1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopRotation.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/LoopPassManager.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SSAUpdater.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-rotate" 45 46 static cl::opt<unsigned> DefaultRotationThreshold( 47 "rotation-max-header-size", cl::init(16), cl::Hidden, 48 cl::desc("The default maximum header size for automatic loop rotation")); 49 50 STATISTIC(NumRotated, "Number of loops rotated"); 51 52 namespace { 53 /// A simple loop rotation transformation. 54 class LoopRotate { 55 const unsigned MaxHeaderSize; 56 LoopInfo *LI; 57 const TargetTransformInfo *TTI; 58 AssumptionCache *AC; 59 DominatorTree *DT; 60 ScalarEvolution *SE; 61 62 public: 63 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 64 const TargetTransformInfo *TTI, AssumptionCache *AC, 65 DominatorTree *DT, ScalarEvolution *SE) 66 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE) { 67 } 68 bool processLoop(Loop *L); 69 70 private: 71 bool rotateLoop(Loop *L, bool SimplifiedLatch); 72 bool simplifyLoopLatch(Loop *L); 73 }; 74 } // end anonymous namespace 75 76 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 77 /// old header into the preheader. If there were uses of the values produced by 78 /// these instruction that were outside of the loop, we have to insert PHI nodes 79 /// to merge the two values. Do this now. 80 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 81 BasicBlock *OrigPreheader, 82 ValueToValueMapTy &ValueMap) { 83 // Remove PHI node entries that are no longer live. 84 BasicBlock::iterator I, E = OrigHeader->end(); 85 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 86 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 87 88 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 89 // as necessary. 90 SSAUpdater SSA; 91 for (I = OrigHeader->begin(); I != E; ++I) { 92 Value *OrigHeaderVal = &*I; 93 94 // If there are no uses of the value (e.g. because it returns void), there 95 // is nothing to rewrite. 96 if (OrigHeaderVal->use_empty()) 97 continue; 98 99 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 100 101 // The value now exits in two versions: the initial value in the preheader 102 // and the loop "next" value in the original header. 103 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 104 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 105 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 106 107 // Visit each use of the OrigHeader instruction. 108 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 109 UE = OrigHeaderVal->use_end(); 110 UI != UE;) { 111 // Grab the use before incrementing the iterator. 112 Use &U = *UI; 113 114 // Increment the iterator before removing the use from the list. 115 ++UI; 116 117 // SSAUpdater can't handle a non-PHI use in the same block as an 118 // earlier def. We can easily handle those cases manually. 119 Instruction *UserInst = cast<Instruction>(U.getUser()); 120 if (!isa<PHINode>(UserInst)) { 121 BasicBlock *UserBB = UserInst->getParent(); 122 123 // The original users in the OrigHeader are already using the 124 // original definitions. 125 if (UserBB == OrigHeader) 126 continue; 127 128 // Users in the OrigPreHeader need to use the value to which the 129 // original definitions are mapped. 130 if (UserBB == OrigPreheader) { 131 U = OrigPreHeaderVal; 132 continue; 133 } 134 } 135 136 // Anything else can be handled by SSAUpdater. 137 SSA.RewriteUse(U); 138 } 139 140 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 141 // intrinsics. 142 LLVMContext &C = OrigHeader->getContext(); 143 if (auto *VAM = ValueAsMetadata::getIfExists(OrigHeaderVal)) { 144 if (auto *MAV = MetadataAsValue::getIfExists(C, VAM)) { 145 for (auto UI = MAV->use_begin(), E = MAV->use_end(); UI != E;) { 146 // Grab the use before incrementing the iterator. Otherwise, altering 147 // the Use will invalidate the iterator. 148 Use &U = *UI++; 149 DbgInfoIntrinsic *UserInst = dyn_cast<DbgInfoIntrinsic>(U.getUser()); 150 if (!UserInst) 151 continue; 152 153 // The original users in the OrigHeader are already using the original 154 // definitions. 155 BasicBlock *UserBB = UserInst->getParent(); 156 if (UserBB == OrigHeader) 157 continue; 158 159 // Users in the OrigPreHeader need to use the value to which the 160 // original definitions are mapped and anything else can be handled by 161 // the SSAUpdater. To avoid adding PHINodes, check if the value is 162 // available in UserBB, if not substitute undef. 163 Value *NewVal; 164 if (UserBB == OrigPreheader) 165 NewVal = OrigPreHeaderVal; 166 else if (SSA.HasValueForBlock(UserBB)) 167 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 168 else 169 NewVal = UndefValue::get(OrigHeaderVal->getType()); 170 U = MetadataAsValue::get(C, ValueAsMetadata::get(NewVal)); 171 } 172 } 173 } 174 } 175 } 176 177 /// Rotate loop LP. Return true if the loop is rotated. 178 /// 179 /// \param SimplifiedLatch is true if the latch was just folded into the final 180 /// loop exit. In this case we may want to rotate even though the new latch is 181 /// now an exiting branch. This rotation would have happened had the latch not 182 /// been simplified. However, if SimplifiedLatch is false, then we avoid 183 /// rotating loops in which the latch exits to avoid excessive or endless 184 /// rotation. LoopRotate should be repeatable and converge to a canonical 185 /// form. This property is satisfied because simplifying the loop latch can only 186 /// happen once across multiple invocations of the LoopRotate pass. 187 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 188 // If the loop has only one block then there is not much to rotate. 189 if (L->getBlocks().size() == 1) 190 return false; 191 192 BasicBlock *OrigHeader = L->getHeader(); 193 BasicBlock *OrigLatch = L->getLoopLatch(); 194 195 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 196 if (!BI || BI->isUnconditional()) 197 return false; 198 199 // If the loop header is not one of the loop exiting blocks then 200 // either this loop is already rotated or it is not 201 // suitable for loop rotation transformations. 202 if (!L->isLoopExiting(OrigHeader)) 203 return false; 204 205 // If the loop latch already contains a branch that leaves the loop then the 206 // loop is already rotated. 207 if (!OrigLatch) 208 return false; 209 210 // Rotate if either the loop latch does *not* exit the loop, or if the loop 211 // latch was just simplified. 212 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 213 return false; 214 215 // Check size of original header and reject loop if it is very big or we can't 216 // duplicate blocks inside it. 217 { 218 SmallPtrSet<const Value *, 32> EphValues; 219 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 220 221 CodeMetrics Metrics; 222 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 223 if (Metrics.notDuplicatable) { 224 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 225 << " instructions: "; 226 L->dump()); 227 return false; 228 } 229 if (Metrics.convergent) { 230 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 231 "instructions: "; 232 L->dump()); 233 return false; 234 } 235 if (Metrics.NumInsts > MaxHeaderSize) 236 return false; 237 } 238 239 // Now, this loop is suitable for rotation. 240 BasicBlock *OrigPreheader = L->getLoopPreheader(); 241 242 // If the loop could not be converted to canonical form, it must have an 243 // indirectbr in it, just give up. 244 if (!OrigPreheader) 245 return false; 246 247 // Anything ScalarEvolution may know about this loop or the PHI nodes 248 // in its header will soon be invalidated. 249 if (SE) 250 SE->forgetLoop(L); 251 252 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 253 254 // Find new Loop header. NewHeader is a Header's one and only successor 255 // that is inside loop. Header's other successor is outside the 256 // loop. Otherwise loop is not suitable for rotation. 257 BasicBlock *Exit = BI->getSuccessor(0); 258 BasicBlock *NewHeader = BI->getSuccessor(1); 259 if (L->contains(Exit)) 260 std::swap(Exit, NewHeader); 261 assert(NewHeader && "Unable to determine new loop header"); 262 assert(L->contains(NewHeader) && !L->contains(Exit) && 263 "Unable to determine loop header and exit blocks"); 264 265 // This code assumes that the new header has exactly one predecessor. 266 // Remove any single-entry PHI nodes in it. 267 assert(NewHeader->getSinglePredecessor() && 268 "New header doesn't have one pred!"); 269 FoldSingleEntryPHINodes(NewHeader); 270 271 // Begin by walking OrigHeader and populating ValueMap with an entry for 272 // each Instruction. 273 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 274 ValueToValueMapTy ValueMap; 275 276 // For PHI nodes, the value available in OldPreHeader is just the 277 // incoming value from OldPreHeader. 278 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 279 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 280 281 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 282 283 // For the rest of the instructions, either hoist to the OrigPreheader if 284 // possible or create a clone in the OldPreHeader if not. 285 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 286 while (I != E) { 287 Instruction *Inst = &*I++; 288 289 // If the instruction's operands are invariant and it doesn't read or write 290 // memory, then it is safe to hoist. Doing this doesn't change the order of 291 // execution in the preheader, but does prevent the instruction from 292 // executing in each iteration of the loop. This means it is safe to hoist 293 // something that might trap, but isn't safe to hoist something that reads 294 // memory (without proving that the loop doesn't write). 295 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 296 !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) && 297 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 298 Inst->moveBefore(LoopEntryBranch); 299 continue; 300 } 301 302 // Otherwise, create a duplicate of the instruction. 303 Instruction *C = Inst->clone(); 304 305 // Eagerly remap the operands of the instruction. 306 RemapInstruction(C, ValueMap, 307 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 308 309 // With the operands remapped, see if the instruction constant folds or is 310 // otherwise simplifyable. This commonly occurs because the entry from PHI 311 // nodes allows icmps and other instructions to fold. 312 // FIXME: Provide TLI, DT, AC to SimplifyInstruction. 313 Value *V = SimplifyInstruction(C, DL); 314 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 315 // If so, then delete the temporary instruction and stick the folded value 316 // in the map. 317 ValueMap[Inst] = V; 318 if (!C->mayHaveSideEffects()) { 319 delete C; 320 C = nullptr; 321 } 322 } else { 323 ValueMap[Inst] = C; 324 } 325 if (C) { 326 // Otherwise, stick the new instruction into the new block! 327 C->setName(Inst->getName()); 328 C->insertBefore(LoopEntryBranch); 329 } 330 } 331 332 // Along with all the other instructions, we just cloned OrigHeader's 333 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 334 // successors by duplicating their incoming values for OrigHeader. 335 TerminatorInst *TI = OrigHeader->getTerminator(); 336 for (BasicBlock *SuccBB : TI->successors()) 337 for (BasicBlock::iterator BI = SuccBB->begin(); 338 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 339 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 340 341 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 342 // OrigPreHeader's old terminator (the original branch into the loop), and 343 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 344 LoopEntryBranch->eraseFromParent(); 345 346 // If there were any uses of instructions in the duplicated block outside the 347 // loop, update them, inserting PHI nodes as required 348 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 349 350 // NewHeader is now the header of the loop. 351 L->moveToHeader(NewHeader); 352 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 353 354 // At this point, we've finished our major CFG changes. As part of cloning 355 // the loop into the preheader we've simplified instructions and the 356 // duplicated conditional branch may now be branching on a constant. If it is 357 // branching on a constant and if that constant means that we enter the loop, 358 // then we fold away the cond branch to an uncond branch. This simplifies the 359 // loop in cases important for nested loops, and it also means we don't have 360 // to split as many edges. 361 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 362 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 363 if (!isa<ConstantInt>(PHBI->getCondition()) || 364 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 365 NewHeader) { 366 // The conditional branch can't be folded, handle the general case. 367 // Update DominatorTree to reflect the CFG change we just made. Then split 368 // edges as necessary to preserve LoopSimplify form. 369 if (DT) { 370 // Everything that was dominated by the old loop header is now dominated 371 // by the original loop preheader. Conceptually the header was merged 372 // into the preheader, even though we reuse the actual block as a new 373 // loop latch. 374 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 375 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 376 OrigHeaderNode->end()); 377 DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); 378 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 379 DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 380 381 assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); 382 assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); 383 384 // Update OrigHeader to be dominated by the new header block. 385 DT->changeImmediateDominator(OrigHeader, OrigLatch); 386 } 387 388 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 389 // thus is not a preheader anymore. 390 // Split the edge to form a real preheader. 391 BasicBlock *NewPH = SplitCriticalEdge( 392 OrigPreheader, NewHeader, 393 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 394 NewPH->setName(NewHeader->getName() + ".lr.ph"); 395 396 // Preserve canonical loop form, which means that 'Exit' should have only 397 // one predecessor. Note that Exit could be an exit block for multiple 398 // nested loops, causing both of the edges to now be critical and need to 399 // be split. 400 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 401 bool SplitLatchEdge = false; 402 for (BasicBlock *ExitPred : ExitPreds) { 403 // We only need to split loop exit edges. 404 Loop *PredLoop = LI->getLoopFor(ExitPred); 405 if (!PredLoop || PredLoop->contains(Exit)) 406 continue; 407 if (isa<IndirectBrInst>(ExitPred->getTerminator())) 408 continue; 409 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 410 BasicBlock *ExitSplit = SplitCriticalEdge( 411 ExitPred, Exit, 412 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 413 ExitSplit->moveBefore(Exit); 414 } 415 assert(SplitLatchEdge && 416 "Despite splitting all preds, failed to split latch exit?"); 417 } else { 418 // We can fold the conditional branch in the preheader, this makes things 419 // simpler. The first step is to remove the extra edge to the Exit block. 420 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 421 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 422 NewBI->setDebugLoc(PHBI->getDebugLoc()); 423 PHBI->eraseFromParent(); 424 425 // With our CFG finalized, update DomTree if it is available. 426 if (DT) { 427 // Update OrigHeader to be dominated by the new header block. 428 DT->changeImmediateDominator(NewHeader, OrigPreheader); 429 DT->changeImmediateDominator(OrigHeader, OrigLatch); 430 431 // Brute force incremental dominator tree update. Call 432 // findNearestCommonDominator on all CFG predecessors of each child of the 433 // original header. 434 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 435 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 436 OrigHeaderNode->end()); 437 bool Changed; 438 do { 439 Changed = false; 440 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 441 DomTreeNode *Node = HeaderChildren[I]; 442 BasicBlock *BB = Node->getBlock(); 443 444 pred_iterator PI = pred_begin(BB); 445 BasicBlock *NearestDom = *PI; 446 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 447 NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); 448 449 // Remember if this changes the DomTree. 450 if (Node->getIDom()->getBlock() != NearestDom) { 451 DT->changeImmediateDominator(BB, NearestDom); 452 Changed = true; 453 } 454 } 455 456 // If the dominator changed, this may have an effect on other 457 // predecessors, continue until we reach a fixpoint. 458 } while (Changed); 459 } 460 } 461 462 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 463 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 464 465 // Now that the CFG and DomTree are in a consistent state again, try to merge 466 // the OrigHeader block into OrigLatch. This will succeed if they are 467 // connected by an unconditional branch. This is just a cleanup so the 468 // emitted code isn't too gross in this common case. 469 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 470 471 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 472 473 ++NumRotated; 474 return true; 475 } 476 477 /// Determine whether the instructions in this range may be safely and cheaply 478 /// speculated. This is not an important enough situation to develop complex 479 /// heuristics. We handle a single arithmetic instruction along with any type 480 /// conversions. 481 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 482 BasicBlock::iterator End, Loop *L) { 483 bool seenIncrement = false; 484 bool MultiExitLoop = false; 485 486 if (!L->getExitingBlock()) 487 MultiExitLoop = true; 488 489 for (BasicBlock::iterator I = Begin; I != End; ++I) { 490 491 if (!isSafeToSpeculativelyExecute(&*I)) 492 return false; 493 494 if (isa<DbgInfoIntrinsic>(I)) 495 continue; 496 497 switch (I->getOpcode()) { 498 default: 499 return false; 500 case Instruction::GetElementPtr: 501 // GEPs are cheap if all indices are constant. 502 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 503 return false; 504 // fall-thru to increment case 505 case Instruction::Add: 506 case Instruction::Sub: 507 case Instruction::And: 508 case Instruction::Or: 509 case Instruction::Xor: 510 case Instruction::Shl: 511 case Instruction::LShr: 512 case Instruction::AShr: { 513 Value *IVOpnd = 514 !isa<Constant>(I->getOperand(0)) 515 ? I->getOperand(0) 516 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 517 if (!IVOpnd) 518 return false; 519 520 // If increment operand is used outside of the loop, this speculation 521 // could cause extra live range interference. 522 if (MultiExitLoop) { 523 for (User *UseI : IVOpnd->users()) { 524 auto *UserInst = cast<Instruction>(UseI); 525 if (!L->contains(UserInst)) 526 return false; 527 } 528 } 529 530 if (seenIncrement) 531 return false; 532 seenIncrement = true; 533 break; 534 } 535 case Instruction::Trunc: 536 case Instruction::ZExt: 537 case Instruction::SExt: 538 // ignore type conversions 539 break; 540 } 541 } 542 return true; 543 } 544 545 /// Fold the loop tail into the loop exit by speculating the loop tail 546 /// instructions. Typically, this is a single post-increment. In the case of a 547 /// simple 2-block loop, hoisting the increment can be much better than 548 /// duplicating the entire loop header. In the case of loops with early exits, 549 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 550 /// canonical form so downstream passes can handle it. 551 /// 552 /// I don't believe this invalidates SCEV. 553 bool LoopRotate::simplifyLoopLatch(Loop *L) { 554 BasicBlock *Latch = L->getLoopLatch(); 555 if (!Latch || Latch->hasAddressTaken()) 556 return false; 557 558 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 559 if (!Jmp || !Jmp->isUnconditional()) 560 return false; 561 562 BasicBlock *LastExit = Latch->getSinglePredecessor(); 563 if (!LastExit || !L->isLoopExiting(LastExit)) 564 return false; 565 566 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 567 if (!BI) 568 return false; 569 570 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 571 return false; 572 573 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 574 << LastExit->getName() << "\n"); 575 576 // Hoist the instructions from Latch into LastExit. 577 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 578 Latch->begin(), Jmp->getIterator()); 579 580 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 581 BasicBlock *Header = Jmp->getSuccessor(0); 582 assert(Header == L->getHeader() && "expected a backward branch"); 583 584 // Remove Latch from the CFG so that LastExit becomes the new Latch. 585 BI->setSuccessor(FallThruPath, Header); 586 Latch->replaceSuccessorsPhiUsesWith(LastExit); 587 Jmp->eraseFromParent(); 588 589 // Nuke the Latch block. 590 assert(Latch->empty() && "unable to evacuate Latch"); 591 LI->removeBlock(Latch); 592 if (DT) 593 DT->eraseNode(Latch); 594 Latch->eraseFromParent(); 595 return true; 596 } 597 598 /// Rotate \c L, and return true if any modification was made. 599 bool LoopRotate::processLoop(Loop *L) { 600 // Save the loop metadata. 601 MDNode *LoopMD = L->getLoopID(); 602 603 // Simplify the loop latch before attempting to rotate the header 604 // upward. Rotation may not be needed if the loop tail can be folded into the 605 // loop exit. 606 bool SimplifiedLatch = simplifyLoopLatch(L); 607 608 bool MadeChange = rotateLoop(L, SimplifiedLatch); 609 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 610 "Loop latch should be exiting after loop-rotate."); 611 612 // Restore the loop metadata. 613 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 614 if ((MadeChange || SimplifiedLatch) && LoopMD) 615 L->setLoopID(LoopMD); 616 617 return MadeChange; 618 } 619 620 LoopRotatePass::LoopRotatePass() {} 621 622 PreservedAnalyses LoopRotatePass::run(Loop &L, AnalysisManager<Loop> &AM) { 623 auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 624 Function *F = L.getHeader()->getParent(); 625 626 auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); 627 const auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 628 auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F); 629 assert((LI && TTI && AC) && "Analyses for loop rotation not available"); 630 631 // Optional analyses. 632 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 633 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 634 LoopRotate LR(DefaultRotationThreshold, LI, TTI, AC, DT, SE); 635 636 bool Changed = LR.processLoop(&L); 637 if (!Changed) 638 return PreservedAnalyses::all(); 639 return getLoopPassPreservedAnalyses(); 640 } 641 642 namespace { 643 644 class LoopRotateLegacyPass : public LoopPass { 645 unsigned MaxHeaderSize; 646 647 public: 648 static char ID; // Pass ID, replacement for typeid 649 LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 650 initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry()); 651 if (SpecifiedMaxHeaderSize == -1) 652 MaxHeaderSize = DefaultRotationThreshold; 653 else 654 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 655 } 656 657 // LCSSA form makes instruction renaming easier. 658 void getAnalysisUsage(AnalysisUsage &AU) const override { 659 AU.addRequired<AssumptionCacheTracker>(); 660 AU.addRequired<TargetTransformInfoWrapperPass>(); 661 getLoopAnalysisUsage(AU); 662 } 663 664 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 665 if (skipLoop(L)) 666 return false; 667 Function &F = *L->getHeader()->getParent(); 668 669 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 670 const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 671 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 672 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 673 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 674 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 675 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 676 LoopRotate LR(MaxHeaderSize, LI, TTI, AC, DT, SE); 677 return LR.processLoop(L); 678 } 679 }; 680 } 681 682 char LoopRotateLegacyPass::ID = 0; 683 INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", 684 false, false) 685 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 686 INITIALIZE_PASS_DEPENDENCY(LoopPass) 687 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 688 INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", false, 689 false) 690 691 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 692 return new LoopRotateLegacyPass(MaxHeaderSize); 693 } 694