1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/AsmParser/Parser.h" 18 #include "llvm/AsmParser/SlotMapping.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/SourceMgr.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 37 using namespace llvm; 38 39 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 40 SourceMgr &SM, const SlotMapping &IRSlots) 41 : MF(MF), SM(&SM), IRSlots(IRSlots) { 42 } 43 44 namespace { 45 46 /// A wrapper struct around the 'MachineOperand' struct that includes a source 47 /// range and other attributes. 48 struct ParsedMachineOperand { 49 MachineOperand Operand; 50 StringRef::iterator Begin; 51 StringRef::iterator End; 52 Optional<unsigned> TiedDefIdx; 53 54 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 55 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 56 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 57 if (TiedDefIdx) 58 assert(Operand.isReg() && Operand.isUse() && 59 "Only used register operands can be tied"); 60 } 61 }; 62 63 class MIParser { 64 MachineFunction &MF; 65 SMDiagnostic &Error; 66 StringRef Source, CurrentSource; 67 MIToken Token; 68 const PerFunctionMIParsingState &PFS; 69 /// Maps from instruction names to op codes. 70 StringMap<unsigned> Names2InstrOpCodes; 71 /// Maps from register names to registers. 72 StringMap<unsigned> Names2Regs; 73 /// Maps from register mask names to register masks. 74 StringMap<const uint32_t *> Names2RegMasks; 75 /// Maps from subregister names to subregister indices. 76 StringMap<unsigned> Names2SubRegIndices; 77 /// Maps from slot numbers to function's unnamed basic blocks. 78 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 79 /// Maps from slot numbers to function's unnamed values. 80 DenseMap<unsigned, const Value *> Slots2Values; 81 /// Maps from target index names to target indices. 82 StringMap<int> Names2TargetIndices; 83 /// Maps from direct target flag names to the direct target flag values. 84 StringMap<unsigned> Names2DirectTargetFlags; 85 /// Maps from direct target flag names to the bitmask target flag values. 86 StringMap<unsigned> Names2BitmaskTargetFlags; 87 88 public: 89 MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 90 StringRef Source); 91 92 /// \p SkipChar gives the number of characters to skip before looking 93 /// for the next token. 94 void lex(unsigned SkipChar = 0); 95 96 /// Report an error at the current location with the given message. 97 /// 98 /// This function always return true. 99 bool error(const Twine &Msg); 100 101 /// Report an error at the given location with the given message. 102 /// 103 /// This function always return true. 104 bool error(StringRef::iterator Loc, const Twine &Msg); 105 106 bool 107 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 108 bool parseBasicBlocks(); 109 bool parse(MachineInstr *&MI); 110 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 111 bool parseStandaloneNamedRegister(unsigned &Reg); 112 bool parseStandaloneVirtualRegister(unsigned &Reg); 113 bool parseStandaloneStackObject(int &FI); 114 bool parseStandaloneMDNode(MDNode *&Node); 115 116 bool 117 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 118 bool parseBasicBlock(MachineBasicBlock &MBB); 119 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 120 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 121 122 bool parseRegister(unsigned &Reg); 123 bool parseRegisterFlag(unsigned &Flags); 124 bool parseSubRegisterIndex(unsigned &SubReg); 125 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 126 bool parseSize(unsigned &Size); 127 bool parseRegisterOperand(MachineOperand &Dest, 128 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 129 bool parseImmediateOperand(MachineOperand &Dest); 130 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 131 const Constant *&C); 132 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 133 bool parseIRType(StringRef::iterator Loc, StringRef Source, unsigned &Read, 134 Type *&Ty); 135 // \p MustBeSized defines whether or not \p Ty must be sized. 136 bool parseIRType(StringRef::iterator Loc, Type *&Ty, bool MustBeSized = true); 137 bool parseTypedImmediateOperand(MachineOperand &Dest); 138 bool parseFPImmediateOperand(MachineOperand &Dest); 139 bool parseMBBReference(MachineBasicBlock *&MBB); 140 bool parseMBBOperand(MachineOperand &Dest); 141 bool parseStackFrameIndex(int &FI); 142 bool parseStackObjectOperand(MachineOperand &Dest); 143 bool parseFixedStackFrameIndex(int &FI); 144 bool parseFixedStackObjectOperand(MachineOperand &Dest); 145 bool parseGlobalValue(GlobalValue *&GV); 146 bool parseGlobalAddressOperand(MachineOperand &Dest); 147 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 148 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 149 bool parseJumpTableIndexOperand(MachineOperand &Dest); 150 bool parseExternalSymbolOperand(MachineOperand &Dest); 151 bool parseMDNode(MDNode *&Node); 152 bool parseMetadataOperand(MachineOperand &Dest); 153 bool parseCFIOffset(int &Offset); 154 bool parseCFIRegister(unsigned &Reg); 155 bool parseCFIOperand(MachineOperand &Dest); 156 bool parseIRBlock(BasicBlock *&BB, const Function &F); 157 bool parseBlockAddressOperand(MachineOperand &Dest); 158 bool parseTargetIndexOperand(MachineOperand &Dest); 159 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 160 bool parseMachineOperand(MachineOperand &Dest, 161 Optional<unsigned> &TiedDefIdx); 162 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 163 Optional<unsigned> &TiedDefIdx); 164 bool parseOffset(int64_t &Offset); 165 bool parseAlignment(unsigned &Alignment); 166 bool parseOperandsOffset(MachineOperand &Op); 167 bool parseIRValue(const Value *&V); 168 bool parseMemoryOperandFlag(unsigned &Flags); 169 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 170 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 171 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 172 173 private: 174 /// Convert the integer literal in the current token into an unsigned integer. 175 /// 176 /// Return true if an error occurred. 177 bool getUnsigned(unsigned &Result); 178 179 /// Convert the integer literal in the current token into an uint64. 180 /// 181 /// Return true if an error occurred. 182 bool getUint64(uint64_t &Result); 183 184 /// If the current token is of the given kind, consume it and return false. 185 /// Otherwise report an error and return true. 186 bool expectAndConsume(MIToken::TokenKind TokenKind); 187 188 /// If the current token is of the given kind, consume it and return true. 189 /// Otherwise return false. 190 bool consumeIfPresent(MIToken::TokenKind TokenKind); 191 192 void initNames2InstrOpCodes(); 193 194 /// Try to convert an instruction name to an opcode. Return true if the 195 /// instruction name is invalid. 196 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 197 198 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 199 200 bool assignRegisterTies(MachineInstr &MI, 201 ArrayRef<ParsedMachineOperand> Operands); 202 203 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 204 const MCInstrDesc &MCID); 205 206 void initNames2Regs(); 207 208 /// Try to convert a register name to a register number. Return true if the 209 /// register name is invalid. 210 bool getRegisterByName(StringRef RegName, unsigned &Reg); 211 212 void initNames2RegMasks(); 213 214 /// Check if the given identifier is a name of a register mask. 215 /// 216 /// Return null if the identifier isn't a register mask. 217 const uint32_t *getRegMask(StringRef Identifier); 218 219 void initNames2SubRegIndices(); 220 221 /// Check if the given identifier is a name of a subregister index. 222 /// 223 /// Return 0 if the name isn't a subregister index class. 224 unsigned getSubRegIndex(StringRef Name); 225 226 const BasicBlock *getIRBlock(unsigned Slot); 227 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 228 229 const Value *getIRValue(unsigned Slot); 230 231 void initNames2TargetIndices(); 232 233 /// Try to convert a name of target index to the corresponding target index. 234 /// 235 /// Return true if the name isn't a name of a target index. 236 bool getTargetIndex(StringRef Name, int &Index); 237 238 void initNames2DirectTargetFlags(); 239 240 /// Try to convert a name of a direct target flag to the corresponding 241 /// target flag. 242 /// 243 /// Return true if the name isn't a name of a direct flag. 244 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 245 246 void initNames2BitmaskTargetFlags(); 247 248 /// Try to convert a name of a bitmask target flag to the corresponding 249 /// target flag. 250 /// 251 /// Return true if the name isn't a name of a bitmask target flag. 252 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 253 }; 254 255 } // end anonymous namespace 256 257 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 258 StringRef Source) 259 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 260 {} 261 262 void MIParser::lex(unsigned SkipChar) { 263 CurrentSource = lexMIToken( 264 CurrentSource.data() + SkipChar, Token, 265 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 266 } 267 268 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 269 270 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 271 const SourceMgr &SM = *PFS.SM; 272 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 273 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 274 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 275 // Create an ordinary diagnostic when the source manager's buffer is the 276 // source string. 277 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 278 return true; 279 } 280 // Create a diagnostic for a YAML string literal. 281 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 282 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 283 Source, None, None); 284 return true; 285 } 286 287 static const char *toString(MIToken::TokenKind TokenKind) { 288 switch (TokenKind) { 289 case MIToken::comma: 290 return "','"; 291 case MIToken::equal: 292 return "'='"; 293 case MIToken::colon: 294 return "':'"; 295 case MIToken::lparen: 296 return "'('"; 297 case MIToken::rparen: 298 return "')'"; 299 default: 300 return "<unknown token>"; 301 } 302 } 303 304 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 305 if (Token.isNot(TokenKind)) 306 return error(Twine("expected ") + toString(TokenKind)); 307 lex(); 308 return false; 309 } 310 311 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 312 if (Token.isNot(TokenKind)) 313 return false; 314 lex(); 315 return true; 316 } 317 318 bool MIParser::parseBasicBlockDefinition( 319 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 320 assert(Token.is(MIToken::MachineBasicBlockLabel)); 321 unsigned ID = 0; 322 if (getUnsigned(ID)) 323 return true; 324 auto Loc = Token.location(); 325 auto Name = Token.stringValue(); 326 lex(); 327 bool HasAddressTaken = false; 328 bool IsLandingPad = false; 329 unsigned Alignment = 0; 330 BasicBlock *BB = nullptr; 331 if (consumeIfPresent(MIToken::lparen)) { 332 do { 333 // TODO: Report an error when multiple same attributes are specified. 334 switch (Token.kind()) { 335 case MIToken::kw_address_taken: 336 HasAddressTaken = true; 337 lex(); 338 break; 339 case MIToken::kw_landing_pad: 340 IsLandingPad = true; 341 lex(); 342 break; 343 case MIToken::kw_align: 344 if (parseAlignment(Alignment)) 345 return true; 346 break; 347 case MIToken::IRBlock: 348 // TODO: Report an error when both name and ir block are specified. 349 if (parseIRBlock(BB, *MF.getFunction())) 350 return true; 351 lex(); 352 break; 353 default: 354 break; 355 } 356 } while (consumeIfPresent(MIToken::comma)); 357 if (expectAndConsume(MIToken::rparen)) 358 return true; 359 } 360 if (expectAndConsume(MIToken::colon)) 361 return true; 362 363 if (!Name.empty()) { 364 BB = dyn_cast_or_null<BasicBlock>( 365 MF.getFunction()->getValueSymbolTable().lookup(Name)); 366 if (!BB) 367 return error(Loc, Twine("basic block '") + Name + 368 "' is not defined in the function '" + 369 MF.getName() + "'"); 370 } 371 auto *MBB = MF.CreateMachineBasicBlock(BB); 372 MF.insert(MF.end(), MBB); 373 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 374 if (!WasInserted) 375 return error(Loc, Twine("redefinition of machine basic block with id #") + 376 Twine(ID)); 377 if (Alignment) 378 MBB->setAlignment(Alignment); 379 if (HasAddressTaken) 380 MBB->setHasAddressTaken(); 381 MBB->setIsEHPad(IsLandingPad); 382 return false; 383 } 384 385 bool MIParser::parseBasicBlockDefinitions( 386 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 387 lex(); 388 // Skip until the first machine basic block. 389 while (Token.is(MIToken::Newline)) 390 lex(); 391 if (Token.isErrorOrEOF()) 392 return Token.isError(); 393 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 394 return error("expected a basic block definition before instructions"); 395 unsigned BraceDepth = 0; 396 do { 397 if (parseBasicBlockDefinition(MBBSlots)) 398 return true; 399 bool IsAfterNewline = false; 400 // Skip until the next machine basic block. 401 while (true) { 402 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 403 Token.isErrorOrEOF()) 404 break; 405 else if (Token.is(MIToken::MachineBasicBlockLabel)) 406 return error("basic block definition should be located at the start of " 407 "the line"); 408 else if (consumeIfPresent(MIToken::Newline)) { 409 IsAfterNewline = true; 410 continue; 411 } 412 IsAfterNewline = false; 413 if (Token.is(MIToken::lbrace)) 414 ++BraceDepth; 415 if (Token.is(MIToken::rbrace)) { 416 if (!BraceDepth) 417 return error("extraneous closing brace ('}')"); 418 --BraceDepth; 419 } 420 lex(); 421 } 422 // Verify that we closed all of the '{' at the end of a file or a block. 423 if (!Token.isError() && BraceDepth) 424 return error("expected '}'"); // FIXME: Report a note that shows '{'. 425 } while (!Token.isErrorOrEOF()); 426 return Token.isError(); 427 } 428 429 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 430 assert(Token.is(MIToken::kw_liveins)); 431 lex(); 432 if (expectAndConsume(MIToken::colon)) 433 return true; 434 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 435 return false; 436 do { 437 if (Token.isNot(MIToken::NamedRegister)) 438 return error("expected a named register"); 439 unsigned Reg = 0; 440 if (parseRegister(Reg)) 441 return true; 442 MBB.addLiveIn(Reg); 443 lex(); 444 } while (consumeIfPresent(MIToken::comma)); 445 return false; 446 } 447 448 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 449 assert(Token.is(MIToken::kw_successors)); 450 lex(); 451 if (expectAndConsume(MIToken::colon)) 452 return true; 453 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 454 return false; 455 do { 456 if (Token.isNot(MIToken::MachineBasicBlock)) 457 return error("expected a machine basic block reference"); 458 MachineBasicBlock *SuccMBB = nullptr; 459 if (parseMBBReference(SuccMBB)) 460 return true; 461 lex(); 462 unsigned Weight = 0; 463 if (consumeIfPresent(MIToken::lparen)) { 464 if (Token.isNot(MIToken::IntegerLiteral)) 465 return error("expected an integer literal after '('"); 466 if (getUnsigned(Weight)) 467 return true; 468 lex(); 469 if (expectAndConsume(MIToken::rparen)) 470 return true; 471 } 472 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 473 } while (consumeIfPresent(MIToken::comma)); 474 MBB.normalizeSuccProbs(); 475 return false; 476 } 477 478 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 479 // Skip the definition. 480 assert(Token.is(MIToken::MachineBasicBlockLabel)); 481 lex(); 482 if (consumeIfPresent(MIToken::lparen)) { 483 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 484 lex(); 485 consumeIfPresent(MIToken::rparen); 486 } 487 consumeIfPresent(MIToken::colon); 488 489 // Parse the liveins and successors. 490 // N.B: Multiple lists of successors and liveins are allowed and they're 491 // merged into one. 492 // Example: 493 // liveins: %edi 494 // liveins: %esi 495 // 496 // is equivalent to 497 // liveins: %edi, %esi 498 while (true) { 499 if (Token.is(MIToken::kw_successors)) { 500 if (parseBasicBlockSuccessors(MBB)) 501 return true; 502 } else if (Token.is(MIToken::kw_liveins)) { 503 if (parseBasicBlockLiveins(MBB)) 504 return true; 505 } else if (consumeIfPresent(MIToken::Newline)) { 506 continue; 507 } else 508 break; 509 if (!Token.isNewlineOrEOF()) 510 return error("expected line break at the end of a list"); 511 lex(); 512 } 513 514 // Parse the instructions. 515 bool IsInBundle = false; 516 MachineInstr *PrevMI = nullptr; 517 while (true) { 518 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 519 return false; 520 else if (consumeIfPresent(MIToken::Newline)) 521 continue; 522 if (consumeIfPresent(MIToken::rbrace)) { 523 // The first parsing pass should verify that all closing '}' have an 524 // opening '{'. 525 assert(IsInBundle); 526 IsInBundle = false; 527 continue; 528 } 529 MachineInstr *MI = nullptr; 530 if (parse(MI)) 531 return true; 532 MBB.insert(MBB.end(), MI); 533 if (IsInBundle) { 534 PrevMI->setFlag(MachineInstr::BundledSucc); 535 MI->setFlag(MachineInstr::BundledPred); 536 } 537 PrevMI = MI; 538 if (Token.is(MIToken::lbrace)) { 539 if (IsInBundle) 540 return error("nested instruction bundles are not allowed"); 541 lex(); 542 // This instruction is the start of the bundle. 543 MI->setFlag(MachineInstr::BundledSucc); 544 IsInBundle = true; 545 if (!Token.is(MIToken::Newline)) 546 // The next instruction can be on the same line. 547 continue; 548 } 549 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 550 lex(); 551 } 552 return false; 553 } 554 555 bool MIParser::parseBasicBlocks() { 556 lex(); 557 // Skip until the first machine basic block. 558 while (Token.is(MIToken::Newline)) 559 lex(); 560 if (Token.isErrorOrEOF()) 561 return Token.isError(); 562 // The first parsing pass should have verified that this token is a MBB label 563 // in the 'parseBasicBlockDefinitions' method. 564 assert(Token.is(MIToken::MachineBasicBlockLabel)); 565 do { 566 MachineBasicBlock *MBB = nullptr; 567 if (parseMBBReference(MBB)) 568 return true; 569 if (parseBasicBlock(*MBB)) 570 return true; 571 // The method 'parseBasicBlock' should parse the whole block until the next 572 // block or the end of file. 573 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 574 } while (Token.isNot(MIToken::Eof)); 575 return false; 576 } 577 578 bool MIParser::parse(MachineInstr *&MI) { 579 // Parse any register operands before '=' 580 MachineOperand MO = MachineOperand::CreateImm(0); 581 SmallVector<ParsedMachineOperand, 8> Operands; 582 while (Token.isRegister() || Token.isRegisterFlag()) { 583 auto Loc = Token.location(); 584 Optional<unsigned> TiedDefIdx; 585 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 586 return true; 587 Operands.push_back( 588 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 589 if (Token.isNot(MIToken::comma)) 590 break; 591 lex(); 592 } 593 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 594 return true; 595 596 unsigned OpCode, Flags = 0; 597 if (Token.isError() || parseInstruction(OpCode, Flags)) 598 return true; 599 600 Type *Ty = nullptr; 601 if (isPreISelGenericOpcode(OpCode)) { 602 // For generic opcode, a type is mandatory. 603 auto Loc = Token.location(); 604 if (parseIRType(Loc, Ty)) 605 return true; 606 } 607 608 // Parse the remaining machine operands. 609 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 610 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 611 auto Loc = Token.location(); 612 Optional<unsigned> TiedDefIdx; 613 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 614 return true; 615 Operands.push_back( 616 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 617 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 618 Token.is(MIToken::lbrace)) 619 break; 620 if (Token.isNot(MIToken::comma)) 621 return error("expected ',' before the next machine operand"); 622 lex(); 623 } 624 625 DebugLoc DebugLocation; 626 if (Token.is(MIToken::kw_debug_location)) { 627 lex(); 628 if (Token.isNot(MIToken::exclaim)) 629 return error("expected a metadata node after 'debug-location'"); 630 MDNode *Node = nullptr; 631 if (parseMDNode(Node)) 632 return true; 633 DebugLocation = DebugLoc(Node); 634 } 635 636 // Parse the machine memory operands. 637 SmallVector<MachineMemOperand *, 2> MemOperands; 638 if (Token.is(MIToken::coloncolon)) { 639 lex(); 640 while (!Token.isNewlineOrEOF()) { 641 MachineMemOperand *MemOp = nullptr; 642 if (parseMachineMemoryOperand(MemOp)) 643 return true; 644 MemOperands.push_back(MemOp); 645 if (Token.isNewlineOrEOF()) 646 break; 647 if (Token.isNot(MIToken::comma)) 648 return error("expected ',' before the next machine memory operand"); 649 lex(); 650 } 651 } 652 653 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 654 if (!MCID.isVariadic()) { 655 // FIXME: Move the implicit operand verification to the machine verifier. 656 if (verifyImplicitOperands(Operands, MCID)) 657 return true; 658 } 659 660 // TODO: Check for extraneous machine operands. 661 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 662 MI->setFlags(Flags); 663 if (Ty) 664 MI->setType(Ty); 665 for (const auto &Operand : Operands) 666 MI->addOperand(MF, Operand.Operand); 667 if (assignRegisterTies(*MI, Operands)) 668 return true; 669 if (MemOperands.empty()) 670 return false; 671 MachineInstr::mmo_iterator MemRefs = 672 MF.allocateMemRefsArray(MemOperands.size()); 673 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 674 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 675 return false; 676 } 677 678 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 679 lex(); 680 if (Token.isNot(MIToken::MachineBasicBlock)) 681 return error("expected a machine basic block reference"); 682 if (parseMBBReference(MBB)) 683 return true; 684 lex(); 685 if (Token.isNot(MIToken::Eof)) 686 return error( 687 "expected end of string after the machine basic block reference"); 688 return false; 689 } 690 691 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 692 lex(); 693 if (Token.isNot(MIToken::NamedRegister)) 694 return error("expected a named register"); 695 if (parseRegister(Reg)) 696 return true; 697 lex(); 698 if (Token.isNot(MIToken::Eof)) 699 return error("expected end of string after the register reference"); 700 return false; 701 } 702 703 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) { 704 lex(); 705 if (Token.isNot(MIToken::VirtualRegister)) 706 return error("expected a virtual register"); 707 if (parseRegister(Reg)) 708 return true; 709 lex(); 710 if (Token.isNot(MIToken::Eof)) 711 return error("expected end of string after the register reference"); 712 return false; 713 } 714 715 bool MIParser::parseStandaloneStackObject(int &FI) { 716 lex(); 717 if (Token.isNot(MIToken::StackObject)) 718 return error("expected a stack object"); 719 if (parseStackFrameIndex(FI)) 720 return true; 721 if (Token.isNot(MIToken::Eof)) 722 return error("expected end of string after the stack object reference"); 723 return false; 724 } 725 726 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 727 lex(); 728 if (Token.isNot(MIToken::exclaim)) 729 return error("expected a metadata node"); 730 if (parseMDNode(Node)) 731 return true; 732 if (Token.isNot(MIToken::Eof)) 733 return error("expected end of string after the metadata node"); 734 return false; 735 } 736 737 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 738 assert(MO.isImplicit()); 739 return MO.isDef() ? "implicit-def" : "implicit"; 740 } 741 742 static std::string getRegisterName(const TargetRegisterInfo *TRI, 743 unsigned Reg) { 744 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 745 return StringRef(TRI->getName(Reg)).lower(); 746 } 747 748 /// Return true if the parsed machine operands contain a given machine operand. 749 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 750 ArrayRef<ParsedMachineOperand> Operands) { 751 for (const auto &I : Operands) { 752 if (ImplicitOperand.isIdenticalTo(I.Operand)) 753 return true; 754 } 755 return false; 756 } 757 758 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 759 const MCInstrDesc &MCID) { 760 if (MCID.isCall()) 761 // We can't verify call instructions as they can contain arbitrary implicit 762 // register and register mask operands. 763 return false; 764 765 // Gather all the expected implicit operands. 766 SmallVector<MachineOperand, 4> ImplicitOperands; 767 if (MCID.ImplicitDefs) 768 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 769 ImplicitOperands.push_back( 770 MachineOperand::CreateReg(*ImpDefs, true, true)); 771 if (MCID.ImplicitUses) 772 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 773 ImplicitOperands.push_back( 774 MachineOperand::CreateReg(*ImpUses, false, true)); 775 776 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 777 assert(TRI && "Expected target register info"); 778 for (const auto &I : ImplicitOperands) { 779 if (isImplicitOperandIn(I, Operands)) 780 continue; 781 return error(Operands.empty() ? Token.location() : Operands.back().End, 782 Twine("missing implicit register operand '") + 783 printImplicitRegisterFlag(I) + " %" + 784 getRegisterName(TRI, I.getReg()) + "'"); 785 } 786 return false; 787 } 788 789 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 790 if (Token.is(MIToken::kw_frame_setup)) { 791 Flags |= MachineInstr::FrameSetup; 792 lex(); 793 } 794 if (Token.isNot(MIToken::Identifier)) 795 return error("expected a machine instruction"); 796 StringRef InstrName = Token.stringValue(); 797 if (parseInstrName(InstrName, OpCode)) 798 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 799 lex(); 800 return false; 801 } 802 803 bool MIParser::parseRegister(unsigned &Reg) { 804 switch (Token.kind()) { 805 case MIToken::underscore: 806 Reg = 0; 807 break; 808 case MIToken::NamedRegister: { 809 StringRef Name = Token.stringValue(); 810 if (getRegisterByName(Name, Reg)) 811 return error(Twine("unknown register name '") + Name + "'"); 812 break; 813 } 814 case MIToken::VirtualRegister: { 815 unsigned ID; 816 if (getUnsigned(ID)) 817 return true; 818 const auto RegInfo = PFS.VirtualRegisterSlots.find(ID); 819 if (RegInfo == PFS.VirtualRegisterSlots.end()) 820 return error(Twine("use of undefined virtual register '%") + Twine(ID) + 821 "'"); 822 Reg = RegInfo->second; 823 break; 824 } 825 // TODO: Parse other register kinds. 826 default: 827 llvm_unreachable("The current token should be a register"); 828 } 829 return false; 830 } 831 832 bool MIParser::parseRegisterFlag(unsigned &Flags) { 833 const unsigned OldFlags = Flags; 834 switch (Token.kind()) { 835 case MIToken::kw_implicit: 836 Flags |= RegState::Implicit; 837 break; 838 case MIToken::kw_implicit_define: 839 Flags |= RegState::ImplicitDefine; 840 break; 841 case MIToken::kw_def: 842 Flags |= RegState::Define; 843 break; 844 case MIToken::kw_dead: 845 Flags |= RegState::Dead; 846 break; 847 case MIToken::kw_killed: 848 Flags |= RegState::Kill; 849 break; 850 case MIToken::kw_undef: 851 Flags |= RegState::Undef; 852 break; 853 case MIToken::kw_internal: 854 Flags |= RegState::InternalRead; 855 break; 856 case MIToken::kw_early_clobber: 857 Flags |= RegState::EarlyClobber; 858 break; 859 case MIToken::kw_debug_use: 860 Flags |= RegState::Debug; 861 break; 862 default: 863 llvm_unreachable("The current token should be a register flag"); 864 } 865 if (OldFlags == Flags) 866 // We know that the same flag is specified more than once when the flags 867 // weren't modified. 868 return error("duplicate '" + Token.stringValue() + "' register flag"); 869 lex(); 870 return false; 871 } 872 873 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 874 assert(Token.is(MIToken::colon)); 875 lex(); 876 if (Token.isNot(MIToken::Identifier)) 877 return error("expected a subregister index after ':'"); 878 auto Name = Token.stringValue(); 879 SubReg = getSubRegIndex(Name); 880 if (!SubReg) 881 return error(Twine("use of unknown subregister index '") + Name + "'"); 882 lex(); 883 return false; 884 } 885 886 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 887 if (!consumeIfPresent(MIToken::kw_tied_def)) 888 return error("expected 'tied-def' after '('"); 889 if (Token.isNot(MIToken::IntegerLiteral)) 890 return error("expected an integer literal after 'tied-def'"); 891 if (getUnsigned(TiedDefIdx)) 892 return true; 893 lex(); 894 if (expectAndConsume(MIToken::rparen)) 895 return true; 896 return false; 897 } 898 899 bool MIParser::parseSize(unsigned &Size) { 900 if (Token.isNot(MIToken::IntegerLiteral)) 901 return error("expected an integer literal for the size"); 902 if (getUnsigned(Size)) 903 return true; 904 lex(); 905 if (expectAndConsume(MIToken::rparen)) 906 return true; 907 return false; 908 } 909 910 bool MIParser::assignRegisterTies(MachineInstr &MI, 911 ArrayRef<ParsedMachineOperand> Operands) { 912 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 913 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 914 if (!Operands[I].TiedDefIdx) 915 continue; 916 // The parser ensures that this operand is a register use, so we just have 917 // to check the tied-def operand. 918 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 919 if (DefIdx >= E) 920 return error(Operands[I].Begin, 921 Twine("use of invalid tied-def operand index '" + 922 Twine(DefIdx) + "'; instruction has only ") + 923 Twine(E) + " operands"); 924 const auto &DefOperand = Operands[DefIdx].Operand; 925 if (!DefOperand.isReg() || !DefOperand.isDef()) 926 // FIXME: add note with the def operand. 927 return error(Operands[I].Begin, 928 Twine("use of invalid tied-def operand index '") + 929 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 930 " isn't a defined register"); 931 // Check that the tied-def operand wasn't tied elsewhere. 932 for (const auto &TiedPair : TiedRegisterPairs) { 933 if (TiedPair.first == DefIdx) 934 return error(Operands[I].Begin, 935 Twine("the tied-def operand #") + Twine(DefIdx) + 936 " is already tied with another register operand"); 937 } 938 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 939 } 940 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 941 // indices must be less than tied max. 942 for (const auto &TiedPair : TiedRegisterPairs) 943 MI.tieOperands(TiedPair.first, TiedPair.second); 944 return false; 945 } 946 947 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 948 Optional<unsigned> &TiedDefIdx, 949 bool IsDef) { 950 unsigned Reg; 951 unsigned Flags = IsDef ? RegState::Define : 0; 952 while (Token.isRegisterFlag()) { 953 if (parseRegisterFlag(Flags)) 954 return true; 955 } 956 if (!Token.isRegister()) 957 return error("expected a register after register flags"); 958 if (parseRegister(Reg)) 959 return true; 960 lex(); 961 unsigned SubReg = 0; 962 if (Token.is(MIToken::colon)) { 963 if (parseSubRegisterIndex(SubReg)) 964 return true; 965 } 966 if ((Flags & RegState::Define) == 0) { 967 if (consumeIfPresent(MIToken::lparen)) { 968 unsigned Idx; 969 if (parseRegisterTiedDefIndex(Idx)) 970 return true; 971 TiedDefIdx = Idx; 972 } 973 } else if (consumeIfPresent(MIToken::lparen)) { 974 // Virtual registers may have a size with GlobalISel. 975 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 976 return error("unexpected size on physical register"); 977 unsigned Size; 978 if (parseSize(Size)) 979 return true; 980 981 MachineRegisterInfo &MRI = MF.getRegInfo(); 982 MRI.setSize(Reg, Size); 983 } else if (PFS.GenericVRegs.count(Reg)) { 984 // Generic virtual registers must have a size. 985 // If we end up here this means the size hasn't been specified and 986 // this is bad! 987 return error("generic virtual registers must have a size"); 988 } 989 Dest = MachineOperand::CreateReg( 990 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 991 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 992 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 993 Flags & RegState::InternalRead); 994 return false; 995 } 996 997 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 998 assert(Token.is(MIToken::IntegerLiteral)); 999 const APSInt &Int = Token.integerValue(); 1000 if (Int.getMinSignedBits() > 64) 1001 return error("integer literal is too large to be an immediate operand"); 1002 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1003 lex(); 1004 return false; 1005 } 1006 1007 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1008 const Constant *&C) { 1009 auto Source = StringValue.str(); // The source has to be null terminated. 1010 SMDiagnostic Err; 1011 C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(), 1012 &PFS.IRSlots); 1013 if (!C) 1014 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1015 return false; 1016 } 1017 1018 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1019 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1020 return true; 1021 lex(); 1022 return false; 1023 } 1024 1025 bool MIParser::parseIRType(StringRef::iterator Loc, StringRef StringValue, 1026 unsigned &Read, Type *&Ty) { 1027 auto Source = StringValue.str(); // The source has to be null terminated. 1028 SMDiagnostic Err; 1029 Ty = parseTypeAtBeginning(Source.c_str(), Read, Err, 1030 *MF.getFunction()->getParent(), &PFS.IRSlots); 1031 if (!Ty) 1032 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1033 return false; 1034 } 1035 1036 bool MIParser::parseIRType(StringRef::iterator Loc, Type *&Ty, 1037 bool MustBeSized) { 1038 // At this point we enter in the IR world, i.e., to get the correct type, 1039 // we need to hand off the whole string, not just the current token. 1040 // E.g., <4 x i64> would give '<' as a token and there is not much 1041 // the IR parser can do with that. 1042 unsigned Read = 0; 1043 if (parseIRType(Loc, StringRef(Loc), Read, Ty)) 1044 return true; 1045 // The type must be sized, otherwise there is not much the backend 1046 // can do with it. 1047 if (MustBeSized && !Ty->isSized()) 1048 return error("expected a sized type"); 1049 // The next token is Read characters from the Loc. 1050 // However, the current location is not Loc, but Loc + the length of Token. 1051 // Therefore, subtract the length of Token (range().end() - Loc) to the 1052 // number of characters to skip before the next token. 1053 lex(Read - (Token.range().end() - Loc)); 1054 return false; 1055 } 1056 1057 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1058 assert(Token.is(MIToken::IntegerType)); 1059 auto Loc = Token.location(); 1060 lex(); 1061 if (Token.isNot(MIToken::IntegerLiteral)) 1062 return error("expected an integer literal"); 1063 const Constant *C = nullptr; 1064 if (parseIRConstant(Loc, C)) 1065 return true; 1066 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1067 return false; 1068 } 1069 1070 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1071 auto Loc = Token.location(); 1072 lex(); 1073 if (Token.isNot(MIToken::FloatingPointLiteral)) 1074 return error("expected a floating point literal"); 1075 const Constant *C = nullptr; 1076 if (parseIRConstant(Loc, C)) 1077 return true; 1078 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1079 return false; 1080 } 1081 1082 bool MIParser::getUnsigned(unsigned &Result) { 1083 assert(Token.hasIntegerValue() && "Expected a token with an integer value"); 1084 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1085 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1086 if (Val64 == Limit) 1087 return error("expected 32-bit integer (too large)"); 1088 Result = Val64; 1089 return false; 1090 } 1091 1092 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1093 assert(Token.is(MIToken::MachineBasicBlock) || 1094 Token.is(MIToken::MachineBasicBlockLabel)); 1095 unsigned Number; 1096 if (getUnsigned(Number)) 1097 return true; 1098 auto MBBInfo = PFS.MBBSlots.find(Number); 1099 if (MBBInfo == PFS.MBBSlots.end()) 1100 return error(Twine("use of undefined machine basic block #") + 1101 Twine(Number)); 1102 MBB = MBBInfo->second; 1103 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1104 return error(Twine("the name of machine basic block #") + Twine(Number) + 1105 " isn't '" + Token.stringValue() + "'"); 1106 return false; 1107 } 1108 1109 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1110 MachineBasicBlock *MBB; 1111 if (parseMBBReference(MBB)) 1112 return true; 1113 Dest = MachineOperand::CreateMBB(MBB); 1114 lex(); 1115 return false; 1116 } 1117 1118 bool MIParser::parseStackFrameIndex(int &FI) { 1119 assert(Token.is(MIToken::StackObject)); 1120 unsigned ID; 1121 if (getUnsigned(ID)) 1122 return true; 1123 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1124 if (ObjectInfo == PFS.StackObjectSlots.end()) 1125 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1126 "'"); 1127 StringRef Name; 1128 if (const auto *Alloca = 1129 MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second)) 1130 Name = Alloca->getName(); 1131 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1132 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1133 "' isn't '" + Token.stringValue() + "'"); 1134 lex(); 1135 FI = ObjectInfo->second; 1136 return false; 1137 } 1138 1139 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1140 int FI; 1141 if (parseStackFrameIndex(FI)) 1142 return true; 1143 Dest = MachineOperand::CreateFI(FI); 1144 return false; 1145 } 1146 1147 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1148 assert(Token.is(MIToken::FixedStackObject)); 1149 unsigned ID; 1150 if (getUnsigned(ID)) 1151 return true; 1152 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1153 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1154 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1155 Twine(ID) + "'"); 1156 lex(); 1157 FI = ObjectInfo->second; 1158 return false; 1159 } 1160 1161 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1162 int FI; 1163 if (parseFixedStackFrameIndex(FI)) 1164 return true; 1165 Dest = MachineOperand::CreateFI(FI); 1166 return false; 1167 } 1168 1169 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1170 switch (Token.kind()) { 1171 case MIToken::NamedGlobalValue: { 1172 const Module *M = MF.getFunction()->getParent(); 1173 GV = M->getNamedValue(Token.stringValue()); 1174 if (!GV) 1175 return error(Twine("use of undefined global value '") + Token.range() + 1176 "'"); 1177 break; 1178 } 1179 case MIToken::GlobalValue: { 1180 unsigned GVIdx; 1181 if (getUnsigned(GVIdx)) 1182 return true; 1183 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1184 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1185 "'"); 1186 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1187 break; 1188 } 1189 default: 1190 llvm_unreachable("The current token should be a global value"); 1191 } 1192 return false; 1193 } 1194 1195 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1196 GlobalValue *GV = nullptr; 1197 if (parseGlobalValue(GV)) 1198 return true; 1199 lex(); 1200 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1201 if (parseOperandsOffset(Dest)) 1202 return true; 1203 return false; 1204 } 1205 1206 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1207 assert(Token.is(MIToken::ConstantPoolItem)); 1208 unsigned ID; 1209 if (getUnsigned(ID)) 1210 return true; 1211 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1212 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1213 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1214 lex(); 1215 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1216 if (parseOperandsOffset(Dest)) 1217 return true; 1218 return false; 1219 } 1220 1221 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1222 assert(Token.is(MIToken::JumpTableIndex)); 1223 unsigned ID; 1224 if (getUnsigned(ID)) 1225 return true; 1226 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1227 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1228 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1229 lex(); 1230 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1231 return false; 1232 } 1233 1234 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1235 assert(Token.is(MIToken::ExternalSymbol)); 1236 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1237 lex(); 1238 Dest = MachineOperand::CreateES(Symbol); 1239 if (parseOperandsOffset(Dest)) 1240 return true; 1241 return false; 1242 } 1243 1244 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1245 assert(Token.is(MIToken::SubRegisterIndex)); 1246 StringRef Name = Token.stringValue(); 1247 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1248 if (SubRegIndex == 0) 1249 return error(Twine("unknown subregister index '") + Name + "'"); 1250 lex(); 1251 Dest = MachineOperand::CreateImm(SubRegIndex); 1252 return false; 1253 } 1254 1255 bool MIParser::parseMDNode(MDNode *&Node) { 1256 assert(Token.is(MIToken::exclaim)); 1257 auto Loc = Token.location(); 1258 lex(); 1259 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1260 return error("expected metadata id after '!'"); 1261 unsigned ID; 1262 if (getUnsigned(ID)) 1263 return true; 1264 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1265 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1266 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1267 lex(); 1268 Node = NodeInfo->second.get(); 1269 return false; 1270 } 1271 1272 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1273 MDNode *Node = nullptr; 1274 if (parseMDNode(Node)) 1275 return true; 1276 Dest = MachineOperand::CreateMetadata(Node); 1277 return false; 1278 } 1279 1280 bool MIParser::parseCFIOffset(int &Offset) { 1281 if (Token.isNot(MIToken::IntegerLiteral)) 1282 return error("expected a cfi offset"); 1283 if (Token.integerValue().getMinSignedBits() > 32) 1284 return error("expected a 32 bit integer (the cfi offset is too large)"); 1285 Offset = (int)Token.integerValue().getExtValue(); 1286 lex(); 1287 return false; 1288 } 1289 1290 bool MIParser::parseCFIRegister(unsigned &Reg) { 1291 if (Token.isNot(MIToken::NamedRegister)) 1292 return error("expected a cfi register"); 1293 unsigned LLVMReg; 1294 if (parseRegister(LLVMReg)) 1295 return true; 1296 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1297 assert(TRI && "Expected target register info"); 1298 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1299 if (DwarfReg < 0) 1300 return error("invalid DWARF register"); 1301 Reg = (unsigned)DwarfReg; 1302 lex(); 1303 return false; 1304 } 1305 1306 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1307 auto Kind = Token.kind(); 1308 lex(); 1309 auto &MMI = MF.getMMI(); 1310 int Offset; 1311 unsigned Reg; 1312 unsigned CFIIndex; 1313 switch (Kind) { 1314 case MIToken::kw_cfi_same_value: 1315 if (parseCFIRegister(Reg)) 1316 return true; 1317 CFIIndex = 1318 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1319 break; 1320 case MIToken::kw_cfi_offset: 1321 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1322 parseCFIOffset(Offset)) 1323 return true; 1324 CFIIndex = 1325 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1326 break; 1327 case MIToken::kw_cfi_def_cfa_register: 1328 if (parseCFIRegister(Reg)) 1329 return true; 1330 CFIIndex = 1331 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1332 break; 1333 case MIToken::kw_cfi_def_cfa_offset: 1334 if (parseCFIOffset(Offset)) 1335 return true; 1336 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1337 CFIIndex = MMI.addFrameInst( 1338 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1339 break; 1340 case MIToken::kw_cfi_def_cfa: 1341 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1342 parseCFIOffset(Offset)) 1343 return true; 1344 // NB: MCCFIInstruction::createDefCfa negates the offset. 1345 CFIIndex = 1346 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1347 break; 1348 default: 1349 // TODO: Parse the other CFI operands. 1350 llvm_unreachable("The current token should be a cfi operand"); 1351 } 1352 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1353 return false; 1354 } 1355 1356 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1357 switch (Token.kind()) { 1358 case MIToken::NamedIRBlock: { 1359 BB = dyn_cast_or_null<BasicBlock>( 1360 F.getValueSymbolTable().lookup(Token.stringValue())); 1361 if (!BB) 1362 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1363 break; 1364 } 1365 case MIToken::IRBlock: { 1366 unsigned SlotNumber = 0; 1367 if (getUnsigned(SlotNumber)) 1368 return true; 1369 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1370 if (!BB) 1371 return error(Twine("use of undefined IR block '%ir-block.") + 1372 Twine(SlotNumber) + "'"); 1373 break; 1374 } 1375 default: 1376 llvm_unreachable("The current token should be an IR block reference"); 1377 } 1378 return false; 1379 } 1380 1381 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1382 assert(Token.is(MIToken::kw_blockaddress)); 1383 lex(); 1384 if (expectAndConsume(MIToken::lparen)) 1385 return true; 1386 if (Token.isNot(MIToken::GlobalValue) && 1387 Token.isNot(MIToken::NamedGlobalValue)) 1388 return error("expected a global value"); 1389 GlobalValue *GV = nullptr; 1390 if (parseGlobalValue(GV)) 1391 return true; 1392 auto *F = dyn_cast<Function>(GV); 1393 if (!F) 1394 return error("expected an IR function reference"); 1395 lex(); 1396 if (expectAndConsume(MIToken::comma)) 1397 return true; 1398 BasicBlock *BB = nullptr; 1399 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1400 return error("expected an IR block reference"); 1401 if (parseIRBlock(BB, *F)) 1402 return true; 1403 lex(); 1404 if (expectAndConsume(MIToken::rparen)) 1405 return true; 1406 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1407 if (parseOperandsOffset(Dest)) 1408 return true; 1409 return false; 1410 } 1411 1412 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1413 assert(Token.is(MIToken::kw_target_index)); 1414 lex(); 1415 if (expectAndConsume(MIToken::lparen)) 1416 return true; 1417 if (Token.isNot(MIToken::Identifier)) 1418 return error("expected the name of the target index"); 1419 int Index = 0; 1420 if (getTargetIndex(Token.stringValue(), Index)) 1421 return error("use of undefined target index '" + Token.stringValue() + "'"); 1422 lex(); 1423 if (expectAndConsume(MIToken::rparen)) 1424 return true; 1425 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1426 if (parseOperandsOffset(Dest)) 1427 return true; 1428 return false; 1429 } 1430 1431 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1432 assert(Token.is(MIToken::kw_liveout)); 1433 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1434 assert(TRI && "Expected target register info"); 1435 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1436 lex(); 1437 if (expectAndConsume(MIToken::lparen)) 1438 return true; 1439 while (true) { 1440 if (Token.isNot(MIToken::NamedRegister)) 1441 return error("expected a named register"); 1442 unsigned Reg = 0; 1443 if (parseRegister(Reg)) 1444 return true; 1445 lex(); 1446 Mask[Reg / 32] |= 1U << (Reg % 32); 1447 // TODO: Report an error if the same register is used more than once. 1448 if (Token.isNot(MIToken::comma)) 1449 break; 1450 lex(); 1451 } 1452 if (expectAndConsume(MIToken::rparen)) 1453 return true; 1454 Dest = MachineOperand::CreateRegLiveOut(Mask); 1455 return false; 1456 } 1457 1458 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1459 Optional<unsigned> &TiedDefIdx) { 1460 switch (Token.kind()) { 1461 case MIToken::kw_implicit: 1462 case MIToken::kw_implicit_define: 1463 case MIToken::kw_def: 1464 case MIToken::kw_dead: 1465 case MIToken::kw_killed: 1466 case MIToken::kw_undef: 1467 case MIToken::kw_internal: 1468 case MIToken::kw_early_clobber: 1469 case MIToken::kw_debug_use: 1470 case MIToken::underscore: 1471 case MIToken::NamedRegister: 1472 case MIToken::VirtualRegister: 1473 return parseRegisterOperand(Dest, TiedDefIdx); 1474 case MIToken::IntegerLiteral: 1475 return parseImmediateOperand(Dest); 1476 case MIToken::IntegerType: 1477 return parseTypedImmediateOperand(Dest); 1478 case MIToken::kw_half: 1479 case MIToken::kw_float: 1480 case MIToken::kw_double: 1481 case MIToken::kw_x86_fp80: 1482 case MIToken::kw_fp128: 1483 case MIToken::kw_ppc_fp128: 1484 return parseFPImmediateOperand(Dest); 1485 case MIToken::MachineBasicBlock: 1486 return parseMBBOperand(Dest); 1487 case MIToken::StackObject: 1488 return parseStackObjectOperand(Dest); 1489 case MIToken::FixedStackObject: 1490 return parseFixedStackObjectOperand(Dest); 1491 case MIToken::GlobalValue: 1492 case MIToken::NamedGlobalValue: 1493 return parseGlobalAddressOperand(Dest); 1494 case MIToken::ConstantPoolItem: 1495 return parseConstantPoolIndexOperand(Dest); 1496 case MIToken::JumpTableIndex: 1497 return parseJumpTableIndexOperand(Dest); 1498 case MIToken::ExternalSymbol: 1499 return parseExternalSymbolOperand(Dest); 1500 case MIToken::SubRegisterIndex: 1501 return parseSubRegisterIndexOperand(Dest); 1502 case MIToken::exclaim: 1503 return parseMetadataOperand(Dest); 1504 case MIToken::kw_cfi_same_value: 1505 case MIToken::kw_cfi_offset: 1506 case MIToken::kw_cfi_def_cfa_register: 1507 case MIToken::kw_cfi_def_cfa_offset: 1508 case MIToken::kw_cfi_def_cfa: 1509 return parseCFIOperand(Dest); 1510 case MIToken::kw_blockaddress: 1511 return parseBlockAddressOperand(Dest); 1512 case MIToken::kw_target_index: 1513 return parseTargetIndexOperand(Dest); 1514 case MIToken::kw_liveout: 1515 return parseLiveoutRegisterMaskOperand(Dest); 1516 case MIToken::Error: 1517 return true; 1518 case MIToken::Identifier: 1519 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1520 Dest = MachineOperand::CreateRegMask(RegMask); 1521 lex(); 1522 break; 1523 } 1524 // fallthrough 1525 default: 1526 // FIXME: Parse the MCSymbol machine operand. 1527 return error("expected a machine operand"); 1528 } 1529 return false; 1530 } 1531 1532 bool MIParser::parseMachineOperandAndTargetFlags( 1533 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1534 unsigned TF = 0; 1535 bool HasTargetFlags = false; 1536 if (Token.is(MIToken::kw_target_flags)) { 1537 HasTargetFlags = true; 1538 lex(); 1539 if (expectAndConsume(MIToken::lparen)) 1540 return true; 1541 if (Token.isNot(MIToken::Identifier)) 1542 return error("expected the name of the target flag"); 1543 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1544 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1545 return error("use of undefined target flag '" + Token.stringValue() + 1546 "'"); 1547 } 1548 lex(); 1549 while (Token.is(MIToken::comma)) { 1550 lex(); 1551 if (Token.isNot(MIToken::Identifier)) 1552 return error("expected the name of the target flag"); 1553 unsigned BitFlag = 0; 1554 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1555 return error("use of undefined target flag '" + Token.stringValue() + 1556 "'"); 1557 // TODO: Report an error when using a duplicate bit target flag. 1558 TF |= BitFlag; 1559 lex(); 1560 } 1561 if (expectAndConsume(MIToken::rparen)) 1562 return true; 1563 } 1564 auto Loc = Token.location(); 1565 if (parseMachineOperand(Dest, TiedDefIdx)) 1566 return true; 1567 if (!HasTargetFlags) 1568 return false; 1569 if (Dest.isReg()) 1570 return error(Loc, "register operands can't have target flags"); 1571 Dest.setTargetFlags(TF); 1572 return false; 1573 } 1574 1575 bool MIParser::parseOffset(int64_t &Offset) { 1576 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1577 return false; 1578 StringRef Sign = Token.range(); 1579 bool IsNegative = Token.is(MIToken::minus); 1580 lex(); 1581 if (Token.isNot(MIToken::IntegerLiteral)) 1582 return error("expected an integer literal after '" + Sign + "'"); 1583 if (Token.integerValue().getMinSignedBits() > 64) 1584 return error("expected 64-bit integer (too large)"); 1585 Offset = Token.integerValue().getExtValue(); 1586 if (IsNegative) 1587 Offset = -Offset; 1588 lex(); 1589 return false; 1590 } 1591 1592 bool MIParser::parseAlignment(unsigned &Alignment) { 1593 assert(Token.is(MIToken::kw_align)); 1594 lex(); 1595 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1596 return error("expected an integer literal after 'align'"); 1597 if (getUnsigned(Alignment)) 1598 return true; 1599 lex(); 1600 return false; 1601 } 1602 1603 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1604 int64_t Offset = 0; 1605 if (parseOffset(Offset)) 1606 return true; 1607 Op.setOffset(Offset); 1608 return false; 1609 } 1610 1611 bool MIParser::parseIRValue(const Value *&V) { 1612 switch (Token.kind()) { 1613 case MIToken::NamedIRValue: { 1614 V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue()); 1615 break; 1616 } 1617 case MIToken::IRValue: { 1618 unsigned SlotNumber = 0; 1619 if (getUnsigned(SlotNumber)) 1620 return true; 1621 V = getIRValue(SlotNumber); 1622 break; 1623 } 1624 case MIToken::NamedGlobalValue: 1625 case MIToken::GlobalValue: { 1626 GlobalValue *GV = nullptr; 1627 if (parseGlobalValue(GV)) 1628 return true; 1629 V = GV; 1630 break; 1631 } 1632 case MIToken::QuotedIRValue: { 1633 const Constant *C = nullptr; 1634 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1635 return true; 1636 V = C; 1637 break; 1638 } 1639 default: 1640 llvm_unreachable("The current token should be an IR block reference"); 1641 } 1642 if (!V) 1643 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1644 return false; 1645 } 1646 1647 bool MIParser::getUint64(uint64_t &Result) { 1648 assert(Token.hasIntegerValue()); 1649 if (Token.integerValue().getActiveBits() > 64) 1650 return error("expected 64-bit integer (too large)"); 1651 Result = Token.integerValue().getZExtValue(); 1652 return false; 1653 } 1654 1655 bool MIParser::parseMemoryOperandFlag(unsigned &Flags) { 1656 const unsigned OldFlags = Flags; 1657 switch (Token.kind()) { 1658 case MIToken::kw_volatile: 1659 Flags |= MachineMemOperand::MOVolatile; 1660 break; 1661 case MIToken::kw_non_temporal: 1662 Flags |= MachineMemOperand::MONonTemporal; 1663 break; 1664 case MIToken::kw_invariant: 1665 Flags |= MachineMemOperand::MOInvariant; 1666 break; 1667 // TODO: parse the target specific memory operand flags. 1668 default: 1669 llvm_unreachable("The current token should be a memory operand flag"); 1670 } 1671 if (OldFlags == Flags) 1672 // We know that the same flag is specified more than once when the flags 1673 // weren't modified. 1674 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1675 lex(); 1676 return false; 1677 } 1678 1679 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1680 switch (Token.kind()) { 1681 case MIToken::kw_stack: 1682 PSV = MF.getPSVManager().getStack(); 1683 break; 1684 case MIToken::kw_got: 1685 PSV = MF.getPSVManager().getGOT(); 1686 break; 1687 case MIToken::kw_jump_table: 1688 PSV = MF.getPSVManager().getJumpTable(); 1689 break; 1690 case MIToken::kw_constant_pool: 1691 PSV = MF.getPSVManager().getConstantPool(); 1692 break; 1693 case MIToken::FixedStackObject: { 1694 int FI; 1695 if (parseFixedStackFrameIndex(FI)) 1696 return true; 1697 PSV = MF.getPSVManager().getFixedStack(FI); 1698 // The token was already consumed, so use return here instead of break. 1699 return false; 1700 } 1701 case MIToken::StackObject: { 1702 int FI; 1703 if (parseStackFrameIndex(FI)) 1704 return true; 1705 PSV = MF.getPSVManager().getFixedStack(FI); 1706 // The token was already consumed, so use return here instead of break. 1707 return false; 1708 } 1709 case MIToken::kw_call_entry: { 1710 lex(); 1711 switch (Token.kind()) { 1712 case MIToken::GlobalValue: 1713 case MIToken::NamedGlobalValue: { 1714 GlobalValue *GV = nullptr; 1715 if (parseGlobalValue(GV)) 1716 return true; 1717 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1718 break; 1719 } 1720 case MIToken::ExternalSymbol: 1721 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1722 MF.createExternalSymbolName(Token.stringValue())); 1723 break; 1724 default: 1725 return error( 1726 "expected a global value or an external symbol after 'call-entry'"); 1727 } 1728 break; 1729 } 1730 default: 1731 llvm_unreachable("The current token should be pseudo source value"); 1732 } 1733 lex(); 1734 return false; 1735 } 1736 1737 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1738 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1739 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1740 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 1741 Token.is(MIToken::kw_call_entry)) { 1742 const PseudoSourceValue *PSV = nullptr; 1743 if (parseMemoryPseudoSourceValue(PSV)) 1744 return true; 1745 int64_t Offset = 0; 1746 if (parseOffset(Offset)) 1747 return true; 1748 Dest = MachinePointerInfo(PSV, Offset); 1749 return false; 1750 } 1751 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1752 Token.isNot(MIToken::GlobalValue) && 1753 Token.isNot(MIToken::NamedGlobalValue) && 1754 Token.isNot(MIToken::QuotedIRValue)) 1755 return error("expected an IR value reference"); 1756 const Value *V = nullptr; 1757 if (parseIRValue(V)) 1758 return true; 1759 if (!V->getType()->isPointerTy()) 1760 return error("expected a pointer IR value"); 1761 lex(); 1762 int64_t Offset = 0; 1763 if (parseOffset(Offset)) 1764 return true; 1765 Dest = MachinePointerInfo(V, Offset); 1766 return false; 1767 } 1768 1769 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1770 if (expectAndConsume(MIToken::lparen)) 1771 return true; 1772 unsigned Flags = 0; 1773 while (Token.isMemoryOperandFlag()) { 1774 if (parseMemoryOperandFlag(Flags)) 1775 return true; 1776 } 1777 if (Token.isNot(MIToken::Identifier) || 1778 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1779 return error("expected 'load' or 'store' memory operation"); 1780 if (Token.stringValue() == "load") 1781 Flags |= MachineMemOperand::MOLoad; 1782 else 1783 Flags |= MachineMemOperand::MOStore; 1784 lex(); 1785 1786 if (Token.isNot(MIToken::IntegerLiteral)) 1787 return error("expected the size integer literal after memory operation"); 1788 uint64_t Size; 1789 if (getUint64(Size)) 1790 return true; 1791 lex(); 1792 1793 MachinePointerInfo Ptr = MachinePointerInfo(); 1794 if (Token.is(MIToken::Identifier)) { 1795 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1796 if (Token.stringValue() != Word) 1797 return error(Twine("expected '") + Word + "'"); 1798 lex(); 1799 1800 if (parseMachinePointerInfo(Ptr)) 1801 return true; 1802 } 1803 unsigned BaseAlignment = Size; 1804 AAMDNodes AAInfo; 1805 MDNode *Range = nullptr; 1806 while (consumeIfPresent(MIToken::comma)) { 1807 switch (Token.kind()) { 1808 case MIToken::kw_align: 1809 if (parseAlignment(BaseAlignment)) 1810 return true; 1811 break; 1812 case MIToken::md_tbaa: 1813 lex(); 1814 if (parseMDNode(AAInfo.TBAA)) 1815 return true; 1816 break; 1817 case MIToken::md_alias_scope: 1818 lex(); 1819 if (parseMDNode(AAInfo.Scope)) 1820 return true; 1821 break; 1822 case MIToken::md_noalias: 1823 lex(); 1824 if (parseMDNode(AAInfo.NoAlias)) 1825 return true; 1826 break; 1827 case MIToken::md_range: 1828 lex(); 1829 if (parseMDNode(Range)) 1830 return true; 1831 break; 1832 // TODO: Report an error on duplicate metadata nodes. 1833 default: 1834 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 1835 "'!noalias' or '!range'"); 1836 } 1837 } 1838 if (expectAndConsume(MIToken::rparen)) 1839 return true; 1840 Dest = 1841 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 1842 return false; 1843 } 1844 1845 void MIParser::initNames2InstrOpCodes() { 1846 if (!Names2InstrOpCodes.empty()) 1847 return; 1848 const auto *TII = MF.getSubtarget().getInstrInfo(); 1849 assert(TII && "Expected target instruction info"); 1850 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 1851 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 1852 } 1853 1854 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 1855 initNames2InstrOpCodes(); 1856 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 1857 if (InstrInfo == Names2InstrOpCodes.end()) 1858 return true; 1859 OpCode = InstrInfo->getValue(); 1860 return false; 1861 } 1862 1863 void MIParser::initNames2Regs() { 1864 if (!Names2Regs.empty()) 1865 return; 1866 // The '%noreg' register is the register 0. 1867 Names2Regs.insert(std::make_pair("noreg", 0)); 1868 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1869 assert(TRI && "Expected target register info"); 1870 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 1871 bool WasInserted = 1872 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 1873 .second; 1874 (void)WasInserted; 1875 assert(WasInserted && "Expected registers to be unique case-insensitively"); 1876 } 1877 } 1878 1879 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 1880 initNames2Regs(); 1881 auto RegInfo = Names2Regs.find(RegName); 1882 if (RegInfo == Names2Regs.end()) 1883 return true; 1884 Reg = RegInfo->getValue(); 1885 return false; 1886 } 1887 1888 void MIParser::initNames2RegMasks() { 1889 if (!Names2RegMasks.empty()) 1890 return; 1891 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1892 assert(TRI && "Expected target register info"); 1893 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 1894 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 1895 assert(RegMasks.size() == RegMaskNames.size()); 1896 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 1897 Names2RegMasks.insert( 1898 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 1899 } 1900 1901 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 1902 initNames2RegMasks(); 1903 auto RegMaskInfo = Names2RegMasks.find(Identifier); 1904 if (RegMaskInfo == Names2RegMasks.end()) 1905 return nullptr; 1906 return RegMaskInfo->getValue(); 1907 } 1908 1909 void MIParser::initNames2SubRegIndices() { 1910 if (!Names2SubRegIndices.empty()) 1911 return; 1912 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1913 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 1914 Names2SubRegIndices.insert( 1915 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 1916 } 1917 1918 unsigned MIParser::getSubRegIndex(StringRef Name) { 1919 initNames2SubRegIndices(); 1920 auto SubRegInfo = Names2SubRegIndices.find(Name); 1921 if (SubRegInfo == Names2SubRegIndices.end()) 1922 return 0; 1923 return SubRegInfo->getValue(); 1924 } 1925 1926 static void initSlots2BasicBlocks( 1927 const Function &F, 1928 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 1929 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 1930 MST.incorporateFunction(F); 1931 for (auto &BB : F) { 1932 if (BB.hasName()) 1933 continue; 1934 int Slot = MST.getLocalSlot(&BB); 1935 if (Slot == -1) 1936 continue; 1937 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 1938 } 1939 } 1940 1941 static const BasicBlock *getIRBlockFromSlot( 1942 unsigned Slot, 1943 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 1944 auto BlockInfo = Slots2BasicBlocks.find(Slot); 1945 if (BlockInfo == Slots2BasicBlocks.end()) 1946 return nullptr; 1947 return BlockInfo->second; 1948 } 1949 1950 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 1951 if (Slots2BasicBlocks.empty()) 1952 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 1953 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 1954 } 1955 1956 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 1957 if (&F == MF.getFunction()) 1958 return getIRBlock(Slot); 1959 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 1960 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 1961 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 1962 } 1963 1964 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 1965 DenseMap<unsigned, const Value *> &Slots2Values) { 1966 int Slot = MST.getLocalSlot(V); 1967 if (Slot == -1) 1968 return; 1969 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 1970 } 1971 1972 /// Creates the mapping from slot numbers to function's unnamed IR values. 1973 static void initSlots2Values(const Function &F, 1974 DenseMap<unsigned, const Value *> &Slots2Values) { 1975 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 1976 MST.incorporateFunction(F); 1977 for (const auto &Arg : F.args()) 1978 mapValueToSlot(&Arg, MST, Slots2Values); 1979 for (const auto &BB : F) { 1980 mapValueToSlot(&BB, MST, Slots2Values); 1981 for (const auto &I : BB) 1982 mapValueToSlot(&I, MST, Slots2Values); 1983 } 1984 } 1985 1986 const Value *MIParser::getIRValue(unsigned Slot) { 1987 if (Slots2Values.empty()) 1988 initSlots2Values(*MF.getFunction(), Slots2Values); 1989 auto ValueInfo = Slots2Values.find(Slot); 1990 if (ValueInfo == Slots2Values.end()) 1991 return nullptr; 1992 return ValueInfo->second; 1993 } 1994 1995 void MIParser::initNames2TargetIndices() { 1996 if (!Names2TargetIndices.empty()) 1997 return; 1998 const auto *TII = MF.getSubtarget().getInstrInfo(); 1999 assert(TII && "Expected target instruction info"); 2000 auto Indices = TII->getSerializableTargetIndices(); 2001 for (const auto &I : Indices) 2002 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2003 } 2004 2005 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2006 initNames2TargetIndices(); 2007 auto IndexInfo = Names2TargetIndices.find(Name); 2008 if (IndexInfo == Names2TargetIndices.end()) 2009 return true; 2010 Index = IndexInfo->second; 2011 return false; 2012 } 2013 2014 void MIParser::initNames2DirectTargetFlags() { 2015 if (!Names2DirectTargetFlags.empty()) 2016 return; 2017 const auto *TII = MF.getSubtarget().getInstrInfo(); 2018 assert(TII && "Expected target instruction info"); 2019 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2020 for (const auto &I : Flags) 2021 Names2DirectTargetFlags.insert( 2022 std::make_pair(StringRef(I.second), I.first)); 2023 } 2024 2025 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2026 initNames2DirectTargetFlags(); 2027 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2028 if (FlagInfo == Names2DirectTargetFlags.end()) 2029 return true; 2030 Flag = FlagInfo->second; 2031 return false; 2032 } 2033 2034 void MIParser::initNames2BitmaskTargetFlags() { 2035 if (!Names2BitmaskTargetFlags.empty()) 2036 return; 2037 const auto *TII = MF.getSubtarget().getInstrInfo(); 2038 assert(TII && "Expected target instruction info"); 2039 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2040 for (const auto &I : Flags) 2041 Names2BitmaskTargetFlags.insert( 2042 std::make_pair(StringRef(I.second), I.first)); 2043 } 2044 2045 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2046 initNames2BitmaskTargetFlags(); 2047 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2048 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2049 return true; 2050 Flag = FlagInfo->second; 2051 return false; 2052 } 2053 2054 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2055 StringRef Src, 2056 SMDiagnostic &Error) { 2057 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2058 } 2059 2060 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS, 2061 StringRef Src, SMDiagnostic &Error) { 2062 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2063 } 2064 2065 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS, 2066 MachineBasicBlock *&MBB, StringRef Src, 2067 SMDiagnostic &Error) { 2068 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2069 } 2070 2071 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS, 2072 unsigned &Reg, StringRef Src, 2073 SMDiagnostic &Error) { 2074 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2075 } 2076 2077 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS, 2078 unsigned &Reg, StringRef Src, 2079 SMDiagnostic &Error) { 2080 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg); 2081 } 2082 2083 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS, 2084 int &FI, StringRef Src, 2085 SMDiagnostic &Error) { 2086 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2087 } 2088 2089 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS, 2090 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2091 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2092 } 2093