Home | History | Annotate | Download | only in i965
      1 /*
      2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
      3  Intel funded Tungsten Graphics to
      4  develop this 3D driver.
      5 
      6  Permission is hereby granted, free of charge, to any person obtaining
      7  a copy of this software and associated documentation files (the
      8  "Software"), to deal in the Software without restriction, including
      9  without limitation the rights to use, copy, modify, merge, publish,
     10  distribute, sublicense, and/or sell copies of the Software, and to
     11  permit persons to whom the Software is furnished to do so, subject to
     12  the following conditions:
     13 
     14  The above copyright notice and this permission notice (including the
     15  next paragraph) shall be included in all copies or substantial
     16  portions of the Software.
     17 
     18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
     21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
     22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
     23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
     24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25 
     26  **********************************************************************/
     27  /*
     28   * Authors:
     29   *   Keith Whitwell <keithw (at) vmware.com>
     30   */
     31 
     32 /** @file brw_curbe.c
     33  *
     34  * Push constant handling for gen4/5.
     35  *
     36  * Push constants are constant values (such as GLSL uniforms) that are
     37  * pre-loaded into a shader stage's register space at thread spawn time.  On
     38  * gen4 and gen5, we create a blob in memory containing all the push constants
     39  * for all the stages in order.  At CMD_CONST_BUFFER time that blob is loaded
     40  * into URB space as a constant URB entry (CURBE) so that it can be accessed
     41  * quickly at thread setup time.  Each individual fixed function unit's state
     42  * (brw_vs_state.c for example) tells the hardware which subset of the CURBE
     43  * it wants in its register space, and we calculate those areas here under the
     44  * BRW_NEW_CURBE_OFFSETS state flag.  The brw_urb.c allocation will control
     45  * how many CURBEs can be loaded into the hardware at once before a pipeline
     46  * stall occurs at CMD_CONST_BUFFER time.
     47  *
     48  * On gen6+, constant handling becomes a much simpler set of per-unit state.
     49  * See gen6_upload_vec4_push_constants() in gen6_vs_state.c for that code.
     50  */
     51 
     52 
     53 #include "compiler/nir/nir.h"
     54 #include "main/context.h"
     55 #include "main/macros.h"
     56 #include "main/enums.h"
     57 #include "program/prog_parameter.h"
     58 #include "program/prog_print.h"
     59 #include "program/prog_statevars.h"
     60 #include "util/bitscan.h"
     61 #include "intel_batchbuffer.h"
     62 #include "intel_buffer_objects.h"
     63 #include "brw_context.h"
     64 #include "brw_defines.h"
     65 #include "brw_state.h"
     66 #include "brw_util.h"
     67 
     68 
     69 /**
     70  * Partition the CURBE between the various users of constant values.
     71  *
     72  * If the users all fit within the previous allocatation, we avoid changing
     73  * the layout because that means reuploading all unit state and uploading new
     74  * constant buffers.
     75  */
     76 static void calculate_curbe_offsets( struct brw_context *brw )
     77 {
     78    struct gl_context *ctx = &brw->ctx;
     79    /* BRW_NEW_FS_PROG_DATA */
     80    const GLuint nr_fp_regs = (brw->wm.base.prog_data->nr_params + 15) / 16;
     81 
     82    /* BRW_NEW_VS_PROG_DATA */
     83    const GLuint nr_vp_regs = (brw->vs.base.prog_data->nr_params + 15) / 16;
     84    GLuint nr_clip_regs = 0;
     85    GLuint total_regs;
     86 
     87    /* _NEW_TRANSFORM */
     88    if (ctx->Transform.ClipPlanesEnabled) {
     89       GLuint nr_planes = 6 + _mesa_bitcount(ctx->Transform.ClipPlanesEnabled);
     90       nr_clip_regs = (nr_planes * 4 + 15) / 16;
     91    }
     92 
     93 
     94    total_regs = nr_fp_regs + nr_vp_regs + nr_clip_regs;
     95 
     96    /* The CURBE allocation size is limited to 32 512-bit units (128 EU
     97     * registers, or 1024 floats).  See CS_URB_STATE in the gen4 or gen5
     98     * (volume 1, part 1) PRMs.
     99     *
    100     * Note that in brw_fs.cpp we're only loading up to 16 EU registers of
    101     * values as push constants before spilling to pull constants, and in
    102     * brw_vec4.cpp we're loading up to 32 registers of push constants.  An EU
    103     * register is 1/2 of one of these URB entry units, so that leaves us 16 EU
    104     * regs for clip.
    105     */
    106    assert(total_regs <= 32);
    107 
    108    /* Lazy resize:
    109     */
    110    if (nr_fp_regs > brw->curbe.wm_size ||
    111        nr_vp_regs > brw->curbe.vs_size ||
    112        nr_clip_regs != brw->curbe.clip_size ||
    113        (total_regs < brw->curbe.total_size / 4 &&
    114 	brw->curbe.total_size > 16)) {
    115 
    116       GLuint reg = 0;
    117 
    118       /* Calculate a new layout:
    119        */
    120       reg = 0;
    121       brw->curbe.wm_start = reg;
    122       brw->curbe.wm_size = nr_fp_regs; reg += nr_fp_regs;
    123       brw->curbe.clip_start = reg;
    124       brw->curbe.clip_size = nr_clip_regs; reg += nr_clip_regs;
    125       brw->curbe.vs_start = reg;
    126       brw->curbe.vs_size = nr_vp_regs; reg += nr_vp_regs;
    127       brw->curbe.total_size = reg;
    128 
    129       if (0)
    130 	 fprintf(stderr, "curbe wm %d+%d clip %d+%d vs %d+%d\n",
    131                  brw->curbe.wm_start,
    132                  brw->curbe.wm_size,
    133                  brw->curbe.clip_start,
    134                  brw->curbe.clip_size,
    135                  brw->curbe.vs_start,
    136                  brw->curbe.vs_size );
    137 
    138       brw->ctx.NewDriverState |= BRW_NEW_CURBE_OFFSETS;
    139    }
    140 }
    141 
    142 
    143 const struct brw_tracked_state brw_curbe_offsets = {
    144    .dirty = {
    145       .mesa = _NEW_TRANSFORM,
    146       .brw  = BRW_NEW_CONTEXT |
    147               BRW_NEW_BLORP |
    148               BRW_NEW_FS_PROG_DATA |
    149               BRW_NEW_VS_PROG_DATA,
    150    },
    151    .emit = calculate_curbe_offsets
    152 };
    153 
    154 
    155 
    156 
    157 /** Uploads the CS_URB_STATE packet.
    158  *
    159  * Just like brw_vs_state.c and brw_wm_state.c define a URB entry size and
    160  * number of entries for their stages, constant buffers do so using this state
    161  * packet.  Having multiple CURBEs in the URB at the same time allows the
    162  * hardware to avoid a pipeline stall between primitives using different
    163  * constant buffer contents.
    164  */
    165 void brw_upload_cs_urb_state(struct brw_context *brw)
    166 {
    167    BEGIN_BATCH(2);
    168    OUT_BATCH(CMD_CS_URB_STATE << 16 | (2-2));
    169 
    170    /* BRW_NEW_URB_FENCE */
    171    if (brw->urb.csize == 0) {
    172       OUT_BATCH(0);
    173    } else {
    174       /* BRW_NEW_URB_FENCE */
    175       assert(brw->urb.nr_cs_entries);
    176       OUT_BATCH((brw->urb.csize - 1) << 4 | brw->urb.nr_cs_entries);
    177    }
    178    ADVANCE_BATCH();
    179 }
    180 
    181 static const GLfloat fixed_plane[6][4] = {
    182    { 0,    0,   -1, 1 },
    183    { 0,    0,    1, 1 },
    184    { 0,   -1,    0, 1 },
    185    { 0,    1,    0, 1 },
    186    {-1,    0,    0, 1 },
    187    { 1,    0,    0, 1 }
    188 };
    189 
    190 /**
    191  * Gathers together all the uniform values into a block of memory to be
    192  * uploaded into the CURBE, then emits the state packet telling the hardware
    193  * the new location.
    194  */
    195 static void
    196 brw_upload_constant_buffer(struct brw_context *brw)
    197 {
    198    struct gl_context *ctx = &brw->ctx;
    199    /* BRW_NEW_CURBE_OFFSETS */
    200    const GLuint sz = brw->curbe.total_size;
    201    const GLuint bufsz = sz * 16 * sizeof(GLfloat);
    202    gl_constant_value *buf;
    203    GLuint i;
    204    gl_clip_plane *clip_planes;
    205 
    206    if (sz == 0) {
    207       goto emit;
    208    }
    209 
    210    buf = intel_upload_space(brw, bufsz, 64,
    211                             &brw->curbe.curbe_bo, &brw->curbe.curbe_offset);
    212 
    213    STATIC_ASSERT(sizeof(gl_constant_value) == sizeof(float));
    214 
    215    /* fragment shader constants */
    216    if (brw->curbe.wm_size) {
    217       _mesa_load_state_parameters(ctx, brw->fragment_program->Parameters);
    218 
    219       /* BRW_NEW_CURBE_OFFSETS */
    220       GLuint offset = brw->curbe.wm_start * 16;
    221 
    222       /* BRW_NEW_FS_PROG_DATA | _NEW_PROGRAM_CONSTANTS: copy uniform values */
    223       for (i = 0; i < brw->wm.base.prog_data->nr_params; i++) {
    224 	 buf[offset + i] = *brw->wm.base.prog_data->param[i];
    225       }
    226    }
    227 
    228    /* clipper constants */
    229    if (brw->curbe.clip_size) {
    230       GLuint offset = brw->curbe.clip_start * 16;
    231       GLbitfield mask;
    232 
    233       /* If any planes are going this way, send them all this way:
    234        */
    235       for (i = 0; i < 6; i++) {
    236 	 buf[offset + i * 4 + 0].f = fixed_plane[i][0];
    237 	 buf[offset + i * 4 + 1].f = fixed_plane[i][1];
    238 	 buf[offset + i * 4 + 2].f = fixed_plane[i][2];
    239 	 buf[offset + i * 4 + 3].f = fixed_plane[i][3];
    240       }
    241 
    242       /* Clip planes: _NEW_TRANSFORM plus _NEW_PROJECTION to get to
    243        * clip-space:
    244        */
    245       clip_planes = brw_select_clip_planes(ctx);
    246       mask = ctx->Transform.ClipPlanesEnabled;
    247       while (mask) {
    248          const int j = u_bit_scan(&mask);
    249          buf[offset + i * 4 + 0].f = clip_planes[j][0];
    250          buf[offset + i * 4 + 1].f = clip_planes[j][1];
    251          buf[offset + i * 4 + 2].f = clip_planes[j][2];
    252          buf[offset + i * 4 + 3].f = clip_planes[j][3];
    253          i++;
    254       }
    255    }
    256 
    257    /* vertex shader constants */
    258    if (brw->curbe.vs_size) {
    259       _mesa_load_state_parameters(ctx, brw->vertex_program->Parameters);
    260 
    261       GLuint offset = brw->curbe.vs_start * 16;
    262 
    263       /* BRW_NEW_VS_PROG_DATA | _NEW_PROGRAM_CONSTANTS: copy uniform values */
    264       for (i = 0; i < brw->vs.base.prog_data->nr_params; i++) {
    265          buf[offset + i] = *brw->vs.base.prog_data->param[i];
    266       }
    267    }
    268 
    269    if (0) {
    270       for (i = 0; i < sz*16; i+=4)
    271 	 fprintf(stderr, "curbe %d.%d: %f %f %f %f\n", i/8, i&4,
    272                  buf[i+0].f, buf[i+1].f, buf[i+2].f, buf[i+3].f);
    273    }
    274 
    275    /* Because this provokes an action (ie copy the constants into the
    276     * URB), it shouldn't be shortcircuited if identical to the
    277     * previous time - because eg. the urb destination may have
    278     * changed, or the urb contents different to last time.
    279     *
    280     * Note that the data referred to is actually copied internally,
    281     * not just used in place according to passed pointer.
    282     *
    283     * It appears that the CS unit takes care of using each available
    284     * URB entry (Const URB Entry == CURBE) in turn, and issuing
    285     * flushes as necessary when doublebuffering of CURBEs isn't
    286     * possible.
    287     */
    288 
    289 emit:
    290    /* BRW_NEW_URB_FENCE: From the gen4 PRM, volume 1, section 3.9.8
    291     * (CONSTANT_BUFFER (CURBE Load)):
    292     *
    293     *     "Modifying the CS URB allocation via URB_FENCE invalidates any
    294     *      previous CURBE entries. Therefore software must subsequently
    295     *      [re]issue a CONSTANT_BUFFER command before CURBE data can be used
    296     *      in the pipeline."
    297     */
    298    BEGIN_BATCH(2);
    299    if (brw->curbe.total_size == 0) {
    300       OUT_BATCH((CMD_CONST_BUFFER << 16) | (2 - 2));
    301       OUT_BATCH(0);
    302    } else {
    303       OUT_BATCH((CMD_CONST_BUFFER << 16) | (1 << 8) | (2 - 2));
    304       OUT_RELOC(brw->curbe.curbe_bo,
    305 		I915_GEM_DOMAIN_INSTRUCTION, 0,
    306 		(brw->curbe.total_size - 1) + brw->curbe.curbe_offset);
    307    }
    308    ADVANCE_BATCH();
    309 
    310    /* Work around a Broadwater/Crestline depth interpolator bug.  The
    311     * following sequence will cause GPU hangs:
    312     *
    313     * 1. Change state so that all depth related fields in CC_STATE are
    314     *    disabled, and in WM_STATE, only "PS Use Source Depth" is enabled.
    315     * 2. Emit a CONSTANT_BUFFER packet.
    316     * 3. Draw via 3DPRIMITIVE.
    317     *
    318     * The recommended workaround is to emit a non-pipelined state change after
    319     * emitting CONSTANT_BUFFER, in order to drain the windowizer pipeline.
    320     *
    321     * We arbitrarily choose 3DSTATE_GLOBAL_DEPTH_CLAMP_OFFSET (as it's small),
    322     * and always emit it when "PS Use Source Depth" is set.  We could be more
    323     * precise, but the additional complexity is probably not worth it.
    324     *
    325     * BRW_NEW_FRAGMENT_PROGRAM
    326     */
    327    if (brw->gen == 4 && !brw->is_g4x &&
    328        (brw->fragment_program->info.inputs_read & (1 << VARYING_SLOT_POS))) {
    329       BEGIN_BATCH(2);
    330       OUT_BATCH(_3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP << 16 | (2 - 2));
    331       OUT_BATCH(0);
    332       ADVANCE_BATCH();
    333    }
    334 }
    335 
    336 const struct brw_tracked_state brw_constant_buffer = {
    337    .dirty = {
    338       .mesa = _NEW_PROGRAM_CONSTANTS,
    339       .brw  = BRW_NEW_BATCH |
    340               BRW_NEW_BLORP |
    341               BRW_NEW_CURBE_OFFSETS |
    342               BRW_NEW_FRAGMENT_PROGRAM |
    343               BRW_NEW_FS_PROG_DATA |
    344               BRW_NEW_PSP | /* Implicit - hardware requires this, not used above */
    345               BRW_NEW_URB_FENCE |
    346               BRW_NEW_VS_PROG_DATA,
    347    },
    348    .emit = brw_upload_constant_buffer,
    349 };
    350 
    351