Home | History | Annotate | Download | only in Scalar
      1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Rewrite an existing set of gc.statepoints such that they make potential
     11 // relocations performed by the garbage collector explicit in the IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Pass.h"
     16 #include "llvm/Analysis/CFG.h"
     17 #include "llvm/Analysis/TargetTransformInfo.h"
     18 #include "llvm/ADT/SetOperations.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/ADT/DenseSet.h"
     21 #include "llvm/ADT/SetVector.h"
     22 #include "llvm/ADT/StringRef.h"
     23 #include "llvm/ADT/MapVector.h"
     24 #include "llvm/IR/BasicBlock.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/Dominators.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/IRBuilder.h"
     29 #include "llvm/IR/InstIterator.h"
     30 #include "llvm/IR/Instructions.h"
     31 #include "llvm/IR/Intrinsics.h"
     32 #include "llvm/IR/IntrinsicInst.h"
     33 #include "llvm/IR/Module.h"
     34 #include "llvm/IR/MDBuilder.h"
     35 #include "llvm/IR/Statepoint.h"
     36 #include "llvm/IR/Value.h"
     37 #include "llvm/IR/Verifier.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Transforms/Scalar.h"
     41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     42 #include "llvm/Transforms/Utils/Cloning.h"
     43 #include "llvm/Transforms/Utils/Local.h"
     44 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
     45 
     46 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
     47 
     48 using namespace llvm;
     49 
     50 // Print the liveset found at the insert location
     51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
     52                                   cl::init(false));
     53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
     54                                       cl::init(false));
     55 // Print out the base pointers for debugging
     56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
     57                                        cl::init(false));
     58 
     59 // Cost threshold measuring when it is profitable to rematerialize value instead
     60 // of relocating it
     61 static cl::opt<unsigned>
     62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
     63                            cl::init(6));
     64 
     65 #ifdef EXPENSIVE_CHECKS
     66 static bool ClobberNonLive = true;
     67 #else
     68 static bool ClobberNonLive = false;
     69 #endif
     70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
     71                                                   cl::location(ClobberNonLive),
     72                                                   cl::Hidden);
     73 
     74 static cl::opt<bool>
     75     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
     76                                    cl::Hidden, cl::init(true));
     77 
     78 namespace {
     79 struct RewriteStatepointsForGC : public ModulePass {
     80   static char ID; // Pass identification, replacement for typeid
     81 
     82   RewriteStatepointsForGC() : ModulePass(ID) {
     83     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
     84   }
     85   bool runOnFunction(Function &F);
     86   bool runOnModule(Module &M) override {
     87     bool Changed = false;
     88     for (Function &F : M)
     89       Changed |= runOnFunction(F);
     90 
     91     if (Changed) {
     92       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
     93       // returns true for at least one function in the module.  Since at least
     94       // one function changed, we know that the precondition is satisfied.
     95       stripNonValidAttributes(M);
     96     }
     97 
     98     return Changed;
     99   }
    100 
    101   void getAnalysisUsage(AnalysisUsage &AU) const override {
    102     // We add and rewrite a bunch of instructions, but don't really do much
    103     // else.  We could in theory preserve a lot more analyses here.
    104     AU.addRequired<DominatorTreeWrapperPass>();
    105     AU.addRequired<TargetTransformInfoWrapperPass>();
    106   }
    107 
    108   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
    109   /// dereferenceability that are no longer valid/correct after
    110   /// RewriteStatepointsForGC has run.  This is because semantically, after
    111   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
    112   /// heap.  stripNonValidAttributes (conservatively) restores correctness
    113   /// by erasing all attributes in the module that externally imply
    114   /// dereferenceability.
    115   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
    116   /// can touch the entire heap including noalias objects.
    117   void stripNonValidAttributes(Module &M);
    118 
    119   // Helpers for stripNonValidAttributes
    120   void stripNonValidAttributesFromBody(Function &F);
    121   void stripNonValidAttributesFromPrototype(Function &F);
    122 };
    123 } // namespace
    124 
    125 char RewriteStatepointsForGC::ID = 0;
    126 
    127 ModulePass *llvm::createRewriteStatepointsForGCPass() {
    128   return new RewriteStatepointsForGC();
    129 }
    130 
    131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
    132                       "Make relocations explicit at statepoints", false, false)
    133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
    136                     "Make relocations explicit at statepoints", false, false)
    137 
    138 namespace {
    139 struct GCPtrLivenessData {
    140   /// Values defined in this block.
    141   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
    142   /// Values used in this block (and thus live); does not included values
    143   /// killed within this block.
    144   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
    145 
    146   /// Values live into this basic block (i.e. used by any
    147   /// instruction in this basic block or ones reachable from here)
    148   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
    149 
    150   /// Values live out of this basic block (i.e. live into
    151   /// any successor block)
    152   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
    153 };
    154 
    155 // The type of the internal cache used inside the findBasePointers family
    156 // of functions.  From the callers perspective, this is an opaque type and
    157 // should not be inspected.
    158 //
    159 // In the actual implementation this caches two relations:
    160 // - The base relation itself (i.e. this pointer is based on that one)
    161 // - The base defining value relation (i.e. before base_phi insertion)
    162 // Generally, after the execution of a full findBasePointer call, only the
    163 // base relation will remain.  Internally, we add a mixture of the two
    164 // types, then update all the second type to the first type
    165 typedef MapVector<Value *, Value *> DefiningValueMapTy;
    166 typedef SetVector<Value *> StatepointLiveSetTy;
    167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
    168   RematerializedValueMapTy;
    169 
    170 struct PartiallyConstructedSafepointRecord {
    171   /// The set of values known to be live across this safepoint
    172   StatepointLiveSetTy LiveSet;
    173 
    174   /// Mapping from live pointers to a base-defining-value
    175   MapVector<Value *, Value *> PointerToBase;
    176 
    177   /// The *new* gc.statepoint instruction itself.  This produces the token
    178   /// that normal path gc.relocates and the gc.result are tied to.
    179   Instruction *StatepointToken;
    180 
    181   /// Instruction to which exceptional gc relocates are attached
    182   /// Makes it easier to iterate through them during relocationViaAlloca.
    183   Instruction *UnwindToken;
    184 
    185   /// Record live values we are rematerialized instead of relocating.
    186   /// They are not included into 'LiveSet' field.
    187   /// Maps rematerialized copy to it's original value.
    188   RematerializedValueMapTy RematerializedValues;
    189 };
    190 }
    191 
    192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
    193   Optional<OperandBundleUse> DeoptBundle =
    194       CS.getOperandBundle(LLVMContext::OB_deopt);
    195 
    196   if (!DeoptBundle.hasValue()) {
    197     assert(AllowStatepointWithNoDeoptInfo &&
    198            "Found non-leaf call without deopt info!");
    199     return None;
    200   }
    201 
    202   return DeoptBundle.getValue().Inputs;
    203 }
    204 
    205 /// Compute the live-in set for every basic block in the function
    206 static void computeLiveInValues(DominatorTree &DT, Function &F,
    207                                 GCPtrLivenessData &Data);
    208 
    209 /// Given results from the dataflow liveness computation, find the set of live
    210 /// Values at a particular instruction.
    211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
    212                               StatepointLiveSetTy &out);
    213 
    214 // TODO: Once we can get to the GCStrategy, this becomes
    215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
    216 
    217 static bool isGCPointerType(Type *T) {
    218   if (auto *PT = dyn_cast<PointerType>(T))
    219     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
    220     // GC managed heap.  We know that a pointer into this heap needs to be
    221     // updated and that no other pointer does.
    222     return PT->getAddressSpace() == 1;
    223   return false;
    224 }
    225 
    226 // Return true if this type is one which a) is a gc pointer or contains a GC
    227 // pointer and b) is of a type this code expects to encounter as a live value.
    228 // (The insertion code will assert that a type which matches (a) and not (b)
    229 // is not encountered.)
    230 static bool isHandledGCPointerType(Type *T) {
    231   // We fully support gc pointers
    232   if (isGCPointerType(T))
    233     return true;
    234   // We partially support vectors of gc pointers. The code will assert if it
    235   // can't handle something.
    236   if (auto VT = dyn_cast<VectorType>(T))
    237     if (isGCPointerType(VT->getElementType()))
    238       return true;
    239   return false;
    240 }
    241 
    242 #ifndef NDEBUG
    243 /// Returns true if this type contains a gc pointer whether we know how to
    244 /// handle that type or not.
    245 static bool containsGCPtrType(Type *Ty) {
    246   if (isGCPointerType(Ty))
    247     return true;
    248   if (VectorType *VT = dyn_cast<VectorType>(Ty))
    249     return isGCPointerType(VT->getScalarType());
    250   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
    251     return containsGCPtrType(AT->getElementType());
    252   if (StructType *ST = dyn_cast<StructType>(Ty))
    253     return any_of(ST->subtypes(), containsGCPtrType);
    254   return false;
    255 }
    256 
    257 // Returns true if this is a type which a) is a gc pointer or contains a GC
    258 // pointer and b) is of a type which the code doesn't expect (i.e. first class
    259 // aggregates).  Used to trip assertions.
    260 static bool isUnhandledGCPointerType(Type *Ty) {
    261   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
    262 }
    263 #endif
    264 
    265 // Return the name of the value suffixed with the provided value, or if the
    266 // value didn't have a name, the default value specified.
    267 static std::string suffixed_name_or(Value *V, StringRef Suffix,
    268                                     StringRef DefaultName) {
    269   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
    270 }
    271 
    272 // Conservatively identifies any definitions which might be live at the
    273 // given instruction. The  analysis is performed immediately before the
    274 // given instruction. Values defined by that instruction are not considered
    275 // live.  Values used by that instruction are considered live.
    276 static void
    277 analyzeParsePointLiveness(DominatorTree &DT,
    278                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
    279                           PartiallyConstructedSafepointRecord &Result) {
    280   Instruction *Inst = CS.getInstruction();
    281 
    282   StatepointLiveSetTy LiveSet;
    283   findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
    284 
    285   if (PrintLiveSet) {
    286     dbgs() << "Live Variables:\n";
    287     for (Value *V : LiveSet)
    288       dbgs() << " " << V->getName() << " " << *V << "\n";
    289   }
    290   if (PrintLiveSetSize) {
    291     dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
    292     dbgs() << "Number live values: " << LiveSet.size() << "\n";
    293   }
    294   Result.LiveSet = LiveSet;
    295 }
    296 
    297 static bool isKnownBaseResult(Value *V);
    298 namespace {
    299 /// A single base defining value - An immediate base defining value for an
    300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
    301 /// For instructions which have multiple pointer [vector] inputs or that
    302 /// transition between vector and scalar types, there is no immediate base
    303 /// defining value.  The 'base defining value' for 'Def' is the transitive
    304 /// closure of this relation stopping at the first instruction which has no
    305 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
    306 /// but it can also be an arbitrary derived pointer.
    307 struct BaseDefiningValueResult {
    308   /// Contains the value which is the base defining value.
    309   Value * const BDV;
    310   /// True if the base defining value is also known to be an actual base
    311   /// pointer.
    312   const bool IsKnownBase;
    313   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
    314     : BDV(BDV), IsKnownBase(IsKnownBase) {
    315 #ifndef NDEBUG
    316     // Check consistency between new and old means of checking whether a BDV is
    317     // a base.
    318     bool MustBeBase = isKnownBaseResult(BDV);
    319     assert(!MustBeBase || MustBeBase == IsKnownBase);
    320 #endif
    321   }
    322 };
    323 }
    324 
    325 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
    326 
    327 /// Return a base defining value for the 'Index' element of the given vector
    328 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
    329 /// 'I'.  As an optimization, this method will try to determine when the
    330 /// element is known to already be a base pointer.  If this can be established,
    331 /// the second value in the returned pair will be true.  Note that either a
    332 /// vector or a pointer typed value can be returned.  For the former, the
    333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
    334 /// If the later, the return pointer is a BDV (or possibly a base) for the
    335 /// particular element in 'I'.
    336 static BaseDefiningValueResult
    337 findBaseDefiningValueOfVector(Value *I) {
    338   // Each case parallels findBaseDefiningValue below, see that code for
    339   // detailed motivation.
    340 
    341   if (isa<Argument>(I))
    342     // An incoming argument to the function is a base pointer
    343     return BaseDefiningValueResult(I, true);
    344 
    345   if (isa<Constant>(I))
    346     // Base of constant vector consists only of constant null pointers.
    347     // For reasoning see similar case inside 'findBaseDefiningValue' function.
    348     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
    349                                    true);
    350 
    351   if (isa<LoadInst>(I))
    352     return BaseDefiningValueResult(I, true);
    353 
    354   if (isa<InsertElementInst>(I))
    355     // We don't know whether this vector contains entirely base pointers or
    356     // not.  To be conservatively correct, we treat it as a BDV and will
    357     // duplicate code as needed to construct a parallel vector of bases.
    358     return BaseDefiningValueResult(I, false);
    359 
    360   if (isa<ShuffleVectorInst>(I))
    361     // We don't know whether this vector contains entirely base pointers or
    362     // not.  To be conservatively correct, we treat it as a BDV and will
    363     // duplicate code as needed to construct a parallel vector of bases.
    364     // TODO: There a number of local optimizations which could be applied here
    365     // for particular sufflevector patterns.
    366     return BaseDefiningValueResult(I, false);
    367 
    368   // A PHI or Select is a base defining value.  The outer findBasePointer
    369   // algorithm is responsible for constructing a base value for this BDV.
    370   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
    371          "unknown vector instruction - no base found for vector element");
    372   return BaseDefiningValueResult(I, false);
    373 }
    374 
    375 /// Helper function for findBasePointer - Will return a value which either a)
    376 /// defines the base pointer for the input, b) blocks the simple search
    377 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
    378 /// from pointer to vector type or back.
    379 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
    380   assert(I->getType()->isPtrOrPtrVectorTy() &&
    381          "Illegal to ask for the base pointer of a non-pointer type");
    382 
    383   if (I->getType()->isVectorTy())
    384     return findBaseDefiningValueOfVector(I);
    385 
    386   if (isa<Argument>(I))
    387     // An incoming argument to the function is a base pointer
    388     // We should have never reached here if this argument isn't an gc value
    389     return BaseDefiningValueResult(I, true);
    390 
    391   if (isa<Constant>(I)) {
    392     // We assume that objects with a constant base (e.g. a global) can't move
    393     // and don't need to be reported to the collector because they are always
    394     // live. Besides global references, all kinds of constants (e.g. undef,
    395     // constant expressions, null pointers) can be introduced by the inliner or
    396     // the optimizer, especially on dynamically dead paths.
    397     // Here we treat all of them as having single null base. By doing this we
    398     // trying to avoid problems reporting various conflicts in a form of
    399     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
    400     // See constant.ll file for relevant test cases.
    401 
    402     return BaseDefiningValueResult(
    403         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
    404   }
    405 
    406   if (CastInst *CI = dyn_cast<CastInst>(I)) {
    407     Value *Def = CI->stripPointerCasts();
    408     // If stripping pointer casts changes the address space there is an
    409     // addrspacecast in between.
    410     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
    411                cast<PointerType>(CI->getType())->getAddressSpace() &&
    412            "unsupported addrspacecast");
    413     // If we find a cast instruction here, it means we've found a cast which is
    414     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
    415     // handle int->ptr conversion.
    416     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
    417     return findBaseDefiningValue(Def);
    418   }
    419 
    420   if (isa<LoadInst>(I))
    421     // The value loaded is an gc base itself
    422     return BaseDefiningValueResult(I, true);
    423 
    424 
    425   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
    426     // The base of this GEP is the base
    427     return findBaseDefiningValue(GEP->getPointerOperand());
    428 
    429   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    430     switch (II->getIntrinsicID()) {
    431     default:
    432       // fall through to general call handling
    433       break;
    434     case Intrinsic::experimental_gc_statepoint:
    435       llvm_unreachable("statepoints don't produce pointers");
    436     case Intrinsic::experimental_gc_relocate: {
    437       // Rerunning safepoint insertion after safepoints are already
    438       // inserted is not supported.  It could probably be made to work,
    439       // but why are you doing this?  There's no good reason.
    440       llvm_unreachable("repeat safepoint insertion is not supported");
    441     }
    442     case Intrinsic::gcroot:
    443       // Currently, this mechanism hasn't been extended to work with gcroot.
    444       // There's no reason it couldn't be, but I haven't thought about the
    445       // implications much.
    446       llvm_unreachable(
    447           "interaction with the gcroot mechanism is not supported");
    448     }
    449   }
    450   // We assume that functions in the source language only return base
    451   // pointers.  This should probably be generalized via attributes to support
    452   // both source language and internal functions.
    453   if (isa<CallInst>(I) || isa<InvokeInst>(I))
    454     return BaseDefiningValueResult(I, true);
    455 
    456   // I have absolutely no idea how to implement this part yet.  It's not
    457   // necessarily hard, I just haven't really looked at it yet.
    458   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
    459 
    460   if (isa<AtomicCmpXchgInst>(I))
    461     // A CAS is effectively a atomic store and load combined under a
    462     // predicate.  From the perspective of base pointers, we just treat it
    463     // like a load.
    464     return BaseDefiningValueResult(I, true);
    465 
    466   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
    467                                    "binary ops which don't apply to pointers");
    468 
    469   // The aggregate ops.  Aggregates can either be in the heap or on the
    470   // stack, but in either case, this is simply a field load.  As a result,
    471   // this is a defining definition of the base just like a load is.
    472   if (isa<ExtractValueInst>(I))
    473     return BaseDefiningValueResult(I, true);
    474 
    475   // We should never see an insert vector since that would require we be
    476   // tracing back a struct value not a pointer value.
    477   assert(!isa<InsertValueInst>(I) &&
    478          "Base pointer for a struct is meaningless");
    479 
    480   // An extractelement produces a base result exactly when it's input does.
    481   // We may need to insert a parallel instruction to extract the appropriate
    482   // element out of the base vector corresponding to the input. Given this,
    483   // it's analogous to the phi and select case even though it's not a merge.
    484   if (isa<ExtractElementInst>(I))
    485     // Note: There a lot of obvious peephole cases here.  This are deliberately
    486     // handled after the main base pointer inference algorithm to make writing
    487     // test cases to exercise that code easier.
    488     return BaseDefiningValueResult(I, false);
    489 
    490   // The last two cases here don't return a base pointer.  Instead, they
    491   // return a value which dynamically selects from among several base
    492   // derived pointers (each with it's own base potentially).  It's the job of
    493   // the caller to resolve these.
    494   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
    495          "missing instruction case in findBaseDefiningValing");
    496   return BaseDefiningValueResult(I, false);
    497 }
    498 
    499 /// Returns the base defining value for this value.
    500 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
    501   Value *&Cached = Cache[I];
    502   if (!Cached) {
    503     Cached = findBaseDefiningValue(I).BDV;
    504     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
    505                  << Cached->getName() << "\n");
    506   }
    507   assert(Cache[I] != nullptr);
    508   return Cached;
    509 }
    510 
    511 /// Return a base pointer for this value if known.  Otherwise, return it's
    512 /// base defining value.
    513 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
    514   Value *Def = findBaseDefiningValueCached(I, Cache);
    515   auto Found = Cache.find(Def);
    516   if (Found != Cache.end()) {
    517     // Either a base-of relation, or a self reference.  Caller must check.
    518     return Found->second;
    519   }
    520   // Only a BDV available
    521   return Def;
    522 }
    523 
    524 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
    525 /// is it known to be a base pointer?  Or do we need to continue searching.
    526 static bool isKnownBaseResult(Value *V) {
    527   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
    528       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
    529       !isa<ShuffleVectorInst>(V)) {
    530     // no recursion possible
    531     return true;
    532   }
    533   if (isa<Instruction>(V) &&
    534       cast<Instruction>(V)->getMetadata("is_base_value")) {
    535     // This is a previously inserted base phi or select.  We know
    536     // that this is a base value.
    537     return true;
    538   }
    539 
    540   // We need to keep searching
    541   return false;
    542 }
    543 
    544 namespace {
    545 /// Models the state of a single base defining value in the findBasePointer
    546 /// algorithm for determining where a new instruction is needed to propagate
    547 /// the base of this BDV.
    548 class BDVState {
    549 public:
    550   enum Status { Unknown, Base, Conflict };
    551 
    552   BDVState() : Status(Unknown), BaseValue(nullptr) {}
    553 
    554   explicit BDVState(Status Status, Value *BaseValue = nullptr)
    555       : Status(Status), BaseValue(BaseValue) {
    556     assert(Status != Base || BaseValue);
    557   }
    558 
    559   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
    560 
    561   Status getStatus() const { return Status; }
    562   Value *getBaseValue() const { return BaseValue; }
    563 
    564   bool isBase() const { return getStatus() == Base; }
    565   bool isUnknown() const { return getStatus() == Unknown; }
    566   bool isConflict() const { return getStatus() == Conflict; }
    567 
    568   bool operator==(const BDVState &Other) const {
    569     return BaseValue == Other.BaseValue && Status == Other.Status;
    570   }
    571 
    572   bool operator!=(const BDVState &other) const { return !(*this == other); }
    573 
    574   LLVM_DUMP_METHOD
    575   void dump() const {
    576     print(dbgs());
    577     dbgs() << '\n';
    578   }
    579 
    580   void print(raw_ostream &OS) const {
    581     switch (getStatus()) {
    582     case Unknown:
    583       OS << "U";
    584       break;
    585     case Base:
    586       OS << "B";
    587       break;
    588     case Conflict:
    589       OS << "C";
    590       break;
    591     };
    592     OS << " (" << getBaseValue() << " - "
    593        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
    594   }
    595 
    596 private:
    597   Status Status;
    598   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
    599 };
    600 }
    601 
    602 #ifndef NDEBUG
    603 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
    604   State.print(OS);
    605   return OS;
    606 }
    607 #endif
    608 
    609 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
    610   switch (LHS.getStatus()) {
    611   case BDVState::Unknown:
    612     return RHS;
    613 
    614   case BDVState::Base:
    615     assert(LHS.getBaseValue() && "can't be null");
    616     if (RHS.isUnknown())
    617       return LHS;
    618 
    619     if (RHS.isBase()) {
    620       if (LHS.getBaseValue() == RHS.getBaseValue()) {
    621         assert(LHS == RHS && "equality broken!");
    622         return LHS;
    623       }
    624       return BDVState(BDVState::Conflict);
    625     }
    626     assert(RHS.isConflict() && "only three states!");
    627     return BDVState(BDVState::Conflict);
    628 
    629   case BDVState::Conflict:
    630     return LHS;
    631   }
    632   llvm_unreachable("only three states!");
    633 }
    634 
    635 // Values of type BDVState form a lattice, and this function implements the meet
    636 // operation.
    637 static BDVState meetBDVState(BDVState LHS, BDVState RHS) {
    638   BDVState Result = meetBDVStateImpl(LHS, RHS);
    639   assert(Result == meetBDVStateImpl(RHS, LHS) &&
    640          "Math is wrong: meet does not commute!");
    641   return Result;
    642 }
    643 
    644 /// For a given value or instruction, figure out what base ptr its derived from.
    645 /// For gc objects, this is simply itself.  On success, returns a value which is
    646 /// the base pointer.  (This is reliable and can be used for relocation.)  On
    647 /// failure, returns nullptr.
    648 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
    649   Value *Def = findBaseOrBDV(I, Cache);
    650 
    651   if (isKnownBaseResult(Def))
    652     return Def;
    653 
    654   // Here's the rough algorithm:
    655   // - For every SSA value, construct a mapping to either an actual base
    656   //   pointer or a PHI which obscures the base pointer.
    657   // - Construct a mapping from PHI to unknown TOP state.  Use an
    658   //   optimistic algorithm to propagate base pointer information.  Lattice
    659   //   looks like:
    660   //   UNKNOWN
    661   //   b1 b2 b3 b4
    662   //   CONFLICT
    663   //   When algorithm terminates, all PHIs will either have a single concrete
    664   //   base or be in a conflict state.
    665   // - For every conflict, insert a dummy PHI node without arguments.  Add
    666   //   these to the base[Instruction] = BasePtr mapping.  For every
    667   //   non-conflict, add the actual base.
    668   //  - For every conflict, add arguments for the base[a] of each input
    669   //   arguments.
    670   //
    671   // Note: A simpler form of this would be to add the conflict form of all
    672   // PHIs without running the optimistic algorithm.  This would be
    673   // analogous to pessimistic data flow and would likely lead to an
    674   // overall worse solution.
    675 
    676 #ifndef NDEBUG
    677   auto isExpectedBDVType = [](Value *BDV) {
    678     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
    679            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
    680   };
    681 #endif
    682 
    683   // Once populated, will contain a mapping from each potentially non-base BDV
    684   // to a lattice value (described above) which corresponds to that BDV.
    685   // We use the order of insertion (DFS over the def/use graph) to provide a
    686   // stable deterministic ordering for visiting DenseMaps (which are unordered)
    687   // below.  This is important for deterministic compilation.
    688   MapVector<Value *, BDVState> States;
    689 
    690   // Recursively fill in all base defining values reachable from the initial
    691   // one for which we don't already know a definite base value for
    692   /* scope */ {
    693     SmallVector<Value*, 16> Worklist;
    694     Worklist.push_back(Def);
    695     States.insert({Def, BDVState()});
    696     while (!Worklist.empty()) {
    697       Value *Current = Worklist.pop_back_val();
    698       assert(!isKnownBaseResult(Current) && "why did it get added?");
    699 
    700       auto visitIncomingValue = [&](Value *InVal) {
    701         Value *Base = findBaseOrBDV(InVal, Cache);
    702         if (isKnownBaseResult(Base))
    703           // Known bases won't need new instructions introduced and can be
    704           // ignored safely
    705           return;
    706         assert(isExpectedBDVType(Base) && "the only non-base values "
    707                "we see should be base defining values");
    708         if (States.insert(std::make_pair(Base, BDVState())).second)
    709           Worklist.push_back(Base);
    710       };
    711       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
    712         for (Value *InVal : PN->incoming_values())
    713           visitIncomingValue(InVal);
    714       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
    715         visitIncomingValue(SI->getTrueValue());
    716         visitIncomingValue(SI->getFalseValue());
    717       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
    718         visitIncomingValue(EE->getVectorOperand());
    719       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
    720         visitIncomingValue(IE->getOperand(0)); // vector operand
    721         visitIncomingValue(IE->getOperand(1)); // scalar operand
    722       } else {
    723         // There is one known class of instructions we know we don't handle.
    724         assert(isa<ShuffleVectorInst>(Current));
    725         llvm_unreachable("Unimplemented instruction case");
    726       }
    727     }
    728   }
    729 
    730 #ifndef NDEBUG
    731   DEBUG(dbgs() << "States after initialization:\n");
    732   for (auto Pair : States) {
    733     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
    734   }
    735 #endif
    736 
    737   // Return a phi state for a base defining value.  We'll generate a new
    738   // base state for known bases and expect to find a cached state otherwise.
    739   auto getStateForBDV = [&](Value *baseValue) {
    740     if (isKnownBaseResult(baseValue))
    741       return BDVState(baseValue);
    742     auto I = States.find(baseValue);
    743     assert(I != States.end() && "lookup failed!");
    744     return I->second;
    745   };
    746 
    747   bool Progress = true;
    748   while (Progress) {
    749 #ifndef NDEBUG
    750     const size_t OldSize = States.size();
    751 #endif
    752     Progress = false;
    753     // We're only changing values in this loop, thus safe to keep iterators.
    754     // Since this is computing a fixed point, the order of visit does not
    755     // effect the result.  TODO: We could use a worklist here and make this run
    756     // much faster.
    757     for (auto Pair : States) {
    758       Value *BDV = Pair.first;
    759       assert(!isKnownBaseResult(BDV) && "why did it get added?");
    760 
    761       // Given an input value for the current instruction, return a BDVState
    762       // instance which represents the BDV of that value.
    763       auto getStateForInput = [&](Value *V) mutable {
    764         Value *BDV = findBaseOrBDV(V, Cache);
    765         return getStateForBDV(BDV);
    766       };
    767 
    768       BDVState NewState;
    769       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
    770         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
    771         NewState =
    772             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
    773       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
    774         for (Value *Val : PN->incoming_values())
    775           NewState = meetBDVState(NewState, getStateForInput(Val));
    776       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
    777         // The 'meet' for an extractelement is slightly trivial, but it's still
    778         // useful in that it drives us to conflict if our input is.
    779         NewState =
    780             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
    781       } else {
    782         // Given there's a inherent type mismatch between the operands, will
    783         // *always* produce Conflict.
    784         auto *IE = cast<InsertElementInst>(BDV);
    785         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
    786         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
    787       }
    788 
    789       BDVState OldState = States[BDV];
    790       if (OldState != NewState) {
    791         Progress = true;
    792         States[BDV] = NewState;
    793       }
    794     }
    795 
    796     assert(OldSize == States.size() &&
    797            "fixed point shouldn't be adding any new nodes to state");
    798   }
    799 
    800 #ifndef NDEBUG
    801   DEBUG(dbgs() << "States after meet iteration:\n");
    802   for (auto Pair : States) {
    803     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
    804   }
    805 #endif
    806 
    807   // Insert Phis for all conflicts
    808   // TODO: adjust naming patterns to avoid this order of iteration dependency
    809   for (auto Pair : States) {
    810     Instruction *I = cast<Instruction>(Pair.first);
    811     BDVState State = Pair.second;
    812     assert(!isKnownBaseResult(I) && "why did it get added?");
    813     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
    814 
    815     // extractelement instructions are a bit special in that we may need to
    816     // insert an extract even when we know an exact base for the instruction.
    817     // The problem is that we need to convert from a vector base to a scalar
    818     // base for the particular indice we're interested in.
    819     if (State.isBase() && isa<ExtractElementInst>(I) &&
    820         isa<VectorType>(State.getBaseValue()->getType())) {
    821       auto *EE = cast<ExtractElementInst>(I);
    822       // TODO: In many cases, the new instruction is just EE itself.  We should
    823       // exploit this, but can't do it here since it would break the invariant
    824       // about the BDV not being known to be a base.
    825       auto *BaseInst = ExtractElementInst::Create(
    826           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
    827       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
    828       States[I] = BDVState(BDVState::Base, BaseInst);
    829     }
    830 
    831     // Since we're joining a vector and scalar base, they can never be the
    832     // same.  As a result, we should always see insert element having reached
    833     // the conflict state.
    834     assert(!isa<InsertElementInst>(I) || State.isConflict());
    835 
    836     if (!State.isConflict())
    837       continue;
    838 
    839     /// Create and insert a new instruction which will represent the base of
    840     /// the given instruction 'I'.
    841     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
    842       if (isa<PHINode>(I)) {
    843         BasicBlock *BB = I->getParent();
    844         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
    845         assert(NumPreds > 0 && "how did we reach here");
    846         std::string Name = suffixed_name_or(I, ".base", "base_phi");
    847         return PHINode::Create(I->getType(), NumPreds, Name, I);
    848       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
    849         // The undef will be replaced later
    850         UndefValue *Undef = UndefValue::get(SI->getType());
    851         std::string Name = suffixed_name_or(I, ".base", "base_select");
    852         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
    853       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
    854         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
    855         std::string Name = suffixed_name_or(I, ".base", "base_ee");
    856         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
    857                                           EE);
    858       } else {
    859         auto *IE = cast<InsertElementInst>(I);
    860         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
    861         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
    862         std::string Name = suffixed_name_or(I, ".base", "base_ie");
    863         return InsertElementInst::Create(VecUndef, ScalarUndef,
    864                                          IE->getOperand(2), Name, IE);
    865       }
    866     };
    867     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
    868     // Add metadata marking this as a base value
    869     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
    870     States[I] = BDVState(BDVState::Conflict, BaseInst);
    871   }
    872 
    873   // Returns a instruction which produces the base pointer for a given
    874   // instruction.  The instruction is assumed to be an input to one of the BDVs
    875   // seen in the inference algorithm above.  As such, we must either already
    876   // know it's base defining value is a base, or have inserted a new
    877   // instruction to propagate the base of it's BDV and have entered that newly
    878   // introduced instruction into the state table.  In either case, we are
    879   // assured to be able to determine an instruction which produces it's base
    880   // pointer.
    881   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
    882     Value *BDV = findBaseOrBDV(Input, Cache);
    883     Value *Base = nullptr;
    884     if (isKnownBaseResult(BDV)) {
    885       Base = BDV;
    886     } else {
    887       // Either conflict or base.
    888       assert(States.count(BDV));
    889       Base = States[BDV].getBaseValue();
    890     }
    891     assert(Base && "Can't be null");
    892     // The cast is needed since base traversal may strip away bitcasts
    893     if (Base->getType() != Input->getType() && InsertPt)
    894       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
    895     return Base;
    896   };
    897 
    898   // Fixup all the inputs of the new PHIs.  Visit order needs to be
    899   // deterministic and predictable because we're naming newly created
    900   // instructions.
    901   for (auto Pair : States) {
    902     Instruction *BDV = cast<Instruction>(Pair.first);
    903     BDVState State = Pair.second;
    904 
    905     assert(!isKnownBaseResult(BDV) && "why did it get added?");
    906     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
    907     if (!State.isConflict())
    908       continue;
    909 
    910     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
    911       PHINode *PN = cast<PHINode>(BDV);
    912       unsigned NumPHIValues = PN->getNumIncomingValues();
    913       for (unsigned i = 0; i < NumPHIValues; i++) {
    914         Value *InVal = PN->getIncomingValue(i);
    915         BasicBlock *InBB = PN->getIncomingBlock(i);
    916 
    917         // If we've already seen InBB, add the same incoming value
    918         // we added for it earlier.  The IR verifier requires phi
    919         // nodes with multiple entries from the same basic block
    920         // to have the same incoming value for each of those
    921         // entries.  If we don't do this check here and basephi
    922         // has a different type than base, we'll end up adding two
    923         // bitcasts (and hence two distinct values) as incoming
    924         // values for the same basic block.
    925 
    926         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
    927         if (BlockIndex != -1) {
    928           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
    929           BasePHI->addIncoming(OldBase, InBB);
    930 
    931 #ifndef NDEBUG
    932           Value *Base = getBaseForInput(InVal, nullptr);
    933           // In essence this assert states: the only way two values
    934           // incoming from the same basic block may be different is by
    935           // being different bitcasts of the same value.  A cleanup
    936           // that remains TODO is changing findBaseOrBDV to return an
    937           // llvm::Value of the correct type (and still remain pure).
    938           // This will remove the need to add bitcasts.
    939           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
    940                  "Sanity -- findBaseOrBDV should be pure!");
    941 #endif
    942           continue;
    943         }
    944 
    945         // Find the instruction which produces the base for each input.  We may
    946         // need to insert a bitcast in the incoming block.
    947         // TODO: Need to split critical edges if insertion is needed
    948         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
    949         BasePHI->addIncoming(Base, InBB);
    950       }
    951       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
    952     } else if (SelectInst *BaseSI =
    953                    dyn_cast<SelectInst>(State.getBaseValue())) {
    954       SelectInst *SI = cast<SelectInst>(BDV);
    955 
    956       // Find the instruction which produces the base for each input.
    957       // We may need to insert a bitcast.
    958       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
    959       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
    960     } else if (auto *BaseEE =
    961                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
    962       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
    963       // Find the instruction which produces the base for each input.  We may
    964       // need to insert a bitcast.
    965       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
    966     } else {
    967       auto *BaseIE = cast<InsertElementInst>(State.getBaseValue());
    968       auto *BdvIE = cast<InsertElementInst>(BDV);
    969       auto UpdateOperand = [&](int OperandIdx) {
    970         Value *InVal = BdvIE->getOperand(OperandIdx);
    971         Value *Base = getBaseForInput(InVal, BaseIE);
    972         BaseIE->setOperand(OperandIdx, Base);
    973       };
    974       UpdateOperand(0); // vector operand
    975       UpdateOperand(1); // scalar operand
    976     }
    977   }
    978 
    979   // Cache all of our results so we can cheaply reuse them
    980   // NOTE: This is actually two caches: one of the base defining value
    981   // relation and one of the base pointer relation!  FIXME
    982   for (auto Pair : States) {
    983     auto *BDV = Pair.first;
    984     Value *Base = Pair.second.getBaseValue();
    985     assert(BDV && Base);
    986     assert(!isKnownBaseResult(BDV) && "why did it get added?");
    987 
    988     DEBUG(dbgs() << "Updating base value cache"
    989                  << " for: " << BDV->getName() << " from: "
    990                  << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
    991                  << " to: " << Base->getName() << "\n");
    992 
    993     if (Cache.count(BDV)) {
    994       assert(isKnownBaseResult(Base) &&
    995              "must be something we 'know' is a base pointer");
    996       // Once we transition from the BDV relation being store in the Cache to
    997       // the base relation being stored, it must be stable
    998       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
    999              "base relation should be stable");
   1000     }
   1001     Cache[BDV] = Base;
   1002   }
   1003   assert(Cache.count(Def));
   1004   return Cache[Def];
   1005 }
   1006 
   1007 // For a set of live pointers (base and/or derived), identify the base
   1008 // pointer of the object which they are derived from.  This routine will
   1009 // mutate the IR graph as needed to make the 'base' pointer live at the
   1010 // definition site of 'derived'.  This ensures that any use of 'derived' can
   1011 // also use 'base'.  This may involve the insertion of a number of
   1012 // additional PHI nodes.
   1013 //
   1014 // preconditions: live is a set of pointer type Values
   1015 //
   1016 // side effects: may insert PHI nodes into the existing CFG, will preserve
   1017 // CFG, will not remove or mutate any existing nodes
   1018 //
   1019 // post condition: PointerToBase contains one (derived, base) pair for every
   1020 // pointer in live.  Note that derived can be equal to base if the original
   1021 // pointer was a base pointer.
   1022 static void
   1023 findBasePointers(const StatepointLiveSetTy &live,
   1024                  MapVector<Value *, Value *> &PointerToBase,
   1025                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
   1026   for (Value *ptr : live) {
   1027     Value *base = findBasePointer(ptr, DVCache);
   1028     assert(base && "failed to find base pointer");
   1029     PointerToBase[ptr] = base;
   1030     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
   1031             DT->dominates(cast<Instruction>(base)->getParent(),
   1032                           cast<Instruction>(ptr)->getParent())) &&
   1033            "The base we found better dominate the derived pointer");
   1034   }
   1035 }
   1036 
   1037 /// Find the required based pointers (and adjust the live set) for the given
   1038 /// parse point.
   1039 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
   1040                              CallSite CS,
   1041                              PartiallyConstructedSafepointRecord &result) {
   1042   MapVector<Value *, Value *> PointerToBase;
   1043   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
   1044 
   1045   if (PrintBasePointers) {
   1046     errs() << "Base Pairs (w/o Relocation):\n";
   1047     for (auto &Pair : PointerToBase) {
   1048       errs() << " derived ";
   1049       Pair.first->printAsOperand(errs(), false);
   1050       errs() << " base ";
   1051       Pair.second->printAsOperand(errs(), false);
   1052       errs() << "\n";;
   1053     }
   1054   }
   1055 
   1056   result.PointerToBase = PointerToBase;
   1057 }
   1058 
   1059 /// Given an updated version of the dataflow liveness results, update the
   1060 /// liveset and base pointer maps for the call site CS.
   1061 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
   1062                                   CallSite CS,
   1063                                   PartiallyConstructedSafepointRecord &result);
   1064 
   1065 static void recomputeLiveInValues(
   1066     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
   1067     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
   1068   // TODO-PERF: reuse the original liveness, then simply run the dataflow
   1069   // again.  The old values are still live and will help it stabilize quickly.
   1070   GCPtrLivenessData RevisedLivenessData;
   1071   computeLiveInValues(DT, F, RevisedLivenessData);
   1072   for (size_t i = 0; i < records.size(); i++) {
   1073     struct PartiallyConstructedSafepointRecord &info = records[i];
   1074     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
   1075   }
   1076 }
   1077 
   1078 // When inserting gc.relocate and gc.result calls, we need to ensure there are
   1079 // no uses of the original value / return value between the gc.statepoint and
   1080 // the gc.relocate / gc.result call.  One case which can arise is a phi node
   1081 // starting one of the successor blocks.  We also need to be able to insert the
   1082 // gc.relocates only on the path which goes through the statepoint.  We might
   1083 // need to split an edge to make this possible.
   1084 static BasicBlock *
   1085 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
   1086                             DominatorTree &DT) {
   1087   BasicBlock *Ret = BB;
   1088   if (!BB->getUniquePredecessor())
   1089     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
   1090 
   1091   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
   1092   // from it
   1093   FoldSingleEntryPHINodes(Ret);
   1094   assert(!isa<PHINode>(Ret->begin()) &&
   1095          "All PHI nodes should have been removed!");
   1096 
   1097   // At this point, we can safely insert a gc.relocate or gc.result as the first
   1098   // instruction in Ret if needed.
   1099   return Ret;
   1100 }
   1101 
   1102 // Create new attribute set containing only attributes which can be transferred
   1103 // from original call to the safepoint.
   1104 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
   1105   AttributeSet Ret;
   1106 
   1107   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
   1108     unsigned Index = AS.getSlotIndex(Slot);
   1109 
   1110     if (Index == AttributeSet::ReturnIndex ||
   1111         Index == AttributeSet::FunctionIndex) {
   1112 
   1113       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
   1114 
   1115         // Do not allow certain attributes - just skip them
   1116         // Safepoint can not be read only or read none.
   1117         if (Attr.hasAttribute(Attribute::ReadNone) ||
   1118             Attr.hasAttribute(Attribute::ReadOnly))
   1119           continue;
   1120 
   1121         // These attributes control the generation of the gc.statepoint call /
   1122         // invoke itself; and once the gc.statepoint is in place, they're of no
   1123         // use.
   1124         if (isStatepointDirectiveAttr(Attr))
   1125           continue;
   1126 
   1127         Ret = Ret.addAttributes(
   1128             AS.getContext(), Index,
   1129             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
   1130       }
   1131     }
   1132 
   1133     // Just skip parameter attributes for now
   1134   }
   1135 
   1136   return Ret;
   1137 }
   1138 
   1139 /// Helper function to place all gc relocates necessary for the given
   1140 /// statepoint.
   1141 /// Inputs:
   1142 ///   liveVariables - list of variables to be relocated.
   1143 ///   liveStart - index of the first live variable.
   1144 ///   basePtrs - base pointers.
   1145 ///   statepointToken - statepoint instruction to which relocates should be
   1146 ///   bound.
   1147 ///   Builder - Llvm IR builder to be used to construct new calls.
   1148 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
   1149                               const int LiveStart,
   1150                               ArrayRef<Value *> BasePtrs,
   1151                               Instruction *StatepointToken,
   1152                               IRBuilder<> Builder) {
   1153   if (LiveVariables.empty())
   1154     return;
   1155 
   1156   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
   1157     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
   1158     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
   1159     size_t Index = std::distance(LiveVec.begin(), ValIt);
   1160     assert(Index < LiveVec.size() && "Bug in std::find?");
   1161     return Index;
   1162   };
   1163   Module *M = StatepointToken->getModule();
   1164 
   1165   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
   1166   // element type is i8 addrspace(1)*). We originally generated unique
   1167   // declarations for each pointer type, but this proved problematic because
   1168   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
   1169   // towards a single unified pointer type anyways, we can just cast everything
   1170   // to an i8* of the right address space.  A bitcast is added later to convert
   1171   // gc_relocate to the actual value's type.
   1172   auto getGCRelocateDecl = [&] (Type *Ty) {
   1173     assert(isHandledGCPointerType(Ty));
   1174     auto AS = Ty->getScalarType()->getPointerAddressSpace();
   1175     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
   1176     if (auto *VT = dyn_cast<VectorType>(Ty))
   1177       NewTy = VectorType::get(NewTy, VT->getNumElements());
   1178     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
   1179                                      {NewTy});
   1180   };
   1181 
   1182   // Lazily populated map from input types to the canonicalized form mentioned
   1183   // in the comment above.  This should probably be cached somewhere more
   1184   // broadly.
   1185   DenseMap<Type*, Value*> TypeToDeclMap;
   1186 
   1187   for (unsigned i = 0; i < LiveVariables.size(); i++) {
   1188     // Generate the gc.relocate call and save the result
   1189     Value *BaseIdx =
   1190       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
   1191     Value *LiveIdx = Builder.getInt32(LiveStart + i);
   1192 
   1193     Type *Ty = LiveVariables[i]->getType();
   1194     if (!TypeToDeclMap.count(Ty))
   1195       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
   1196     Value *GCRelocateDecl = TypeToDeclMap[Ty];
   1197 
   1198     // only specify a debug name if we can give a useful one
   1199     CallInst *Reloc = Builder.CreateCall(
   1200         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
   1201         suffixed_name_or(LiveVariables[i], ".relocated", ""));
   1202     // Trick CodeGen into thinking there are lots of free registers at this
   1203     // fake call.
   1204     Reloc->setCallingConv(CallingConv::Cold);
   1205   }
   1206 }
   1207 
   1208 namespace {
   1209 
   1210 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
   1211 /// avoids having to worry about keeping around dangling pointers to Values.
   1212 class DeferredReplacement {
   1213   AssertingVH<Instruction> Old;
   1214   AssertingVH<Instruction> New;
   1215   bool IsDeoptimize = false;
   1216 
   1217   DeferredReplacement() {}
   1218 
   1219 public:
   1220   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
   1221     assert(Old != New && Old && New &&
   1222            "Cannot RAUW equal values or to / from null!");
   1223 
   1224     DeferredReplacement D;
   1225     D.Old = Old;
   1226     D.New = New;
   1227     return D;
   1228   }
   1229 
   1230   static DeferredReplacement createDelete(Instruction *ToErase) {
   1231     DeferredReplacement D;
   1232     D.Old = ToErase;
   1233     return D;
   1234   }
   1235 
   1236   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
   1237 #ifndef NDEBUG
   1238     auto *F = cast<CallInst>(Old)->getCalledFunction();
   1239     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
   1240            "Only way to construct a deoptimize deferred replacement");
   1241 #endif
   1242     DeferredReplacement D;
   1243     D.Old = Old;
   1244     D.IsDeoptimize = true;
   1245     return D;
   1246   }
   1247 
   1248   /// Does the task represented by this instance.
   1249   void doReplacement() {
   1250     Instruction *OldI = Old;
   1251     Instruction *NewI = New;
   1252 
   1253     assert(OldI != NewI && "Disallowed at construction?!");
   1254     assert((!IsDeoptimize || !New) &&
   1255            "Deoptimize instrinsics are not replaced!");
   1256 
   1257     Old = nullptr;
   1258     New = nullptr;
   1259 
   1260     if (NewI)
   1261       OldI->replaceAllUsesWith(NewI);
   1262 
   1263     if (IsDeoptimize) {
   1264       // Note: we've inserted instructions, so the call to llvm.deoptimize may
   1265       // not necessarilly be followed by the matching return.
   1266       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
   1267       new UnreachableInst(RI->getContext(), RI);
   1268       RI->eraseFromParent();
   1269     }
   1270 
   1271     OldI->eraseFromParent();
   1272   }
   1273 };
   1274 }
   1275 
   1276 static void
   1277 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
   1278                            const SmallVectorImpl<Value *> &BasePtrs,
   1279                            const SmallVectorImpl<Value *> &LiveVariables,
   1280                            PartiallyConstructedSafepointRecord &Result,
   1281                            std::vector<DeferredReplacement> &Replacements) {
   1282   assert(BasePtrs.size() == LiveVariables.size());
   1283 
   1284   // Then go ahead and use the builder do actually do the inserts.  We insert
   1285   // immediately before the previous instruction under the assumption that all
   1286   // arguments will be available here.  We can't insert afterwards since we may
   1287   // be replacing a terminator.
   1288   Instruction *InsertBefore = CS.getInstruction();
   1289   IRBuilder<> Builder(InsertBefore);
   1290 
   1291   ArrayRef<Value *> GCArgs(LiveVariables);
   1292   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
   1293   uint32_t NumPatchBytes = 0;
   1294   uint32_t Flags = uint32_t(StatepointFlags::None);
   1295 
   1296   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
   1297   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
   1298   ArrayRef<Use> TransitionArgs;
   1299   if (auto TransitionBundle =
   1300       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
   1301     Flags |= uint32_t(StatepointFlags::GCTransition);
   1302     TransitionArgs = TransitionBundle->Inputs;
   1303   }
   1304 
   1305   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
   1306   // with a return value, we lower then as never returning calls to
   1307   // __llvm_deoptimize that are followed by unreachable to get better codegen.
   1308   bool IsDeoptimize = false;
   1309 
   1310   StatepointDirectives SD =
   1311       parseStatepointDirectivesFromAttrs(CS.getAttributes());
   1312   if (SD.NumPatchBytes)
   1313     NumPatchBytes = *SD.NumPatchBytes;
   1314   if (SD.StatepointID)
   1315     StatepointID = *SD.StatepointID;
   1316 
   1317   Value *CallTarget = CS.getCalledValue();
   1318   if (Function *F = dyn_cast<Function>(CallTarget)) {
   1319     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
   1320       // Calls to llvm.experimental.deoptimize are lowered to calls to the
   1321       // __llvm_deoptimize symbol.  We want to resolve this now, since the
   1322       // verifier does not allow taking the address of an intrinsic function.
   1323 
   1324       SmallVector<Type *, 8> DomainTy;
   1325       for (Value *Arg : CallArgs)
   1326         DomainTy.push_back(Arg->getType());
   1327       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
   1328                                     /* isVarArg = */ false);
   1329 
   1330       // Note: CallTarget can be a bitcast instruction of a symbol if there are
   1331       // calls to @llvm.experimental.deoptimize with different argument types in
   1332       // the same module.  This is fine -- we assume the frontend knew what it
   1333       // was doing when generating this kind of IR.
   1334       CallTarget =
   1335           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
   1336 
   1337       IsDeoptimize = true;
   1338     }
   1339   }
   1340 
   1341   // Create the statepoint given all the arguments
   1342   Instruction *Token = nullptr;
   1343   AttributeSet ReturnAttrs;
   1344   if (CS.isCall()) {
   1345     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
   1346     CallInst *Call = Builder.CreateGCStatepointCall(
   1347         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
   1348         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
   1349 
   1350     Call->setTailCall(ToReplace->isTailCall());
   1351     Call->setCallingConv(ToReplace->getCallingConv());
   1352 
   1353     // Currently we will fail on parameter attributes and on certain
   1354     // function attributes.
   1355     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
   1356     // In case if we can handle this set of attributes - set up function attrs
   1357     // directly on statepoint and return attrs later for gc_result intrinsic.
   1358     Call->setAttributes(NewAttrs.getFnAttributes());
   1359     ReturnAttrs = NewAttrs.getRetAttributes();
   1360 
   1361     Token = Call;
   1362 
   1363     // Put the following gc_result and gc_relocate calls immediately after the
   1364     // the old call (which we're about to delete)
   1365     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
   1366     Builder.SetInsertPoint(ToReplace->getNextNode());
   1367     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
   1368   } else {
   1369     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
   1370 
   1371     // Insert the new invoke into the old block.  We'll remove the old one in a
   1372     // moment at which point this will become the new terminator for the
   1373     // original block.
   1374     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
   1375         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
   1376         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
   1377         GCArgs, "statepoint_token");
   1378 
   1379     Invoke->setCallingConv(ToReplace->getCallingConv());
   1380 
   1381     // Currently we will fail on parameter attributes and on certain
   1382     // function attributes.
   1383     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
   1384     // In case if we can handle this set of attributes - set up function attrs
   1385     // directly on statepoint and return attrs later for gc_result intrinsic.
   1386     Invoke->setAttributes(NewAttrs.getFnAttributes());
   1387     ReturnAttrs = NewAttrs.getRetAttributes();
   1388 
   1389     Token = Invoke;
   1390 
   1391     // Generate gc relocates in exceptional path
   1392     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
   1393     assert(!isa<PHINode>(UnwindBlock->begin()) &&
   1394            UnwindBlock->getUniquePredecessor() &&
   1395            "can't safely insert in this block!");
   1396 
   1397     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
   1398     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
   1399 
   1400     // Attach exceptional gc relocates to the landingpad.
   1401     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
   1402     Result.UnwindToken = ExceptionalToken;
   1403 
   1404     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
   1405     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
   1406                       Builder);
   1407 
   1408     // Generate gc relocates and returns for normal block
   1409     BasicBlock *NormalDest = ToReplace->getNormalDest();
   1410     assert(!isa<PHINode>(NormalDest->begin()) &&
   1411            NormalDest->getUniquePredecessor() &&
   1412            "can't safely insert in this block!");
   1413 
   1414     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
   1415 
   1416     // gc relocates will be generated later as if it were regular call
   1417     // statepoint
   1418   }
   1419   assert(Token && "Should be set in one of the above branches!");
   1420 
   1421   if (IsDeoptimize) {
   1422     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
   1423     // transform the tail-call like structure to a call to a void function
   1424     // followed by unreachable to get better codegen.
   1425     Replacements.push_back(
   1426         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
   1427   } else {
   1428     Token->setName("statepoint_token");
   1429     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
   1430       StringRef Name =
   1431           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
   1432       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
   1433       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
   1434 
   1435       // We cannot RAUW or delete CS.getInstruction() because it could be in the
   1436       // live set of some other safepoint, in which case that safepoint's
   1437       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
   1438       // llvm::Instruction.  Instead, we defer the replacement and deletion to
   1439       // after the live sets have been made explicit in the IR, and we no longer
   1440       // have raw pointers to worry about.
   1441       Replacements.emplace_back(
   1442           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
   1443     } else {
   1444       Replacements.emplace_back(
   1445           DeferredReplacement::createDelete(CS.getInstruction()));
   1446     }
   1447   }
   1448 
   1449   Result.StatepointToken = Token;
   1450 
   1451   // Second, create a gc.relocate for every live variable
   1452   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
   1453   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
   1454 }
   1455 
   1456 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
   1457 // which make the relocations happening at this safepoint explicit.
   1458 //
   1459 // WARNING: Does not do any fixup to adjust users of the original live
   1460 // values.  That's the callers responsibility.
   1461 static void
   1462 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
   1463                        PartiallyConstructedSafepointRecord &Result,
   1464                        std::vector<DeferredReplacement> &Replacements) {
   1465   const auto &LiveSet = Result.LiveSet;
   1466   const auto &PointerToBase = Result.PointerToBase;
   1467 
   1468   // Convert to vector for efficient cross referencing.
   1469   SmallVector<Value *, 64> BaseVec, LiveVec;
   1470   LiveVec.reserve(LiveSet.size());
   1471   BaseVec.reserve(LiveSet.size());
   1472   for (Value *L : LiveSet) {
   1473     LiveVec.push_back(L);
   1474     assert(PointerToBase.count(L));
   1475     Value *Base = PointerToBase.find(L)->second;
   1476     BaseVec.push_back(Base);
   1477   }
   1478   assert(LiveVec.size() == BaseVec.size());
   1479 
   1480   // Do the actual rewriting and delete the old statepoint
   1481   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
   1482 }
   1483 
   1484 // Helper function for the relocationViaAlloca.
   1485 //
   1486 // It receives iterator to the statepoint gc relocates and emits a store to the
   1487 // assigned location (via allocaMap) for the each one of them.  It adds the
   1488 // visited values into the visitedLiveValues set, which we will later use them
   1489 // for sanity checking.
   1490 static void
   1491 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
   1492                        DenseMap<Value *, Value *> &AllocaMap,
   1493                        DenseSet<Value *> &VisitedLiveValues) {
   1494 
   1495   for (User *U : GCRelocs) {
   1496     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
   1497     if (!Relocate)
   1498       continue;
   1499 
   1500     Value *OriginalValue = Relocate->getDerivedPtr();
   1501     assert(AllocaMap.count(OriginalValue));
   1502     Value *Alloca = AllocaMap[OriginalValue];
   1503 
   1504     // Emit store into the related alloca
   1505     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
   1506     // the correct type according to alloca.
   1507     assert(Relocate->getNextNode() &&
   1508            "Should always have one since it's not a terminator");
   1509     IRBuilder<> Builder(Relocate->getNextNode());
   1510     Value *CastedRelocatedValue =
   1511       Builder.CreateBitCast(Relocate,
   1512                             cast<AllocaInst>(Alloca)->getAllocatedType(),
   1513                             suffixed_name_or(Relocate, ".casted", ""));
   1514 
   1515     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
   1516     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
   1517 
   1518 #ifndef NDEBUG
   1519     VisitedLiveValues.insert(OriginalValue);
   1520 #endif
   1521   }
   1522 }
   1523 
   1524 // Helper function for the "relocationViaAlloca". Similar to the
   1525 // "insertRelocationStores" but works for rematerialized values.
   1526 static void insertRematerializationStores(
   1527     const RematerializedValueMapTy &RematerializedValues,
   1528     DenseMap<Value *, Value *> &AllocaMap,
   1529     DenseSet<Value *> &VisitedLiveValues) {
   1530 
   1531   for (auto RematerializedValuePair: RematerializedValues) {
   1532     Instruction *RematerializedValue = RematerializedValuePair.first;
   1533     Value *OriginalValue = RematerializedValuePair.second;
   1534 
   1535     assert(AllocaMap.count(OriginalValue) &&
   1536            "Can not find alloca for rematerialized value");
   1537     Value *Alloca = AllocaMap[OriginalValue];
   1538 
   1539     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
   1540     Store->insertAfter(RematerializedValue);
   1541 
   1542 #ifndef NDEBUG
   1543     VisitedLiveValues.insert(OriginalValue);
   1544 #endif
   1545   }
   1546 }
   1547 
   1548 /// Do all the relocation update via allocas and mem2reg
   1549 static void relocationViaAlloca(
   1550     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
   1551     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
   1552 #ifndef NDEBUG
   1553   // record initial number of (static) allocas; we'll check we have the same
   1554   // number when we get done.
   1555   int InitialAllocaNum = 0;
   1556   for (Instruction &I : F.getEntryBlock())
   1557     if (isa<AllocaInst>(I))
   1558       InitialAllocaNum++;
   1559 #endif
   1560 
   1561   // TODO-PERF: change data structures, reserve
   1562   DenseMap<Value *, Value *> AllocaMap;
   1563   SmallVector<AllocaInst *, 200> PromotableAllocas;
   1564   // Used later to chack that we have enough allocas to store all values
   1565   std::size_t NumRematerializedValues = 0;
   1566   PromotableAllocas.reserve(Live.size());
   1567 
   1568   // Emit alloca for "LiveValue" and record it in "allocaMap" and
   1569   // "PromotableAllocas"
   1570   auto emitAllocaFor = [&](Value *LiveValue) {
   1571     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
   1572                                         F.getEntryBlock().getFirstNonPHI());
   1573     AllocaMap[LiveValue] = Alloca;
   1574     PromotableAllocas.push_back(Alloca);
   1575   };
   1576 
   1577   // Emit alloca for each live gc pointer
   1578   for (Value *V : Live)
   1579     emitAllocaFor(V);
   1580 
   1581   // Emit allocas for rematerialized values
   1582   for (const auto &Info : Records)
   1583     for (auto RematerializedValuePair : Info.RematerializedValues) {
   1584       Value *OriginalValue = RematerializedValuePair.second;
   1585       if (AllocaMap.count(OriginalValue) != 0)
   1586         continue;
   1587 
   1588       emitAllocaFor(OriginalValue);
   1589       ++NumRematerializedValues;
   1590     }
   1591 
   1592   // The next two loops are part of the same conceptual operation.  We need to
   1593   // insert a store to the alloca after the original def and at each
   1594   // redefinition.  We need to insert a load before each use.  These are split
   1595   // into distinct loops for performance reasons.
   1596 
   1597   // Update gc pointer after each statepoint: either store a relocated value or
   1598   // null (if no relocated value was found for this gc pointer and it is not a
   1599   // gc_result).  This must happen before we update the statepoint with load of
   1600   // alloca otherwise we lose the link between statepoint and old def.
   1601   for (const auto &Info : Records) {
   1602     Value *Statepoint = Info.StatepointToken;
   1603 
   1604     // This will be used for consistency check
   1605     DenseSet<Value *> VisitedLiveValues;
   1606 
   1607     // Insert stores for normal statepoint gc relocates
   1608     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
   1609 
   1610     // In case if it was invoke statepoint
   1611     // we will insert stores for exceptional path gc relocates.
   1612     if (isa<InvokeInst>(Statepoint)) {
   1613       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
   1614                              VisitedLiveValues);
   1615     }
   1616 
   1617     // Do similar thing with rematerialized values
   1618     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
   1619                                   VisitedLiveValues);
   1620 
   1621     if (ClobberNonLive) {
   1622       // As a debugging aid, pretend that an unrelocated pointer becomes null at
   1623       // the gc.statepoint.  This will turn some subtle GC problems into
   1624       // slightly easier to debug SEGVs.  Note that on large IR files with
   1625       // lots of gc.statepoints this is extremely costly both memory and time
   1626       // wise.
   1627       SmallVector<AllocaInst *, 64> ToClobber;
   1628       for (auto Pair : AllocaMap) {
   1629         Value *Def = Pair.first;
   1630         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
   1631 
   1632         // This value was relocated
   1633         if (VisitedLiveValues.count(Def)) {
   1634           continue;
   1635         }
   1636         ToClobber.push_back(Alloca);
   1637       }
   1638 
   1639       auto InsertClobbersAt = [&](Instruction *IP) {
   1640         for (auto *AI : ToClobber) {
   1641           auto PT = cast<PointerType>(AI->getAllocatedType());
   1642           Constant *CPN = ConstantPointerNull::get(PT);
   1643           StoreInst *Store = new StoreInst(CPN, AI);
   1644           Store->insertBefore(IP);
   1645         }
   1646       };
   1647 
   1648       // Insert the clobbering stores.  These may get intermixed with the
   1649       // gc.results and gc.relocates, but that's fine.
   1650       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
   1651         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
   1652         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
   1653       } else {
   1654         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
   1655       }
   1656     }
   1657   }
   1658 
   1659   // Update use with load allocas and add store for gc_relocated.
   1660   for (auto Pair : AllocaMap) {
   1661     Value *Def = Pair.first;
   1662     Value *Alloca = Pair.second;
   1663 
   1664     // We pre-record the uses of allocas so that we dont have to worry about
   1665     // later update that changes the user information..
   1666 
   1667     SmallVector<Instruction *, 20> Uses;
   1668     // PERF: trade a linear scan for repeated reallocation
   1669     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
   1670     for (User *U : Def->users()) {
   1671       if (!isa<ConstantExpr>(U)) {
   1672         // If the def has a ConstantExpr use, then the def is either a
   1673         // ConstantExpr use itself or null.  In either case
   1674         // (recursively in the first, directly in the second), the oop
   1675         // it is ultimately dependent on is null and this particular
   1676         // use does not need to be fixed up.
   1677         Uses.push_back(cast<Instruction>(U));
   1678       }
   1679     }
   1680 
   1681     std::sort(Uses.begin(), Uses.end());
   1682     auto Last = std::unique(Uses.begin(), Uses.end());
   1683     Uses.erase(Last, Uses.end());
   1684 
   1685     for (Instruction *Use : Uses) {
   1686       if (isa<PHINode>(Use)) {
   1687         PHINode *Phi = cast<PHINode>(Use);
   1688         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
   1689           if (Def == Phi->getIncomingValue(i)) {
   1690             LoadInst *Load = new LoadInst(
   1691                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
   1692             Phi->setIncomingValue(i, Load);
   1693           }
   1694         }
   1695       } else {
   1696         LoadInst *Load = new LoadInst(Alloca, "", Use);
   1697         Use->replaceUsesOfWith(Def, Load);
   1698       }
   1699     }
   1700 
   1701     // Emit store for the initial gc value.  Store must be inserted after load,
   1702     // otherwise store will be in alloca's use list and an extra load will be
   1703     // inserted before it.
   1704     StoreInst *Store = new StoreInst(Def, Alloca);
   1705     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
   1706       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
   1707         // InvokeInst is a TerminatorInst so the store need to be inserted
   1708         // into its normal destination block.
   1709         BasicBlock *NormalDest = Invoke->getNormalDest();
   1710         Store->insertBefore(NormalDest->getFirstNonPHI());
   1711       } else {
   1712         assert(!Inst->isTerminator() &&
   1713                "The only TerminatorInst that can produce a value is "
   1714                "InvokeInst which is handled above.");
   1715         Store->insertAfter(Inst);
   1716       }
   1717     } else {
   1718       assert(isa<Argument>(Def));
   1719       Store->insertAfter(cast<Instruction>(Alloca));
   1720     }
   1721   }
   1722 
   1723   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
   1724          "we must have the same allocas with lives");
   1725   if (!PromotableAllocas.empty()) {
   1726     // Apply mem2reg to promote alloca to SSA
   1727     PromoteMemToReg(PromotableAllocas, DT);
   1728   }
   1729 
   1730 #ifndef NDEBUG
   1731   for (auto &I : F.getEntryBlock())
   1732     if (isa<AllocaInst>(I))
   1733       InitialAllocaNum--;
   1734   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
   1735 #endif
   1736 }
   1737 
   1738 /// Implement a unique function which doesn't require we sort the input
   1739 /// vector.  Doing so has the effect of changing the output of a couple of
   1740 /// tests in ways which make them less useful in testing fused safepoints.
   1741 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
   1742   SmallSet<T, 8> Seen;
   1743   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
   1744               return !Seen.insert(V).second;
   1745             }), Vec.end());
   1746 }
   1747 
   1748 /// Insert holders so that each Value is obviously live through the entire
   1749 /// lifetime of the call.
   1750 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
   1751                                  SmallVectorImpl<CallInst *> &Holders) {
   1752   if (Values.empty())
   1753     // No values to hold live, might as well not insert the empty holder
   1754     return;
   1755 
   1756   Module *M = CS.getInstruction()->getModule();
   1757   // Use a dummy vararg function to actually hold the values live
   1758   Function *Func = cast<Function>(M->getOrInsertFunction(
   1759       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
   1760   if (CS.isCall()) {
   1761     // For call safepoints insert dummy calls right after safepoint
   1762     Holders.push_back(CallInst::Create(Func, Values, "",
   1763                                        &*++CS.getInstruction()->getIterator()));
   1764     return;
   1765   }
   1766   // For invoke safepooints insert dummy calls both in normal and
   1767   // exceptional destination blocks
   1768   auto *II = cast<InvokeInst>(CS.getInstruction());
   1769   Holders.push_back(CallInst::Create(
   1770       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
   1771   Holders.push_back(CallInst::Create(
   1772       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
   1773 }
   1774 
   1775 static void findLiveReferences(
   1776     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
   1777     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
   1778   GCPtrLivenessData OriginalLivenessData;
   1779   computeLiveInValues(DT, F, OriginalLivenessData);
   1780   for (size_t i = 0; i < records.size(); i++) {
   1781     struct PartiallyConstructedSafepointRecord &info = records[i];
   1782     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
   1783   }
   1784 }
   1785 
   1786 // Helper function for the "rematerializeLiveValues". It walks use chain
   1787 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
   1788 // values are visited (currently it is GEP's and casts). Returns true if it
   1789 // successfully reached "BaseValue" and false otherwise.
   1790 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
   1791 // recorded.
   1792 static bool findRematerializableChainToBasePointer(
   1793   SmallVectorImpl<Instruction*> &ChainToBase,
   1794   Value *CurrentValue, Value *BaseValue) {
   1795 
   1796   // We have found a base value
   1797   if (CurrentValue == BaseValue) {
   1798     return true;
   1799   }
   1800 
   1801   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
   1802     ChainToBase.push_back(GEP);
   1803     return findRematerializableChainToBasePointer(ChainToBase,
   1804                                                   GEP->getPointerOperand(),
   1805                                                   BaseValue);
   1806   }
   1807 
   1808   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
   1809     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
   1810       return false;
   1811 
   1812     ChainToBase.push_back(CI);
   1813     return findRematerializableChainToBasePointer(ChainToBase,
   1814                                                   CI->getOperand(0), BaseValue);
   1815   }
   1816 
   1817   // Not supported instruction in the chain
   1818   return false;
   1819 }
   1820 
   1821 // Helper function for the "rematerializeLiveValues". Compute cost of the use
   1822 // chain we are going to rematerialize.
   1823 static unsigned
   1824 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
   1825                        TargetTransformInfo &TTI) {
   1826   unsigned Cost = 0;
   1827 
   1828   for (Instruction *Instr : Chain) {
   1829     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
   1830       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
   1831              "non noop cast is found during rematerialization");
   1832 
   1833       Type *SrcTy = CI->getOperand(0)->getType();
   1834       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
   1835 
   1836     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
   1837       // Cost of the address calculation
   1838       Type *ValTy = GEP->getSourceElementType();
   1839       Cost += TTI.getAddressComputationCost(ValTy);
   1840 
   1841       // And cost of the GEP itself
   1842       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
   1843       //       allowed for the external usage)
   1844       if (!GEP->hasAllConstantIndices())
   1845         Cost += 2;
   1846 
   1847     } else {
   1848       llvm_unreachable("unsupported instruciton type during rematerialization");
   1849     }
   1850   }
   1851 
   1852   return Cost;
   1853 }
   1854 
   1855 // From the statepoint live set pick values that are cheaper to recompute then
   1856 // to relocate. Remove this values from the live set, rematerialize them after
   1857 // statepoint and record them in "Info" structure. Note that similar to
   1858 // relocated values we don't do any user adjustments here.
   1859 static void rematerializeLiveValues(CallSite CS,
   1860                                     PartiallyConstructedSafepointRecord &Info,
   1861                                     TargetTransformInfo &TTI) {
   1862   const unsigned int ChainLengthThreshold = 10;
   1863 
   1864   // Record values we are going to delete from this statepoint live set.
   1865   // We can not di this in following loop due to iterator invalidation.
   1866   SmallVector<Value *, 32> LiveValuesToBeDeleted;
   1867 
   1868   for (Value *LiveValue: Info.LiveSet) {
   1869     // For each live pointer find it's defining chain
   1870     SmallVector<Instruction *, 3> ChainToBase;
   1871     assert(Info.PointerToBase.count(LiveValue));
   1872     bool FoundChain =
   1873       findRematerializableChainToBasePointer(ChainToBase,
   1874                                              LiveValue,
   1875                                              Info.PointerToBase[LiveValue]);
   1876     // Nothing to do, or chain is too long
   1877     if (!FoundChain ||
   1878         ChainToBase.size() == 0 ||
   1879         ChainToBase.size() > ChainLengthThreshold)
   1880       continue;
   1881 
   1882     // Compute cost of this chain
   1883     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
   1884     // TODO: We can also account for cases when we will be able to remove some
   1885     //       of the rematerialized values by later optimization passes. I.e if
   1886     //       we rematerialized several intersecting chains. Or if original values
   1887     //       don't have any uses besides this statepoint.
   1888 
   1889     // For invokes we need to rematerialize each chain twice - for normal and
   1890     // for unwind basic blocks. Model this by multiplying cost by two.
   1891     if (CS.isInvoke()) {
   1892       Cost *= 2;
   1893     }
   1894     // If it's too expensive - skip it
   1895     if (Cost >= RematerializationThreshold)
   1896       continue;
   1897 
   1898     // Remove value from the live set
   1899     LiveValuesToBeDeleted.push_back(LiveValue);
   1900 
   1901     // Clone instructions and record them inside "Info" structure
   1902 
   1903     // Walk backwards to visit top-most instructions first
   1904     std::reverse(ChainToBase.begin(), ChainToBase.end());
   1905 
   1906     // Utility function which clones all instructions from "ChainToBase"
   1907     // and inserts them before "InsertBefore". Returns rematerialized value
   1908     // which should be used after statepoint.
   1909     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
   1910       Instruction *LastClonedValue = nullptr;
   1911       Instruction *LastValue = nullptr;
   1912       for (Instruction *Instr: ChainToBase) {
   1913         // Only GEP's and casts are suported as we need to be careful to not
   1914         // introduce any new uses of pointers not in the liveset.
   1915         // Note that it's fine to introduce new uses of pointers which were
   1916         // otherwise not used after this statepoint.
   1917         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
   1918 
   1919         Instruction *ClonedValue = Instr->clone();
   1920         ClonedValue->insertBefore(InsertBefore);
   1921         ClonedValue->setName(Instr->getName() + ".remat");
   1922 
   1923         // If it is not first instruction in the chain then it uses previously
   1924         // cloned value. We should update it to use cloned value.
   1925         if (LastClonedValue) {
   1926           assert(LastValue);
   1927           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
   1928 #ifndef NDEBUG
   1929           // Assert that cloned instruction does not use any instructions from
   1930           // this chain other than LastClonedValue
   1931           for (auto OpValue : ClonedValue->operand_values()) {
   1932             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
   1933                        ChainToBase.end() &&
   1934                    "incorrect use in rematerialization chain");
   1935           }
   1936 #endif
   1937         }
   1938 
   1939         LastClonedValue = ClonedValue;
   1940         LastValue = Instr;
   1941       }
   1942       assert(LastClonedValue);
   1943       return LastClonedValue;
   1944     };
   1945 
   1946     // Different cases for calls and invokes. For invokes we need to clone
   1947     // instructions both on normal and unwind path.
   1948     if (CS.isCall()) {
   1949       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
   1950       assert(InsertBefore);
   1951       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
   1952       Info.RematerializedValues[RematerializedValue] = LiveValue;
   1953     } else {
   1954       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
   1955 
   1956       Instruction *NormalInsertBefore =
   1957           &*Invoke->getNormalDest()->getFirstInsertionPt();
   1958       Instruction *UnwindInsertBefore =
   1959           &*Invoke->getUnwindDest()->getFirstInsertionPt();
   1960 
   1961       Instruction *NormalRematerializedValue =
   1962           rematerializeChain(NormalInsertBefore);
   1963       Instruction *UnwindRematerializedValue =
   1964           rematerializeChain(UnwindInsertBefore);
   1965 
   1966       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
   1967       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
   1968     }
   1969   }
   1970 
   1971   // Remove rematerializaed values from the live set
   1972   for (auto LiveValue: LiveValuesToBeDeleted) {
   1973     Info.LiveSet.remove(LiveValue);
   1974   }
   1975 }
   1976 
   1977 static bool insertParsePoints(Function &F, DominatorTree &DT,
   1978                               TargetTransformInfo &TTI,
   1979                               SmallVectorImpl<CallSite> &ToUpdate) {
   1980 #ifndef NDEBUG
   1981   // sanity check the input
   1982   std::set<CallSite> Uniqued;
   1983   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
   1984   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
   1985 
   1986   for (CallSite CS : ToUpdate)
   1987     assert(CS.getInstruction()->getFunction() == &F);
   1988 #endif
   1989 
   1990   // When inserting gc.relocates for invokes, we need to be able to insert at
   1991   // the top of the successor blocks.  See the comment on
   1992   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
   1993   // may restructure the CFG.
   1994   for (CallSite CS : ToUpdate) {
   1995     if (!CS.isInvoke())
   1996       continue;
   1997     auto *II = cast<InvokeInst>(CS.getInstruction());
   1998     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
   1999     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
   2000   }
   2001 
   2002   // A list of dummy calls added to the IR to keep various values obviously
   2003   // live in the IR.  We'll remove all of these when done.
   2004   SmallVector<CallInst *, 64> Holders;
   2005 
   2006   // Insert a dummy call with all of the arguments to the vm_state we'll need
   2007   // for the actual safepoint insertion.  This ensures reference arguments in
   2008   // the deopt argument list are considered live through the safepoint (and
   2009   // thus makes sure they get relocated.)
   2010   for (CallSite CS : ToUpdate) {
   2011     SmallVector<Value *, 64> DeoptValues;
   2012 
   2013     for (Value *Arg : GetDeoptBundleOperands(CS)) {
   2014       assert(!isUnhandledGCPointerType(Arg->getType()) &&
   2015              "support for FCA unimplemented");
   2016       if (isHandledGCPointerType(Arg->getType()))
   2017         DeoptValues.push_back(Arg);
   2018     }
   2019 
   2020     insertUseHolderAfter(CS, DeoptValues, Holders);
   2021   }
   2022 
   2023   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
   2024 
   2025   // A) Identify all gc pointers which are statically live at the given call
   2026   // site.
   2027   findLiveReferences(F, DT, ToUpdate, Records);
   2028 
   2029   // B) Find the base pointers for each live pointer
   2030   /* scope for caching */ {
   2031     // Cache the 'defining value' relation used in the computation and
   2032     // insertion of base phis and selects.  This ensures that we don't insert
   2033     // large numbers of duplicate base_phis.
   2034     DefiningValueMapTy DVCache;
   2035 
   2036     for (size_t i = 0; i < Records.size(); i++) {
   2037       PartiallyConstructedSafepointRecord &info = Records[i];
   2038       findBasePointers(DT, DVCache, ToUpdate[i], info);
   2039     }
   2040   } // end of cache scope
   2041 
   2042   // The base phi insertion logic (for any safepoint) may have inserted new
   2043   // instructions which are now live at some safepoint.  The simplest such
   2044   // example is:
   2045   // loop:
   2046   //   phi a  <-- will be a new base_phi here
   2047   //   safepoint 1 <-- that needs to be live here
   2048   //   gep a + 1
   2049   //   safepoint 2
   2050   //   br loop
   2051   // We insert some dummy calls after each safepoint to definitely hold live
   2052   // the base pointers which were identified for that safepoint.  We'll then
   2053   // ask liveness for _every_ base inserted to see what is now live.  Then we
   2054   // remove the dummy calls.
   2055   Holders.reserve(Holders.size() + Records.size());
   2056   for (size_t i = 0; i < Records.size(); i++) {
   2057     PartiallyConstructedSafepointRecord &Info = Records[i];
   2058 
   2059     SmallVector<Value *, 128> Bases;
   2060     for (auto Pair : Info.PointerToBase)
   2061       Bases.push_back(Pair.second);
   2062 
   2063     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
   2064   }
   2065 
   2066   // By selecting base pointers, we've effectively inserted new uses. Thus, we
   2067   // need to rerun liveness.  We may *also* have inserted new defs, but that's
   2068   // not the key issue.
   2069   recomputeLiveInValues(F, DT, ToUpdate, Records);
   2070 
   2071   if (PrintBasePointers) {
   2072     for (auto &Info : Records) {
   2073       errs() << "Base Pairs: (w/Relocation)\n";
   2074       for (auto Pair : Info.PointerToBase) {
   2075         errs() << " derived ";
   2076         Pair.first->printAsOperand(errs(), false);
   2077         errs() << " base ";
   2078         Pair.second->printAsOperand(errs(), false);
   2079         errs() << "\n";
   2080       }
   2081     }
   2082   }
   2083 
   2084   // It is possible that non-constant live variables have a constant base.  For
   2085   // example, a GEP with a variable offset from a global.  In this case we can
   2086   // remove it from the liveset.  We already don't add constants to the liveset
   2087   // because we assume they won't move at runtime and the GC doesn't need to be
   2088   // informed about them.  The same reasoning applies if the base is constant.
   2089   // Note that the relocation placement code relies on this filtering for
   2090   // correctness as it expects the base to be in the liveset, which isn't true
   2091   // if the base is constant.
   2092   for (auto &Info : Records)
   2093     for (auto &BasePair : Info.PointerToBase)
   2094       if (isa<Constant>(BasePair.second))
   2095         Info.LiveSet.remove(BasePair.first);
   2096 
   2097   for (CallInst *CI : Holders)
   2098     CI->eraseFromParent();
   2099 
   2100   Holders.clear();
   2101 
   2102   // In order to reduce live set of statepoint we might choose to rematerialize
   2103   // some values instead of relocating them. This is purely an optimization and
   2104   // does not influence correctness.
   2105   for (size_t i = 0; i < Records.size(); i++)
   2106     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
   2107 
   2108   // We need this to safely RAUW and delete call or invoke return values that
   2109   // may themselves be live over a statepoint.  For details, please see usage in
   2110   // makeStatepointExplicitImpl.
   2111   std::vector<DeferredReplacement> Replacements;
   2112 
   2113   // Now run through and replace the existing statepoints with new ones with
   2114   // the live variables listed.  We do not yet update uses of the values being
   2115   // relocated. We have references to live variables that need to
   2116   // survive to the last iteration of this loop.  (By construction, the
   2117   // previous statepoint can not be a live variable, thus we can and remove
   2118   // the old statepoint calls as we go.)
   2119   for (size_t i = 0; i < Records.size(); i++)
   2120     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
   2121 
   2122   ToUpdate.clear(); // prevent accident use of invalid CallSites
   2123 
   2124   for (auto &PR : Replacements)
   2125     PR.doReplacement();
   2126 
   2127   Replacements.clear();
   2128 
   2129   for (auto &Info : Records) {
   2130     // These live sets may contain state Value pointers, since we replaced calls
   2131     // with operand bundles with calls wrapped in gc.statepoint, and some of
   2132     // those calls may have been def'ing live gc pointers.  Clear these out to
   2133     // avoid accidentally using them.
   2134     //
   2135     // TODO: We should create a separate data structure that does not contain
   2136     // these live sets, and migrate to using that data structure from this point
   2137     // onward.
   2138     Info.LiveSet.clear();
   2139     Info.PointerToBase.clear();
   2140   }
   2141 
   2142   // Do all the fixups of the original live variables to their relocated selves
   2143   SmallVector<Value *, 128> Live;
   2144   for (size_t i = 0; i < Records.size(); i++) {
   2145     PartiallyConstructedSafepointRecord &Info = Records[i];
   2146 
   2147     // We can't simply save the live set from the original insertion.  One of
   2148     // the live values might be the result of a call which needs a safepoint.
   2149     // That Value* no longer exists and we need to use the new gc_result.
   2150     // Thankfully, the live set is embedded in the statepoint (and updated), so
   2151     // we just grab that.
   2152     Statepoint Statepoint(Info.StatepointToken);
   2153     Live.insert(Live.end(), Statepoint.gc_args_begin(),
   2154                 Statepoint.gc_args_end());
   2155 #ifndef NDEBUG
   2156     // Do some basic sanity checks on our liveness results before performing
   2157     // relocation.  Relocation can and will turn mistakes in liveness results
   2158     // into non-sensical code which is must harder to debug.
   2159     // TODO: It would be nice to test consistency as well
   2160     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
   2161            "statepoint must be reachable or liveness is meaningless");
   2162     for (Value *V : Statepoint.gc_args()) {
   2163       if (!isa<Instruction>(V))
   2164         // Non-instruction values trivial dominate all possible uses
   2165         continue;
   2166       auto *LiveInst = cast<Instruction>(V);
   2167       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
   2168              "unreachable values should never be live");
   2169       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
   2170              "basic SSA liveness expectation violated by liveness analysis");
   2171     }
   2172 #endif
   2173   }
   2174   unique_unsorted(Live);
   2175 
   2176 #ifndef NDEBUG
   2177   // sanity check
   2178   for (auto *Ptr : Live)
   2179     assert(isHandledGCPointerType(Ptr->getType()) &&
   2180            "must be a gc pointer type");
   2181 #endif
   2182 
   2183   relocationViaAlloca(F, DT, Live, Records);
   2184   return !Records.empty();
   2185 }
   2186 
   2187 // Handles both return values and arguments for Functions and CallSites.
   2188 template <typename AttrHolder>
   2189 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
   2190                                       unsigned Index) {
   2191   AttrBuilder R;
   2192   if (AH.getDereferenceableBytes(Index))
   2193     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
   2194                                   AH.getDereferenceableBytes(Index)));
   2195   if (AH.getDereferenceableOrNullBytes(Index))
   2196     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
   2197                                   AH.getDereferenceableOrNullBytes(Index)));
   2198   if (AH.doesNotAlias(Index))
   2199     R.addAttribute(Attribute::NoAlias);
   2200 
   2201   if (!R.empty())
   2202     AH.setAttributes(AH.getAttributes().removeAttributes(
   2203         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
   2204 }
   2205 
   2206 void
   2207 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
   2208   LLVMContext &Ctx = F.getContext();
   2209 
   2210   for (Argument &A : F.args())
   2211     if (isa<PointerType>(A.getType()))
   2212       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
   2213 
   2214   if (isa<PointerType>(F.getReturnType()))
   2215     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
   2216 }
   2217 
   2218 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
   2219   if (F.empty())
   2220     return;
   2221 
   2222   LLVMContext &Ctx = F.getContext();
   2223   MDBuilder Builder(Ctx);
   2224 
   2225   for (Instruction &I : instructions(F)) {
   2226     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
   2227       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
   2228       bool IsImmutableTBAA =
   2229           MD->getNumOperands() == 4 &&
   2230           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
   2231 
   2232       if (!IsImmutableTBAA)
   2233         continue; // no work to do, MD_tbaa is already marked mutable
   2234 
   2235       MDNode *Base = cast<MDNode>(MD->getOperand(0));
   2236       MDNode *Access = cast<MDNode>(MD->getOperand(1));
   2237       uint64_t Offset =
   2238           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
   2239 
   2240       MDNode *MutableTBAA =
   2241           Builder.createTBAAStructTagNode(Base, Access, Offset);
   2242       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
   2243     }
   2244 
   2245     if (CallSite CS = CallSite(&I)) {
   2246       for (int i = 0, e = CS.arg_size(); i != e; i++)
   2247         if (isa<PointerType>(CS.getArgument(i)->getType()))
   2248           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
   2249       if (isa<PointerType>(CS.getType()))
   2250         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
   2251     }
   2252   }
   2253 }
   2254 
   2255 /// Returns true if this function should be rewritten by this pass.  The main
   2256 /// point of this function is as an extension point for custom logic.
   2257 static bool shouldRewriteStatepointsIn(Function &F) {
   2258   // TODO: This should check the GCStrategy
   2259   if (F.hasGC()) {
   2260     const auto &FunctionGCName = F.getGC();
   2261     const StringRef StatepointExampleName("statepoint-example");
   2262     const StringRef CoreCLRName("coreclr");
   2263     return (StatepointExampleName == FunctionGCName) ||
   2264            (CoreCLRName == FunctionGCName);
   2265   } else
   2266     return false;
   2267 }
   2268 
   2269 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
   2270 #ifndef NDEBUG
   2271   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
   2272          "precondition!");
   2273 #endif
   2274 
   2275   for (Function &F : M)
   2276     stripNonValidAttributesFromPrototype(F);
   2277 
   2278   for (Function &F : M)
   2279     stripNonValidAttributesFromBody(F);
   2280 }
   2281 
   2282 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
   2283   // Nothing to do for declarations.
   2284   if (F.isDeclaration() || F.empty())
   2285     return false;
   2286 
   2287   // Policy choice says not to rewrite - the most common reason is that we're
   2288   // compiling code without a GCStrategy.
   2289   if (!shouldRewriteStatepointsIn(F))
   2290     return false;
   2291 
   2292   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
   2293   TargetTransformInfo &TTI =
   2294       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
   2295 
   2296   auto NeedsRewrite = [](Instruction &I) {
   2297     if (ImmutableCallSite CS = ImmutableCallSite(&I))
   2298       return !callsGCLeafFunction(CS) && !isStatepoint(CS);
   2299     return false;
   2300   };
   2301 
   2302   // Gather all the statepoints which need rewritten.  Be careful to only
   2303   // consider those in reachable code since we need to ask dominance queries
   2304   // when rewriting.  We'll delete the unreachable ones in a moment.
   2305   SmallVector<CallSite, 64> ParsePointNeeded;
   2306   bool HasUnreachableStatepoint = false;
   2307   for (Instruction &I : instructions(F)) {
   2308     // TODO: only the ones with the flag set!
   2309     if (NeedsRewrite(I)) {
   2310       if (DT.isReachableFromEntry(I.getParent()))
   2311         ParsePointNeeded.push_back(CallSite(&I));
   2312       else
   2313         HasUnreachableStatepoint = true;
   2314     }
   2315   }
   2316 
   2317   bool MadeChange = false;
   2318 
   2319   // Delete any unreachable statepoints so that we don't have unrewritten
   2320   // statepoints surviving this pass.  This makes testing easier and the
   2321   // resulting IR less confusing to human readers.  Rather than be fancy, we
   2322   // just reuse a utility function which removes the unreachable blocks.
   2323   if (HasUnreachableStatepoint)
   2324     MadeChange |= removeUnreachableBlocks(F);
   2325 
   2326   // Return early if no work to do.
   2327   if (ParsePointNeeded.empty())
   2328     return MadeChange;
   2329 
   2330   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
   2331   // These are created by LCSSA.  They have the effect of increasing the size
   2332   // of liveness sets for no good reason.  It may be harder to do this post
   2333   // insertion since relocations and base phis can confuse things.
   2334   for (BasicBlock &BB : F)
   2335     if (BB.getUniquePredecessor()) {
   2336       MadeChange = true;
   2337       FoldSingleEntryPHINodes(&BB);
   2338     }
   2339 
   2340   // Before we start introducing relocations, we want to tweak the IR a bit to
   2341   // avoid unfortunate code generation effects.  The main example is that we
   2342   // want to try to make sure the comparison feeding a branch is after any
   2343   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
   2344   // values feeding a branch after relocation.  This is semantically correct,
   2345   // but results in extra register pressure since both the pre-relocation and
   2346   // post-relocation copies must be available in registers.  For code without
   2347   // relocations this is handled elsewhere, but teaching the scheduler to
   2348   // reverse the transform we're about to do would be slightly complex.
   2349   // Note: This may extend the live range of the inputs to the icmp and thus
   2350   // increase the liveset of any statepoint we move over.  This is profitable
   2351   // as long as all statepoints are in rare blocks.  If we had in-register
   2352   // lowering for live values this would be a much safer transform.
   2353   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
   2354     if (auto *BI = dyn_cast<BranchInst>(TI))
   2355       if (BI->isConditional())
   2356         return dyn_cast<Instruction>(BI->getCondition());
   2357     // TODO: Extend this to handle switches
   2358     return nullptr;
   2359   };
   2360   for (BasicBlock &BB : F) {
   2361     TerminatorInst *TI = BB.getTerminator();
   2362     if (auto *Cond = getConditionInst(TI))
   2363       // TODO: Handle more than just ICmps here.  We should be able to move
   2364       // most instructions without side effects or memory access.
   2365       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
   2366         MadeChange = true;
   2367         Cond->moveBefore(TI);
   2368       }
   2369   }
   2370 
   2371   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
   2372   return MadeChange;
   2373 }
   2374 
   2375 // liveness computation via standard dataflow
   2376 // -------------------------------------------------------------------
   2377 
   2378 // TODO: Consider using bitvectors for liveness, the set of potentially
   2379 // interesting values should be small and easy to pre-compute.
   2380 
   2381 /// Compute the live-in set for the location rbegin starting from
   2382 /// the live-out set of the basic block
   2383 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
   2384                                 BasicBlock::reverse_iterator End,
   2385                                 SetVector<Value *> &LiveTmp) {
   2386   for (auto &I : make_range(Begin, End)) {
   2387     // KILL/Def - Remove this definition from LiveIn
   2388     LiveTmp.remove(&I);
   2389 
   2390     // Don't consider *uses* in PHI nodes, we handle their contribution to
   2391     // predecessor blocks when we seed the LiveOut sets
   2392     if (isa<PHINode>(I))
   2393       continue;
   2394 
   2395     // USE - Add to the LiveIn set for this instruction
   2396     for (Value *V : I.operands()) {
   2397       assert(!isUnhandledGCPointerType(V->getType()) &&
   2398              "support for FCA unimplemented");
   2399       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
   2400         // The choice to exclude all things constant here is slightly subtle.
   2401         // There are two independent reasons:
   2402         // - We assume that things which are constant (from LLVM's definition)
   2403         // do not move at runtime.  For example, the address of a global
   2404         // variable is fixed, even though it's contents may not be.
   2405         // - Second, we can't disallow arbitrary inttoptr constants even
   2406         // if the language frontend does.  Optimization passes are free to
   2407         // locally exploit facts without respect to global reachability.  This
   2408         // can create sections of code which are dynamically unreachable and
   2409         // contain just about anything.  (see constants.ll in tests)
   2410         LiveTmp.insert(V);
   2411       }
   2412     }
   2413   }
   2414 }
   2415 
   2416 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
   2417   for (BasicBlock *Succ : successors(BB)) {
   2418     for (auto &I : *Succ) {
   2419       PHINode *PN = dyn_cast<PHINode>(&I);
   2420       if (!PN)
   2421         break;
   2422 
   2423       Value *V = PN->getIncomingValueForBlock(BB);
   2424       assert(!isUnhandledGCPointerType(V->getType()) &&
   2425              "support for FCA unimplemented");
   2426       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
   2427         LiveTmp.insert(V);
   2428     }
   2429   }
   2430 }
   2431 
   2432 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
   2433   SetVector<Value *> KillSet;
   2434   for (Instruction &I : *BB)
   2435     if (isHandledGCPointerType(I.getType()))
   2436       KillSet.insert(&I);
   2437   return KillSet;
   2438 }
   2439 
   2440 #ifndef NDEBUG
   2441 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
   2442 /// sanity check for the liveness computation.
   2443 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
   2444                           TerminatorInst *TI, bool TermOkay = false) {
   2445   for (Value *V : Live) {
   2446     if (auto *I = dyn_cast<Instruction>(V)) {
   2447       // The terminator can be a member of the LiveOut set.  LLVM's definition
   2448       // of instruction dominance states that V does not dominate itself.  As
   2449       // such, we need to special case this to allow it.
   2450       if (TermOkay && TI == I)
   2451         continue;
   2452       assert(DT.dominates(I, TI) &&
   2453              "basic SSA liveness expectation violated by liveness analysis");
   2454     }
   2455   }
   2456 }
   2457 
   2458 /// Check that all the liveness sets used during the computation of liveness
   2459 /// obey basic SSA properties.  This is useful for finding cases where we miss
   2460 /// a def.
   2461 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
   2462                           BasicBlock &BB) {
   2463   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
   2464   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
   2465   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
   2466 }
   2467 #endif
   2468 
   2469 static void computeLiveInValues(DominatorTree &DT, Function &F,
   2470                                 GCPtrLivenessData &Data) {
   2471   SmallSetVector<BasicBlock *, 32> Worklist;
   2472 
   2473   // Seed the liveness for each individual block
   2474   for (BasicBlock &BB : F) {
   2475     Data.KillSet[&BB] = computeKillSet(&BB);
   2476     Data.LiveSet[&BB].clear();
   2477     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
   2478 
   2479 #ifndef NDEBUG
   2480     for (Value *Kill : Data.KillSet[&BB])
   2481       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
   2482 #endif
   2483 
   2484     Data.LiveOut[&BB] = SetVector<Value *>();
   2485     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
   2486     Data.LiveIn[&BB] = Data.LiveSet[&BB];
   2487     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
   2488     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
   2489     if (!Data.LiveIn[&BB].empty())
   2490       Worklist.insert(pred_begin(&BB), pred_end(&BB));
   2491   }
   2492 
   2493   // Propagate that liveness until stable
   2494   while (!Worklist.empty()) {
   2495     BasicBlock *BB = Worklist.pop_back_val();
   2496 
   2497     // Compute our new liveout set, then exit early if it hasn't changed despite
   2498     // the contribution of our successor.
   2499     SetVector<Value *> LiveOut = Data.LiveOut[BB];
   2500     const auto OldLiveOutSize = LiveOut.size();
   2501     for (BasicBlock *Succ : successors(BB)) {
   2502       assert(Data.LiveIn.count(Succ));
   2503       LiveOut.set_union(Data.LiveIn[Succ]);
   2504     }
   2505     // assert OutLiveOut is a subset of LiveOut
   2506     if (OldLiveOutSize == LiveOut.size()) {
   2507       // If the sets are the same size, then we didn't actually add anything
   2508       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
   2509       // hasn't changed.
   2510       continue;
   2511     }
   2512     Data.LiveOut[BB] = LiveOut;
   2513 
   2514     // Apply the effects of this basic block
   2515     SetVector<Value *> LiveTmp = LiveOut;
   2516     LiveTmp.set_union(Data.LiveSet[BB]);
   2517     LiveTmp.set_subtract(Data.KillSet[BB]);
   2518 
   2519     assert(Data.LiveIn.count(BB));
   2520     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
   2521     // assert: OldLiveIn is a subset of LiveTmp
   2522     if (OldLiveIn.size() != LiveTmp.size()) {
   2523       Data.LiveIn[BB] = LiveTmp;
   2524       Worklist.insert(pred_begin(BB), pred_end(BB));
   2525     }
   2526   } // while (!Worklist.empty())
   2527 
   2528 #ifndef NDEBUG
   2529   // Sanity check our output against SSA properties.  This helps catch any
   2530   // missing kills during the above iteration.
   2531   for (BasicBlock &BB : F)
   2532     checkBasicSSA(DT, Data, BB);
   2533 #endif
   2534 }
   2535 
   2536 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
   2537                               StatepointLiveSetTy &Out) {
   2538 
   2539   BasicBlock *BB = Inst->getParent();
   2540 
   2541   // Note: The copy is intentional and required
   2542   assert(Data.LiveOut.count(BB));
   2543   SetVector<Value *> LiveOut = Data.LiveOut[BB];
   2544 
   2545   // We want to handle the statepoint itself oddly.  It's
   2546   // call result is not live (normal), nor are it's arguments
   2547   // (unless they're used again later).  This adjustment is
   2548   // specifically what we need to relocate
   2549   BasicBlock::reverse_iterator rend(Inst->getIterator());
   2550   computeLiveInValues(BB->rbegin(), rend, LiveOut);
   2551   LiveOut.remove(Inst);
   2552   Out.insert(LiveOut.begin(), LiveOut.end());
   2553 }
   2554 
   2555 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
   2556                                   CallSite CS,
   2557                                   PartiallyConstructedSafepointRecord &Info) {
   2558   Instruction *Inst = CS.getInstruction();
   2559   StatepointLiveSetTy Updated;
   2560   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
   2561 
   2562 #ifndef NDEBUG
   2563   DenseSet<Value *> Bases;
   2564   for (auto KVPair : Info.PointerToBase)
   2565     Bases.insert(KVPair.second);
   2566 #endif
   2567 
   2568   // We may have base pointers which are now live that weren't before.  We need
   2569   // to update the PointerToBase structure to reflect this.
   2570   for (auto V : Updated)
   2571     if (Info.PointerToBase.insert({V, V}).second) {
   2572       assert(Bases.count(V) && "Can't find base for unexpected live value!");
   2573       continue;
   2574     }
   2575 
   2576 #ifndef NDEBUG
   2577   for (auto V : Updated)
   2578     assert(Info.PointerToBase.count(V) &&
   2579            "Must be able to find base for live value!");
   2580 #endif
   2581 
   2582   // Remove any stale base mappings - this can happen since our liveness is
   2583   // more precise then the one inherent in the base pointer analysis.
   2584   DenseSet<Value *> ToErase;
   2585   for (auto KVPair : Info.PointerToBase)
   2586     if (!Updated.count(KVPair.first))
   2587       ToErase.insert(KVPair.first);
   2588 
   2589   for (auto *V : ToErase)
   2590     Info.PointerToBase.erase(V);
   2591 
   2592 #ifndef NDEBUG
   2593   for (auto KVPair : Info.PointerToBase)
   2594     assert(Updated.count(KVPair.first) && "record for non-live value");
   2595 #endif
   2596 
   2597   Info.LiveSet = Updated;
   2598 }
   2599