Home | History | Annotate | Download | only in glsl
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     21  * DEALINGS IN THE SOFTWARE.
     22  */
     23 
     24 #include "glsl_symbol_table.h"
     25 #include "ast.h"
     26 #include "compiler/glsl_types.h"
     27 #include "ir.h"
     28 #include "main/core.h" /* for MIN2 */
     29 #include "main/shaderobj.h"
     30 
     31 static ir_rvalue *
     32 convert_component(ir_rvalue *src, const glsl_type *desired_type);
     33 
     34 static unsigned
     35 process_parameters(exec_list *instructions, exec_list *actual_parameters,
     36                    exec_list *parameters,
     37                    struct _mesa_glsl_parse_state *state)
     38 {
     39    unsigned count = 0;
     40 
     41    foreach_list_typed(ast_node, ast, link, parameters) {
     42       /* We need to process the parameters first in order to know if we can
     43        * raise or not a unitialized warning. Calling set_is_lhs silence the
     44        * warning for now. Raising the warning or not will be checked at
     45        * verify_parameter_modes.
     46        */
     47       ast->set_is_lhs(true);
     48       ir_rvalue *result = ast->hir(instructions, state);
     49 
     50       ir_constant *const constant = result->constant_expression_value();
     51       if (constant != NULL)
     52          result = constant;
     53 
     54       actual_parameters->push_tail(result);
     55       count++;
     56    }
     57 
     58    return count;
     59 }
     60 
     61 
     62 /**
     63  * Generate a source prototype for a function signature
     64  *
     65  * \param return_type Return type of the function.  May be \c NULL.
     66  * \param name        Name of the function.
     67  * \param parameters  List of \c ir_instruction nodes representing the
     68  *                    parameter list for the function.  This may be either a
     69  *                    formal (\c ir_variable) or actual (\c ir_rvalue)
     70  *                    parameter list.  Only the type is used.
     71  *
     72  * \return
     73  * A ralloced string representing the prototype of the function.
     74  */
     75 char *
     76 prototype_string(const glsl_type *return_type, const char *name,
     77                  exec_list *parameters)
     78 {
     79    char *str = NULL;
     80 
     81    if (return_type != NULL)
     82       str = ralloc_asprintf(NULL, "%s ", return_type->name);
     83 
     84    ralloc_asprintf_append(&str, "%s(", name);
     85 
     86    const char *comma = "";
     87    foreach_in_list(const ir_variable, param, parameters) {
     88       ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
     89       comma = ", ";
     90    }
     91 
     92    ralloc_strcat(&str, ")");
     93    return str;
     94 }
     95 
     96 static bool
     97 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
     98                        const ir_variable *formal, const ir_variable *actual)
     99 {
    100    /**
    101     * From the ARB_shader_image_load_store specification:
    102     *
    103     * "The values of image variables qualified with coherent,
    104     *  volatile, restrict, readonly, or writeonly may not be passed
    105     *  to functions whose formal parameters lack such
    106     *  qualifiers. [...] It is legal to have additional qualifiers
    107     *  on a formal parameter, but not to have fewer."
    108     */
    109    if (actual->data.image_coherent && !formal->data.image_coherent) {
    110       _mesa_glsl_error(loc, state,
    111                        "function call parameter `%s' drops "
    112                        "`coherent' qualifier", formal->name);
    113       return false;
    114    }
    115 
    116    if (actual->data.image_volatile && !formal->data.image_volatile) {
    117       _mesa_glsl_error(loc, state,
    118                        "function call parameter `%s' drops "
    119                        "`volatile' qualifier", formal->name);
    120       return false;
    121    }
    122 
    123    if (actual->data.image_restrict && !formal->data.image_restrict) {
    124       _mesa_glsl_error(loc, state,
    125                        "function call parameter `%s' drops "
    126                        "`restrict' qualifier", formal->name);
    127       return false;
    128    }
    129 
    130    if (actual->data.image_read_only && !formal->data.image_read_only) {
    131       _mesa_glsl_error(loc, state,
    132                        "function call parameter `%s' drops "
    133                        "`readonly' qualifier", formal->name);
    134       return false;
    135    }
    136 
    137    if (actual->data.image_write_only && !formal->data.image_write_only) {
    138       _mesa_glsl_error(loc, state,
    139                        "function call parameter `%s' drops "
    140                        "`writeonly' qualifier", formal->name);
    141       return false;
    142    }
    143 
    144    return true;
    145 }
    146 
    147 static bool
    148 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
    149                               ir_variable *var)
    150 {
    151    if (!var ||
    152        (!var->is_in_shader_storage_block() &&
    153         var->data.mode != ir_var_shader_shared)) {
    154       _mesa_glsl_error(loc, state, "First argument to atomic function "
    155                        "must be a buffer or shared variable");
    156       return false;
    157    }
    158    return true;
    159 }
    160 
    161 static bool
    162 is_atomic_function(const char *func_name)
    163 {
    164    return !strcmp(func_name, "atomicAdd") ||
    165           !strcmp(func_name, "atomicMin") ||
    166           !strcmp(func_name, "atomicMax") ||
    167           !strcmp(func_name, "atomicAnd") ||
    168           !strcmp(func_name, "atomicOr") ||
    169           !strcmp(func_name, "atomicXor") ||
    170           !strcmp(func_name, "atomicExchange") ||
    171           !strcmp(func_name, "atomicCompSwap");
    172 }
    173 
    174 /**
    175  * Verify that 'out' and 'inout' actual parameters are lvalues.  Also, verify
    176  * that 'const_in' formal parameters (an extension in our IR) correspond to
    177  * ir_constant actual parameters.
    178  */
    179 static bool
    180 verify_parameter_modes(_mesa_glsl_parse_state *state,
    181                        ir_function_signature *sig,
    182                        exec_list &actual_ir_parameters,
    183                        exec_list &actual_ast_parameters)
    184 {
    185    exec_node *actual_ir_node  = actual_ir_parameters.get_head_raw();
    186    exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
    187 
    188    foreach_in_list(const ir_variable, formal, &sig->parameters) {
    189       /* The lists must be the same length. */
    190       assert(!actual_ir_node->is_tail_sentinel());
    191       assert(!actual_ast_node->is_tail_sentinel());
    192 
    193       const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
    194       const ast_expression *const actual_ast =
    195          exec_node_data(ast_expression, actual_ast_node, link);
    196 
    197       /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
    198        * FIXME: 0:0(0).
    199        */
    200       YYLTYPE loc = actual_ast->get_location();
    201 
    202       /* Verify that 'const_in' parameters are ir_constants. */
    203       if (formal->data.mode == ir_var_const_in &&
    204           actual->ir_type != ir_type_constant) {
    205          _mesa_glsl_error(&loc, state,
    206                           "parameter `in %s' must be a constant expression",
    207                           formal->name);
    208          return false;
    209       }
    210 
    211       /* Verify that shader_in parameters are shader inputs */
    212       if (formal->data.must_be_shader_input) {
    213          const ir_rvalue *val = actual;
    214 
    215          /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
    216          if (val->ir_type == ir_type_swizzle) {
    217             if (!state->is_version(440, 0)) {
    218                _mesa_glsl_error(&loc, state,
    219                                 "parameter `%s` must not be swizzled",
    220                                 formal->name);
    221                return false;
    222             }
    223             val = ((ir_swizzle *)val)->val;
    224          }
    225 
    226          while (val->ir_type == ir_type_dereference_array) {
    227             val = ((ir_dereference_array *)val)->array;
    228          }
    229 
    230          if (!val->as_dereference_variable() ||
    231              val->variable_referenced()->data.mode != ir_var_shader_in) {
    232             _mesa_glsl_error(&loc, state,
    233                              "parameter `%s` must be a shader input",
    234                              formal->name);
    235             return false;
    236          }
    237       }
    238 
    239       /* Verify that 'out' and 'inout' actual parameters are lvalues. */
    240       if (formal->data.mode == ir_var_function_out
    241           || formal->data.mode == ir_var_function_inout) {
    242          const char *mode = NULL;
    243          switch (formal->data.mode) {
    244          case ir_var_function_out:   mode = "out";   break;
    245          case ir_var_function_inout: mode = "inout"; break;
    246          default:                    assert(false);  break;
    247          }
    248 
    249          /* This AST-based check catches errors like f(i++).  The IR-based
    250           * is_lvalue() is insufficient because the actual parameter at the
    251           * IR-level is just a temporary value, which is an l-value.
    252           */
    253          if (actual_ast->non_lvalue_description != NULL) {
    254             _mesa_glsl_error(&loc, state,
    255                              "function parameter '%s %s' references a %s",
    256                              mode, formal->name,
    257                              actual_ast->non_lvalue_description);
    258             return false;
    259          }
    260 
    261          ir_variable *var = actual->variable_referenced();
    262 
    263          if (var && formal->data.mode == ir_var_function_inout) {
    264             if ((var->data.mode == ir_var_auto ||
    265                  var->data.mode == ir_var_shader_out) &&
    266                 !var->data.assigned &&
    267                 !is_gl_identifier(var->name)) {
    268                _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
    269                                   var->name);
    270             }
    271          }
    272 
    273          if (var)
    274             var->data.assigned = true;
    275 
    276          if (var && var->data.read_only) {
    277             _mesa_glsl_error(&loc, state,
    278                              "function parameter '%s %s' references the "
    279                              "read-only variable '%s'",
    280                              mode, formal->name,
    281                              actual->variable_referenced()->name);
    282             return false;
    283          } else if (!actual->is_lvalue()) {
    284             _mesa_glsl_error(&loc, state,
    285                              "function parameter '%s %s' is not an lvalue",
    286                              mode, formal->name);
    287             return false;
    288          }
    289       } else {
    290          assert(formal->data.mode == ir_var_function_in ||
    291                 formal->data.mode == ir_var_const_in);
    292          ir_variable *var = actual->variable_referenced();
    293          if (var) {
    294             if ((var->data.mode == ir_var_auto ||
    295                  var->data.mode == ir_var_shader_out) &&
    296                 !var->data.assigned &&
    297                 !is_gl_identifier(var->name)) {
    298                _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
    299                                   var->name);
    300             }
    301          }
    302       }
    303 
    304       if (formal->type->is_image() &&
    305           actual->variable_referenced()) {
    306          if (!verify_image_parameter(&loc, state, formal,
    307                                      actual->variable_referenced()))
    308             return false;
    309       }
    310 
    311       actual_ir_node  = actual_ir_node->next;
    312       actual_ast_node = actual_ast_node->next;
    313    }
    314 
    315    /* The first parameter of atomic functions must be a buffer variable */
    316    const char *func_name = sig->function_name();
    317    bool is_atomic = is_atomic_function(func_name);
    318    if (is_atomic) {
    319       const ir_rvalue *const actual =
    320          (ir_rvalue *) actual_ir_parameters.get_head_raw();
    321 
    322       const ast_expression *const actual_ast =
    323          exec_node_data(ast_expression,
    324                         actual_ast_parameters.get_head_raw(), link);
    325       YYLTYPE loc = actual_ast->get_location();
    326 
    327       if (!verify_first_atomic_parameter(&loc, state,
    328                                          actual->variable_referenced())) {
    329          return false;
    330       }
    331    }
    332 
    333    return true;
    334 }
    335 
    336 static void
    337 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
    338               exec_list *before_instructions, exec_list *after_instructions,
    339               bool parameter_is_inout)
    340 {
    341    ir_expression *const expr = actual->as_expression();
    342 
    343    /* If the types match exactly and the parameter is not a vector-extract,
    344     * nothing needs to be done to fix the parameter.
    345     */
    346    if (formal_type == actual->type
    347        && (expr == NULL || expr->operation != ir_binop_vector_extract))
    348       return;
    349 
    350    /* To convert an out parameter, we need to create a temporary variable to
    351     * hold the value before conversion, and then perform the conversion after
    352     * the function call returns.
    353     *
    354     * This has the effect of transforming code like this:
    355     *
    356     *   void f(out int x);
    357     *   float value;
    358     *   f(value);
    359     *
    360     * Into IR that's equivalent to this:
    361     *
    362     *   void f(out int x);
    363     *   float value;
    364     *   int out_parameter_conversion;
    365     *   f(out_parameter_conversion);
    366     *   value = float(out_parameter_conversion);
    367     *
    368     * If the parameter is an ir_expression of ir_binop_vector_extract,
    369     * additional conversion is needed in the post-call re-write.
    370     */
    371    ir_variable *tmp =
    372       new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
    373 
    374    before_instructions->push_tail(tmp);
    375 
    376    /* If the parameter is an inout parameter, copy the value of the actual
    377     * parameter to the new temporary.  Note that no type conversion is allowed
    378     * here because inout parameters must match types exactly.
    379     */
    380    if (parameter_is_inout) {
    381       /* Inout parameters should never require conversion, since that would
    382        * require an implicit conversion to exist both to and from the formal
    383        * parameter type, and there are no bidirectional implicit conversions.
    384        */
    385       assert (actual->type == formal_type);
    386 
    387       ir_dereference_variable *const deref_tmp_1 =
    388          new(mem_ctx) ir_dereference_variable(tmp);
    389       ir_assignment *const assignment =
    390          new(mem_ctx) ir_assignment(deref_tmp_1, actual);
    391       before_instructions->push_tail(assignment);
    392    }
    393 
    394    /* Replace the parameter in the call with a dereference of the new
    395     * temporary.
    396     */
    397    ir_dereference_variable *const deref_tmp_2 =
    398       new(mem_ctx) ir_dereference_variable(tmp);
    399    actual->replace_with(deref_tmp_2);
    400 
    401 
    402    /* Copy the temporary variable to the actual parameter with optional
    403     * type conversion applied.
    404     */
    405    ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
    406    if (actual->type != formal_type)
    407       rhs = convert_component(rhs, actual->type);
    408 
    409    ir_rvalue *lhs = actual;
    410    if (expr != NULL && expr->operation == ir_binop_vector_extract) {
    411       lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
    412                                                                        NULL),
    413                                               expr->operands[1]->clone(mem_ctx,
    414                                                                        NULL));
    415    }
    416 
    417    ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
    418    after_instructions->push_tail(assignment_2);
    419 }
    420 
    421 /**
    422  * Generate a function call.
    423  *
    424  * For non-void functions, this returns a dereference of the temporary
    425  * variable which stores the return value for the call.  For void functions,
    426  * this returns NULL.
    427  */
    428 static ir_rvalue *
    429 generate_call(exec_list *instructions, ir_function_signature *sig,
    430               exec_list *actual_parameters,
    431               ir_variable *sub_var,
    432               ir_rvalue *array_idx,
    433               struct _mesa_glsl_parse_state *state,
    434               bool inline_immediately)
    435 {
    436    void *ctx = state;
    437    exec_list post_call_conversions;
    438 
    439    /* Perform implicit conversion of arguments.  For out parameters, we need
    440     * to place them in a temporary variable and do the conversion after the
    441     * call takes place.  Since we haven't emitted the call yet, we'll place
    442     * the post-call conversions in a temporary exec_list, and emit them later.
    443     */
    444    foreach_two_lists(formal_node, &sig->parameters,
    445                      actual_node, actual_parameters) {
    446       ir_rvalue *actual = (ir_rvalue *) actual_node;
    447       ir_variable *formal = (ir_variable *) formal_node;
    448 
    449       if (formal->type->is_numeric() || formal->type->is_boolean()) {
    450          switch (formal->data.mode) {
    451          case ir_var_const_in:
    452          case ir_var_function_in: {
    453             ir_rvalue *converted
    454                = convert_component(actual, formal->type);
    455             actual->replace_with(converted);
    456             break;
    457          }
    458          case ir_var_function_out:
    459          case ir_var_function_inout:
    460             fix_parameter(ctx, actual, formal->type,
    461                           instructions, &post_call_conversions,
    462                           formal->data.mode == ir_var_function_inout);
    463             break;
    464          default:
    465             assert (!"Illegal formal parameter mode");
    466             break;
    467          }
    468       }
    469    }
    470 
    471    /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
    472     *
    473     *     "Initializers for const declarations must be formed from literal
    474     *     values, other const variables (not including function call
    475     *     paramaters), or expressions of these.
    476     *
    477     *     Constructors may be used in such expressions, but function calls may
    478     *     not."
    479     *
    480     * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
    481     *
    482     *     "A constant expression is one of
    483     *
    484     *         ...
    485     *
    486     *         - a built-in function call whose arguments are all constant
    487     *           expressions, with the exception of the texture lookup
    488     *           functions, the noise functions, and ftransform. The built-in
    489     *           functions dFdx, dFdy, and fwidth must return 0 when evaluated
    490     *           inside an initializer with an argument that is a constant
    491     *           expression."
    492     *
    493     * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
    494     *
    495     *     "A constant expression is one of
    496     *
    497     *         ...
    498     *
    499     *         - a built-in function call whose arguments are all constant
    500     *           expressions, with the exception of the texture lookup
    501     *           functions."
    502     *
    503     * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
    504     *
    505     *     "A constant expression is one of
    506     *
    507     *         ...
    508     *
    509     *         - a built-in function call whose arguments are all constant
    510     *           expressions, with the exception of the texture lookup
    511     *           functions.  The built-in functions dFdx, dFdy, and fwidth must
    512     *           return 0 when evaluated inside an initializer with an argument
    513     *           that is a constant expression."
    514     *
    515     * If the function call is a constant expression, don't generate any
    516     * instructions; just generate an ir_constant.
    517     */
    518    if (state->is_version(120, 100)) {
    519       ir_constant *value = sig->constant_expression_value(actual_parameters,
    520                                                           NULL);
    521       if (value != NULL) {
    522          return value;
    523       }
    524    }
    525 
    526    ir_dereference_variable *deref = NULL;
    527    if (!sig->return_type->is_void()) {
    528       /* Create a new temporary to hold the return value. */
    529       char *const name = ir_variable::temporaries_allocate_names
    530          ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
    531          : NULL;
    532 
    533       ir_variable *var;
    534 
    535       var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
    536       instructions->push_tail(var);
    537 
    538       ralloc_free(name);
    539 
    540       deref = new(ctx) ir_dereference_variable(var);
    541    }
    542 
    543    ir_call *call = new(ctx) ir_call(sig, deref,
    544                                     actual_parameters, sub_var, array_idx);
    545    instructions->push_tail(call);
    546    if (inline_immediately) {
    547       call->generate_inline(call);
    548       call->remove();
    549    }
    550 
    551    /* Also emit any necessary out-parameter conversions. */
    552    instructions->append_list(&post_call_conversions);
    553 
    554    return deref ? deref->clone(ctx, NULL) : NULL;
    555 }
    556 
    557 /**
    558  * Given a function name and parameter list, find the matching signature.
    559  */
    560 static ir_function_signature *
    561 match_function_by_name(const char *name,
    562                        exec_list *actual_parameters,
    563                        struct _mesa_glsl_parse_state *state)
    564 {
    565    ir_function *f = state->symbols->get_function(name);
    566    ir_function_signature *local_sig = NULL;
    567    ir_function_signature *sig = NULL;
    568 
    569    /* Is the function hidden by a record type constructor? */
    570    if (state->symbols->get_type(name))
    571       return sig; /* no match */
    572 
    573    /* Is the function hidden by a variable (impossible in 1.10)? */
    574    if (!state->symbols->separate_function_namespace
    575        && state->symbols->get_variable(name))
    576       return sig; /* no match */
    577 
    578    if (f != NULL) {
    579       /* In desktop GL, the presence of a user-defined signature hides any
    580        * built-in signatures, so we must ignore them.  In contrast, in ES2
    581        * user-defined signatures add new overloads, so we must consider them.
    582        */
    583       bool allow_builtins = state->es_shader || !f->has_user_signature();
    584 
    585       /* Look for a match in the local shader.  If exact, we're done. */
    586       bool is_exact = false;
    587       sig = local_sig = f->matching_signature(state, actual_parameters,
    588                                               allow_builtins, &is_exact);
    589       if (is_exact)
    590          return sig;
    591 
    592       if (!allow_builtins)
    593          return sig;
    594    }
    595 
    596    /* Local shader has no exact candidates; check the built-ins. */
    597    _mesa_glsl_initialize_builtin_functions();
    598    sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
    599    return sig;
    600 }
    601 
    602 static ir_function_signature *
    603 match_subroutine_by_name(const char *name,
    604                          exec_list *actual_parameters,
    605                          struct _mesa_glsl_parse_state *state,
    606                          ir_variable **var_r)
    607 {
    608    void *ctx = state;
    609    ir_function_signature *sig = NULL;
    610    ir_function *f, *found = NULL;
    611    const char *new_name;
    612    ir_variable *var;
    613    bool is_exact = false;
    614 
    615    new_name =
    616       ralloc_asprintf(ctx, "%s_%s",
    617                       _mesa_shader_stage_to_subroutine_prefix(state->stage),
    618                       name);
    619    var = state->symbols->get_variable(new_name);
    620    if (!var)
    621       return NULL;
    622 
    623    for (int i = 0; i < state->num_subroutine_types; i++) {
    624       f = state->subroutine_types[i];
    625       if (strcmp(f->name, var->type->without_array()->name))
    626          continue;
    627       found = f;
    628       break;
    629    }
    630 
    631    if (!found)
    632       return NULL;
    633    *var_r = var;
    634    sig = found->matching_signature(state, actual_parameters,
    635                                    false, &is_exact);
    636    return sig;
    637 }
    638 
    639 static ir_rvalue *
    640 generate_array_index(void *mem_ctx, exec_list *instructions,
    641                      struct _mesa_glsl_parse_state *state, YYLTYPE loc,
    642                      const ast_expression *array, ast_expression *idx,
    643                      const char **function_name, exec_list *actual_parameters)
    644 {
    645    if (array->oper == ast_array_index) {
    646       /* This handles arrays of arrays */
    647       ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
    648                                                     state, loc,
    649                                                     array->subexpressions[0],
    650                                                     array->subexpressions[1],
    651                                                     function_name,
    652                                                     actual_parameters);
    653       ir_rvalue *outer_array_idx = idx->hir(instructions, state);
    654 
    655       YYLTYPE index_loc = idx->get_location();
    656       return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
    657                                           outer_array_idx, loc,
    658                                           index_loc);
    659    } else {
    660       ir_variable *sub_var = NULL;
    661       *function_name = array->primary_expression.identifier;
    662 
    663       match_subroutine_by_name(*function_name, actual_parameters,
    664                                state, &sub_var);
    665 
    666       ir_rvalue *outer_array_idx = idx->hir(instructions, state);
    667       return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
    668    }
    669 }
    670 
    671 static void
    672 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
    673                           ir_function *f)
    674 {
    675    if (f == NULL)
    676       return;
    677 
    678    foreach_in_list(ir_function_signature, sig, &f->signatures) {
    679       if (sig->is_builtin() && !sig->is_builtin_available(state))
    680          continue;
    681 
    682       char *str = prototype_string(sig->return_type, f->name,
    683                                    &sig->parameters);
    684       _mesa_glsl_error(loc, state, "   %s", str);
    685       ralloc_free(str);
    686    }
    687 }
    688 
    689 /**
    690  * Raise a "no matching function" error, listing all possible overloads the
    691  * compiler considered so developers can figure out what went wrong.
    692  */
    693 static void
    694 no_matching_function_error(const char *name,
    695                            YYLTYPE *loc,
    696                            exec_list *actual_parameters,
    697                            _mesa_glsl_parse_state *state)
    698 {
    699    gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
    700 
    701    if (state->symbols->get_function(name) == NULL
    702        && (!state->uses_builtin_functions
    703            || sh->symbols->get_function(name) == NULL)) {
    704       _mesa_glsl_error(loc, state, "no function with name '%s'", name);
    705    } else {
    706       char *str = prototype_string(NULL, name, actual_parameters);
    707       _mesa_glsl_error(loc, state,
    708                        "no matching function for call to `%s';"
    709                        " candidates are:",
    710                        str);
    711       ralloc_free(str);
    712 
    713       print_function_prototypes(state, loc,
    714                                 state->symbols->get_function(name));
    715 
    716       if (state->uses_builtin_functions) {
    717          print_function_prototypes(state, loc,
    718                                    sh->symbols->get_function(name));
    719       }
    720    }
    721 }
    722 
    723 /**
    724  * Perform automatic type conversion of constructor parameters
    725  *
    726  * This implements the rules in the "Conversion and Scalar Constructors"
    727  * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
    728  */
    729 static ir_rvalue *
    730 convert_component(ir_rvalue *src, const glsl_type *desired_type)
    731 {
    732    void *ctx = ralloc_parent(src);
    733    const unsigned a = desired_type->base_type;
    734    const unsigned b = src->type->base_type;
    735    ir_expression *result = NULL;
    736 
    737    if (src->type->is_error())
    738       return src;
    739 
    740    assert(a <= GLSL_TYPE_BOOL);
    741    assert(b <= GLSL_TYPE_BOOL);
    742 
    743    if (a == b)
    744       return src;
    745 
    746    switch (a) {
    747    case GLSL_TYPE_UINT:
    748       switch (b) {
    749       case GLSL_TYPE_INT:
    750          result = new(ctx) ir_expression(ir_unop_i2u, src);
    751          break;
    752       case GLSL_TYPE_FLOAT:
    753          result = new(ctx) ir_expression(ir_unop_f2u, src);
    754          break;
    755       case GLSL_TYPE_BOOL:
    756          result = new(ctx) ir_expression(ir_unop_i2u,
    757                                          new(ctx) ir_expression(ir_unop_b2i,
    758                                                                 src));
    759          break;
    760       case GLSL_TYPE_DOUBLE:
    761          result = new(ctx) ir_expression(ir_unop_d2u, src);
    762          break;
    763       }
    764       break;
    765    case GLSL_TYPE_INT:
    766       switch (b) {
    767       case GLSL_TYPE_UINT:
    768          result = new(ctx) ir_expression(ir_unop_u2i, src);
    769          break;
    770       case GLSL_TYPE_FLOAT:
    771          result = new(ctx) ir_expression(ir_unop_f2i, src);
    772          break;
    773       case GLSL_TYPE_BOOL:
    774          result = new(ctx) ir_expression(ir_unop_b2i, src);
    775          break;
    776       case GLSL_TYPE_DOUBLE:
    777          result = new(ctx) ir_expression(ir_unop_d2i, src);
    778          break;
    779       }
    780       break;
    781    case GLSL_TYPE_FLOAT:
    782       switch (b) {
    783       case GLSL_TYPE_UINT:
    784          result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
    785          break;
    786       case GLSL_TYPE_INT:
    787          result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
    788          break;
    789       case GLSL_TYPE_BOOL:
    790          result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
    791          break;
    792       case GLSL_TYPE_DOUBLE:
    793          result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
    794          break;
    795       }
    796       break;
    797    case GLSL_TYPE_BOOL:
    798       switch (b) {
    799       case GLSL_TYPE_UINT:
    800          result = new(ctx) ir_expression(ir_unop_i2b,
    801                                          new(ctx) ir_expression(ir_unop_u2i,
    802                                                                 src));
    803          break;
    804       case GLSL_TYPE_INT:
    805          result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
    806          break;
    807       case GLSL_TYPE_FLOAT:
    808          result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
    809          break;
    810       case GLSL_TYPE_DOUBLE:
    811          result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
    812          break;
    813       }
    814       break;
    815    case GLSL_TYPE_DOUBLE:
    816       switch (b) {
    817       case GLSL_TYPE_INT:
    818          result = new(ctx) ir_expression(ir_unop_i2d, src);
    819          break;
    820       case GLSL_TYPE_UINT:
    821          result = new(ctx) ir_expression(ir_unop_u2d, src);
    822          break;
    823       case GLSL_TYPE_BOOL:
    824          result = new(ctx) ir_expression(ir_unop_f2d,
    825                                          new(ctx) ir_expression(ir_unop_b2f,
    826                                                                 src));
    827          break;
    828       case GLSL_TYPE_FLOAT:
    829          result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
    830          break;
    831       }
    832    }
    833 
    834    assert(result != NULL);
    835    assert(result->type == desired_type);
    836 
    837    /* Try constant folding; it may fold in the conversion we just added. */
    838    ir_constant *const constant = result->constant_expression_value();
    839    return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
    840 }
    841 
    842 
    843 /**
    844  * Perform automatic type and constant conversion of constructor parameters
    845  *
    846  * This implements the rules in the "Implicit Conversions" rules, not the
    847  * "Conversion and Scalar Constructors".
    848  *
    849  * After attempting the implicit conversion, an attempt to convert into a
    850  * constant valued expression is also done.
    851  *
    852  * The \c from \c ir_rvalue is converted "in place".
    853  *
    854  * \param from   Operand that is being converted
    855  * \param to     Base type the operand will be converted to
    856  * \param state  GLSL compiler state
    857  *
    858  * \return
    859  * If the attempt to convert into a constant expression succeeds, \c true is
    860  * returned. Otherwise \c false is returned.
    861  */
    862 static bool
    863 implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
    864                              struct _mesa_glsl_parse_state *state)
    865 {
    866    ir_rvalue *result = from;
    867 
    868    if (to != from->type->base_type) {
    869       const glsl_type *desired_type =
    870          glsl_type::get_instance(to,
    871                                  from->type->vector_elements,
    872                                  from->type->matrix_columns);
    873 
    874       if (from->type->can_implicitly_convert_to(desired_type, state)) {
    875          /* Even though convert_component() implements the constructor
    876           * conversion rules (not the implicit conversion rules), its safe
    877           * to use it here because we already checked that the implicit
    878           * conversion is legal.
    879           */
    880          result = convert_component(from, desired_type);
    881       }
    882    }
    883 
    884    ir_rvalue *const constant = result->constant_expression_value();
    885 
    886    if (constant != NULL)
    887       result = constant;
    888 
    889    if (from != result) {
    890       from->replace_with(result);
    891       from = result;
    892    }
    893 
    894    return constant != NULL;
    895 }
    896 
    897 
    898 /**
    899  * Dereference a specific component from a scalar, vector, or matrix
    900  */
    901 static ir_rvalue *
    902 dereference_component(ir_rvalue *src, unsigned component)
    903 {
    904    void *ctx = ralloc_parent(src);
    905    assert(component < src->type->components());
    906 
    907    /* If the source is a constant, just create a new constant instead of a
    908     * dereference of the existing constant.
    909     */
    910    ir_constant *constant = src->as_constant();
    911    if (constant)
    912       return new(ctx) ir_constant(constant, component);
    913 
    914    if (src->type->is_scalar()) {
    915       return src;
    916    } else if (src->type->is_vector()) {
    917       return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
    918    } else {
    919       assert(src->type->is_matrix());
    920 
    921       /* Dereference a row of the matrix, then call this function again to get
    922        * a specific element from that row.
    923        */
    924       const int c = component / src->type->column_type()->vector_elements;
    925       const int r = component % src->type->column_type()->vector_elements;
    926       ir_constant *const col_index = new(ctx) ir_constant(c);
    927       ir_dereference *const col = new(ctx) ir_dereference_array(src,
    928                                                                 col_index);
    929 
    930       col->type = src->type->column_type();
    931 
    932       return dereference_component(col, r);
    933    }
    934 
    935    assert(!"Should not get here.");
    936    return NULL;
    937 }
    938 
    939 
    940 static ir_rvalue *
    941 process_vec_mat_constructor(exec_list *instructions,
    942                             const glsl_type *constructor_type,
    943                             YYLTYPE *loc, exec_list *parameters,
    944                             struct _mesa_glsl_parse_state *state)
    945 {
    946    void *ctx = state;
    947 
    948    /* The ARB_shading_language_420pack spec says:
    949     *
    950     * "If an initializer is a list of initializers enclosed in curly braces,
    951     *  the variable being declared must be a vector, a matrix, an array, or a
    952     *  structure.
    953     *
    954     *      int i = { 1 }; // illegal, i is not an aggregate"
    955     */
    956    if (constructor_type->vector_elements <= 1) {
    957       _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
    958                        "matrices, arrays, and structs");
    959       return ir_rvalue::error_value(ctx);
    960    }
    961 
    962    exec_list actual_parameters;
    963    const unsigned parameter_count =
    964       process_parameters(instructions, &actual_parameters, parameters, state);
    965 
    966    if (parameter_count == 0
    967        || (constructor_type->is_vector() &&
    968            constructor_type->vector_elements != parameter_count)
    969        || (constructor_type->is_matrix() &&
    970            constructor_type->matrix_columns != parameter_count)) {
    971       _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
    972                        constructor_type->is_vector() ? "vector" : "matrix",
    973                        constructor_type->vector_elements);
    974       return ir_rvalue::error_value(ctx);
    975    }
    976 
    977    bool all_parameters_are_constant = true;
    978 
    979    /* Type cast each parameter and, if possible, fold constants. */
    980    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
    981       /* Apply implicit conversions (not the scalar constructor rules, see the
    982        * spec quote above!) and attempt to convert the parameter to a constant
    983        * valued expression. After doing so, track whether or not all the
    984        * parameters to the constructor are trivially constant valued
    985        * expressions.
    986        */
    987       all_parameters_are_constant &=
    988          implicitly_convert_component(ir, constructor_type->base_type, state);
    989 
    990       if (constructor_type->is_matrix()) {
    991          if (ir->type != constructor_type->column_type()) {
    992             _mesa_glsl_error(loc, state, "type error in matrix constructor: "
    993                              "expected: %s, found %s",
    994                              constructor_type->column_type()->name,
    995                              ir->type->name);
    996             return ir_rvalue::error_value(ctx);
    997          }
    998       } else if (ir->type != constructor_type->get_scalar_type()) {
    999          _mesa_glsl_error(loc, state, "type error in vector constructor: "
   1000                           "expected: %s, found %s",
   1001                           constructor_type->get_scalar_type()->name,
   1002                           ir->type->name);
   1003          return ir_rvalue::error_value(ctx);
   1004       }
   1005    }
   1006 
   1007    if (all_parameters_are_constant)
   1008       return new(ctx) ir_constant(constructor_type, &actual_parameters);
   1009 
   1010    ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
   1011                                            ir_var_temporary);
   1012    instructions->push_tail(var);
   1013 
   1014    int i = 0;
   1015 
   1016    foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
   1017       ir_instruction *assignment = NULL;
   1018 
   1019       if (var->type->is_matrix()) {
   1020          ir_rvalue *lhs =
   1021             new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
   1022          assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
   1023       } else {
   1024          /* use writemask rather than index for vector */
   1025          assert(var->type->is_vector());
   1026          assert(i < 4);
   1027          ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
   1028          assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
   1029                                              (unsigned)(1 << i));
   1030       }
   1031 
   1032       instructions->push_tail(assignment);
   1033 
   1034       i++;
   1035    }
   1036 
   1037    return new(ctx) ir_dereference_variable(var);
   1038 }
   1039 
   1040 
   1041 static ir_rvalue *
   1042 process_array_constructor(exec_list *instructions,
   1043                           const glsl_type *constructor_type,
   1044                           YYLTYPE *loc, exec_list *parameters,
   1045                           struct _mesa_glsl_parse_state *state)
   1046 {
   1047    void *ctx = state;
   1048    /* Array constructors come in two forms: sized and unsized.  Sized array
   1049     * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
   1050     * variables.  In this case the number of parameters must exactly match the
   1051     * specified size of the array.
   1052     *
   1053     * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
   1054     * are vec4 variables.  In this case the size of the array being constructed
   1055     * is determined by the number of parameters.
   1056     *
   1057     * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
   1058     *
   1059     *    "There must be exactly the same number of arguments as the size of
   1060     *    the array being constructed. If no size is present in the
   1061     *    constructor, then the array is explicitly sized to the number of
   1062     *    arguments provided. The arguments are assigned in order, starting at
   1063     *    element 0, to the elements of the constructed array. Each argument
   1064     *    must be the same type as the element type of the array, or be a type
   1065     *    that can be converted to the element type of the array according to
   1066     *    Section 4.1.10 "Implicit Conversions.""
   1067     */
   1068    exec_list actual_parameters;
   1069    const unsigned parameter_count =
   1070       process_parameters(instructions, &actual_parameters, parameters, state);
   1071    bool is_unsized_array = constructor_type->is_unsized_array();
   1072 
   1073    if ((parameter_count == 0) ||
   1074        (!is_unsized_array && (constructor_type->length != parameter_count))) {
   1075       const unsigned min_param = is_unsized_array
   1076          ? 1 : constructor_type->length;
   1077 
   1078       _mesa_glsl_error(loc, state, "array constructor must have %s %u "
   1079                        "parameter%s",
   1080                        is_unsized_array ? "at least" : "exactly",
   1081                        min_param, (min_param <= 1) ? "" : "s");
   1082       return ir_rvalue::error_value(ctx);
   1083    }
   1084 
   1085    if (is_unsized_array) {
   1086       constructor_type =
   1087          glsl_type::get_array_instance(constructor_type->fields.array,
   1088                                        parameter_count);
   1089       assert(constructor_type != NULL);
   1090       assert(constructor_type->length == parameter_count);
   1091    }
   1092 
   1093    bool all_parameters_are_constant = true;
   1094    const glsl_type *element_type = constructor_type->fields.array;
   1095 
   1096    /* Type cast each parameter and, if possible, fold constants. */
   1097    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
   1098       /* Apply implicit conversions (not the scalar constructor rules, see the
   1099        * spec quote above!) and attempt to convert the parameter to a constant
   1100        * valued expression. After doing so, track whether or not all the
   1101        * parameters to the constructor are trivially constant valued
   1102        * expressions.
   1103        */
   1104       all_parameters_are_constant &=
   1105          implicitly_convert_component(ir, element_type->base_type, state);
   1106 
   1107       if (constructor_type->fields.array->is_unsized_array()) {
   1108          /* As the inner parameters of the constructor are created without
   1109           * knowledge of each other we need to check to make sure unsized
   1110           * parameters of unsized constructors all end up with the same size.
   1111           *
   1112           * e.g we make sure to fail for a constructor like this:
   1113           * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
   1114           *                       vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
   1115           *                       vec4[](vec4(0.0), vec4(1.0)));
   1116           */
   1117          if (element_type->is_unsized_array()) {
   1118             /* This is the first parameter so just get the type */
   1119             element_type = ir->type;
   1120          } else if (element_type != ir->type) {
   1121             _mesa_glsl_error(loc, state, "type error in array constructor: "
   1122                              "expected: %s, found %s",
   1123                              element_type->name,
   1124                              ir->type->name);
   1125             return ir_rvalue::error_value(ctx);
   1126          }
   1127       } else if (ir->type != constructor_type->fields.array) {
   1128          _mesa_glsl_error(loc, state, "type error in array constructor: "
   1129                           "expected: %s, found %s",
   1130                           constructor_type->fields.array->name,
   1131                           ir->type->name);
   1132          return ir_rvalue::error_value(ctx);
   1133       } else {
   1134          element_type = ir->type;
   1135       }
   1136    }
   1137 
   1138    if (constructor_type->fields.array->is_unsized_array()) {
   1139       constructor_type =
   1140          glsl_type::get_array_instance(element_type,
   1141                                        parameter_count);
   1142       assert(constructor_type != NULL);
   1143       assert(constructor_type->length == parameter_count);
   1144    }
   1145 
   1146    if (all_parameters_are_constant)
   1147       return new(ctx) ir_constant(constructor_type, &actual_parameters);
   1148 
   1149    ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
   1150                                            ir_var_temporary);
   1151    instructions->push_tail(var);
   1152 
   1153    int i = 0;
   1154    foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
   1155       ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
   1156                                                      new(ctx) ir_constant(i));
   1157 
   1158       ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
   1159       instructions->push_tail(assignment);
   1160 
   1161       i++;
   1162    }
   1163 
   1164    return new(ctx) ir_dereference_variable(var);
   1165 }
   1166 
   1167 
   1168 /**
   1169  * Determine if a list consists of a single scalar r-value
   1170  */
   1171 bool
   1172 single_scalar_parameter(exec_list *parameters)
   1173 {
   1174    const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
   1175    assert(((ir_rvalue *)p)->as_rvalue() != NULL);
   1176 
   1177    return (p->type->is_scalar() && p->next->is_tail_sentinel());
   1178 }
   1179 
   1180 
   1181 /**
   1182  * Generate inline code for a vector constructor
   1183  *
   1184  * The generated constructor code will consist of a temporary variable
   1185  * declaration of the same type as the constructor.  A sequence of assignments
   1186  * from constructor parameters to the temporary will follow.
   1187  *
   1188  * \return
   1189  * An \c ir_dereference_variable of the temprorary generated in the constructor
   1190  * body.
   1191  */
   1192 ir_rvalue *
   1193 emit_inline_vector_constructor(const glsl_type *type,
   1194                                exec_list *instructions,
   1195                                exec_list *parameters,
   1196                                void *ctx)
   1197 {
   1198    assert(!parameters->is_empty());
   1199 
   1200    ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
   1201    instructions->push_tail(var);
   1202 
   1203    /* There are three kinds of vector constructors.
   1204     *
   1205     *  - Construct a vector from a single scalar by replicating that scalar to
   1206     *    all components of the vector.
   1207     *
   1208     *  - Construct a vector from at least a matrix. This case should already
   1209     *    have been taken care of in ast_function_expression::hir by breaking
   1210     *    down the matrix into a series of column vectors.
   1211     *
   1212     *  - Construct a vector from an arbirary combination of vectors and
   1213     *    scalars.  The components of the constructor parameters are assigned
   1214     *    to the vector in order until the vector is full.
   1215     */
   1216    const unsigned lhs_components = type->components();
   1217    if (single_scalar_parameter(parameters)) {
   1218       ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
   1219       ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
   1220                                            lhs_components);
   1221       ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
   1222       const unsigned mask = (1U << lhs_components) - 1;
   1223 
   1224       assert(rhs->type == lhs->type);
   1225 
   1226       ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
   1227       instructions->push_tail(inst);
   1228    } else {
   1229       unsigned base_component = 0;
   1230       unsigned base_lhs_component = 0;
   1231       ir_constant_data data;
   1232       unsigned constant_mask = 0, constant_components = 0;
   1233 
   1234       memset(&data, 0, sizeof(data));
   1235 
   1236       foreach_in_list(ir_rvalue, param, parameters) {
   1237          unsigned rhs_components = param->type->components();
   1238 
   1239          /* Do not try to assign more components to the vector than it has! */
   1240          if ((rhs_components + base_lhs_component) > lhs_components) {
   1241             rhs_components = lhs_components - base_lhs_component;
   1242          }
   1243 
   1244          const ir_constant *const c = param->as_constant();
   1245          if (c != NULL) {
   1246             for (unsigned i = 0; i < rhs_components; i++) {
   1247                switch (c->type->base_type) {
   1248                case GLSL_TYPE_UINT:
   1249                   data.u[i + base_component] = c->get_uint_component(i);
   1250                   break;
   1251                case GLSL_TYPE_INT:
   1252                   data.i[i + base_component] = c->get_int_component(i);
   1253                   break;
   1254                case GLSL_TYPE_FLOAT:
   1255                   data.f[i + base_component] = c->get_float_component(i);
   1256                   break;
   1257                case GLSL_TYPE_DOUBLE:
   1258                   data.d[i + base_component] = c->get_double_component(i);
   1259                   break;
   1260                case GLSL_TYPE_BOOL:
   1261                   data.b[i + base_component] = c->get_bool_component(i);
   1262                   break;
   1263                default:
   1264                   assert(!"Should not get here.");
   1265                   break;
   1266                }
   1267             }
   1268 
   1269             /* Mask of fields to be written in the assignment. */
   1270             constant_mask |=
   1271                ((1U << rhs_components) - 1) << base_lhs_component;
   1272             constant_components += rhs_components;
   1273 
   1274             base_component += rhs_components;
   1275          }
   1276          /* Advance the component index by the number of components
   1277           * that were just assigned.
   1278           */
   1279          base_lhs_component += rhs_components;
   1280       }
   1281 
   1282       if (constant_mask != 0) {
   1283          ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
   1284          const glsl_type *rhs_type =
   1285             glsl_type::get_instance(var->type->base_type,
   1286                                     constant_components,
   1287                                     1);
   1288          ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
   1289 
   1290          ir_instruction *inst =
   1291             new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
   1292          instructions->push_tail(inst);
   1293       }
   1294 
   1295       base_component = 0;
   1296       foreach_in_list(ir_rvalue, param, parameters) {
   1297          unsigned rhs_components = param->type->components();
   1298 
   1299          /* Do not try to assign more components to the vector than it has! */
   1300          if ((rhs_components + base_component) > lhs_components) {
   1301             rhs_components = lhs_components - base_component;
   1302          }
   1303 
   1304          /* If we do not have any components left to copy, break out of the
   1305           * loop. This can happen when initializing a vec4 with a mat3 as the
   1306           * mat3 would have been broken into a series of column vectors.
   1307           */
   1308          if (rhs_components == 0) {
   1309             break;
   1310          }
   1311 
   1312          const ir_constant *const c = param->as_constant();
   1313          if (c == NULL) {
   1314             /* Mask of fields to be written in the assignment. */
   1315             const unsigned write_mask = ((1U << rhs_components) - 1)
   1316                << base_component;
   1317 
   1318             ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
   1319 
   1320             /* Generate a swizzle so that LHS and RHS sizes match. */
   1321             ir_rvalue *rhs =
   1322                new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
   1323 
   1324             ir_instruction *inst =
   1325                new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
   1326             instructions->push_tail(inst);
   1327          }
   1328 
   1329          /* Advance the component index by the number of components that were
   1330           * just assigned.
   1331           */
   1332          base_component += rhs_components;
   1333       }
   1334    }
   1335    return new(ctx) ir_dereference_variable(var);
   1336 }
   1337 
   1338 
   1339 /**
   1340  * Generate assignment of a portion of a vector to a portion of a matrix column
   1341  *
   1342  * \param src_base  First component of the source to be used in assignment
   1343  * \param column    Column of destination to be assiged
   1344  * \param row_base  First component of the destination column to be assigned
   1345  * \param count     Number of components to be assigned
   1346  *
   1347  * \note
   1348  * \c src_base + \c count must be less than or equal to the number of
   1349  * components in the source vector.
   1350  */
   1351 ir_instruction *
   1352 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
   1353                         ir_rvalue *src, unsigned src_base, unsigned count,
   1354                         void *mem_ctx)
   1355 {
   1356    ir_constant *col_idx = new(mem_ctx) ir_constant(column);
   1357    ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
   1358                                                                   col_idx);
   1359 
   1360    assert(column_ref->type->components() >= (row_base + count));
   1361    assert(src->type->components() >= (src_base + count));
   1362 
   1363    /* Generate a swizzle that extracts the number of components from the source
   1364     * that are to be assigned to the column of the matrix.
   1365     */
   1366    if (count < src->type->vector_elements) {
   1367       src = new(mem_ctx) ir_swizzle(src,
   1368                                     src_base + 0, src_base + 1,
   1369                                     src_base + 2, src_base + 3,
   1370                                     count);
   1371    }
   1372 
   1373    /* Mask of fields to be written in the assignment. */
   1374    const unsigned write_mask = ((1U << count) - 1) << row_base;
   1375 
   1376    return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
   1377 }
   1378 
   1379 
   1380 /**
   1381  * Generate inline code for a matrix constructor
   1382  *
   1383  * The generated constructor code will consist of a temporary variable
   1384  * declaration of the same type as the constructor.  A sequence of assignments
   1385  * from constructor parameters to the temporary will follow.
   1386  *
   1387  * \return
   1388  * An \c ir_dereference_variable of the temprorary generated in the constructor
   1389  * body.
   1390  */
   1391 ir_rvalue *
   1392 emit_inline_matrix_constructor(const glsl_type *type,
   1393                                exec_list *instructions,
   1394                                exec_list *parameters,
   1395                                void *ctx)
   1396 {
   1397    assert(!parameters->is_empty());
   1398 
   1399    ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
   1400    instructions->push_tail(var);
   1401 
   1402    /* There are three kinds of matrix constructors.
   1403     *
   1404     *  - Construct a matrix from a single scalar by replicating that scalar to
   1405     *    along the diagonal of the matrix and setting all other components to
   1406     *    zero.
   1407     *
   1408     *  - Construct a matrix from an arbirary combination of vectors and
   1409     *    scalars.  The components of the constructor parameters are assigned
   1410     *    to the matrix in column-major order until the matrix is full.
   1411     *
   1412     *  - Construct a matrix from a single matrix.  The source matrix is copied
   1413     *    to the upper left portion of the constructed matrix, and the remaining
   1414     *    elements take values from the identity matrix.
   1415     */
   1416    ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
   1417    if (single_scalar_parameter(parameters)) {
   1418       /* Assign the scalar to the X component of a vec4, and fill the remaining
   1419        * components with zero.
   1420        */
   1421       glsl_base_type param_base_type = first_param->type->base_type;
   1422       assert(param_base_type == GLSL_TYPE_FLOAT ||
   1423              param_base_type == GLSL_TYPE_DOUBLE);
   1424       ir_variable *rhs_var =
   1425          new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
   1426                               "mat_ctor_vec",
   1427                               ir_var_temporary);
   1428       instructions->push_tail(rhs_var);
   1429 
   1430       ir_constant_data zero;
   1431       for (unsigned i = 0; i < 4; i++)
   1432          if (param_base_type == GLSL_TYPE_FLOAT)
   1433             zero.f[i] = 0.0;
   1434          else
   1435             zero.d[i] = 0.0;
   1436 
   1437       ir_instruction *inst =
   1438          new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
   1439                                 new(ctx) ir_constant(rhs_var->type, &zero),
   1440                                 NULL);
   1441       instructions->push_tail(inst);
   1442 
   1443       ir_dereference *const rhs_ref =
   1444          new(ctx) ir_dereference_variable(rhs_var);
   1445 
   1446       inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
   1447       instructions->push_tail(inst);
   1448 
   1449       /* Assign the temporary vector to each column of the destination matrix
   1450        * with a swizzle that puts the X component on the diagonal of the
   1451        * matrix.  In some cases this may mean that the X component does not
   1452        * get assigned into the column at all (i.e., when the matrix has more
   1453        * columns than rows).
   1454        */
   1455       static const unsigned rhs_swiz[4][4] = {
   1456          { 0, 1, 1, 1 },
   1457          { 1, 0, 1, 1 },
   1458          { 1, 1, 0, 1 },
   1459          { 1, 1, 1, 0 }
   1460       };
   1461 
   1462       const unsigned cols_to_init = MIN2(type->matrix_columns,
   1463                                          type->vector_elements);
   1464       for (unsigned i = 0; i < cols_to_init; i++) {
   1465          ir_constant *const col_idx = new(ctx) ir_constant(i);
   1466          ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
   1467                                                                   col_idx);
   1468 
   1469          ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
   1470          ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
   1471                                                     type->vector_elements);
   1472 
   1473          inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
   1474          instructions->push_tail(inst);
   1475       }
   1476 
   1477       for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
   1478          ir_constant *const col_idx = new(ctx) ir_constant(i);
   1479          ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
   1480                                                                   col_idx);
   1481 
   1482          ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
   1483          ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
   1484                                                     type->vector_elements);
   1485 
   1486          inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
   1487          instructions->push_tail(inst);
   1488       }
   1489    } else if (first_param->type->is_matrix()) {
   1490       /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
   1491        *
   1492        *     "If a matrix is constructed from a matrix, then each component
   1493        *     (column i, row j) in the result that has a corresponding
   1494        *     component (column i, row j) in the argument will be initialized
   1495        *     from there. All other components will be initialized to the
   1496        *     identity matrix. If a matrix argument is given to a matrix
   1497        *     constructor, it is an error to have any other arguments."
   1498        */
   1499       assert(first_param->next->is_tail_sentinel());
   1500       ir_rvalue *const src_matrix = first_param;
   1501 
   1502       /* If the source matrix is smaller, pre-initialize the relavent parts of
   1503        * the destination matrix to the identity matrix.
   1504        */
   1505       if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
   1506           (src_matrix->type->vector_elements < var->type->vector_elements)) {
   1507 
   1508          /* If the source matrix has fewer rows, every column of the
   1509           * destination must be initialized.  Otherwise only the columns in
   1510           * the destination that do not exist in the source must be
   1511           * initialized.
   1512           */
   1513          unsigned col =
   1514             (src_matrix->type->vector_elements < var->type->vector_elements)
   1515             ? 0 : src_matrix->type->matrix_columns;
   1516 
   1517          const glsl_type *const col_type = var->type->column_type();
   1518          for (/* empty */; col < var->type->matrix_columns; col++) {
   1519             ir_constant_data ident;
   1520 
   1521             if (!col_type->is_double()) {
   1522                ident.f[0] = 0.0f;
   1523                ident.f[1] = 0.0f;
   1524                ident.f[2] = 0.0f;
   1525                ident.f[3] = 0.0f;
   1526                ident.f[col] = 1.0f;
   1527             } else {
   1528                ident.d[0] = 0.0;
   1529                ident.d[1] = 0.0;
   1530                ident.d[2] = 0.0;
   1531                ident.d[3] = 0.0;
   1532                ident.d[col] = 1.0;
   1533             }
   1534 
   1535             ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
   1536 
   1537             ir_rvalue *const lhs =
   1538                new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
   1539 
   1540             ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
   1541             instructions->push_tail(inst);
   1542          }
   1543       }
   1544 
   1545       /* Assign columns from the source matrix to the destination matrix.
   1546        *
   1547        * Since the parameter will be used in the RHS of multiple assignments,
   1548        * generate a temporary and copy the paramter there.
   1549        */
   1550       ir_variable *const rhs_var =
   1551          new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
   1552                               ir_var_temporary);
   1553       instructions->push_tail(rhs_var);
   1554 
   1555       ir_dereference *const rhs_var_ref =
   1556          new(ctx) ir_dereference_variable(rhs_var);
   1557       ir_instruction *const inst =
   1558          new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
   1559       instructions->push_tail(inst);
   1560 
   1561       const unsigned last_row = MIN2(src_matrix->type->vector_elements,
   1562                                      var->type->vector_elements);
   1563       const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
   1564                                      var->type->matrix_columns);
   1565 
   1566       unsigned swiz[4] = { 0, 0, 0, 0 };
   1567       for (unsigned i = 1; i < last_row; i++)
   1568          swiz[i] = i;
   1569 
   1570       const unsigned write_mask = (1U << last_row) - 1;
   1571 
   1572       for (unsigned i = 0; i < last_col; i++) {
   1573          ir_dereference *const lhs =
   1574             new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
   1575          ir_rvalue *const rhs_col =
   1576             new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
   1577 
   1578          /* If one matrix has columns that are smaller than the columns of the
   1579           * other matrix, wrap the column access of the larger with a swizzle
   1580           * so that the LHS and RHS of the assignment have the same size (and
   1581           * therefore have the same type).
   1582           *
   1583           * It would be perfectly valid to unconditionally generate the
   1584           * swizzles, this this will typically result in a more compact IR
   1585           * tree.
   1586           */
   1587          ir_rvalue *rhs;
   1588          if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
   1589             rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
   1590          } else {
   1591             rhs = rhs_col;
   1592          }
   1593 
   1594          ir_instruction *inst =
   1595             new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
   1596          instructions->push_tail(inst);
   1597       }
   1598    } else {
   1599       const unsigned cols = type->matrix_columns;
   1600       const unsigned rows = type->vector_elements;
   1601       unsigned remaining_slots = rows * cols;
   1602       unsigned col_idx = 0;
   1603       unsigned row_idx = 0;
   1604 
   1605       foreach_in_list(ir_rvalue, rhs, parameters) {
   1606          unsigned rhs_components = rhs->type->components();
   1607          unsigned rhs_base = 0;
   1608 
   1609          if (remaining_slots == 0)
   1610             break;
   1611 
   1612          /* Since the parameter might be used in the RHS of two assignments,
   1613           * generate a temporary and copy the paramter there.
   1614           */
   1615          ir_variable *rhs_var =
   1616             new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
   1617          instructions->push_tail(rhs_var);
   1618 
   1619          ir_dereference *rhs_var_ref =
   1620             new(ctx) ir_dereference_variable(rhs_var);
   1621          ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
   1622          instructions->push_tail(inst);
   1623 
   1624          do {
   1625             /* Assign the current parameter to as many components of the matrix
   1626              * as it will fill.
   1627              *
   1628              * NOTE: A single vector parameter can span two matrix columns.  A
   1629              * single vec4, for example, can completely fill a mat2.
   1630              */
   1631             unsigned count = MIN2(rows - row_idx,
   1632                                   rhs_components - rhs_base);
   1633 
   1634             rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
   1635             ir_instruction *inst = assign_to_matrix_column(var, col_idx,
   1636                                                            row_idx,
   1637                                                            rhs_var_ref,
   1638                                                            rhs_base,
   1639                                                            count, ctx);
   1640             instructions->push_tail(inst);
   1641             rhs_base += count;
   1642             row_idx += count;
   1643             remaining_slots -= count;
   1644 
   1645             /* Sometimes, there is still data left in the parameters and
   1646              * components left to be set in the destination but in other
   1647              * column.
   1648              */
   1649             if (row_idx >= rows) {
   1650                row_idx = 0;
   1651                col_idx++;
   1652             }
   1653          } while(remaining_slots > 0 && rhs_base < rhs_components);
   1654       }
   1655    }
   1656 
   1657    return new(ctx) ir_dereference_variable(var);
   1658 }
   1659 
   1660 
   1661 ir_rvalue *
   1662 emit_inline_record_constructor(const glsl_type *type,
   1663                                exec_list *instructions,
   1664                                exec_list *parameters,
   1665                                void *mem_ctx)
   1666 {
   1667    ir_variable *const var =
   1668       new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
   1669    ir_dereference_variable *const d =
   1670       new(mem_ctx) ir_dereference_variable(var);
   1671 
   1672    instructions->push_tail(var);
   1673 
   1674    exec_node *node = parameters->get_head_raw();
   1675    for (unsigned i = 0; i < type->length; i++) {
   1676       assert(!node->is_tail_sentinel());
   1677 
   1678       ir_dereference *const lhs =
   1679          new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
   1680                                             type->fields.structure[i].name);
   1681 
   1682       ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
   1683       assert(rhs != NULL);
   1684 
   1685       ir_instruction *const assign =
   1686          new(mem_ctx) ir_assignment(lhs, rhs, NULL);
   1687 
   1688       instructions->push_tail(assign);
   1689       node = node->next;
   1690    }
   1691 
   1692    return d;
   1693 }
   1694 
   1695 
   1696 static ir_rvalue *
   1697 process_record_constructor(exec_list *instructions,
   1698                            const glsl_type *constructor_type,
   1699                            YYLTYPE *loc, exec_list *parameters,
   1700                            struct _mesa_glsl_parse_state *state)
   1701 {
   1702    void *ctx = state;
   1703    /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
   1704     *
   1705     *    "The arguments to the constructor will be used to set the structure's
   1706     *     fields, in order, using one argument per field. Each argument must
   1707     *     be the same type as the field it sets, or be a type that can be
   1708     *     converted to the field's type according to Section 4.1.10 Implicit
   1709     *     Conversions."
   1710     *
   1711     * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
   1712     *
   1713     *    "In all cases, the innermost initializer (i.e., not a list of
   1714     *     initializers enclosed in curly braces) applied to an object must
   1715     *     have the same type as the object being initialized or be a type that
   1716     *     can be converted to the object's type according to section 4.1.10
   1717     *     "Implicit Conversions". In the latter case, an implicit conversion
   1718     *     will be done on the initializer before the assignment is done."
   1719     */
   1720    exec_list actual_parameters;
   1721 
   1722    const unsigned parameter_count =
   1723          process_parameters(instructions, &actual_parameters, parameters,
   1724                             state);
   1725 
   1726    if (parameter_count != constructor_type->length) {
   1727       _mesa_glsl_error(loc, state,
   1728                        "%s parameters in constructor for `%s'",
   1729                        parameter_count > constructor_type->length
   1730                        ? "too many": "insufficient",
   1731                        constructor_type->name);
   1732       return ir_rvalue::error_value(ctx);
   1733    }
   1734 
   1735    bool all_parameters_are_constant = true;
   1736 
   1737    int i = 0;
   1738    /* Type cast each parameter and, if possible, fold constants. */
   1739    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
   1740 
   1741       const glsl_struct_field *struct_field =
   1742          &constructor_type->fields.structure[i];
   1743 
   1744       /* Apply implicit conversions (not the scalar constructor rules, see the
   1745        * spec quote above!) and attempt to convert the parameter to a constant
   1746        * valued expression. After doing so, track whether or not all the
   1747        * parameters to the constructor are trivially constant valued
   1748        * expressions.
   1749        */
   1750       all_parameters_are_constant &=
   1751          implicitly_convert_component(ir, struct_field->type->base_type,
   1752                                       state);
   1753 
   1754       if (ir->type != struct_field->type) {
   1755          _mesa_glsl_error(loc, state,
   1756                           "parameter type mismatch in constructor for `%s.%s' "
   1757                           "(%s vs %s)",
   1758                           constructor_type->name,
   1759                           struct_field->name,
   1760                           ir->type->name,
   1761                           struct_field->type->name);
   1762          return ir_rvalue::error_value(ctx);
   1763       }
   1764 
   1765       i++;
   1766    }
   1767 
   1768    if (all_parameters_are_constant) {
   1769       return new(ctx) ir_constant(constructor_type, &actual_parameters);
   1770    } else {
   1771       return emit_inline_record_constructor(constructor_type, instructions,
   1772                                             &actual_parameters, state);
   1773    }
   1774 }
   1775 
   1776 ir_rvalue *
   1777 ast_function_expression::handle_method(exec_list *instructions,
   1778                                        struct _mesa_glsl_parse_state *state)
   1779 {
   1780    const ast_expression *field = subexpressions[0];
   1781    ir_rvalue *op;
   1782    ir_rvalue *result;
   1783    void *ctx = state;
   1784    /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
   1785    YYLTYPE loc = get_location();
   1786    state->check_version(120, 300, &loc, "methods not supported");
   1787 
   1788    const char *method;
   1789    method = field->primary_expression.identifier;
   1790 
   1791    /* This would prevent to raise "uninitialized variable" warnings when
   1792     * calling array.length.
   1793     */
   1794    field->subexpressions[0]->set_is_lhs(true);
   1795    op = field->subexpressions[0]->hir(instructions, state);
   1796    if (strcmp(method, "length") == 0) {
   1797       if (!this->expressions.is_empty()) {
   1798          _mesa_glsl_error(&loc, state, "length method takes no arguments");
   1799          goto fail;
   1800       }
   1801 
   1802       if (op->type->is_array()) {
   1803          if (op->type->is_unsized_array()) {
   1804             if (!state->has_shader_storage_buffer_objects()) {
   1805                _mesa_glsl_error(&loc, state,
   1806                                 "length called on unsized array"
   1807                                 " only available with"
   1808                                 " ARB_shader_storage_buffer_object");
   1809             }
   1810             /* Calculate length of an unsized array in run-time */
   1811             result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length,
   1812                                             op);
   1813          } else {
   1814             result = new(ctx) ir_constant(op->type->array_size());
   1815          }
   1816       } else if (op->type->is_vector()) {
   1817          if (state->has_420pack()) {
   1818             /* .length() returns int. */
   1819             result = new(ctx) ir_constant((int) op->type->vector_elements);
   1820          } else {
   1821             _mesa_glsl_error(&loc, state, "length method on matrix only"
   1822                              " available with ARB_shading_language_420pack");
   1823             goto fail;
   1824          }
   1825       } else if (op->type->is_matrix()) {
   1826          if (state->has_420pack()) {
   1827             /* .length() returns int. */
   1828             result = new(ctx) ir_constant((int) op->type->matrix_columns);
   1829          } else {
   1830             _mesa_glsl_error(&loc, state, "length method on matrix only"
   1831                              " available with ARB_shading_language_420pack");
   1832             goto fail;
   1833          }
   1834       } else {
   1835          _mesa_glsl_error(&loc, state, "length called on scalar.");
   1836          goto fail;
   1837       }
   1838    } else {
   1839       _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
   1840       goto fail;
   1841    }
   1842    return result;
   1843  fail:
   1844    return ir_rvalue::error_value(ctx);
   1845 }
   1846 
   1847 ir_rvalue *
   1848 ast_function_expression::hir(exec_list *instructions,
   1849                              struct _mesa_glsl_parse_state *state)
   1850 {
   1851    void *ctx = state;
   1852    /* There are three sorts of function calls.
   1853     *
   1854     * 1. constructors - The first subexpression is an ast_type_specifier.
   1855     * 2. methods - Only the .length() method of array types.
   1856     * 3. functions - Calls to regular old functions.
   1857     *
   1858     */
   1859    if (is_constructor()) {
   1860       const ast_type_specifier *type =
   1861          (ast_type_specifier *) subexpressions[0];
   1862       YYLTYPE loc = type->get_location();
   1863       const char *name;
   1864 
   1865       const glsl_type *const constructor_type = type->glsl_type(& name, state);
   1866 
   1867       /* constructor_type can be NULL if a variable with the same name as the
   1868        * structure has come into scope.
   1869        */
   1870       if (constructor_type == NULL) {
   1871          _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
   1872                           "may be shadowed by a variable with the same name)",
   1873                           type->type_name);
   1874          return ir_rvalue::error_value(ctx);
   1875       }
   1876 
   1877 
   1878       /* Constructors for opaque types are illegal.
   1879        */
   1880       if (constructor_type->contains_opaque()) {
   1881          _mesa_glsl_error(& loc, state, "cannot construct opaque type `%s'",
   1882                           constructor_type->name);
   1883          return ir_rvalue::error_value(ctx);
   1884       }
   1885 
   1886       if (constructor_type->is_subroutine()) {
   1887          _mesa_glsl_error(& loc, state,
   1888                           "subroutine name cannot be a constructor `%s'",
   1889                           constructor_type->name);
   1890          return ir_rvalue::error_value(ctx);
   1891       }
   1892 
   1893       if (constructor_type->is_array()) {
   1894          if (!state->check_version(120, 300, &loc,
   1895                                    "array constructors forbidden")) {
   1896             return ir_rvalue::error_value(ctx);
   1897          }
   1898 
   1899          return process_array_constructor(instructions, constructor_type,
   1900                                           & loc, &this->expressions, state);
   1901       }
   1902 
   1903 
   1904       /* There are two kinds of constructor calls.  Constructors for arrays and
   1905        * structures must have the exact number of arguments with matching types
   1906        * in the correct order.  These constructors follow essentially the same
   1907        * type matching rules as functions.
   1908        *
   1909        * Constructors for built-in language types, such as mat4 and vec2, are
   1910        * free form.  The only requirements are that the parameters must provide
   1911        * enough values of the correct scalar type and that no arguments are
   1912        * given past the last used argument.
   1913        *
   1914        * When using the C-style initializer syntax from GLSL 4.20, constructors
   1915        * must have the exact number of arguments with matching types in the
   1916        * correct order.
   1917        */
   1918       if (constructor_type->is_record()) {
   1919          return process_record_constructor(instructions, constructor_type,
   1920                                            &loc, &this->expressions,
   1921                                            state);
   1922       }
   1923 
   1924       if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
   1925          return ir_rvalue::error_value(ctx);
   1926 
   1927       /* Total number of components of the type being constructed. */
   1928       const unsigned type_components = constructor_type->components();
   1929 
   1930       /* Number of components from parameters that have actually been
   1931        * consumed.  This is used to perform several kinds of error checking.
   1932        */
   1933       unsigned components_used = 0;
   1934 
   1935       unsigned matrix_parameters = 0;
   1936       unsigned nonmatrix_parameters = 0;
   1937       exec_list actual_parameters;
   1938 
   1939       foreach_list_typed(ast_node, ast, link, &this->expressions) {
   1940          ir_rvalue *result = ast->hir(instructions, state);
   1941 
   1942          /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
   1943           *
   1944           *    "It is an error to provide extra arguments beyond this
   1945           *    last used argument."
   1946           */
   1947          if (components_used >= type_components) {
   1948             _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
   1949                              "constructor",
   1950                              constructor_type->name);
   1951             return ir_rvalue::error_value(ctx);
   1952          }
   1953 
   1954          if (!result->type->is_numeric() && !result->type->is_boolean()) {
   1955             _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
   1956                              "non-numeric data type",
   1957                              constructor_type->name);
   1958             return ir_rvalue::error_value(ctx);
   1959          }
   1960 
   1961          /* Count the number of matrix and nonmatrix parameters.  This
   1962           * is used below to enforce some of the constructor rules.
   1963           */
   1964          if (result->type->is_matrix())
   1965             matrix_parameters++;
   1966          else
   1967             nonmatrix_parameters++;
   1968 
   1969          actual_parameters.push_tail(result);
   1970          components_used += result->type->components();
   1971       }
   1972 
   1973       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
   1974        *
   1975        *    "It is an error to construct matrices from other matrices. This
   1976        *    is reserved for future use."
   1977        */
   1978       if (matrix_parameters > 0
   1979           && constructor_type->is_matrix()
   1980           && !state->check_version(120, 100, &loc,
   1981                                    "cannot construct `%s' from a matrix",
   1982                                    constructor_type->name)) {
   1983          return ir_rvalue::error_value(ctx);
   1984       }
   1985 
   1986       /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
   1987        *
   1988        *    "If a matrix argument is given to a matrix constructor, it is
   1989        *    an error to have any other arguments."
   1990        */
   1991       if ((matrix_parameters > 0)
   1992           && ((matrix_parameters + nonmatrix_parameters) > 1)
   1993           && constructor_type->is_matrix()) {
   1994          _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
   1995                           "matrix must be only parameter",
   1996                           constructor_type->name);
   1997          return ir_rvalue::error_value(ctx);
   1998       }
   1999 
   2000       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
   2001        *
   2002        *    "In these cases, there must be enough components provided in the
   2003        *    arguments to provide an initializer for every component in the
   2004        *    constructed value."
   2005        */
   2006       if (components_used < type_components && components_used != 1
   2007           && matrix_parameters == 0) {
   2008          _mesa_glsl_error(& loc, state, "too few components to construct "
   2009                           "`%s'",
   2010                           constructor_type->name);
   2011          return ir_rvalue::error_value(ctx);
   2012       }
   2013 
   2014       /* Matrices can never be consumed as is by any constructor but matrix
   2015        * constructors. If the constructor type is not matrix, always break the
   2016        * matrix up into a series of column vectors.
   2017        */
   2018       if (!constructor_type->is_matrix()) {
   2019          foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
   2020             if (!matrix->type->is_matrix())
   2021                continue;
   2022 
   2023             /* Create a temporary containing the matrix. */
   2024             ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
   2025                                                     ir_var_temporary);
   2026             instructions->push_tail(var);
   2027             instructions->push_tail(
   2028                new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
   2029                                       matrix, NULL));
   2030             var->constant_value = matrix->constant_expression_value();
   2031 
   2032             /* Replace the matrix with dereferences of its columns. */
   2033             for (int i = 0; i < matrix->type->matrix_columns; i++) {
   2034                matrix->insert_before(
   2035                   new (ctx) ir_dereference_array(var,
   2036                                                  new(ctx) ir_constant(i)));
   2037             }
   2038             matrix->remove();
   2039          }
   2040       }
   2041 
   2042       bool all_parameters_are_constant = true;
   2043 
   2044       /* Type cast each parameter and, if possible, fold constants.*/
   2045       foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
   2046          const glsl_type *desired_type =
   2047             glsl_type::get_instance(constructor_type->base_type,
   2048                                     ir->type->vector_elements,
   2049                                     ir->type->matrix_columns);
   2050          ir_rvalue *result = convert_component(ir, desired_type);
   2051 
   2052          /* Attempt to convert the parameter to a constant valued expression.
   2053           * After doing so, track whether or not all the parameters to the
   2054           * constructor are trivially constant valued expressions.
   2055           */
   2056          ir_rvalue *const constant = result->constant_expression_value();
   2057 
   2058          if (constant != NULL)
   2059             result = constant;
   2060          else
   2061             all_parameters_are_constant = false;
   2062 
   2063          if (result != ir) {
   2064             ir->replace_with(result);
   2065          }
   2066       }
   2067 
   2068       /* If all of the parameters are trivially constant, create a
   2069        * constant representing the complete collection of parameters.
   2070        */
   2071       if (all_parameters_are_constant) {
   2072          return new(ctx) ir_constant(constructor_type, &actual_parameters);
   2073       } else if (constructor_type->is_scalar()) {
   2074          return dereference_component((ir_rvalue *)
   2075                                       actual_parameters.get_head_raw(),
   2076                                       0);
   2077       } else if (constructor_type->is_vector()) {
   2078          return emit_inline_vector_constructor(constructor_type,
   2079                                                instructions,
   2080                                                &actual_parameters,
   2081                                                ctx);
   2082       } else {
   2083          assert(constructor_type->is_matrix());
   2084          return emit_inline_matrix_constructor(constructor_type,
   2085                                                instructions,
   2086                                                &actual_parameters,
   2087                                                ctx);
   2088       }
   2089    } else if (subexpressions[0]->oper == ast_field_selection) {
   2090       return handle_method(instructions, state);
   2091    } else {
   2092       const ast_expression *id = subexpressions[0];
   2093       const char *func_name = NULL;
   2094       YYLTYPE loc = get_location();
   2095       exec_list actual_parameters;
   2096       ir_variable *sub_var = NULL;
   2097       ir_rvalue *array_idx = NULL;
   2098 
   2099       process_parameters(instructions, &actual_parameters, &this->expressions,
   2100                          state);
   2101 
   2102       if (id->oper == ast_array_index) {
   2103          array_idx = generate_array_index(ctx, instructions, state, loc,
   2104                                           id->subexpressions[0],
   2105                                           id->subexpressions[1], &func_name,
   2106                                           &actual_parameters);
   2107       } else if (id->oper == ast_identifier) {
   2108          func_name = id->primary_expression.identifier;
   2109       } else {
   2110          _mesa_glsl_error(&loc, state, "function name is not an identifier");
   2111       }
   2112 
   2113       /* an error was emitted earlier */
   2114       if (!func_name)
   2115          return ir_rvalue::error_value(ctx);
   2116 
   2117       ir_function_signature *sig =
   2118          match_function_by_name(func_name, &actual_parameters, state);
   2119 
   2120       ir_rvalue *value = NULL;
   2121       if (sig == NULL) {
   2122          sig = match_subroutine_by_name(func_name, &actual_parameters,
   2123                                         state, &sub_var);
   2124       }
   2125 
   2126       if (sig == NULL) {
   2127          no_matching_function_error(func_name, &loc,
   2128                                     &actual_parameters, state);
   2129          value = ir_rvalue::error_value(ctx);
   2130       } else if (!verify_parameter_modes(state, sig,
   2131                                          actual_parameters,
   2132                                          this->expressions)) {
   2133          /* an error has already been emitted */
   2134          value = ir_rvalue::error_value(ctx);
   2135       } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
   2136          /* ftransform refers to global variables, and we don't have any code
   2137           * for remapping the variable references in the built-in shader.
   2138           */
   2139          ir_variable *mvp =
   2140             state->symbols->get_variable("gl_ModelViewProjectionMatrix");
   2141          ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
   2142          value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
   2143                                         new(ctx) ir_dereference_variable(mvp),
   2144                                         new(ctx) ir_dereference_variable(vtx));
   2145       } else {
   2146          if (state->stage == MESA_SHADER_TESS_CTRL &&
   2147              sig->is_builtin() && strcmp(func_name, "barrier") == 0) {
   2148             if (state->current_function == NULL ||
   2149                 strcmp(state->current_function->function_name(), "main") != 0) {
   2150                _mesa_glsl_error(&loc, state,
   2151                                 "barrier() may only be used in main()");
   2152             }
   2153 
   2154             if (state->found_return) {
   2155                _mesa_glsl_error(&loc, state,
   2156                                 "barrier() may not be used after return");
   2157             }
   2158 
   2159             if (instructions != &state->current_function->body) {
   2160                _mesa_glsl_error(&loc, state,
   2161                                 "barrier() may not be used in control flow");
   2162             }
   2163          }
   2164 
   2165          value = generate_call(instructions, sig, &actual_parameters, sub_var,
   2166                                array_idx, state, sig->is_builtin());
   2167          if (!value) {
   2168             ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
   2169                                                           "void_var",
   2170                                                           ir_var_temporary);
   2171             instructions->push_tail(tmp);
   2172             value = new(ctx) ir_dereference_variable(tmp);
   2173          }
   2174       }
   2175 
   2176       return value;
   2177    }
   2178 
   2179    unreachable("not reached");
   2180 }
   2181 
   2182 bool
   2183 ast_function_expression::has_sequence_subexpression() const
   2184 {
   2185    foreach_list_typed(const ast_node, ast, link, &this->expressions) {
   2186       if (ast->has_sequence_subexpression())
   2187          return true;
   2188    }
   2189 
   2190    return false;
   2191 }
   2192 
   2193 ir_rvalue *
   2194 ast_aggregate_initializer::hir(exec_list *instructions,
   2195                                struct _mesa_glsl_parse_state *state)
   2196 {
   2197    void *ctx = state;
   2198    YYLTYPE loc = this->get_location();
   2199 
   2200    if (!this->constructor_type) {
   2201       _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
   2202       return ir_rvalue::error_value(ctx);
   2203    }
   2204    const glsl_type *const constructor_type = this->constructor_type;
   2205 
   2206    if (!state->has_420pack()) {
   2207       _mesa_glsl_error(&loc, state, "C-style initialization requires the "
   2208                        "GL_ARB_shading_language_420pack extension");
   2209       return ir_rvalue::error_value(ctx);
   2210    }
   2211 
   2212    if (constructor_type->is_array()) {
   2213       return process_array_constructor(instructions, constructor_type, &loc,
   2214                                        &this->expressions, state);
   2215    }
   2216 
   2217    if (constructor_type->is_record()) {
   2218       return process_record_constructor(instructions, constructor_type, &loc,
   2219                                         &this->expressions, state);
   2220    }
   2221 
   2222    return process_vec_mat_constructor(instructions, constructor_type, &loc,
   2223                                       &this->expressions, state);
   2224 }
   2225