
   1202       }
   1203     }
   1204 
   1205     Modulo = Modulo ^ (Modulo & (Modulo - 1));
   1206 
   1207     // We can compute the difference between the two addresses
   1208     // mod Modulo. Check whether that difference guarantees that the
   1209     // two locations do not alias.
   1210     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
   1211     if (V1Size != MemoryLocation::UnknownSize &&
   1212         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
   1213         V1Size <= Modulo - ModOffset)
   1214       return NoAlias;
   1215 
   1216     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
   1217     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
   1218     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
   1219     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
   1220       return NoAlias;
   1221 
   1222     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
   1223                                 GEP1BaseOffset, &AC, DT))
   1224       return NoAlias;
   1225   }
   1226 
   1227   // Statically, we can see that the base objects are the same, but the
   1228   // pointers have dynamic offsets which we can't resolve. And none of our
   1229   // little tricks above worked.
   1230   //
   1231   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
   1232   // practical effect of this is protecting TBAA in the case of dynamic
   1233   // indices into arrays of unions or malloc'd memory.
   1234   return PartialAlias;
   1235 }
   1236 
   1237 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
   1238   // If the results agree, take it.
   1239   if (A == B)
   1240     return A;
   1241   // A mix of PartialAlias and MustAlias is PartialAlias.
   1242   if ((A == PartialAlias && B == MustAlias) ||
   1243       (B == PartialAlias && A == MustAlias))
   1244     return PartialAlias;
   1245   // Otherwise, we don't know anything.
   1246   return MayAlias;
   1247 }
   1248 
   1249 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
   1250 /// against another.
   1251 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
   1252                                        const AAMDNodes &SIAAInfo,
   1253                                        const Value *V2, uint64_t V2Size,
   1254                                        const AAMDNodes &V2AAInfo) {
   1255   // If the values are Selects with the same condition, we can do a more precise
   1256   // check: just check for aliases between the values on corresponding arms.
   1257   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
   1258     if (SI->getCondition() == SI2->getCondition()) {
   1259       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
   1260                                      SI2->getTrueValue(), V2Size, V2AAInfo);
   1261       if (Alias == MayAlias)
   1262         return MayAlias;
   1263       AliasResult ThisAlias =
   1264           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
   1265                      SI2->getFalseValue(), V2Size, V2AAInfo);
   1266       return MergeAliasResults(ThisAlias, Alias);
   1267     }
   1268 
   1269   // If both arms of the Select node NoAlias or MustAlias V2, then returns
   1270   // NoAlias / MustAlias. Otherwise, returns MayAlias.
   1271   AliasResult Alias =
   1272       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
   1273   if (Alias == MayAlias)
   1274     return MayAlias;
   1275 
   1276   AliasResult ThisAlias =
   1277       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
   1278   return MergeAliasResults(ThisAlias, Alias);
   1279 }
   1280 
   1281 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
   1282 /// another.
   1283 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
   1284                                     const AAMDNodes &PNAAInfo, const Value *V2,
   1285                                     uint64_t V2Size,
   1286                                     const AAMDNodes &V2AAInfo) {
   1287   // Track phi nodes we have visited. We use this information when we determine
   1288   // value equivalence.
   1289   VisitedPhiBBs.insert(PN->getParent());
   1290 
   1291   // If the values are PHIs in the same block, we can do a more precise
   1292   // as well as efficient check: just check for aliases between the values
   1293   // on corresponding edges.
   1294   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
   1295     if (PN2->getParent() == PN->getParent()) {
   1296       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
   1297                    MemoryLocation(V2, V2Size, V2AAInfo));
   1298       if (PN > V2)
   1299         std::swap(Locs.first, Locs.second);
   1300       // Analyse the PHIs' inputs under the assumption that the PHIs are
   1301       // NoAlias.
   1302       // If the PHIs are May/MustAlias there must be (recursively) an input
   1303       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
   1304       // there must be an operation on the PHIs within the PHIs' value cycle
   1305       // that causes a MayAlias.
   1306       // Pretend the phis do not alias.
   1307       AliasResult Alias = NoAlias;
   1308       assert(AliasCache.count(Locs) &&
   1309              "There must exist an entry for the phi node");
   1310       AliasResult OrigAliasResult = AliasCache[Locs];
   1311       AliasCache[Locs] = NoAlias;
   1312 
   1313       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1314         AliasResult ThisAlias =
   1315             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
   1316                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
   1317                        V2Size, V2AAInfo);
   1318         Alias = MergeAliasResults(ThisAlias, Alias);
   1319         if (Alias == MayAlias)
   1320           break;
   1321       }
   1322 
   1323       // Reset if speculation failed.
   1324       if (Alias != NoAlias)
   1325         AliasCache[Locs] = OrigAliasResult;
   1326 
   1327       return Alias;
   1328     }
   1329 
   1330   SmallPtrSet<Value *, 4> UniqueSrc;
   1331   SmallVector<Value *, 4> V1Srcs;
   1332   bool isRecursive = false;
   1333   for (Value *PV1 : PN->incoming_values()) {
   1334     if (isa<PHINode>(PV1))
   1335       // If any of the source itself is a PHI, return MayAlias conservatively
   1336       // to avoid compile time explosion. The worst possible case is if both
   1337       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
   1338       // and 'n' are the number of PHI sources.
   1339       return MayAlias;
   1340 
   1341     if (EnableRecPhiAnalysis)
   1342       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
   1343         // Check whether the incoming value is a GEP that advances the pointer
   1344         // result of this PHI node (e.g. in a loop). If this is the case, we
   1345         // would recurse and always get a MayAlias. Handle this case specially
   1346         // below.
   1347         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
   1348             isa<ConstantInt>(PV1GEP->idx_begin())) {
   1349           isRecursive = true;
   1350           continue;
   1351         }
   1352       }
   1353 
   1354     if (UniqueSrc.insert(PV1).second)
   1355       V1Srcs.push_back(PV1);
   1356   }
   1357 
   1358   // If this PHI node is recursive, set the size of the accessed memory to
   1359   // unknown to represent all the possible values the GEP could advance the
   1360   // pointer to.
   1361   if (isRecursive)
   1362     PNSize = MemoryLocation::UnknownSize;
   1363 
   1364   AliasResult Alias =
   1365       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);
   1366 
   1367   // Early exit if the check of the first PHI source against V2 is MayAlias.
   1368   // Other results are not possible.
   1369   if (Alias == MayAlias)
   1370     return MayAlias;
   1371 
   1372   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
   1373   // NoAlias / MustAlias. Otherwise, returns MayAlias.
   1374   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
   1375     Value *V = V1Srcs[i];
   1376 
   1377     AliasResult ThisAlias =
   1378         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
   1379     Alias = MergeAliasResults(ThisAlias, Alias);
   1380     if (Alias == MayAlias)
   1381       break;
   1382   }
   1383 
   1384   return Alias;
   1385 }
   1386 
   1387 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
   1388 /// array references.
   1389 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
   1390                                       AAMDNodes V1AAInfo, const Value *V2,
   1391                                       uint64_t V2Size, AAMDNodes V2AAInfo) {
   1392   // If either of the memory references is empty, it doesn't matter what the
   1393   // pointer values are.
   1394   if (V1Size == 0 || V2Size == 0)
   1395     return NoAlias;
   1396 
   1397   // Strip off any casts if they exist.
   1398   V1 = V1->stripPointerCasts();
   1399   V2 = V2->stripPointerCasts();
   1400 
   1401   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
   1402   // value for undef that aliases nothing in the program.
   1403   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
   1404     return NoAlias;
   1405 
   1406   // Are we checking for alias of the same value?
   1407   // Because we look 'through' phi nodes, we could look at "Value" pointers from
   1408   // different iterations. We must therefore make sure that this is not the
   1409   // case. The function isValueEqualInPotentialCycles ensures that this cannot
   1410   // happen by looking at the visited phi nodes and making sure they cannot
   1411   // reach the value.
   1412   if (isValueEqualInPotentialCycles(V1, V2))
   1413     return MustAlias;
   1414 
   1415   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
   1416     return NoAlias; // Scalars cannot alias each other
   1417 
   1418   // Figure out what objects these things are pointing to if we can.
   1419   const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
   1420   const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
   1421 
   1422   // Null values in the default address space don't point to any object, so they
   1423   // don't alias any other pointer.
   1424   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
   1425     if (CPN->getType()->getAddressSpace() == 0)
   1426       return NoAlias;
   1427   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
   1428     if (CPN->getType()->getAddressSpace() == 0)
   1429       return NoAlias;
   1430 
   1431   if (O1 != O2) {
   1432     // If V1/V2 point to two different objects, we know that we have no alias.
   1433     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
   1434       return NoAlias;
   1435 
   1436     // Constant pointers can't alias with non-const isIdentifiedObject objects.
   1437     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
   1438         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
   1439       return NoAlias;
   1440 
   1441     // Function arguments can't alias with things that are known to be
   1442     // unambigously identified at the function level.
   1443     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
   1444         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
   1445       return NoAlias;
   1446 
   1447     // Most objects can't alias null.
   1448     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
   1449         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
   1450       return NoAlias;
   1451 
   1452     // If one pointer is the result of a call/invoke or load and the other is a
   1453     // non-escaping local object within the same function, then we know the
   1454     // object couldn't escape to a point where the call could return it.
   1455     //
   1456     // Note that if the pointers are in different functions, there are a
   1457     // variety of complications. A call with a nocapture argument may still
   1458     // temporary store the nocapture argument's value in a temporary memory
   1459     // location if that memory location doesn't escape. Or it may pass a
   1460     // nocapture value to other functions as long as they don't capture it.
   1461     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
   1462       return NoAlias;
   1463     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
   1464       return NoAlias;
   1465   }
   1466 
   1467   // If the size of one access is larger than the entire object on the other
   1468   // side, then we know such behavior is undefined and can assume no alias.
   1469   if ((V1Size != MemoryLocation::UnknownSize &&
   1470        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
   1471       (V2Size != MemoryLocation::UnknownSize &&
   1472        isObjectSmallerThan(O1, V2Size, DL, TLI)))
   1473     return NoAlias;
   1474 
   1475   // Check the cache before climbing up use-def chains. This also terminates
   1476   // otherwise infinitely recursive queries.
   1477   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
   1478                MemoryLocation(V2, V2Size, V2AAInfo));
   1479   if (V1 > V2)
   1480     std::swap(Locs.first, Locs.second);
   1481   std::pair<AliasCacheTy::iterator, bool> Pair =
   1482       AliasCache.insert(std::make_pair(Locs, MayAlias));
   1483   if (!Pair.second)
   1484     return Pair.first->second;
   1485 
   1486   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
   1487   // GEP can't simplify, we don't even look at the PHI cases.
   1488   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
   1489     std::swap(V1, V2);
   1490     std::swap(V1Size, V2Size);
   1491     std::swap(O1, O2);
   1492     std::swap(V1AAInfo, V2AAInfo);
   1493   }
   1494   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
   1495     AliasResult Result =
   1496         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
   1497     if (Result != MayAlias)
   1498       return AliasCache[Locs] = Result;
   1499   }
   1500 
   1501   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
   1502     std::swap(V1, V2);
   1503     std::swap(V1Size, V2Size);
   1504     std::swap(V1AAInfo, V2AAInfo);
   1505   }
   1506   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
   1507     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
   1508     if (Result != MayAlias)
   1509       return AliasCache[Locs] = Result;
   1510   }
   1511 
   1512   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
   1513     std::swap(V1, V2);
   1514     std::swap(V1Size, V2Size);
   1515     std::swap(V1AAInfo, V2AAInfo);
   1516   }
   1517   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
   1518     AliasResult Result =
   1519         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
   1520     if (Result != MayAlias)
   1521       return AliasCache[Locs] = Result;
   1522   }
   1523 
   1524   // If both pointers are pointing into the same object and one of them
   1525   // accesses the entire object, then the accesses must overlap in some way.
   1526   if (O1 == O2)
   1527     if ((V1Size != MemoryLocation::UnknownSize &&
   1528          isObjectSize(O1, V1Size, DL, TLI)) ||
   1529         (V2Size != MemoryLocation::UnknownSize &&
   1530          isObjectSize(O2, V2Size, DL, TLI)))
   1531       return AliasCache[Locs] = PartialAlias;
   1532 
   1533   // Recurse back into the best AA results we have, potentially with refined
   1534   // memory locations. We have already ensured that BasicAA has a MayAlias
   1535   // cache result for these, so any recursion back into BasicAA won't loop.
   1536   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
   1537   return AliasCache[Locs] = Result;
   1538 }
   1539 
   1540 /// Check whether two Values can be considered equivalent.
   1541 ///
   1542 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
   1543 /// they can not be part of a cycle in the value graph by looking at all
   1544 /// visited phi nodes an making sure that the phis cannot reach the value. We
   1545 /// have to do this because we are looking through phi nodes (That is we say
   1546 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
   1547 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
   1548                                                   const Value *V2) {
   1549   if (V != V2)
   1550     return false;
   1551 
   1552   const Instruction *Inst = dyn_cast<Instruction>(V);
   1553   if (!Inst)
   1554     return true;
   1555 
   1556   if (VisitedPhiBBs.empty())
   1557     return true;
   1558 
   1559   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
   1560     return false;
   1561 
   1562   // Make sure that the visited phis cannot reach the Value. This ensures that
   1563   // the Values cannot come from different iterations of a potential cycle the
   1564   // phi nodes could be involved in.
   1565   for (auto *P : VisitedPhiBBs)
   1566     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
   1567       return false;
   1568 
   1569   return true;
   1570 }
   1571 
   1572 /// Computes the symbolic difference between two de-composed GEPs.
   1573 ///
   1574 /// Dest and Src are the variable indices from two decomposed GetElementPtr
   1575 /// instructions GEP1 and GEP2 which have common base pointers.
   1576 void BasicAAResult::GetIndexDifference(
   1577     SmallVectorImpl<VariableGEPIndex> &Dest,
   1578     const SmallVectorImpl<VariableGEPIndex> &Src) {
   1579   if (Src.empty())
   1580     return;
   1581 
   1582   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
   1583     const Value *V = Src[i].V;
   1584     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
   1585     int64_t Scale = Src[i].Scale;
   1586 
   1587     // Find V in Dest.  This is N^2, but pointer indices almost never have more
   1588     // than a few variable indexes.
   1589     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
   1590       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
   1591           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
   1592         continue;
   1593 
   1594       // If we found it, subtract off Scale V's from the entry in Dest.  If it
   1595       // goes to zero, remove the entry.
   1596       if (Dest[j].Scale != Scale)
   1597         Dest[j].Scale -= Scale;
   1598       else
   1599         Dest.erase(Dest.begin() + j);
   1600       Scale = 0;
   1601       break;
   1602     }
   1603 
   1604     // If we didn't consume this entry, add it to the end of the Dest list.
   1605     if (Scale) {
   1606       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
   1607       Dest.push_back(Entry);
   1608     }
   1609   }
   1610 }
   1611 
   1612 bool BasicAAResult::constantOffsetHeuristic(
   1613     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
   1614     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
   1615     DominatorTree *DT) {
   1616   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
   1617       V2Size == MemoryLocation::UnknownSize)
   1618     return false;
   1619 
   1620   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
   1621 
   1622   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
   1623       Var0.Scale != -Var1.Scale)
   1624     return false;
   1625 
   1626   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
   1627 
   1628   // We'll strip off the Extensions of Var0 and Var1 and do another round
   1629   // of GetLinearExpression decomposition. In the example above, if Var0
   1630   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
   1631 
   1632   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
   1633       V1Offset(Width, 0);
   1634   bool NSW = true, NUW = true;
   1635   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
   1636   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
   1637                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
   1638   NSW = true;
   1639   NUW = true;
   1640   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
   1641                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
   1642 
   1643   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
   1644       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
   1645     return false;
   1646 
   1647   // We have a hit - Var0 and Var1 only differ by a constant offset!
   1648 
   1649   // If we've been sext'ed then zext'd the maximum difference between Var0 and
   1650   // Var1 is possible to calculate, but we're just interested in the absolute
   1651   // minimum difference between the two. The minimum distance may occur due to
   1652   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
   1653   // the minimum distance between %i and %i + 5 is 3.
   1654   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
   1655   MinDiff = APIntOps::umin(MinDiff, Wrapped);
   1656   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
   1657 
   1658   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
   1659   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
   1660   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
   1661   // V2Size can fit in the MinDiffBytes gap.
   1662   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
   1663          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
   1664 }
   1665 
   1666 //===----------------------------------------------------------------------===//
   1667 // BasicAliasAnalysis Pass
   1668 //===----------------------------------------------------------------------===//
   1669 
   1670 char BasicAA::PassID;
   1671 
   1672 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> &AM) {
   1673   return BasicAAResult(F.getParent()->getDataLayout(),
   1674                        AM.getResult<TargetLibraryAnalysis>(F),
   1675                        AM.getResult<AssumptionAnalysis>(F),
   1676                        &AM.getResult<DominatorTreeAnalysis>(F),
   1677                        AM.getCachedResult<LoopAnalysis>(F));
   1678 }
   1679 
   1680 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
   1681     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
   1682 }
   1683 
   1684 char BasicAAWrapperPass::ID = 0;
   1685 void BasicAAWrapperPass::anchor() {}
   1686 
   1687 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
   1688                       "Basic Alias Analysis (stateless AA impl)", true, true)
   1689 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   1690 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   1691 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   1692 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
   1693                     "Basic Alias Analysis (stateless AA impl)", true, true)
   1694 
   1695 FunctionPass *llvm::createBasicAAWrapperPass() {
   1696   return new BasicAAWrapperPass();
   1697 }
   1698 
   1699 bool BasicAAWrapperPass::runOnFunction(Function &F) {
   1700   auto &ACT = getAnalysis<AssumptionCacheTracker>();
   1701   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
   1702   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
   1703   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
   1704 
   1705   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
   1706                                  ACT.getAssumptionCache(F), &DTWP.getDomTree(),
   1707                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
   1708 
   1709   return false;
   1710 }
   1711 
   1712 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
   1713   AU.setPreservesAll();
   1714   AU.addRequired<AssumptionCacheTracker>();
   1715   AU.addRequired<DominatorTreeWrapperPass>();
   1716   AU.addRequired<TargetLibraryInfoWrapperPass>();
   1717 }
   1718 
   1719 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
   1720   return BasicAAResult(
   1721       F.getParent()->getDataLayout(),
   1722       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
   1723       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
   1724 }
   1725