Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
      2 //                     The LLVM Compiler Infrastructure
      3 //
      4 // This file is distributed under the University of Illinois Open Source
      5 // License. See LICENSE.TXT for details.
      6 //
      7 //===----------------------------------------------------------------------===//
      8 
      9 #include "Hexagon.h"
     10 #include "HexagonMachineFunctionInfo.h"
     11 #include "HexagonSubtarget.h"
     12 #include "HexagonTargetMachine.h"
     13 #include "llvm/CodeGen/MachineDominators.h"
     14 #include "llvm/CodeGen/MachineFunctionPass.h"
     15 #include "llvm/CodeGen/MachineInstrBuilder.h"
     16 #include "llvm/CodeGen/MachineLoopInfo.h"
     17 #include "llvm/CodeGen/MachineRegisterInfo.h"
     18 #include "llvm/CodeGen/Passes.h"
     19 #include "llvm/Support/Debug.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include "llvm/Target/TargetInstrInfo.h"
     22 #include "llvm/Target/TargetMachine.h"
     23 #include "llvm/Target/TargetRegisterInfo.h"
     24 
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "hexagon_cfg"
     28 
     29 namespace llvm {
     30   FunctionPass *createHexagonCFGOptimizer();
     31   void initializeHexagonCFGOptimizerPass(PassRegistry&);
     32 }
     33 
     34 
     35 namespace {
     36 
     37 class HexagonCFGOptimizer : public MachineFunctionPass {
     38 
     39 private:
     40   void InvertAndChangeJumpTarget(MachineInstr &, MachineBasicBlock *);
     41 
     42 public:
     43   static char ID;
     44   HexagonCFGOptimizer() : MachineFunctionPass(ID) {
     45     initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
     46   }
     47 
     48   const char *getPassName() const override {
     49     return "Hexagon CFG Optimizer";
     50   }
     51   bool runOnMachineFunction(MachineFunction &Fn) override;
     52   MachineFunctionProperties getRequiredProperties() const override {
     53     return MachineFunctionProperties().set(
     54         MachineFunctionProperties::Property::AllVRegsAllocated);
     55   }
     56 };
     57 
     58 
     59 char HexagonCFGOptimizer::ID = 0;
     60 
     61 static bool IsConditionalBranch(int Opc) {
     62   return (Opc == Hexagon::J2_jumpt) || (Opc == Hexagon::J2_jumpf)
     63     || (Opc == Hexagon::J2_jumptnewpt) || (Opc == Hexagon::J2_jumpfnewpt);
     64 }
     65 
     66 
     67 static bool IsUnconditionalJump(int Opc) {
     68   return (Opc == Hexagon::J2_jump);
     69 }
     70 
     71 void HexagonCFGOptimizer::InvertAndChangeJumpTarget(
     72     MachineInstr &MI, MachineBasicBlock *NewTarget) {
     73   const TargetInstrInfo *TII =
     74       MI.getParent()->getParent()->getSubtarget().getInstrInfo();
     75   int NewOpcode = 0;
     76   switch (MI.getOpcode()) {
     77   case Hexagon::J2_jumpt:
     78     NewOpcode = Hexagon::J2_jumpf;
     79     break;
     80 
     81   case Hexagon::J2_jumpf:
     82     NewOpcode = Hexagon::J2_jumpt;
     83     break;
     84 
     85   case Hexagon::J2_jumptnewpt:
     86     NewOpcode = Hexagon::J2_jumpfnewpt;
     87     break;
     88 
     89   case Hexagon::J2_jumpfnewpt:
     90     NewOpcode = Hexagon::J2_jumptnewpt;
     91     break;
     92 
     93   default:
     94     llvm_unreachable("Cannot handle this case");
     95   }
     96 
     97   MI.setDesc(TII->get(NewOpcode));
     98   MI.getOperand(1).setMBB(NewTarget);
     99 }
    100 
    101 
    102 bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
    103   if (skipFunction(*Fn.getFunction()))
    104     return false;
    105 
    106   // Loop over all of the basic blocks.
    107   for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
    108        MBBb != MBBe; ++MBBb) {
    109     MachineBasicBlock *MBB = &*MBBb;
    110 
    111     // Traverse the basic block.
    112     MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
    113     if (MII != MBB->end()) {
    114       MachineInstr &MI = *MII;
    115       int Opc = MI.getOpcode();
    116       if (IsConditionalBranch(Opc)) {
    117 
    118         //
    119         // (Case 1) Transform the code if the following condition occurs:
    120         //   BB1: if (p0) jump BB3
    121         //   ...falls-through to BB2 ...
    122         //   BB2: jump BB4
    123         //   ...next block in layout is BB3...
    124         //   BB3: ...
    125         //
    126         //  Transform this to:
    127         //  BB1: if (!p0) jump BB4
    128         //  Remove BB2
    129         //  BB3: ...
    130         //
    131         // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
    132         //   BB1: if (p0) jump BB3
    133         //   ...falls-through to BB2 ...
    134         //   BB2: jump BB4
    135         //   ...other basic blocks ...
    136         //   BB4:
    137         //   ...not a fall-thru
    138         //   BB3: ...
    139         //     jump BB4
    140         //
    141         // Transform this to:
    142         //   BB1: if (!p0) jump BB4
    143         //   Remove BB2
    144         //   BB3: ...
    145         //   BB4: ...
    146         //
    147         unsigned NumSuccs = MBB->succ_size();
    148         MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
    149         MachineBasicBlock* FirstSucc = *SI;
    150         MachineBasicBlock* SecondSucc = *(++SI);
    151         MachineBasicBlock* LayoutSucc = nullptr;
    152         MachineBasicBlock* JumpAroundTarget = nullptr;
    153 
    154         if (MBB->isLayoutSuccessor(FirstSucc)) {
    155           LayoutSucc = FirstSucc;
    156           JumpAroundTarget = SecondSucc;
    157         } else if (MBB->isLayoutSuccessor(SecondSucc)) {
    158           LayoutSucc = SecondSucc;
    159           JumpAroundTarget = FirstSucc;
    160         } else {
    161           // Odd case...cannot handle.
    162         }
    163 
    164         // The target of the unconditional branch must be JumpAroundTarget.
    165         // TODO: If not, we should not invert the unconditional branch.
    166         MachineBasicBlock* CondBranchTarget = nullptr;
    167         if (MI.getOpcode() == Hexagon::J2_jumpt ||
    168             MI.getOpcode() == Hexagon::J2_jumpf) {
    169           CondBranchTarget = MI.getOperand(1).getMBB();
    170         }
    171 
    172         if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
    173           continue;
    174         }
    175 
    176         if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
    177 
    178           // Ensure that BB2 has one instruction -- an unconditional jump.
    179           if ((LayoutSucc->size() == 1) &&
    180               IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
    181             assert(JumpAroundTarget && "jump target is needed to process second basic block");
    182             MachineBasicBlock* UncondTarget =
    183               LayoutSucc->front().getOperand(0).getMBB();
    184             // Check if the layout successor of BB2 is BB3.
    185             bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
    186             bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
    187               JumpAroundTarget->size() >= 1 &&
    188               IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
    189               JumpAroundTarget->pred_size() == 1 &&
    190               JumpAroundTarget->succ_size() == 1;
    191 
    192             if (case1 || case2) {
    193               InvertAndChangeJumpTarget(MI, UncondTarget);
    194               MBB->replaceSuccessor(JumpAroundTarget, UncondTarget);
    195 
    196               // Remove the unconditional branch in LayoutSucc.
    197               LayoutSucc->erase(LayoutSucc->begin());
    198               LayoutSucc->replaceSuccessor(UncondTarget, JumpAroundTarget);
    199 
    200               // This code performs the conversion for case 2, which moves
    201               // the block to the fall-thru case (BB3 in the code above).
    202               if (case2 && !case1) {
    203                 JumpAroundTarget->moveAfter(LayoutSucc);
    204                 // only move a block if it doesn't have a fall-thru. otherwise
    205                 // the CFG will be incorrect.
    206                 if (!UncondTarget->canFallThrough()) {
    207                   UncondTarget->moveAfter(JumpAroundTarget);
    208                 }
    209               }
    210 
    211               //
    212               // Correct live-in information. Is used by post-RA scheduler
    213               // The live-in to LayoutSucc is now all values live-in to
    214               // JumpAroundTarget.
    215               //
    216               std::vector<MachineBasicBlock::RegisterMaskPair> OrigLiveIn(
    217                   LayoutSucc->livein_begin(), LayoutSucc->livein_end());
    218               std::vector<MachineBasicBlock::RegisterMaskPair> NewLiveIn(
    219                   JumpAroundTarget->livein_begin(),
    220                   JumpAroundTarget->livein_end());
    221               for (const auto &OrigLI : OrigLiveIn)
    222                 LayoutSucc->removeLiveIn(OrigLI.PhysReg);
    223               for (const auto &NewLI : NewLiveIn)
    224                 LayoutSucc->addLiveIn(NewLI);
    225             }
    226           }
    227         }
    228       }
    229     }
    230   }
    231   return true;
    232 }
    233 }
    234 
    235 
    236 //===----------------------------------------------------------------------===//
    237 //                         Public Constructor Functions
    238 //===----------------------------------------------------------------------===//
    239 
    240 INITIALIZE_PASS(HexagonCFGOptimizer, "hexagon-cfg", "Hexagon CFG Optimizer",
    241                 false, false)
    242 
    243 FunctionPass *llvm::createHexagonCFGOptimizer() {
    244   return new HexagonCFGOptimizer();
    245 }
    246