Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveRange and LiveInterval classes.  Given some
     11 // numbering of each the machine instructions an interval [i, j) is said to be a
     12 // live range for register v if there is no instruction with number j' >= j
     13 // such that v is live at j' and there is no instruction with number i' < i such
     14 // that v is live at i'. In this implementation ranges can have holes,
     15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
     16 // individual segment is represented as an instance of LiveRange::Segment,
     17 // and the whole range is represented as an instance of LiveRange.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #include "llvm/CodeGen/LiveInterval.h"
     22 
     23 #include "LiveRangeUtils.h"
     24 #include "RegisterCoalescer.h"
     25 #include "llvm/ADT/STLExtras.h"
     26 #include "llvm/ADT/SmallSet.h"
     27 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Target/TargetRegisterInfo.h"
     32 #include <algorithm>
     33 using namespace llvm;
     34 
     35 namespace {
     36 //===----------------------------------------------------------------------===//
     37 // Implementation of various methods necessary for calculation of live ranges.
     38 // The implementation of the methods abstracts from the concrete type of the
     39 // segment collection.
     40 //
     41 // Implementation of the class follows the Template design pattern. The base
     42 // class contains generic algorithms that call collection-specific methods,
     43 // which are provided in concrete subclasses. In order to avoid virtual calls
     44 // these methods are provided by means of C++ template instantiation.
     45 // The base class calls the methods of the subclass through method impl(),
     46 // which casts 'this' pointer to the type of the subclass.
     47 //
     48 //===----------------------------------------------------------------------===//
     49 
     50 template <typename ImplT, typename IteratorT, typename CollectionT>
     51 class CalcLiveRangeUtilBase {
     52 protected:
     53   LiveRange *LR;
     54 
     55 protected:
     56   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
     57 
     58 public:
     59   typedef LiveRange::Segment Segment;
     60   typedef IteratorT iterator;
     61 
     62   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
     63     assert(!Def.isDead() && "Cannot define a value at the dead slot");
     64 
     65     iterator I = impl().find(Def);
     66     if (I == segments().end()) {
     67       VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
     68       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
     69       return VNI;
     70     }
     71 
     72     Segment *S = segmentAt(I);
     73     if (SlotIndex::isSameInstr(Def, S->start)) {
     74       assert(S->valno->def == S->start && "Inconsistent existing value def");
     75 
     76       // It is possible to have both normal and early-clobber defs of the same
     77       // register on an instruction. It doesn't make a lot of sense, but it is
     78       // possible to specify in inline assembly.
     79       //
     80       // Just convert everything to early-clobber.
     81       Def = std::min(Def, S->start);
     82       if (Def != S->start)
     83         S->start = S->valno->def = Def;
     84       return S->valno;
     85     }
     86     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
     87     VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
     88     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
     89     return VNI;
     90   }
     91 
     92   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
     93     if (segments().empty())
     94       return nullptr;
     95     iterator I =
     96         impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
     97     if (I == segments().begin())
     98       return nullptr;
     99     --I;
    100     if (I->end <= StartIdx)
    101       return nullptr;
    102     if (I->end < Use)
    103       extendSegmentEndTo(I, Use);
    104     return I->valno;
    105   }
    106 
    107   /// This method is used when we want to extend the segment specified
    108   /// by I to end at the specified endpoint. To do this, we should
    109   /// merge and eliminate all segments that this will overlap
    110   /// with. The iterator is not invalidated.
    111   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
    112     assert(I != segments().end() && "Not a valid segment!");
    113     Segment *S = segmentAt(I);
    114     VNInfo *ValNo = I->valno;
    115 
    116     // Search for the first segment that we can't merge with.
    117     iterator MergeTo = std::next(I);
    118     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
    119       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
    120 
    121     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
    122     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
    123 
    124     // If the newly formed segment now touches the segment after it and if they
    125     // have the same value number, merge the two segments into one segment.
    126     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
    127         MergeTo->valno == ValNo) {
    128       S->end = MergeTo->end;
    129       ++MergeTo;
    130     }
    131 
    132     // Erase any dead segments.
    133     segments().erase(std::next(I), MergeTo);
    134   }
    135 
    136   /// This method is used when we want to extend the segment specified
    137   /// by I to start at the specified endpoint.  To do this, we should
    138   /// merge and eliminate all segments that this will overlap with.
    139   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
    140     assert(I != segments().end() && "Not a valid segment!");
    141     Segment *S = segmentAt(I);
    142     VNInfo *ValNo = I->valno;
    143 
    144     // Search for the first segment that we can't merge with.
    145     iterator MergeTo = I;
    146     do {
    147       if (MergeTo == segments().begin()) {
    148         S->start = NewStart;
    149         segments().erase(MergeTo, I);
    150         return I;
    151       }
    152       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
    153       --MergeTo;
    154     } while (NewStart <= MergeTo->start);
    155 
    156     // If we start in the middle of another segment, just delete a range and
    157     // extend that segment.
    158     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
    159       segmentAt(MergeTo)->end = S->end;
    160     } else {
    161       // Otherwise, extend the segment right after.
    162       ++MergeTo;
    163       Segment *MergeToSeg = segmentAt(MergeTo);
    164       MergeToSeg->start = NewStart;
    165       MergeToSeg->end = S->end;
    166     }
    167 
    168     segments().erase(std::next(MergeTo), std::next(I));
    169     return MergeTo;
    170   }
    171 
    172   iterator addSegment(Segment S) {
    173     SlotIndex Start = S.start, End = S.end;
    174     iterator I = impl().findInsertPos(S);
    175 
    176     // If the inserted segment starts in the middle or right at the end of
    177     // another segment, just extend that segment to contain the segment of S.
    178     if (I != segments().begin()) {
    179       iterator B = std::prev(I);
    180       if (S.valno == B->valno) {
    181         if (B->start <= Start && B->end >= Start) {
    182           extendSegmentEndTo(B, End);
    183           return B;
    184         }
    185       } else {
    186         // Check to make sure that we are not overlapping two live segments with
    187         // different valno's.
    188         assert(B->end <= Start &&
    189                "Cannot overlap two segments with differing ValID's"
    190                " (did you def the same reg twice in a MachineInstr?)");
    191       }
    192     }
    193 
    194     // Otherwise, if this segment ends in the middle of, or right next
    195     // to, another segment, merge it into that segment.
    196     if (I != segments().end()) {
    197       if (S.valno == I->valno) {
    198         if (I->start <= End) {
    199           I = extendSegmentStartTo(I, Start);
    200 
    201           // If S is a complete superset of a segment, we may need to grow its
    202           // endpoint as well.
    203           if (End > I->end)
    204             extendSegmentEndTo(I, End);
    205           return I;
    206         }
    207       } else {
    208         // Check to make sure that we are not overlapping two live segments with
    209         // different valno's.
    210         assert(I->start >= End &&
    211                "Cannot overlap two segments with differing ValID's");
    212       }
    213     }
    214 
    215     // Otherwise, this is just a new segment that doesn't interact with
    216     // anything.
    217     // Insert it.
    218     return segments().insert(I, S);
    219   }
    220 
    221 private:
    222   ImplT &impl() { return *static_cast<ImplT *>(this); }
    223 
    224   CollectionT &segments() { return impl().segmentsColl(); }
    225 
    226   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
    227 };
    228 
    229 //===----------------------------------------------------------------------===//
    230 //   Instantiation of the methods for calculation of live ranges
    231 //   based on a segment vector.
    232 //===----------------------------------------------------------------------===//
    233 
    234 class CalcLiveRangeUtilVector;
    235 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
    236                               LiveRange::Segments> CalcLiveRangeUtilVectorBase;
    237 
    238 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
    239 public:
    240   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
    241 
    242 private:
    243   friend CalcLiveRangeUtilVectorBase;
    244 
    245   LiveRange::Segments &segmentsColl() { return LR->segments; }
    246 
    247   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
    248 
    249   iterator find(SlotIndex Pos) { return LR->find(Pos); }
    250 
    251   iterator findInsertPos(Segment S) {
    252     return std::upper_bound(LR->begin(), LR->end(), S.start);
    253   }
    254 };
    255 
    256 //===----------------------------------------------------------------------===//
    257 //   Instantiation of the methods for calculation of live ranges
    258 //   based on a segment set.
    259 //===----------------------------------------------------------------------===//
    260 
    261 class CalcLiveRangeUtilSet;
    262 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
    263                               LiveRange::SegmentSet::iterator,
    264                               LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
    265 
    266 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
    267 public:
    268   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
    269 
    270 private:
    271   friend CalcLiveRangeUtilSetBase;
    272 
    273   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
    274 
    275   void insertAtEnd(const Segment &S) {
    276     LR->segmentSet->insert(LR->segmentSet->end(), S);
    277   }
    278 
    279   iterator find(SlotIndex Pos) {
    280     iterator I =
    281         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
    282     if (I == LR->segmentSet->begin())
    283       return I;
    284     iterator PrevI = std::prev(I);
    285     if (Pos < (*PrevI).end)
    286       return PrevI;
    287     return I;
    288   }
    289 
    290   iterator findInsertPos(Segment S) {
    291     iterator I = LR->segmentSet->upper_bound(S);
    292     if (I != LR->segmentSet->end() && !(S.start < *I))
    293       ++I;
    294     return I;
    295   }
    296 };
    297 } // namespace
    298 
    299 //===----------------------------------------------------------------------===//
    300 //   LiveRange methods
    301 //===----------------------------------------------------------------------===//
    302 
    303 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
    304   // This algorithm is basically std::upper_bound.
    305   // Unfortunately, std::upper_bound cannot be used with mixed types until we
    306   // adopt C++0x. Many libraries can do it, but not all.
    307   if (empty() || Pos >= endIndex())
    308     return end();
    309   iterator I = begin();
    310   size_t Len = size();
    311   do {
    312     size_t Mid = Len >> 1;
    313     if (Pos < I[Mid].end) {
    314       Len = Mid;
    315     } else {
    316       I += Mid + 1;
    317       Len -= Mid + 1;
    318     }
    319   } while (Len);
    320   return I;
    321 }
    322 
    323 VNInfo *LiveRange::createDeadDef(SlotIndex Def,
    324                                   VNInfo::Allocator &VNInfoAllocator) {
    325   // Use the segment set, if it is available.
    326   if (segmentSet != nullptr)
    327     return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
    328   // Otherwise use the segment vector.
    329   return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
    330 }
    331 
    332 // overlaps - Return true if the intersection of the two live ranges is
    333 // not empty.
    334 //
    335 // An example for overlaps():
    336 //
    337 // 0: A = ...
    338 // 4: B = ...
    339 // 8: C = A + B ;; last use of A
    340 //
    341 // The live ranges should look like:
    342 //
    343 // A = [3, 11)
    344 // B = [7, x)
    345 // C = [11, y)
    346 //
    347 // A->overlaps(C) should return false since we want to be able to join
    348 // A and C.
    349 //
    350 bool LiveRange::overlapsFrom(const LiveRange& other,
    351                              const_iterator StartPos) const {
    352   assert(!empty() && "empty range");
    353   const_iterator i = begin();
    354   const_iterator ie = end();
    355   const_iterator j = StartPos;
    356   const_iterator je = other.end();
    357 
    358   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
    359          StartPos != other.end() && "Bogus start position hint!");
    360 
    361   if (i->start < j->start) {
    362     i = std::upper_bound(i, ie, j->start);
    363     if (i != begin()) --i;
    364   } else if (j->start < i->start) {
    365     ++StartPos;
    366     if (StartPos != other.end() && StartPos->start <= i->start) {
    367       assert(StartPos < other.end() && i < end());
    368       j = std::upper_bound(j, je, i->start);
    369       if (j != other.begin()) --j;
    370     }
    371   } else {
    372     return true;
    373   }
    374 
    375   if (j == je) return false;
    376 
    377   while (i != ie) {
    378     if (i->start > j->start) {
    379       std::swap(i, j);
    380       std::swap(ie, je);
    381     }
    382 
    383     if (i->end > j->start)
    384       return true;
    385     ++i;
    386   }
    387 
    388   return false;
    389 }
    390 
    391 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
    392                          const SlotIndexes &Indexes) const {
    393   assert(!empty() && "empty range");
    394   if (Other.empty())
    395     return false;
    396 
    397   // Use binary searches to find initial positions.
    398   const_iterator I = find(Other.beginIndex());
    399   const_iterator IE = end();
    400   if (I == IE)
    401     return false;
    402   const_iterator J = Other.find(I->start);
    403   const_iterator JE = Other.end();
    404   if (J == JE)
    405     return false;
    406 
    407   for (;;) {
    408     // J has just been advanced to satisfy:
    409     assert(J->end >= I->start);
    410     // Check for an overlap.
    411     if (J->start < I->end) {
    412       // I and J are overlapping. Find the later start.
    413       SlotIndex Def = std::max(I->start, J->start);
    414       // Allow the overlap if Def is a coalescable copy.
    415       if (Def.isBlock() ||
    416           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
    417         return true;
    418     }
    419     // Advance the iterator that ends first to check for more overlaps.
    420     if (J->end > I->end) {
    421       std::swap(I, J);
    422       std::swap(IE, JE);
    423     }
    424     // Advance J until J->end >= I->start.
    425     do
    426       if (++J == JE)
    427         return false;
    428     while (J->end < I->start);
    429   }
    430 }
    431 
    432 /// overlaps - Return true if the live range overlaps an interval specified
    433 /// by [Start, End).
    434 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
    435   assert(Start < End && "Invalid range");
    436   const_iterator I = std::lower_bound(begin(), end(), End);
    437   return I != begin() && (--I)->end > Start;
    438 }
    439 
    440 bool LiveRange::covers(const LiveRange &Other) const {
    441   if (empty())
    442     return Other.empty();
    443 
    444   const_iterator I = begin();
    445   for (const Segment &O : Other.segments) {
    446     I = advanceTo(I, O.start);
    447     if (I == end() || I->start > O.start)
    448       return false;
    449 
    450     // Check adjacent live segments and see if we can get behind O.end.
    451     while (I->end < O.end) {
    452       const_iterator Last = I;
    453       // Get next segment and abort if it was not adjacent.
    454       ++I;
    455       if (I == end() || Last->end != I->start)
    456         return false;
    457     }
    458   }
    459   return true;
    460 }
    461 
    462 /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
    463 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
    464 /// it can be nuked later.
    465 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
    466   if (ValNo->id == getNumValNums()-1) {
    467     do {
    468       valnos.pop_back();
    469     } while (!valnos.empty() && valnos.back()->isUnused());
    470   } else {
    471     ValNo->markUnused();
    472   }
    473 }
    474 
    475 /// RenumberValues - Renumber all values in order of appearance and delete the
    476 /// remaining unused values.
    477 void LiveRange::RenumberValues() {
    478   SmallPtrSet<VNInfo*, 8> Seen;
    479   valnos.clear();
    480   for (const Segment &S : segments) {
    481     VNInfo *VNI = S.valno;
    482     if (!Seen.insert(VNI).second)
    483       continue;
    484     assert(!VNI->isUnused() && "Unused valno used by live segment");
    485     VNI->id = (unsigned)valnos.size();
    486     valnos.push_back(VNI);
    487   }
    488 }
    489 
    490 void LiveRange::addSegmentToSet(Segment S) {
    491   CalcLiveRangeUtilSet(this).addSegment(S);
    492 }
    493 
    494 LiveRange::iterator LiveRange::addSegment(Segment S) {
    495   // Use the segment set, if it is available.
    496   if (segmentSet != nullptr) {
    497     addSegmentToSet(S);
    498     return end();
    499   }
    500   // Otherwise use the segment vector.
    501   return CalcLiveRangeUtilVector(this).addSegment(S);
    502 }
    503 
    504 void LiveRange::append(const Segment S) {
    505   // Check that the segment belongs to the back of the list.
    506   assert(segments.empty() || segments.back().end <= S.start);
    507   segments.push_back(S);
    508 }
    509 
    510 /// extendInBlock - If this range is live before Kill in the basic
    511 /// block that starts at StartIdx, extend it to be live up to Kill and return
    512 /// the value. If there is no live range before Kill, return NULL.
    513 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
    514   // Use the segment set, if it is available.
    515   if (segmentSet != nullptr)
    516     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
    517   // Otherwise use the segment vector.
    518   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
    519 }
    520 
    521 /// Remove the specified segment from this range.  Note that the segment must
    522 /// be in a single Segment in its entirety.
    523 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
    524                               bool RemoveDeadValNo) {
    525   // Find the Segment containing this span.
    526   iterator I = find(Start);
    527   assert(I != end() && "Segment is not in range!");
    528   assert(I->containsInterval(Start, End)
    529          && "Segment is not entirely in range!");
    530 
    531   // If the span we are removing is at the start of the Segment, adjust it.
    532   VNInfo *ValNo = I->valno;
    533   if (I->start == Start) {
    534     if (I->end == End) {
    535       if (RemoveDeadValNo) {
    536         // Check if val# is dead.
    537         bool isDead = true;
    538         for (const_iterator II = begin(), EE = end(); II != EE; ++II)
    539           if (II != I && II->valno == ValNo) {
    540             isDead = false;
    541             break;
    542           }
    543         if (isDead) {
    544           // Now that ValNo is dead, remove it.
    545           markValNoForDeletion(ValNo);
    546         }
    547       }
    548 
    549       segments.erase(I);  // Removed the whole Segment.
    550     } else
    551       I->start = End;
    552     return;
    553   }
    554 
    555   // Otherwise if the span we are removing is at the end of the Segment,
    556   // adjust the other way.
    557   if (I->end == End) {
    558     I->end = Start;
    559     return;
    560   }
    561 
    562   // Otherwise, we are splitting the Segment into two pieces.
    563   SlotIndex OldEnd = I->end;
    564   I->end = Start;   // Trim the old segment.
    565 
    566   // Insert the new one.
    567   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
    568 }
    569 
    570 /// removeValNo - Remove all the segments defined by the specified value#.
    571 /// Also remove the value# from value# list.
    572 void LiveRange::removeValNo(VNInfo *ValNo) {
    573   if (empty()) return;
    574   segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) {
    575     return S.valno == ValNo;
    576   }), end());
    577   // Now that ValNo is dead, remove it.
    578   markValNoForDeletion(ValNo);
    579 }
    580 
    581 void LiveRange::join(LiveRange &Other,
    582                      const int *LHSValNoAssignments,
    583                      const int *RHSValNoAssignments,
    584                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
    585   verify();
    586 
    587   // Determine if any of our values are mapped.  This is uncommon, so we want
    588   // to avoid the range scan if not.
    589   bool MustMapCurValNos = false;
    590   unsigned NumVals = getNumValNums();
    591   unsigned NumNewVals = NewVNInfo.size();
    592   for (unsigned i = 0; i != NumVals; ++i) {
    593     unsigned LHSValID = LHSValNoAssignments[i];
    594     if (i != LHSValID ||
    595         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
    596       MustMapCurValNos = true;
    597       break;
    598     }
    599   }
    600 
    601   // If we have to apply a mapping to our base range assignment, rewrite it now.
    602   if (MustMapCurValNos && !empty()) {
    603     // Map the first live range.
    604 
    605     iterator OutIt = begin();
    606     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
    607     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
    608       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
    609       assert(nextValNo && "Huh?");
    610 
    611       // If this live range has the same value # as its immediate predecessor,
    612       // and if they are neighbors, remove one Segment.  This happens when we
    613       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
    614       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
    615         OutIt->end = I->end;
    616       } else {
    617         // Didn't merge. Move OutIt to the next segment,
    618         ++OutIt;
    619         OutIt->valno = nextValNo;
    620         if (OutIt != I) {
    621           OutIt->start = I->start;
    622           OutIt->end = I->end;
    623         }
    624       }
    625     }
    626     // If we merge some segments, chop off the end.
    627     ++OutIt;
    628     segments.erase(OutIt, end());
    629   }
    630 
    631   // Rewrite Other values before changing the VNInfo ids.
    632   // This can leave Other in an invalid state because we're not coalescing
    633   // touching segments that now have identical values. That's OK since Other is
    634   // not supposed to be valid after calling join();
    635   for (Segment &S : Other.segments)
    636     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
    637 
    638   // Update val# info. Renumber them and make sure they all belong to this
    639   // LiveRange now. Also remove dead val#'s.
    640   unsigned NumValNos = 0;
    641   for (unsigned i = 0; i < NumNewVals; ++i) {
    642     VNInfo *VNI = NewVNInfo[i];
    643     if (VNI) {
    644       if (NumValNos >= NumVals)
    645         valnos.push_back(VNI);
    646       else
    647         valnos[NumValNos] = VNI;
    648       VNI->id = NumValNos++;  // Renumber val#.
    649     }
    650   }
    651   if (NumNewVals < NumVals)
    652     valnos.resize(NumNewVals);  // shrinkify
    653 
    654   // Okay, now insert the RHS live segments into the LHS.
    655   LiveRangeUpdater Updater(this);
    656   for (Segment &S : Other.segments)
    657     Updater.add(S);
    658 }
    659 
    660 /// Merge all of the segments in RHS into this live range as the specified
    661 /// value number.  The segments in RHS are allowed to overlap with segments in
    662 /// the current range, but only if the overlapping segments have the
    663 /// specified value number.
    664 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
    665                                        VNInfo *LHSValNo) {
    666   LiveRangeUpdater Updater(this);
    667   for (const Segment &S : RHS.segments)
    668     Updater.add(S.start, S.end, LHSValNo);
    669 }
    670 
    671 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
    672 /// in RHS into this live range as the specified value number.
    673 /// The segments in RHS are allowed to overlap with segments in the
    674 /// current range, it will replace the value numbers of the overlaped
    675 /// segments with the specified value number.
    676 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
    677                                     const VNInfo *RHSValNo,
    678                                     VNInfo *LHSValNo) {
    679   LiveRangeUpdater Updater(this);
    680   for (const Segment &S : RHS.segments)
    681     if (S.valno == RHSValNo)
    682       Updater.add(S.start, S.end, LHSValNo);
    683 }
    684 
    685 /// MergeValueNumberInto - This method is called when two value nubmers
    686 /// are found to be equivalent.  This eliminates V1, replacing all
    687 /// segments with the V1 value number with the V2 value number.  This can
    688 /// cause merging of V1/V2 values numbers and compaction of the value space.
    689 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
    690   assert(V1 != V2 && "Identical value#'s are always equivalent!");
    691 
    692   // This code actually merges the (numerically) larger value number into the
    693   // smaller value number, which is likely to allow us to compactify the value
    694   // space.  The only thing we have to be careful of is to preserve the
    695   // instruction that defines the result value.
    696 
    697   // Make sure V2 is smaller than V1.
    698   if (V1->id < V2->id) {
    699     V1->copyFrom(*V2);
    700     std::swap(V1, V2);
    701   }
    702 
    703   // Merge V1 segments into V2.
    704   for (iterator I = begin(); I != end(); ) {
    705     iterator S = I++;
    706     if (S->valno != V1) continue;  // Not a V1 Segment.
    707 
    708     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
    709     // range, extend it.
    710     if (S != begin()) {
    711       iterator Prev = S-1;
    712       if (Prev->valno == V2 && Prev->end == S->start) {
    713         Prev->end = S->end;
    714 
    715         // Erase this live-range.
    716         segments.erase(S);
    717         I = Prev+1;
    718         S = Prev;
    719       }
    720     }
    721 
    722     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
    723     // Ensure that it is a V2 live-range.
    724     S->valno = V2;
    725 
    726     // If we can merge it into later V2 segments, do so now.  We ignore any
    727     // following V1 segments, as they will be merged in subsequent iterations
    728     // of the loop.
    729     if (I != end()) {
    730       if (I->start == S->end && I->valno == V2) {
    731         S->end = I->end;
    732         segments.erase(I);
    733         I = S+1;
    734       }
    735     }
    736   }
    737 
    738   // Now that V1 is dead, remove it.
    739   markValNoForDeletion(V1);
    740 
    741   return V2;
    742 }
    743 
    744 void LiveRange::flushSegmentSet() {
    745   assert(segmentSet != nullptr && "segment set must have been created");
    746   assert(
    747       segments.empty() &&
    748       "segment set can be used only initially before switching to the array");
    749   segments.append(segmentSet->begin(), segmentSet->end());
    750   segmentSet = nullptr;
    751   verify();
    752 }
    753 
    754 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
    755   ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
    756   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
    757 
    758   // If there are no regmask slots, we have nothing to search.
    759   if (SlotI == SlotE)
    760     return false;
    761 
    762   // Start our search at the first segment that ends after the first slot.
    763   const_iterator SegmentI = find(*SlotI);
    764   const_iterator SegmentE = end();
    765 
    766   // If there are no segments that end after the first slot, we're done.
    767   if (SegmentI == SegmentE)
    768     return false;
    769 
    770   // Look for each slot in the live range.
    771   for ( ; SlotI != SlotE; ++SlotI) {
    772     // Go to the next segment that ends after the current slot.
    773     // The slot may be within a hole in the range.
    774     SegmentI = advanceTo(SegmentI, *SlotI);
    775     if (SegmentI == SegmentE)
    776       return false;
    777 
    778     // If this segment contains the slot, we're done.
    779     if (SegmentI->contains(*SlotI))
    780       return true;
    781     // Otherwise, look for the next slot.
    782   }
    783 
    784   // We didn't find a segment containing any of the slots.
    785   return false;
    786 }
    787 
    788 void LiveInterval::freeSubRange(SubRange *S) {
    789   S->~SubRange();
    790   // Memory was allocated with BumpPtr allocator and is not freed here.
    791 }
    792 
    793 void LiveInterval::removeEmptySubRanges() {
    794   SubRange **NextPtr = &SubRanges;
    795   SubRange *I = *NextPtr;
    796   while (I != nullptr) {
    797     if (!I->empty()) {
    798       NextPtr = &I->Next;
    799       I = *NextPtr;
    800       continue;
    801     }
    802     // Skip empty subranges until we find the first nonempty one.
    803     do {
    804       SubRange *Next = I->Next;
    805       freeSubRange(I);
    806       I = Next;
    807     } while (I != nullptr && I->empty());
    808     *NextPtr = I;
    809   }
    810 }
    811 
    812 void LiveInterval::clearSubRanges() {
    813   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
    814     Next = I->Next;
    815     freeSubRange(I);
    816   }
    817   SubRanges = nullptr;
    818 }
    819 
    820 unsigned LiveInterval::getSize() const {
    821   unsigned Sum = 0;
    822   for (const Segment &S : segments)
    823     Sum += S.start.distance(S.end);
    824   return Sum;
    825 }
    826 
    827 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
    828   return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
    829 }
    830 
    831 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    832 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
    833   dbgs() << *this << '\n';
    834 }
    835 #endif
    836 
    837 void LiveRange::print(raw_ostream &OS) const {
    838   if (empty())
    839     OS << "EMPTY";
    840   else {
    841     for (const Segment &S : segments) {
    842       OS << S;
    843       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
    844     }
    845   }
    846 
    847   // Print value number info.
    848   if (getNumValNums()) {
    849     OS << "  ";
    850     unsigned vnum = 0;
    851     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
    852          ++i, ++vnum) {
    853       const VNInfo *vni = *i;
    854       if (vnum) OS << ' ';
    855       OS << vnum << '@';
    856       if (vni->isUnused()) {
    857         OS << 'x';
    858       } else {
    859         OS << vni->def;
    860         if (vni->isPHIDef())
    861           OS << "-phi";
    862       }
    863     }
    864   }
    865 }
    866 
    867 void LiveInterval::SubRange::print(raw_ostream &OS) const {
    868   OS << " L" << PrintLaneMask(LaneMask) << ' '
    869      << static_cast<const LiveRange&>(*this);
    870 }
    871 
    872 void LiveInterval::print(raw_ostream &OS) const {
    873   OS << PrintReg(reg) << ' ';
    874   super::print(OS);
    875   // Print subranges
    876   for (const SubRange &SR : subranges())
    877     OS << SR;
    878 }
    879 
    880 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    881 LLVM_DUMP_METHOD void LiveRange::dump() const {
    882   dbgs() << *this << '\n';
    883 }
    884 
    885 LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
    886   dbgs() << *this << '\n';
    887 }
    888 
    889 LLVM_DUMP_METHOD void LiveInterval::dump() const {
    890   dbgs() << *this << '\n';
    891 }
    892 #endif
    893 
    894 #ifndef NDEBUG
    895 void LiveRange::verify() const {
    896   for (const_iterator I = begin(), E = end(); I != E; ++I) {
    897     assert(I->start.isValid());
    898     assert(I->end.isValid());
    899     assert(I->start < I->end);
    900     assert(I->valno != nullptr);
    901     assert(I->valno->id < valnos.size());
    902     assert(I->valno == valnos[I->valno->id]);
    903     if (std::next(I) != E) {
    904       assert(I->end <= std::next(I)->start);
    905       if (I->end == std::next(I)->start)
    906         assert(I->valno != std::next(I)->valno);
    907     }
    908   }
    909 }
    910 
    911 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
    912   super::verify();
    913 
    914   // Make sure SubRanges are fine and LaneMasks are disjunct.
    915   LaneBitmask Mask = 0;
    916   LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
    917   for (const SubRange &SR : subranges()) {
    918     // Subrange lanemask should be disjunct to any previous subrange masks.
    919     assert((Mask & SR.LaneMask) == 0);
    920     Mask |= SR.LaneMask;
    921 
    922     // subrange mask should not contained in maximum lane mask for the vreg.
    923     assert((Mask & ~MaxMask) == 0);
    924     // empty subranges must be removed.
    925     assert(!SR.empty());
    926 
    927     SR.verify();
    928     // Main liverange should cover subrange.
    929     assert(covers(SR));
    930   }
    931 }
    932 #endif
    933 
    934 
    935 //===----------------------------------------------------------------------===//
    936 //                           LiveRangeUpdater class
    937 //===----------------------------------------------------------------------===//
    938 //
    939 // The LiveRangeUpdater class always maintains these invariants:
    940 //
    941 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
    942 //   This is the initial state, and the state created by flush().
    943 //   In this state, isDirty() returns false.
    944 //
    945 // Otherwise, segments are kept in three separate areas:
    946 //
    947 // 1. [begin; WriteI) at the front of LR.
    948 // 2. [ReadI; end) at the back of LR.
    949 // 3. Spills.
    950 //
    951 // - LR.begin() <= WriteI <= ReadI <= LR.end().
    952 // - Segments in all three areas are fully ordered and coalesced.
    953 // - Segments in area 1 precede and can't coalesce with segments in area 2.
    954 // - Segments in Spills precede and can't coalesce with segments in area 2.
    955 // - No coalescing is possible between segments in Spills and segments in area
    956 //   1, and there are no overlapping segments.
    957 //
    958 // The segments in Spills are not ordered with respect to the segments in area
    959 // 1. They need to be merged.
    960 //
    961 // When they exist, Spills.back().start <= LastStart,
    962 //                 and WriteI[-1].start <= LastStart.
    963 
    964 void LiveRangeUpdater::print(raw_ostream &OS) const {
    965   if (!isDirty()) {
    966     if (LR)
    967       OS << "Clean updater: " << *LR << '\n';
    968     else
    969       OS << "Null updater.\n";
    970     return;
    971   }
    972   assert(LR && "Can't have null LR in dirty updater.");
    973   OS << " updater with gap = " << (ReadI - WriteI)
    974      << ", last start = " << LastStart
    975      << ":\n  Area 1:";
    976   for (const auto &S : make_range(LR->begin(), WriteI))
    977     OS << ' ' << S;
    978   OS << "\n  Spills:";
    979   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
    980     OS << ' ' << Spills[I];
    981   OS << "\n  Area 2:";
    982   for (const auto &S : make_range(ReadI, LR->end()))
    983     OS << ' ' << S;
    984   OS << '\n';
    985 }
    986 
    987 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
    988   print(errs());
    989 }
    990 
    991 // Determine if A and B should be coalesced.
    992 static inline bool coalescable(const LiveRange::Segment &A,
    993                                const LiveRange::Segment &B) {
    994   assert(A.start <= B.start && "Unordered live segments.");
    995   if (A.end == B.start)
    996     return A.valno == B.valno;
    997   if (A.end < B.start)
    998     return false;
    999   assert(A.valno == B.valno && "Cannot overlap different values");
   1000   return true;
   1001 }
   1002 
   1003 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
   1004   assert(LR && "Cannot add to a null destination");
   1005 
   1006   // Fall back to the regular add method if the live range
   1007   // is using the segment set instead of the segment vector.
   1008   if (LR->segmentSet != nullptr) {
   1009     LR->addSegmentToSet(Seg);
   1010     return;
   1011   }
   1012 
   1013   // Flush the state if Start moves backwards.
   1014   if (!LastStart.isValid() || LastStart > Seg.start) {
   1015     if (isDirty())
   1016       flush();
   1017     // This brings us to an uninitialized state. Reinitialize.
   1018     assert(Spills.empty() && "Leftover spilled segments");
   1019     WriteI = ReadI = LR->begin();
   1020   }
   1021 
   1022   // Remember start for next time.
   1023   LastStart = Seg.start;
   1024 
   1025   // Advance ReadI until it ends after Seg.start.
   1026   LiveRange::iterator E = LR->end();
   1027   if (ReadI != E && ReadI->end <= Seg.start) {
   1028     // First try to close the gap between WriteI and ReadI with spills.
   1029     if (ReadI != WriteI)
   1030       mergeSpills();
   1031     // Then advance ReadI.
   1032     if (ReadI == WriteI)
   1033       ReadI = WriteI = LR->find(Seg.start);
   1034     else
   1035       while (ReadI != E && ReadI->end <= Seg.start)
   1036         *WriteI++ = *ReadI++;
   1037   }
   1038 
   1039   assert(ReadI == E || ReadI->end > Seg.start);
   1040 
   1041   // Check if the ReadI segment begins early.
   1042   if (ReadI != E && ReadI->start <= Seg.start) {
   1043     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
   1044     // Bail if Seg is completely contained in ReadI.
   1045     if (ReadI->end >= Seg.end)
   1046       return;
   1047     // Coalesce into Seg.
   1048     Seg.start = ReadI->start;
   1049     ++ReadI;
   1050   }
   1051 
   1052   // Coalesce as much as possible from ReadI into Seg.
   1053   while (ReadI != E && coalescable(Seg, *ReadI)) {
   1054     Seg.end = std::max(Seg.end, ReadI->end);
   1055     ++ReadI;
   1056   }
   1057 
   1058   // Try coalescing Spills.back() into Seg.
   1059   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
   1060     Seg.start = Spills.back().start;
   1061     Seg.end = std::max(Spills.back().end, Seg.end);
   1062     Spills.pop_back();
   1063   }
   1064 
   1065   // Try coalescing Seg into WriteI[-1].
   1066   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
   1067     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
   1068     return;
   1069   }
   1070 
   1071   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
   1072   if (WriteI != ReadI) {
   1073     *WriteI++ = Seg;
   1074     return;
   1075   }
   1076 
   1077   // Finally, append to LR or Spills.
   1078   if (WriteI == E) {
   1079     LR->segments.push_back(Seg);
   1080     WriteI = ReadI = LR->end();
   1081   } else
   1082     Spills.push_back(Seg);
   1083 }
   1084 
   1085 // Merge as many spilled segments as possible into the gap between WriteI
   1086 // and ReadI. Advance WriteI to reflect the inserted instructions.
   1087 void LiveRangeUpdater::mergeSpills() {
   1088   // Perform a backwards merge of Spills and [SpillI;WriteI).
   1089   size_t GapSize = ReadI - WriteI;
   1090   size_t NumMoved = std::min(Spills.size(), GapSize);
   1091   LiveRange::iterator Src = WriteI;
   1092   LiveRange::iterator Dst = Src + NumMoved;
   1093   LiveRange::iterator SpillSrc = Spills.end();
   1094   LiveRange::iterator B = LR->begin();
   1095 
   1096   // This is the new WriteI position after merging spills.
   1097   WriteI = Dst;
   1098 
   1099   // Now merge Src and Spills backwards.
   1100   while (Src != Dst) {
   1101     if (Src != B && Src[-1].start > SpillSrc[-1].start)
   1102       *--Dst = *--Src;
   1103     else
   1104       *--Dst = *--SpillSrc;
   1105   }
   1106   assert(NumMoved == size_t(Spills.end() - SpillSrc));
   1107   Spills.erase(SpillSrc, Spills.end());
   1108 }
   1109 
   1110 void LiveRangeUpdater::flush() {
   1111   if (!isDirty())
   1112     return;
   1113   // Clear the dirty state.
   1114   LastStart = SlotIndex();
   1115 
   1116   assert(LR && "Cannot add to a null destination");
   1117 
   1118   // Nothing to merge?
   1119   if (Spills.empty()) {
   1120     LR->segments.erase(WriteI, ReadI);
   1121     LR->verify();
   1122     return;
   1123   }
   1124 
   1125   // Resize the WriteI - ReadI gap to match Spills.
   1126   size_t GapSize = ReadI - WriteI;
   1127   if (GapSize < Spills.size()) {
   1128     // The gap is too small. Make some room.
   1129     size_t WritePos = WriteI - LR->begin();
   1130     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
   1131     // This also invalidated ReadI, but it is recomputed below.
   1132     WriteI = LR->begin() + WritePos;
   1133   } else {
   1134     // Shrink the gap if necessary.
   1135     LR->segments.erase(WriteI + Spills.size(), ReadI);
   1136   }
   1137   ReadI = WriteI + Spills.size();
   1138   mergeSpills();
   1139   LR->verify();
   1140 }
   1141 
   1142 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
   1143   // Create initial equivalence classes.
   1144   EqClass.clear();
   1145   EqClass.grow(LR.getNumValNums());
   1146 
   1147   const VNInfo *used = nullptr, *unused = nullptr;
   1148 
   1149   // Determine connections.
   1150   for (const VNInfo *VNI : LR.valnos) {
   1151     // Group all unused values into one class.
   1152     if (VNI->isUnused()) {
   1153       if (unused)
   1154         EqClass.join(unused->id, VNI->id);
   1155       unused = VNI;
   1156       continue;
   1157     }
   1158     used = VNI;
   1159     if (VNI->isPHIDef()) {
   1160       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
   1161       assert(MBB && "Phi-def has no defining MBB");
   1162       // Connect to values live out of predecessors.
   1163       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
   1164            PE = MBB->pred_end(); PI != PE; ++PI)
   1165         if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
   1166           EqClass.join(VNI->id, PVNI->id);
   1167     } else {
   1168       // Normal value defined by an instruction. Check for two-addr redef.
   1169       // FIXME: This could be coincidental. Should we really check for a tied
   1170       // operand constraint?
   1171       // Note that VNI->def may be a use slot for an early clobber def.
   1172       if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
   1173         EqClass.join(VNI->id, UVNI->id);
   1174     }
   1175   }
   1176 
   1177   // Lump all the unused values in with the last used value.
   1178   if (used && unused)
   1179     EqClass.join(used->id, unused->id);
   1180 
   1181   EqClass.compress();
   1182   return EqClass.getNumClasses();
   1183 }
   1184 
   1185 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
   1186                                           MachineRegisterInfo &MRI) {
   1187   // Rewrite instructions.
   1188   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
   1189        RE = MRI.reg_end(); RI != RE;) {
   1190     MachineOperand &MO = *RI;
   1191     MachineInstr *MI = RI->getParent();
   1192     ++RI;
   1193     // DBG_VALUE instructions don't have slot indexes, so get the index of the
   1194     // instruction before them.
   1195     // Normally, DBG_VALUE instructions are removed before this function is
   1196     // called, but it is not a requirement.
   1197     SlotIndex Idx;
   1198     if (MI->isDebugValue())
   1199       Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
   1200     else
   1201       Idx = LIS.getInstructionIndex(*MI);
   1202     LiveQueryResult LRQ = LI.Query(Idx);
   1203     const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
   1204     // In the case of an <undef> use that isn't tied to any def, VNI will be
   1205     // NULL. If the use is tied to a def, VNI will be the defined value.
   1206     if (!VNI)
   1207       continue;
   1208     if (unsigned EqClass = getEqClass(VNI))
   1209       MO.setReg(LIV[EqClass-1]->reg);
   1210   }
   1211 
   1212   // Distribute subregister liveranges.
   1213   if (LI.hasSubRanges()) {
   1214     unsigned NumComponents = EqClass.getNumClasses();
   1215     SmallVector<unsigned, 8> VNIMapping;
   1216     SmallVector<LiveInterval::SubRange*, 8> SubRanges;
   1217     BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
   1218     for (LiveInterval::SubRange &SR : LI.subranges()) {
   1219       // Create new subranges in the split intervals and construct a mapping
   1220       // for the VNInfos in the subrange.
   1221       unsigned NumValNos = SR.valnos.size();
   1222       VNIMapping.clear();
   1223       VNIMapping.reserve(NumValNos);
   1224       SubRanges.clear();
   1225       SubRanges.resize(NumComponents-1, nullptr);
   1226       for (unsigned I = 0; I < NumValNos; ++I) {
   1227         const VNInfo &VNI = *SR.valnos[I];
   1228         unsigned ComponentNum;
   1229         if (VNI.isUnused()) {
   1230           ComponentNum = 0;
   1231         } else {
   1232           const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
   1233           assert(MainRangeVNI != nullptr
   1234                  && "SubRange def must have corresponding main range def");
   1235           ComponentNum = getEqClass(MainRangeVNI);
   1236           if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
   1237             SubRanges[ComponentNum-1]
   1238               = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
   1239           }
   1240         }
   1241         VNIMapping.push_back(ComponentNum);
   1242       }
   1243       DistributeRange(SR, SubRanges.data(), VNIMapping);
   1244     }
   1245     LI.removeEmptySubRanges();
   1246   }
   1247 
   1248   // Distribute main liverange.
   1249   DistributeRange(LI, LIV, EqClass);
   1250 }
   1251