1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of AddressSanitizer, an address sanity checker. 11 // Details of the algorithm: 12 // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/DIBuilder.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/InstVisitor.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/MC/MCSectionMachO.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/DataTypes.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/Endian.h" 46 #include "llvm/Support/SwapByteOrder.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/Instrumentation.h" 49 #include "llvm/Transforms/Scalar.h" 50 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Cloning.h" 53 #include "llvm/Transforms/Utils/Local.h" 54 #include "llvm/Transforms/Utils/ModuleUtils.h" 55 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 56 #include <algorithm> 57 #include <string> 58 #include <system_error> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "asan" 63 64 static const uint64_t kDefaultShadowScale = 3; 65 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 66 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 67 static const uint64_t kIOSShadowOffset32 = 1ULL << 30; 68 static const uint64_t kIOSShadowOffset64 = 0x120200000; 69 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30; 70 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64; 71 static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000; // < 2G. 72 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; 73 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41; 74 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; 75 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; 76 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; 77 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; 78 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; 79 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; 80 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; 81 // TODO(wwchrome): Experimental for asan Win64, may change. 82 static const uint64_t kWindowsShadowOffset64 = 0x1ULL << 45; // 32TB. 83 84 static const size_t kMinStackMallocSize = 1 << 6; // 64B 85 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 86 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 87 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 88 89 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 90 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 91 static const uint64_t kAsanCtorAndDtorPriority = 1; 92 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 93 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 94 static const char *const kAsanUnregisterGlobalsName = 95 "__asan_unregister_globals"; 96 static const char *const kAsanRegisterImageGlobalsName = 97 "__asan_register_image_globals"; 98 static const char *const kAsanUnregisterImageGlobalsName = 99 "__asan_unregister_image_globals"; 100 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 101 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 102 static const char *const kAsanInitName = "__asan_init"; 103 static const char *const kAsanVersionCheckName = 104 "__asan_version_mismatch_check_v8"; 105 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp"; 106 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub"; 107 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 108 static const int kMaxAsanStackMallocSizeClass = 10; 109 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_"; 110 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_"; 111 static const char *const kAsanGenPrefix = "__asan_gen_"; 112 static const char *const kODRGenPrefix = "__odr_asan_gen_"; 113 static const char *const kSanCovGenPrefix = "__sancov_gen_"; 114 static const char *const kAsanPoisonStackMemoryName = 115 "__asan_poison_stack_memory"; 116 static const char *const kAsanUnpoisonStackMemoryName = 117 "__asan_unpoison_stack_memory"; 118 static const char *const kAsanGlobalsRegisteredFlagName = 119 "__asan_globals_registered"; 120 121 static const char *const kAsanOptionDetectUseAfterReturn = 122 "__asan_option_detect_stack_use_after_return"; 123 124 static const char *const kAsanAllocaPoison = "__asan_alloca_poison"; 125 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison"; 126 127 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 128 static const size_t kNumberOfAccessSizes = 5; 129 130 static const unsigned kAllocaRzSize = 32; 131 132 // Command-line flags. 133 static cl::opt<bool> ClEnableKasan( 134 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), 135 cl::Hidden, cl::init(false)); 136 static cl::opt<bool> ClRecover( 137 "asan-recover", 138 cl::desc("Enable recovery mode (continue-after-error)."), 139 cl::Hidden, cl::init(false)); 140 141 // This flag may need to be replaced with -f[no-]asan-reads. 142 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 143 cl::desc("instrument read instructions"), 144 cl::Hidden, cl::init(true)); 145 static cl::opt<bool> ClInstrumentWrites( 146 "asan-instrument-writes", cl::desc("instrument write instructions"), 147 cl::Hidden, cl::init(true)); 148 static cl::opt<bool> ClInstrumentAtomics( 149 "asan-instrument-atomics", 150 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, 151 cl::init(true)); 152 static cl::opt<bool> ClAlwaysSlowPath( 153 "asan-always-slow-path", 154 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, 155 cl::init(false)); 156 // This flag limits the number of instructions to be instrumented 157 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 158 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 159 // set it to 10000. 160 static cl::opt<int> ClMaxInsnsToInstrumentPerBB( 161 "asan-max-ins-per-bb", cl::init(10000), 162 cl::desc("maximal number of instructions to instrument in any given BB"), 163 cl::Hidden); 164 // This flag may need to be replaced with -f[no]asan-stack. 165 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), 166 cl::Hidden, cl::init(true)); 167 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 168 cl::desc("Check stack-use-after-return"), 169 cl::Hidden, cl::init(true)); 170 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", 171 cl::desc("Check stack-use-after-scope"), 172 cl::Hidden, cl::init(false)); 173 // This flag may need to be replaced with -f[no]asan-globals. 174 static cl::opt<bool> ClGlobals("asan-globals", 175 cl::desc("Handle global objects"), cl::Hidden, 176 cl::init(true)); 177 static cl::opt<bool> ClInitializers("asan-initialization-order", 178 cl::desc("Handle C++ initializer order"), 179 cl::Hidden, cl::init(true)); 180 static cl::opt<bool> ClInvalidPointerPairs( 181 "asan-detect-invalid-pointer-pair", 182 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, 183 cl::init(false)); 184 static cl::opt<unsigned> ClRealignStack( 185 "asan-realign-stack", 186 cl::desc("Realign stack to the value of this flag (power of two)"), 187 cl::Hidden, cl::init(32)); 188 static cl::opt<int> ClInstrumentationWithCallsThreshold( 189 "asan-instrumentation-with-call-threshold", 190 cl::desc( 191 "If the function being instrumented contains more than " 192 "this number of memory accesses, use callbacks instead of " 193 "inline checks (-1 means never use callbacks)."), 194 cl::Hidden, cl::init(7000)); 195 static cl::opt<std::string> ClMemoryAccessCallbackPrefix( 196 "asan-memory-access-callback-prefix", 197 cl::desc("Prefix for memory access callbacks"), cl::Hidden, 198 cl::init("__asan_")); 199 static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas", 200 cl::desc("instrument dynamic allocas"), 201 cl::Hidden, cl::init(true)); 202 static cl::opt<bool> ClSkipPromotableAllocas( 203 "asan-skip-promotable-allocas", 204 cl::desc("Do not instrument promotable allocas"), cl::Hidden, 205 cl::init(true)); 206 207 // These flags allow to change the shadow mapping. 208 // The shadow mapping looks like 209 // Shadow = (Mem >> scale) + offset 210 static cl::opt<int> ClMappingScale("asan-mapping-scale", 211 cl::desc("scale of asan shadow mapping"), 212 cl::Hidden, cl::init(0)); 213 static cl::opt<unsigned long long> ClMappingOffset( 214 "asan-mapping-offset", 215 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden, 216 cl::init(0)); 217 218 // Optimization flags. Not user visible, used mostly for testing 219 // and benchmarking the tool. 220 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), 221 cl::Hidden, cl::init(true)); 222 static cl::opt<bool> ClOptSameTemp( 223 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), 224 cl::Hidden, cl::init(true)); 225 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 226 cl::desc("Don't instrument scalar globals"), 227 cl::Hidden, cl::init(true)); 228 static cl::opt<bool> ClOptStack( 229 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), 230 cl::Hidden, cl::init(false)); 231 232 static cl::opt<bool> ClDynamicAllocaStack( 233 "asan-stack-dynamic-alloca", 234 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, 235 cl::init(true)); 236 237 static cl::opt<uint32_t> ClForceExperiment( 238 "asan-force-experiment", 239 cl::desc("Force optimization experiment (for testing)"), cl::Hidden, 240 cl::init(0)); 241 242 static cl::opt<bool> 243 ClUsePrivateAliasForGlobals("asan-use-private-alias", 244 cl::desc("Use private aliases for global" 245 " variables"), 246 cl::Hidden, cl::init(false)); 247 248 static cl::opt<bool> 249 ClUseMachOGlobalsSection("asan-globals-live-support", 250 cl::desc("Use linker features to support dead " 251 "code stripping of globals " 252 "(Mach-O only)"), 253 cl::Hidden, cl::init(false)); 254 255 // Debug flags. 256 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 257 cl::init(0)); 258 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 259 cl::Hidden, cl::init(0)); 260 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, 261 cl::desc("Debug func")); 262 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 263 cl::Hidden, cl::init(-1)); 264 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"), 265 cl::Hidden, cl::init(-1)); 266 267 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 268 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 269 STATISTIC(NumOptimizedAccessesToGlobalVar, 270 "Number of optimized accesses to global vars"); 271 STATISTIC(NumOptimizedAccessesToStackVar, 272 "Number of optimized accesses to stack vars"); 273 274 namespace { 275 /// Frontend-provided metadata for source location. 276 struct LocationMetadata { 277 StringRef Filename; 278 int LineNo; 279 int ColumnNo; 280 281 LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {} 282 283 bool empty() const { return Filename.empty(); } 284 285 void parse(MDNode *MDN) { 286 assert(MDN->getNumOperands() == 3); 287 MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); 288 Filename = DIFilename->getString(); 289 LineNo = 290 mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); 291 ColumnNo = 292 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); 293 } 294 }; 295 296 /// Frontend-provided metadata for global variables. 297 class GlobalsMetadata { 298 public: 299 struct Entry { 300 Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {} 301 LocationMetadata SourceLoc; 302 StringRef Name; 303 bool IsDynInit; 304 bool IsBlacklisted; 305 }; 306 307 GlobalsMetadata() : inited_(false) {} 308 309 void reset() { 310 inited_ = false; 311 Entries.clear(); 312 } 313 314 void init(Module &M) { 315 assert(!inited_); 316 inited_ = true; 317 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); 318 if (!Globals) return; 319 for (auto MDN : Globals->operands()) { 320 // Metadata node contains the global and the fields of "Entry". 321 assert(MDN->getNumOperands() == 5); 322 auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0)); 323 // The optimizer may optimize away a global entirely. 324 if (!GV) continue; 325 // We can already have an entry for GV if it was merged with another 326 // global. 327 Entry &E = Entries[GV]; 328 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) 329 E.SourceLoc.parse(Loc); 330 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) 331 E.Name = Name->getString(); 332 ConstantInt *IsDynInit = 333 mdconst::extract<ConstantInt>(MDN->getOperand(3)); 334 E.IsDynInit |= IsDynInit->isOne(); 335 ConstantInt *IsBlacklisted = 336 mdconst::extract<ConstantInt>(MDN->getOperand(4)); 337 E.IsBlacklisted |= IsBlacklisted->isOne(); 338 } 339 } 340 341 /// Returns metadata entry for a given global. 342 Entry get(GlobalVariable *G) const { 343 auto Pos = Entries.find(G); 344 return (Pos != Entries.end()) ? Pos->second : Entry(); 345 } 346 347 private: 348 bool inited_; 349 DenseMap<GlobalVariable *, Entry> Entries; 350 }; 351 352 /// This struct defines the shadow mapping using the rule: 353 /// shadow = (mem >> Scale) ADD-or-OR Offset. 354 struct ShadowMapping { 355 int Scale; 356 uint64_t Offset; 357 bool OrShadowOffset; 358 }; 359 360 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, 361 bool IsKasan) { 362 bool IsAndroid = TargetTriple.isAndroid(); 363 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); 364 bool IsFreeBSD = TargetTriple.isOSFreeBSD(); 365 bool IsLinux = TargetTriple.isOSLinux(); 366 bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 || 367 TargetTriple.getArch() == llvm::Triple::ppc64le; 368 bool IsSystemZ = TargetTriple.getArch() == llvm::Triple::systemz; 369 bool IsX86 = TargetTriple.getArch() == llvm::Triple::x86; 370 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; 371 bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips || 372 TargetTriple.getArch() == llvm::Triple::mipsel; 373 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 || 374 TargetTriple.getArch() == llvm::Triple::mips64el; 375 bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64; 376 bool IsWindows = TargetTriple.isOSWindows(); 377 378 ShadowMapping Mapping; 379 380 if (LongSize == 32) { 381 // Android is always PIE, which means that the beginning of the address 382 // space is always available. 383 if (IsAndroid) 384 Mapping.Offset = 0; 385 else if (IsMIPS32) 386 Mapping.Offset = kMIPS32_ShadowOffset32; 387 else if (IsFreeBSD) 388 Mapping.Offset = kFreeBSD_ShadowOffset32; 389 else if (IsIOS) 390 // If we're targeting iOS and x86, the binary is built for iOS simulator. 391 Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32; 392 else if (IsWindows) 393 Mapping.Offset = kWindowsShadowOffset32; 394 else 395 Mapping.Offset = kDefaultShadowOffset32; 396 } else { // LongSize == 64 397 if (IsPPC64) 398 Mapping.Offset = kPPC64_ShadowOffset64; 399 else if (IsSystemZ) 400 Mapping.Offset = kSystemZ_ShadowOffset64; 401 else if (IsFreeBSD) 402 Mapping.Offset = kFreeBSD_ShadowOffset64; 403 else if (IsLinux && IsX86_64) { 404 if (IsKasan) 405 Mapping.Offset = kLinuxKasan_ShadowOffset64; 406 else 407 Mapping.Offset = kSmallX86_64ShadowOffset; 408 } else if (IsWindows && IsX86_64) { 409 Mapping.Offset = kWindowsShadowOffset64; 410 } else if (IsMIPS64) 411 Mapping.Offset = kMIPS64_ShadowOffset64; 412 else if (IsIOS) 413 // If we're targeting iOS and x86, the binary is built for iOS simulator. 414 Mapping.Offset = IsX86_64 ? kIOSSimShadowOffset64 : kIOSShadowOffset64; 415 else if (IsAArch64) 416 Mapping.Offset = kAArch64_ShadowOffset64; 417 else 418 Mapping.Offset = kDefaultShadowOffset64; 419 } 420 421 Mapping.Scale = kDefaultShadowScale; 422 if (ClMappingScale.getNumOccurrences() > 0) { 423 Mapping.Scale = ClMappingScale; 424 } 425 426 if (ClMappingOffset.getNumOccurrences() > 0) { 427 Mapping.Offset = ClMappingOffset; 428 } 429 430 // OR-ing shadow offset if more efficient (at least on x86) if the offset 431 // is a power of two, but on ppc64 we have to use add since the shadow 432 // offset is not necessary 1/8-th of the address space. On SystemZ, 433 // we could OR the constant in a single instruction, but it's more 434 // efficient to load it once and use indexed addressing. 435 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ 436 && !(Mapping.Offset & (Mapping.Offset - 1)); 437 438 return Mapping; 439 } 440 441 static size_t RedzoneSizeForScale(int MappingScale) { 442 // Redzone used for stack and globals is at least 32 bytes. 443 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 444 return std::max(32U, 1U << MappingScale); 445 } 446 447 /// AddressSanitizer: instrument the code in module to find memory bugs. 448 struct AddressSanitizer : public FunctionPass { 449 explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false, 450 bool UseAfterScope = false) 451 : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan), 452 Recover(Recover || ClRecover), 453 UseAfterScope(UseAfterScope || ClUseAfterScope) { 454 initializeAddressSanitizerPass(*PassRegistry::getPassRegistry()); 455 } 456 const char *getPassName() const override { 457 return "AddressSanitizerFunctionPass"; 458 } 459 void getAnalysisUsage(AnalysisUsage &AU) const override { 460 AU.addRequired<DominatorTreeWrapperPass>(); 461 AU.addRequired<TargetLibraryInfoWrapperPass>(); 462 } 463 uint64_t getAllocaSizeInBytes(AllocaInst *AI) const { 464 uint64_t ArraySize = 1; 465 if (AI->isArrayAllocation()) { 466 ConstantInt *CI = dyn_cast<ConstantInt>(AI->getArraySize()); 467 assert(CI && "non-constant array size"); 468 ArraySize = CI->getZExtValue(); 469 } 470 Type *Ty = AI->getAllocatedType(); 471 uint64_t SizeInBytes = 472 AI->getModule()->getDataLayout().getTypeAllocSize(Ty); 473 return SizeInBytes * ArraySize; 474 } 475 /// Check if we want (and can) handle this alloca. 476 bool isInterestingAlloca(AllocaInst &AI); 477 478 /// If it is an interesting memory access, return the PointerOperand 479 /// and set IsWrite/Alignment. Otherwise return nullptr. 480 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite, 481 uint64_t *TypeSize, unsigned *Alignment); 482 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I, 483 bool UseCalls, const DataLayout &DL); 484 void instrumentPointerComparisonOrSubtraction(Instruction *I); 485 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 486 Value *Addr, uint32_t TypeSize, bool IsWrite, 487 Value *SizeArgument, bool UseCalls, uint32_t Exp); 488 void instrumentUnusualSizeOrAlignment(Instruction *I, Value *Addr, 489 uint32_t TypeSize, bool IsWrite, 490 Value *SizeArgument, bool UseCalls, 491 uint32_t Exp); 492 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 493 Value *ShadowValue, uint32_t TypeSize); 494 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 495 bool IsWrite, size_t AccessSizeIndex, 496 Value *SizeArgument, uint32_t Exp); 497 void instrumentMemIntrinsic(MemIntrinsic *MI); 498 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 499 bool runOnFunction(Function &F) override; 500 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 501 void markEscapedLocalAllocas(Function &F); 502 bool doInitialization(Module &M) override; 503 bool doFinalization(Module &M) override; 504 static char ID; // Pass identification, replacement for typeid 505 506 DominatorTree &getDominatorTree() const { return *DT; } 507 508 private: 509 void initializeCallbacks(Module &M); 510 511 bool LooksLikeCodeInBug11395(Instruction *I); 512 bool GlobalIsLinkerInitialized(GlobalVariable *G); 513 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, 514 uint64_t TypeSize) const; 515 516 /// Helper to cleanup per-function state. 517 struct FunctionStateRAII { 518 AddressSanitizer *Pass; 519 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { 520 assert(Pass->ProcessedAllocas.empty() && 521 "last pass forgot to clear cache"); 522 } 523 ~FunctionStateRAII() { Pass->ProcessedAllocas.clear(); } 524 }; 525 526 LLVMContext *C; 527 Triple TargetTriple; 528 int LongSize; 529 bool CompileKernel; 530 bool Recover; 531 bool UseAfterScope; 532 Type *IntptrTy; 533 ShadowMapping Mapping; 534 DominatorTree *DT; 535 Function *AsanCtorFunction = nullptr; 536 Function *AsanInitFunction = nullptr; 537 Function *AsanHandleNoReturnFunc; 538 Function *AsanPtrCmpFunction, *AsanPtrSubFunction; 539 // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize). 540 Function *AsanErrorCallback[2][2][kNumberOfAccessSizes]; 541 Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; 542 // This array is indexed by AccessIsWrite and Experiment. 543 Function *AsanErrorCallbackSized[2][2]; 544 Function *AsanMemoryAccessCallbackSized[2][2]; 545 Function *AsanMemmove, *AsanMemcpy, *AsanMemset; 546 InlineAsm *EmptyAsm; 547 GlobalsMetadata GlobalsMD; 548 DenseMap<AllocaInst *, bool> ProcessedAllocas; 549 550 friend struct FunctionStackPoisoner; 551 }; 552 553 class AddressSanitizerModule : public ModulePass { 554 public: 555 explicit AddressSanitizerModule(bool CompileKernel = false, 556 bool Recover = false) 557 : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan), 558 Recover(Recover || ClRecover) {} 559 bool runOnModule(Module &M) override; 560 static char ID; // Pass identification, replacement for typeid 561 const char *getPassName() const override { return "AddressSanitizerModule"; } 562 563 private: 564 void initializeCallbacks(Module &M); 565 566 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M); 567 bool ShouldInstrumentGlobal(GlobalVariable *G); 568 bool ShouldUseMachOGlobalsSection() const; 569 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); 570 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 571 size_t MinRedzoneSizeForGlobal() const { 572 return RedzoneSizeForScale(Mapping.Scale); 573 } 574 575 GlobalsMetadata GlobalsMD; 576 bool CompileKernel; 577 bool Recover; 578 Type *IntptrTy; 579 LLVMContext *C; 580 Triple TargetTriple; 581 ShadowMapping Mapping; 582 Function *AsanPoisonGlobals; 583 Function *AsanUnpoisonGlobals; 584 Function *AsanRegisterGlobals; 585 Function *AsanUnregisterGlobals; 586 Function *AsanRegisterImageGlobals; 587 Function *AsanUnregisterImageGlobals; 588 }; 589 590 // Stack poisoning does not play well with exception handling. 591 // When an exception is thrown, we essentially bypass the code 592 // that unpoisones the stack. This is why the run-time library has 593 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 594 // stack in the interceptor. This however does not work inside the 595 // actual function which catches the exception. Most likely because the 596 // compiler hoists the load of the shadow value somewhere too high. 597 // This causes asan to report a non-existing bug on 453.povray. 598 // It sounds like an LLVM bug. 599 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 600 Function &F; 601 AddressSanitizer &ASan; 602 DIBuilder DIB; 603 LLVMContext *C; 604 Type *IntptrTy; 605 Type *IntptrPtrTy; 606 ShadowMapping Mapping; 607 608 SmallVector<AllocaInst *, 16> AllocaVec; 609 SmallSetVector<AllocaInst *, 16> NonInstrumentedStaticAllocaVec; 610 SmallVector<Instruction *, 8> RetVec; 611 unsigned StackAlignment; 612 613 Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], 614 *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; 615 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; 616 Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc; 617 618 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 619 struct AllocaPoisonCall { 620 IntrinsicInst *InsBefore; 621 AllocaInst *AI; 622 uint64_t Size; 623 bool DoPoison; 624 }; 625 SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec; 626 627 SmallVector<AllocaInst *, 1> DynamicAllocaVec; 628 SmallVector<IntrinsicInst *, 1> StackRestoreVec; 629 AllocaInst *DynamicAllocaLayout = nullptr; 630 IntrinsicInst *LocalEscapeCall = nullptr; 631 632 // Maps Value to an AllocaInst from which the Value is originated. 633 typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy; 634 AllocaForValueMapTy AllocaForValue; 635 636 bool HasNonEmptyInlineAsm = false; 637 bool HasReturnsTwiceCall = false; 638 std::unique_ptr<CallInst> EmptyInlineAsm; 639 640 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 641 : F(F), 642 ASan(ASan), 643 DIB(*F.getParent(), /*AllowUnresolved*/ false), 644 C(ASan.C), 645 IntptrTy(ASan.IntptrTy), 646 IntptrPtrTy(PointerType::get(IntptrTy, 0)), 647 Mapping(ASan.Mapping), 648 StackAlignment(1 << Mapping.Scale), 649 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {} 650 651 bool runOnFunction() { 652 if (!ClStack) return false; 653 // Collect alloca, ret, lifetime instructions etc. 654 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); 655 656 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; 657 658 initializeCallbacks(*F.getParent()); 659 660 poisonStack(); 661 662 if (ClDebugStack) { 663 DEBUG(dbgs() << F); 664 } 665 return true; 666 } 667 668 // Finds all Alloca instructions and puts 669 // poisoned red zones around all of them. 670 // Then unpoison everything back before the function returns. 671 void poisonStack(); 672 673 void createDynamicAllocasInitStorage(); 674 675 // ----------------------- Visitors. 676 /// \brief Collect all Ret instructions. 677 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); } 678 679 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, 680 Value *SavedStack) { 681 IRBuilder<> IRB(InstBefore); 682 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); 683 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we 684 // need to adjust extracted SP to compute the address of the most recent 685 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for 686 // this purpose. 687 if (!isa<ReturnInst>(InstBefore)) { 688 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( 689 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, 690 {IntptrTy}); 691 692 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); 693 694 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), 695 DynamicAreaOffset); 696 } 697 698 IRB.CreateCall(AsanAllocasUnpoisonFunc, 699 {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr}); 700 } 701 702 // Unpoison dynamic allocas redzones. 703 void unpoisonDynamicAllocas() { 704 for (auto &Ret : RetVec) 705 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); 706 707 for (auto &StackRestoreInst : StackRestoreVec) 708 unpoisonDynamicAllocasBeforeInst(StackRestoreInst, 709 StackRestoreInst->getOperand(0)); 710 } 711 712 // Deploy and poison redzones around dynamic alloca call. To do this, we 713 // should replace this call with another one with changed parameters and 714 // replace all its uses with new address, so 715 // addr = alloca type, old_size, align 716 // is replaced by 717 // new_size = (old_size + additional_size) * sizeof(type) 718 // tmp = alloca i8, new_size, max(align, 32) 719 // addr = tmp + 32 (first 32 bytes are for the left redzone). 720 // Additional_size is added to make new memory allocation contain not only 721 // requested memory, but also left, partial and right redzones. 722 void handleDynamicAllocaCall(AllocaInst *AI); 723 724 /// \brief Collect Alloca instructions we want (and can) handle. 725 void visitAllocaInst(AllocaInst &AI) { 726 if (!ASan.isInterestingAlloca(AI)) { 727 if (AI.isStaticAlloca()) NonInstrumentedStaticAllocaVec.insert(&AI); 728 return; 729 } 730 731 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 732 if (!AI.isStaticAlloca()) 733 DynamicAllocaVec.push_back(&AI); 734 else 735 AllocaVec.push_back(&AI); 736 } 737 738 /// \brief Collect lifetime intrinsic calls to check for use-after-scope 739 /// errors. 740 void visitIntrinsicInst(IntrinsicInst &II) { 741 Intrinsic::ID ID = II.getIntrinsicID(); 742 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); 743 if (ID == Intrinsic::localescape) LocalEscapeCall = &II; 744 if (!ASan.UseAfterScope) 745 return; 746 if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end) 747 return; 748 // Found lifetime intrinsic, add ASan instrumentation if necessary. 749 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 750 // If size argument is undefined, don't do anything. 751 if (Size->isMinusOne()) return; 752 // Check that size doesn't saturate uint64_t and can 753 // be stored in IntptrTy. 754 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 755 if (SizeValue == ~0ULL || 756 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 757 return; 758 // Find alloca instruction that corresponds to llvm.lifetime argument. 759 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); 760 if (!AI || !ASan.isInterestingAlloca(*AI)) 761 return; 762 bool DoPoison = (ID == Intrinsic::lifetime_end); 763 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; 764 AllocaPoisonCallVec.push_back(APC); 765 } 766 767 void visitCallSite(CallSite CS) { 768 Instruction *I = CS.getInstruction(); 769 if (CallInst *CI = dyn_cast<CallInst>(I)) { 770 HasNonEmptyInlineAsm |= 771 CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get()); 772 HasReturnsTwiceCall |= CI->canReturnTwice(); 773 } 774 } 775 776 // ---------------------- Helpers. 777 void initializeCallbacks(Module &M); 778 779 bool doesDominateAllExits(const Instruction *I) const { 780 for (auto Ret : RetVec) { 781 if (!ASan.getDominatorTree().dominates(I, Ret)) return false; 782 } 783 return true; 784 } 785 786 /// Finds alloca where the value comes from. 787 AllocaInst *findAllocaForValue(Value *V); 788 void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB, 789 Value *ShadowBase, bool DoPoison); 790 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); 791 792 void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase, 793 int Size); 794 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, 795 bool Dynamic); 796 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, 797 Instruction *ThenTerm, Value *ValueIfFalse); 798 }; 799 800 } // anonymous namespace 801 802 char AddressSanitizer::ID = 0; 803 INITIALIZE_PASS_BEGIN( 804 AddressSanitizer, "asan", 805 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 806 false) 807 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 808 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 809 INITIALIZE_PASS_END( 810 AddressSanitizer, "asan", 811 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, 812 false) 813 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, 814 bool Recover, 815 bool UseAfterScope) { 816 assert(!CompileKernel || Recover); 817 return new AddressSanitizer(CompileKernel, Recover, UseAfterScope); 818 } 819 820 char AddressSanitizerModule::ID = 0; 821 INITIALIZE_PASS( 822 AddressSanitizerModule, "asan-module", 823 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 824 "ModulePass", 825 false, false) 826 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel, 827 bool Recover) { 828 assert(!CompileKernel || Recover); 829 return new AddressSanitizerModule(CompileKernel, Recover); 830 } 831 832 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 833 size_t Res = countTrailingZeros(TypeSize / 8); 834 assert(Res < kNumberOfAccessSizes); 835 return Res; 836 } 837 838 // \brief Create a constant for Str so that we can pass it to the run-time lib. 839 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str, 840 bool AllowMerging) { 841 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 842 // We use private linkage for module-local strings. If they can be merged 843 // with another one, we set the unnamed_addr attribute. 844 GlobalVariable *GV = 845 new GlobalVariable(M, StrConst->getType(), true, 846 GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix); 847 if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 848 GV->setAlignment(1); // Strings may not be merged w/o setting align 1. 849 return GV; 850 } 851 852 /// \brief Create a global describing a source location. 853 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, 854 LocationMetadata MD) { 855 Constant *LocData[] = { 856 createPrivateGlobalForString(M, MD.Filename, true), 857 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), 858 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), 859 }; 860 auto LocStruct = ConstantStruct::getAnon(LocData); 861 auto GV = new GlobalVariable(M, LocStruct->getType(), true, 862 GlobalValue::PrivateLinkage, LocStruct, 863 kAsanGenPrefix); 864 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 865 return GV; 866 } 867 868 /// \brief Check if \p G has been created by a trusted compiler pass. 869 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { 870 // Do not instrument asan globals. 871 if (G->getName().startswith(kAsanGenPrefix) || 872 G->getName().startswith(kSanCovGenPrefix) || 873 G->getName().startswith(kODRGenPrefix)) 874 return true; 875 876 // Do not instrument gcov counter arrays. 877 if (G->getName() == "__llvm_gcov_ctr") 878 return true; 879 880 return false; 881 } 882 883 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 884 // Shadow >> scale 885 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 886 if (Mapping.Offset == 0) return Shadow; 887 // (Shadow >> scale) | offset 888 if (Mapping.OrShadowOffset) 889 return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); 890 else 891 return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); 892 } 893 894 // Instrument memset/memmove/memcpy 895 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 896 IRBuilder<> IRB(MI); 897 if (isa<MemTransferInst>(MI)) { 898 IRB.CreateCall( 899 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, 900 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 901 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), 902 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 903 } else if (isa<MemSetInst>(MI)) { 904 IRB.CreateCall( 905 AsanMemset, 906 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), 907 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), 908 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); 909 } 910 MI->eraseFromParent(); 911 } 912 913 /// Check if we want (and can) handle this alloca. 914 bool AddressSanitizer::isInterestingAlloca(AllocaInst &AI) { 915 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); 916 917 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) 918 return PreviouslySeenAllocaInfo->getSecond(); 919 920 bool IsInteresting = 921 (AI.getAllocatedType()->isSized() && 922 // alloca() may be called with 0 size, ignore it. 923 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(&AI) > 0) && 924 // We are only interested in allocas not promotable to registers. 925 // Promotable allocas are common under -O0. 926 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && 927 // inalloca allocas are not treated as static, and we don't want 928 // dynamic alloca instrumentation for them as well. 929 !AI.isUsedWithInAlloca()); 930 931 ProcessedAllocas[&AI] = IsInteresting; 932 return IsInteresting; 933 } 934 935 /// If I is an interesting memory access, return the PointerOperand 936 /// and set IsWrite/Alignment. Otherwise return nullptr. 937 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I, 938 bool *IsWrite, 939 uint64_t *TypeSize, 940 unsigned *Alignment) { 941 // Skip memory accesses inserted by another instrumentation. 942 if (I->getMetadata("nosanitize")) return nullptr; 943 944 Value *PtrOperand = nullptr; 945 const DataLayout &DL = I->getModule()->getDataLayout(); 946 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 947 if (!ClInstrumentReads) return nullptr; 948 *IsWrite = false; 949 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType()); 950 *Alignment = LI->getAlignment(); 951 PtrOperand = LI->getPointerOperand(); 952 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 953 if (!ClInstrumentWrites) return nullptr; 954 *IsWrite = true; 955 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType()); 956 *Alignment = SI->getAlignment(); 957 PtrOperand = SI->getPointerOperand(); 958 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 959 if (!ClInstrumentAtomics) return nullptr; 960 *IsWrite = true; 961 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType()); 962 *Alignment = 0; 963 PtrOperand = RMW->getPointerOperand(); 964 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 965 if (!ClInstrumentAtomics) return nullptr; 966 *IsWrite = true; 967 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType()); 968 *Alignment = 0; 969 PtrOperand = XCHG->getPointerOperand(); 970 } 971 972 // Do not instrument acesses from different address spaces; we cannot deal 973 // with them. 974 if (PtrOperand) { 975 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType()); 976 if (PtrTy->getPointerAddressSpace() != 0) 977 return nullptr; 978 } 979 980 // Treat memory accesses to promotable allocas as non-interesting since they 981 // will not cause memory violations. This greatly speeds up the instrumented 982 // executable at -O0. 983 if (ClSkipPromotableAllocas) 984 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand)) 985 return isInterestingAlloca(*AI) ? AI : nullptr; 986 987 return PtrOperand; 988 } 989 990 static bool isPointerOperand(Value *V) { 991 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); 992 } 993 994 // This is a rough heuristic; it may cause both false positives and 995 // false negatives. The proper implementation requires cooperation with 996 // the frontend. 997 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) { 998 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { 999 if (!Cmp->isRelational()) return false; 1000 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 1001 if (BO->getOpcode() != Instruction::Sub) return false; 1002 } else { 1003 return false; 1004 } 1005 return isPointerOperand(I->getOperand(0)) && 1006 isPointerOperand(I->getOperand(1)); 1007 } 1008 1009 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { 1010 // If a global variable does not have dynamic initialization we don't 1011 // have to instrument it. However, if a global does not have initializer 1012 // at all, we assume it has dynamic initializer (in other TU). 1013 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; 1014 } 1015 1016 void AddressSanitizer::instrumentPointerComparisonOrSubtraction( 1017 Instruction *I) { 1018 IRBuilder<> IRB(I); 1019 Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; 1020 Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; 1021 for (Value *&i : Param) { 1022 if (i->getType()->isPointerTy()) 1023 i = IRB.CreatePointerCast(i, IntptrTy); 1024 } 1025 IRB.CreateCall(F, Param); 1026 } 1027 1028 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, 1029 Instruction *I, bool UseCalls, 1030 const DataLayout &DL) { 1031 bool IsWrite = false; 1032 unsigned Alignment = 0; 1033 uint64_t TypeSize = 0; 1034 Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment); 1035 assert(Addr); 1036 1037 // Optimization experiments. 1038 // The experiments can be used to evaluate potential optimizations that remove 1039 // instrumentation (assess false negatives). Instead of completely removing 1040 // some instrumentation, you set Exp to a non-zero value (mask of optimization 1041 // experiments that want to remove instrumentation of this instruction). 1042 // If Exp is non-zero, this pass will emit special calls into runtime 1043 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls 1044 // make runtime terminate the program in a special way (with a different 1045 // exit status). Then you run the new compiler on a buggy corpus, collect 1046 // the special terminations (ideally, you don't see them at all -- no false 1047 // negatives) and make the decision on the optimization. 1048 uint32_t Exp = ClForceExperiment; 1049 1050 if (ClOpt && ClOptGlobals) { 1051 // If initialization order checking is disabled, a simple access to a 1052 // dynamically initialized global is always valid. 1053 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL)); 1054 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && 1055 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1056 NumOptimizedAccessesToGlobalVar++; 1057 return; 1058 } 1059 } 1060 1061 if (ClOpt && ClOptStack) { 1062 // A direct inbounds access to a stack variable is always valid. 1063 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) && 1064 isSafeAccess(ObjSizeVis, Addr, TypeSize)) { 1065 NumOptimizedAccessesToStackVar++; 1066 return; 1067 } 1068 } 1069 1070 if (IsWrite) 1071 NumInstrumentedWrites++; 1072 else 1073 NumInstrumentedReads++; 1074 1075 unsigned Granularity = 1 << Mapping.Scale; 1076 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check 1077 // if the data is properly aligned. 1078 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || 1079 TypeSize == 128) && 1080 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8)) 1081 return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls, 1082 Exp); 1083 instrumentUnusualSizeOrAlignment(I, Addr, TypeSize, IsWrite, nullptr, 1084 UseCalls, Exp); 1085 } 1086 1087 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, 1088 Value *Addr, bool IsWrite, 1089 size_t AccessSizeIndex, 1090 Value *SizeArgument, 1091 uint32_t Exp) { 1092 IRBuilder<> IRB(InsertBefore); 1093 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); 1094 CallInst *Call = nullptr; 1095 if (SizeArgument) { 1096 if (Exp == 0) 1097 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], 1098 {Addr, SizeArgument}); 1099 else 1100 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], 1101 {Addr, SizeArgument, ExpVal}); 1102 } else { 1103 if (Exp == 0) 1104 Call = 1105 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); 1106 else 1107 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], 1108 {Addr, ExpVal}); 1109 } 1110 1111 // We don't do Call->setDoesNotReturn() because the BB already has 1112 // UnreachableInst at the end. 1113 // This EmptyAsm is required to avoid callback merge. 1114 IRB.CreateCall(EmptyAsm, {}); 1115 return Call; 1116 } 1117 1118 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 1119 Value *ShadowValue, 1120 uint32_t TypeSize) { 1121 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; 1122 // Addr & (Granularity - 1) 1123 Value *LastAccessedByte = 1124 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 1125 // (Addr & (Granularity - 1)) + size - 1 1126 if (TypeSize / 8 > 1) 1127 LastAccessedByte = IRB.CreateAdd( 1128 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 1129 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 1130 LastAccessedByte = 1131 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); 1132 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 1133 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 1134 } 1135 1136 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 1137 Instruction *InsertBefore, Value *Addr, 1138 uint32_t TypeSize, bool IsWrite, 1139 Value *SizeArgument, bool UseCalls, 1140 uint32_t Exp) { 1141 IRBuilder<> IRB(InsertBefore); 1142 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1143 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 1144 1145 if (UseCalls) { 1146 if (Exp == 0) 1147 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], 1148 AddrLong); 1149 else 1150 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], 1151 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1152 return; 1153 } 1154 1155 Type *ShadowTy = 1156 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); 1157 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 1158 Value *ShadowPtr = memToShadow(AddrLong, IRB); 1159 Value *CmpVal = Constant::getNullValue(ShadowTy); 1160 Value *ShadowValue = 1161 IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 1162 1163 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 1164 size_t Granularity = 1ULL << Mapping.Scale; 1165 TerminatorInst *CrashTerm = nullptr; 1166 1167 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 1168 // We use branch weights for the slow path check, to indicate that the slow 1169 // path is rarely taken. This seems to be the case for SPEC benchmarks. 1170 TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen( 1171 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); 1172 assert(cast<BranchInst>(CheckTerm)->isUnconditional()); 1173 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 1174 IRB.SetInsertPoint(CheckTerm); 1175 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 1176 if (Recover) { 1177 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); 1178 } else { 1179 BasicBlock *CrashBlock = 1180 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 1181 CrashTerm = new UnreachableInst(*C, CrashBlock); 1182 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 1183 ReplaceInstWithInst(CheckTerm, NewTerm); 1184 } 1185 } else { 1186 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); 1187 } 1188 1189 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, 1190 AccessSizeIndex, SizeArgument, Exp); 1191 Crash->setDebugLoc(OrigIns->getDebugLoc()); 1192 } 1193 1194 // Instrument unusual size or unusual alignment. 1195 // We can not do it with a single check, so we do 1-byte check for the first 1196 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 1197 // to report the actual access size. 1198 void AddressSanitizer::instrumentUnusualSizeOrAlignment( 1199 Instruction *I, Value *Addr, uint32_t TypeSize, bool IsWrite, 1200 Value *SizeArgument, bool UseCalls, uint32_t Exp) { 1201 IRBuilder<> IRB(I); 1202 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 1203 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 1204 if (UseCalls) { 1205 if (Exp == 0) 1206 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], 1207 {AddrLong, Size}); 1208 else 1209 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], 1210 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); 1211 } else { 1212 Value *LastByte = IRB.CreateIntToPtr( 1213 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 1214 Addr->getType()); 1215 instrumentAddress(I, I, Addr, 8, IsWrite, Size, false, Exp); 1216 instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false, Exp); 1217 } 1218 } 1219 1220 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit, 1221 GlobalValue *ModuleName) { 1222 // Set up the arguments to our poison/unpoison functions. 1223 IRBuilder<> IRB(&GlobalInit.front(), 1224 GlobalInit.front().getFirstInsertionPt()); 1225 1226 // Add a call to poison all external globals before the given function starts. 1227 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 1228 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 1229 1230 // Add calls to unpoison all globals before each return instruction. 1231 for (auto &BB : GlobalInit.getBasicBlockList()) 1232 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1233 CallInst::Create(AsanUnpoisonGlobals, "", RI); 1234 } 1235 1236 void AddressSanitizerModule::createInitializerPoisonCalls( 1237 Module &M, GlobalValue *ModuleName) { 1238 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1239 1240 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1241 for (Use &OP : CA->operands()) { 1242 if (isa<ConstantAggregateZero>(OP)) continue; 1243 ConstantStruct *CS = cast<ConstantStruct>(OP); 1244 1245 // Must have a function or null ptr. 1246 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { 1247 if (F->getName() == kAsanModuleCtorName) continue; 1248 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1249 // Don't instrument CTORs that will run before asan.module_ctor. 1250 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue; 1251 poisonOneInitializer(*F, ModuleName); 1252 } 1253 } 1254 } 1255 1256 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { 1257 Type *Ty = G->getValueType(); 1258 DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 1259 1260 if (GlobalsMD.get(G).IsBlacklisted) return false; 1261 if (!Ty->isSized()) return false; 1262 if (!G->hasInitializer()) return false; 1263 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. 1264 // Touch only those globals that will not be defined in other modules. 1265 // Don't handle ODR linkage types and COMDATs since other modules may be built 1266 // without ASan. 1267 if (G->getLinkage() != GlobalVariable::ExternalLinkage && 1268 G->getLinkage() != GlobalVariable::PrivateLinkage && 1269 G->getLinkage() != GlobalVariable::InternalLinkage) 1270 return false; 1271 if (G->hasComdat()) return false; 1272 // Two problems with thread-locals: 1273 // - The address of the main thread's copy can't be computed at link-time. 1274 // - Need to poison all copies, not just the main thread's one. 1275 if (G->isThreadLocal()) return false; 1276 // For now, just ignore this Global if the alignment is large. 1277 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false; 1278 1279 if (G->hasSection()) { 1280 StringRef Section = G->getSection(); 1281 1282 // Globals from llvm.metadata aren't emitted, do not instrument them. 1283 if (Section == "llvm.metadata") return false; 1284 // Do not instrument globals from special LLVM sections. 1285 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; 1286 1287 // Do not instrument function pointers to initialization and termination 1288 // routines: dynamic linker will not properly handle redzones. 1289 if (Section.startswith(".preinit_array") || 1290 Section.startswith(".init_array") || 1291 Section.startswith(".fini_array")) { 1292 return false; 1293 } 1294 1295 // Callbacks put into the CRT initializer/terminator sections 1296 // should not be instrumented. 1297 // See https://code.google.com/p/address-sanitizer/issues/detail?id=305 1298 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx 1299 if (Section.startswith(".CRT")) { 1300 DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n"); 1301 return false; 1302 } 1303 1304 if (TargetTriple.isOSBinFormatMachO()) { 1305 StringRef ParsedSegment, ParsedSection; 1306 unsigned TAA = 0, StubSize = 0; 1307 bool TAAParsed; 1308 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( 1309 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); 1310 assert(ErrorCode.empty() && "Invalid section specifier."); 1311 1312 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 1313 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 1314 // them. 1315 if (ParsedSegment == "__OBJC" || 1316 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { 1317 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); 1318 return false; 1319 } 1320 // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 1321 // Constant CFString instances are compiled in the following way: 1322 // -- the string buffer is emitted into 1323 // __TEXT,__cstring,cstring_literals 1324 // -- the constant NSConstantString structure referencing that buffer 1325 // is placed into __DATA,__cfstring 1326 // Therefore there's no point in placing redzones into __DATA,__cfstring. 1327 // Moreover, it causes the linker to crash on OS X 10.7 1328 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { 1329 DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); 1330 return false; 1331 } 1332 // The linker merges the contents of cstring_literals and removes the 1333 // trailing zeroes. 1334 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { 1335 DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); 1336 return false; 1337 } 1338 } 1339 } 1340 1341 return true; 1342 } 1343 1344 // On Mach-O platforms, we emit global metadata in a separate section of the 1345 // binary in order to allow the linker to properly dead strip. This is only 1346 // supported on recent versions of ld64. 1347 bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const { 1348 if (!ClUseMachOGlobalsSection) 1349 return false; 1350 1351 if (!TargetTriple.isOSBinFormatMachO()) 1352 return false; 1353 1354 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) 1355 return true; 1356 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) 1357 return true; 1358 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) 1359 return true; 1360 1361 return false; 1362 } 1363 1364 void AddressSanitizerModule::initializeCallbacks(Module &M) { 1365 IRBuilder<> IRB(*C); 1366 1367 // Declare our poisoning and unpoisoning functions. 1368 AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1369 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr)); 1370 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); 1371 AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1372 kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr)); 1373 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); 1374 1375 // Declare functions that register/unregister globals. 1376 AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1377 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1378 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); 1379 AsanUnregisterGlobals = checkSanitizerInterfaceFunction( 1380 M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(), 1381 IntptrTy, IntptrTy, nullptr)); 1382 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); 1383 1384 // Declare the functions that find globals in a shared object and then invoke 1385 // the (un)register function on them. 1386 AsanRegisterImageGlobals = checkSanitizerInterfaceFunction( 1387 M.getOrInsertFunction(kAsanRegisterImageGlobalsName, 1388 IRB.getVoidTy(), IntptrTy, nullptr)); 1389 AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage); 1390 1391 AsanUnregisterImageGlobals = checkSanitizerInterfaceFunction( 1392 M.getOrInsertFunction(kAsanUnregisterImageGlobalsName, 1393 IRB.getVoidTy(), IntptrTy, nullptr)); 1394 AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage); 1395 } 1396 1397 // This function replaces all global variables with new variables that have 1398 // trailing redzones. It also creates a function that poisons 1399 // redzones and inserts this function into llvm.global_ctors. 1400 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) { 1401 GlobalsMD.init(M); 1402 1403 SmallVector<GlobalVariable *, 16> GlobalsToChange; 1404 1405 for (auto &G : M.globals()) { 1406 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G); 1407 } 1408 1409 size_t n = GlobalsToChange.size(); 1410 if (n == 0) return false; 1411 1412 // A global is described by a structure 1413 // size_t beg; 1414 // size_t size; 1415 // size_t size_with_redzone; 1416 // const char *name; 1417 // const char *module_name; 1418 // size_t has_dynamic_init; 1419 // void *source_location; 1420 // size_t odr_indicator; 1421 // We initialize an array of such structures and pass it to a run-time call. 1422 StructType *GlobalStructTy = 1423 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, 1424 IntptrTy, IntptrTy, IntptrTy, nullptr); 1425 SmallVector<Constant *, 16> Initializers(n); 1426 1427 bool HasDynamicallyInitializedGlobals = false; 1428 1429 // We shouldn't merge same module names, as this string serves as unique 1430 // module ID in runtime. 1431 GlobalVariable *ModuleName = createPrivateGlobalForString( 1432 M, M.getModuleIdentifier(), /*AllowMerging*/ false); 1433 1434 auto &DL = M.getDataLayout(); 1435 for (size_t i = 0; i < n; i++) { 1436 static const uint64_t kMaxGlobalRedzone = 1 << 18; 1437 GlobalVariable *G = GlobalsToChange[i]; 1438 1439 auto MD = GlobalsMD.get(G); 1440 StringRef NameForGlobal = G->getName(); 1441 // Create string holding the global name (use global name from metadata 1442 // if it's available, otherwise just write the name of global variable). 1443 GlobalVariable *Name = createPrivateGlobalForString( 1444 M, MD.Name.empty() ? NameForGlobal : MD.Name, 1445 /*AllowMerging*/ true); 1446 1447 Type *Ty = G->getValueType(); 1448 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); 1449 uint64_t MinRZ = MinRedzoneSizeForGlobal(); 1450 // MinRZ <= RZ <= kMaxGlobalRedzone 1451 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 1452 uint64_t RZ = std::max( 1453 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ)); 1454 uint64_t RightRedzoneSize = RZ; 1455 // Round up to MinRZ 1456 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 1457 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 1458 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 1459 1460 StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr); 1461 Constant *NewInitializer = 1462 ConstantStruct::get(NewTy, G->getInitializer(), 1463 Constant::getNullValue(RightRedZoneTy), nullptr); 1464 1465 // Create a new global variable with enough space for a redzone. 1466 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 1467 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 1468 Linkage = GlobalValue::InternalLinkage; 1469 GlobalVariable *NewGlobal = 1470 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, 1471 "", G, G->getThreadLocalMode()); 1472 NewGlobal->copyAttributesFrom(G); 1473 NewGlobal->setAlignment(MinRZ); 1474 1475 Value *Indices2[2]; 1476 Indices2[0] = IRB.getInt32(0); 1477 Indices2[1] = IRB.getInt32(0); 1478 1479 G->replaceAllUsesWith( 1480 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); 1481 NewGlobal->takeName(G); 1482 G->eraseFromParent(); 1483 1484 Constant *SourceLoc; 1485 if (!MD.SourceLoc.empty()) { 1486 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); 1487 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); 1488 } else { 1489 SourceLoc = ConstantInt::get(IntptrTy, 0); 1490 } 1491 1492 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); 1493 GlobalValue *InstrumentedGlobal = NewGlobal; 1494 1495 bool CanUsePrivateAliases = TargetTriple.isOSBinFormatELF(); 1496 if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) { 1497 // Create local alias for NewGlobal to avoid crash on ODR between 1498 // instrumented and non-instrumented libraries. 1499 auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage, 1500 NameForGlobal + M.getName(), NewGlobal); 1501 1502 // With local aliases, we need to provide another externally visible 1503 // symbol __odr_asan_XXX to detect ODR violation. 1504 auto *ODRIndicatorSym = 1505 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, 1506 Constant::getNullValue(IRB.getInt8Ty()), 1507 kODRGenPrefix + NameForGlobal, nullptr, 1508 NewGlobal->getThreadLocalMode()); 1509 1510 // Set meaningful attributes for indicator symbol. 1511 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); 1512 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); 1513 ODRIndicatorSym->setAlignment(1); 1514 ODRIndicator = ODRIndicatorSym; 1515 InstrumentedGlobal = GA; 1516 } 1517 1518 Initializers[i] = ConstantStruct::get( 1519 GlobalStructTy, 1520 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), 1521 ConstantInt::get(IntptrTy, SizeInBytes), 1522 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 1523 ConstantExpr::getPointerCast(Name, IntptrTy), 1524 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 1525 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, 1526 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy), nullptr); 1527 1528 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; 1529 1530 DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 1531 } 1532 1533 1534 GlobalVariable *AllGlobals = nullptr; 1535 GlobalVariable *RegisteredFlag = nullptr; 1536 1537 // On recent Mach-O platforms, we emit the global metadata in a way that 1538 // allows the linker to properly strip dead globals. 1539 if (ShouldUseMachOGlobalsSection()) { 1540 // RegisteredFlag serves two purposes. First, we can pass it to dladdr() 1541 // to look up the loaded image that contains it. Second, we can store in it 1542 // whether registration has already occurred, to prevent duplicate 1543 // registration. 1544 // 1545 // Common linkage allows us to coalesce needles defined in each object 1546 // file so that there's only one per shared library. 1547 RegisteredFlag = new GlobalVariable( 1548 M, IntptrTy, false, GlobalVariable::CommonLinkage, 1549 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); 1550 1551 // We also emit a structure which binds the liveness of the global 1552 // variable to the metadata struct. 1553 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy, nullptr); 1554 1555 for (size_t i = 0; i < n; i++) { 1556 GlobalVariable *Metadata = new GlobalVariable( 1557 M, GlobalStructTy, false, GlobalVariable::InternalLinkage, 1558 Initializers[i], ""); 1559 Metadata->setSection("__DATA,__asan_globals,regular"); 1560 Metadata->setAlignment(1); // don't leave padding in between 1561 1562 auto LivenessBinder = ConstantStruct::get(LivenessTy, 1563 Initializers[i]->getAggregateElement(0u), 1564 ConstantExpr::getPointerCast(Metadata, IntptrTy), 1565 nullptr); 1566 GlobalVariable *Liveness = new GlobalVariable( 1567 M, LivenessTy, false, GlobalVariable::InternalLinkage, 1568 LivenessBinder, ""); 1569 Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); 1570 } 1571 } else { 1572 // On all other platfoms, we just emit an array of global metadata 1573 // structures. 1574 ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); 1575 AllGlobals = new GlobalVariable( 1576 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 1577 ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); 1578 } 1579 1580 // Create calls for poisoning before initializers run and unpoisoning after. 1581 if (HasDynamicallyInitializedGlobals) 1582 createInitializerPoisonCalls(M, ModuleName); 1583 1584 // Create a call to register the globals with the runtime. 1585 if (ShouldUseMachOGlobalsSection()) { 1586 IRB.CreateCall(AsanRegisterImageGlobals, 1587 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1588 } else { 1589 IRB.CreateCall(AsanRegisterGlobals, 1590 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1591 ConstantInt::get(IntptrTy, n)}); 1592 } 1593 1594 // We also need to unregister globals at the end, e.g., when a shared library 1595 // gets closed. 1596 Function *AsanDtorFunction = 1597 Function::Create(FunctionType::get(Type::getVoidTy(*C), false), 1598 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 1599 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 1600 IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); 1601 1602 if (ShouldUseMachOGlobalsSection()) { 1603 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, 1604 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); 1605 } else { 1606 IRB_Dtor.CreateCall(AsanUnregisterGlobals, 1607 {IRB.CreatePointerCast(AllGlobals, IntptrTy), 1608 ConstantInt::get(IntptrTy, n)}); 1609 } 1610 1611 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority); 1612 1613 DEBUG(dbgs() << M); 1614 return true; 1615 } 1616 1617 bool AddressSanitizerModule::runOnModule(Module &M) { 1618 C = &(M.getContext()); 1619 int LongSize = M.getDataLayout().getPointerSizeInBits(); 1620 IntptrTy = Type::getIntNTy(*C, LongSize); 1621 TargetTriple = Triple(M.getTargetTriple()); 1622 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 1623 initializeCallbacks(M); 1624 1625 bool Changed = false; 1626 1627 // TODO(glider): temporarily disabled globals instrumentation for KASan. 1628 if (ClGlobals && !CompileKernel) { 1629 Function *CtorFunc = M.getFunction(kAsanModuleCtorName); 1630 assert(CtorFunc); 1631 IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator()); 1632 Changed |= InstrumentGlobals(IRB, M); 1633 } 1634 1635 return Changed; 1636 } 1637 1638 void AddressSanitizer::initializeCallbacks(Module &M) { 1639 IRBuilder<> IRB(*C); 1640 // Create __asan_report* callbacks. 1641 // IsWrite, TypeSize and Exp are encoded in the function name. 1642 for (int Exp = 0; Exp < 2; Exp++) { 1643 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 1644 const std::string TypeStr = AccessIsWrite ? "store" : "load"; 1645 const std::string ExpStr = Exp ? "exp_" : ""; 1646 const std::string SuffixStr = CompileKernel ? "N" : "_n"; 1647 const std::string EndingStr = Recover ? "_noabort" : ""; 1648 Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr; 1649 AsanErrorCallbackSized[AccessIsWrite][Exp] = 1650 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1651 kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr, 1652 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr)); 1653 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = 1654 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1655 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, 1656 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr)); 1657 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 1658 AccessSizeIndex++) { 1659 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); 1660 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = 1661 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1662 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, 1663 IRB.getVoidTy(), IntptrTy, ExpType, nullptr)); 1664 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = 1665 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1666 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, 1667 IRB.getVoidTy(), IntptrTy, ExpType, nullptr)); 1668 } 1669 } 1670 } 1671 1672 const std::string MemIntrinCallbackPrefix = 1673 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; 1674 AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1675 MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(), 1676 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); 1677 AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1678 MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(), 1679 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr)); 1680 AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1681 MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(), 1682 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr)); 1683 1684 AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction( 1685 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr)); 1686 1687 AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1688 kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1689 AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1690 kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1691 // We insert an empty inline asm after __asan_report* to avoid callback merge. 1692 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 1693 StringRef(""), StringRef(""), 1694 /*hasSideEffects=*/true); 1695 } 1696 1697 // virtual 1698 bool AddressSanitizer::doInitialization(Module &M) { 1699 // Initialize the private fields. No one has accessed them before. 1700 1701 GlobalsMD.init(M); 1702 1703 C = &(M.getContext()); 1704 LongSize = M.getDataLayout().getPointerSizeInBits(); 1705 IntptrTy = Type::getIntNTy(*C, LongSize); 1706 TargetTriple = Triple(M.getTargetTriple()); 1707 1708 if (!CompileKernel) { 1709 std::tie(AsanCtorFunction, AsanInitFunction) = 1710 createSanitizerCtorAndInitFunctions( 1711 M, kAsanModuleCtorName, kAsanInitName, 1712 /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName); 1713 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority); 1714 } 1715 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel); 1716 return true; 1717 } 1718 1719 bool AddressSanitizer::doFinalization(Module &M) { 1720 GlobalsMD.reset(); 1721 return false; 1722 } 1723 1724 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 1725 // For each NSObject descendant having a +load method, this method is invoked 1726 // by the ObjC runtime before any of the static constructors is called. 1727 // Therefore we need to instrument such methods with a call to __asan_init 1728 // at the beginning in order to initialize our runtime before any access to 1729 // the shadow memory. 1730 // We cannot just ignore these methods, because they may call other 1731 // instrumented functions. 1732 if (F.getName().find(" load]") != std::string::npos) { 1733 IRBuilder<> IRB(&F.front(), F.front().begin()); 1734 IRB.CreateCall(AsanInitFunction, {}); 1735 return true; 1736 } 1737 return false; 1738 } 1739 1740 void AddressSanitizer::markEscapedLocalAllocas(Function &F) { 1741 // Find the one possible call to llvm.localescape and pre-mark allocas passed 1742 // to it as uninteresting. This assumes we haven't started processing allocas 1743 // yet. This check is done up front because iterating the use list in 1744 // isInterestingAlloca would be algorithmically slower. 1745 assert(ProcessedAllocas.empty() && "must process localescape before allocas"); 1746 1747 // Try to get the declaration of llvm.localescape. If it's not in the module, 1748 // we can exit early. 1749 if (!F.getParent()->getFunction("llvm.localescape")) return; 1750 1751 // Look for a call to llvm.localescape call in the entry block. It can't be in 1752 // any other block. 1753 for (Instruction &I : F.getEntryBlock()) { 1754 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 1755 if (II && II->getIntrinsicID() == Intrinsic::localescape) { 1756 // We found a call. Mark all the allocas passed in as uninteresting. 1757 for (Value *Arg : II->arg_operands()) { 1758 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 1759 assert(AI && AI->isStaticAlloca() && 1760 "non-static alloca arg to localescape"); 1761 ProcessedAllocas[AI] = false; 1762 } 1763 break; 1764 } 1765 } 1766 } 1767 1768 bool AddressSanitizer::runOnFunction(Function &F) { 1769 if (&F == AsanCtorFunction) return false; 1770 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 1771 DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 1772 initializeCallbacks(*F.getParent()); 1773 1774 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1775 1776 // If needed, insert __asan_init before checking for SanitizeAddress attr. 1777 maybeInsertAsanInitAtFunctionEntry(F); 1778 1779 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false; 1780 1781 if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false; 1782 1783 FunctionStateRAII CleanupObj(this); 1784 1785 // We can't instrument allocas used with llvm.localescape. Only static allocas 1786 // can be passed to that intrinsic. 1787 markEscapedLocalAllocas(F); 1788 1789 // We want to instrument every address only once per basic block (unless there 1790 // are calls between uses). 1791 SmallSet<Value *, 16> TempsToInstrument; 1792 SmallVector<Instruction *, 16> ToInstrument; 1793 SmallVector<Instruction *, 8> NoReturnCalls; 1794 SmallVector<BasicBlock *, 16> AllBlocks; 1795 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; 1796 int NumAllocas = 0; 1797 bool IsWrite; 1798 unsigned Alignment; 1799 uint64_t TypeSize; 1800 const TargetLibraryInfo *TLI = 1801 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1802 1803 // Fill the set of memory operations to instrument. 1804 for (auto &BB : F) { 1805 AllBlocks.push_back(&BB); 1806 TempsToInstrument.clear(); 1807 int NumInsnsPerBB = 0; 1808 for (auto &Inst : BB) { 1809 if (LooksLikeCodeInBug11395(&Inst)) return false; 1810 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize, 1811 &Alignment)) { 1812 if (ClOpt && ClOptSameTemp) { 1813 if (!TempsToInstrument.insert(Addr).second) 1814 continue; // We've seen this temp in the current BB. 1815 } 1816 } else if (ClInvalidPointerPairs && 1817 isInterestingPointerComparisonOrSubtraction(&Inst)) { 1818 PointerComparisonsOrSubtracts.push_back(&Inst); 1819 continue; 1820 } else if (isa<MemIntrinsic>(Inst)) { 1821 // ok, take it. 1822 } else { 1823 if (isa<AllocaInst>(Inst)) NumAllocas++; 1824 CallSite CS(&Inst); 1825 if (CS) { 1826 // A call inside BB. 1827 TempsToInstrument.clear(); 1828 if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction()); 1829 } 1830 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) 1831 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); 1832 continue; 1833 } 1834 ToInstrument.push_back(&Inst); 1835 NumInsnsPerBB++; 1836 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; 1837 } 1838 } 1839 1840 bool UseCalls = 1841 CompileKernel || 1842 (ClInstrumentationWithCallsThreshold >= 0 && 1843 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold); 1844 const DataLayout &DL = F.getParent()->getDataLayout(); 1845 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), 1846 /*RoundToAlign=*/true); 1847 1848 // Instrument. 1849 int NumInstrumented = 0; 1850 for (auto Inst : ToInstrument) { 1851 if (ClDebugMin < 0 || ClDebugMax < 0 || 1852 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 1853 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment)) 1854 instrumentMop(ObjSizeVis, Inst, UseCalls, 1855 F.getParent()->getDataLayout()); 1856 else 1857 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 1858 } 1859 NumInstrumented++; 1860 } 1861 1862 FunctionStackPoisoner FSP(F, *this); 1863 bool ChangedStack = FSP.runOnFunction(); 1864 1865 // We must unpoison the stack before every NoReturn call (throw, _exit, etc). 1866 // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 1867 for (auto CI : NoReturnCalls) { 1868 IRBuilder<> IRB(CI); 1869 IRB.CreateCall(AsanHandleNoReturnFunc, {}); 1870 } 1871 1872 for (auto Inst : PointerComparisonsOrSubtracts) { 1873 instrumentPointerComparisonOrSubtraction(Inst); 1874 NumInstrumented++; 1875 } 1876 1877 bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty(); 1878 1879 DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n"); 1880 1881 return res; 1882 } 1883 1884 // Workaround for bug 11395: we don't want to instrument stack in functions 1885 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 1886 // FIXME: remove once the bug 11395 is fixed. 1887 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 1888 if (LongSize != 32) return false; 1889 CallInst *CI = dyn_cast<CallInst>(I); 1890 if (!CI || !CI->isInlineAsm()) return false; 1891 if (CI->getNumArgOperands() <= 5) return false; 1892 // We have inline assembly with quite a few arguments. 1893 return true; 1894 } 1895 1896 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 1897 IRBuilder<> IRB(*C); 1898 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { 1899 std::string Suffix = itostr(i); 1900 AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction( 1901 M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy, 1902 IntptrTy, nullptr)); 1903 AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction( 1904 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, 1905 IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1906 } 1907 if (ASan.UseAfterScope) { 1908 AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 1909 M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(), 1910 IntptrTy, IntptrTy, nullptr)); 1911 AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction( 1912 M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), 1913 IntptrTy, IntptrTy, nullptr)); 1914 } 1915 1916 AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1917 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1918 AsanAllocasUnpoisonFunc = 1919 checkSanitizerInterfaceFunction(M.getOrInsertFunction( 1920 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr)); 1921 } 1922 1923 void FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes, 1924 IRBuilder<> &IRB, Value *ShadowBase, 1925 bool DoPoison) { 1926 size_t n = ShadowBytes.size(); 1927 size_t i = 0; 1928 // We need to (un)poison n bytes of stack shadow. Poison as many as we can 1929 // using 64-bit stores (if we are on 64-bit arch), then poison the rest 1930 // with 32-bit stores, then with 16-byte stores, then with 8-byte stores. 1931 for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8; 1932 LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) { 1933 for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) { 1934 uint64_t Val = 0; 1935 for (size_t j = 0; j < LargeStoreSizeInBytes; j++) { 1936 if (F.getParent()->getDataLayout().isLittleEndian()) 1937 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); 1938 else 1939 Val = (Val << 8) | ShadowBytes[i + j]; 1940 } 1941 if (!Val) continue; 1942 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 1943 Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8); 1944 Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0); 1945 IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo())); 1946 } 1947 } 1948 } 1949 1950 // Fake stack allocator (asan_fake_stack.h) has 11 size classes 1951 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass 1952 static int StackMallocSizeClass(uint64_t LocalStackSize) { 1953 assert(LocalStackSize <= kMaxStackMallocSize); 1954 uint64_t MaxSize = kMinStackMallocSize; 1955 for (int i = 0;; i++, MaxSize *= 2) 1956 if (LocalStackSize <= MaxSize) return i; 1957 llvm_unreachable("impossible LocalStackSize"); 1958 } 1959 1960 // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic. 1961 // We can not use MemSet intrinsic because it may end up calling the actual 1962 // memset. Size is a multiple of 8. 1963 // Currently this generates 8-byte stores on x86_64; it may be better to 1964 // generate wider stores. 1965 void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined( 1966 IRBuilder<> &IRB, Value *ShadowBase, int Size) { 1967 assert(!(Size % 8)); 1968 1969 // kAsanStackAfterReturnMagic is 0xf5. 1970 const uint64_t kAsanStackAfterReturnMagic64 = 0xf5f5f5f5f5f5f5f5ULL; 1971 1972 for (int i = 0; i < Size; i += 8) { 1973 Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); 1974 IRB.CreateStore( 1975 ConstantInt::get(IRB.getInt64Ty(), kAsanStackAfterReturnMagic64), 1976 IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo())); 1977 } 1978 } 1979 1980 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, 1981 Value *ValueIfTrue, 1982 Instruction *ThenTerm, 1983 Value *ValueIfFalse) { 1984 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); 1985 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); 1986 PHI->addIncoming(ValueIfFalse, CondBlock); 1987 BasicBlock *ThenBlock = ThenTerm->getParent(); 1988 PHI->addIncoming(ValueIfTrue, ThenBlock); 1989 return PHI; 1990 } 1991 1992 Value *FunctionStackPoisoner::createAllocaForLayout( 1993 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { 1994 AllocaInst *Alloca; 1995 if (Dynamic) { 1996 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), 1997 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), 1998 "MyAlloca"); 1999 } else { 2000 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), 2001 nullptr, "MyAlloca"); 2002 assert(Alloca->isStaticAlloca()); 2003 } 2004 assert((ClRealignStack & (ClRealignStack - 1)) == 0); 2005 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); 2006 Alloca->setAlignment(FrameAlignment); 2007 return IRB.CreatePointerCast(Alloca, IntptrTy); 2008 } 2009 2010 void FunctionStackPoisoner::createDynamicAllocasInitStorage() { 2011 BasicBlock &FirstBB = *F.begin(); 2012 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); 2013 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); 2014 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); 2015 DynamicAllocaLayout->setAlignment(32); 2016 } 2017 2018 void FunctionStackPoisoner::poisonStack() { 2019 assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0); 2020 2021 // Insert poison calls for lifetime intrinsics for alloca. 2022 bool HavePoisonedStaticAllocas = false; 2023 for (const auto &APC : AllocaPoisonCallVec) { 2024 assert(APC.InsBefore); 2025 assert(APC.AI); 2026 assert(ASan.isInterestingAlloca(*APC.AI)); 2027 bool IsDynamicAlloca = !(*APC.AI).isStaticAlloca(); 2028 if (!ClInstrumentAllocas && IsDynamicAlloca) 2029 continue; 2030 2031 IRBuilder<> IRB(APC.InsBefore); 2032 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); 2033 // Dynamic allocas will be unpoisoned unconditionally below in 2034 // unpoisonDynamicAllocas. 2035 // Flag that we need unpoison static allocas. 2036 HavePoisonedStaticAllocas |= (APC.DoPoison && !IsDynamicAlloca); 2037 } 2038 2039 if (ClInstrumentAllocas && DynamicAllocaVec.size() > 0) { 2040 // Handle dynamic allocas. 2041 createDynamicAllocasInitStorage(); 2042 for (auto &AI : DynamicAllocaVec) handleDynamicAllocaCall(AI); 2043 2044 unpoisonDynamicAllocas(); 2045 } 2046 2047 if (AllocaVec.empty()) return; 2048 2049 int StackMallocIdx = -1; 2050 DebugLoc EntryDebugLocation; 2051 if (auto SP = F.getSubprogram()) 2052 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP); 2053 2054 Instruction *InsBefore = AllocaVec[0]; 2055 IRBuilder<> IRB(InsBefore); 2056 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2057 2058 // Make sure non-instrumented allocas stay in the entry block. Otherwise, 2059 // debug info is broken, because only entry-block allocas are treated as 2060 // regular stack slots. 2061 auto InsBeforeB = InsBefore->getParent(); 2062 assert(InsBeforeB == &F.getEntryBlock()); 2063 for (BasicBlock::iterator I(InsBefore); I != InsBeforeB->end(); ++I) 2064 if (auto *AI = dyn_cast<AllocaInst>(I)) 2065 if (NonInstrumentedStaticAllocaVec.count(AI) > 0) 2066 AI->moveBefore(InsBefore); 2067 2068 // If we have a call to llvm.localescape, keep it in the entry block. 2069 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); 2070 2071 SmallVector<ASanStackVariableDescription, 16> SVD; 2072 SVD.reserve(AllocaVec.size()); 2073 for (AllocaInst *AI : AllocaVec) { 2074 ASanStackVariableDescription D = {AI->getName().data(), 2075 ASan.getAllocaSizeInBytes(AI), 2076 AI->getAlignment(), AI, 0}; 2077 SVD.push_back(D); 2078 } 2079 // Minimal header size (left redzone) is 4 pointers, 2080 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. 2081 size_t MinHeaderSize = ASan.LongSize / 2; 2082 ASanStackFrameLayout L; 2083 ComputeASanStackFrameLayout(SVD, 1ULL << Mapping.Scale, MinHeaderSize, &L); 2084 DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n"); 2085 uint64_t LocalStackSize = L.FrameSize; 2086 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && 2087 LocalStackSize <= kMaxStackMallocSize; 2088 bool DoDynamicAlloca = ClDynamicAllocaStack; 2089 // Don't do dynamic alloca or stack malloc if: 2090 // 1) There is inline asm: too often it makes assumptions on which registers 2091 // are available. 2092 // 2) There is a returns_twice call (typically setjmp), which is 2093 // optimization-hostile, and doesn't play well with introduced indirect 2094 // register-relative calculation of local variable addresses. 2095 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2096 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall; 2097 2098 Value *StaticAlloca = 2099 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); 2100 2101 Value *FakeStack; 2102 Value *LocalStackBase; 2103 2104 if (DoStackMalloc) { 2105 // void *FakeStack = __asan_option_detect_stack_use_after_return 2106 // ? __asan_stack_malloc_N(LocalStackSize) 2107 // : nullptr; 2108 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); 2109 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( 2110 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); 2111 Value *UseAfterReturnIsEnabled = 2112 IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn), 2113 Constant::getNullValue(IRB.getInt32Ty())); 2114 Instruction *Term = 2115 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); 2116 IRBuilder<> IRBIf(Term); 2117 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2118 StackMallocIdx = StackMallocSizeClass(LocalStackSize); 2119 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); 2120 Value *FakeStackValue = 2121 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], 2122 ConstantInt::get(IntptrTy, LocalStackSize)); 2123 IRB.SetInsertPoint(InsBefore); 2124 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2125 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, 2126 ConstantInt::get(IntptrTy, 0)); 2127 2128 Value *NoFakeStack = 2129 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); 2130 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); 2131 IRBIf.SetInsertPoint(Term); 2132 IRBIf.SetCurrentDebugLocation(EntryDebugLocation); 2133 Value *AllocaValue = 2134 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; 2135 IRB.SetInsertPoint(InsBefore); 2136 IRB.SetCurrentDebugLocation(EntryDebugLocation); 2137 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); 2138 } else { 2139 // void *FakeStack = nullptr; 2140 // void *LocalStackBase = alloca(LocalStackSize); 2141 FakeStack = ConstantInt::get(IntptrTy, 0); 2142 LocalStackBase = 2143 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; 2144 } 2145 2146 // Replace Alloca instructions with base+offset. 2147 for (const auto &Desc : SVD) { 2148 AllocaInst *AI = Desc.AI; 2149 Value *NewAllocaPtr = IRB.CreateIntToPtr( 2150 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), 2151 AI->getType()); 2152 replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true); 2153 AI->replaceAllUsesWith(NewAllocaPtr); 2154 } 2155 2156 // The left-most redzone has enough space for at least 4 pointers. 2157 // Write the Magic value to redzone[0]. 2158 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 2159 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 2160 BasePlus0); 2161 // Write the frame description constant to redzone[1]. 2162 Value *BasePlus1 = IRB.CreateIntToPtr( 2163 IRB.CreateAdd(LocalStackBase, 2164 ConstantInt::get(IntptrTy, ASan.LongSize / 8)), 2165 IntptrPtrTy); 2166 GlobalVariable *StackDescriptionGlobal = 2167 createPrivateGlobalForString(*F.getParent(), L.DescriptionString, 2168 /*AllowMerging*/ true); 2169 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); 2170 IRB.CreateStore(Description, BasePlus1); 2171 // Write the PC to redzone[2]. 2172 Value *BasePlus2 = IRB.CreateIntToPtr( 2173 IRB.CreateAdd(LocalStackBase, 2174 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), 2175 IntptrPtrTy); 2176 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 2177 2178 // Poison the stack redzones at the entry. 2179 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 2180 poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true); 2181 2182 auto UnpoisonStack = [&](IRBuilder<> &IRB) { 2183 if (HavePoisonedStaticAllocas) { 2184 // If we poisoned some allocas in llvm.lifetime analysis, 2185 // unpoison whole stack frame now. 2186 poisonAlloca(LocalStackBase, LocalStackSize, IRB, false); 2187 } else { 2188 poisonRedZones(L.ShadowBytes, IRB, ShadowBase, false); 2189 } 2190 }; 2191 2192 // (Un)poison the stack before all ret instructions. 2193 for (auto Ret : RetVec) { 2194 IRBuilder<> IRBRet(Ret); 2195 // Mark the current frame as retired. 2196 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 2197 BasePlus0); 2198 if (DoStackMalloc) { 2199 assert(StackMallocIdx >= 0); 2200 // if FakeStack != 0 // LocalStackBase == FakeStack 2201 // // In use-after-return mode, poison the whole stack frame. 2202 // if StackMallocIdx <= 4 2203 // // For small sizes inline the whole thing: 2204 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); 2205 // **SavedFlagPtr(FakeStack) = 0 2206 // else 2207 // __asan_stack_free_N(FakeStack, LocalStackSize) 2208 // else 2209 // <This is not a fake stack; unpoison the redzones> 2210 Value *Cmp = 2211 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); 2212 TerminatorInst *ThenTerm, *ElseTerm; 2213 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); 2214 2215 IRBuilder<> IRBPoison(ThenTerm); 2216 if (StackMallocIdx <= 4) { 2217 int ClassSize = kMinStackMallocSize << StackMallocIdx; 2218 SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase, 2219 ClassSize >> Mapping.Scale); 2220 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( 2221 FakeStack, 2222 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); 2223 Value *SavedFlagPtr = IRBPoison.CreateLoad( 2224 IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); 2225 IRBPoison.CreateStore( 2226 Constant::getNullValue(IRBPoison.getInt8Ty()), 2227 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); 2228 } else { 2229 // For larger frames call __asan_stack_free_*. 2230 IRBPoison.CreateCall( 2231 AsanStackFreeFunc[StackMallocIdx], 2232 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); 2233 } 2234 2235 IRBuilder<> IRBElse(ElseTerm); 2236 UnpoisonStack(IRBElse); 2237 } else { 2238 UnpoisonStack(IRBRet); 2239 } 2240 } 2241 2242 // We are done. Remove the old unused alloca instructions. 2243 for (auto AI : AllocaVec) AI->eraseFromParent(); 2244 } 2245 2246 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 2247 IRBuilder<> &IRB, bool DoPoison) { 2248 // For now just insert the call to ASan runtime. 2249 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 2250 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 2251 IRB.CreateCall( 2252 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, 2253 {AddrArg, SizeArg}); 2254 } 2255 2256 // Handling llvm.lifetime intrinsics for a given %alloca: 2257 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 2258 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 2259 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 2260 // could be poisoned by previous llvm.lifetime.end instruction, as the 2261 // variable may go in and out of scope several times, e.g. in loops). 2262 // (3) if we poisoned at least one %alloca in a function, 2263 // unpoison the whole stack frame at function exit. 2264 2265 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { 2266 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2267 // We're intested only in allocas we can handle. 2268 return ASan.isInterestingAlloca(*AI) ? AI : nullptr; 2269 // See if we've already calculated (or started to calculate) alloca for a 2270 // given value. 2271 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 2272 if (I != AllocaForValue.end()) return I->second; 2273 // Store 0 while we're calculating alloca for value V to avoid 2274 // infinite recursion if the value references itself. 2275 AllocaForValue[V] = nullptr; 2276 AllocaInst *Res = nullptr; 2277 if (CastInst *CI = dyn_cast<CastInst>(V)) 2278 Res = findAllocaForValue(CI->getOperand(0)); 2279 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2280 for (Value *IncValue : PN->incoming_values()) { 2281 // Allow self-referencing phi-nodes. 2282 if (IncValue == PN) continue; 2283 AllocaInst *IncValueAI = findAllocaForValue(IncValue); 2284 // AI for incoming values should exist and should all be equal. 2285 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 2286 return nullptr; 2287 Res = IncValueAI; 2288 } 2289 } 2290 if (Res) AllocaForValue[V] = Res; 2291 return Res; 2292 } 2293 2294 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { 2295 IRBuilder<> IRB(AI); 2296 2297 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment()); 2298 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; 2299 2300 Value *Zero = Constant::getNullValue(IntptrTy); 2301 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); 2302 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); 2303 2304 // Since we need to extend alloca with additional memory to locate 2305 // redzones, and OldSize is number of allocated blocks with 2306 // ElementSize size, get allocated memory size in bytes by 2307 // OldSize * ElementSize. 2308 const unsigned ElementSize = 2309 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); 2310 Value *OldSize = 2311 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), 2312 ConstantInt::get(IntptrTy, ElementSize)); 2313 2314 // PartialSize = OldSize % 32 2315 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); 2316 2317 // Misalign = kAllocaRzSize - PartialSize; 2318 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); 2319 2320 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; 2321 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); 2322 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); 2323 2324 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize 2325 // Align is added to locate left redzone, PartialPadding for possible 2326 // partial redzone and kAllocaRzSize for right redzone respectively. 2327 Value *AdditionalChunkSize = IRB.CreateAdd( 2328 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding); 2329 2330 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); 2331 2332 // Insert new alloca with new NewSize and Align params. 2333 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); 2334 NewAlloca->setAlignment(Align); 2335 2336 // NewAddress = Address + Align 2337 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), 2338 ConstantInt::get(IntptrTy, Align)); 2339 2340 // Insert __asan_alloca_poison call for new created alloca. 2341 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); 2342 2343 // Store the last alloca's address to DynamicAllocaLayout. We'll need this 2344 // for unpoisoning stuff. 2345 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); 2346 2347 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); 2348 2349 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. 2350 AI->replaceAllUsesWith(NewAddressPtr); 2351 2352 // We are done. Erase old alloca from parent. 2353 AI->eraseFromParent(); 2354 } 2355 2356 // isSafeAccess returns true if Addr is always inbounds with respect to its 2357 // base object. For example, it is a field access or an array access with 2358 // constant inbounds index. 2359 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, 2360 Value *Addr, uint64_t TypeSize) const { 2361 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); 2362 if (!ObjSizeVis.bothKnown(SizeOffset)) return false; 2363 uint64_t Size = SizeOffset.first.getZExtValue(); 2364 int64_t Offset = SizeOffset.second.getSExtValue(); 2365 // Three checks are required to ensure safety: 2366 // . Offset >= 0 (since the offset is given from the base ptr) 2367 // . Size >= Offset (unsigned) 2368 // . Size - Offset >= NeededSize (unsigned) 2369 return Offset >= 0 && Size >= uint64_t(Offset) && 2370 Size - uint64_t(Offset) >= TypeSize / 8; 2371 } 2372