Home | History | Annotate | Download | only in Instrumentation
      1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of AddressSanitizer, an address sanity checker.
     11 // Details of the algorithm:
     12 //  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/ADT/ArrayRef.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/DepthFirstIterator.h"
     19 #include "llvm/ADT/SetVector.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/ADT/StringExtras.h"
     24 #include "llvm/ADT/Triple.h"
     25 #include "llvm/Analysis/MemoryBuiltins.h"
     26 #include "llvm/Analysis/TargetLibraryInfo.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/IR/CallSite.h"
     29 #include "llvm/IR/DIBuilder.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/Dominators.h"
     32 #include "llvm/IR/Function.h"
     33 #include "llvm/IR/IRBuilder.h"
     34 #include "llvm/IR/InlineAsm.h"
     35 #include "llvm/IR/InstVisitor.h"
     36 #include "llvm/IR/IntrinsicInst.h"
     37 #include "llvm/IR/LLVMContext.h"
     38 #include "llvm/IR/MDBuilder.h"
     39 #include "llvm/IR/Module.h"
     40 #include "llvm/IR/Type.h"
     41 #include "llvm/MC/MCSectionMachO.h"
     42 #include "llvm/Support/CommandLine.h"
     43 #include "llvm/Support/DataTypes.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/Endian.h"
     46 #include "llvm/Support/SwapByteOrder.h"
     47 #include "llvm/Support/raw_ostream.h"
     48 #include "llvm/Transforms/Instrumentation.h"
     49 #include "llvm/Transforms/Scalar.h"
     50 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
     51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     52 #include "llvm/Transforms/Utils/Cloning.h"
     53 #include "llvm/Transforms/Utils/Local.h"
     54 #include "llvm/Transforms/Utils/ModuleUtils.h"
     55 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     56 #include <algorithm>
     57 #include <string>
     58 #include <system_error>
     59 
     60 using namespace llvm;
     61 
     62 #define DEBUG_TYPE "asan"
     63 
     64 static const uint64_t kDefaultShadowScale = 3;
     65 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
     66 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
     67 static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
     68 static const uint64_t kIOSShadowOffset64 = 0x120200000;
     69 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30;
     70 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64;
     71 static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G.
     72 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
     73 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
     74 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
     75 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
     76 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
     77 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
     78 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
     79 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
     80 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
     81 // TODO(wwchrome): Experimental for asan Win64, may change.
     82 static const uint64_t kWindowsShadowOffset64 = 0x1ULL << 45;  // 32TB.
     83 
     84 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
     85 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
     86 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
     87 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
     88 
     89 static const char *const kAsanModuleCtorName = "asan.module_ctor";
     90 static const char *const kAsanModuleDtorName = "asan.module_dtor";
     91 static const uint64_t kAsanCtorAndDtorPriority = 1;
     92 static const char *const kAsanReportErrorTemplate = "__asan_report_";
     93 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
     94 static const char *const kAsanUnregisterGlobalsName =
     95     "__asan_unregister_globals";
     96 static const char *const kAsanRegisterImageGlobalsName =
     97   "__asan_register_image_globals";
     98 static const char *const kAsanUnregisterImageGlobalsName =
     99   "__asan_unregister_image_globals";
    100 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
    101 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
    102 static const char *const kAsanInitName = "__asan_init";
    103 static const char *const kAsanVersionCheckName =
    104     "__asan_version_mismatch_check_v8";
    105 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
    106 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
    107 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
    108 static const int kMaxAsanStackMallocSizeClass = 10;
    109 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
    110 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
    111 static const char *const kAsanGenPrefix = "__asan_gen_";
    112 static const char *const kODRGenPrefix = "__odr_asan_gen_";
    113 static const char *const kSanCovGenPrefix = "__sancov_gen_";
    114 static const char *const kAsanPoisonStackMemoryName =
    115     "__asan_poison_stack_memory";
    116 static const char *const kAsanUnpoisonStackMemoryName =
    117     "__asan_unpoison_stack_memory";
    118 static const char *const kAsanGlobalsRegisteredFlagName =
    119     "__asan_globals_registered";
    120 
    121 static const char *const kAsanOptionDetectUseAfterReturn =
    122     "__asan_option_detect_stack_use_after_return";
    123 
    124 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
    125 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
    126 
    127 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
    128 static const size_t kNumberOfAccessSizes = 5;
    129 
    130 static const unsigned kAllocaRzSize = 32;
    131 
    132 // Command-line flags.
    133 static cl::opt<bool> ClEnableKasan(
    134     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
    135     cl::Hidden, cl::init(false));
    136 static cl::opt<bool> ClRecover(
    137     "asan-recover",
    138     cl::desc("Enable recovery mode (continue-after-error)."),
    139     cl::Hidden, cl::init(false));
    140 
    141 // This flag may need to be replaced with -f[no-]asan-reads.
    142 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
    143                                        cl::desc("instrument read instructions"),
    144                                        cl::Hidden, cl::init(true));
    145 static cl::opt<bool> ClInstrumentWrites(
    146     "asan-instrument-writes", cl::desc("instrument write instructions"),
    147     cl::Hidden, cl::init(true));
    148 static cl::opt<bool> ClInstrumentAtomics(
    149     "asan-instrument-atomics",
    150     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
    151     cl::init(true));
    152 static cl::opt<bool> ClAlwaysSlowPath(
    153     "asan-always-slow-path",
    154     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
    155     cl::init(false));
    156 // This flag limits the number of instructions to be instrumented
    157 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
    158 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
    159 // set it to 10000.
    160 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
    161     "asan-max-ins-per-bb", cl::init(10000),
    162     cl::desc("maximal number of instructions to instrument in any given BB"),
    163     cl::Hidden);
    164 // This flag may need to be replaced with -f[no]asan-stack.
    165 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
    166                              cl::Hidden, cl::init(true));
    167 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
    168                                       cl::desc("Check stack-use-after-return"),
    169                                       cl::Hidden, cl::init(true));
    170 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
    171                                      cl::desc("Check stack-use-after-scope"),
    172                                      cl::Hidden, cl::init(false));
    173 // This flag may need to be replaced with -f[no]asan-globals.
    174 static cl::opt<bool> ClGlobals("asan-globals",
    175                                cl::desc("Handle global objects"), cl::Hidden,
    176                                cl::init(true));
    177 static cl::opt<bool> ClInitializers("asan-initialization-order",
    178                                     cl::desc("Handle C++ initializer order"),
    179                                     cl::Hidden, cl::init(true));
    180 static cl::opt<bool> ClInvalidPointerPairs(
    181     "asan-detect-invalid-pointer-pair",
    182     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
    183     cl::init(false));
    184 static cl::opt<unsigned> ClRealignStack(
    185     "asan-realign-stack",
    186     cl::desc("Realign stack to the value of this flag (power of two)"),
    187     cl::Hidden, cl::init(32));
    188 static cl::opt<int> ClInstrumentationWithCallsThreshold(
    189     "asan-instrumentation-with-call-threshold",
    190     cl::desc(
    191         "If the function being instrumented contains more than "
    192         "this number of memory accesses, use callbacks instead of "
    193         "inline checks (-1 means never use callbacks)."),
    194     cl::Hidden, cl::init(7000));
    195 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
    196     "asan-memory-access-callback-prefix",
    197     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
    198     cl::init("__asan_"));
    199 static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas",
    200                                          cl::desc("instrument dynamic allocas"),
    201                                          cl::Hidden, cl::init(true));
    202 static cl::opt<bool> ClSkipPromotableAllocas(
    203     "asan-skip-promotable-allocas",
    204     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
    205     cl::init(true));
    206 
    207 // These flags allow to change the shadow mapping.
    208 // The shadow mapping looks like
    209 //    Shadow = (Mem >> scale) + offset
    210 static cl::opt<int> ClMappingScale("asan-mapping-scale",
    211                                    cl::desc("scale of asan shadow mapping"),
    212                                    cl::Hidden, cl::init(0));
    213 static cl::opt<unsigned long long> ClMappingOffset(
    214     "asan-mapping-offset",
    215     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden,
    216     cl::init(0));
    217 
    218 // Optimization flags. Not user visible, used mostly for testing
    219 // and benchmarking the tool.
    220 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
    221                            cl::Hidden, cl::init(true));
    222 static cl::opt<bool> ClOptSameTemp(
    223     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
    224     cl::Hidden, cl::init(true));
    225 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
    226                                   cl::desc("Don't instrument scalar globals"),
    227                                   cl::Hidden, cl::init(true));
    228 static cl::opt<bool> ClOptStack(
    229     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
    230     cl::Hidden, cl::init(false));
    231 
    232 static cl::opt<bool> ClDynamicAllocaStack(
    233     "asan-stack-dynamic-alloca",
    234     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
    235     cl::init(true));
    236 
    237 static cl::opt<uint32_t> ClForceExperiment(
    238     "asan-force-experiment",
    239     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
    240     cl::init(0));
    241 
    242 static cl::opt<bool>
    243     ClUsePrivateAliasForGlobals("asan-use-private-alias",
    244                                 cl::desc("Use private aliases for global"
    245                                          " variables"),
    246                                 cl::Hidden, cl::init(false));
    247 
    248 static cl::opt<bool>
    249     ClUseMachOGlobalsSection("asan-globals-live-support",
    250                              cl::desc("Use linker features to support dead "
    251                                       "code stripping of globals "
    252                                       "(Mach-O only)"),
    253                              cl::Hidden, cl::init(false));
    254 
    255 // Debug flags.
    256 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
    257                             cl::init(0));
    258 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
    259                                  cl::Hidden, cl::init(0));
    260 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
    261                                         cl::desc("Debug func"));
    262 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
    263                                cl::Hidden, cl::init(-1));
    264 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
    265                                cl::Hidden, cl::init(-1));
    266 
    267 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
    268 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
    269 STATISTIC(NumOptimizedAccessesToGlobalVar,
    270           "Number of optimized accesses to global vars");
    271 STATISTIC(NumOptimizedAccessesToStackVar,
    272           "Number of optimized accesses to stack vars");
    273 
    274 namespace {
    275 /// Frontend-provided metadata for source location.
    276 struct LocationMetadata {
    277   StringRef Filename;
    278   int LineNo;
    279   int ColumnNo;
    280 
    281   LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
    282 
    283   bool empty() const { return Filename.empty(); }
    284 
    285   void parse(MDNode *MDN) {
    286     assert(MDN->getNumOperands() == 3);
    287     MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
    288     Filename = DIFilename->getString();
    289     LineNo =
    290         mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
    291     ColumnNo =
    292         mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
    293   }
    294 };
    295 
    296 /// Frontend-provided metadata for global variables.
    297 class GlobalsMetadata {
    298  public:
    299   struct Entry {
    300     Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {}
    301     LocationMetadata SourceLoc;
    302     StringRef Name;
    303     bool IsDynInit;
    304     bool IsBlacklisted;
    305   };
    306 
    307   GlobalsMetadata() : inited_(false) {}
    308 
    309   void reset() {
    310     inited_ = false;
    311     Entries.clear();
    312   }
    313 
    314   void init(Module &M) {
    315     assert(!inited_);
    316     inited_ = true;
    317     NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
    318     if (!Globals) return;
    319     for (auto MDN : Globals->operands()) {
    320       // Metadata node contains the global and the fields of "Entry".
    321       assert(MDN->getNumOperands() == 5);
    322       auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
    323       // The optimizer may optimize away a global entirely.
    324       if (!GV) continue;
    325       // We can already have an entry for GV if it was merged with another
    326       // global.
    327       Entry &E = Entries[GV];
    328       if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
    329         E.SourceLoc.parse(Loc);
    330       if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
    331         E.Name = Name->getString();
    332       ConstantInt *IsDynInit =
    333           mdconst::extract<ConstantInt>(MDN->getOperand(3));
    334       E.IsDynInit |= IsDynInit->isOne();
    335       ConstantInt *IsBlacklisted =
    336           mdconst::extract<ConstantInt>(MDN->getOperand(4));
    337       E.IsBlacklisted |= IsBlacklisted->isOne();
    338     }
    339   }
    340 
    341   /// Returns metadata entry for a given global.
    342   Entry get(GlobalVariable *G) const {
    343     auto Pos = Entries.find(G);
    344     return (Pos != Entries.end()) ? Pos->second : Entry();
    345   }
    346 
    347  private:
    348   bool inited_;
    349   DenseMap<GlobalVariable *, Entry> Entries;
    350 };
    351 
    352 /// This struct defines the shadow mapping using the rule:
    353 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
    354 struct ShadowMapping {
    355   int Scale;
    356   uint64_t Offset;
    357   bool OrShadowOffset;
    358 };
    359 
    360 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
    361                                       bool IsKasan) {
    362   bool IsAndroid = TargetTriple.isAndroid();
    363   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
    364   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
    365   bool IsLinux = TargetTriple.isOSLinux();
    366   bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
    367                  TargetTriple.getArch() == llvm::Triple::ppc64le;
    368   bool IsSystemZ = TargetTriple.getArch() == llvm::Triple::systemz;
    369   bool IsX86 = TargetTriple.getArch() == llvm::Triple::x86;
    370   bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
    371   bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
    372                   TargetTriple.getArch() == llvm::Triple::mipsel;
    373   bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
    374                   TargetTriple.getArch() == llvm::Triple::mips64el;
    375   bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
    376   bool IsWindows = TargetTriple.isOSWindows();
    377 
    378   ShadowMapping Mapping;
    379 
    380   if (LongSize == 32) {
    381     // Android is always PIE, which means that the beginning of the address
    382     // space is always available.
    383     if (IsAndroid)
    384       Mapping.Offset = 0;
    385     else if (IsMIPS32)
    386       Mapping.Offset = kMIPS32_ShadowOffset32;
    387     else if (IsFreeBSD)
    388       Mapping.Offset = kFreeBSD_ShadowOffset32;
    389     else if (IsIOS)
    390       // If we're targeting iOS and x86, the binary is built for iOS simulator.
    391       Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32;
    392     else if (IsWindows)
    393       Mapping.Offset = kWindowsShadowOffset32;
    394     else
    395       Mapping.Offset = kDefaultShadowOffset32;
    396   } else {  // LongSize == 64
    397     if (IsPPC64)
    398       Mapping.Offset = kPPC64_ShadowOffset64;
    399     else if (IsSystemZ)
    400       Mapping.Offset = kSystemZ_ShadowOffset64;
    401     else if (IsFreeBSD)
    402       Mapping.Offset = kFreeBSD_ShadowOffset64;
    403     else if (IsLinux && IsX86_64) {
    404       if (IsKasan)
    405         Mapping.Offset = kLinuxKasan_ShadowOffset64;
    406       else
    407         Mapping.Offset = kSmallX86_64ShadowOffset;
    408     } else if (IsWindows && IsX86_64) {
    409       Mapping.Offset = kWindowsShadowOffset64;
    410     } else if (IsMIPS64)
    411       Mapping.Offset = kMIPS64_ShadowOffset64;
    412     else if (IsIOS)
    413       // If we're targeting iOS and x86, the binary is built for iOS simulator.
    414       Mapping.Offset = IsX86_64 ? kIOSSimShadowOffset64 : kIOSShadowOffset64;
    415     else if (IsAArch64)
    416       Mapping.Offset = kAArch64_ShadowOffset64;
    417     else
    418       Mapping.Offset = kDefaultShadowOffset64;
    419   }
    420 
    421   Mapping.Scale = kDefaultShadowScale;
    422   if (ClMappingScale.getNumOccurrences() > 0) {
    423     Mapping.Scale = ClMappingScale;
    424   }
    425 
    426   if (ClMappingOffset.getNumOccurrences() > 0) {
    427     Mapping.Offset = ClMappingOffset;
    428   }
    429 
    430   // OR-ing shadow offset if more efficient (at least on x86) if the offset
    431   // is a power of two, but on ppc64 we have to use add since the shadow
    432   // offset is not necessary 1/8-th of the address space.  On SystemZ,
    433   // we could OR the constant in a single instruction, but it's more
    434   // efficient to load it once and use indexed addressing.
    435   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ
    436                            && !(Mapping.Offset & (Mapping.Offset - 1));
    437 
    438   return Mapping;
    439 }
    440 
    441 static size_t RedzoneSizeForScale(int MappingScale) {
    442   // Redzone used for stack and globals is at least 32 bytes.
    443   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
    444   return std::max(32U, 1U << MappingScale);
    445 }
    446 
    447 /// AddressSanitizer: instrument the code in module to find memory bugs.
    448 struct AddressSanitizer : public FunctionPass {
    449   explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false,
    450                             bool UseAfterScope = false)
    451       : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan),
    452         Recover(Recover || ClRecover),
    453         UseAfterScope(UseAfterScope || ClUseAfterScope) {
    454     initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
    455   }
    456   const char *getPassName() const override {
    457     return "AddressSanitizerFunctionPass";
    458   }
    459   void getAnalysisUsage(AnalysisUsage &AU) const override {
    460     AU.addRequired<DominatorTreeWrapperPass>();
    461     AU.addRequired<TargetLibraryInfoWrapperPass>();
    462   }
    463   uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
    464     uint64_t ArraySize = 1;
    465     if (AI->isArrayAllocation()) {
    466       ConstantInt *CI = dyn_cast<ConstantInt>(AI->getArraySize());
    467       assert(CI && "non-constant array size");
    468       ArraySize = CI->getZExtValue();
    469     }
    470     Type *Ty = AI->getAllocatedType();
    471     uint64_t SizeInBytes =
    472         AI->getModule()->getDataLayout().getTypeAllocSize(Ty);
    473     return SizeInBytes * ArraySize;
    474   }
    475   /// Check if we want (and can) handle this alloca.
    476   bool isInterestingAlloca(AllocaInst &AI);
    477 
    478   /// If it is an interesting memory access, return the PointerOperand
    479   /// and set IsWrite/Alignment. Otherwise return nullptr.
    480   Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
    481                                    uint64_t *TypeSize, unsigned *Alignment);
    482   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
    483                      bool UseCalls, const DataLayout &DL);
    484   void instrumentPointerComparisonOrSubtraction(Instruction *I);
    485   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
    486                          Value *Addr, uint32_t TypeSize, bool IsWrite,
    487                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
    488   void instrumentUnusualSizeOrAlignment(Instruction *I, Value *Addr,
    489                                         uint32_t TypeSize, bool IsWrite,
    490                                         Value *SizeArgument, bool UseCalls,
    491                                         uint32_t Exp);
    492   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
    493                            Value *ShadowValue, uint32_t TypeSize);
    494   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
    495                                  bool IsWrite, size_t AccessSizeIndex,
    496                                  Value *SizeArgument, uint32_t Exp);
    497   void instrumentMemIntrinsic(MemIntrinsic *MI);
    498   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
    499   bool runOnFunction(Function &F) override;
    500   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
    501   void markEscapedLocalAllocas(Function &F);
    502   bool doInitialization(Module &M) override;
    503   bool doFinalization(Module &M) override;
    504   static char ID;  // Pass identification, replacement for typeid
    505 
    506   DominatorTree &getDominatorTree() const { return *DT; }
    507 
    508  private:
    509   void initializeCallbacks(Module &M);
    510 
    511   bool LooksLikeCodeInBug11395(Instruction *I);
    512   bool GlobalIsLinkerInitialized(GlobalVariable *G);
    513   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
    514                     uint64_t TypeSize) const;
    515 
    516   /// Helper to cleanup per-function state.
    517   struct FunctionStateRAII {
    518     AddressSanitizer *Pass;
    519     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
    520       assert(Pass->ProcessedAllocas.empty() &&
    521              "last pass forgot to clear cache");
    522     }
    523     ~FunctionStateRAII() { Pass->ProcessedAllocas.clear(); }
    524   };
    525 
    526   LLVMContext *C;
    527   Triple TargetTriple;
    528   int LongSize;
    529   bool CompileKernel;
    530   bool Recover;
    531   bool UseAfterScope;
    532   Type *IntptrTy;
    533   ShadowMapping Mapping;
    534   DominatorTree *DT;
    535   Function *AsanCtorFunction = nullptr;
    536   Function *AsanInitFunction = nullptr;
    537   Function *AsanHandleNoReturnFunc;
    538   Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
    539   // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize).
    540   Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
    541   Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
    542   // This array is indexed by AccessIsWrite and Experiment.
    543   Function *AsanErrorCallbackSized[2][2];
    544   Function *AsanMemoryAccessCallbackSized[2][2];
    545   Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
    546   InlineAsm *EmptyAsm;
    547   GlobalsMetadata GlobalsMD;
    548   DenseMap<AllocaInst *, bool> ProcessedAllocas;
    549 
    550   friend struct FunctionStackPoisoner;
    551 };
    552 
    553 class AddressSanitizerModule : public ModulePass {
    554  public:
    555   explicit AddressSanitizerModule(bool CompileKernel = false,
    556                                   bool Recover = false)
    557       : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan),
    558         Recover(Recover || ClRecover) {}
    559   bool runOnModule(Module &M) override;
    560   static char ID;  // Pass identification, replacement for typeid
    561   const char *getPassName() const override { return "AddressSanitizerModule"; }
    562 
    563  private:
    564   void initializeCallbacks(Module &M);
    565 
    566   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
    567   bool ShouldInstrumentGlobal(GlobalVariable *G);
    568   bool ShouldUseMachOGlobalsSection() const;
    569   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
    570   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
    571   size_t MinRedzoneSizeForGlobal() const {
    572     return RedzoneSizeForScale(Mapping.Scale);
    573   }
    574 
    575   GlobalsMetadata GlobalsMD;
    576   bool CompileKernel;
    577   bool Recover;
    578   Type *IntptrTy;
    579   LLVMContext *C;
    580   Triple TargetTriple;
    581   ShadowMapping Mapping;
    582   Function *AsanPoisonGlobals;
    583   Function *AsanUnpoisonGlobals;
    584   Function *AsanRegisterGlobals;
    585   Function *AsanUnregisterGlobals;
    586   Function *AsanRegisterImageGlobals;
    587   Function *AsanUnregisterImageGlobals;
    588 };
    589 
    590 // Stack poisoning does not play well with exception handling.
    591 // When an exception is thrown, we essentially bypass the code
    592 // that unpoisones the stack. This is why the run-time library has
    593 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
    594 // stack in the interceptor. This however does not work inside the
    595 // actual function which catches the exception. Most likely because the
    596 // compiler hoists the load of the shadow value somewhere too high.
    597 // This causes asan to report a non-existing bug on 453.povray.
    598 // It sounds like an LLVM bug.
    599 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
    600   Function &F;
    601   AddressSanitizer &ASan;
    602   DIBuilder DIB;
    603   LLVMContext *C;
    604   Type *IntptrTy;
    605   Type *IntptrPtrTy;
    606   ShadowMapping Mapping;
    607 
    608   SmallVector<AllocaInst *, 16> AllocaVec;
    609   SmallSetVector<AllocaInst *, 16> NonInstrumentedStaticAllocaVec;
    610   SmallVector<Instruction *, 8> RetVec;
    611   unsigned StackAlignment;
    612 
    613   Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
    614       *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
    615   Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
    616   Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc;
    617 
    618   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
    619   struct AllocaPoisonCall {
    620     IntrinsicInst *InsBefore;
    621     AllocaInst *AI;
    622     uint64_t Size;
    623     bool DoPoison;
    624   };
    625   SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
    626 
    627   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
    628   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
    629   AllocaInst *DynamicAllocaLayout = nullptr;
    630   IntrinsicInst *LocalEscapeCall = nullptr;
    631 
    632   // Maps Value to an AllocaInst from which the Value is originated.
    633   typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy;
    634   AllocaForValueMapTy AllocaForValue;
    635 
    636   bool HasNonEmptyInlineAsm = false;
    637   bool HasReturnsTwiceCall = false;
    638   std::unique_ptr<CallInst> EmptyInlineAsm;
    639 
    640   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
    641       : F(F),
    642         ASan(ASan),
    643         DIB(*F.getParent(), /*AllowUnresolved*/ false),
    644         C(ASan.C),
    645         IntptrTy(ASan.IntptrTy),
    646         IntptrPtrTy(PointerType::get(IntptrTy, 0)),
    647         Mapping(ASan.Mapping),
    648         StackAlignment(1 << Mapping.Scale),
    649         EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
    650 
    651   bool runOnFunction() {
    652     if (!ClStack) return false;
    653     // Collect alloca, ret, lifetime instructions etc.
    654     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
    655 
    656     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
    657 
    658     initializeCallbacks(*F.getParent());
    659 
    660     poisonStack();
    661 
    662     if (ClDebugStack) {
    663       DEBUG(dbgs() << F);
    664     }
    665     return true;
    666   }
    667 
    668   // Finds all Alloca instructions and puts
    669   // poisoned red zones around all of them.
    670   // Then unpoison everything back before the function returns.
    671   void poisonStack();
    672 
    673   void createDynamicAllocasInitStorage();
    674 
    675   // ----------------------- Visitors.
    676   /// \brief Collect all Ret instructions.
    677   void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
    678 
    679   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
    680                                         Value *SavedStack) {
    681     IRBuilder<> IRB(InstBefore);
    682     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
    683     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
    684     // need to adjust extracted SP to compute the address of the most recent
    685     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
    686     // this purpose.
    687     if (!isa<ReturnInst>(InstBefore)) {
    688       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
    689           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
    690           {IntptrTy});
    691 
    692       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
    693 
    694       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
    695                                      DynamicAreaOffset);
    696     }
    697 
    698     IRB.CreateCall(AsanAllocasUnpoisonFunc,
    699                    {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr});
    700   }
    701 
    702   // Unpoison dynamic allocas redzones.
    703   void unpoisonDynamicAllocas() {
    704     for (auto &Ret : RetVec)
    705       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
    706 
    707     for (auto &StackRestoreInst : StackRestoreVec)
    708       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
    709                                        StackRestoreInst->getOperand(0));
    710   }
    711 
    712   // Deploy and poison redzones around dynamic alloca call. To do this, we
    713   // should replace this call with another one with changed parameters and
    714   // replace all its uses with new address, so
    715   //   addr = alloca type, old_size, align
    716   // is replaced by
    717   //   new_size = (old_size + additional_size) * sizeof(type)
    718   //   tmp = alloca i8, new_size, max(align, 32)
    719   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
    720   // Additional_size is added to make new memory allocation contain not only
    721   // requested memory, but also left, partial and right redzones.
    722   void handleDynamicAllocaCall(AllocaInst *AI);
    723 
    724   /// \brief Collect Alloca instructions we want (and can) handle.
    725   void visitAllocaInst(AllocaInst &AI) {
    726     if (!ASan.isInterestingAlloca(AI)) {
    727       if (AI.isStaticAlloca()) NonInstrumentedStaticAllocaVec.insert(&AI);
    728       return;
    729     }
    730 
    731     StackAlignment = std::max(StackAlignment, AI.getAlignment());
    732     if (!AI.isStaticAlloca())
    733       DynamicAllocaVec.push_back(&AI);
    734     else
    735       AllocaVec.push_back(&AI);
    736   }
    737 
    738   /// \brief Collect lifetime intrinsic calls to check for use-after-scope
    739   /// errors.
    740   void visitIntrinsicInst(IntrinsicInst &II) {
    741     Intrinsic::ID ID = II.getIntrinsicID();
    742     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
    743     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
    744     if (!ASan.UseAfterScope)
    745       return;
    746     if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
    747       return;
    748     // Found lifetime intrinsic, add ASan instrumentation if necessary.
    749     ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
    750     // If size argument is undefined, don't do anything.
    751     if (Size->isMinusOne()) return;
    752     // Check that size doesn't saturate uint64_t and can
    753     // be stored in IntptrTy.
    754     const uint64_t SizeValue = Size->getValue().getLimitedValue();
    755     if (SizeValue == ~0ULL ||
    756         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
    757       return;
    758     // Find alloca instruction that corresponds to llvm.lifetime argument.
    759     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
    760     if (!AI || !ASan.isInterestingAlloca(*AI))
    761       return;
    762     bool DoPoison = (ID == Intrinsic::lifetime_end);
    763     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
    764     AllocaPoisonCallVec.push_back(APC);
    765   }
    766 
    767   void visitCallSite(CallSite CS) {
    768     Instruction *I = CS.getInstruction();
    769     if (CallInst *CI = dyn_cast<CallInst>(I)) {
    770       HasNonEmptyInlineAsm |=
    771           CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get());
    772       HasReturnsTwiceCall |= CI->canReturnTwice();
    773     }
    774   }
    775 
    776   // ---------------------- Helpers.
    777   void initializeCallbacks(Module &M);
    778 
    779   bool doesDominateAllExits(const Instruction *I) const {
    780     for (auto Ret : RetVec) {
    781       if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
    782     }
    783     return true;
    784   }
    785 
    786   /// Finds alloca where the value comes from.
    787   AllocaInst *findAllocaForValue(Value *V);
    788   void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
    789                       Value *ShadowBase, bool DoPoison);
    790   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
    791 
    792   void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
    793                                           int Size);
    794   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
    795                                bool Dynamic);
    796   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
    797                      Instruction *ThenTerm, Value *ValueIfFalse);
    798 };
    799 
    800 } // anonymous namespace
    801 
    802 char AddressSanitizer::ID = 0;
    803 INITIALIZE_PASS_BEGIN(
    804     AddressSanitizer, "asan",
    805     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
    806     false)
    807 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    808 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    809 INITIALIZE_PASS_END(
    810     AddressSanitizer, "asan",
    811     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
    812     false)
    813 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
    814                                                        bool Recover,
    815                                                        bool UseAfterScope) {
    816   assert(!CompileKernel || Recover);
    817   return new AddressSanitizer(CompileKernel, Recover, UseAfterScope);
    818 }
    819 
    820 char AddressSanitizerModule::ID = 0;
    821 INITIALIZE_PASS(
    822     AddressSanitizerModule, "asan-module",
    823     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
    824     "ModulePass",
    825     false, false)
    826 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel,
    827                                                    bool Recover) {
    828   assert(!CompileKernel || Recover);
    829   return new AddressSanitizerModule(CompileKernel, Recover);
    830 }
    831 
    832 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
    833   size_t Res = countTrailingZeros(TypeSize / 8);
    834   assert(Res < kNumberOfAccessSizes);
    835   return Res;
    836 }
    837 
    838 // \brief Create a constant for Str so that we can pass it to the run-time lib.
    839 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
    840                                                     bool AllowMerging) {
    841   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
    842   // We use private linkage for module-local strings. If they can be merged
    843   // with another one, we set the unnamed_addr attribute.
    844   GlobalVariable *GV =
    845       new GlobalVariable(M, StrConst->getType(), true,
    846                          GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
    847   if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
    848   GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
    849   return GV;
    850 }
    851 
    852 /// \brief Create a global describing a source location.
    853 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
    854                                                        LocationMetadata MD) {
    855   Constant *LocData[] = {
    856       createPrivateGlobalForString(M, MD.Filename, true),
    857       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
    858       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
    859   };
    860   auto LocStruct = ConstantStruct::getAnon(LocData);
    861   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
    862                                GlobalValue::PrivateLinkage, LocStruct,
    863                                kAsanGenPrefix);
    864   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
    865   return GV;
    866 }
    867 
    868 /// \brief Check if \p G has been created by a trusted compiler pass.
    869 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
    870   // Do not instrument asan globals.
    871   if (G->getName().startswith(kAsanGenPrefix) ||
    872       G->getName().startswith(kSanCovGenPrefix) ||
    873       G->getName().startswith(kODRGenPrefix))
    874     return true;
    875 
    876   // Do not instrument gcov counter arrays.
    877   if (G->getName() == "__llvm_gcov_ctr")
    878     return true;
    879 
    880   return false;
    881 }
    882 
    883 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
    884   // Shadow >> scale
    885   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
    886   if (Mapping.Offset == 0) return Shadow;
    887   // (Shadow >> scale) | offset
    888   if (Mapping.OrShadowOffset)
    889     return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
    890   else
    891     return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
    892 }
    893 
    894 // Instrument memset/memmove/memcpy
    895 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
    896   IRBuilder<> IRB(MI);
    897   if (isa<MemTransferInst>(MI)) {
    898     IRB.CreateCall(
    899         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
    900         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
    901          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
    902          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
    903   } else if (isa<MemSetInst>(MI)) {
    904     IRB.CreateCall(
    905         AsanMemset,
    906         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
    907          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
    908          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
    909   }
    910   MI->eraseFromParent();
    911 }
    912 
    913 /// Check if we want (and can) handle this alloca.
    914 bool AddressSanitizer::isInterestingAlloca(AllocaInst &AI) {
    915   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
    916 
    917   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
    918     return PreviouslySeenAllocaInfo->getSecond();
    919 
    920   bool IsInteresting =
    921       (AI.getAllocatedType()->isSized() &&
    922        // alloca() may be called with 0 size, ignore it.
    923        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(&AI) > 0) &&
    924        // We are only interested in allocas not promotable to registers.
    925        // Promotable allocas are common under -O0.
    926        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
    927        // inalloca allocas are not treated as static, and we don't want
    928        // dynamic alloca instrumentation for them as well.
    929        !AI.isUsedWithInAlloca());
    930 
    931   ProcessedAllocas[&AI] = IsInteresting;
    932   return IsInteresting;
    933 }
    934 
    935 /// If I is an interesting memory access, return the PointerOperand
    936 /// and set IsWrite/Alignment. Otherwise return nullptr.
    937 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
    938                                                    bool *IsWrite,
    939                                                    uint64_t *TypeSize,
    940                                                    unsigned *Alignment) {
    941   // Skip memory accesses inserted by another instrumentation.
    942   if (I->getMetadata("nosanitize")) return nullptr;
    943 
    944   Value *PtrOperand = nullptr;
    945   const DataLayout &DL = I->getModule()->getDataLayout();
    946   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    947     if (!ClInstrumentReads) return nullptr;
    948     *IsWrite = false;
    949     *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
    950     *Alignment = LI->getAlignment();
    951     PtrOperand = LI->getPointerOperand();
    952   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    953     if (!ClInstrumentWrites) return nullptr;
    954     *IsWrite = true;
    955     *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
    956     *Alignment = SI->getAlignment();
    957     PtrOperand = SI->getPointerOperand();
    958   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
    959     if (!ClInstrumentAtomics) return nullptr;
    960     *IsWrite = true;
    961     *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
    962     *Alignment = 0;
    963     PtrOperand = RMW->getPointerOperand();
    964   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
    965     if (!ClInstrumentAtomics) return nullptr;
    966     *IsWrite = true;
    967     *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
    968     *Alignment = 0;
    969     PtrOperand = XCHG->getPointerOperand();
    970   }
    971 
    972   // Do not instrument acesses from different address spaces; we cannot deal
    973   // with them.
    974   if (PtrOperand) {
    975     Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
    976     if (PtrTy->getPointerAddressSpace() != 0)
    977       return nullptr;
    978   }
    979 
    980   // Treat memory accesses to promotable allocas as non-interesting since they
    981   // will not cause memory violations. This greatly speeds up the instrumented
    982   // executable at -O0.
    983   if (ClSkipPromotableAllocas)
    984     if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
    985       return isInterestingAlloca(*AI) ? AI : nullptr;
    986 
    987   return PtrOperand;
    988 }
    989 
    990 static bool isPointerOperand(Value *V) {
    991   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
    992 }
    993 
    994 // This is a rough heuristic; it may cause both false positives and
    995 // false negatives. The proper implementation requires cooperation with
    996 // the frontend.
    997 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
    998   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
    999     if (!Cmp->isRelational()) return false;
   1000   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
   1001     if (BO->getOpcode() != Instruction::Sub) return false;
   1002   } else {
   1003     return false;
   1004   }
   1005   return isPointerOperand(I->getOperand(0)) &&
   1006          isPointerOperand(I->getOperand(1));
   1007 }
   1008 
   1009 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
   1010   // If a global variable does not have dynamic initialization we don't
   1011   // have to instrument it.  However, if a global does not have initializer
   1012   // at all, we assume it has dynamic initializer (in other TU).
   1013   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
   1014 }
   1015 
   1016 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
   1017     Instruction *I) {
   1018   IRBuilder<> IRB(I);
   1019   Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
   1020   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
   1021   for (Value *&i : Param) {
   1022     if (i->getType()->isPointerTy())
   1023       i = IRB.CreatePointerCast(i, IntptrTy);
   1024   }
   1025   IRB.CreateCall(F, Param);
   1026 }
   1027 
   1028 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
   1029                                      Instruction *I, bool UseCalls,
   1030                                      const DataLayout &DL) {
   1031   bool IsWrite = false;
   1032   unsigned Alignment = 0;
   1033   uint64_t TypeSize = 0;
   1034   Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment);
   1035   assert(Addr);
   1036 
   1037   // Optimization experiments.
   1038   // The experiments can be used to evaluate potential optimizations that remove
   1039   // instrumentation (assess false negatives). Instead of completely removing
   1040   // some instrumentation, you set Exp to a non-zero value (mask of optimization
   1041   // experiments that want to remove instrumentation of this instruction).
   1042   // If Exp is non-zero, this pass will emit special calls into runtime
   1043   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
   1044   // make runtime terminate the program in a special way (with a different
   1045   // exit status). Then you run the new compiler on a buggy corpus, collect
   1046   // the special terminations (ideally, you don't see them at all -- no false
   1047   // negatives) and make the decision on the optimization.
   1048   uint32_t Exp = ClForceExperiment;
   1049 
   1050   if (ClOpt && ClOptGlobals) {
   1051     // If initialization order checking is disabled, a simple access to a
   1052     // dynamically initialized global is always valid.
   1053     GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
   1054     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
   1055         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
   1056       NumOptimizedAccessesToGlobalVar++;
   1057       return;
   1058     }
   1059   }
   1060 
   1061   if (ClOpt && ClOptStack) {
   1062     // A direct inbounds access to a stack variable is always valid.
   1063     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
   1064         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
   1065       NumOptimizedAccessesToStackVar++;
   1066       return;
   1067     }
   1068   }
   1069 
   1070   if (IsWrite)
   1071     NumInstrumentedWrites++;
   1072   else
   1073     NumInstrumentedReads++;
   1074 
   1075   unsigned Granularity = 1 << Mapping.Scale;
   1076   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
   1077   // if the data is properly aligned.
   1078   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
   1079        TypeSize == 128) &&
   1080       (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
   1081     return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls,
   1082                              Exp);
   1083   instrumentUnusualSizeOrAlignment(I, Addr, TypeSize, IsWrite, nullptr,
   1084                                    UseCalls, Exp);
   1085 }
   1086 
   1087 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
   1088                                                  Value *Addr, bool IsWrite,
   1089                                                  size_t AccessSizeIndex,
   1090                                                  Value *SizeArgument,
   1091                                                  uint32_t Exp) {
   1092   IRBuilder<> IRB(InsertBefore);
   1093   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
   1094   CallInst *Call = nullptr;
   1095   if (SizeArgument) {
   1096     if (Exp == 0)
   1097       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
   1098                             {Addr, SizeArgument});
   1099     else
   1100       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
   1101                             {Addr, SizeArgument, ExpVal});
   1102   } else {
   1103     if (Exp == 0)
   1104       Call =
   1105           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
   1106     else
   1107       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
   1108                             {Addr, ExpVal});
   1109   }
   1110 
   1111   // We don't do Call->setDoesNotReturn() because the BB already has
   1112   // UnreachableInst at the end.
   1113   // This EmptyAsm is required to avoid callback merge.
   1114   IRB.CreateCall(EmptyAsm, {});
   1115   return Call;
   1116 }
   1117 
   1118 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
   1119                                            Value *ShadowValue,
   1120                                            uint32_t TypeSize) {
   1121   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
   1122   // Addr & (Granularity - 1)
   1123   Value *LastAccessedByte =
   1124       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
   1125   // (Addr & (Granularity - 1)) + size - 1
   1126   if (TypeSize / 8 > 1)
   1127     LastAccessedByte = IRB.CreateAdd(
   1128         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
   1129   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
   1130   LastAccessedByte =
   1131       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
   1132   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
   1133   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
   1134 }
   1135 
   1136 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
   1137                                          Instruction *InsertBefore, Value *Addr,
   1138                                          uint32_t TypeSize, bool IsWrite,
   1139                                          Value *SizeArgument, bool UseCalls,
   1140                                          uint32_t Exp) {
   1141   IRBuilder<> IRB(InsertBefore);
   1142   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
   1143   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
   1144 
   1145   if (UseCalls) {
   1146     if (Exp == 0)
   1147       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
   1148                      AddrLong);
   1149     else
   1150       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
   1151                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
   1152     return;
   1153   }
   1154 
   1155   Type *ShadowTy =
   1156       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
   1157   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
   1158   Value *ShadowPtr = memToShadow(AddrLong, IRB);
   1159   Value *CmpVal = Constant::getNullValue(ShadowTy);
   1160   Value *ShadowValue =
   1161       IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
   1162 
   1163   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
   1164   size_t Granularity = 1ULL << Mapping.Scale;
   1165   TerminatorInst *CrashTerm = nullptr;
   1166 
   1167   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
   1168     // We use branch weights for the slow path check, to indicate that the slow
   1169     // path is rarely taken. This seems to be the case for SPEC benchmarks.
   1170     TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
   1171         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
   1172     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
   1173     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
   1174     IRB.SetInsertPoint(CheckTerm);
   1175     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
   1176     if (Recover) {
   1177       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
   1178     } else {
   1179       BasicBlock *CrashBlock =
   1180         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
   1181       CrashTerm = new UnreachableInst(*C, CrashBlock);
   1182       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
   1183       ReplaceInstWithInst(CheckTerm, NewTerm);
   1184     }
   1185   } else {
   1186     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
   1187   }
   1188 
   1189   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
   1190                                          AccessSizeIndex, SizeArgument, Exp);
   1191   Crash->setDebugLoc(OrigIns->getDebugLoc());
   1192 }
   1193 
   1194 // Instrument unusual size or unusual alignment.
   1195 // We can not do it with a single check, so we do 1-byte check for the first
   1196 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
   1197 // to report the actual access size.
   1198 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
   1199     Instruction *I, Value *Addr, uint32_t TypeSize, bool IsWrite,
   1200     Value *SizeArgument, bool UseCalls, uint32_t Exp) {
   1201   IRBuilder<> IRB(I);
   1202   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
   1203   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
   1204   if (UseCalls) {
   1205     if (Exp == 0)
   1206       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
   1207                      {AddrLong, Size});
   1208     else
   1209       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
   1210                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
   1211   } else {
   1212     Value *LastByte = IRB.CreateIntToPtr(
   1213         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
   1214         Addr->getType());
   1215     instrumentAddress(I, I, Addr, 8, IsWrite, Size, false, Exp);
   1216     instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false, Exp);
   1217   }
   1218 }
   1219 
   1220 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
   1221                                                   GlobalValue *ModuleName) {
   1222   // Set up the arguments to our poison/unpoison functions.
   1223   IRBuilder<> IRB(&GlobalInit.front(),
   1224                   GlobalInit.front().getFirstInsertionPt());
   1225 
   1226   // Add a call to poison all external globals before the given function starts.
   1227   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
   1228   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
   1229 
   1230   // Add calls to unpoison all globals before each return instruction.
   1231   for (auto &BB : GlobalInit.getBasicBlockList())
   1232     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
   1233       CallInst::Create(AsanUnpoisonGlobals, "", RI);
   1234 }
   1235 
   1236 void AddressSanitizerModule::createInitializerPoisonCalls(
   1237     Module &M, GlobalValue *ModuleName) {
   1238   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
   1239 
   1240   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
   1241   for (Use &OP : CA->operands()) {
   1242     if (isa<ConstantAggregateZero>(OP)) continue;
   1243     ConstantStruct *CS = cast<ConstantStruct>(OP);
   1244 
   1245     // Must have a function or null ptr.
   1246     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
   1247       if (F->getName() == kAsanModuleCtorName) continue;
   1248       ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
   1249       // Don't instrument CTORs that will run before asan.module_ctor.
   1250       if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
   1251       poisonOneInitializer(*F, ModuleName);
   1252     }
   1253   }
   1254 }
   1255 
   1256 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
   1257   Type *Ty = G->getValueType();
   1258   DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
   1259 
   1260   if (GlobalsMD.get(G).IsBlacklisted) return false;
   1261   if (!Ty->isSized()) return false;
   1262   if (!G->hasInitializer()) return false;
   1263   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
   1264   // Touch only those globals that will not be defined in other modules.
   1265   // Don't handle ODR linkage types and COMDATs since other modules may be built
   1266   // without ASan.
   1267   if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
   1268       G->getLinkage() != GlobalVariable::PrivateLinkage &&
   1269       G->getLinkage() != GlobalVariable::InternalLinkage)
   1270     return false;
   1271   if (G->hasComdat()) return false;
   1272   // Two problems with thread-locals:
   1273   //   - The address of the main thread's copy can't be computed at link-time.
   1274   //   - Need to poison all copies, not just the main thread's one.
   1275   if (G->isThreadLocal()) return false;
   1276   // For now, just ignore this Global if the alignment is large.
   1277   if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
   1278 
   1279   if (G->hasSection()) {
   1280     StringRef Section = G->getSection();
   1281 
   1282     // Globals from llvm.metadata aren't emitted, do not instrument them.
   1283     if (Section == "llvm.metadata") return false;
   1284     // Do not instrument globals from special LLVM sections.
   1285     if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
   1286 
   1287     // Do not instrument function pointers to initialization and termination
   1288     // routines: dynamic linker will not properly handle redzones.
   1289     if (Section.startswith(".preinit_array") ||
   1290         Section.startswith(".init_array") ||
   1291         Section.startswith(".fini_array")) {
   1292       return false;
   1293     }
   1294 
   1295     // Callbacks put into the CRT initializer/terminator sections
   1296     // should not be instrumented.
   1297     // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
   1298     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
   1299     if (Section.startswith(".CRT")) {
   1300       DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
   1301       return false;
   1302     }
   1303 
   1304     if (TargetTriple.isOSBinFormatMachO()) {
   1305       StringRef ParsedSegment, ParsedSection;
   1306       unsigned TAA = 0, StubSize = 0;
   1307       bool TAAParsed;
   1308       std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
   1309           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
   1310       assert(ErrorCode.empty() && "Invalid section specifier.");
   1311 
   1312       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
   1313       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
   1314       // them.
   1315       if (ParsedSegment == "__OBJC" ||
   1316           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
   1317         DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
   1318         return false;
   1319       }
   1320       // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
   1321       // Constant CFString instances are compiled in the following way:
   1322       //  -- the string buffer is emitted into
   1323       //     __TEXT,__cstring,cstring_literals
   1324       //  -- the constant NSConstantString structure referencing that buffer
   1325       //     is placed into __DATA,__cfstring
   1326       // Therefore there's no point in placing redzones into __DATA,__cfstring.
   1327       // Moreover, it causes the linker to crash on OS X 10.7
   1328       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
   1329         DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
   1330         return false;
   1331       }
   1332       // The linker merges the contents of cstring_literals and removes the
   1333       // trailing zeroes.
   1334       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
   1335         DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
   1336         return false;
   1337       }
   1338     }
   1339   }
   1340 
   1341   return true;
   1342 }
   1343 
   1344 // On Mach-O platforms, we emit global metadata in a separate section of the
   1345 // binary in order to allow the linker to properly dead strip. This is only
   1346 // supported on recent versions of ld64.
   1347 bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const {
   1348   if (!ClUseMachOGlobalsSection)
   1349     return false;
   1350 
   1351   if (!TargetTriple.isOSBinFormatMachO())
   1352     return false;
   1353 
   1354   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
   1355     return true;
   1356   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
   1357     return true;
   1358   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
   1359     return true;
   1360 
   1361   return false;
   1362 }
   1363 
   1364 void AddressSanitizerModule::initializeCallbacks(Module &M) {
   1365   IRBuilder<> IRB(*C);
   1366 
   1367   // Declare our poisoning and unpoisoning functions.
   1368   AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1369       kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
   1370   AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
   1371   AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1372       kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
   1373   AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
   1374 
   1375   // Declare functions that register/unregister globals.
   1376   AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1377       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
   1378   AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
   1379   AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
   1380       M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
   1381                             IntptrTy, IntptrTy, nullptr));
   1382   AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
   1383 
   1384   // Declare the functions that find globals in a shared object and then invoke
   1385   // the (un)register function on them.
   1386   AsanRegisterImageGlobals = checkSanitizerInterfaceFunction(
   1387       M.getOrInsertFunction(kAsanRegisterImageGlobalsName,
   1388       IRB.getVoidTy(), IntptrTy, nullptr));
   1389   AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage);
   1390 
   1391   AsanUnregisterImageGlobals = checkSanitizerInterfaceFunction(
   1392       M.getOrInsertFunction(kAsanUnregisterImageGlobalsName,
   1393       IRB.getVoidTy(), IntptrTy, nullptr));
   1394   AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage);
   1395 }
   1396 
   1397 // This function replaces all global variables with new variables that have
   1398 // trailing redzones. It also creates a function that poisons
   1399 // redzones and inserts this function into llvm.global_ctors.
   1400 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
   1401   GlobalsMD.init(M);
   1402 
   1403   SmallVector<GlobalVariable *, 16> GlobalsToChange;
   1404 
   1405   for (auto &G : M.globals()) {
   1406     if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
   1407   }
   1408 
   1409   size_t n = GlobalsToChange.size();
   1410   if (n == 0) return false;
   1411 
   1412   // A global is described by a structure
   1413   //   size_t beg;
   1414   //   size_t size;
   1415   //   size_t size_with_redzone;
   1416   //   const char *name;
   1417   //   const char *module_name;
   1418   //   size_t has_dynamic_init;
   1419   //   void *source_location;
   1420   //   size_t odr_indicator;
   1421   // We initialize an array of such structures and pass it to a run-time call.
   1422   StructType *GlobalStructTy =
   1423       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
   1424                       IntptrTy, IntptrTy, IntptrTy, nullptr);
   1425   SmallVector<Constant *, 16> Initializers(n);
   1426 
   1427   bool HasDynamicallyInitializedGlobals = false;
   1428 
   1429   // We shouldn't merge same module names, as this string serves as unique
   1430   // module ID in runtime.
   1431   GlobalVariable *ModuleName = createPrivateGlobalForString(
   1432       M, M.getModuleIdentifier(), /*AllowMerging*/ false);
   1433 
   1434   auto &DL = M.getDataLayout();
   1435   for (size_t i = 0; i < n; i++) {
   1436     static const uint64_t kMaxGlobalRedzone = 1 << 18;
   1437     GlobalVariable *G = GlobalsToChange[i];
   1438 
   1439     auto MD = GlobalsMD.get(G);
   1440     StringRef NameForGlobal = G->getName();
   1441     // Create string holding the global name (use global name from metadata
   1442     // if it's available, otherwise just write the name of global variable).
   1443     GlobalVariable *Name = createPrivateGlobalForString(
   1444         M, MD.Name.empty() ? NameForGlobal : MD.Name,
   1445         /*AllowMerging*/ true);
   1446 
   1447     Type *Ty = G->getValueType();
   1448     uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
   1449     uint64_t MinRZ = MinRedzoneSizeForGlobal();
   1450     // MinRZ <= RZ <= kMaxGlobalRedzone
   1451     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
   1452     uint64_t RZ = std::max(
   1453         MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
   1454     uint64_t RightRedzoneSize = RZ;
   1455     // Round up to MinRZ
   1456     if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
   1457     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
   1458     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
   1459 
   1460     StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
   1461     Constant *NewInitializer =
   1462         ConstantStruct::get(NewTy, G->getInitializer(),
   1463                             Constant::getNullValue(RightRedZoneTy), nullptr);
   1464 
   1465     // Create a new global variable with enough space for a redzone.
   1466     GlobalValue::LinkageTypes Linkage = G->getLinkage();
   1467     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
   1468       Linkage = GlobalValue::InternalLinkage;
   1469     GlobalVariable *NewGlobal =
   1470         new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
   1471                            "", G, G->getThreadLocalMode());
   1472     NewGlobal->copyAttributesFrom(G);
   1473     NewGlobal->setAlignment(MinRZ);
   1474 
   1475     Value *Indices2[2];
   1476     Indices2[0] = IRB.getInt32(0);
   1477     Indices2[1] = IRB.getInt32(0);
   1478 
   1479     G->replaceAllUsesWith(
   1480         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
   1481     NewGlobal->takeName(G);
   1482     G->eraseFromParent();
   1483 
   1484     Constant *SourceLoc;
   1485     if (!MD.SourceLoc.empty()) {
   1486       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
   1487       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
   1488     } else {
   1489       SourceLoc = ConstantInt::get(IntptrTy, 0);
   1490     }
   1491 
   1492     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
   1493     GlobalValue *InstrumentedGlobal = NewGlobal;
   1494 
   1495     bool CanUsePrivateAliases = TargetTriple.isOSBinFormatELF();
   1496     if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) {
   1497       // Create local alias for NewGlobal to avoid crash on ODR between
   1498       // instrumented and non-instrumented libraries.
   1499       auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage,
   1500                                      NameForGlobal + M.getName(), NewGlobal);
   1501 
   1502       // With local aliases, we need to provide another externally visible
   1503       // symbol __odr_asan_XXX to detect ODR violation.
   1504       auto *ODRIndicatorSym =
   1505           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
   1506                              Constant::getNullValue(IRB.getInt8Ty()),
   1507                              kODRGenPrefix + NameForGlobal, nullptr,
   1508                              NewGlobal->getThreadLocalMode());
   1509 
   1510       // Set meaningful attributes for indicator symbol.
   1511       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
   1512       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
   1513       ODRIndicatorSym->setAlignment(1);
   1514       ODRIndicator = ODRIndicatorSym;
   1515       InstrumentedGlobal = GA;
   1516     }
   1517 
   1518     Initializers[i] = ConstantStruct::get(
   1519         GlobalStructTy,
   1520         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
   1521         ConstantInt::get(IntptrTy, SizeInBytes),
   1522         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
   1523         ConstantExpr::getPointerCast(Name, IntptrTy),
   1524         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
   1525         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
   1526         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy), nullptr);
   1527 
   1528     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
   1529 
   1530     DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
   1531   }
   1532 
   1533 
   1534   GlobalVariable *AllGlobals = nullptr;
   1535   GlobalVariable *RegisteredFlag = nullptr;
   1536 
   1537   // On recent Mach-O platforms, we emit the global metadata in a way that
   1538   // allows the linker to properly strip dead globals.
   1539   if (ShouldUseMachOGlobalsSection()) {
   1540     // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
   1541     // to look up the loaded image that contains it. Second, we can store in it
   1542     // whether registration has already occurred, to prevent duplicate
   1543     // registration.
   1544     //
   1545     // Common linkage allows us to coalesce needles defined in each object
   1546     // file so that there's only one per shared library.
   1547     RegisteredFlag = new GlobalVariable(
   1548         M, IntptrTy, false, GlobalVariable::CommonLinkage,
   1549         ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
   1550 
   1551     // We also emit a structure which binds the liveness of the global
   1552     // variable to the metadata struct.
   1553     StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy, nullptr);
   1554 
   1555     for (size_t i = 0; i < n; i++) {
   1556       GlobalVariable *Metadata = new GlobalVariable(
   1557           M, GlobalStructTy, false, GlobalVariable::InternalLinkage,
   1558           Initializers[i], "");
   1559       Metadata->setSection("__DATA,__asan_globals,regular");
   1560       Metadata->setAlignment(1); // don't leave padding in between
   1561 
   1562       auto LivenessBinder = ConstantStruct::get(LivenessTy,
   1563           Initializers[i]->getAggregateElement(0u),
   1564           ConstantExpr::getPointerCast(Metadata, IntptrTy),
   1565           nullptr);
   1566       GlobalVariable *Liveness = new GlobalVariable(
   1567           M, LivenessTy, false, GlobalVariable::InternalLinkage,
   1568           LivenessBinder, "");
   1569       Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
   1570     }
   1571   } else {
   1572     // On all other platfoms, we just emit an array of global metadata
   1573     // structures.
   1574     ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
   1575     AllGlobals = new GlobalVariable(
   1576         M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
   1577         ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
   1578   }
   1579 
   1580   // Create calls for poisoning before initializers run and unpoisoning after.
   1581   if (HasDynamicallyInitializedGlobals)
   1582     createInitializerPoisonCalls(M, ModuleName);
   1583 
   1584   // Create a call to register the globals with the runtime.
   1585   if (ShouldUseMachOGlobalsSection()) {
   1586     IRB.CreateCall(AsanRegisterImageGlobals,
   1587                    {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
   1588   } else {
   1589     IRB.CreateCall(AsanRegisterGlobals,
   1590                    {IRB.CreatePointerCast(AllGlobals, IntptrTy),
   1591                     ConstantInt::get(IntptrTy, n)});
   1592   }
   1593 
   1594   // We also need to unregister globals at the end, e.g., when a shared library
   1595   // gets closed.
   1596   Function *AsanDtorFunction =
   1597       Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
   1598                        GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
   1599   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
   1600   IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
   1601 
   1602   if (ShouldUseMachOGlobalsSection()) {
   1603     IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
   1604                         {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
   1605   } else {
   1606     IRB_Dtor.CreateCall(AsanUnregisterGlobals,
   1607                         {IRB.CreatePointerCast(AllGlobals, IntptrTy),
   1608                          ConstantInt::get(IntptrTy, n)});
   1609   }
   1610 
   1611   appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
   1612 
   1613   DEBUG(dbgs() << M);
   1614   return true;
   1615 }
   1616 
   1617 bool AddressSanitizerModule::runOnModule(Module &M) {
   1618   C = &(M.getContext());
   1619   int LongSize = M.getDataLayout().getPointerSizeInBits();
   1620   IntptrTy = Type::getIntNTy(*C, LongSize);
   1621   TargetTriple = Triple(M.getTargetTriple());
   1622   Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
   1623   initializeCallbacks(M);
   1624 
   1625   bool Changed = false;
   1626 
   1627   // TODO(glider): temporarily disabled globals instrumentation for KASan.
   1628   if (ClGlobals && !CompileKernel) {
   1629     Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
   1630     assert(CtorFunc);
   1631     IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
   1632     Changed |= InstrumentGlobals(IRB, M);
   1633   }
   1634 
   1635   return Changed;
   1636 }
   1637 
   1638 void AddressSanitizer::initializeCallbacks(Module &M) {
   1639   IRBuilder<> IRB(*C);
   1640   // Create __asan_report* callbacks.
   1641   // IsWrite, TypeSize and Exp are encoded in the function name.
   1642   for (int Exp = 0; Exp < 2; Exp++) {
   1643     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
   1644       const std::string TypeStr = AccessIsWrite ? "store" : "load";
   1645       const std::string ExpStr = Exp ? "exp_" : "";
   1646       const std::string SuffixStr = CompileKernel ? "N" : "_n";
   1647       const std::string EndingStr = Recover ? "_noabort" : "";
   1648       Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr;
   1649       AsanErrorCallbackSized[AccessIsWrite][Exp] =
   1650           checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1651               kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr,
   1652               IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
   1653       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
   1654           checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1655               ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
   1656               IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
   1657       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
   1658            AccessSizeIndex++) {
   1659         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
   1660         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
   1661             checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1662                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
   1663                 IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
   1664         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
   1665             checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1666                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
   1667                 IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
   1668       }
   1669     }
   1670   }
   1671 
   1672   const std::string MemIntrinCallbackPrefix =
   1673       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
   1674   AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1675       MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
   1676       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
   1677   AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1678       MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
   1679       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
   1680   AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1681       MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(),
   1682       IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));
   1683 
   1684   AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
   1685       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));
   1686 
   1687   AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1688       kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
   1689   AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1690       kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
   1691   // We insert an empty inline asm after __asan_report* to avoid callback merge.
   1692   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
   1693                             StringRef(""), StringRef(""),
   1694                             /*hasSideEffects=*/true);
   1695 }
   1696 
   1697 // virtual
   1698 bool AddressSanitizer::doInitialization(Module &M) {
   1699   // Initialize the private fields. No one has accessed them before.
   1700 
   1701   GlobalsMD.init(M);
   1702 
   1703   C = &(M.getContext());
   1704   LongSize = M.getDataLayout().getPointerSizeInBits();
   1705   IntptrTy = Type::getIntNTy(*C, LongSize);
   1706   TargetTriple = Triple(M.getTargetTriple());
   1707 
   1708   if (!CompileKernel) {
   1709     std::tie(AsanCtorFunction, AsanInitFunction) =
   1710         createSanitizerCtorAndInitFunctions(
   1711             M, kAsanModuleCtorName, kAsanInitName,
   1712             /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName);
   1713     appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
   1714   }
   1715   Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
   1716   return true;
   1717 }
   1718 
   1719 bool AddressSanitizer::doFinalization(Module &M) {
   1720   GlobalsMD.reset();
   1721   return false;
   1722 }
   1723 
   1724 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
   1725   // For each NSObject descendant having a +load method, this method is invoked
   1726   // by the ObjC runtime before any of the static constructors is called.
   1727   // Therefore we need to instrument such methods with a call to __asan_init
   1728   // at the beginning in order to initialize our runtime before any access to
   1729   // the shadow memory.
   1730   // We cannot just ignore these methods, because they may call other
   1731   // instrumented functions.
   1732   if (F.getName().find(" load]") != std::string::npos) {
   1733     IRBuilder<> IRB(&F.front(), F.front().begin());
   1734     IRB.CreateCall(AsanInitFunction, {});
   1735     return true;
   1736   }
   1737   return false;
   1738 }
   1739 
   1740 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
   1741   // Find the one possible call to llvm.localescape and pre-mark allocas passed
   1742   // to it as uninteresting. This assumes we haven't started processing allocas
   1743   // yet. This check is done up front because iterating the use list in
   1744   // isInterestingAlloca would be algorithmically slower.
   1745   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
   1746 
   1747   // Try to get the declaration of llvm.localescape. If it's not in the module,
   1748   // we can exit early.
   1749   if (!F.getParent()->getFunction("llvm.localescape")) return;
   1750 
   1751   // Look for a call to llvm.localescape call in the entry block. It can't be in
   1752   // any other block.
   1753   for (Instruction &I : F.getEntryBlock()) {
   1754     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
   1755     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
   1756       // We found a call. Mark all the allocas passed in as uninteresting.
   1757       for (Value *Arg : II->arg_operands()) {
   1758         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
   1759         assert(AI && AI->isStaticAlloca() &&
   1760                "non-static alloca arg to localescape");
   1761         ProcessedAllocas[AI] = false;
   1762       }
   1763       break;
   1764     }
   1765   }
   1766 }
   1767 
   1768 bool AddressSanitizer::runOnFunction(Function &F) {
   1769   if (&F == AsanCtorFunction) return false;
   1770   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
   1771   DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
   1772   initializeCallbacks(*F.getParent());
   1773 
   1774   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1775 
   1776   // If needed, insert __asan_init before checking for SanitizeAddress attr.
   1777   maybeInsertAsanInitAtFunctionEntry(F);
   1778 
   1779   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false;
   1780 
   1781   if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false;
   1782 
   1783   FunctionStateRAII CleanupObj(this);
   1784 
   1785   // We can't instrument allocas used with llvm.localescape. Only static allocas
   1786   // can be passed to that intrinsic.
   1787   markEscapedLocalAllocas(F);
   1788 
   1789   // We want to instrument every address only once per basic block (unless there
   1790   // are calls between uses).
   1791   SmallSet<Value *, 16> TempsToInstrument;
   1792   SmallVector<Instruction *, 16> ToInstrument;
   1793   SmallVector<Instruction *, 8> NoReturnCalls;
   1794   SmallVector<BasicBlock *, 16> AllBlocks;
   1795   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
   1796   int NumAllocas = 0;
   1797   bool IsWrite;
   1798   unsigned Alignment;
   1799   uint64_t TypeSize;
   1800   const TargetLibraryInfo *TLI =
   1801       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1802 
   1803   // Fill the set of memory operations to instrument.
   1804   for (auto &BB : F) {
   1805     AllBlocks.push_back(&BB);
   1806     TempsToInstrument.clear();
   1807     int NumInsnsPerBB = 0;
   1808     for (auto &Inst : BB) {
   1809       if (LooksLikeCodeInBug11395(&Inst)) return false;
   1810       if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
   1811                                                   &Alignment)) {
   1812         if (ClOpt && ClOptSameTemp) {
   1813           if (!TempsToInstrument.insert(Addr).second)
   1814             continue;  // We've seen this temp in the current BB.
   1815         }
   1816       } else if (ClInvalidPointerPairs &&
   1817                  isInterestingPointerComparisonOrSubtraction(&Inst)) {
   1818         PointerComparisonsOrSubtracts.push_back(&Inst);
   1819         continue;
   1820       } else if (isa<MemIntrinsic>(Inst)) {
   1821         // ok, take it.
   1822       } else {
   1823         if (isa<AllocaInst>(Inst)) NumAllocas++;
   1824         CallSite CS(&Inst);
   1825         if (CS) {
   1826           // A call inside BB.
   1827           TempsToInstrument.clear();
   1828           if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
   1829         }
   1830         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
   1831           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
   1832         continue;
   1833       }
   1834       ToInstrument.push_back(&Inst);
   1835       NumInsnsPerBB++;
   1836       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
   1837     }
   1838   }
   1839 
   1840   bool UseCalls =
   1841       CompileKernel ||
   1842       (ClInstrumentationWithCallsThreshold >= 0 &&
   1843        ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
   1844   const DataLayout &DL = F.getParent()->getDataLayout();
   1845   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(),
   1846                                      /*RoundToAlign=*/true);
   1847 
   1848   // Instrument.
   1849   int NumInstrumented = 0;
   1850   for (auto Inst : ToInstrument) {
   1851     if (ClDebugMin < 0 || ClDebugMax < 0 ||
   1852         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
   1853       if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
   1854         instrumentMop(ObjSizeVis, Inst, UseCalls,
   1855                       F.getParent()->getDataLayout());
   1856       else
   1857         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
   1858     }
   1859     NumInstrumented++;
   1860   }
   1861 
   1862   FunctionStackPoisoner FSP(F, *this);
   1863   bool ChangedStack = FSP.runOnFunction();
   1864 
   1865   // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
   1866   // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
   1867   for (auto CI : NoReturnCalls) {
   1868     IRBuilder<> IRB(CI);
   1869     IRB.CreateCall(AsanHandleNoReturnFunc, {});
   1870   }
   1871 
   1872   for (auto Inst : PointerComparisonsOrSubtracts) {
   1873     instrumentPointerComparisonOrSubtraction(Inst);
   1874     NumInstrumented++;
   1875   }
   1876 
   1877   bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
   1878 
   1879   DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
   1880 
   1881   return res;
   1882 }
   1883 
   1884 // Workaround for bug 11395: we don't want to instrument stack in functions
   1885 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
   1886 // FIXME: remove once the bug 11395 is fixed.
   1887 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
   1888   if (LongSize != 32) return false;
   1889   CallInst *CI = dyn_cast<CallInst>(I);
   1890   if (!CI || !CI->isInlineAsm()) return false;
   1891   if (CI->getNumArgOperands() <= 5) return false;
   1892   // We have inline assembly with quite a few arguments.
   1893   return true;
   1894 }
   1895 
   1896 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
   1897   IRBuilder<> IRB(*C);
   1898   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
   1899     std::string Suffix = itostr(i);
   1900     AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
   1901         M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
   1902                               IntptrTy, nullptr));
   1903     AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
   1904         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
   1905                               IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
   1906   }
   1907   if (ASan.UseAfterScope) {
   1908     AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
   1909         M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
   1910                               IntptrTy, IntptrTy, nullptr));
   1911     AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
   1912         M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
   1913                               IntptrTy, IntptrTy, nullptr));
   1914   }
   1915 
   1916   AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1917       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
   1918   AsanAllocasUnpoisonFunc =
   1919       checkSanitizerInterfaceFunction(M.getOrInsertFunction(
   1920           kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
   1921 }
   1922 
   1923 void FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
   1924                                            IRBuilder<> &IRB, Value *ShadowBase,
   1925                                            bool DoPoison) {
   1926   size_t n = ShadowBytes.size();
   1927   size_t i = 0;
   1928   // We need to (un)poison n bytes of stack shadow. Poison as many as we can
   1929   // using 64-bit stores (if we are on 64-bit arch), then poison the rest
   1930   // with 32-bit stores, then with 16-byte stores, then with 8-byte stores.
   1931   for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8;
   1932        LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) {
   1933     for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
   1934       uint64_t Val = 0;
   1935       for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
   1936         if (F.getParent()->getDataLayout().isLittleEndian())
   1937           Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
   1938         else
   1939           Val = (Val << 8) | ShadowBytes[i + j];
   1940       }
   1941       if (!Val) continue;
   1942       Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
   1943       Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8);
   1944       Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0);
   1945       IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo()));
   1946     }
   1947   }
   1948 }
   1949 
   1950 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
   1951 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
   1952 static int StackMallocSizeClass(uint64_t LocalStackSize) {
   1953   assert(LocalStackSize <= kMaxStackMallocSize);
   1954   uint64_t MaxSize = kMinStackMallocSize;
   1955   for (int i = 0;; i++, MaxSize *= 2)
   1956     if (LocalStackSize <= MaxSize) return i;
   1957   llvm_unreachable("impossible LocalStackSize");
   1958 }
   1959 
   1960 // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
   1961 // We can not use MemSet intrinsic because it may end up calling the actual
   1962 // memset. Size is a multiple of 8.
   1963 // Currently this generates 8-byte stores on x86_64; it may be better to
   1964 // generate wider stores.
   1965 void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
   1966     IRBuilder<> &IRB, Value *ShadowBase, int Size) {
   1967   assert(!(Size % 8));
   1968 
   1969   // kAsanStackAfterReturnMagic is 0xf5.
   1970   const uint64_t kAsanStackAfterReturnMagic64 = 0xf5f5f5f5f5f5f5f5ULL;
   1971 
   1972   for (int i = 0; i < Size; i += 8) {
   1973     Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
   1974     IRB.CreateStore(
   1975         ConstantInt::get(IRB.getInt64Ty(), kAsanStackAfterReturnMagic64),
   1976         IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
   1977   }
   1978 }
   1979 
   1980 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
   1981                                           Value *ValueIfTrue,
   1982                                           Instruction *ThenTerm,
   1983                                           Value *ValueIfFalse) {
   1984   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
   1985   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
   1986   PHI->addIncoming(ValueIfFalse, CondBlock);
   1987   BasicBlock *ThenBlock = ThenTerm->getParent();
   1988   PHI->addIncoming(ValueIfTrue, ThenBlock);
   1989   return PHI;
   1990 }
   1991 
   1992 Value *FunctionStackPoisoner::createAllocaForLayout(
   1993     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
   1994   AllocaInst *Alloca;
   1995   if (Dynamic) {
   1996     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
   1997                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
   1998                               "MyAlloca");
   1999   } else {
   2000     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
   2001                               nullptr, "MyAlloca");
   2002     assert(Alloca->isStaticAlloca());
   2003   }
   2004   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
   2005   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
   2006   Alloca->setAlignment(FrameAlignment);
   2007   return IRB.CreatePointerCast(Alloca, IntptrTy);
   2008 }
   2009 
   2010 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
   2011   BasicBlock &FirstBB = *F.begin();
   2012   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
   2013   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
   2014   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
   2015   DynamicAllocaLayout->setAlignment(32);
   2016 }
   2017 
   2018 void FunctionStackPoisoner::poisonStack() {
   2019   assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0);
   2020 
   2021   // Insert poison calls for lifetime intrinsics for alloca.
   2022   bool HavePoisonedStaticAllocas = false;
   2023   for (const auto &APC : AllocaPoisonCallVec) {
   2024     assert(APC.InsBefore);
   2025     assert(APC.AI);
   2026     assert(ASan.isInterestingAlloca(*APC.AI));
   2027     bool IsDynamicAlloca = !(*APC.AI).isStaticAlloca();
   2028     if (!ClInstrumentAllocas && IsDynamicAlloca)
   2029       continue;
   2030 
   2031     IRBuilder<> IRB(APC.InsBefore);
   2032     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
   2033     // Dynamic allocas will be unpoisoned unconditionally below in
   2034     // unpoisonDynamicAllocas.
   2035     // Flag that we need unpoison static allocas.
   2036     HavePoisonedStaticAllocas |= (APC.DoPoison && !IsDynamicAlloca);
   2037   }
   2038 
   2039   if (ClInstrumentAllocas && DynamicAllocaVec.size() > 0) {
   2040     // Handle dynamic allocas.
   2041     createDynamicAllocasInitStorage();
   2042     for (auto &AI : DynamicAllocaVec) handleDynamicAllocaCall(AI);
   2043 
   2044     unpoisonDynamicAllocas();
   2045   }
   2046 
   2047   if (AllocaVec.empty()) return;
   2048 
   2049   int StackMallocIdx = -1;
   2050   DebugLoc EntryDebugLocation;
   2051   if (auto SP = F.getSubprogram())
   2052     EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
   2053 
   2054   Instruction *InsBefore = AllocaVec[0];
   2055   IRBuilder<> IRB(InsBefore);
   2056   IRB.SetCurrentDebugLocation(EntryDebugLocation);
   2057 
   2058   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
   2059   // debug info is broken, because only entry-block allocas are treated as
   2060   // regular stack slots.
   2061   auto InsBeforeB = InsBefore->getParent();
   2062   assert(InsBeforeB == &F.getEntryBlock());
   2063   for (BasicBlock::iterator I(InsBefore); I != InsBeforeB->end(); ++I)
   2064     if (auto *AI = dyn_cast<AllocaInst>(I))
   2065       if (NonInstrumentedStaticAllocaVec.count(AI) > 0)
   2066         AI->moveBefore(InsBefore);
   2067 
   2068   // If we have a call to llvm.localescape, keep it in the entry block.
   2069   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
   2070 
   2071   SmallVector<ASanStackVariableDescription, 16> SVD;
   2072   SVD.reserve(AllocaVec.size());
   2073   for (AllocaInst *AI : AllocaVec) {
   2074     ASanStackVariableDescription D = {AI->getName().data(),
   2075                                       ASan.getAllocaSizeInBytes(AI),
   2076                                       AI->getAlignment(), AI, 0};
   2077     SVD.push_back(D);
   2078   }
   2079   // Minimal header size (left redzone) is 4 pointers,
   2080   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
   2081   size_t MinHeaderSize = ASan.LongSize / 2;
   2082   ASanStackFrameLayout L;
   2083   ComputeASanStackFrameLayout(SVD, 1ULL << Mapping.Scale, MinHeaderSize, &L);
   2084   DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n");
   2085   uint64_t LocalStackSize = L.FrameSize;
   2086   bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
   2087                        LocalStackSize <= kMaxStackMallocSize;
   2088   bool DoDynamicAlloca = ClDynamicAllocaStack;
   2089   // Don't do dynamic alloca or stack malloc if:
   2090   // 1) There is inline asm: too often it makes assumptions on which registers
   2091   //    are available.
   2092   // 2) There is a returns_twice call (typically setjmp), which is
   2093   //    optimization-hostile, and doesn't play well with introduced indirect
   2094   //    register-relative calculation of local variable addresses.
   2095   DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
   2096   DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
   2097 
   2098   Value *StaticAlloca =
   2099       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
   2100 
   2101   Value *FakeStack;
   2102   Value *LocalStackBase;
   2103 
   2104   if (DoStackMalloc) {
   2105     // void *FakeStack = __asan_option_detect_stack_use_after_return
   2106     //     ? __asan_stack_malloc_N(LocalStackSize)
   2107     //     : nullptr;
   2108     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
   2109     Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
   2110         kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
   2111     Value *UseAfterReturnIsEnabled =
   2112         IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn),
   2113                          Constant::getNullValue(IRB.getInt32Ty()));
   2114     Instruction *Term =
   2115         SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
   2116     IRBuilder<> IRBIf(Term);
   2117     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
   2118     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
   2119     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
   2120     Value *FakeStackValue =
   2121         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
   2122                          ConstantInt::get(IntptrTy, LocalStackSize));
   2123     IRB.SetInsertPoint(InsBefore);
   2124     IRB.SetCurrentDebugLocation(EntryDebugLocation);
   2125     FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
   2126                           ConstantInt::get(IntptrTy, 0));
   2127 
   2128     Value *NoFakeStack =
   2129         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
   2130     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
   2131     IRBIf.SetInsertPoint(Term);
   2132     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
   2133     Value *AllocaValue =
   2134         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
   2135     IRB.SetInsertPoint(InsBefore);
   2136     IRB.SetCurrentDebugLocation(EntryDebugLocation);
   2137     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
   2138   } else {
   2139     // void *FakeStack = nullptr;
   2140     // void *LocalStackBase = alloca(LocalStackSize);
   2141     FakeStack = ConstantInt::get(IntptrTy, 0);
   2142     LocalStackBase =
   2143         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
   2144   }
   2145 
   2146   // Replace Alloca instructions with base+offset.
   2147   for (const auto &Desc : SVD) {
   2148     AllocaInst *AI = Desc.AI;
   2149     Value *NewAllocaPtr = IRB.CreateIntToPtr(
   2150         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
   2151         AI->getType());
   2152     replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true);
   2153     AI->replaceAllUsesWith(NewAllocaPtr);
   2154   }
   2155 
   2156   // The left-most redzone has enough space for at least 4 pointers.
   2157   // Write the Magic value to redzone[0].
   2158   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
   2159   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
   2160                   BasePlus0);
   2161   // Write the frame description constant to redzone[1].
   2162   Value *BasePlus1 = IRB.CreateIntToPtr(
   2163       IRB.CreateAdd(LocalStackBase,
   2164                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
   2165       IntptrPtrTy);
   2166   GlobalVariable *StackDescriptionGlobal =
   2167       createPrivateGlobalForString(*F.getParent(), L.DescriptionString,
   2168                                    /*AllowMerging*/ true);
   2169   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
   2170   IRB.CreateStore(Description, BasePlus1);
   2171   // Write the PC to redzone[2].
   2172   Value *BasePlus2 = IRB.CreateIntToPtr(
   2173       IRB.CreateAdd(LocalStackBase,
   2174                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
   2175       IntptrPtrTy);
   2176   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
   2177 
   2178   // Poison the stack redzones at the entry.
   2179   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
   2180   poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true);
   2181 
   2182   auto UnpoisonStack = [&](IRBuilder<> &IRB) {
   2183     if (HavePoisonedStaticAllocas) {
   2184       // If we poisoned some allocas in llvm.lifetime analysis,
   2185       // unpoison whole stack frame now.
   2186       poisonAlloca(LocalStackBase, LocalStackSize, IRB, false);
   2187     } else {
   2188       poisonRedZones(L.ShadowBytes, IRB, ShadowBase, false);
   2189     }
   2190   };
   2191 
   2192   // (Un)poison the stack before all ret instructions.
   2193   for (auto Ret : RetVec) {
   2194     IRBuilder<> IRBRet(Ret);
   2195     // Mark the current frame as retired.
   2196     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
   2197                        BasePlus0);
   2198     if (DoStackMalloc) {
   2199       assert(StackMallocIdx >= 0);
   2200       // if FakeStack != 0  // LocalStackBase == FakeStack
   2201       //     // In use-after-return mode, poison the whole stack frame.
   2202       //     if StackMallocIdx <= 4
   2203       //         // For small sizes inline the whole thing:
   2204       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
   2205       //         **SavedFlagPtr(FakeStack) = 0
   2206       //     else
   2207       //         __asan_stack_free_N(FakeStack, LocalStackSize)
   2208       // else
   2209       //     <This is not a fake stack; unpoison the redzones>
   2210       Value *Cmp =
   2211           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
   2212       TerminatorInst *ThenTerm, *ElseTerm;
   2213       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
   2214 
   2215       IRBuilder<> IRBPoison(ThenTerm);
   2216       if (StackMallocIdx <= 4) {
   2217         int ClassSize = kMinStackMallocSize << StackMallocIdx;
   2218         SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
   2219                                            ClassSize >> Mapping.Scale);
   2220         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
   2221             FakeStack,
   2222             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
   2223         Value *SavedFlagPtr = IRBPoison.CreateLoad(
   2224             IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
   2225         IRBPoison.CreateStore(
   2226             Constant::getNullValue(IRBPoison.getInt8Ty()),
   2227             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
   2228       } else {
   2229         // For larger frames call __asan_stack_free_*.
   2230         IRBPoison.CreateCall(
   2231             AsanStackFreeFunc[StackMallocIdx],
   2232             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
   2233       }
   2234 
   2235       IRBuilder<> IRBElse(ElseTerm);
   2236       UnpoisonStack(IRBElse);
   2237     } else {
   2238       UnpoisonStack(IRBRet);
   2239     }
   2240   }
   2241 
   2242   // We are done. Remove the old unused alloca instructions.
   2243   for (auto AI : AllocaVec) AI->eraseFromParent();
   2244 }
   2245 
   2246 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
   2247                                          IRBuilder<> &IRB, bool DoPoison) {
   2248   // For now just insert the call to ASan runtime.
   2249   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
   2250   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
   2251   IRB.CreateCall(
   2252       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
   2253       {AddrArg, SizeArg});
   2254 }
   2255 
   2256 // Handling llvm.lifetime intrinsics for a given %alloca:
   2257 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
   2258 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
   2259 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
   2260 //     could be poisoned by previous llvm.lifetime.end instruction, as the
   2261 //     variable may go in and out of scope several times, e.g. in loops).
   2262 // (3) if we poisoned at least one %alloca in a function,
   2263 //     unpoison the whole stack frame at function exit.
   2264 
   2265 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
   2266   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
   2267     // We're intested only in allocas we can handle.
   2268     return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
   2269   // See if we've already calculated (or started to calculate) alloca for a
   2270   // given value.
   2271   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
   2272   if (I != AllocaForValue.end()) return I->second;
   2273   // Store 0 while we're calculating alloca for value V to avoid
   2274   // infinite recursion if the value references itself.
   2275   AllocaForValue[V] = nullptr;
   2276   AllocaInst *Res = nullptr;
   2277   if (CastInst *CI = dyn_cast<CastInst>(V))
   2278     Res = findAllocaForValue(CI->getOperand(0));
   2279   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
   2280     for (Value *IncValue : PN->incoming_values()) {
   2281       // Allow self-referencing phi-nodes.
   2282       if (IncValue == PN) continue;
   2283       AllocaInst *IncValueAI = findAllocaForValue(IncValue);
   2284       // AI for incoming values should exist and should all be equal.
   2285       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
   2286         return nullptr;
   2287       Res = IncValueAI;
   2288     }
   2289   }
   2290   if (Res) AllocaForValue[V] = Res;
   2291   return Res;
   2292 }
   2293 
   2294 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
   2295   IRBuilder<> IRB(AI);
   2296 
   2297   const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
   2298   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
   2299 
   2300   Value *Zero = Constant::getNullValue(IntptrTy);
   2301   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
   2302   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
   2303 
   2304   // Since we need to extend alloca with additional memory to locate
   2305   // redzones, and OldSize is number of allocated blocks with
   2306   // ElementSize size, get allocated memory size in bytes by
   2307   // OldSize * ElementSize.
   2308   const unsigned ElementSize =
   2309       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
   2310   Value *OldSize =
   2311       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
   2312                     ConstantInt::get(IntptrTy, ElementSize));
   2313 
   2314   // PartialSize = OldSize % 32
   2315   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
   2316 
   2317   // Misalign = kAllocaRzSize - PartialSize;
   2318   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
   2319 
   2320   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
   2321   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
   2322   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
   2323 
   2324   // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
   2325   // Align is added to locate left redzone, PartialPadding for possible
   2326   // partial redzone and kAllocaRzSize for right redzone respectively.
   2327   Value *AdditionalChunkSize = IRB.CreateAdd(
   2328       ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
   2329 
   2330   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
   2331 
   2332   // Insert new alloca with new NewSize and Align params.
   2333   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
   2334   NewAlloca->setAlignment(Align);
   2335 
   2336   // NewAddress = Address + Align
   2337   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
   2338                                     ConstantInt::get(IntptrTy, Align));
   2339 
   2340   // Insert __asan_alloca_poison call for new created alloca.
   2341   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
   2342 
   2343   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
   2344   // for unpoisoning stuff.
   2345   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
   2346 
   2347   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
   2348 
   2349   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
   2350   AI->replaceAllUsesWith(NewAddressPtr);
   2351 
   2352   // We are done. Erase old alloca from parent.
   2353   AI->eraseFromParent();
   2354 }
   2355 
   2356 // isSafeAccess returns true if Addr is always inbounds with respect to its
   2357 // base object. For example, it is a field access or an array access with
   2358 // constant inbounds index.
   2359 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
   2360                                     Value *Addr, uint64_t TypeSize) const {
   2361   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
   2362   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
   2363   uint64_t Size = SizeOffset.first.getZExtValue();
   2364   int64_t Offset = SizeOffset.second.getSExtValue();
   2365   // Three checks are required to ensure safety:
   2366   // . Offset >= 0  (since the offset is given from the base ptr)
   2367   // . Size >= Offset  (unsigned)
   2368   // . Size - Offset >= NeededSize  (unsigned)
   2369   return Offset >= 0 && Size >= uint64_t(Offset) &&
   2370          Size - uint64_t(Offset) >= TypeSize / 8;
   2371 }
   2372