Home | History | Annotate | Download | only in Utils
      1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The LowerSwitch transformation rewrites switch instructions with a sequence
     11 // of branches, which allows targets to get away with not implementing the
     12 // switch instruction until it is convenient.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Scalar.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/IR/CFG.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/LLVMContext.h"
     23 #include "llvm/Pass.h"
     24 #include "llvm/Support/Compiler.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     28 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
     29 #include <algorithm>
     30 using namespace llvm;
     31 
     32 #define DEBUG_TYPE "lower-switch"
     33 
     34 namespace {
     35   struct IntRange {
     36     int64_t Low, High;
     37   };
     38   // Return true iff R is covered by Ranges.
     39   static bool IsInRanges(const IntRange &R,
     40                          const std::vector<IntRange> &Ranges) {
     41     // Note: Ranges must be sorted, non-overlapping and non-adjacent.
     42 
     43     // Find the first range whose High field is >= R.High,
     44     // then check if the Low field is <= R.Low. If so, we
     45     // have a Range that covers R.
     46     auto I = std::lower_bound(
     47         Ranges.begin(), Ranges.end(), R,
     48         [](const IntRange &A, const IntRange &B) { return A.High < B.High; });
     49     return I != Ranges.end() && I->Low <= R.Low;
     50   }
     51 
     52   /// Replace all SwitchInst instructions with chained branch instructions.
     53   class LowerSwitch : public FunctionPass {
     54   public:
     55     static char ID; // Pass identification, replacement for typeid
     56     LowerSwitch() : FunctionPass(ID) {
     57       initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
     58     }
     59 
     60     bool runOnFunction(Function &F) override;
     61 
     62     struct CaseRange {
     63       ConstantInt* Low;
     64       ConstantInt* High;
     65       BasicBlock* BB;
     66 
     67       CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
     68           : Low(low), High(high), BB(bb) {}
     69     };
     70 
     71     typedef std::vector<CaseRange> CaseVector;
     72     typedef std::vector<CaseRange>::iterator CaseItr;
     73   private:
     74     void processSwitchInst(SwitchInst *SI, SmallPtrSetImpl<BasicBlock*> &DeleteList);
     75 
     76     BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
     77                               ConstantInt *LowerBound, ConstantInt *UpperBound,
     78                               Value *Val, BasicBlock *Predecessor,
     79                               BasicBlock *OrigBlock, BasicBlock *Default,
     80                               const std::vector<IntRange> &UnreachableRanges);
     81     BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
     82                              BasicBlock *Default);
     83     unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
     84   };
     85 
     86   /// The comparison function for sorting the switch case values in the vector.
     87   /// WARNING: Case ranges should be disjoint!
     88   struct CaseCmp {
     89     bool operator () (const LowerSwitch::CaseRange& C1,
     90                       const LowerSwitch::CaseRange& C2) {
     91 
     92       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
     93       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
     94       return CI1->getValue().slt(CI2->getValue());
     95     }
     96   };
     97 }
     98 
     99 char LowerSwitch::ID = 0;
    100 INITIALIZE_PASS(LowerSwitch, "lowerswitch",
    101                 "Lower SwitchInst's to branches", false, false)
    102 
    103 // Publicly exposed interface to pass...
    104 char &llvm::LowerSwitchID = LowerSwitch::ID;
    105 // createLowerSwitchPass - Interface to this file...
    106 FunctionPass *llvm::createLowerSwitchPass() {
    107   return new LowerSwitch();
    108 }
    109 
    110 bool LowerSwitch::runOnFunction(Function &F) {
    111   bool Changed = false;
    112   SmallPtrSet<BasicBlock*, 8> DeleteList;
    113 
    114   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
    115     BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
    116 
    117     // If the block is a dead Default block that will be deleted later, don't
    118     // waste time processing it.
    119     if (DeleteList.count(Cur))
    120       continue;
    121 
    122     if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
    123       Changed = true;
    124       processSwitchInst(SI, DeleteList);
    125     }
    126   }
    127 
    128   for (BasicBlock* BB: DeleteList) {
    129     DeleteDeadBlock(BB);
    130   }
    131 
    132   return Changed;
    133 }
    134 
    135 /// Used for debugging purposes.
    136 static raw_ostream& operator<<(raw_ostream &O,
    137                                const LowerSwitch::CaseVector &C)
    138     LLVM_ATTRIBUTE_USED;
    139 static raw_ostream& operator<<(raw_ostream &O,
    140                                const LowerSwitch::CaseVector &C) {
    141   O << "[";
    142 
    143   for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
    144          E = C.end(); B != E; ) {
    145     O << *B->Low << " -" << *B->High;
    146     if (++B != E) O << ", ";
    147   }
    148 
    149   return O << "]";
    150 }
    151 
    152 /// \brief Update the first occurrence of the "switch statement" BB in the PHI
    153 /// node with the "new" BB. The other occurrences will:
    154 ///
    155 /// 1) Be updated by subsequent calls to this function.  Switch statements may
    156 /// have more than one outcoming edge into the same BB if they all have the same
    157 /// value. When the switch statement is converted these incoming edges are now
    158 /// coming from multiple BBs.
    159 /// 2) Removed if subsequent incoming values now share the same case, i.e.,
    160 /// multiple outcome edges are condensed into one. This is necessary to keep the
    161 /// number of phi values equal to the number of branches to SuccBB.
    162 static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
    163                     unsigned NumMergedCases) {
    164   for (BasicBlock::iterator I = SuccBB->begin(),
    165                             IE = SuccBB->getFirstNonPHI()->getIterator();
    166        I != IE; ++I) {
    167     PHINode *PN = cast<PHINode>(I);
    168 
    169     // Only update the first occurrence.
    170     unsigned Idx = 0, E = PN->getNumIncomingValues();
    171     unsigned LocalNumMergedCases = NumMergedCases;
    172     for (; Idx != E; ++Idx) {
    173       if (PN->getIncomingBlock(Idx) == OrigBB) {
    174         PN->setIncomingBlock(Idx, NewBB);
    175         break;
    176       }
    177     }
    178 
    179     // Remove additional occurrences coming from condensed cases and keep the
    180     // number of incoming values equal to the number of branches to SuccBB.
    181     SmallVector<unsigned, 8> Indices;
    182     for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
    183       if (PN->getIncomingBlock(Idx) == OrigBB) {
    184         Indices.push_back(Idx);
    185         LocalNumMergedCases--;
    186       }
    187     // Remove incoming values in the reverse order to prevent invalidating
    188     // *successive* index.
    189     for (unsigned III : reverse(Indices))
    190       PN->removeIncomingValue(III);
    191   }
    192 }
    193 
    194 /// Convert the switch statement into a binary lookup of the case values.
    195 /// The function recursively builds this tree. LowerBound and UpperBound are
    196 /// used to keep track of the bounds for Val that have already been checked by
    197 /// a block emitted by one of the previous calls to switchConvert in the call
    198 /// stack.
    199 BasicBlock *
    200 LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
    201                            ConstantInt *UpperBound, Value *Val,
    202                            BasicBlock *Predecessor, BasicBlock *OrigBlock,
    203                            BasicBlock *Default,
    204                            const std::vector<IntRange> &UnreachableRanges) {
    205   unsigned Size = End - Begin;
    206 
    207   if (Size == 1) {
    208     // Check if the Case Range is perfectly squeezed in between
    209     // already checked Upper and Lower bounds. If it is then we can avoid
    210     // emitting the code that checks if the value actually falls in the range
    211     // because the bounds already tell us so.
    212     if (Begin->Low == LowerBound && Begin->High == UpperBound) {
    213       unsigned NumMergedCases = 0;
    214       if (LowerBound && UpperBound)
    215         NumMergedCases =
    216             UpperBound->getSExtValue() - LowerBound->getSExtValue();
    217       fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
    218       return Begin->BB;
    219     }
    220     return newLeafBlock(*Begin, Val, OrigBlock, Default);
    221   }
    222 
    223   unsigned Mid = Size / 2;
    224   std::vector<CaseRange> LHS(Begin, Begin + Mid);
    225   DEBUG(dbgs() << "LHS: " << LHS << "\n");
    226   std::vector<CaseRange> RHS(Begin + Mid, End);
    227   DEBUG(dbgs() << "RHS: " << RHS << "\n");
    228 
    229   CaseRange &Pivot = *(Begin + Mid);
    230   DEBUG(dbgs() << "Pivot ==> "
    231                << Pivot.Low->getValue()
    232                << " -" << Pivot.High->getValue() << "\n");
    233 
    234   // NewLowerBound here should never be the integer minimal value.
    235   // This is because it is computed from a case range that is never
    236   // the smallest, so there is always a case range that has at least
    237   // a smaller value.
    238   ConstantInt *NewLowerBound = Pivot.Low;
    239 
    240   // Because NewLowerBound is never the smallest representable integer
    241   // it is safe here to subtract one.
    242   ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
    243                                                 NewLowerBound->getValue() - 1);
    244 
    245   if (!UnreachableRanges.empty()) {
    246     // Check if the gap between LHS's highest and NewLowerBound is unreachable.
    247     int64_t GapLow = LHS.back().High->getSExtValue() + 1;
    248     int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
    249     IntRange Gap = { GapLow, GapHigh };
    250     if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
    251       NewUpperBound = LHS.back().High;
    252   }
    253 
    254   DEBUG(dbgs() << "LHS Bounds ==> ";
    255         if (LowerBound) {
    256           dbgs() << LowerBound->getSExtValue();
    257         } else {
    258           dbgs() << "NONE";
    259         }
    260         dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
    261         dbgs() << "RHS Bounds ==> ";
    262         dbgs() << NewLowerBound->getSExtValue() << " - ";
    263         if (UpperBound) {
    264           dbgs() << UpperBound->getSExtValue() << "\n";
    265         } else {
    266           dbgs() << "NONE\n";
    267         });
    268 
    269   // Create a new node that checks if the value is < pivot. Go to the
    270   // left branch if it is and right branch if not.
    271   Function* F = OrigBlock->getParent();
    272   BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
    273 
    274   ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
    275                                 Val, Pivot.Low, "Pivot");
    276 
    277   BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
    278                                       NewUpperBound, Val, NewNode, OrigBlock,
    279                                       Default, UnreachableRanges);
    280   BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
    281                                       UpperBound, Val, NewNode, OrigBlock,
    282                                       Default, UnreachableRanges);
    283 
    284   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
    285   NewNode->getInstList().push_back(Comp);
    286 
    287   BranchInst::Create(LBranch, RBranch, Comp, NewNode);
    288   return NewNode;
    289 }
    290 
    291 /// Create a new leaf block for the binary lookup tree. It checks if the
    292 /// switch's value == the case's value. If not, then it jumps to the default
    293 /// branch. At this point in the tree, the value can't be another valid case
    294 /// value, so the jump to the "default" branch is warranted.
    295 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
    296                                       BasicBlock* OrigBlock,
    297                                       BasicBlock* Default)
    298 {
    299   Function* F = OrigBlock->getParent();
    300   BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
    301   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
    302 
    303   // Emit comparison
    304   ICmpInst* Comp = nullptr;
    305   if (Leaf.Low == Leaf.High) {
    306     // Make the seteq instruction...
    307     Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
    308                         Leaf.Low, "SwitchLeaf");
    309   } else {
    310     // Make range comparison
    311     if (Leaf.Low->isMinValue(true /*isSigned*/)) {
    312       // Val >= Min && Val <= Hi --> Val <= Hi
    313       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
    314                           "SwitchLeaf");
    315     } else if (Leaf.Low->isZero()) {
    316       // Val >= 0 && Val <= Hi --> Val <=u Hi
    317       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
    318                           "SwitchLeaf");
    319     } else {
    320       // Emit V-Lo <=u Hi-Lo
    321       Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
    322       Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
    323                                                    Val->getName()+".off",
    324                                                    NewLeaf);
    325       Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
    326       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
    327                           "SwitchLeaf");
    328     }
    329   }
    330 
    331   // Make the conditional branch...
    332   BasicBlock* Succ = Leaf.BB;
    333   BranchInst::Create(Succ, Default, Comp, NewLeaf);
    334 
    335   // If there were any PHI nodes in this successor, rewrite one entry
    336   // from OrigBlock to come from NewLeaf.
    337   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    338     PHINode* PN = cast<PHINode>(I);
    339     // Remove all but one incoming entries from the cluster
    340     uint64_t Range = Leaf.High->getSExtValue() -
    341                      Leaf.Low->getSExtValue();
    342     for (uint64_t j = 0; j < Range; ++j) {
    343       PN->removeIncomingValue(OrigBlock);
    344     }
    345 
    346     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
    347     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
    348     PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
    349   }
    350 
    351   return NewLeaf;
    352 }
    353 
    354 /// Transform simple list of Cases into list of CaseRange's.
    355 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
    356   unsigned numCmps = 0;
    357 
    358   // Start with "simple" cases
    359   for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
    360     Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
    361                               i.getCaseSuccessor()));
    362 
    363   std::sort(Cases.begin(), Cases.end(), CaseCmp());
    364 
    365   // Merge case into clusters
    366   if (Cases.size() >= 2) {
    367     CaseItr I = Cases.begin();
    368     for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
    369       int64_t nextValue = J->Low->getSExtValue();
    370       int64_t currentValue = I->High->getSExtValue();
    371       BasicBlock* nextBB = J->BB;
    372       BasicBlock* currentBB = I->BB;
    373 
    374       // If the two neighboring cases go to the same destination, merge them
    375       // into a single case.
    376       assert(nextValue > currentValue && "Cases should be strictly ascending");
    377       if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
    378         I->High = J->High;
    379         // FIXME: Combine branch weights.
    380       } else if (++I != J) {
    381         *I = *J;
    382       }
    383     }
    384     Cases.erase(std::next(I), Cases.end());
    385   }
    386 
    387   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
    388     if (I->Low != I->High)
    389       // A range counts double, since it requires two compares.
    390       ++numCmps;
    391   }
    392 
    393   return numCmps;
    394 }
    395 
    396 /// Replace the specified switch instruction with a sequence of chained if-then
    397 /// insts in a balanced binary search.
    398 void LowerSwitch::processSwitchInst(SwitchInst *SI,
    399                                     SmallPtrSetImpl<BasicBlock*> &DeleteList) {
    400   BasicBlock *CurBlock = SI->getParent();
    401   BasicBlock *OrigBlock = CurBlock;
    402   Function *F = CurBlock->getParent();
    403   Value *Val = SI->getCondition();  // The value we are switching on...
    404   BasicBlock* Default = SI->getDefaultDest();
    405 
    406   // If there is only the default destination, just branch.
    407   if (!SI->getNumCases()) {
    408     BranchInst::Create(Default, CurBlock);
    409     SI->eraseFromParent();
    410     return;
    411   }
    412 
    413   // Prepare cases vector.
    414   CaseVector Cases;
    415   unsigned numCmps = Clusterify(Cases, SI);
    416   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
    417                << ". Total compares: " << numCmps << "\n");
    418   DEBUG(dbgs() << "Cases: " << Cases << "\n");
    419   (void)numCmps;
    420 
    421   ConstantInt *LowerBound = nullptr;
    422   ConstantInt *UpperBound = nullptr;
    423   std::vector<IntRange> UnreachableRanges;
    424 
    425   if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
    426     // Make the bounds tightly fitted around the case value range, because we
    427     // know that the value passed to the switch must be exactly one of the case
    428     // values.
    429     assert(!Cases.empty());
    430     LowerBound = Cases.front().Low;
    431     UpperBound = Cases.back().High;
    432 
    433     DenseMap<BasicBlock *, unsigned> Popularity;
    434     unsigned MaxPop = 0;
    435     BasicBlock *PopSucc = nullptr;
    436 
    437     IntRange R = { INT64_MIN, INT64_MAX };
    438     UnreachableRanges.push_back(R);
    439     for (const auto &I : Cases) {
    440       int64_t Low = I.Low->getSExtValue();
    441       int64_t High = I.High->getSExtValue();
    442 
    443       IntRange &LastRange = UnreachableRanges.back();
    444       if (LastRange.Low == Low) {
    445         // There is nothing left of the previous range.
    446         UnreachableRanges.pop_back();
    447       } else {
    448         // Terminate the previous range.
    449         assert(Low > LastRange.Low);
    450         LastRange.High = Low - 1;
    451       }
    452       if (High != INT64_MAX) {
    453         IntRange R = { High + 1, INT64_MAX };
    454         UnreachableRanges.push_back(R);
    455       }
    456 
    457       // Count popularity.
    458       int64_t N = High - Low + 1;
    459       unsigned &Pop = Popularity[I.BB];
    460       if ((Pop += N) > MaxPop) {
    461         MaxPop = Pop;
    462         PopSucc = I.BB;
    463       }
    464     }
    465 #ifndef NDEBUG
    466     /* UnreachableRanges should be sorted and the ranges non-adjacent. */
    467     for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
    468          I != E; ++I) {
    469       assert(I->Low <= I->High);
    470       auto Next = I + 1;
    471       if (Next != E) {
    472         assert(Next->Low > I->High);
    473       }
    474     }
    475 #endif
    476 
    477     // Use the most popular block as the new default, reducing the number of
    478     // cases.
    479     assert(MaxPop > 0 && PopSucc);
    480     Default = PopSucc;
    481     Cases.erase(std::remove_if(
    482                     Cases.begin(), Cases.end(),
    483                     [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
    484                 Cases.end());
    485 
    486     // If there are no cases left, just branch.
    487     if (Cases.empty()) {
    488       BranchInst::Create(Default, CurBlock);
    489       SI->eraseFromParent();
    490       return;
    491     }
    492   }
    493 
    494   // Create a new, empty default block so that the new hierarchy of
    495   // if-then statements go to this and the PHI nodes are happy.
    496   BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
    497   F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
    498   BranchInst::Create(Default, NewDefault);
    499 
    500   // If there is an entry in any PHI nodes for the default edge, make sure
    501   // to update them as well.
    502   for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
    503     PHINode *PN = cast<PHINode>(I);
    504     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
    505     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
    506     PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
    507   }
    508 
    509   BasicBlock *SwitchBlock =
    510       switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
    511                     OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
    512 
    513   // Branch to our shiny new if-then stuff...
    514   BranchInst::Create(SwitchBlock, OrigBlock);
    515 
    516   // We are now done with the switch instruction, delete it.
    517   BasicBlock *OldDefault = SI->getDefaultDest();
    518   CurBlock->getInstList().erase(SI);
    519 
    520   // If the Default block has no more predecessors just add it to DeleteList.
    521   if (pred_begin(OldDefault) == pred_end(OldDefault))
    522     DeleteList.insert(OldDefault);
    523 }
    524