Home | History | Annotate | Download | only in Sparc
      1 //===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the Sparc instructions in TableGen format.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // Instruction format superclass
     16 //===----------------------------------------------------------------------===//
     17 
     18 include "SparcInstrFormats.td"
     19 
     20 //===----------------------------------------------------------------------===//
     21 // Feature predicates.
     22 //===----------------------------------------------------------------------===//
     23 
     24 // True when generating 32-bit code.
     25 def Is32Bit : Predicate<"!Subtarget->is64Bit()">;
     26 
     27 // True when generating 64-bit code. This also implies HasV9.
     28 def Is64Bit : Predicate<"Subtarget->is64Bit()">;
     29 
     30 // HasV9 - This predicate is true when the target processor supports V9
     31 // instructions.  Note that the machine may be running in 32-bit mode.
     32 def HasV9   : Predicate<"Subtarget->isV9()">,
     33               AssemblerPredicate<"FeatureV9">;
     34 
     35 // HasNoV9 - This predicate is true when the target doesn't have V9
     36 // instructions.  Use of this is just a hack for the isel not having proper
     37 // costs for V8 instructions that are more expensive than their V9 ones.
     38 def HasNoV9 : Predicate<"!Subtarget->isV9()">;
     39 
     40 // HasVIS - This is true when the target processor has VIS extensions.
     41 def HasVIS : Predicate<"Subtarget->isVIS()">,
     42              AssemblerPredicate<"FeatureVIS">;
     43 def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
     44              AssemblerPredicate<"FeatureVIS2">;
     45 def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
     46              AssemblerPredicate<"FeatureVIS3">;
     47 
     48 // HasHardQuad - This is true when the target processor supports quad floating
     49 // point instructions.
     50 def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;
     51 
     52 // HasLeonCASA - This is true when the target processor supports the CASA
     53 // instruction
     54 def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">;
     55 
     56 // HasUMAC_SMAC - This is true when the target processor supports the
     57 // UMAC and SMAC instructions
     58 def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">;
     59 
     60 def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">;
     61 def HasNoFmulsFix : Predicate<"!Subtarget->replaceFMULS()">;
     62 def HasNoFsmuldFix : Predicate<"!Subtarget->fixFSMULD()">;
     63 
     64 // UseDeprecatedInsts - This predicate is true when the target processor is a
     65 // V8, or when it is V9 but the V8 deprecated instructions are efficient enough
     66 // to use when appropriate.  In either of these cases, the instruction selector
     67 // will pick deprecated instructions.
     68 def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;
     69 
     70 //===----------------------------------------------------------------------===//
     71 // Instruction Pattern Stuff
     72 //===----------------------------------------------------------------------===//
     73 
     74 def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
     75 
     76 def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
     77 
     78 def LO10 : SDNodeXForm<imm, [{
     79   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N),
     80                                    MVT::i32);
     81 }]>;
     82 
     83 def HI22 : SDNodeXForm<imm, [{
     84   // Transformation function: shift the immediate value down into the low bits.
     85   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N),
     86                                    MVT::i32);
     87 }]>;
     88 
     89 def SETHIimm : PatLeaf<(imm), [{
     90   return isShiftedUInt<22, 10>(N->getZExtValue());
     91 }], HI22>;
     92 
     93 // Addressing modes.
     94 def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
     95 def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
     96 
     97 // Address operands
     98 def SparcMEMrrAsmOperand : AsmOperandClass {
     99   let Name = "MEMrr";
    100   let ParserMethod = "parseMEMOperand";
    101 }
    102 
    103 def SparcMEMriAsmOperand : AsmOperandClass {
    104   let Name = "MEMri";
    105   let ParserMethod = "parseMEMOperand";
    106 }
    107 
    108 def MEMrr : Operand<iPTR> {
    109   let PrintMethod = "printMemOperand";
    110   let MIOperandInfo = (ops ptr_rc, ptr_rc);
    111   let ParserMatchClass = SparcMEMrrAsmOperand;
    112 }
    113 def MEMri : Operand<iPTR> {
    114   let PrintMethod = "printMemOperand";
    115   let MIOperandInfo = (ops ptr_rc, i32imm);
    116   let ParserMatchClass = SparcMEMriAsmOperand;
    117 }
    118 
    119 def TLSSym : Operand<iPTR>;
    120 
    121 // Branch targets have OtherVT type.
    122 def brtarget : Operand<OtherVT> {
    123   let EncoderMethod = "getBranchTargetOpValue";
    124 }
    125 
    126 def bprtarget : Operand<OtherVT> {
    127   let EncoderMethod = "getBranchPredTargetOpValue";
    128 }
    129 
    130 def bprtarget16 : Operand<OtherVT> {
    131   let EncoderMethod = "getBranchOnRegTargetOpValue";
    132 }
    133 
    134 def calltarget : Operand<i32> {
    135   let EncoderMethod = "getCallTargetOpValue";
    136   let DecoderMethod = "DecodeCall";
    137 }
    138 
    139 def simm13Op : Operand<i32> {
    140   let DecoderMethod = "DecodeSIMM13";
    141 }
    142 
    143 // Operand for printing out a condition code.
    144 let PrintMethod = "printCCOperand" in
    145   def CCOp : Operand<i32>;
    146 
    147 def SDTSPcmpicc :
    148 SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
    149 def SDTSPcmpfcc :
    150 SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
    151 def SDTSPbrcc :
    152 SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
    153 def SDTSPselectcc :
    154 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
    155 def SDTSPFTOI :
    156 SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
    157 def SDTSPITOF :
    158 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
    159 def SDTSPFTOX :
    160 SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
    161 def SDTSPXTOF :
    162 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
    163 
    164 def SDTSPtlsadd :
    165 SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
    166 def SDTSPtlsld :
    167 SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
    168 
    169 def SDTSPeh_sjlj_setjmp : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
    170 def SDTSPeh_sjlj_longjmp: SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
    171 
    172 def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
    173 def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
    174 def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    175 def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    176 def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    177 
    178 def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
    179 def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
    180 
    181 def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
    182 def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
    183 def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
    184 def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
    185 
    186 def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
    187 def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
    188 def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
    189 
    190 def SPsjlj_setjmp: SDNode<"SPISD::EH_SJLJ_SETJMP",
    191                           SDTSPeh_sjlj_setjmp,
    192                           [SDNPHasChain, SDNPSideEffect]>;
    193 def SPsjlj_longjmp: SDNode<"SPISD::EH_SJLJ_LONGJMP",
    194                            SDTSPeh_sjlj_longjmp,
    195                            [SDNPHasChain, SDNPSideEffect]>;
    196 
    197 //  These are target-independent nodes, but have target-specific formats.
    198 def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
    199 def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
    200                                         SDTCisVT<1, i32> ]>;
    201 
    202 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
    203                            [SDNPHasChain, SDNPOutGlue]>;
    204 def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
    205                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    206 
    207 def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
    208 def call          : SDNode<"SPISD::CALL", SDT_SPCall,
    209                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    210                             SDNPVariadic]>;
    211 
    212 def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
    213 def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
    214                            [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
    215 
    216 def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
    217                            [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
    218 
    219 def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
    220 def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
    221 def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
    222                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    223                              SDNPVariadic]>;
    224 
    225 def getPCX        : Operand<iPTR> {
    226   let PrintMethod = "printGetPCX";
    227 }
    228 
    229 //===----------------------------------------------------------------------===//
    230 // SPARC Flag Conditions
    231 //===----------------------------------------------------------------------===//
    232 
    233 // Note that these values must be kept in sync with the CCOp::CondCode enum
    234 // values.
    235 class ICC_VAL<int N> : PatLeaf<(i32 N)>;
    236 def ICC_NE  : ICC_VAL< 9>;  // Not Equal
    237 def ICC_E   : ICC_VAL< 1>;  // Equal
    238 def ICC_G   : ICC_VAL<10>;  // Greater
    239 def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
    240 def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
    241 def ICC_L   : ICC_VAL< 3>;  // Less
    242 def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
    243 def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
    244 def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
    245 def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
    246 def ICC_POS : ICC_VAL<14>;  // Positive
    247 def ICC_NEG : ICC_VAL< 6>;  // Negative
    248 def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
    249 def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
    250 
    251 class FCC_VAL<int N> : PatLeaf<(i32 N)>;
    252 def FCC_U   : FCC_VAL<23>;  // Unordered
    253 def FCC_G   : FCC_VAL<22>;  // Greater
    254 def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
    255 def FCC_L   : FCC_VAL<20>;  // Less
    256 def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
    257 def FCC_LG  : FCC_VAL<18>;  // Less or Greater
    258 def FCC_NE  : FCC_VAL<17>;  // Not Equal
    259 def FCC_E   : FCC_VAL<25>;  // Equal
    260 def FCC_UE  : FCC_VAL<26>;  // Unordered or Equal
    261 def FCC_GE  : FCC_VAL<27>;  // Greater or Equal
    262 def FCC_UGE : FCC_VAL<28>;  // Unordered or Greater or Equal
    263 def FCC_LE  : FCC_VAL<29>;  // Less or Equal
    264 def FCC_ULE : FCC_VAL<30>;  // Unordered or Less or Equal
    265 def FCC_O   : FCC_VAL<31>;  // Ordered
    266 
    267 class CPCC_VAL<int N> : PatLeaf<(i32 N)>;
    268 def CPCC_3   : CPCC_VAL<39>;  // 3
    269 def CPCC_2   : CPCC_VAL<38>;  // 2
    270 def CPCC_23  : CPCC_VAL<37>;  // 2 or 3
    271 def CPCC_1   : CPCC_VAL<36>;  // 1
    272 def CPCC_13  : CPCC_VAL<35>;  // 1 or 3
    273 def CPCC_12  : CPCC_VAL<34>;  // 1 or 2
    274 def CPCC_123 : CPCC_VAL<33>;  // 1 or 2 or 3
    275 def CPCC_0   : CPCC_VAL<41>;  // 0
    276 def CPCC_03  : CPCC_VAL<42>;  // 0 or 3
    277 def CPCC_02  : CPCC_VAL<43>;  // 0 or 2
    278 def CPCC_023 : CPCC_VAL<44>;  // 0 or 2 or 3
    279 def CPCC_01  : CPCC_VAL<45>;  // 0 or 1
    280 def CPCC_013 : CPCC_VAL<46>;  // 0 or 1 or 3
    281 def CPCC_012 : CPCC_VAL<47>;  // 0 or 1 or 2
    282 
    283 //===----------------------------------------------------------------------===//
    284 // Instruction Class Templates
    285 //===----------------------------------------------------------------------===//
    286 
    287 /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
    288 multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
    289                  RegisterClass RC, ValueType Ty, Operand immOp,
    290                  InstrItinClass itin = IIC_iu_instr> {
    291   def rr  : F3_1<2, Op3Val,
    292                  (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
    293                  !strconcat(OpcStr, " $rs1, $rs2, $rd"),
    294                  [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))],
    295                  itin>;
    296   def ri  : F3_2<2, Op3Val,
    297                  (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
    298                  !strconcat(OpcStr, " $rs1, $simm13, $rd"),
    299                  [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))],
    300                  itin>;
    301 }
    302 
    303 /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
    304 /// pattern.
    305 multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> {
    306   def rr  : F3_1<2, Op3Val,
    307                  (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    308                  !strconcat(OpcStr, " $rs1, $rs2, $rd"), [],
    309                  itin>;
    310   def ri  : F3_2<2, Op3Val,
    311                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    312                  !strconcat(OpcStr, " $rs1, $simm13, $rd"), [],
    313                  itin>;
    314 }
    315 
    316 // Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
    317 multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
    318            RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> {
    319   def rr  : F3_1<3, Op3Val,
    320                  (outs RC:$dst), (ins MEMrr:$addr),
    321                  !strconcat(OpcStr, " [$addr], $dst"),
    322                  [(set Ty:$dst, (OpNode ADDRrr:$addr))],
    323                  itin>;
    324   def ri  : F3_2<3, Op3Val,
    325                  (outs RC:$dst), (ins MEMri:$addr),
    326                  !strconcat(OpcStr, " [$addr], $dst"),
    327                  [(set Ty:$dst, (OpNode ADDRri:$addr))],
    328                  itin>;
    329 }
    330 
    331 // TODO: Instructions of the LoadASI class are currently asm only; hooking up
    332 // CodeGen's address spaces to use these is a future task.
    333 class LoadASI<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
    334               RegisterClass RC, ValueType Ty, InstrItinClass itin = NoItinerary> :
    335   F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi),
    336                 !strconcat(OpcStr, "a [$addr] $asi, $dst"),
    337                 []>;
    338 
    339 // LoadA multiclass - As above, but also define alternate address space variant
    340 multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val,
    341                  SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
    342                  InstrItinClass itin = NoItinerary> :
    343              Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> {
    344   def Arr  : LoadASI<OpcStr, LoadAOp3Val, OpNode, RC, Ty>;
    345 }
    346 
    347 // The LDSTUB instruction is supported for asm only.
    348 // It is unlikely that general-purpose code could make use of it.
    349 // CAS is preferred for sparc v9.
    350 def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr),
    351                     "ldstub [$addr], $dst", []>;
    352 def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr),
    353                     "ldstub [$addr], $dst", []>;
    354 def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst),
    355                          (ins MEMrr:$addr, i8imm:$asi),
    356                          "ldstuba [$addr] $asi, $dst", []>;
    357 
    358 // Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
    359 multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
    360            RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> {
    361   def rr  : F3_1<3, Op3Val,
    362                  (outs), (ins MEMrr:$addr, RC:$rd),
    363                  !strconcat(OpcStr, " $rd, [$addr]"),
    364                  [(OpNode Ty:$rd, ADDRrr:$addr)],
    365                  itin>;
    366   def ri  : F3_2<3, Op3Val,
    367                  (outs), (ins MEMri:$addr, RC:$rd),
    368                  !strconcat(OpcStr, " $rd, [$addr]"),
    369                  [(OpNode Ty:$rd, ADDRri:$addr)],
    370                  itin>;
    371 }
    372 
    373 // TODO: Instructions of the StoreASI class are currently asm only; hooking up
    374 // CodeGen's address spaces to use these is a future task.
    375 class StoreASI<string OpcStr, bits<6> Op3Val,
    376                SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
    377                InstrItinClass itin = IIC_st> :
    378   F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi),
    379            !strconcat(OpcStr, "a $rd, [$addr] $asi"),
    380            [],
    381            itin>;
    382 
    383 multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val,
    384                   SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
    385                   InstrItinClass itin = IIC_st> :
    386              Store<OpcStr, Op3Val, OpNode, RC, Ty> {
    387   def Arr : StoreASI<OpcStr, StoreAOp3Val, OpNode, RC, Ty, itin>;
    388 }
    389 
    390 //===----------------------------------------------------------------------===//
    391 // Instructions
    392 //===----------------------------------------------------------------------===//
    393 
    394 // Pseudo instructions.
    395 class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
    396    : InstSP<outs, ins, asmstr, pattern> {
    397   let isCodeGenOnly = 1;
    398   let isPseudo = 1;
    399 }
    400 
    401 // GETPCX for PIC
    402 let Defs = [O7] in {
    403   def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
    404 }
    405 
    406 let Defs = [O6], Uses = [O6] in {
    407 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
    408                                "!ADJCALLSTACKDOWN $amt",
    409                                [(callseq_start timm:$amt)]>;
    410 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
    411                             "!ADJCALLSTACKUP $amt1",
    412                             [(callseq_end timm:$amt1, timm:$amt2)]>;
    413 }
    414 
    415 let hasSideEffects = 1, mayStore = 1 in {
    416   let rd = 0, rs1 = 0, rs2 = 0 in
    417     def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
    418                       "flushw",
    419                       [(flushw)]>, Requires<[HasV9]>;
    420   let rd = 0, rs1 = 1, simm13 = 3 in
    421     def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
    422                    "ta 3",
    423                    [(flushw)]>;
    424 }
    425 
    426 // SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
    427 // instruction selection into a branch sequence.  This has to handle all
    428 // permutations of selection between i32/f32/f64 on ICC and FCC.
    429 // Expanded after instruction selection.
    430 let Uses = [ICC], usesCustomInserter = 1 in {
    431   def SELECT_CC_Int_ICC
    432    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    433             "; SELECT_CC_Int_ICC PSEUDO!",
    434             [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
    435   def SELECT_CC_FP_ICC
    436    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    437             "; SELECT_CC_FP_ICC PSEUDO!",
    438             [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
    439 
    440   def SELECT_CC_DFP_ICC
    441    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    442             "; SELECT_CC_DFP_ICC PSEUDO!",
    443             [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
    444 
    445   def SELECT_CC_QFP_ICC
    446    : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
    447             "; SELECT_CC_QFP_ICC PSEUDO!",
    448             [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
    449 }
    450 
    451 let usesCustomInserter = 1, Uses = [FCC0] in {
    452 
    453   def SELECT_CC_Int_FCC
    454    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    455             "; SELECT_CC_Int_FCC PSEUDO!",
    456             [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
    457 
    458   def SELECT_CC_FP_FCC
    459    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    460             "; SELECT_CC_FP_FCC PSEUDO!",
    461             [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
    462   def SELECT_CC_DFP_FCC
    463    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    464             "; SELECT_CC_DFP_FCC PSEUDO!",
    465             [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
    466   def SELECT_CC_QFP_FCC
    467    : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
    468             "; SELECT_CC_QFP_FCC PSEUDO!",
    469             [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
    470 }
    471 
    472 let hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
    473   let Defs = [WIM] in
    474   def EH_SJLJ_SETJMP32ri  : Pseudo<(outs IntRegs:$dst), (ins MEMri:$buf),
    475                             "#EH_SJLJ_SETJMP32",
    476                             [(set i32:$dst, (SPsjlj_setjmp ADDRri:$buf))]>,
    477                             Requires<[Is32Bit]>;
    478   def EH_SJLJ_SETJMP32rr  : Pseudo<(outs IntRegs:$dst), (ins MEMrr:$buf),
    479                             "#EH_SJLJ_SETJMP32",
    480                             [(set i32:$dst, (SPsjlj_setjmp ADDRrr:$buf))]>,
    481                             Requires<[Is32Bit]>;
    482   let isTerminator = 1 in
    483   def EH_SJLJ_LONGJMP32ri : Pseudo<(outs), (ins MEMri:$buf),
    484                             "#EH_SJLJ_LONGJMP32",
    485                             [(SPsjlj_longjmp ADDRri:$buf)]>,
    486                             Requires<[Is32Bit]>;
    487   def EH_SJLJ_LONGJMP32rr : Pseudo<(outs), (ins MEMrr:$buf),
    488                             "#EH_SJLJ_LONGJMP32",
    489                             [(SPsjlj_longjmp ADDRrr:$buf)]>,
    490                             Requires<[Is32Bit]>;
    491 }
    492 
    493 // Section B.1 - Load Integer Instructions, p. 90
    494 let DecoderMethod = "DecodeLoadInt" in {
    495   defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8,  IntRegs, i32>;
    496   defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>;
    497   defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8,  IntRegs, i32>;
    498   defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>;
    499   defm LD   : LoadA<"ld",   0b000000, 0b010000, load,        IntRegs, i32>;
    500 }
    501 
    502 let DecoderMethod = "DecodeLoadIntPair" in
    503   defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>;
    504 
    505 // Section B.2 - Load Floating-point Instructions, p. 92
    506 let DecoderMethod = "DecodeLoadFP" in {
    507   defm LDF   : Load<"ld",  0b100000, load,    FPRegs,  f32, IIC_iu_or_fpu_instr>;
    508   def LDFArr : LoadASI<"ld",  0b110000, load, FPRegs,  f32, IIC_iu_or_fpu_instr>,
    509                 Requires<[HasV9]>;
    510 }
    511 let DecoderMethod = "DecodeLoadDFP" in {
    512   defm LDDF   : Load<"ldd", 0b100011, load,    DFPRegs, f64, IIC_ldd>;
    513   def LDDFArr : LoadASI<"ldd", 0b110011, load, DFPRegs, f64>,
    514                  Requires<[HasV9]>;
    515 }
    516 let DecoderMethod = "DecodeLoadQFP" in
    517   defm LDQF  : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>,
    518                Requires<[HasV9, HasHardQuad]>;
    519 
    520 let DecoderMethod = "DecodeLoadCP" in 
    521   defm LDC   : Load<"ld", 0b110000, load, CoprocRegs, i32>; 
    522 let DecoderMethod = "DecodeLoadCPPair" in 
    523   defm LDDC   : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>;
    524 
    525 let DecoderMethod = "DecodeLoadCP", Defs = [CPSR] in {
    526   let rd = 0 in {
    527     def LDCSRrr : F3_1<3, 0b110001, (outs), (ins MEMrr:$addr),
    528                        "ld [$addr], %csr", []>;
    529     def LDCSRri : F3_2<3, 0b110001, (outs), (ins MEMri:$addr),
    530                        "ld [$addr], %csr", []>;
    531   }
    532 }
    533   
    534 let DecoderMethod = "DecodeLoadFP" in
    535   let Defs = [FSR] in {
    536     let rd = 0 in {
    537       def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
    538                      "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
    539       def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
    540                      "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
    541     }
    542     let rd = 1 in {
    543       def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
    544                      "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
    545       def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
    546                      "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
    547     }
    548   }
    549 
    550 // Section B.4 - Store Integer Instructions, p. 95
    551 let DecoderMethod = "DecodeStoreInt" in {
    552   defm STB   : StoreA<"stb", 0b000101, 0b010101, truncstorei8,  IntRegs, i32>;
    553   defm STH   : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>;
    554   defm ST    : StoreA<"st",  0b000100, 0b010100, store,         IntRegs, i32>;
    555 }
    556 
    557 let DecoderMethod = "DecodeStoreIntPair" in
    558   defm STD   : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32, IIC_std>;
    559 
    560 // Section B.5 - Store Floating-point Instructions, p. 97
    561 let DecoderMethod = "DecodeStoreFP" in {
    562   defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
    563   def STFArr : StoreASI<"st",  0b110100, store,      FPRegs,  f32>,
    564                Requires<[HasV9]>;
    565 }
    566 let DecoderMethod = "DecodeStoreDFP" in {
    567   defm STDF   : Store<"std", 0b100111, store,         DFPRegs, f64, IIC_std>;
    568   def STDFArr : StoreASI<"std", 0b110111, store,      DFPRegs, f64>,
    569                 Requires<[HasV9]>;
    570 }
    571 let DecoderMethod = "DecodeStoreQFP" in
    572   defm STQF  : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>,
    573                Requires<[HasV9, HasHardQuad]>;
    574 
    575 let DecoderMethod = "DecodeStoreCP" in 
    576   defm STC   : Store<"st", 0b110100, store, CoprocRegs, i32>; 
    577   
    578 let DecoderMethod = "DecodeStoreCPPair" in 
    579   defm STDC   : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>;
    580   
    581 let DecoderMethod = "DecodeStoreCP", rd = 0 in {
    582   let Defs = [CPSR] in {
    583     def STCSRrr : F3_1<3, 0b110101, (outs MEMrr:$addr), (ins),
    584                        "st %csr, [$addr]", [], IIC_st>;
    585     def STCSRri : F3_2<3, 0b110101, (outs MEMri:$addr), (ins),
    586                        "st %csr, [$addr]", [], IIC_st>;
    587   }
    588   let Defs = [CPQ] in {
    589     def STDCQrr : F3_1<3, 0b110110, (outs MEMrr:$addr), (ins),
    590                        "std %cq, [$addr]", [], IIC_std>;
    591     def STDCQri : F3_2<3, 0b110110, (outs MEMri:$addr), (ins),
    592                        "std %cq, [$addr]", [], IIC_std>;
    593   }
    594 }
    595 
    596 let DecoderMethod = "DecodeStoreFP" in {
    597   let rd = 0 in {
    598     let Defs = [FSR] in {
    599       def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
    600                      "st %fsr, [$addr]", [], IIC_st>;
    601       def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
    602                      "st %fsr, [$addr]", [], IIC_st>;
    603     }
    604     let Defs = [FQ] in {
    605       def STDFQrr : F3_1<3, 0b100110, (outs MEMrr:$addr), (ins),
    606                      "std %fq, [$addr]", [], IIC_std>;
    607       def STDFQri : F3_2<3, 0b100110, (outs MEMri:$addr), (ins),
    608                      "std %fq, [$addr]", [], IIC_std>;
    609     }
    610   }
    611   let rd = 1, Defs = [FSR] in {
    612     def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
    613                    "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
    614     def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
    615                    "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
    616   }
    617 }
    618 
    619 // Section B.8 - SWAP Register with Memory Instruction
    620 // (Atomic swap)
    621 let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
    622   def SWAPrr : F3_1<3, 0b001111,
    623                  (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
    624                  "swap [$addr], $dst",
    625                  [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
    626   def SWAPri : F3_2<3, 0b001111,
    627                  (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
    628                  "swap [$addr], $dst",
    629                  [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
    630   def SWAPArr : F3_1_asi<3, 0b011111,
    631                  (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val),
    632                  "swapa [$addr] $asi, $dst",
    633                  [/*FIXME: pattern?*/]>;
    634 }
    635 
    636 
    637 // Section B.9 - SETHI Instruction, p. 104
    638 def SETHIi: F2_1<0b100,
    639                  (outs IntRegs:$rd), (ins i32imm:$imm22),
    640                  "sethi $imm22, $rd",
    641                  [(set i32:$rd, SETHIimm:$imm22)],
    642                  IIC_iu_instr>;
    643 
    644 // Section B.10 - NOP Instruction, p. 105
    645 // (It's a special case of SETHI)
    646 let rd = 0, imm22 = 0 in
    647   def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
    648 
    649 // Section B.11 - Logical Instructions, p. 106
    650 defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
    651 
    652 def ANDNrr  : F3_1<2, 0b000101,
    653                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    654                    "andn $rs1, $rs2, $rd",
    655                    [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
    656 def ANDNri  : F3_2<2, 0b000101,
    657                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    658                    "andn $rs1, $simm13, $rd", []>;
    659 
    660 defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
    661 
    662 def ORNrr   : F3_1<2, 0b000110,
    663                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    664                    "orn $rs1, $rs2, $rd",
    665                    [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
    666 def ORNri   : F3_2<2, 0b000110,
    667                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    668                    "orn $rs1, $simm13, $rd", []>;
    669 defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
    670 
    671 def XNORrr  : F3_1<2, 0b000111,
    672                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    673                    "xnor $rs1, $rs2, $rd",
    674                    [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
    675 def XNORri  : F3_2<2, 0b000111,
    676                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    677                    "xnor $rs1, $simm13, $rd", []>;
    678 
    679 let Defs = [ICC] in {
    680   defm ANDCC  : F3_12np<"andcc",  0b010001>;
    681   defm ANDNCC : F3_12np<"andncc", 0b010101>;
    682   defm ORCC   : F3_12np<"orcc",   0b010010>;
    683   defm ORNCC  : F3_12np<"orncc",  0b010110>;
    684   defm XORCC  : F3_12np<"xorcc",  0b010011>;
    685   defm XNORCC : F3_12np<"xnorcc", 0b010111>;
    686 }
    687 
    688 // Section B.12 - Shift Instructions, p. 107
    689 defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
    690 defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
    691 defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;
    692 
    693 // Section B.13 - Add Instructions, p. 108
    694 defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
    695 
    696 // "LEA" forms of add (patterns to make tblgen happy)
    697 let Predicates = [Is32Bit], isCodeGenOnly = 1 in
    698   def LEA_ADDri   : F3_2<2, 0b000000,
    699                      (outs IntRegs:$dst), (ins MEMri:$addr),
    700                      "add ${addr:arith}, $dst",
    701                      [(set iPTR:$dst, ADDRri:$addr)]>;
    702 
    703 let Defs = [ICC] in
    704   defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
    705 
    706 let Uses = [ICC] in
    707   defm ADDC   : F3_12np<"addx", 0b001000>;
    708 
    709 let Uses = [ICC], Defs = [ICC] in
    710   defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
    711 
    712 // Section B.15 - Subtract Instructions, p. 110
    713 defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>;
    714 let Uses = [ICC], Defs = [ICC] in
    715   defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
    716 
    717 let Defs = [ICC] in
    718   defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
    719 
    720 let Uses = [ICC] in
    721   defm SUBC   : F3_12np <"subx", 0b001100>;
    722 
    723 // cmp (from Section A.3) is a specialized alias for subcc
    724 let Defs = [ICC], rd = 0 in {
    725   def CMPrr   : F3_1<2, 0b010100,
    726                      (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
    727                      "cmp $rs1, $rs2",
    728                      [(SPcmpicc i32:$rs1, i32:$rs2)]>;
    729   def CMPri   : F3_2<2, 0b010100,
    730                      (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
    731                      "cmp $rs1, $simm13",
    732                      [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
    733 }
    734 
    735 // Section B.18 - Multiply Instructions, p. 113
    736 let Defs = [Y] in {
    737   defm UMUL : F3_12np<"umul", 0b001010, IIC_iu_umul>;
    738   defm SMUL : F3_12  <"smul", 0b001011, mul, IntRegs, i32, simm13Op, IIC_iu_smul>;
    739 }
    740 
    741 let Defs = [Y, ICC] in {
    742   defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>;
    743   defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>;
    744 }
    745 
    746 let Defs = [Y, ICC], Uses = [Y, ICC] in {
    747   defm MULSCC : F3_12np<"mulscc", 0b100100>;
    748 }
    749 
    750 // Section B.19 - Divide Instructions, p. 115
    751 let Uses = [Y], Defs = [Y] in {
    752   defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>;
    753   defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>;
    754 }
    755 
    756 let Uses = [Y], Defs = [Y, ICC] in {
    757   defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>;
    758   defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>;
    759 }
    760 
    761 // Section B.20 - SAVE and RESTORE, p. 117
    762 defm SAVE    : F3_12np<"save"   , 0b111100>;
    763 defm RESTORE : F3_12np<"restore", 0b111101>;
    764 
    765 // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
    766 
    767 // unconditional branch class.
    768 class BranchAlways<dag ins, string asmstr, list<dag> pattern>
    769   : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
    770   let isBranch     = 1;
    771   let isTerminator = 1;
    772   let hasDelaySlot = 1;
    773   let isBarrier    = 1;
    774 }
    775 
    776 let cond = 8 in
    777   def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
    778 
    779 
    780 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
    781 
    782 // conditional branch class:
    783 class BranchSP<dag ins, string asmstr, list<dag> pattern>
    784  : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>;
    785 
    786 // conditional branch with annul class:
    787 class BranchSPA<dag ins, string asmstr, list<dag> pattern>
    788  : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>;
    789 
    790 // Conditional branch class on %icc|%xcc with predication:
    791 multiclass IPredBranch<string regstr, list<dag> CCPattern> {
    792   def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    793                    !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
    794                    CCPattern,
    795                    IIC_iu_instr>;
    796   def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    797                    !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
    798                    [],
    799                    IIC_iu_instr>;
    800   def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    801                    !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
    802                    [],
    803                    IIC_iu_instr>;
    804   def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    805                    !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
    806                    [],
    807                    IIC_iu_instr>;
    808 }
    809 
    810 } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
    811 
    812 
    813 // Indirect branch instructions.
    814 let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
    815      isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
    816   def BINDrr  : F3_1<2, 0b111000,
    817                    (outs), (ins MEMrr:$ptr),
    818                    "jmp $ptr",
    819                    [(brind ADDRrr:$ptr)]>;
    820   def BINDri  : F3_2<2, 0b111000,
    821                    (outs), (ins MEMri:$ptr),
    822                    "jmp $ptr",
    823                    [(brind ADDRri:$ptr)]>;
    824 }
    825 
    826 let Uses = [ICC] in {
    827   def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
    828                          "b$cond $imm22",
    829                         [(SPbricc bb:$imm22, imm:$cond)]>;
    830   def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
    831                          "b$cond,a $imm22", []>;
    832 
    833   let Predicates = [HasV9], cc = 0b00 in
    834     defm BPI : IPredBranch<"%icc", []>;
    835 }
    836 
    837 // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
    838 
    839 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
    840 
    841 // floating-point conditional branch class:
    842 class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
    843  : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
    844 
    845 // floating-point conditional branch with annul class:
    846 class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
    847  : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
    848 
    849 // Conditional branch class on %fcc0-%fcc3 with predication:
    850 multiclass FPredBranch {
    851   def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    852                                          FCCRegs:$cc),
    853                   "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>;
    854   def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    855                                          FCCRegs:$cc),
    856                   "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>;
    857   def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    858                                          FCCRegs:$cc),
    859                   "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
    860   def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    861                                          FCCRegs:$cc),
    862                   "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
    863 }
    864 } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
    865 
    866 let Uses = [FCC0] in {
    867   def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
    868                               "fb$cond $imm22",
    869                               [(SPbrfcc bb:$imm22, imm:$cond)]>;
    870   def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
    871                              "fb$cond,a $imm22", []>;
    872 }
    873 
    874 let Predicates = [HasV9] in
    875   defm BPF : FPredBranch;
    876 
    877 // Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123
    878 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
    879 
    880 // co-processor conditional branch class:
    881 class CPBranchSP<dag ins, string asmstr, list<dag> pattern>
    882  : F2_2<0b111, 0, (outs), ins, asmstr, pattern>;
    883 
    884 // co-processor conditional branch with annul class:
    885 class CPBranchSPA<dag ins, string asmstr, list<dag> pattern>
    886  : F2_2<0b111, 1, (outs), ins, asmstr, pattern>;
    887 
    888 } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
    889 
    890 def CBCOND  : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
    891                           "cb$cond $imm22",
    892                           [(SPbrfcc bb:$imm22, imm:$cond)]>;
    893 def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
    894                            "cb$cond,a $imm22", []>;
    895                            
    896 // Section B.24 - Call and Link Instruction, p. 125
    897 // This is the only Format 1 instruction
    898 let Uses = [O6],
    899     hasDelaySlot = 1, isCall = 1 in {
    900   def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
    901                     "call $disp",
    902                     [],
    903                     IIC_jmp_or_call> {
    904     bits<30> disp;
    905     let op = 1;
    906     let Inst{29-0} = disp;
    907   }
    908 
    909   // indirect calls: special cases of JMPL.
    910   let isCodeGenOnly = 1, rd = 15 in {
    911     def CALLrr : F3_1<2, 0b111000,
    912                       (outs), (ins MEMrr:$ptr, variable_ops),
    913                       "call $ptr",
    914                       [(call ADDRrr:$ptr)],
    915                       IIC_jmp_or_call>;
    916     def CALLri : F3_2<2, 0b111000,
    917                       (outs), (ins MEMri:$ptr, variable_ops),
    918                       "call $ptr",
    919                       [(call ADDRri:$ptr)],
    920                       IIC_jmp_or_call>;
    921   }
    922 }
    923 
    924 // Section B.25 - Jump and Link Instruction
    925 
    926 // JMPL Instruction.
    927 let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    928     DecoderMethod = "DecodeJMPL" in {
    929   def JMPLrr: F3_1<2, 0b111000,
    930                    (outs IntRegs:$dst), (ins MEMrr:$addr),
    931                    "jmpl $addr, $dst",
    932                    [],
    933                    IIC_jmp_or_call>;
    934   def JMPLri: F3_2<2, 0b111000,
    935                    (outs IntRegs:$dst), (ins MEMri:$addr),
    936                    "jmpl $addr, $dst",
    937                    [],
    938                    IIC_jmp_or_call>;
    939 }
    940 
    941 // Section A.3 - Synthetic Instructions, p. 85
    942 // special cases of JMPL:
    943 let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    944     isCodeGenOnly = 1 in {
    945   let rd = 0, rs1 = 15 in
    946     def RETL: F3_2<2, 0b111000,
    947                    (outs), (ins i32imm:$val),
    948                    "jmp %o7+$val",
    949                    [(retflag simm13:$val)],
    950                    IIC_jmp_or_call>;
    951 
    952   let rd = 0, rs1 = 31 in
    953     def RET: F3_2<2, 0b111000,
    954                   (outs), (ins i32imm:$val),
    955                   "jmp %i7+$val",
    956                   [],
    957                   IIC_jmp_or_call>;
    958 }
    959 
    960 // Section B.26 - Return from Trap Instruction
    961 let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
    962      isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
    963   def RETTrr : F3_1<2, 0b111001,
    964                    (outs), (ins MEMrr:$addr),
    965                    "rett $addr",
    966                    [],
    967                    IIC_jmp_or_call>;
    968   def RETTri : F3_2<2, 0b111001,
    969                     (outs), (ins MEMri:$addr),
    970                     "rett $addr",
    971                     [],
    972                     IIC_jmp_or_call>;
    973 }
    974 
    975 
    976 // Section B.27 - Trap on Integer Condition Codes Instruction
    977 // conditional branch class:
    978 let DecoderNamespace = "SparcV8", DecoderMethod = "DecodeTRAP", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
    979 {
    980   def TRAPrr : TRAPSPrr<0b111010,
    981                         (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
    982                         "t$cond $rs1 + $rs2",
    983                         []>;
    984   def TRAPri : TRAPSPri<0b111010,
    985                         (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
    986                         "t$cond $rs1 + $imm",
    987                         []>;
    988 }
    989 
    990 multiclass TRAP<string regStr> {
    991   def rr : TRAPSPrr<0b111010,
    992                     (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
    993                     !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"),
    994                     []>;
    995   def ri : TRAPSPri<0b111010,
    996                     (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
    997                     !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"),
    998                     []>;
    999 }
   1000 
   1001 let DecoderNamespace = "SparcV9", DecoderMethod = "DecodeTRAP", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
   1002   defm TICC : TRAP<"%icc">;
   1003 
   1004 
   1005 let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
   1006   def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
   1007 
   1008 // Section B.28 - Read State Register Instructions
   1009 let rs2 = 0 in
   1010   def RDASR : F3_1<2, 0b101000,
   1011                  (outs IntRegs:$rd), (ins ASRRegs:$rs1),
   1012                  "rd $rs1, $rd", []>;
   1013 
   1014 // PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
   1015 let Predicates = [HasNoV9] in {
   1016   let rs2 = 0, rs1 = 0, Uses=[PSR] in
   1017     def RDPSR : F3_1<2, 0b101001,
   1018 		     (outs IntRegs:$rd), (ins),
   1019 		     "rd %psr, $rd", []>;
   1020 
   1021   let rs2 = 0, rs1 = 0, Uses=[WIM] in
   1022     def RDWIM : F3_1<2, 0b101010,
   1023 		     (outs IntRegs:$rd), (ins),
   1024 		     "rd %wim, $rd", []>;
   1025 
   1026   let rs2 = 0, rs1 = 0, Uses=[TBR] in
   1027     def RDTBR : F3_1<2, 0b101011,
   1028 		     (outs IntRegs:$rd), (ins),
   1029 		     "rd %tbr, $rd", []>;
   1030 }
   1031 
   1032 // Section B.29 - Write State Register Instructions
   1033 def WRASRrr : F3_1<2, 0b110000,
   1034                  (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
   1035                  "wr $rs1, $rs2, $rd", []>;
   1036 def WRASRri : F3_2<2, 0b110000,
   1037                  (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
   1038                  "wr $rs1, $simm13, $rd", []>;
   1039 
   1040 // PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
   1041 let Predicates = [HasNoV9] in {
   1042   let Defs = [PSR], rd=0 in {
   1043     def WRPSRrr : F3_1<2, 0b110001,
   1044 		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
   1045 		     "wr $rs1, $rs2, %psr", []>;
   1046     def WRPSRri : F3_2<2, 0b110001,
   1047 		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
   1048 		     "wr $rs1, $simm13, %psr", []>;
   1049   }
   1050 
   1051   let Defs = [WIM], rd=0 in {
   1052     def WRWIMrr : F3_1<2, 0b110010,
   1053 		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
   1054 		     "wr $rs1, $rs2, %wim", []>;
   1055     def WRWIMri : F3_2<2, 0b110010,
   1056 		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
   1057 		     "wr $rs1, $simm13, %wim", []>;
   1058   }
   1059 
   1060   let Defs = [TBR], rd=0 in {
   1061     def WRTBRrr : F3_1<2, 0b110011,
   1062 		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
   1063 		     "wr $rs1, $rs2, %tbr", []>;
   1064     def WRTBRri : F3_2<2, 0b110011,
   1065 		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
   1066 		     "wr $rs1, $simm13, %tbr", []>;
   1067   }
   1068 }
   1069 
   1070 // Section B.30 - STBAR Instruction
   1071 let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in
   1072   def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
   1073 
   1074 
   1075 // Section B.31 - Unimplmented Instruction
   1076 let rd = 0 in
   1077   def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
   1078                   "unimp $imm22", []>;
   1079 
   1080 // Section B.32 - Flush Instruction Memory
   1081 let rd = 0 in {
   1082   def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr),
   1083                        "flush $addr", []>;
   1084   def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr),
   1085                        "flush $addr", []>;
   1086 
   1087   // The no-arg FLUSH is only here for the benefit of the InstAlias
   1088   // "flush", which cannot seem to use FLUSHrr, due to the inability
   1089   // to construct a MEMrr with fixed G0 registers.
   1090   let rs1 = 0, rs2 = 0 in
   1091     def FLUSH   : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>;
   1092 }
   1093 
   1094 // Section B.33 - Floating-point Operate (FPop) Instructions
   1095 
   1096 // Convert Integer to Floating-point Instructions, p. 141
   1097 def FITOS : F3_3u<2, 0b110100, 0b011000100,
   1098                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1099                  "fitos $rs2, $rd",
   1100                  [(set FPRegs:$rd, (SPitof FPRegs:$rs2))],
   1101                  IIC_fpu_fast_instr>;
   1102 def FITOD : F3_3u<2, 0b110100, 0b011001000,
   1103                  (outs DFPRegs:$rd), (ins FPRegs:$rs2),
   1104                  "fitod $rs2, $rd",
   1105                  [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))],
   1106                  IIC_fpu_fast_instr>;
   1107 def FITOQ : F3_3u<2, 0b110100, 0b011001100,
   1108                  (outs QFPRegs:$rd), (ins FPRegs:$rs2),
   1109                  "fitoq $rs2, $rd",
   1110                  [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
   1111                  Requires<[HasHardQuad]>;
   1112 
   1113 // Convert Floating-point to Integer Instructions, p. 142
   1114 def FSTOI : F3_3u<2, 0b110100, 0b011010001,
   1115                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1116                  "fstoi $rs2, $rd",
   1117                  [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))],
   1118                  IIC_fpu_fast_instr>;
   1119 def FDTOI : F3_3u<2, 0b110100, 0b011010010,
   1120                  (outs FPRegs:$rd), (ins DFPRegs:$rs2),
   1121                  "fdtoi $rs2, $rd",
   1122                  [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))],
   1123                  IIC_fpu_fast_instr>;
   1124 def FQTOI : F3_3u<2, 0b110100, 0b011010011,
   1125                  (outs FPRegs:$rd), (ins QFPRegs:$rs2),
   1126                  "fqtoi $rs2, $rd",
   1127                  [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
   1128                  Requires<[HasHardQuad]>;
   1129 
   1130 // Convert between Floating-point Formats Instructions, p. 143
   1131 def FSTOD : F3_3u<2, 0b110100, 0b011001001,
   1132                  (outs DFPRegs:$rd), (ins FPRegs:$rs2),
   1133                  "fstod $rs2, $rd",
   1134                  [(set f64:$rd, (fextend f32:$rs2))],
   1135                  IIC_fpu_stod>;
   1136 def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
   1137                  (outs QFPRegs:$rd), (ins FPRegs:$rs2),
   1138                  "fstoq $rs2, $rd",
   1139                  [(set f128:$rd, (fextend f32:$rs2))]>,
   1140                  Requires<[HasHardQuad]>;
   1141 def FDTOS : F3_3u<2, 0b110100, 0b011000110,
   1142                  (outs FPRegs:$rd), (ins DFPRegs:$rs2),
   1143                  "fdtos $rs2, $rd",
   1144                  [(set f32:$rd, (fround f64:$rs2))],
   1145                  IIC_fpu_fast_instr>;
   1146 def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
   1147                  (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
   1148                  "fdtoq $rs2, $rd",
   1149                  [(set f128:$rd, (fextend f64:$rs2))]>,
   1150                  Requires<[HasHardQuad]>;
   1151 def FQTOS : F3_3u<2, 0b110100, 0b011000111,
   1152                  (outs FPRegs:$rd), (ins QFPRegs:$rs2),
   1153                  "fqtos $rs2, $rd",
   1154                  [(set f32:$rd, (fround f128:$rs2))]>,
   1155                  Requires<[HasHardQuad]>;
   1156 def FQTOD : F3_3u<2, 0b110100, 0b011001011,
   1157                  (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
   1158                  "fqtod $rs2, $rd",
   1159                  [(set f64:$rd, (fround f128:$rs2))]>,
   1160                  Requires<[HasHardQuad]>;
   1161 
   1162 // Floating-point Move Instructions, p. 144
   1163 def FMOVS : F3_3u<2, 0b110100, 0b000000001,
   1164                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1165                  "fmovs $rs2, $rd", []>;
   1166 def FNEGS : F3_3u<2, 0b110100, 0b000000101,
   1167                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1168                  "fnegs $rs2, $rd",
   1169                  [(set f32:$rd, (fneg f32:$rs2))],
   1170                  IIC_fpu_negs>;
   1171 def FABSS : F3_3u<2, 0b110100, 0b000001001,
   1172                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1173                  "fabss $rs2, $rd",
   1174                  [(set f32:$rd, (fabs f32:$rs2))],
   1175                  IIC_fpu_abs>;
   1176 
   1177 
   1178 // Floating-point Square Root Instructions, p.145
   1179 // FSQRTS generates an erratum on LEON processors, so by disabling this instruction
   1180 // this will be promoted to use FSQRTD with doubles instead.
   1181 let Predicates = [HasNoFdivSqrtFix] in 
   1182 def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
   1183                   (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1184                   "fsqrts $rs2, $rd",
   1185                   [(set f32:$rd, (fsqrt f32:$rs2))],
   1186                   IIC_fpu_sqrts>;
   1187 def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
   1188                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1189                   "fsqrtd $rs2, $rd",
   1190                   [(set f64:$rd, (fsqrt f64:$rs2))],
   1191                   IIC_fpu_sqrtd>;
   1192 def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
   1193                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1194                   "fsqrtq $rs2, $rd",
   1195                   [(set f128:$rd, (fsqrt f128:$rs2))]>,
   1196                   Requires<[HasHardQuad]>;
   1197 
   1198 
   1199 
   1200 // Floating-point Add and Subtract Instructions, p. 146
   1201 def FADDS  : F3_3<2, 0b110100, 0b001000001,
   1202                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1203                   "fadds $rs1, $rs2, $rd",
   1204                   [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))],
   1205                   IIC_fpu_fast_instr>;
   1206 def FADDD  : F3_3<2, 0b110100, 0b001000010,
   1207                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1208                   "faddd $rs1, $rs2, $rd",
   1209                   [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))],
   1210                   IIC_fpu_fast_instr>;
   1211 def FADDQ  : F3_3<2, 0b110100, 0b001000011,
   1212                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1213                   "faddq $rs1, $rs2, $rd",
   1214                   [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
   1215                   Requires<[HasHardQuad]>;
   1216 
   1217 def FSUBS  : F3_3<2, 0b110100, 0b001000101,
   1218                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1219                   "fsubs $rs1, $rs2, $rd",
   1220                   [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))],
   1221                   IIC_fpu_fast_instr>;
   1222 def FSUBD  : F3_3<2, 0b110100, 0b001000110,
   1223                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1224                   "fsubd $rs1, $rs2, $rd",
   1225                   [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))],
   1226                   IIC_fpu_fast_instr>;
   1227 def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
   1228                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1229                   "fsubq $rs1, $rs2, $rd",
   1230                   [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
   1231                   Requires<[HasHardQuad]>;
   1232 
   1233 
   1234 // Floating-point Multiply and Divide Instructions, p. 147
   1235 // FMULS generates an erratum on LEON processors, so by disabling this instruction
   1236 // this will be promoted to use FMULD with doubles instead.
   1237 let Predicates = [HasNoFmulsFix] in 
   1238 def FMULS  : F3_3<2, 0b110100, 0b001001001,
   1239                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1240                   "fmuls $rs1, $rs2, $rd",
   1241                   [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))],
   1242                   IIC_fpu_muls>;
   1243 def FMULD  : F3_3<2, 0b110100, 0b001001010,
   1244                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1245                   "fmuld $rs1, $rs2, $rd",
   1246                   [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))],
   1247                   IIC_fpu_muld>;
   1248 def FMULQ  : F3_3<2, 0b110100, 0b001001011,
   1249                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1250                   "fmulq $rs1, $rs2, $rd",
   1251                   [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
   1252                   Requires<[HasHardQuad]>;
   1253 
   1254 let Predicates = [HasNoFsmuldFix] in
   1255 def FSMULD : F3_3<2, 0b110100, 0b001101001,
   1256                   (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1257                   "fsmuld $rs1, $rs2, $rd",
   1258                   [(set f64:$rd, (fmul (fextend f32:$rs1),
   1259                                         (fextend f32:$rs2)))],
   1260                   IIC_fpu_muld>;
   1261 def FDMULQ : F3_3<2, 0b110100, 0b001101110,
   1262                   (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1263                   "fdmulq $rs1, $rs2, $rd",
   1264                   [(set f128:$rd, (fmul (fextend f64:$rs1),
   1265                                          (fextend f64:$rs2)))]>,
   1266                   Requires<[HasHardQuad]>;
   1267 
   1268 // FDIVS generates an erratum on LEON processors, so by disabling this instruction
   1269 // this will be promoted to use FDIVD with doubles instead.
   1270 def FDIVS  : F3_3<2, 0b110100, 0b001001101,
   1271                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1272                  "fdivs $rs1, $rs2, $rd",
   1273                  [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))],
   1274                  IIC_fpu_divs>;
   1275 def FDIVD  : F3_3<2, 0b110100, 0b001001110,
   1276                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1277                  "fdivd $rs1, $rs2, $rd",
   1278                  [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))],
   1279                  IIC_fpu_divd>;
   1280 def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
   1281                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1282                  "fdivq $rs1, $rs2, $rd",
   1283                  [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
   1284                  Requires<[HasHardQuad]>;
   1285 
   1286 // Floating-point Compare Instructions, p. 148
   1287 // Note: the 2nd template arg is different for these guys.
   1288 // Note 2: the result of a FCMP is not available until the 2nd cycle
   1289 // after the instr is retired, but there is no interlock in Sparc V8.
   1290 // This behavior is modeled with a forced noop after the instruction in
   1291 // DelaySlotFiller.
   1292 
   1293 let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
   1294   def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
   1295                    (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
   1296                    "fcmps $rs1, $rs2",
   1297                    [(SPcmpfcc f32:$rs1, f32:$rs2)],
   1298                    IIC_fpu_fast_instr>;
   1299   def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
   1300                    (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1301                    "fcmpd $rs1, $rs2",
   1302                    [(SPcmpfcc f64:$rs1, f64:$rs2)],
   1303                    IIC_fpu_fast_instr>;
   1304   def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
   1305                    (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1306                    "fcmpq $rs1, $rs2",
   1307                    [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
   1308                    Requires<[HasHardQuad]>;
   1309 }
   1310 
   1311 //===----------------------------------------------------------------------===//
   1312 // Instructions for Thread Local Storage(TLS).
   1313 //===----------------------------------------------------------------------===//
   1314 let isCodeGenOnly = 1, isAsmParserOnly = 1 in {
   1315 def TLS_ADDrr : F3_1<2, 0b000000,
   1316                     (outs IntRegs:$rd),
   1317                     (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
   1318                     "add $rs1, $rs2, $rd, $sym",
   1319                     [(set i32:$rd,
   1320                         (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
   1321 
   1322 let mayLoad = 1 in
   1323   def TLS_LDrr : F3_1<3, 0b000000,
   1324                       (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
   1325                       "ld [$addr], $dst, $sym",
   1326                       [(set i32:$dst,
   1327                           (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
   1328 
   1329 let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
   1330   def TLS_CALL : InstSP<(outs),
   1331                         (ins calltarget:$disp, TLSSym:$sym, variable_ops),
   1332                         "call $disp, $sym",
   1333                         [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)],
   1334                         IIC_jmp_or_call> {
   1335   bits<30> disp;
   1336   let op = 1;
   1337   let Inst{29-0} = disp;
   1338 }
   1339 }
   1340 
   1341 //===----------------------------------------------------------------------===//
   1342 // V9 Instructions
   1343 //===----------------------------------------------------------------------===//
   1344 
   1345 // V9 Conditional Moves.
   1346 let Predicates = [HasV9], Constraints = "$f = $rd" in {
   1347   // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
   1348   let Uses = [ICC], intcc = 1, cc = 0b00 in {
   1349     def MOVICCrr
   1350       : F4_1<0b101100, (outs IntRegs:$rd),
   1351              (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
   1352              "mov$cond %icc, $rs2, $rd",
   1353              [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
   1354 
   1355     def MOVICCri
   1356       : F4_2<0b101100, (outs IntRegs:$rd),
   1357              (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
   1358              "mov$cond %icc, $simm11, $rd",
   1359              [(set i32:$rd,
   1360                     (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
   1361   }
   1362 
   1363   let Uses = [FCC0], intcc = 0, cc = 0b00 in {
   1364     def MOVFCCrr
   1365       : F4_1<0b101100, (outs IntRegs:$rd),
   1366              (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
   1367              "mov$cond %fcc0, $rs2, $rd",
   1368              [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
   1369     def MOVFCCri
   1370       : F4_2<0b101100, (outs IntRegs:$rd),
   1371              (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
   1372              "mov$cond %fcc0, $simm11, $rd",
   1373              [(set i32:$rd,
   1374                     (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
   1375   }
   1376 
   1377   let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
   1378     def FMOVS_ICC
   1379       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
   1380              (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
   1381              "fmovs$cond %icc, $rs2, $rd",
   1382              [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
   1383     def FMOVD_ICC
   1384       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
   1385                (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
   1386                "fmovd$cond %icc, $rs2, $rd",
   1387                [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
   1388     def FMOVQ_ICC
   1389       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
   1390                (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
   1391                "fmovq$cond %icc, $rs2, $rd",
   1392                [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
   1393                Requires<[HasHardQuad]>;
   1394   }
   1395 
   1396   let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
   1397     def FMOVS_FCC
   1398       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
   1399              (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
   1400              "fmovs$cond %fcc0, $rs2, $rd",
   1401              [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
   1402     def FMOVD_FCC
   1403       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
   1404              (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
   1405              "fmovd$cond %fcc0, $rs2, $rd",
   1406              [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
   1407     def FMOVQ_FCC
   1408       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
   1409              (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
   1410              "fmovq$cond %fcc0, $rs2, $rd",
   1411              [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
   1412              Requires<[HasHardQuad]>;
   1413   }
   1414 
   1415 }
   1416 
   1417 // Floating-Point Move Instructions, p. 164 of the V9 manual.
   1418 let Predicates = [HasV9] in {
   1419   def FMOVD : F3_3u<2, 0b110100, 0b000000010,
   1420                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1421                    "fmovd $rs2, $rd", []>;
   1422   def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
   1423                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1424                    "fmovq $rs2, $rd", []>,
   1425                    Requires<[HasHardQuad]>;
   1426   def FNEGD : F3_3u<2, 0b110100, 0b000000110,
   1427                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1428                    "fnegd $rs2, $rd",
   1429                    [(set f64:$rd, (fneg f64:$rs2))]>;
   1430   def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
   1431                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1432                    "fnegq $rs2, $rd",
   1433                    [(set f128:$rd, (fneg f128:$rs2))]>,
   1434                    Requires<[HasHardQuad]>;
   1435   def FABSD : F3_3u<2, 0b110100, 0b000001010,
   1436                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1437                    "fabsd $rs2, $rd",
   1438                    [(set f64:$rd, (fabs f64:$rs2))]>;
   1439   def FABSQ : F3_3u<2, 0b110100, 0b000001011,
   1440                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1441                    "fabsq $rs2, $rd",
   1442                    [(set f128:$rd, (fabs f128:$rs2))]>,
   1443                    Requires<[HasHardQuad]>;
   1444 }
   1445 
   1446 // Floating-point compare instruction with %fcc0-%fcc3.
   1447 def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001,
   1448                (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1449                "fcmps $rd, $rs1, $rs2", []>;
   1450 def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010,
   1451                 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1452                 "fcmpd $rd, $rs1, $rs2", []>;
   1453 def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
   1454                 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1455                 "fcmpq $rd, $rs1, $rs2", []>,
   1456                  Requires<[HasHardQuad]>;
   1457 
   1458 let hasSideEffects = 1 in {
   1459   def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101,
   1460                    (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1461                    "fcmpes $rd, $rs1, $rs2", []>;
   1462   def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110,
   1463                    (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1464                    "fcmped $rd, $rs1, $rs2", []>;
   1465   def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111,
   1466                    (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1467                    "fcmpeq $rd, $rs1, $rs2", []>,
   1468                    Requires<[HasHardQuad]>;
   1469 }
   1470 
   1471 // Floating point conditional move instrucitons with %fcc0-%fcc3.
   1472 let Predicates = [HasV9] in {
   1473   let Constraints = "$f = $rd", intcc = 0 in {
   1474     def V9MOVFCCrr
   1475       : F4_1<0b101100, (outs IntRegs:$rd),
   1476              (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
   1477              "mov$cond $cc, $rs2, $rd", []>;
   1478     def V9MOVFCCri
   1479       : F4_2<0b101100, (outs IntRegs:$rd),
   1480              (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
   1481              "mov$cond $cc, $simm11, $rd", []>;
   1482     def V9FMOVS_FCC
   1483       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
   1484              (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
   1485              "fmovs$cond $opf_cc, $rs2, $rd", []>;
   1486     def V9FMOVD_FCC
   1487       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
   1488              (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
   1489              "fmovd$cond $opf_cc, $rs2, $rd", []>;
   1490     def V9FMOVQ_FCC
   1491       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
   1492              (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
   1493              "fmovq$cond $opf_cc, $rs2, $rd", []>,
   1494              Requires<[HasHardQuad]>;
   1495   } // Constraints = "$f = $rd", ...
   1496 } // let Predicates = [hasV9]
   1497 
   1498 
   1499 // POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
   1500 // the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
   1501 let rs1 = 0 in
   1502   def POPCrr : F3_1<2, 0b101110,
   1503                     (outs IntRegs:$rd), (ins IntRegs:$rs2),
   1504                     "popc $rs2, $rd", []>, Requires<[HasV9]>;
   1505 def : Pat<(ctpop i32:$src),
   1506           (POPCrr (SRLri $src, 0))>;
   1507 
   1508 let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
   1509  def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13),
   1510                     "membar $simm13", []>;
   1511 
   1512 // The CAS instruction, unlike other instructions, only comes in a 
   1513 // form which requires an ASI be provided. The ASI value hardcoded 
   1514 // here is ASI_PRIMARY, the default unprivileged ASI for SparcV9.
   1515 let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in
   1516   def CASrr: F3_1_asi<3, 0b111100,
   1517                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
   1518                                      IntRegs:$swap),
   1519                  "cas [$rs1], $rs2, $rd",
   1520                  [(set i32:$rd,
   1521                      (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
   1522 
   1523 
   1524 // CASA is supported as an instruction on some LEON3 and all LEON4 processors.
   1525 // This version can be automatically lowered from C code, selecting ASI 10
   1526 let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in
   1527   def CASAasi10: F3_1_asi<3, 0b111100,
   1528                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
   1529                                      IntRegs:$swap),
   1530                  "casa [$rs1] 10, $rs2, $rd",
   1531                  [(set i32:$rd,
   1532                      (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
   1533                  
   1534 // CASA supported on some LEON3 and all LEON4 processors. Same pattern as
   1535 // CASrr, above, but with a different ASI. This version is supported for
   1536 // inline assembly lowering only. 
   1537 let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in
   1538   def CASArr: F3_1_asi<3, 0b111100,
   1539                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
   1540                                      IntRegs:$swap, i8imm:$asi),
   1541                  "casa [$rs1] $asi, $rs2, $rd", []>;
   1542                 
   1543 // TODO: Add DAG sequence to lower these instructions. Currently, only provided
   1544 // as inline assembler-supported instructions. 
   1545 let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in {
   1546   def SMACrr :  F3_1<2, 0b111111,
   1547                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
   1548                    "smac $rs1, $rs2, $rd",
   1549                    [], IIC_smac_umac>;
   1550 
   1551   def SMACri :  F3_2<2, 0b111111,
   1552                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
   1553                    "smac $rs1, $simm13, $rd",
   1554                    [], IIC_smac_umac>;
   1555                  
   1556   def UMACrr :  F3_1<2, 0b111110,
   1557                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
   1558                    "umac $rs1, $rs2, $rd",
   1559                    [], IIC_smac_umac>;
   1560                  
   1561   def UMACri :  F3_2<2, 0b111110,
   1562                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
   1563                    "umac $rs1, $simm13, $rd",
   1564                    [], IIC_smac_umac>;
   1565 }
   1566 
   1567 let Defs = [ICC] in {
   1568 defm TADDCC   : F3_12np<"taddcc",   0b100000>;
   1569 defm TSUBCC   : F3_12np<"tsubcc",   0b100001>;
   1570 
   1571 let hasSideEffects = 1 in {
   1572   defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
   1573   defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
   1574 }
   1575 }
   1576 
   1577 
   1578 // Section A.43 - Read Privileged Register Instructions
   1579 let Predicates = [HasV9] in {
   1580 let rs2 = 0 in
   1581   def RDPR : F3_1<2, 0b101010,
   1582                  (outs IntRegs:$rd), (ins PRRegs:$rs1),
   1583                  "rdpr $rs1, $rd", []>;
   1584 }
   1585 
   1586 // Section A.62 - Write Privileged Register Instructions
   1587 let Predicates = [HasV9] in {
   1588   def WRPRrr : F3_1<2, 0b110010,
   1589                    (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
   1590                    "wrpr $rs1, $rs2, $rd", []>;
   1591   def WRPRri : F3_2<2, 0b110010,
   1592                    (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
   1593                    "wrpr $rs1, $simm13, $rd", []>;
   1594 }
   1595 
   1596 //===----------------------------------------------------------------------===//
   1597 // Non-Instruction Patterns
   1598 //===----------------------------------------------------------------------===//
   1599 
   1600 // Small immediates.
   1601 def : Pat<(i32 simm13:$val),
   1602           (ORri (i32 G0), imm:$val)>;
   1603 // Arbitrary immediates.
   1604 def : Pat<(i32 imm:$val),
   1605           (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
   1606 
   1607 
   1608 // Global addresses, constant pool entries
   1609 let Predicates = [Is32Bit] in {
   1610 
   1611 def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
   1612 def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
   1613 def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
   1614 def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
   1615 
   1616 // GlobalTLS addresses
   1617 def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
   1618 def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
   1619 def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
   1620           (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
   1621 def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
   1622           (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
   1623 
   1624 // Blockaddress
   1625 def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
   1626 def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
   1627 
   1628 // Add reg, lo.  This is used when taking the addr of a global/constpool entry.
   1629 def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
   1630 def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
   1631 def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
   1632                         (ADDri $r, tblockaddress:$in)>;
   1633 }
   1634 
   1635 // Calls:
   1636 def : Pat<(call tglobaladdr:$dst),
   1637           (CALL tglobaladdr:$dst)>;
   1638 def : Pat<(call texternalsym:$dst),
   1639           (CALL texternalsym:$dst)>;
   1640 
   1641 // Map integer extload's to zextloads.
   1642 def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1643 def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1644 def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1645 def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1646 def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
   1647 def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
   1648 
   1649 // zextload bool -> zextload byte
   1650 def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1651 def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1652 
   1653 // store 0, addr -> store %g0, addr
   1654 def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
   1655 def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
   1656 
   1657 // store bar for all atomic_fence in V8.
   1658 let Predicates = [HasNoV9] in
   1659   def : Pat<(atomic_fence imm, imm), (STBAR)>;
   1660 
   1661 // atomic_load addr -> load addr
   1662 def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1663 def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1664 def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
   1665 def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
   1666 def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>;
   1667 def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>;
   1668 
   1669 // atomic_store val, addr -> store val, addr
   1670 def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>;
   1671 def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>;
   1672 def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>;
   1673 def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>;
   1674 def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
   1675 def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
   1676 
   1677 // extract_vector
   1678 def : Pat<(extractelt (v2i32 IntPair:$Rn), 0),
   1679           (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>;
   1680 def : Pat<(extractelt (v2i32 IntPair:$Rn), 1),
   1681           (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>;
   1682 
   1683 // build_vector
   1684 def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)),
   1685           (INSERT_SUBREG
   1686 	    (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even),
   1687             (i32 IntRegs:$a2), sub_odd)>;
   1688 
   1689 
   1690 include "SparcInstr64Bit.td"
   1691 include "SparcInstrVIS.td"
   1692 include "SparcInstrAliases.td"
   1693