Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2012 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 /** @file brw_fs_copy_propagation.cpp
     25  *
     26  * Support for global copy propagation in two passes: A local pass that does
     27  * intra-block copy (and constant) propagation, and a global pass that uses
     28  * dataflow analysis on the copies available at the end of each block to re-do
     29  * local copy propagation with more copies available.
     30  *
     31  * See Muchnick's Advanced Compiler Design and Implementation, section
     32  * 12.5 (p356).
     33  */
     34 
     35 #define ACP_HASH_SIZE 16
     36 
     37 #include "util/bitset.h"
     38 #include "brw_fs.h"
     39 #include "brw_cfg.h"
     40 #include "brw_eu.h"
     41 
     42 namespace { /* avoid conflict with opt_copy_propagation_elements */
     43 struct acp_entry : public exec_node {
     44    fs_reg dst;
     45    fs_reg src;
     46    uint8_t size_written;
     47    uint8_t size_read;
     48    enum opcode opcode;
     49    bool saturate;
     50 };
     51 
     52 struct block_data {
     53    /**
     54     * Which entries in the fs_copy_prop_dataflow acp table are live at the
     55     * start of this block.  This is the useful output of the analysis, since
     56     * it lets us plug those into the local copy propagation on the second
     57     * pass.
     58     */
     59    BITSET_WORD *livein;
     60 
     61    /**
     62     * Which entries in the fs_copy_prop_dataflow acp table are live at the end
     63     * of this block.  This is done in initial setup from the per-block acps
     64     * returned by the first local copy prop pass.
     65     */
     66    BITSET_WORD *liveout;
     67 
     68    /**
     69     * Which entries in the fs_copy_prop_dataflow acp table are generated by
     70     * instructions in this block which reach the end of the block without
     71     * being killed.
     72     */
     73    BITSET_WORD *copy;
     74 
     75    /**
     76     * Which entries in the fs_copy_prop_dataflow acp table are killed over the
     77     * course of this block.
     78     */
     79    BITSET_WORD *kill;
     80 };
     81 
     82 class fs_copy_prop_dataflow
     83 {
     84 public:
     85    fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
     86                          exec_list *out_acp[ACP_HASH_SIZE]);
     87 
     88    void setup_initial_values();
     89    void run();
     90 
     91    void dump_block_data() const UNUSED;
     92 
     93    void *mem_ctx;
     94    cfg_t *cfg;
     95 
     96    acp_entry **acp;
     97    int num_acp;
     98    int bitset_words;
     99 
    100   struct block_data *bd;
    101 };
    102 } /* anonymous namespace */
    103 
    104 fs_copy_prop_dataflow::fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
    105                                              exec_list *out_acp[ACP_HASH_SIZE])
    106    : mem_ctx(mem_ctx), cfg(cfg)
    107 {
    108    bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
    109 
    110    num_acp = 0;
    111    foreach_block (block, cfg) {
    112       for (int i = 0; i < ACP_HASH_SIZE; i++) {
    113          num_acp += out_acp[block->num][i].length();
    114       }
    115    }
    116 
    117    acp = rzalloc_array(mem_ctx, struct acp_entry *, num_acp);
    118 
    119    bitset_words = BITSET_WORDS(num_acp);
    120 
    121    int next_acp = 0;
    122    foreach_block (block, cfg) {
    123       bd[block->num].livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
    124       bd[block->num].liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
    125       bd[block->num].copy = rzalloc_array(bd, BITSET_WORD, bitset_words);
    126       bd[block->num].kill = rzalloc_array(bd, BITSET_WORD, bitset_words);
    127 
    128       for (int i = 0; i < ACP_HASH_SIZE; i++) {
    129          foreach_in_list(acp_entry, entry, &out_acp[block->num][i]) {
    130             acp[next_acp] = entry;
    131 
    132             /* opt_copy_propagation_local populates out_acp with copies created
    133              * in a block which are still live at the end of the block.  This
    134              * is exactly what we want in the COPY set.
    135              */
    136             BITSET_SET(bd[block->num].copy, next_acp);
    137 
    138             next_acp++;
    139          }
    140       }
    141    }
    142 
    143    assert(next_acp == num_acp);
    144 
    145    setup_initial_values();
    146    run();
    147 }
    148 
    149 /**
    150  * Set up initial values for each of the data flow sets, prior to running
    151  * the fixed-point algorithm.
    152  */
    153 void
    154 fs_copy_prop_dataflow::setup_initial_values()
    155 {
    156    /* Initialize the COPY and KILL sets. */
    157    foreach_block (block, cfg) {
    158       foreach_inst_in_block(fs_inst, inst, block) {
    159          if (inst->dst.file != VGRF)
    160             continue;
    161 
    162          /* Mark ACP entries which are killed by this instruction. */
    163          for (int i = 0; i < num_acp; i++) {
    164             if (regions_overlap(inst->dst, inst->size_written,
    165                                 acp[i]->dst, acp[i]->size_written) ||
    166                 regions_overlap(inst->dst, inst->size_written,
    167                                 acp[i]->src, acp[i]->size_read)) {
    168                BITSET_SET(bd[block->num].kill, i);
    169             }
    170          }
    171       }
    172    }
    173 
    174    /* Populate the initial values for the livein and liveout sets.  For the
    175     * block at the start of the program, livein = 0 and liveout = copy.
    176     * For the others, set liveout to 0 (the empty set) and livein to ~0
    177     * (the universal set).
    178     */
    179    foreach_block (block, cfg) {
    180       if (block->parents.is_empty()) {
    181          for (int i = 0; i < bitset_words; i++) {
    182             bd[block->num].livein[i] = 0u;
    183             bd[block->num].liveout[i] = bd[block->num].copy[i];
    184          }
    185       } else {
    186          for (int i = 0; i < bitset_words; i++) {
    187             bd[block->num].liveout[i] = 0u;
    188             bd[block->num].livein[i] = ~0u;
    189          }
    190       }
    191    }
    192 }
    193 
    194 /**
    195  * Walk the set of instructions in the block, marking which entries in the acp
    196  * are killed by the block.
    197  */
    198 void
    199 fs_copy_prop_dataflow::run()
    200 {
    201    bool progress;
    202 
    203    do {
    204       progress = false;
    205 
    206       /* Update liveout for all blocks. */
    207       foreach_block (block, cfg) {
    208          if (block->parents.is_empty())
    209             continue;
    210 
    211          for (int i = 0; i < bitset_words; i++) {
    212             const BITSET_WORD old_liveout = bd[block->num].liveout[i];
    213 
    214             bd[block->num].liveout[i] =
    215                bd[block->num].copy[i] | (bd[block->num].livein[i] &
    216                                          ~bd[block->num].kill[i]);
    217 
    218             if (old_liveout != bd[block->num].liveout[i])
    219                progress = true;
    220          }
    221       }
    222 
    223       /* Update livein for all blocks.  If a copy is live out of all parent
    224        * blocks, it's live coming in to this block.
    225        */
    226       foreach_block (block, cfg) {
    227          if (block->parents.is_empty())
    228             continue;
    229 
    230          for (int i = 0; i < bitset_words; i++) {
    231             const BITSET_WORD old_livein = bd[block->num].livein[i];
    232 
    233             bd[block->num].livein[i] = ~0u;
    234             foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
    235                bblock_t *parent = parent_link->block;
    236                bd[block->num].livein[i] &= bd[parent->num].liveout[i];
    237             }
    238 
    239             if (old_livein != bd[block->num].livein[i])
    240                progress = true;
    241          }
    242       }
    243    } while (progress);
    244 }
    245 
    246 void
    247 fs_copy_prop_dataflow::dump_block_data() const
    248 {
    249    foreach_block (block, cfg) {
    250       fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
    251              block->start_ip, block->end_ip);
    252       foreach_list_typed(bblock_link, link, link, &block->parents) {
    253          bblock_t *parent = link->block;
    254          fprintf(stderr, "%d ", parent->num);
    255       }
    256       fprintf(stderr, "):\n");
    257       fprintf(stderr, "       livein = 0x");
    258       for (int i = 0; i < bitset_words; i++)
    259          fprintf(stderr, "%08x", bd[block->num].livein[i]);
    260       fprintf(stderr, ", liveout = 0x");
    261       for (int i = 0; i < bitset_words; i++)
    262          fprintf(stderr, "%08x", bd[block->num].liveout[i]);
    263       fprintf(stderr, ",\n       copy   = 0x");
    264       for (int i = 0; i < bitset_words; i++)
    265          fprintf(stderr, "%08x", bd[block->num].copy[i]);
    266       fprintf(stderr, ", kill    = 0x");
    267       for (int i = 0; i < bitset_words; i++)
    268          fprintf(stderr, "%08x", bd[block->num].kill[i]);
    269       fprintf(stderr, "\n");
    270    }
    271 }
    272 
    273 static bool
    274 is_logic_op(enum opcode opcode)
    275 {
    276    return (opcode == BRW_OPCODE_AND ||
    277            opcode == BRW_OPCODE_OR  ||
    278            opcode == BRW_OPCODE_XOR ||
    279            opcode == BRW_OPCODE_NOT);
    280 }
    281 
    282 static bool
    283 can_take_stride(fs_inst *inst, unsigned arg, unsigned stride,
    284                 const gen_device_info *devinfo)
    285 {
    286    if (stride > 4)
    287       return false;
    288 
    289    /* 3-source instructions can only be Align16, which restricts what strides
    290     * they can take. They can only take a stride of 1 (the usual case), or 0
    291     * with a special "repctrl" bit. But the repctrl bit doesn't work for
    292     * 64-bit datatypes, so if the source type is 64-bit then only a stride of
    293     * 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page
    294     * 944:
    295     *
    296     *    This is applicable to 32b datatypes and 16b datatype. 64b datatypes
    297     *    cannot use the replicate control.
    298     */
    299    if (inst->is_3src(devinfo)) {
    300       if (type_sz(inst->src[arg].type) > 4)
    301          return stride == 1;
    302       else
    303          return stride == 1 || stride == 0;
    304    }
    305 
    306    /* From the Broadwell PRM, Volume 2a "Command Reference - Instructions",
    307     * page 391 ("Extended Math Function"):
    308     *
    309     *     The following restrictions apply for align1 mode: Scalar source is
    310     *     supported. Source and destination horizontal stride must be the
    311     *     same.
    312     *
    313     * From the Haswell PRM Volume 2b "Command Reference - Instructions", page
    314     * 134 ("Extended Math Function"):
    315     *
    316     *    Scalar source is supported. Source and destination horizontal stride
    317     *    must be 1.
    318     *
    319     * and similar language exists for IVB and SNB. Pre-SNB, math instructions
    320     * are sends, so the sources are moved to MRF's and there are no
    321     * restrictions.
    322     */
    323    if (inst->is_math()) {
    324       if (devinfo->gen == 6 || devinfo->gen == 7) {
    325          assert(inst->dst.stride == 1);
    326          return stride == 1 || stride == 0;
    327       } else if (devinfo->gen >= 8) {
    328          return stride == inst->dst.stride || stride == 0;
    329       }
    330    }
    331 
    332    return true;
    333 }
    334 
    335 bool
    336 fs_visitor::try_copy_propagate(fs_inst *inst, int arg, acp_entry *entry)
    337 {
    338    if (inst->src[arg].file != VGRF)
    339       return false;
    340 
    341    if (entry->src.file == IMM)
    342       return false;
    343    assert(entry->src.file == VGRF || entry->src.file == UNIFORM ||
    344           entry->src.file == ATTR);
    345 
    346    if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
    347        inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD)
    348       return false;
    349 
    350    assert(entry->dst.file == VGRF);
    351    if (inst->src[arg].nr != entry->dst.nr)
    352       return false;
    353 
    354    /* Bail if inst is reading a range that isn't contained in the range
    355     * that entry is writing.
    356     */
    357    if (!region_contained_in(inst->src[arg], inst->size_read(arg),
    358                             entry->dst, entry->size_written))
    359       return false;
    360 
    361    /* we can't generally copy-propagate UD negations because we
    362     * can end up accessing the resulting values as signed integers
    363     * instead. See also resolve_ud_negate() and comment in
    364     * fs_generator::generate_code.
    365     */
    366    if (entry->src.type == BRW_REGISTER_TYPE_UD &&
    367        entry->src.negate)
    368       return false;
    369 
    370    bool has_source_modifiers = entry->src.abs || entry->src.negate;
    371 
    372    if ((has_source_modifiers || entry->src.file == UNIFORM ||
    373         !entry->src.is_contiguous()) &&
    374        !inst->can_do_source_mods(devinfo))
    375       return false;
    376 
    377    if (has_source_modifiers &&
    378        inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE)
    379       return false;
    380 
    381    /* Bail if the result of composing both strides would exceed the
    382     * hardware limit.
    383     */
    384    if (!can_take_stride(inst, arg, entry->src.stride * inst->src[arg].stride,
    385                         devinfo))
    386       return false;
    387 
    388    /* Bail if the instruction type is larger than the execution type of the
    389     * copy, what implies that each channel is reading multiple channels of the
    390     * destination of the copy, and simply replacing the sources would give a
    391     * program with different semantics.
    392     */
    393    if (type_sz(entry->dst.type) < type_sz(inst->src[arg].type))
    394       return false;
    395 
    396    /* Bail if the result of composing both strides cannot be expressed
    397     * as another stride. This avoids, for example, trying to transform
    398     * this:
    399     *
    400     *     MOV (8) rX<1>UD rY<0;1,0>UD
    401     *     FOO (8) ...     rX<8;8,1>UW
    402     *
    403     * into this:
    404     *
    405     *     FOO (8) ...     rY<0;1,0>UW
    406     *
    407     * Which would have different semantics.
    408     */
    409    if (entry->src.stride != 1 &&
    410        (inst->src[arg].stride *
    411         type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
    412       return false;
    413 
    414    /* Since semantics of source modifiers are type-dependent we need to
    415     * ensure that the meaning of the instruction remains the same if we
    416     * change the type. If the sizes of the types are different the new
    417     * instruction will read a different amount of data than the original
    418     * and the semantics will always be different.
    419     */
    420    if (has_source_modifiers &&
    421        entry->dst.type != inst->src[arg].type &&
    422        (!inst->can_change_types() ||
    423         type_sz(entry->dst.type) != type_sz(inst->src[arg].type)))
    424       return false;
    425 
    426    if (devinfo->gen >= 8 && (entry->src.negate || entry->src.abs) &&
    427        is_logic_op(inst->opcode)) {
    428       return false;
    429    }
    430 
    431    if (entry->saturate) {
    432       switch(inst->opcode) {
    433       case BRW_OPCODE_SEL:
    434          if ((inst->conditional_mod != BRW_CONDITIONAL_GE &&
    435               inst->conditional_mod != BRW_CONDITIONAL_L) ||
    436              inst->src[1].file != IMM ||
    437              inst->src[1].f < 0.0 ||
    438              inst->src[1].f > 1.0) {
    439             return false;
    440          }
    441          break;
    442       default:
    443          return false;
    444       }
    445    }
    446 
    447    inst->src[arg].file = entry->src.file;
    448    inst->src[arg].nr = entry->src.nr;
    449    inst->src[arg].stride *= entry->src.stride;
    450    inst->saturate = inst->saturate || entry->saturate;
    451 
    452    /* Compute the offset of inst->src[arg] relative to entry->dst */
    453    const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset;
    454 
    455    /* Compute the first component of the copy that the instruction is
    456     * reading, and the base byte offset within that component.
    457     */
    458    assert(entry->dst.offset % REG_SIZE == 0 && entry->dst.stride == 1);
    459    const unsigned component = rel_offset / type_sz(entry->dst.type);
    460    const unsigned suboffset = rel_offset % type_sz(entry->dst.type);
    461 
    462    /* Calculate the byte offset at the origin of the copy of the given
    463     * component and suboffset.
    464     */
    465    inst->src[arg].offset = suboffset +
    466       component * entry->src.stride * type_sz(entry->src.type) +
    467       entry->src.offset;
    468 
    469    if (has_source_modifiers) {
    470       if (entry->dst.type != inst->src[arg].type) {
    471          /* We are propagating source modifiers from a MOV with a different
    472           * type.  If we got here, then we can just change the source and
    473           * destination types of the instruction and keep going.
    474           */
    475          assert(inst->can_change_types());
    476          for (int i = 0; i < inst->sources; i++) {
    477             inst->src[i].type = entry->dst.type;
    478          }
    479          inst->dst.type = entry->dst.type;
    480       }
    481 
    482       if (!inst->src[arg].abs) {
    483          inst->src[arg].abs = entry->src.abs;
    484          inst->src[arg].negate ^= entry->src.negate;
    485       }
    486    }
    487 
    488    return true;
    489 }
    490 
    491 
    492 bool
    493 fs_visitor::try_constant_propagate(fs_inst *inst, acp_entry *entry)
    494 {
    495    bool progress = false;
    496 
    497    if (entry->src.file != IMM)
    498       return false;
    499    if (type_sz(entry->src.type) > 4)
    500       return false;
    501    if (entry->saturate)
    502       return false;
    503 
    504    for (int i = inst->sources - 1; i >= 0; i--) {
    505       if (inst->src[i].file != VGRF)
    506          continue;
    507 
    508       assert(entry->dst.file == VGRF);
    509       if (inst->src[i].nr != entry->dst.nr)
    510          continue;
    511 
    512       /* Bail if inst is reading a range that isn't contained in the range
    513        * that entry is writing.
    514        */
    515       if (!region_contained_in(inst->src[i], inst->size_read(i),
    516                                entry->dst, entry->size_written))
    517          continue;
    518 
    519       /* If the type sizes don't match each channel of the instruction is
    520        * either extracting a portion of the constant (which could be handled
    521        * with some effort but the code below doesn't) or reading multiple
    522        * channels of the source at once.
    523        */
    524       if (type_sz(inst->src[i].type) != type_sz(entry->dst.type))
    525          continue;
    526 
    527       fs_reg val = entry->src;
    528       val.type = inst->src[i].type;
    529 
    530       if (inst->src[i].abs) {
    531          if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
    532              !brw_abs_immediate(val.type, &val.as_brw_reg())) {
    533             continue;
    534          }
    535       }
    536 
    537       if (inst->src[i].negate) {
    538          if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
    539              !brw_negate_immediate(val.type, &val.as_brw_reg())) {
    540             continue;
    541          }
    542       }
    543 
    544       switch (inst->opcode) {
    545       case BRW_OPCODE_MOV:
    546       case SHADER_OPCODE_LOAD_PAYLOAD:
    547       case FS_OPCODE_PACK:
    548          inst->src[i] = val;
    549          progress = true;
    550          break;
    551 
    552       case SHADER_OPCODE_INT_QUOTIENT:
    553       case SHADER_OPCODE_INT_REMAINDER:
    554          /* FINISHME: Promote non-float constants and remove this. */
    555          if (devinfo->gen < 8)
    556             break;
    557          /* fallthrough */
    558       case SHADER_OPCODE_POW:
    559          /* Allow constant propagation into src1 (except on Gen 6 which
    560           * doesn't support scalar source math), and let constant combining
    561           * promote the constant on Gen < 8.
    562           */
    563          if (devinfo->gen == 6)
    564             break;
    565          /* fallthrough */
    566       case BRW_OPCODE_BFI1:
    567       case BRW_OPCODE_ASR:
    568       case BRW_OPCODE_SHL:
    569       case BRW_OPCODE_SHR:
    570       case BRW_OPCODE_SUBB:
    571          if (i == 1) {
    572             inst->src[i] = val;
    573             progress = true;
    574          }
    575          break;
    576 
    577       case BRW_OPCODE_MACH:
    578       case BRW_OPCODE_MUL:
    579       case SHADER_OPCODE_MULH:
    580       case BRW_OPCODE_ADD:
    581       case BRW_OPCODE_OR:
    582       case BRW_OPCODE_AND:
    583       case BRW_OPCODE_XOR:
    584       case BRW_OPCODE_ADDC:
    585          if (i == 1) {
    586             inst->src[i] = val;
    587             progress = true;
    588          } else if (i == 0 && inst->src[1].file != IMM) {
    589             /* Fit this constant in by commuting the operands.
    590              * Exception: we can't do this for 32-bit integer MUL/MACH
    591              * because it's asymmetric.
    592              *
    593              * The BSpec says for Broadwell that
    594              *
    595              *    "When multiplying DW x DW, the dst cannot be accumulator."
    596              *
    597              * Integer MUL with a non-accumulator destination will be lowered
    598              * by lower_integer_multiplication(), so don't restrict it.
    599              */
    600             if (((inst->opcode == BRW_OPCODE_MUL &&
    601                   inst->dst.is_accumulator()) ||
    602                  inst->opcode == BRW_OPCODE_MACH) &&
    603                 (inst->src[1].type == BRW_REGISTER_TYPE_D ||
    604                  inst->src[1].type == BRW_REGISTER_TYPE_UD))
    605                break;
    606             inst->src[0] = inst->src[1];
    607             inst->src[1] = val;
    608             progress = true;
    609          }
    610          break;
    611 
    612       case BRW_OPCODE_CMP:
    613       case BRW_OPCODE_IF:
    614          if (i == 1) {
    615             inst->src[i] = val;
    616             progress = true;
    617          } else if (i == 0 && inst->src[1].file != IMM) {
    618             enum brw_conditional_mod new_cmod;
    619 
    620             new_cmod = brw_swap_cmod(inst->conditional_mod);
    621             if (new_cmod != BRW_CONDITIONAL_NONE) {
    622                /* Fit this constant in by swapping the operands and
    623                 * flipping the test
    624                 */
    625                inst->src[0] = inst->src[1];
    626                inst->src[1] = val;
    627                inst->conditional_mod = new_cmod;
    628                progress = true;
    629             }
    630          }
    631          break;
    632 
    633       case BRW_OPCODE_SEL:
    634          if (i == 1) {
    635             inst->src[i] = val;
    636             progress = true;
    637          } else if (i == 0 && inst->src[1].file != IMM) {
    638             inst->src[0] = inst->src[1];
    639             inst->src[1] = val;
    640 
    641             /* If this was predicated, flipping operands means
    642              * we also need to flip the predicate.
    643              */
    644             if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
    645                inst->predicate_inverse =
    646                   !inst->predicate_inverse;
    647             }
    648             progress = true;
    649          }
    650          break;
    651 
    652       case SHADER_OPCODE_UNTYPED_ATOMIC:
    653       case SHADER_OPCODE_UNTYPED_SURFACE_READ:
    654       case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
    655       case SHADER_OPCODE_TYPED_ATOMIC:
    656       case SHADER_OPCODE_TYPED_SURFACE_READ:
    657       case SHADER_OPCODE_TYPED_SURFACE_WRITE:
    658          /* We only propagate into the surface argument of the
    659           * instruction. Everything else goes through LOAD_PAYLOAD.
    660           */
    661          if (i == 1) {
    662             inst->src[i] = val;
    663             progress = true;
    664          }
    665          break;
    666 
    667       case FS_OPCODE_FB_WRITE_LOGICAL:
    668          /* The stencil and omask sources of FS_OPCODE_FB_WRITE_LOGICAL are
    669           * bit-cast using a strided region so they cannot be immediates.
    670           */
    671          if (i != FB_WRITE_LOGICAL_SRC_SRC_STENCIL &&
    672              i != FB_WRITE_LOGICAL_SRC_OMASK) {
    673             inst->src[i] = val;
    674             progress = true;
    675          }
    676          break;
    677 
    678       case SHADER_OPCODE_TEX_LOGICAL:
    679       case SHADER_OPCODE_TXD_LOGICAL:
    680       case SHADER_OPCODE_TXF_LOGICAL:
    681       case SHADER_OPCODE_TXL_LOGICAL:
    682       case SHADER_OPCODE_TXS_LOGICAL:
    683       case FS_OPCODE_TXB_LOGICAL:
    684       case SHADER_OPCODE_TXF_CMS_LOGICAL:
    685       case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
    686       case SHADER_OPCODE_TXF_UMS_LOGICAL:
    687       case SHADER_OPCODE_TXF_MCS_LOGICAL:
    688       case SHADER_OPCODE_LOD_LOGICAL:
    689       case SHADER_OPCODE_TG4_LOGICAL:
    690       case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
    691       case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
    692       case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
    693       case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
    694       case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
    695       case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
    696       case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
    697          inst->src[i] = val;
    698          progress = true;
    699          break;
    700 
    701       case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
    702       case SHADER_OPCODE_BROADCAST:
    703          inst->src[i] = val;
    704          progress = true;
    705          break;
    706 
    707       case BRW_OPCODE_MAD:
    708       case BRW_OPCODE_LRP:
    709          inst->src[i] = val;
    710          progress = true;
    711          break;
    712 
    713       default:
    714          break;
    715       }
    716    }
    717 
    718    return progress;
    719 }
    720 
    721 static bool
    722 can_propagate_from(fs_inst *inst)
    723 {
    724    return (inst->opcode == BRW_OPCODE_MOV &&
    725            inst->dst.file == VGRF &&
    726            ((inst->src[0].file == VGRF &&
    727              !regions_overlap(inst->dst, inst->size_written,
    728                               inst->src[0], inst->size_read(0))) ||
    729             inst->src[0].file == ATTR ||
    730             inst->src[0].file == UNIFORM ||
    731             inst->src[0].file == IMM) &&
    732            inst->src[0].type == inst->dst.type &&
    733            !inst->is_partial_write());
    734 }
    735 
    736 /* Walks a basic block and does copy propagation on it using the acp
    737  * list.
    738  */
    739 bool
    740 fs_visitor::opt_copy_propagation_local(void *copy_prop_ctx, bblock_t *block,
    741                                        exec_list *acp)
    742 {
    743    bool progress = false;
    744 
    745    foreach_inst_in_block(fs_inst, inst, block) {
    746       /* Try propagating into this instruction. */
    747       for (int i = 0; i < inst->sources; i++) {
    748          if (inst->src[i].file != VGRF)
    749             continue;
    750 
    751          foreach_in_list(acp_entry, entry, &acp[inst->src[i].nr % ACP_HASH_SIZE]) {
    752             if (try_constant_propagate(inst, entry))
    753                progress = true;
    754             else if (try_copy_propagate(inst, i, entry))
    755                progress = true;
    756          }
    757       }
    758 
    759       /* kill the destination from the ACP */
    760       if (inst->dst.file == VGRF) {
    761          foreach_in_list_safe(acp_entry, entry, &acp[inst->dst.nr % ACP_HASH_SIZE]) {
    762             if (regions_overlap(entry->dst, entry->size_written,
    763                                 inst->dst, inst->size_written))
    764                entry->remove();
    765          }
    766 
    767          /* Oops, we only have the chaining hash based on the destination, not
    768           * the source, so walk across the entire table.
    769           */
    770          for (int i = 0; i < ACP_HASH_SIZE; i++) {
    771             foreach_in_list_safe(acp_entry, entry, &acp[i]) {
    772                /* Make sure we kill the entry if this instruction overwrites
    773                 * _any_ of the registers that it reads
    774                 */
    775                if (regions_overlap(entry->src, entry->size_read,
    776                                    inst->dst, inst->size_written))
    777                   entry->remove();
    778             }
    779 	 }
    780       }
    781 
    782       /* If this instruction's source could potentially be folded into the
    783        * operand of another instruction, add it to the ACP.
    784        */
    785       if (can_propagate_from(inst)) {
    786          acp_entry *entry = ralloc(copy_prop_ctx, acp_entry);
    787          entry->dst = inst->dst;
    788          entry->src = inst->src[0];
    789          entry->size_written = inst->size_written;
    790          entry->size_read = inst->size_read(0);
    791          entry->opcode = inst->opcode;
    792          entry->saturate = inst->saturate;
    793          acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
    794       } else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
    795                  inst->dst.file == VGRF) {
    796          int offset = 0;
    797          for (int i = 0; i < inst->sources; i++) {
    798             int effective_width = i < inst->header_size ? 8 : inst->exec_size;
    799             assert(effective_width * type_sz(inst->src[i].type) % REG_SIZE == 0);
    800             const unsigned size_written = effective_width *
    801                                           type_sz(inst->src[i].type);
    802             if (inst->src[i].file == VGRF) {
    803                acp_entry *entry = rzalloc(copy_prop_ctx, acp_entry);
    804                entry->dst = byte_offset(inst->dst, offset);
    805                entry->src = inst->src[i];
    806                entry->size_written = size_written;
    807                entry->size_read = inst->size_read(i);
    808                entry->opcode = inst->opcode;
    809                if (!entry->dst.equals(inst->src[i])) {
    810                   acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
    811                } else {
    812                   ralloc_free(entry);
    813                }
    814             }
    815             offset += size_written;
    816          }
    817       }
    818    }
    819 
    820    return progress;
    821 }
    822 
    823 bool
    824 fs_visitor::opt_copy_propagation()
    825 {
    826    bool progress = false;
    827    void *copy_prop_ctx = ralloc_context(NULL);
    828    exec_list *out_acp[cfg->num_blocks];
    829 
    830    for (int i = 0; i < cfg->num_blocks; i++)
    831       out_acp[i] = new exec_list [ACP_HASH_SIZE];
    832 
    833    /* First, walk through each block doing local copy propagation and getting
    834     * the set of copies available at the end of the block.
    835     */
    836    foreach_block (block, cfg) {
    837       progress = opt_copy_propagation_local(copy_prop_ctx, block,
    838                                             out_acp[block->num]) || progress;
    839    }
    840 
    841    /* Do dataflow analysis for those available copies. */
    842    fs_copy_prop_dataflow dataflow(copy_prop_ctx, cfg, out_acp);
    843 
    844    /* Next, re-run local copy propagation, this time with the set of copies
    845     * provided by the dataflow analysis available at the start of a block.
    846     */
    847    foreach_block (block, cfg) {
    848       exec_list in_acp[ACP_HASH_SIZE];
    849 
    850       for (int i = 0; i < dataflow.num_acp; i++) {
    851          if (BITSET_TEST(dataflow.bd[block->num].livein, i)) {
    852             struct acp_entry *entry = dataflow.acp[i];
    853             in_acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
    854          }
    855       }
    856 
    857       progress = opt_copy_propagation_local(copy_prop_ctx, block, in_acp) ||
    858                  progress;
    859    }
    860 
    861    for (int i = 0; i < cfg->num_blocks; i++)
    862       delete [] out_acp[i];
    863    ralloc_free(copy_prop_ctx);
    864 
    865    if (progress)
    866       invalidate_live_intervals();
    867 
    868    return progress;
    869 }
    870