Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2013 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     21  * DEALINGS IN THE SOFTWARE.
     22  */
     23 
     24 /**
     25  * \file brw_vec4_gs_visitor.cpp
     26  *
     27  * Geometry-shader-specific code derived from the vec4_visitor class.
     28  */
     29 
     30 #include "brw_vec4_gs_visitor.h"
     31 #include "gen6_gs_visitor.h"
     32 #include "brw_fs.h"
     33 #include "brw_nir.h"
     34 
     35 namespace brw {
     36 
     37 vec4_gs_visitor::vec4_gs_visitor(const struct brw_compiler *compiler,
     38                                  void *log_data,
     39                                  struct brw_gs_compile *c,
     40                                  struct brw_gs_prog_data *prog_data,
     41                                  const nir_shader *shader,
     42                                  void *mem_ctx,
     43                                  bool no_spills,
     44                                  int shader_time_index)
     45    : vec4_visitor(compiler, log_data, &c->key.tex,
     46                   &prog_data->base, shader,  mem_ctx,
     47                   no_spills, shader_time_index),
     48      c(c),
     49      gs_prog_data(prog_data)
     50 {
     51 }
     52 
     53 
     54 dst_reg *
     55 vec4_gs_visitor::make_reg_for_system_value(int location)
     56 {
     57    dst_reg *reg = new(mem_ctx) dst_reg(this, glsl_type::int_type);
     58 
     59    switch (location) {
     60    case SYSTEM_VALUE_INVOCATION_ID:
     61       this->current_annotation = "initialize gl_InvocationID";
     62       if (gs_prog_data->invocations > 1)
     63          emit(GS_OPCODE_GET_INSTANCE_ID, *reg);
     64       else
     65          emit(MOV(*reg, brw_imm_ud(0)));
     66       break;
     67    default:
     68       unreachable("not reached");
     69    }
     70 
     71    return reg;
     72 }
     73 
     74 
     75 int
     76 vec4_gs_visitor::setup_varying_inputs(int payload_reg, int *attribute_map,
     77                                       int attributes_per_reg)
     78 {
     79    /* For geometry shaders there are N copies of the input attributes, where N
     80     * is the number of input vertices.  attribute_map[BRW_VARYING_SLOT_COUNT *
     81     * i + j] represents attribute j for vertex i.
     82     *
     83     * Note that GS inputs are read from the VUE 256 bits (2 vec4's) at a time,
     84     * so the total number of input slots that will be delivered to the GS (and
     85     * thus the stride of the input arrays) is urb_read_length * 2.
     86     */
     87    const unsigned num_input_vertices = nir->info->gs.vertices_in;
     88    assert(num_input_vertices <= MAX_GS_INPUT_VERTICES);
     89    unsigned input_array_stride = prog_data->urb_read_length * 2;
     90 
     91    for (int slot = 0; slot < c->input_vue_map.num_slots; slot++) {
     92       int varying = c->input_vue_map.slot_to_varying[slot];
     93       for (unsigned vertex = 0; vertex < num_input_vertices; vertex++) {
     94          attribute_map[BRW_VARYING_SLOT_COUNT * vertex + varying] =
     95             attributes_per_reg * payload_reg + input_array_stride * vertex +
     96             slot;
     97       }
     98    }
     99 
    100    int regs_used = ALIGN(input_array_stride * num_input_vertices,
    101                          attributes_per_reg) / attributes_per_reg;
    102    return payload_reg + regs_used;
    103 }
    104 
    105 
    106 void
    107 vec4_gs_visitor::setup_payload()
    108 {
    109    int attribute_map[BRW_VARYING_SLOT_COUNT * MAX_GS_INPUT_VERTICES];
    110 
    111    /* If we are in dual instanced or single mode, then attributes are going
    112     * to be interleaved, so one register contains two attribute slots.
    113     */
    114    int attributes_per_reg =
    115       prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT ? 1 : 2;
    116 
    117    /* If a geometry shader tries to read from an input that wasn't written by
    118     * the vertex shader, that produces undefined results, but it shouldn't
    119     * crash anything.  So initialize attribute_map to zeros--that ensures that
    120     * these undefined results are read from r0.
    121     */
    122    memset(attribute_map, 0, sizeof(attribute_map));
    123 
    124    int reg = 0;
    125 
    126    /* The payload always contains important data in r0, which contains
    127     * the URB handles that are passed on to the URB write at the end
    128     * of the thread.
    129     */
    130    reg++;
    131 
    132    /* If the shader uses gl_PrimitiveIDIn, that goes in r1. */
    133    if (gs_prog_data->include_primitive_id)
    134       attribute_map[VARYING_SLOT_PRIMITIVE_ID] = attributes_per_reg * reg++;
    135 
    136    reg = setup_uniforms(reg);
    137 
    138    reg = setup_varying_inputs(reg, attribute_map, attributes_per_reg);
    139 
    140    lower_attributes_to_hw_regs(attribute_map, attributes_per_reg > 1);
    141 
    142    this->first_non_payload_grf = reg;
    143 }
    144 
    145 
    146 void
    147 vec4_gs_visitor::emit_prolog()
    148 {
    149    /* In vertex shaders, r0.2 is guaranteed to be initialized to zero.  In
    150     * geometry shaders, it isn't (it contains a bunch of information we don't
    151     * need, like the input primitive type).  We need r0.2 to be zero in order
    152     * to build scratch read/write messages correctly (otherwise this value
    153     * will be interpreted as a global offset, causing us to do our scratch
    154     * reads/writes to garbage memory).  So just set it to zero at the top of
    155     * the shader.
    156     */
    157    this->current_annotation = "clear r0.2";
    158    dst_reg r0(retype(brw_vec4_grf(0, 0), BRW_REGISTER_TYPE_UD));
    159    vec4_instruction *inst = emit(GS_OPCODE_SET_DWORD_2, r0, brw_imm_ud(0u));
    160    inst->force_writemask_all = true;
    161 
    162    /* Create a virtual register to hold the vertex count */
    163    this->vertex_count = src_reg(this, glsl_type::uint_type);
    164 
    165    /* Initialize the vertex_count register to 0 */
    166    this->current_annotation = "initialize vertex_count";
    167    inst = emit(MOV(dst_reg(this->vertex_count), brw_imm_ud(0u)));
    168    inst->force_writemask_all = true;
    169 
    170    if (c->control_data_header_size_bits > 0) {
    171       /* Create a virtual register to hold the current set of control data
    172        * bits.
    173        */
    174       this->control_data_bits = src_reg(this, glsl_type::uint_type);
    175 
    176       /* If we're outputting more than 32 control data bits, then EmitVertex()
    177        * will set control_data_bits to 0 after emitting the first vertex.
    178        * Otherwise, we need to initialize it to 0 here.
    179        */
    180       if (c->control_data_header_size_bits <= 32) {
    181          this->current_annotation = "initialize control data bits";
    182          inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
    183          inst->force_writemask_all = true;
    184       }
    185    }
    186 
    187    this->current_annotation = NULL;
    188 }
    189 
    190 void
    191 vec4_gs_visitor::emit_thread_end()
    192 {
    193    if (c->control_data_header_size_bits > 0) {
    194       /* During shader execution, we only ever call emit_control_data_bits()
    195        * just prior to outputting a vertex.  Therefore, the control data bits
    196        * corresponding to the most recently output vertex still need to be
    197        * emitted.
    198        */
    199       current_annotation = "thread end: emit control data bits";
    200       emit_control_data_bits();
    201    }
    202 
    203    /* MRF 0 is reserved for the debugger, so start with message header
    204     * in MRF 1.
    205     */
    206    int base_mrf = 1;
    207 
    208    bool static_vertex_count = gs_prog_data->static_vertex_count != -1;
    209 
    210    /* If the previous instruction was a URB write, we don't need to issue
    211     * a second one - we can just set the EOT bit on the previous write.
    212     *
    213     * Skip this on Gen8+ unless there's a static vertex count, as we also
    214     * need to write the vertex count out, and combining the two may not be
    215     * possible (or at least not straightforward).
    216     */
    217    vec4_instruction *last = (vec4_instruction *) instructions.get_tail();
    218    if (last && last->opcode == GS_OPCODE_URB_WRITE &&
    219        !(INTEL_DEBUG & DEBUG_SHADER_TIME) &&
    220        devinfo->gen >= 8 && static_vertex_count) {
    221       last->urb_write_flags = BRW_URB_WRITE_EOT | last->urb_write_flags;
    222       return;
    223    }
    224 
    225    current_annotation = "thread end";
    226    dst_reg mrf_reg(MRF, base_mrf);
    227    src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
    228    vec4_instruction *inst = emit(MOV(mrf_reg, r0));
    229    inst->force_writemask_all = true;
    230    if (devinfo->gen < 8 || !static_vertex_count)
    231       emit(GS_OPCODE_SET_VERTEX_COUNT, mrf_reg, this->vertex_count);
    232    if (INTEL_DEBUG & DEBUG_SHADER_TIME)
    233       emit_shader_time_end();
    234    inst = emit(GS_OPCODE_THREAD_END);
    235    inst->base_mrf = base_mrf;
    236    inst->mlen = devinfo->gen >= 8 && !static_vertex_count ? 2 : 1;
    237 }
    238 
    239 
    240 void
    241 vec4_gs_visitor::emit_urb_write_header(int mrf)
    242 {
    243    /* The SEND instruction that writes the vertex data to the VUE will use
    244     * per_slot_offset=true, which means that DWORDs 3 and 4 of the message
    245     * header specify an offset (in multiples of 256 bits) into the URB entry
    246     * at which the write should take place.
    247     *
    248     * So we have to prepare a message header with the appropriate offset
    249     * values.
    250     */
    251    dst_reg mrf_reg(MRF, mrf);
    252    src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
    253    this->current_annotation = "URB write header";
    254    vec4_instruction *inst = emit(MOV(mrf_reg, r0));
    255    inst->force_writemask_all = true;
    256    emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, this->vertex_count,
    257         brw_imm_ud(gs_prog_data->output_vertex_size_hwords));
    258 }
    259 
    260 
    261 vec4_instruction *
    262 vec4_gs_visitor::emit_urb_write_opcode(bool complete)
    263 {
    264    /* We don't care whether the vertex is complete, because in general
    265     * geometry shaders output multiple vertices, and we don't terminate the
    266     * thread until all vertices are complete.
    267     */
    268    (void) complete;
    269 
    270    vec4_instruction *inst = emit(GS_OPCODE_URB_WRITE);
    271    inst->offset = gs_prog_data->control_data_header_size_hwords;
    272 
    273    /* We need to increment Global Offset by 1 to make room for Broadwell's
    274     * extra "Vertex Count" payload at the beginning of the URB entry.
    275     */
    276    if (devinfo->gen >= 8 && gs_prog_data->static_vertex_count == -1)
    277       inst->offset++;
    278 
    279    inst->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
    280    return inst;
    281 }
    282 
    283 
    284 /**
    285  * Write out a batch of 32 control data bits from the control_data_bits
    286  * register to the URB.
    287  *
    288  * The current value of the vertex_count register determines which DWORD in
    289  * the URB receives the control data bits.  The control_data_bits register is
    290  * assumed to contain the correct data for the vertex that was most recently
    291  * output, and all previous vertices that share the same DWORD.
    292  *
    293  * This function takes care of ensuring that if no vertices have been output
    294  * yet, no control bits are emitted.
    295  */
    296 void
    297 vec4_gs_visitor::emit_control_data_bits()
    298 {
    299    assert(c->control_data_bits_per_vertex != 0);
    300 
    301    /* Since the URB_WRITE_OWORD message operates with 128-bit (vec4 sized)
    302     * granularity, we need to use two tricks to ensure that the batch of 32
    303     * control data bits is written to the appropriate DWORD in the URB.  To
    304     * select which vec4 we are writing to, we use the "slot {0,1} offset"
    305     * fields of the message header.  To select which DWORD in the vec4 we are
    306     * writing to, we use the channel mask fields of the message header.  To
    307     * avoid penalizing geometry shaders that emit a small number of vertices
    308     * with extra bookkeeping, we only do each of these tricks when
    309     * c->prog_data.control_data_header_size_bits is large enough to make it
    310     * necessary.
    311     *
    312     * Note: this means that if we're outputting just a single DWORD of control
    313     * data bits, we'll actually replicate it four times since we won't do any
    314     * channel masking.  But that's not a problem since in this case the
    315     * hardware only pays attention to the first DWORD.
    316     */
    317    enum brw_urb_write_flags urb_write_flags = BRW_URB_WRITE_OWORD;
    318    if (c->control_data_header_size_bits > 32)
    319       urb_write_flags = urb_write_flags | BRW_URB_WRITE_USE_CHANNEL_MASKS;
    320    if (c->control_data_header_size_bits > 128)
    321       urb_write_flags = urb_write_flags | BRW_URB_WRITE_PER_SLOT_OFFSET;
    322 
    323    /* If we are using either channel masks or a per-slot offset, then we
    324     * need to figure out which DWORD we are trying to write to, using the
    325     * formula:
    326     *
    327     *     dword_index = (vertex_count - 1) * bits_per_vertex / 32
    328     *
    329     * Since bits_per_vertex is a power of two, and is known at compile
    330     * time, this can be optimized to:
    331     *
    332     *     dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
    333     */
    334    src_reg dword_index(this, glsl_type::uint_type);
    335    if (urb_write_flags) {
    336       src_reg prev_count(this, glsl_type::uint_type);
    337       emit(ADD(dst_reg(prev_count), this->vertex_count,
    338                brw_imm_ud(0xffffffffu)));
    339       unsigned log2_bits_per_vertex =
    340          util_last_bit(c->control_data_bits_per_vertex);
    341       emit(SHR(dst_reg(dword_index), prev_count,
    342                brw_imm_ud(6 - log2_bits_per_vertex)));
    343    }
    344 
    345    /* Start building the URB write message.  The first MRF gets a copy of
    346     * R0.
    347     */
    348    int base_mrf = 1;
    349    dst_reg mrf_reg(MRF, base_mrf);
    350    src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
    351    vec4_instruction *inst = emit(MOV(mrf_reg, r0));
    352    inst->force_writemask_all = true;
    353 
    354    if (urb_write_flags & BRW_URB_WRITE_PER_SLOT_OFFSET) {
    355       /* Set the per-slot offset to dword_index / 4, to that we'll write to
    356        * the appropriate OWORD within the control data header.
    357        */
    358       src_reg per_slot_offset(this, glsl_type::uint_type);
    359       emit(SHR(dst_reg(per_slot_offset), dword_index, brw_imm_ud(2u)));
    360       emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, per_slot_offset,
    361            brw_imm_ud(1u));
    362    }
    363 
    364    if (urb_write_flags & BRW_URB_WRITE_USE_CHANNEL_MASKS) {
    365       /* Set the channel masks to 1 << (dword_index % 4), so that we'll
    366        * write to the appropriate DWORD within the OWORD.  We need to do
    367        * this computation with force_writemask_all, otherwise garbage data
    368        * from invocation 0 might clobber the mask for invocation 1 when
    369        * GS_OPCODE_PREPARE_CHANNEL_MASKS tries to OR the two masks
    370        * together.
    371        */
    372       src_reg channel(this, glsl_type::uint_type);
    373       inst = emit(AND(dst_reg(channel), dword_index, brw_imm_ud(3u)));
    374       inst->force_writemask_all = true;
    375       src_reg one(this, glsl_type::uint_type);
    376       inst = emit(MOV(dst_reg(one), brw_imm_ud(1u)));
    377       inst->force_writemask_all = true;
    378       src_reg channel_mask(this, glsl_type::uint_type);
    379       inst = emit(SHL(dst_reg(channel_mask), one, channel));
    380       inst->force_writemask_all = true;
    381       emit(GS_OPCODE_PREPARE_CHANNEL_MASKS, dst_reg(channel_mask),
    382                                             channel_mask);
    383       emit(GS_OPCODE_SET_CHANNEL_MASKS, mrf_reg, channel_mask);
    384    }
    385 
    386    /* Store the control data bits in the message payload and send it. */
    387    dst_reg mrf_reg2(MRF, base_mrf + 1);
    388    inst = emit(MOV(mrf_reg2, this->control_data_bits));
    389    inst->force_writemask_all = true;
    390    inst = emit(GS_OPCODE_URB_WRITE);
    391    inst->urb_write_flags = urb_write_flags;
    392    /* We need to increment Global Offset by 256-bits to make room for
    393     * Broadwell's extra "Vertex Count" payload at the beginning of the
    394     * URB entry.  Since this is an OWord message, Global Offset is counted
    395     * in 128-bit units, so we must set it to 2.
    396     */
    397    if (devinfo->gen >= 8 && gs_prog_data->static_vertex_count == -1)
    398       inst->offset = 2;
    399    inst->base_mrf = base_mrf;
    400    inst->mlen = 2;
    401 }
    402 
    403 void
    404 vec4_gs_visitor::set_stream_control_data_bits(unsigned stream_id)
    405 {
    406    /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
    407 
    408    /* Note: we are calling this *before* increasing vertex_count, so
    409     * this->vertex_count == vertex_count - 1 in the formula above.
    410     */
    411 
    412    /* Stream mode uses 2 bits per vertex */
    413    assert(c->control_data_bits_per_vertex == 2);
    414 
    415    /* Must be a valid stream */
    416    assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
    417 
    418    /* Control data bits are initialized to 0 so we don't have to set any
    419     * bits when sending vertices to stream 0.
    420     */
    421    if (stream_id == 0)
    422       return;
    423 
    424    /* reg::sid = stream_id */
    425    src_reg sid(this, glsl_type::uint_type);
    426    emit(MOV(dst_reg(sid), brw_imm_ud(stream_id)));
    427 
    428    /* reg:shift_count = 2 * (vertex_count - 1) */
    429    src_reg shift_count(this, glsl_type::uint_type);
    430    emit(SHL(dst_reg(shift_count), this->vertex_count, brw_imm_ud(1u)));
    431 
    432    /* Note: we're relying on the fact that the GEN SHL instruction only pays
    433     * attention to the lower 5 bits of its second source argument, so on this
    434     * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
    435     * stream_id << ((2 * (vertex_count - 1)) % 32).
    436     */
    437    src_reg mask(this, glsl_type::uint_type);
    438    emit(SHL(dst_reg(mask), sid, shift_count));
    439    emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
    440 }
    441 
    442 void
    443 vec4_gs_visitor::gs_emit_vertex(int stream_id)
    444 {
    445    this->current_annotation = "emit vertex: safety check";
    446 
    447    /* Haswell and later hardware ignores the "Render Stream Select" bits
    448     * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
    449     * and instead sends all primitives down the pipeline for rasterization.
    450     * If the SOL stage is enabled, "Render Stream Select" is honored and
    451     * primitives bound to non-zero streams are discarded after stream output.
    452     *
    453     * Since the only purpose of primives sent to non-zero streams is to
    454     * be recorded by transform feedback, we can simply discard all geometry
    455     * bound to these streams when transform feedback is disabled.
    456     */
    457    if (stream_id > 0 && !nir->info->has_transform_feedback_varyings)
    458       return;
    459 
    460    /* If we're outputting 32 control data bits or less, then we can wait
    461     * until the shader is over to output them all.  Otherwise we need to
    462     * output them as we go.  Now is the time to do it, since we're about to
    463     * output the vertex_count'th vertex, so it's guaranteed that the
    464     * control data bits associated with the (vertex_count - 1)th vertex are
    465     * correct.
    466     */
    467    if (c->control_data_header_size_bits > 32) {
    468       this->current_annotation = "emit vertex: emit control data bits";
    469       /* Only emit control data bits if we've finished accumulating a batch
    470        * of 32 bits.  This is the case when:
    471        *
    472        *     (vertex_count * bits_per_vertex) % 32 == 0
    473        *
    474        * (in other words, when the last 5 bits of vertex_count *
    475        * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
    476        * integer n (which is always the case, since bits_per_vertex is
    477        * always 1 or 2), this is equivalent to requiring that the last 5-n
    478        * bits of vertex_count are 0:
    479        *
    480        *     vertex_count & (2^(5-n) - 1) == 0
    481        *
    482        * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
    483        * equivalent to:
    484        *
    485        *     vertex_count & (32 / bits_per_vertex - 1) == 0
    486        */
    487       vec4_instruction *inst =
    488          emit(AND(dst_null_ud(), this->vertex_count,
    489                   brw_imm_ud(32 / c->control_data_bits_per_vertex - 1)));
    490       inst->conditional_mod = BRW_CONDITIONAL_Z;
    491 
    492       emit(IF(BRW_PREDICATE_NORMAL));
    493       {
    494          /* If vertex_count is 0, then no control data bits have been
    495           * accumulated yet, so we skip emitting them.
    496           */
    497          emit(CMP(dst_null_ud(), this->vertex_count, brw_imm_ud(0u),
    498                   BRW_CONDITIONAL_NEQ));
    499          emit(IF(BRW_PREDICATE_NORMAL));
    500          emit_control_data_bits();
    501          emit(BRW_OPCODE_ENDIF);
    502 
    503          /* Reset control_data_bits to 0 so we can start accumulating a new
    504           * batch.
    505           *
    506           * Note: in the case where vertex_count == 0, this neutralizes the
    507           * effect of any call to EndPrimitive() that the shader may have
    508           * made before outputting its first vertex.
    509           */
    510          inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
    511          inst->force_writemask_all = true;
    512       }
    513       emit(BRW_OPCODE_ENDIF);
    514    }
    515 
    516    this->current_annotation = "emit vertex: vertex data";
    517    emit_vertex();
    518 
    519    /* In stream mode we have to set control data bits for all vertices
    520     * unless we have disabled control data bits completely (which we do
    521     * do for GL_POINTS outputs that don't use streams).
    522     */
    523    if (c->control_data_header_size_bits > 0 &&
    524        gs_prog_data->control_data_format ==
    525           GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
    526        this->current_annotation = "emit vertex: Stream control data bits";
    527        set_stream_control_data_bits(stream_id);
    528    }
    529 
    530    this->current_annotation = NULL;
    531 }
    532 
    533 void
    534 vec4_gs_visitor::gs_end_primitive()
    535 {
    536    /* We can only do EndPrimitive() functionality when the control data
    537     * consists of cut bits.  Fortunately, the only time it isn't is when the
    538     * output type is points, in which case EndPrimitive() is a no-op.
    539     */
    540    if (gs_prog_data->control_data_format !=
    541        GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
    542       return;
    543    }
    544 
    545    if (c->control_data_header_size_bits == 0)
    546       return;
    547 
    548    /* Cut bits use one bit per vertex. */
    549    assert(c->control_data_bits_per_vertex == 1);
    550 
    551    /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
    552     * vertex n, 0 otherwise.  So all we need to do here is mark bit
    553     * (vertex_count - 1) % 32 in the cut_bits register to indicate that
    554     * EndPrimitive() was called after emitting vertex (vertex_count - 1);
    555     * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
    556     *
    557     * Note that if EndPrimitve() is called before emitting any vertices, this
    558     * will cause us to set bit 31 of the control_data_bits register to 1.
    559     * That's fine because:
    560     *
    561     * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
    562     *   output, so the hardware will ignore cut bit 31.
    563     *
    564     * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
    565     *   last vertex, so setting cut bit 31 has no effect (since the primitive
    566     *   is automatically ended when the GS terminates).
    567     *
    568     * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
    569     *   control_data_bits register to 0 when the first vertex is emitted.
    570     */
    571 
    572    /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
    573    src_reg one(this, glsl_type::uint_type);
    574    emit(MOV(dst_reg(one), brw_imm_ud(1u)));
    575    src_reg prev_count(this, glsl_type::uint_type);
    576    emit(ADD(dst_reg(prev_count), this->vertex_count, brw_imm_ud(0xffffffffu)));
    577    src_reg mask(this, glsl_type::uint_type);
    578    /* Note: we're relying on the fact that the GEN SHL instruction only pays
    579     * attention to the lower 5 bits of its second source argument, so on this
    580     * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
    581     * ((vertex_count - 1) % 32).
    582     */
    583    emit(SHL(dst_reg(mask), one, prev_count));
    584    emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
    585 }
    586 
    587 extern "C" const unsigned *
    588 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
    589                void *mem_ctx,
    590                const struct brw_gs_prog_key *key,
    591                struct brw_gs_prog_data *prog_data,
    592                const nir_shader *src_shader,
    593                struct gl_program *prog,
    594                int shader_time_index,
    595                unsigned *final_assembly_size,
    596                char **error_str)
    597 {
    598    struct brw_gs_compile c;
    599    memset(&c, 0, sizeof(c));
    600    c.key = *key;
    601 
    602    const bool is_scalar = compiler->scalar_stage[MESA_SHADER_GEOMETRY];
    603    nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
    604 
    605    /* The GLSL linker will have already matched up GS inputs and the outputs
    606     * of prior stages.  The driver does extend VS outputs in some cases, but
    607     * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
    608     * geometry shader support.  So we can safely ignore that.
    609     *
    610     * For SSO pipelines, we use a fixed VUE map layout based on variable
    611     * locations, so we can rely on rendezvous-by-location making this work.
    612     */
    613    GLbitfield64 inputs_read = shader->info->inputs_read;
    614    brw_compute_vue_map(compiler->devinfo,
    615                        &c.input_vue_map, inputs_read,
    616                        shader->info->separate_shader);
    617 
    618    shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar);
    619    brw_nir_lower_vue_inputs(shader, is_scalar, &c.input_vue_map);
    620    brw_nir_lower_vue_outputs(shader, is_scalar);
    621    shader = brw_postprocess_nir(shader, compiler, is_scalar);
    622 
    623    prog_data->base.clip_distance_mask =
    624       ((1 << shader->info->clip_distance_array_size) - 1);
    625    prog_data->base.cull_distance_mask =
    626       ((1 << shader->info->cull_distance_array_size) - 1) <<
    627       shader->info->clip_distance_array_size;
    628 
    629    prog_data->include_primitive_id =
    630       (shader->info->system_values_read & (1 << SYSTEM_VALUE_PRIMITIVE_ID)) != 0;
    631 
    632    prog_data->invocations = shader->info->gs.invocations;
    633 
    634    if (compiler->devinfo->gen >= 8)
    635       prog_data->static_vertex_count = nir_gs_count_vertices(shader);
    636 
    637    if (compiler->devinfo->gen >= 7) {
    638       if (shader->info->gs.output_primitive == GL_POINTS) {
    639          /* When the output type is points, the geometry shader may output data
    640           * to multiple streams, and EndPrimitive() has no effect.  So we
    641           * configure the hardware to interpret the control data as stream ID.
    642           */
    643          prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
    644 
    645          /* We only have to emit control bits if we are using streams */
    646          if (prog && prog->info.gs.uses_streams)
    647             c.control_data_bits_per_vertex = 2;
    648          else
    649             c.control_data_bits_per_vertex = 0;
    650       } else {
    651          /* When the output type is triangle_strip or line_strip, EndPrimitive()
    652           * may be used to terminate the current strip and start a new one
    653           * (similar to primitive restart), and outputting data to multiple
    654           * streams is not supported.  So we configure the hardware to interpret
    655           * the control data as EndPrimitive information (a.k.a. "cut bits").
    656           */
    657          prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
    658 
    659          /* We only need to output control data if the shader actually calls
    660           * EndPrimitive().
    661           */
    662          c.control_data_bits_per_vertex =
    663             shader->info->gs.uses_end_primitive ? 1 : 0;
    664       }
    665    } else {
    666       /* There are no control data bits in gen6. */
    667       c.control_data_bits_per_vertex = 0;
    668    }
    669    c.control_data_header_size_bits =
    670       shader->info->gs.vertices_out * c.control_data_bits_per_vertex;
    671 
    672    /* 1 HWORD = 32 bytes = 256 bits */
    673    prog_data->control_data_header_size_hwords =
    674       ALIGN(c.control_data_header_size_bits, 256) / 256;
    675 
    676    /* Compute the output vertex size.
    677     *
    678     * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
    679     * Size (p168):
    680     *
    681     *     [0,62] indicating [1,63] 16B units
    682     *
    683     *     Specifies the size of each vertex stored in the GS output entry
    684     *     (following any Control Header data) as a number of 128-bit units
    685     *     (minus one).
    686     *
    687     *     Programming Restrictions: The vertex size must be programmed as a
    688     *     multiple of 32B units with the following exception: Rendering is
    689     *     disabled (as per SOL stage state) and the vertex size output by the
    690     *     GS thread is 16B.
    691     *
    692     *     If rendering is enabled (as per SOL state) the vertex size must be
    693     *     programmed as a multiple of 32B units. In other words, the only time
    694     *     software can program a vertex size with an odd number of 16B units
    695     *     is when rendering is disabled.
    696     *
    697     * Note: B=bytes in the above text.
    698     *
    699     * It doesn't seem worth the extra trouble to optimize the case where the
    700     * vertex size is 16B (especially since this would require special-casing
    701     * the GEN assembly that writes to the URB).  So we just set the vertex
    702     * size to a multiple of 32B (2 vec4's) in all cases.
    703     *
    704     * The maximum output vertex size is 62*16 = 992 bytes (31 hwords).  We
    705     * budget that as follows:
    706     *
    707     *   512 bytes for varyings (a varying component is 4 bytes and
    708     *             gl_MaxGeometryOutputComponents = 128)
    709     *    16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
    710     *             bytes)
    711     *    16 bytes overhead for gl_Position (we allocate it a slot in the VUE
    712     *             even if it's not used)
    713     *    32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
    714     *             whenever clip planes are enabled, even if the shader doesn't
    715     *             write to gl_ClipDistance)
    716     *    16 bytes overhead since the VUE size must be a multiple of 32 bytes
    717     *             (see below)--this causes up to 1 VUE slot to be wasted
    718     *   400 bytes available for varying packing overhead
    719     *
    720     * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
    721     * per interpolation type, so this is plenty.
    722     *
    723     */
    724    unsigned output_vertex_size_bytes = prog_data->base.vue_map.num_slots * 16;
    725    assert(compiler->devinfo->gen == 6 ||
    726           output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
    727    prog_data->output_vertex_size_hwords =
    728       ALIGN(output_vertex_size_bytes, 32) / 32;
    729 
    730    /* Compute URB entry size.  The maximum allowed URB entry size is 32k.
    731     * That divides up as follows:
    732     *
    733     *     64 bytes for the control data header (cut indices or StreamID bits)
    734     *   4096 bytes for varyings (a varying component is 4 bytes and
    735     *              gl_MaxGeometryTotalOutputComponents = 1024)
    736     *   4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
    737     *              bytes/vertex and gl_MaxGeometryOutputVertices is 256)
    738     *   4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
    739     *              even if it's not used)
    740     *   8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
    741     *              whenever clip planes are enabled, even if the shader doesn't
    742     *              write to gl_ClipDistance)
    743     *   4096 bytes overhead since the VUE size must be a multiple of 32
    744     *              bytes (see above)--this causes up to 1 VUE slot to be wasted
    745     *   8128 bytes available for varying packing overhead
    746     *
    747     * Worst-case varying packing overhead is 3/4 of a varying slot per
    748     * interpolation type, which works out to 3072 bytes, so this would allow
    749     * us to accommodate 2 interpolation types without any danger of running
    750     * out of URB space.
    751     *
    752     * In practice, the risk of running out of URB space is very small, since
    753     * the above figures are all worst-case, and most of them scale with the
    754     * number of output vertices.  So we'll just calculate the amount of space
    755     * we need, and if it's too large, fail to compile.
    756     *
    757     * The above is for gen7+ where we have a single URB entry that will hold
    758     * all the output. In gen6, we will have to allocate URB entries for every
    759     * vertex we emit, so our URB entries only need to be large enough to hold
    760     * a single vertex. Also, gen6 does not have a control data header.
    761     */
    762    unsigned output_size_bytes;
    763    if (compiler->devinfo->gen >= 7) {
    764       output_size_bytes =
    765          prog_data->output_vertex_size_hwords * 32 * shader->info->gs.vertices_out;
    766       output_size_bytes += 32 * prog_data->control_data_header_size_hwords;
    767    } else {
    768       output_size_bytes = prog_data->output_vertex_size_hwords * 32;
    769    }
    770 
    771    /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
    772     * which comes before the control header.
    773     */
    774    if (compiler->devinfo->gen >= 8)
    775       output_size_bytes += 32;
    776 
    777    /* Shaders can technically set max_vertices = 0, at which point we
    778     * may have a URB size of 0 bytes.  Nothing good can come from that,
    779     * so enforce a minimum size.
    780     */
    781    if (output_size_bytes == 0)
    782       output_size_bytes = 1;
    783 
    784    unsigned max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
    785    if (compiler->devinfo->gen == 6)
    786       max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
    787    if (output_size_bytes > max_output_size_bytes)
    788       return NULL;
    789 
    790 
    791    /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
    792     * a multiple of 128 bytes in gen6.
    793     */
    794    if (compiler->devinfo->gen >= 7)
    795       prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
    796    else
    797       prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
    798 
    799    prog_data->output_topology =
    800       get_hw_prim_for_gl_prim(shader->info->gs.output_primitive);
    801 
    802    prog_data->vertices_in = shader->info->gs.vertices_in;
    803 
    804    /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
    805     * need to program a URB read length of ceiling(num_slots / 2).
    806     */
    807    prog_data->base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
    808 
    809    /* Now that prog_data setup is done, we are ready to actually compile the
    810     * program.
    811     */
    812    if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
    813       fprintf(stderr, "GS Input ");
    814       brw_print_vue_map(stderr, &c.input_vue_map);
    815       fprintf(stderr, "GS Output ");
    816       brw_print_vue_map(stderr, &prog_data->base.vue_map);
    817    }
    818 
    819    if (is_scalar) {
    820       fs_visitor v(compiler, log_data, mem_ctx, &c, prog_data, shader,
    821                    shader_time_index);
    822       if (v.run_gs()) {
    823          prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
    824          prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
    825 
    826          fs_generator g(compiler, log_data, mem_ctx, &c.key,
    827                         &prog_data->base.base, v.promoted_constants,
    828                         false, MESA_SHADER_GEOMETRY);
    829          if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
    830             const char *label =
    831                shader->info->label ? shader->info->label : "unnamed";
    832             char *name = ralloc_asprintf(mem_ctx, "%s geometry shader %s",
    833                                          label, shader->info->name);
    834             g.enable_debug(name);
    835          }
    836          g.generate_code(v.cfg, 8);
    837          return g.get_assembly(final_assembly_size);
    838       }
    839    }
    840 
    841    if (compiler->devinfo->gen >= 7) {
    842       /* Compile the geometry shader in DUAL_OBJECT dispatch mode, if we can do
    843        * so without spilling. If the GS invocations count > 1, then we can't use
    844        * dual object mode.
    845        */
    846       if (prog_data->invocations <= 1 &&
    847           likely(!(INTEL_DEBUG & DEBUG_NO_DUAL_OBJECT_GS))) {
    848          prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
    849 
    850          vec4_gs_visitor v(compiler, log_data, &c, prog_data, shader,
    851                            mem_ctx, true /* no_spills */, shader_time_index);
    852          if (v.run()) {
    853             return brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
    854                                               shader, &prog_data->base, v.cfg,
    855                                               final_assembly_size);
    856          }
    857       }
    858    }
    859 
    860    /* Either we failed to compile in DUAL_OBJECT mode (probably because it
    861     * would have required spilling) or DUAL_OBJECT mode is disabled.  So fall
    862     * back to DUAL_INSTANCED or SINGLE mode, which consumes fewer registers.
    863     *
    864     * FIXME: Single dispatch mode requires that the driver can handle
    865     * interleaving of input registers, but this is already supported (dual
    866     * instance mode has the same requirement). However, to take full advantage
    867     * of single dispatch mode to reduce register pressure we would also need to
    868     * do interleaved outputs, but currently, the vec4 visitor and generator
    869     * classes do not support this, so at the moment register pressure in
    870     * single and dual instance modes is the same.
    871     *
    872     * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 "3DSTATE_GS"
    873     * "If InstanceCount>1, DUAL_OBJECT mode is invalid. Software will likely
    874     * want to use DUAL_INSTANCE mode for higher performance, but SINGLE mode
    875     * is also supported. When InstanceCount=1 (one instance per object) software
    876     * can decide which dispatch mode to use. DUAL_OBJECT mode would likely be
    877     * the best choice for performance, followed by SINGLE mode."
    878     *
    879     * So SINGLE mode is more performant when invocations == 1 and DUAL_INSTANCE
    880     * mode is more performant when invocations > 1. Gen6 only supports
    881     * SINGLE mode.
    882     */
    883    if (prog_data->invocations <= 1 || compiler->devinfo->gen < 7)
    884       prog_data->base.dispatch_mode = DISPATCH_MODE_4X1_SINGLE;
    885    else
    886       prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_INSTANCE;
    887 
    888    vec4_gs_visitor *gs = NULL;
    889    const unsigned *ret = NULL;
    890 
    891    if (compiler->devinfo->gen >= 7)
    892       gs = new vec4_gs_visitor(compiler, log_data, &c, prog_data,
    893                                shader, mem_ctx, false /* no_spills */,
    894                                shader_time_index);
    895    else
    896       gs = new gen6_gs_visitor(compiler, log_data, &c, prog_data, prog,
    897                                shader, mem_ctx, false /* no_spills */,
    898                                shader_time_index);
    899 
    900    if (!gs->run()) {
    901       if (error_str)
    902          *error_str = ralloc_strdup(mem_ctx, gs->fail_msg);
    903    } else {
    904       ret = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, shader,
    905                                        &prog_data->base, gs->cfg,
    906                                        final_assembly_size);
    907    }
    908 
    909    delete gs;
    910    return ret;
    911 }
    912 
    913 
    914 } /* namespace brw */
    915